xref: /llvm-project/flang/lib/Decimal/decimal-to-binary.cpp (revision befdfae198a12b88bce6d26f840e6f71ce4a8b0c)
1 //===-- lib/Decimal/decimal-to-binary.cpp ---------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "big-radix-floating-point.h"
10 #include "flang/Common/bit-population-count.h"
11 #include "flang/Common/leading-zero-bit-count.h"
12 #include "flang/Decimal/binary-floating-point.h"
13 #include "flang/Decimal/decimal.h"
14 #include <cinttypes>
15 #include <cstring>
16 #include <ctype.h>
17 
18 namespace Fortran::decimal {
19 
20 template <int PREC, int LOG10RADIX>
21 bool BigRadixFloatingPointNumber<PREC, LOG10RADIX>::ParseNumber(
22     const char *&p, bool &inexact, const char *end) {
23   SetToZero();
24   if (end && p >= end) {
25     return false;
26   }
27   // Skip leading spaces
28   for (; p != end && *p == ' '; ++p) {
29   }
30   if (p == end) {
31     return false;
32   }
33   const char *q{p};
34   isNegative_ = *q == '-';
35   if (*q == '-' || *q == '+') {
36     ++q;
37   }
38   const char *start{q};
39   for (; q != end && *q == '0'; ++q) {
40   }
41   const char *firstDigit{q};
42   for (; q != end && *q >= '0' && *q <= '9'; ++q) {
43   }
44   const char *point{nullptr};
45   if (q != end && *q == '.') {
46     point = q;
47     for (++q; q != end && *q >= '0' && *q <= '9'; ++q) {
48     }
49   }
50   if (q == start || (q == start + 1 && start == point)) {
51     return false; // require at least one digit
52   }
53   // There's a valid number here; set the reference argument to point to
54   // the first character afterward, which might be an exponent part.
55   p = q;
56   // Strip off trailing zeroes
57   if (point) {
58     while (q[-1] == '0') {
59       --q;
60     }
61     if (q[-1] == '.') {
62       point = nullptr;
63       --q;
64     }
65   }
66   if (!point) {
67     while (q > firstDigit && q[-1] == '0') {
68       --q;
69       ++exponent_;
70     }
71   }
72   // Trim any excess digits
73   const char *limit{firstDigit + maxDigits * log10Radix + (point != nullptr)};
74   if (q > limit) {
75     inexact = true;
76     if (point >= limit) {
77       q = point;
78       point = nullptr;
79     }
80     if (!point) {
81       exponent_ += q - limit;
82     }
83     q = limit;
84   }
85   if (point) {
86     exponent_ -= static_cast<int>(q - point - 1);
87   }
88   if (q == firstDigit) {
89     exponent_ = 0; // all zeros
90   }
91   // Rack the decimal digits up into big Digits.
92   for (auto times{radix}; q-- > firstDigit;) {
93     if (*q != '.') {
94       if (times == radix) {
95         digit_[digits_++] = *q - '0';
96         times = 10;
97       } else {
98         digit_[digits_ - 1] += times * (*q - '0');
99         times *= 10;
100       }
101     }
102   }
103   // Look for an optional exponent field.
104   if (p == end) {
105     return true;
106   }
107   q = p;
108   switch (*q) {
109   case 'e':
110   case 'E':
111   case 'd':
112   case 'D':
113   case 'q':
114   case 'Q': {
115     if (++q == end) {
116       break;
117     }
118     bool negExpo{*q == '-'};
119     if (*q == '-' || *q == '+') {
120       ++q;
121     }
122     if (q != end && *q >= '0' && *q <= '9') {
123       int expo{0};
124       for (; q != end && *q == '0'; ++q) {
125       }
126       const char *expDig{q};
127       for (; q != end && *q >= '0' && *q <= '9'; ++q) {
128         expo = 10 * expo + *q - '0';
129       }
130       if (q >= expDig + 8) {
131         // There's a ridiculous number of nonzero exponent digits.
132         // The decimal->binary conversion routine will cope with
133         // returning 0 or Inf, but we must ensure that "expo" didn't
134         // overflow back around to something legal.
135         expo = 10 * Real::decimalRange;
136         exponent_ = 0;
137       }
138       p = q; // exponent is valid; advance the termination pointer
139       if (negExpo) {
140         exponent_ -= expo;
141       } else {
142         exponent_ += expo;
143       }
144     }
145   } break;
146   default:
147     break;
148   }
149   return true;
150 }
151 
152 template <int PREC, int LOG10RADIX>
153 void BigRadixFloatingPointNumber<PREC,
154     LOG10RADIX>::LoseLeastSignificantDigit() {
155   Digit LSD{digit_[0]};
156   for (int j{0}; j < digits_ - 1; ++j) {
157     digit_[j] = digit_[j + 1];
158   }
159   digit_[digits_ - 1] = 0;
160   bool incr{false};
161   switch (rounding_) {
162   case RoundNearest:
163     incr = LSD > radix / 2 || (LSD == radix / 2 && digit_[0] % 2 != 0);
164     break;
165   case RoundUp:
166     incr = LSD > 0 && !isNegative_;
167     break;
168   case RoundDown:
169     incr = LSD > 0 && isNegative_;
170     break;
171   case RoundToZero:
172     break;
173   case RoundCompatible:
174     incr = LSD >= radix / 2;
175     break;
176   }
177   for (int j{0}; (digit_[j] += incr) == radix; ++j) {
178     digit_[j] = 0;
179   }
180 }
181 
182 // This local utility class represents an unrounded nonnegative
183 // binary floating-point value with an unbiased (i.e., signed)
184 // binary exponent, an integer value (not a fraction) with an implied
185 // binary point to its *right*, and some guard bits for rounding.
186 template <int PREC> class IntermediateFloat {
187 public:
188   static constexpr int precision{PREC};
189   using IntType = common::HostUnsignedIntType<precision>;
190   static constexpr IntType topBit{IntType{1} << (precision - 1)};
191   static constexpr IntType mask{topBit + (topBit - 1)};
192 
193   IntermediateFloat() {}
194   IntermediateFloat(const IntermediateFloat &) = default;
195 
196   // Assumes that exponent_ is valid on entry, and may increment it.
197   // Returns the number of guard_ bits that have been determined.
198   template <typename UINT> bool SetTo(UINT n) {
199     static constexpr int nBits{CHAR_BIT * sizeof n};
200     if constexpr (precision >= nBits) {
201       value_ = n;
202       guard_ = 0;
203       return 0;
204     } else {
205       int shift{common::BitsNeededFor(n) - precision};
206       if (shift <= 0) {
207         value_ = n;
208         guard_ = 0;
209         return 0;
210       } else {
211         value_ = n >> shift;
212         exponent_ += shift;
213         n <<= nBits - shift;
214         guard_ = (n >> (nBits - guardBits)) | ((n << guardBits) != 0);
215         return shift;
216       }
217     }
218   }
219 
220   void ShiftIn(int bit = 0) { value_ = value_ + value_ + bit; }
221   bool IsFull() const { return value_ >= topBit; }
222   void AdjustExponent(int by) { exponent_ += by; }
223   void SetGuard(int g) {
224     guard_ |= (static_cast<GuardType>(g & 6) << (guardