1 //===-- lib/Evaluate/characteristics.cpp ----------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "flang/Evaluate/characteristics.h" 10 #include "flang/Common/indirection.h" 11 #include "flang/Evaluate/check-expression.h" 12 #include "flang/Evaluate/fold.h" 13 #include "flang/Evaluate/intrinsics.h" 14 #include "flang/Evaluate/tools.h" 15 #include "flang/Evaluate/type.h" 16 #include "flang/Parser/message.h" 17 #include "flang/Semantics/scope.h" 18 #include "flang/Semantics/symbol.h" 19 #include "flang/Semantics/tools.h" 20 #include "llvm/Support/raw_ostream.h" 21 #include <initializer_list> 22 23 using namespace Fortran::parser::literals; 24 25 namespace Fortran::evaluate::characteristics { 26 27 // Copy attributes from a symbol to dst based on the mapping in pairs. 28 template <typename A, typename B> 29 static void CopyAttrs(const semantics::Symbol &src, A &dst, 30 const std::initializer_list<std::pair<semantics::Attr, B>> &pairs) { 31 for (const auto &pair : pairs) { 32 if (src.attrs().test(pair.first)) { 33 dst.attrs.set(pair.second); 34 } 35 } 36 } 37 38 // Shapes of function results and dummy arguments have to have 39 // the same rank, the same deferred dimensions, and the same 40 // values for explicit dimensions when constant. 41 bool ShapesAreCompatible(const Shape &x, const Shape &y) { 42 if (x.size() != y.size()) { 43 return false; 44 } 45 auto yIter{y.begin()}; 46 for (const auto &xDim : x) { 47 const auto &yDim{*yIter++}; 48 if (xDim) { 49 if (!yDim || ToInt64(*xDim) != ToInt64(*yDim)) { 50 return false; 51 } 52 } else if (yDim) { 53 return false; 54 } 55 } 56 return true; 57 } 58 59 bool TypeAndShape::operator==(const TypeAndShape &that) const { 60 return type_ == that.type_ && ShapesAreCompatible(shape_, that.shape_) && 61 attrs_ == that.attrs_ && corank_ == that.corank_; 62 } 63 64 TypeAndShape &TypeAndShape::Rewrite(FoldingContext &context) { 65 LEN_ = Fold(context, std::move(LEN_)); 66 shape_ = Fold(context, std::move(shape_)); 67 return *this; 68 } 69 70 std::optional<TypeAndShape> TypeAndShape::Characterize( 71 const semantics::Symbol &symbol, FoldingContext &context) { 72 const auto &ultimate{symbol.GetUltimate()}; 73 return common::visit( 74 common::visitors{ 75 [&](const semantics::ProcEntityDetails &proc) { 76 const semantics::ProcInterface &interface { proc.interface() }; 77 if (interface.type()) { 78 return Characterize(*interface.type(), context); 79 } else if (interface.symbol()) { 80 return Characterize(*interface.symbol(), context); 81 } else { 82 return std::optional<TypeAndShape>{}; 83 } 84 }, 85 [&](const semantics::AssocEntityDetails &assoc) { 86 return Characterize(assoc, context); 87 }, 88 [&](const semantics::ProcBindingDetails &binding) { 89 return Characterize(binding.symbol(), context); 90 }, 91 [&](const auto &x) -> std::optional<TypeAndShape> { 92 using Ty = std::decay_t<decltype(x)>; 93 if constexpr (std::is_same_v<Ty, semantics::EntityDetails> || 94 std::is_same_v<Ty, semantics::ObjectEntityDetails> || 95 std::is_same_v<Ty, semantics::TypeParamDetails>) { 96 if (const semantics::DeclTypeSpec * type{ultimate.GetType()}) { 97 if (auto dyType{DynamicType::From(*type)}) { 98 TypeAndShape result{ 99 std::move(*dyType), GetShape(context, ultimate)}; 100 result.AcquireAttrs(ultimate); 101 result.AcquireLEN(ultimate); 102 return std::move(result.Rewrite(context)); 103 } 104 } 105 } 106 return std::nullopt; 107 }, 108 }, 109 // GetUltimate() used here, not ResolveAssociations(), because 110 // we need the type/rank of an associate entity from TYPE IS, 111 // CLASS IS, or RANK statement. 112 ultimate.details()); 113 } 114 115 std::optional<TypeAndShape> TypeAndShape::Characterize( 116 const semantics::AssocEntityDetails &assoc, FoldingContext &context) { 117 std::optional<TypeAndShape> result; 118 if (auto type{DynamicType::From(assoc.type())}) { 119 if (auto rank{assoc.rank()}) { 120 if (*rank >= 0 && *rank <= common::maxRank) { 121 result = TypeAndShape{std::move(*type), Shape(*rank)}; 122 } 123 } else if (auto shape{GetShape(context, assoc.expr())}) { 124 result = TypeAndShape{std::move(*type), std::move(*shape)}; 125 } 126 if (result && type->category() == TypeCategory::Character) { 127 if (const auto *chExpr{UnwrapExpr<Expr<SomeCharacter>>(assoc.expr())}) { 128 if (auto len{chExpr->LEN()}) { 129 result->set_LEN(std::move(*len)); 130 } 131 } 132 } 133 } 134 return Fold(context, std::move(result)); 135 } 136 137 std::optional<TypeAndShape> TypeAndShape::Characterize( 138 const semantics::DeclTypeSpec &spec, FoldingContext &context) { 139 if (auto type{DynamicType::From(spec)}) { 140 return Fold(context, TypeAndShape{std::move(*type)}); 141 } else { 142 return std::nullopt; 143 } 144 } 145 146 std::optional<TypeAndShape> TypeAndShape::Characterize( 147 const ActualArgument &arg, FoldingContext &context) { 148 return Characterize(arg.UnwrapExpr(), context); 149 } 150 151 bool TypeAndShape::IsCompatibleWith(parser::ContextualMessages &messages, 152 const TypeAndShape &that, const char *thisIs, const char *thatIs, 153 bool omitShapeConformanceCheck, 154 enum CheckConformanceFlags::Flags flags) const { 155 if (!type_.IsTkCompatibleWith(that.type_)) { 156 messages.Say( 157 "%1$s type '%2$s' is not compatible with %3$s type '%4$s'"_err_en_US, 158 thatIs, that.AsFortran(), thisIs, AsFortran()); 159 return false; 160 } 161 return omitShapeConformanceCheck || 162 CheckConformance(messages, shape_, that.shape_, flags, thisIs, thatIs) 163 .value_or(true /*fail only when nonconformance is known now*/); 164 } 165 166 std::optional<Expr<SubscriptInteger>> TypeAndShape::MeasureElementSizeInBytes( 167 FoldingContext &foldingContext, bool align) const { 168 if (LEN_) { 169 CHECK(type_.category() == TypeCategory::Character); 170 return Fold(foldingContext, 171 Expr<SubscriptInteger>{ 172 foldingContext.targetCharacteristics().GetByteSize( 173 type_.category(), type_.kind())} * 174 Expr<SubscriptInteger>{*LEN_}); 175 } 176 if (auto elementBytes{type_.MeasureSizeInBytes(foldingContext, align)}) { 177 return Fold(foldingContext, std::move(*elementBytes)); 178 } 179 return std::nullopt; 180 } 181 182 std::optional<Expr<SubscriptInteger>> TypeAndShape::MeasureSizeInBytes( 183 FoldingContext &foldingContext) const { 184 if (auto elements{GetSize(Shape{shape_})}) { 185 // Sizes of arrays (even with single elements) are multiples of 186 // their alignments. 187 if (auto elementBytes{ 188 MeasureElementSizeInBytes(foldingContext, GetRank(shape_) > 0)}) { 189 return Fold( 190 foldingContext, std::move(*elements) * std::move(*elementBytes)); 191 } 192 } 193 return std::nullopt; 194 } 195 196 void TypeAndShape::AcquireAttrs(const semantics::Symbol &symbol) { 197 if (IsAssumedShape(symbol)) { 198 attrs_.set(Attr::AssumedShape); 199 } 200 if (IsDeferredShape(symbol)) { 201 attrs_.set(Attr::DeferredShape); 202 } 203 if (const auto *object{ 204 symbol.GetUltimate().detailsIf<semantics::ObjectEntityDetails>()}) { 205 corank_ = object->coshape().Rank(); 206 if (object->IsAssumedRank()) { 207 attrs_.set(Attr::AssumedRank); 208 } 209 if (object->IsAssumedSize()) { 210 attrs_.set(Attr::AssumedSize); 211 } 212 if (object->IsCoarray()) { 213 attrs_.set(Attr::Coarray); 214 } 215 } 216 } 217 218 void TypeAndShape::AcquireLEN() { 219 if (auto len{type_.GetCharLength()}) { 220 LEN_ = std::move(len); 221 } 222 } 223 224 void TypeAndShape::AcquireLEN(const semantics::Symbol &symbol) { 225 if (type_.category() == TypeCategory::Character) { 226 if (auto len{DataRef{symbol}.LEN()}) { 227 LEN_ = std::move(*len); 228 } 229 } 230 } 231 232 std::string TypeAndShape::AsFortran() const { 233 return type_.AsFortran(LEN_ ? LEN_->AsFortran() : ""); 234 } 235 236 llvm::raw_ostream &TypeAndShape::Dump(llvm::raw_ostream &o) const { 237 o << type_.AsFortran(LEN_ ? LEN_->AsFortran() : ""); 238 attrs_.Dump(o, EnumToString); 239 if (!shape_.empty()) { 240 o << " dimension"; 241 char sep{'('}; 242 for (const auto &expr : shape_) { 243 o << sep; 244 sep = ','; 245 if (expr) { 246 expr->AsFortran(o); 247 } else { 248 o << ':'; 249 } 250 } 251 o << ')'; 252 } 253 return o; 254 } 255 256 bool DummyDataObject::operator==(const DummyDataObject &that) const { 257 return type == that.type && attrs == that.attrs && intent == that.intent && 258 coshape == that.coshape; 259 } 260 261 static bool AreCompatibleDummyDataObjectShapes(const Shape &x, const Shape &y) { 262 // TODO: Validate more than just compatible ranks 263 return GetRank(x) == GetRank(y); 264 } 265 266 bool DummyDataObject::IsCompatibleWith( 267 const DummyDataObject &actual, std::string *whyNot) const { 268 if (!AreCompatibleDummyDataObjectShapes(type.shape(), actual.type.shape())) { 269 if (whyNot) { 270 *whyNot = "incompatible dummy data object shapes"; 271 } 272 return false; 273 } 274 if (!type.type().IsTkCompatibleWith(actual.type.type())) { 275 if (whyNot) { 276 *whyNot = "incompatible dummy data object types: "s + 277 type.type().AsFortran() + " vs " + actual.type.type().AsFortran(); 278 } 279 return false; 280 } 281 if (attrs != actual.attrs) { 282 if (whyNot) { 283 *whyNot = "incompatible dummy data object attributes"; 284 } 285 return false; 286 } 287 if (intent != actual.intent) { 288 if (whyNot) { 289 *whyNot = "incompatible dummy data object intents"; 290 } 291 return false; 292 } 293 if (coshape != actual.coshape) { 294 if (whyNot) { 295 *whyNot = "incompatible dummy data object coshapes"; 296 } 297 return false; 298 } 299 return true; 300 } 301 302 static common::Intent GetIntent(const semantics::Attrs &attrs) { 303 if (attrs.test(semantics::Attr::INTENT_IN)) { 304 return common::Intent::In; 305 } else if (attrs.test(semantics::Attr::INTENT_OUT)) { 306 return common::Intent::Out; 307 } else if (attrs.test(semantics::Attr::INTENT_INOUT)) { 308 return common::Intent::InOut; 309 } else { 310 return common::Intent::Default; 311 } 312 } 313 314 std::optional<DummyDataObject> DummyDataObject::Characterize( 315 const semantics::Symbol &symbol, FoldingContext &context) { 316 if (symbol.has<semantics::ObjectEntityDetails>() || 317 symbol.has<semantics::EntityDetails>()) { 318 if (auto type{TypeAndShape::Characterize(symbol, context)}) { 319 std::optional<DummyDataObject> result{std::move(*type)}; 320 using semantics::Attr; 321 CopyAttrs<DummyDataObject, DummyDataObject::Attr>(symbol, *result, 322 { 323 {Attr::OPTIONAL, DummyDataObject::Attr::Optional}, 324 {Attr::ALLOCATABLE, DummyDataObject::Attr::Allocatable}, 325 {Attr::ASYNCHRONOUS, DummyDataObject::Attr::Asynchronous}, 326 {Attr::CONTIGUOUS, DummyDataObject::Attr::Contiguous}, 327 {Attr::VALUE, DummyDataObject::Attr::Value}, 328 {Attr::VOLATILE, DummyDataObject::Attr::Volatile}, 329 {Attr::POINTER, DummyDataObject::Attr::Pointer}, 330 {Attr::TARGET, DummyDataObject::Attr::Target}, 331 }); 332 result->intent = GetIntent(symbol.attrs()); 333 return result; 334 } 335 } 336 return std::nullopt; 337 } 338 339 bool DummyDataObject::CanBePassedViaImplicitInterface() const { 340 if ((attrs & 341 Attrs{Attr::Allocatable, Attr::Asynchronous, Attr::Optional, 342 Attr::Pointer, Attr::Target, Attr::Value, Attr::Volatile}) 343 .any()) { 344 return false; // 15.4.2.2(3)(a) 345 } else if ((type.attrs() & 346 TypeAndShape::Attrs{TypeAndShape::Attr::AssumedShape, 347 TypeAndShape::Attr::AssumedRank, 348 TypeAndShape::Attr::Coarray}) 349 .any()) { 350 return false; // 15.4.2.2(3)(b-d) 351 } else if (type.type().IsPolymorphic()) { 352 return false; // 15.4.2.2(3)(f) 353 } else if (const auto *derived{GetDerivedTypeSpec(type.type())}) { 354 return derived->parameters().empty(); // 15.4.2.2(3)(e) 355 } else { 356 return true; 357 } 358 } 359 360 llvm::raw_ostream &DummyDataObject::Dump(llvm::raw_ostream &o) const { 361 attrs.Dump(o, EnumToString); 362 if (intent != common::Intent::Default) { 363 o << "INTENT(" << common::EnumToString(intent) << ')'; 364 } 365 type.Dump(o); 366 if (!coshape.empty()) { 367 char sep{'['}; 368 for (const auto &expr : coshape) { 369 expr.AsFortran(o << sep); 370 sep = ','; 371 } 372 } 373 return o; 374 } 375 376 DummyProcedure::DummyProcedure(Procedure &&p) 377 : procedure{new Procedure{std::move(p)}} {} 378 379 bool DummyProcedure::operator==(const DummyProcedure &that) const { 380 return attrs == that.attrs && intent == that.intent && 381 procedure.value() == that.procedure.value(); 382 } 383 384 bool DummyProcedure::IsCompatibleWith( 385 const DummyProcedure &actual, std::string *whyNot) const { 386 if (attrs != actual.attrs) { 387 if (whyNot) { 388 *whyNot = "incompatible dummy procedure attributes"; 389 } 390 return false; 391 } 392 if (intent != actual.intent) { 393 if (whyNot) { 394 *whyNot = "incompatible dummy procedure intents"; 395 } 396 return false; 397 } 398 if (!procedure.value().IsCompatibleWith(actual.procedure.value(), whyNot)) { 399 if (whyNot) { 400 *whyNot = "incompatible dummy procedure interfaces: "s + *whyNot; 401 } 402 return false; 403 } 404 return true; 405 } 406 407 static std::string GetSeenProcs( 408 const semantics::UnorderedSymbolSet &seenProcs) { 409 // Sort the symbols so that they appear in the same order on all platforms 410 auto ordered{semantics::OrderBySourcePosition(seenProcs)}; 411 std::string result; 412 llvm::interleave( 413 ordered, 414 [&](const SymbolRef p) { result += '\'' + p->name().ToString() + '\''; }, 415 [&]() { result += ", "; }); 416 return result; 417 } 418 419 // These functions with arguments of type UnorderedSymbolSet are used with 420 // mutually recursive calls when characterizing a Procedure, a DummyArgument, 421 // or a DummyProcedure to detect circularly defined procedures as required by 422 // 15.4.3.6, paragraph 2. 423 static std::optional<DummyArgument> CharacterizeDummyArgument( 424 const semantics::Symbol &symbol, FoldingContext &context, 425 semantics::UnorderedSymbolSet seenProcs); 426 static std::optional<FunctionResult> CharacterizeFunctionResult( 427 const semantics::Symbol &symbol, FoldingContext &context, 428 semantics::UnorderedSymbolSet seenProcs); 429 430 static std::optional<Procedure> CharacterizeProcedure( 431 const semantics::Symbol &original, FoldingContext &context, 432 semantics::UnorderedSymbolSet seenProcs) { 433 Procedure result; 434 const auto &symbol{ResolveAssociations(original)}; 435 if (seenProcs.find(symbol) != seenProcs.end()) { 436 std::string procsList{GetSeenProcs(seenProcs)}; 437 context.messages().Say(symbol.name(), 438 "Procedure '%s' is recursively defined. Procedures in the cycle:" 439 " %s"_err_en_US, 440 symbol.name(), procsList); 441 return std::nullopt; 442 } 443 seenProcs.insert(symbol); 444 if (IsElementalProcedure(symbol)) { 445 result.attrs.set(Procedure::Attr::Elemental); 446 } 447 CopyAttrs<Procedure, Procedure::Attr>(symbol, result, 448 { 449 {semantics::Attr::BIND_C, Procedure::Attr::BindC}, 450 }); 451 if (IsPureProcedure(symbol) || // works for ENTRY too 452 (!symbol.attrs().test(semantics::Attr::IMPURE) && 453 result.attrs.test(Procedure::Attr::Elemental))) { 454 result.attrs.set(Procedure::Attr::Pure); 455 } 456 return common::visit( 457 common::visitors{ 458 [&](const semantics::SubprogramDetails &subp) 459 -> std::optional<Procedure> { 460 if (subp.isFunction()) { 461 if (auto fr{CharacterizeFunctionResult( 462 subp.result(), context, seenProcs)}) { 463 result.functionResult = std::move(fr); 464 } else { 465 return std::nullopt; 466 } 467 } else { 468 result.attrs.set(Procedure::Attr::Subroutine); 469 } 470 for (const semantics::Symbol *arg : subp.dummyArgs()) { 471 if (!arg) { 472 if (subp.isFunction()) { 473 return std::nullopt; 474 } else { 475 result.dummyArguments.emplace_back(AlternateReturn{}); 476 } 477 } else if (auto argCharacteristics{CharacterizeDummyArgument( 478 *arg, context, seenProcs)}) { 479 result.dummyArguments.emplace_back( 480 std::move(argCharacteristics.value())); 481 } else { 482 return std::nullopt; 483 } 484 } 485 return result; 486 }, 487 [&](const semantics::ProcEntityDetails &proc) 488 -> std::optional<Procedure> { 489 if (symbol.attrs().test(semantics::Attr::INTRINSIC)) { 490 // Fails when the intrinsic is not a specific intrinsic function 491 // from F'2018 table 16.2. In order to handle forward references, 492 // attempts to use impermissible intrinsic procedures as the 493 // interfaces of procedure pointers are caught and flagged in 494 // declaration checking in Semantics. 495 auto intrinsic{context.intrinsics().IsSpecificIntrinsicFunction( 496 symbol.name().ToString())}; 497 if (intrinsic && intrinsic->isRestrictedSpecific) { 498 intrinsic.reset(); // Exclude intrinsics from table 16.3. 499 } 500 return intrinsic; 501 } 502 const semantics::ProcInterface &interface { proc.interface() }; 503 if (const semantics::Symbol * interfaceSymbol{interface.symbol()}) { 504 auto interface { 505 CharacterizeProcedure(*interfaceSymbol, context, seenProcs) 506 }; 507 if (interface && IsPointer(symbol)) { 508 interface->attrs.reset(Procedure::Attr::Elemental); 509 } 510 return interface; 511 } else { 512 result.attrs.set(Procedure::Attr::ImplicitInterface); 513 const semantics::DeclTypeSpec *type{interface.type()}; 514 if (symbol.test(semantics::Symbol::Flag::Subroutine)) { 515 // ignore any implicit typing 516 result.attrs.set(Procedure::Attr::Subroutine); 517 } else if (type) { 518 if (auto resultType{DynamicType::From(*type)}) { 519 result.functionResult = FunctionResult{*resultType}; 520 } else { 521 return std::nullopt; 522 } 523 } else if (symbol.test(semantics::Symbol::Flag::Function)) { 524 return std::nullopt; 525 } 526 // The PASS name, if any, is not a characteristic. 527 return result; 528 } 529 }, 530 [&](const semantics::ProcBindingDetails &binding) { 531 if (auto result{CharacterizeProcedure( 532 binding.symbol(), context, seenProcs)}) { 533 if (binding.symbol().attrs().test(semantics::Attr::INTRINSIC)) { 534 result->attrs.reset(Procedure::Attr::Elemental); 535 } 536 if (!symbol.attrs().test(semantics::Attr::NOPASS)) { 537 auto passName{binding.passName()}; 538 for (auto &dummy : result->dummyArguments) { 539 if (!passName || dummy.name.c_str() == *passName) { 540 dummy.pass = true; 541 break; 542 } 543 } 544 } 545 return result; 546 } else { 547 return std::optional<Procedure>{}; 548 } 549 }, 550 [&](const semantics::UseDetails &use) { 551 return CharacterizeProcedure(use.symbol(), context, seenProcs); 552 }, 553 [](const semantics::UseErrorDetails &) { 554 // Ambiguous use-association will be handled later during symbol 555 // checks, ignore UseErrorDetails here without actual symbol usage. 556 return std::optional<Procedure>{}; 557 }, 558 [&](const semantics::HostAssocDetails &assoc) { 559 return CharacterizeProcedure(assoc.symbol(), context, seenProcs); 560 }, 561 [&](const semantics::EntityDetails &) { 562 context.messages().Say( 563 "Procedure '%s' is referenced before being sufficiently defined in a context where it must be so"_err_en_US, 564 symbol.name()); 565 return std::optional<Procedure>{}; 566 }, 567 [&](const semantics::SubprogramNameDetails &) { 568 context.messages().Say( 569 "Procedure '%s' is referenced before being sufficiently defined in a context where it must be so"_err_en_US, 570 symbol.name()); 571 return std::optional<Procedure>{}; 572 }, 573 [&](const auto &) { 574 context.messages().Say( 575 "'%s' is not a procedure"_err_en_US, symbol.name()); 576 return std::optional<Procedure>{}; 577 }, 578 }, 579 symbol.details()); 580 } 581 582 static std::optional<DummyProcedure> CharacterizeDummyProcedure( 583 const semantics::Symbol &symbol, FoldingContext &context, 584 semantics::UnorderedSymbolSet seenProcs) { 585 if (auto procedure{CharacterizeProcedure(symbol, context, seenProcs)}) { 586 // Dummy procedures may not be elemental. Elemental dummy procedure 587 // interfaces are errors when the interface is not intrinsic, and that 588 // error is caught elsewhere. Elemental intrinsic interfaces are 589 // made non-elemental. 590 procedure->attrs.reset(Procedure::Attr::Elemental); 591 DummyProcedure result{std::move(procedure.value())}; 592 CopyAttrs<DummyProcedure, DummyProcedure::Attr>(symbol, result, 593 { 594 {semantics::Attr::OPTIONAL, DummyProcedure::Attr::Optional}, 595 {semantics::Attr::POINTER, DummyProcedure::Attr::Pointer}, 596 }); 597 result.intent = GetIntent(symbol.attrs()); 598 return result; 599 } else { 600 return std::nullopt; 601 } 602 } 603 604 llvm::raw_ostream &DummyProcedure::Dump(llvm::raw_ostream &o) const { 605 attrs.Dump(o, EnumToString); 606 if (intent != common::Intent::Default) { 607 o << "INTENT(" << common::EnumToString(intent) << ')'; 608 } 609 procedure.value().Dump(o); 610 return o; 611 } 612 613 llvm::raw_ostream &AlternateReturn::Dump(llvm::raw_ostream &o) const { 614 return o << '*'; 615 } 616 617 DummyArgument::~DummyArgument() {} 618 619 bool DummyArgument::operator==(const DummyArgument &that) const { 620 return u == that.u; // name and passed-object usage are not characteristics 621 } 622 623 bool DummyArgument::IsCompatibleWith( 624 const DummyArgument &actual, std::string *whyNot) const { 625 if (const auto *ifaceData{std::get_if<DummyDataObject>(&u)}) { 626 if (const auto *actualData{std::get_if<DummyDataObject>(&actual.u)}) { 627 return ifaceData->IsCompatibleWith(*actualData, whyNot); 628 } 629 if (whyNot) { 630 *whyNot = "one dummy argument is an object, the other is not"; 631 } 632 } else if (const auto *ifaceProc{std::get_if<DummyProcedure>(&u)}) { 633 if (const auto *actualProc{std::get_if<DummyProcedure>(&actual.u)}) { 634 return ifaceProc->IsCompatibleWith(*actualProc, whyNot); 635 } 636 if (whyNot) { 637 *whyNot = "one dummy argument is a procedure, the other is not"; 638 } 639 } else { 640 CHECK(std::holds_alternative<AlternateReturn>(u)); 641 if (std::holds_alternative<AlternateReturn>(actual.u)) { 642 return true; 643 } 644 if (whyNot) { 645 *whyNot = "one dummy argument is an alternate return, the other is not"; 646 } 647 } 648 return false; 649 } 650 651 static std::optional<DummyArgument> CharacterizeDummyArgument( 652 const semantics::Symbol &symbol, FoldingContext &context, 653 semantics::UnorderedSymbolSet seenProcs) { 654 auto name{symbol.name().ToString()}; 655 if (symbol.has<semantics::ObjectEntityDetails>() || 656 symbol.has<semantics::EntityDetails>()) { 657 if (auto obj{DummyDataObject::Characterize(symbol, context)}) { 658 return DummyArgument{std::move(name), std::move(obj.value())}; 659 } 660 } else if (auto proc{ 661 CharacterizeDummyProcedure(symbol, context, seenProcs)}) { 662 return DummyArgument{std::move(name), std::move(proc.value())}; 663 } 664 return std::nullopt; 665 } 666 667 std::optional<DummyArgument> DummyArgument::FromActual( 668 std::string &&name, const Expr<SomeType> &expr, FoldingContext &context) { 669 return common::visit( 670 common::visitors{ 671 [&](const BOZLiteralConstant &) { 672 return std::make_optional<DummyArgument>(std::move(name), 673 DummyDataObject{ 674 TypeAndShape{DynamicType::TypelessIntrinsicArgument()}}); 675 }, 676 [&](const NullPointer &) { 677 return std::make_optional<DummyArgument>(std::move(name), 678 DummyDataObject{ 679 TypeAndShape{DynamicType::TypelessIntrinsicArgument()}}); 680 }, 681 [&](const ProcedureDesignator &designator) { 682 if (auto proc{Procedure::Characterize(designator, context)}) { 683 return std::make_optional<DummyArgument>( 684 std::move(name), DummyProcedure{std::move(*proc)}); 685 } else { 686 return std::optional<DummyArgument>{}; 687 } 688 }, 689 [&](const ProcedureRef &call) { 690 if (auto proc{Procedure::Characterize(call, context)}) { 691 return std::make_optional<DummyArgument>( 692 std::move(name), DummyProcedure{std::move(*proc)}); 693 } else { 694 return std::optional<DummyArgument>{}; 695 } 696 }, 697 [&](const auto &) { 698 if (auto type{TypeAndShape::Characterize(expr, context)}) { 699 return std::make_optional<DummyArgument>( 700 std::move(name), DummyDataObject{std::move(*type)}); 701 } else { 702 return std::optional<DummyArgument>{}; 703 } 704 }, 705 }, 706 expr.u); 707 } 708 709 bool DummyArgument::IsOptional() const { 710 return common::visit( 711 common::visitors{ 712 [](const DummyDataObject &data) { 713 return data.attrs.test(DummyDataObject::Attr::Optional); 714 }, 715 [](const DummyProcedure &proc) { 716 return proc.attrs.test(DummyProcedure::Attr::Optional); 717 }, 718 [](const AlternateReturn &) { return false; }, 719 }, 720 u); 721 } 722 723 void DummyArgument::SetOptional(bool value) { 724 common::visit(common::visitors{ 725 [value](DummyDataObject &data) { 726 data.attrs.set(DummyDataObject::Attr::Optional, value); 727 }, 728 [value](DummyProcedure &proc) { 729 proc.attrs.set(DummyProcedure::Attr::Optional, value); 730 }, 731 [](AlternateReturn &) { DIE("cannot set optional"); }, 732 }, 733 u); 734 } 735 736 void DummyArgument::SetIntent(common::Intent intent) { 737 common::visit(common::visitors{ 738 [intent](DummyDataObject &data) { data.intent = intent; }, 739 [intent](DummyProcedure &proc) { proc.intent = intent; }, 740 [](AlternateReturn &) { DIE("cannot set intent"); }, 741 }, 742 u); 743 } 744 745 common::Intent DummyArgument::GetIntent() const { 746 return common::visit( 747 common::visitors{ 748 [](const DummyDataObject &data) { return data.intent; }, 749 [](const DummyProcedure &proc) { return proc.intent; }, 750 [](const AlternateReturn &) -> common::Intent { 751 DIE("Alternate returns have no intent"); 752 }, 753 }, 754 u); 755 } 756 757 bool DummyArgument::CanBePassedViaImplicitInterface() const { 758 if (const auto *object{std::get_if<DummyDataObject>(&u)}) { 759 return object->CanBePassedViaImplicitInterface(); 760 } else { 761 return true; 762 } 763 } 764 765 bool DummyArgument::IsTypelessIntrinsicDummy() const { 766 const auto *argObj{std::get_if<characteristics::DummyDataObject>(&u)}; 767 return argObj && argObj->type.type().IsTypelessIntrinsicArgument(); 768 } 769 770 llvm::raw_ostream &DummyArgument::Dump(llvm::raw_ostream &o) const { 771 if (!name.empty()) { 772 o << name << '='; 773 } 774 if (pass) { 775 o << " PASS"; 776 } 777 common::visit([&](const auto &x) { x.Dump(o); }, u); 778 return o; 779 } 780 781 FunctionResult::FunctionResult(DynamicType t) : u{TypeAndShape{t}} {} 782 FunctionResult::FunctionResult(TypeAndShape &&t) : u{std::move(t)} {} 783 FunctionResult::FunctionResult(Procedure &&p) : u{std::move(p)} {} 784 FunctionResult::~FunctionResult() {} 785 786 bool FunctionResult::operator==(const FunctionResult &that) const { 787 return attrs == that.attrs && u == that.u; 788 } 789 790 static std::optional<FunctionResult> CharacterizeFunctionResult( 791 const semantics::Symbol &symbol, FoldingContext &context, 792 semantics::UnorderedSymbolSet seenProcs) { 793 if (symbol.has<semantics::ObjectEntityDetails>()) { 794 if (auto type{TypeAndShape::Characterize(symbol, context)}) { 795 FunctionResult result{std::move(*type)}; 796 CopyAttrs<FunctionResult, FunctionResult::Attr>(symbol, result, 797 { 798 {semantics::Attr::ALLOCATABLE, FunctionResult::Attr::Allocatable}, 799 {semantics::Attr::CONTIGUOUS, FunctionResult::Attr::Contiguous}, 800 {semantics::Attr::POINTER, FunctionResult::Attr::Pointer}, 801 }); 802 return result; 803 } 804 } else if (auto maybeProc{ 805 CharacterizeProcedure(symbol, context, seenProcs)}) { 806 FunctionResult result{std::move(*maybeProc)}; 807 result.attrs.set(FunctionResult::Attr::Pointer); 808 return result; 809 } 810 return std::nullopt; 811 } 812 813 std::optional<FunctionResult> FunctionResult::Characterize( 814 const Symbol &symbol, FoldingContext &context) { 815 semantics::UnorderedSymbolSet seenProcs; 816 return CharacterizeFunctionResult(symbol, context, seenProcs); 817 } 818 819 bool FunctionResult::IsAssumedLengthCharacter() const { 820 if (const auto *ts{std::get_if<TypeAndShape>(&u)}) { 821 return ts->type().IsAssumedLengthCharacter(); 822 } else { 823 return false; 824 } 825 } 826 827 bool FunctionResult::CanBeReturnedViaImplicitInterface() const { 828 if (attrs.test(Attr::Pointer) || attrs.test(Attr::Allocatable)) { 829 return false; // 15.4.2.2(4)(b) 830 } else if (const auto *typeAndShape{GetTypeAndShape()}) { 831 if (typeAndShape->Rank() > 0) { 832 return false; // 15.4.2.2(4)(a) 833 } else { 834 const DynamicType &type{typeAndShape->type()}; 835 switch (type.category()) { 836 case TypeCategory::Character: 837 if (type.knownLength()) { 838 return true; 839 } else if (const auto *param{type.charLengthParamValue()}) { 840 if (const auto &expr{param->GetExplicit()}) { 841 return IsConstantExpr(*expr); // 15.4.2.2(4)(c) 842 } else if (param->isAssumed()) { 843 return true; 844 } 845 } 846 return false; 847 case TypeCategory::Derived: 848 if (!type.IsPolymorphic()) { 849 const auto &spec{type.GetDerivedTypeSpec()}; 850 for (const auto &pair : spec.parameters()) { 851 if (const auto &expr{pair.second.GetExplicit()}) { 852 if (!IsConstantExpr(*expr)) { 853 return false; // 15.4.2.2(4)(c) 854 } 855 } 856 } 857 return true; 858 } 859 return false; 860 default: 861 return true; 862 } 863 } 864 } else { 865 return false; // 15.4.2.2(4)(b) - procedure pointer 866 } 867 } 868 869 bool FunctionResult::IsCompatibleWith( 870 const FunctionResult &actual, std::string *whyNot) const { 871 Attrs actualAttrs{actual.attrs}; 872 if (!attrs.test(Attr::Contiguous)) { 873 actualAttrs.reset(Attr::Contiguous); 874 } 875 if (attrs != actualAttrs) { 876 if (whyNot) { 877 *whyNot = "function results have incompatible attributes"; 878 } 879 } else if (const auto *ifaceTypeShape{std::get_if<TypeAndShape>(&u)}) { 880 if (const auto *actualTypeShape{std::get_if<TypeAndShape>(&actual.u)}) { 881 if (ifaceTypeShape->Rank() != actualTypeShape->Rank()) { 882 if (whyNot) { 883 *whyNot = "function results have distinct ranks"; 884 } 885 } else if (!attrs.test(Attr::Allocatable) && !attrs.test(Attr::Pointer) && 886 ifaceTypeShape->shape() != actualTypeShape->shape()) { 887 if (whyNot) { 888 *whyNot = "function results have distinct extents"; 889 } 890 } else if (!ifaceTypeShape->type().IsTkCompatibleWith( 891 actualTypeShape->type())) { 892 if (whyNot) { 893 *whyNot = "function results have incompatible types: "s + 894 ifaceTypeShape->type().AsFortran() + " vs "s + 895 actualTypeShape->type().AsFortran(); 896 } 897 } else { 898 return true; 899 } 900 } else { 901 if (whyNot) { 902 *whyNot = "function result type and shape are not known"; 903 } 904 } 905 } else { 906 const auto *ifaceProc{std::get_if<CopyableIndirection<Procedure>>(&u)}; 907 CHECK(ifaceProc != nullptr); 908 if (const auto *actualProc{ 909 std::get_if<CopyableIndirection<Procedure>>(&actual.u)}) { 910 if (ifaceProc->value().IsCompatibleWith(actualProc->value(), whyNot)) { 911 return true; 912 } 913 if (whyNot) { 914 *whyNot = 915 "function results are incompatible procedure pointers: "s + *whyNot; 916 } 917 } else { 918 if (whyNot) { 919 *whyNot = 920 "one function result is a procedure pointer, the other is not"; 921 } 922 } 923 } 924 return false; 925 } 926 927 llvm::raw_ostream &FunctionResult::Dump(llvm::raw_ostream &o) const { 928 attrs.Dump(o, EnumToString); 929 common::visit(common::visitors{ 930 [&](const TypeAndShape &ts) { ts.Dump(o); }, 931 [&](const CopyableIndirection<Procedure> &p) { 932 p.value().Dump(o << " procedure(") << ')'; 933 }, 934 }, 935 u); 936 return o; 937 } 938 939 Procedure::Procedure(FunctionResult &&fr, DummyArguments &&args, Attrs a) 940 : functionResult{std::move(fr)}, dummyArguments{std::move(args)}, attrs{a} { 941 } 942 Procedure::Procedure(DummyArguments &&args, Attrs a) 943 : dummyArguments{std::move(args)}, attrs{a} {} 944 Procedure::~Procedure() {} 945 946 bool Procedure::operator==(const Procedure &that) const { 947 return attrs == that.attrs && functionResult == that.functionResult && 948 dummyArguments == that.dummyArguments; 949 } 950 951 bool Procedure::IsCompatibleWith(const Procedure &actual, std::string *whyNot, 952 const SpecificIntrinsic *specificIntrinsic) const { 953 // 15.5.2.9(1): if dummy is not pure, actual need not be. 954 // Ditto with elemental. 955 Attrs actualAttrs{actual.attrs}; 956 if (!attrs.test(Attr::Pure)) { 957 actualAttrs.reset(Attr::Pure); 958 } 959 if (!attrs.test(Attr::Elemental) && specificIntrinsic) { 960 actualAttrs.reset(Attr::Elemental); 961 } 962 Attrs differences{attrs ^ actualAttrs}; 963 differences.reset(Attr::Subroutine); // dealt with specifically later 964 if (!differences.empty()) { 965 if (whyNot) { 966 auto sep{": "s}; 967 *whyNot = "incompatible procedure attributes"; 968 differences.IterateOverMembers([&](Attr x) { 969 *whyNot += sep + EnumToString(x); 970 sep = ", "; 971 }); 972 } 973 } else if ((IsFunction() && actual.IsSubroutine()) || 974 (IsSubroutine() && actual.IsFunction())) { 975 if (whyNot) { 976 *whyNot = 977 "incompatible procedures: one is a function, the other a subroutine"; 978 } 979 } else if (functionResult && actual.functionResult && 980 !functionResult->IsCompatibleWith(*actual.functionResult, whyNot)) { 981 } else if (dummyArguments.size() != actual.dummyArguments.size()) { 982 if (whyNot) { 983 *whyNot = "distinct numbers of dummy arguments"; 984 } 985 } else { 986 for (std::size_t j{0}; j < dummyArguments.size(); ++j) { 987 if (!dummyArguments[j].IsCompatibleWith( 988 actual.dummyArguments[j], whyNot)) { 989 if (whyNot) { 990 *whyNot = "incompatible dummy argument #"s + std::to_string(j + 1) + 991 ": "s + *whyNot; 992 } 993 return false; 994 } 995 } 996 return true; 997 } 998 return false; 999 } 1000 1001 int Procedure::FindPassIndex(std::optional<parser::CharBlock> name) const { 1002 int argCount{static_cast<int>(dummyArguments.size())}; 1003 int index{0}; 1004 if (name) { 1005 while (index < argCount && *name != dummyArguments[index].name.c_str()) { 1006 ++index; 1007 } 1008 } 1009 CHECK(index < argCount); 1010 return index; 1011 } 1012 1013 bool Procedure::CanOverride( 1014 const Procedure &that, std::optional<int> passIndex) const { 1015 // A pure procedure may override an impure one (7.5.7.3(2)) 1016 if ((that.attrs.test(Attr::Pure) && !attrs.test(Attr::Pure)) || 1017 that.attrs.test(Attr::Elemental) != attrs.test(Attr::Elemental) || 1018 functionResult != that.functionResult) { 1019 return false; 1020 } 1021 int argCount{static_cast<int>(dummyArguments.size())}; 1022 if (argCount != static_cast<int>(that.dummyArguments.size())) { 1023 return false; 1024 } 1025 for (int j{0}; j < argCount; ++j) { 1026 if ((!passIndex || j != *passIndex) && 1027 dummyArguments[j] != that.dummyArguments[j]) { 1028 return false; 1029 } 1030 } 1031 return true; 1032 } 1033 1034 std::optional<Procedure> Procedure::Characterize( 1035 const semantics::Symbol &original, FoldingContext &context) { 1036 semantics::UnorderedSymbolSet seenProcs; 1037 return CharacterizeProcedure(original, context, seenProcs); 1038 } 1039 1040 std::optional<Procedure> Procedure::Characterize( 1041 const ProcedureDesignator &proc, FoldingContext &context) { 1042 if (const auto *symbol{proc.GetSymbol()}) { 1043 if (auto result{ 1044 characteristics::Procedure::Characterize(*symbol, context)}) { 1045 return result; 1046 } 1047 } else if (const auto *intrinsic{proc.GetSpecificIntrinsic()}) { 1048 return intrinsic->characteristics.value(); 1049 } 1050 return std::nullopt; 1051 } 1052 1053 std::optional<Procedure> Procedure::Characterize( 1054 const ProcedureRef &ref, FoldingContext &context) { 1055 if (auto callee{Characterize(ref.proc(), context)}) { 1056 if (callee->functionResult) { 1057 if (const Procedure * 1058 proc{callee->functionResult->IsProcedurePointer()}) { 1059 return {*proc}; 1060 } 1061 } 1062 } 1063 return std::nullopt; 1064 } 1065 1066 bool Procedure::CanBeCalledViaImplicitInterface() const { 1067 // TODO: Pass back information on why we return false 1068 if (attrs.test(Attr::Elemental) || attrs.test(Attr::BindC)) { 1069 return false; // 15.4.2.2(5,6) 1070 } else if (IsFunction() && 1071 !functionResult->CanBeReturnedViaImplicitInterface()) { 1072 return false; 1073 } else { 1074 for (const DummyArgument &arg : dummyArguments) { 1075 if (!arg.CanBePassedViaImplicitInterface()) { 1076 return false; 1077 } 1078 } 1079 return true; 1080 } 1081 } 1082 1083 llvm::raw_ostream &Procedure::Dump(llvm::raw_ostream &o) const { 1084 attrs.Dump(o, EnumToString); 1085 if (functionResult) { 1086 functionResult->Dump(o << "TYPE(") << ") FUNCTION"; 1087 } else if (attrs.test(Attr::Subroutine)) { 1088 o << "SUBROUTINE"; 1089 } else { 1090 o << "EXTERNAL"; 1091 } 1092 char sep{'('}; 1093 for (const auto &dummy : dummyArguments) { 1094 dummy.Dump(o << sep); 1095 sep = ','; 1096 } 1097 return o << (sep == '(' ? "()" : ")"); 1098 } 1099 1100 // Utility class to determine if Procedures, etc. are distinguishable 1101 class DistinguishUtils { 1102 public: 1103 explicit DistinguishUtils(const common::LanguageFeatureControl &features) 1104 : features_{features} {} 1105 1106 // Are these procedures distinguishable for a generic name? 1107 bool Distinguishable(const Procedure &, const Procedure &) const; 1108 // Are these procedures distinguishable for a generic operator or assignment? 1109 bool DistinguishableOpOrAssign(const Procedure &, const Procedure &) const; 1110 1111 private: 1112 struct CountDummyProcedures { 1113 CountDummyProcedures(const DummyArguments &args) { 1114 for (const DummyArgument &arg : args) { 1115 if (std::holds_alternative<DummyProcedure>(arg.u)) { 1116 total += 1; 1117 notOptional += !arg.IsOptional(); 1118 } 1119 } 1120 } 1121 int total{0}; 1122 int notOptional{0}; 1123 }; 1124 1125 bool Rule3Distinguishable(const Procedure &, const Procedure &) const; 1126 const DummyArgument *Rule1DistinguishingArg( 1127 const DummyArguments &, const DummyArguments &) const; 1128 int FindFirstToDistinguishByPosition( 1129 const DummyArguments &, const DummyArguments &) const; 1130 int FindLastToDistinguishByName( 1131 const DummyArguments &, const DummyArguments &) const; 1132 int CountCompatibleWith(const DummyArgument &, const DummyArguments &) const; 1133 int CountNotDistinguishableFrom( 1134 const DummyArgument &, const DummyArguments &) const; 1135 bool Distinguishable(const DummyArgument &, const DummyArgument &) const; 1136 bool Distinguishable(const DummyDataObject &, const DummyDataObject &) const; 1137 bool Distinguishable(const DummyProcedure &, const DummyProcedure &) const; 1138 bool Distinguishable(const FunctionResult &, const FunctionResult &) const; 1139 bool Distinguishable(const TypeAndShape &, const TypeAndShape &) const; 1140 bool IsTkrCompatible(const DummyArgument &, const DummyArgument &) const; 1141 bool IsTkrCompatible(const TypeAndShape &, const TypeAndShape &) const; 1142 const DummyArgument *GetAtEffectivePosition( 1143 const DummyArguments &, int) const; 1144 const DummyArgument *GetPassArg(const Procedure &) const; 1145 1146 const common::LanguageFeatureControl &features_; 1147 }; 1148 1149 // Simpler distinguishability rules for operators and assignment 1150 bool DistinguishUtils::DistinguishableOpOrAssign( 1151 const Procedure &proc1, const Procedure &proc2) const { 1152 auto &args1{proc1.dummyArguments}; 1153 auto &args2{proc2.dummyArguments}; 1154 if (args1.size() != args2.size()) { 1155 return true; // C1511: distinguishable based on number of arguments 1156 } 1157 for (std::size_t i{0}; i < args1.size(); ++i) { 1158 if (Distinguishable(args1[i], args2[i])) { 1159 return true; // C1511, C1512: distinguishable based on this arg 1160 } 1161 } 1162 return false; 1163 } 1164 1165 bool DistinguishUtils::Distinguishable( 1166 const Procedure &proc1, const Procedure &proc2) const { 1167 auto &args1{proc1.dummyArguments}; 1168 auto &args2{proc2.dummyArguments}; 1169 auto count1{CountDummyProcedures(args1)}; 1170 auto count2{CountDummyProcedures(args2)}; 1171 if (count1.notOptional > count2.total || count2.notOptional > count1.total) { 1172 return true; // distinguishable based on C1514 rule 2 1173 } 1174 if (Rule3Distinguishable(proc1, proc2)) { 1175 return true; // distinguishable based on C1514 rule 3 1176 } 1177 if (Rule1DistinguishingArg(args1, args2)) { 1178 return true; // distinguishable based on C1514 rule 1 1179 } 1180 int pos1{FindFirstToDistinguishByPosition(args1, args2)}; 1181 int name1{FindLastToDistinguishByName(args1, args2)}; 1182 if (pos1 >= 0 && pos1 <= name1) { 1183 return true; // distinguishable based on C1514 rule 4 1184 } 1185 int pos2{FindFirstToDistinguishByPosition(args2, args1)}; 1186 int name2{FindLastToDistinguishByName(args2, args1)}; 1187 if (pos2 >= 0 && pos2 <= name2) { 1188 return true; // distinguishable based on C1514 rule 4 1189 } 1190 return false; 1191 } 1192 1193 // C1514 rule 3: Procedures are distinguishable if both have a passed-object 1194 // dummy argument and those are distinguishable. 1195 bool DistinguishUtils::Rule3Distinguishable( 1196 const Procedure &proc1, const Procedure &proc2) const { 1197 const DummyArgument *pass1{GetPassArg(proc1)}; 1198 const DummyArgument *pass2{GetPassArg(proc2)}; 1199 return pass1 && pass2 && Distinguishable(*pass1, *pass2); 1200 } 1201 1202 // Find a non-passed-object dummy data object in one of the argument lists 1203 // that satisfies C1514 rule 1. I.e. x such that: 1204 // - m is the number of dummy data objects in one that are nonoptional, 1205 // are not passed-object, that x is TKR compatible with 1206 // - n is the number of non-passed-object dummy data objects, in the other 1207 // that are not distinguishable from x 1208 // - m is greater than n 1209 const DummyArgument *DistinguishUtils::Rule1DistinguishingArg( 1210 const DummyArguments &args1, const DummyArguments &args2) const { 1211 auto size1{args1.size()}; 1212 auto size2{args2.size()}; 1213 for (std::size_t i{0}; i < size1 + size2; ++i) { 1214 const DummyArgument &x{i < size1 ? args1[i] : args2[i - size1]}; 1215 if (!x.pass && std::holds_alternative<DummyDataObject>(x.u)) { 1216 if (CountCompatibleWith(x, args1) > 1217 CountNotDistinguishableFrom(x, args2) || 1218 CountCompatibleWith(x, args2) > 1219 CountNotDistinguishableFrom(x, args1)) { 1220 return &x; 1221 } 1222 } 1223 } 1224 return nullptr; 1225 } 1226 1227 // Find the index of the first nonoptional non-passed-object dummy argument 1228 // in args1 at an effective position such that either: 1229 // - args2 has no dummy argument at that effective position 1230 // - the dummy argument at that position is distinguishable from it 1231 int DistinguishUtils::FindFirstToDistinguishByPosition( 1232 const DummyArguments &args1, const DummyArguments &args2) const { 1233 int effective{0}; // position of arg1 in list, ignoring passed arg 1234 for (std::size_t i{0}; i < args1.size(); ++i) { 1235 const DummyArgument &arg1{args1.at(i)}; 1236 if (!arg1.pass && !arg1.IsOptional()) { 1237 const DummyArgument *arg2{GetAtEffectivePosition(args2, effective)}; 1238 if (!arg2 || Distinguishable(arg1, *arg2)) { 1239 return i; 1240 } 1241 } 1242 effective += !arg1.pass; 1243 } 1244 return -1; 1245 } 1246 1247 // Find the index of the last nonoptional non-passed-object dummy argument 1248 // in args1 whose name is such that either: 1249 // - args2 has no dummy argument with that name 1250 // - the dummy argument with that name is distinguishable from it 1251 int DistinguishUtils::FindLastToDistinguishByName( 1252 const DummyArguments &args1, const DummyArguments &args2) const { 1253 std::map<std::string, const DummyArgument *> nameToArg; 1254 for (const auto &arg2 : args2) { 1255 nameToArg.emplace(arg2.name, &arg2); 1256 } 1257 for (int i = args1.size() - 1; i >= 0; --i) { 1258 const DummyArgument &arg1{args1.at(i)}; 1259 if (!arg1.pass && !arg1.IsOptional()) { 1260 auto it{nameToArg.find(arg1.name)}; 1261 if (it == nameToArg.end() || Distinguishable(arg1, *it->second)) { 1262 return i; 1263 } 1264 } 1265 } 1266 return -1; 1267 } 1268 1269 // Count the dummy data objects in args that are nonoptional, are not 1270 // passed-object, and that x is TKR compatible with 1271 int DistinguishUtils::CountCompatibleWith( 1272 const DummyArgument &x, const DummyArguments &args) const { 1273 return std::count_if(args.begin(), args.end(), [&](const DummyArgument &y) { 1274 return !y.pass && !y.IsOptional() && IsTkrCompatible(x, y); 1275 }); 1276 } 1277 1278 // Return the number of dummy data objects in args that are not 1279 // distinguishable from x and not passed-object. 1280 int DistinguishUtils::CountNotDistinguishableFrom( 1281 const DummyArgument &x, const DummyArguments &args) const { 1282 return std::count_if(args.begin(), args.end(), [&](const DummyArgument &y) { 1283 return !y.pass && std::holds_alternative<DummyDataObject>(y.u) && 1284 !Distinguishable(y, x); 1285 }); 1286 } 1287 1288 bool DistinguishUtils::Distinguishable( 1289 const DummyArgument &x, const DummyArgument &y) const { 1290 if (x.u.index() != y.u.index()) { 1291 return true; // different kind: data/proc/alt-return 1292 } 1293 return common::visit( 1294 common::visitors{ 1295 [&](const DummyDataObject &z) { 1296 return Distinguishable(z, std::get<DummyDataObject>(y.u)); 1297 }, 1298 [&](const DummyProcedure &z) { 1299 return Distinguishable(z, std::get<DummyProcedure>(y.u)); 1300 }, 1301 [&](const AlternateReturn &) { return false; }, 1302 }, 1303 x.u); 1304 } 1305 1306 bool DistinguishUtils::Distinguishable( 1307 const DummyDataObject &x, const DummyDataObject &y) const { 1308 using Attr = DummyDataObject::Attr; 1309 if (Distinguishable(x.type, y.type)) { 1310 return true; 1311 } else if (x.attrs.test(Attr::Allocatable) && y.attrs.test(Attr::Pointer) && 1312 y.intent != common::Intent::In) { 1313 return true; 1314 } else if (y.attrs.test(Attr::Allocatable) && x.attrs.test(Attr::Pointer) && 1315 x.intent != common::Intent::In) { 1316 return true; 1317 } else if (features_.IsEnabled( 1318 common::LanguageFeature::DistinguishableSpecifics) && 1319 (x.attrs.test(Attr::Allocatable) || x.attrs.test(Attr::Pointer)) && 1320 (y.attrs.test(Attr::Allocatable) || y.attrs.test(Attr::Pointer)) && 1321 (x.type.type().IsUnlimitedPolymorphic() != 1322 y.type.type().IsUnlimitedPolymorphic() || 1323 x.type.type().IsPolymorphic() != y.type.type().IsPolymorphic())) { 1324 // Extension: Per 15.5.2.5(2), an allocatable/pointer dummy and its 1325 // corresponding actual argument must both or neither be polymorphic, 1326 // and must both or neither be unlimited polymorphic. So when exactly 1327 // one of two dummy arguments is polymorphic or unlimited polymorphic, 1328 // any actual argument that is admissible to one of them cannot also match 1329 // the other one. 1330 return true; 1331 } else { 1332 return false; 1333 } 1334 } 1335 1336 bool DistinguishUtils::Distinguishable( 1337 const DummyProcedure &x, const DummyProcedure &y) const { 1338 const Procedure &xProc{x.procedure.value()}; 1339 const Procedure &yProc{y.procedure.value()}; 1340 if (Distinguishable(xProc, yProc)) { 1341 return true; 1342 } else { 1343 const std::optional<FunctionResult> &xResult{xProc.functionResult}; 1344 const std::optional<FunctionResult> &yResult{yProc.functionResult}; 1345 return xResult ? !yResult || Distinguishable(*xResult, *yResult) 1346 : yResult.has_value(); 1347 } 1348 } 1349 1350 bool DistinguishUtils::Distinguishable( 1351 const FunctionResult &x, const FunctionResult &y) const { 1352 if (x.u.index() != y.u.index()) { 1353 return true; // one is data object, one is procedure 1354 } 1355 return common::visit( 1356 common::visitors{ 1357 [&](const TypeAndShape &z) { 1358 return Distinguishable(z, std::get<TypeAndShape>(y.u)); 1359 }, 1360 [&](const CopyableIndirection<Procedure> &z) { 1361 return Distinguishable(z.value(), 1362 std::get<CopyableIndirection<Procedure>>(y.u).value()); 1363 }, 1364 }, 1365 x.u); 1366 } 1367 1368 bool DistinguishUtils::Distinguishable( 1369 const TypeAndShape &x, const TypeAndShape &y) const { 1370 return !IsTkrCompatible(x, y) && !IsTkrCompatible(y, x); 1371 } 1372 1373 // Compatibility based on type, kind, and rank 1374 bool DistinguishUtils::IsTkrCompatible( 1375 const DummyArgument &x, const DummyArgument &y) const { 1376 const auto *obj1{std::get_if<DummyDataObject>(&x.u)}; 1377 const auto *obj2{std::get_if<DummyDataObject>(&y.u)}; 1378 return obj1 && obj2 && IsTkrCompatible(obj1->type, obj2->type); 1379 } 1380 bool DistinguishUtils::IsTkrCompatible( 1381 const TypeAndShape &x, const TypeAndShape &y) const { 1382 return x.type().IsTkCompatibleWith(y.type()) && 1383 (x.attrs().test(TypeAndShape::Attr::AssumedRank) || 1384 y.attrs().test(TypeAndShape::Attr::AssumedRank) || 1385 x.Rank() == y.Rank()); 1386 } 1387 1388 // Return the argument at the given index, ignoring the passed arg 1389 const DummyArgument *DistinguishUtils::GetAtEffectivePosition( 1390 const DummyArguments &args, int index) const { 1391 for (const DummyArgument &arg : args) { 1392 if (!arg.pass) { 1393 if (index == 0) { 1394 return &arg; 1395 } 1396 --index; 1397 } 1398 } 1399 return nullptr; 1400 } 1401 1402 // Return the passed-object dummy argument of this procedure, if any 1403 const DummyArgument *DistinguishUtils::GetPassArg(const Procedure &proc) const { 1404 for (const auto &arg : proc.dummyArguments) { 1405 if (arg.pass) { 1406 return &arg; 1407 } 1408 } 1409 return nullptr; 1410 } 1411 1412 bool Distinguishable(const common::LanguageFeatureControl &features, 1413 const Procedure &x, const Procedure &y) { 1414 return DistinguishUtils{features}.Distinguishable(x, y); 1415 } 1416 1417 bool DistinguishableOpOrAssign(const common::LanguageFeatureControl &features, 1418 const Procedure &x, const Procedure &y) { 1419 return DistinguishUtils{features}.DistinguishableOpOrAssign(x, y); 1420 } 1421 1422 DEFINE_DEFAULT_CONSTRUCTORS_AND_ASSIGNMENTS(DummyArgument) 1423 DEFINE_DEFAULT_CONSTRUCTORS_AND_ASSIGNMENTS(DummyProcedure) 1424 DEFINE_DEFAULT_CONSTRUCTORS_AND_ASSIGNMENTS(FunctionResult) 1425 DEFINE_DEFAULT_CONSTRUCTORS_AND_ASSIGNMENTS(Procedure) 1426 } // namespace Fortran::evaluate::characteristics 1427 1428 template class Fortran::common::Indirection< 1429 Fortran::evaluate::characteristics::Procedure, true>; 1430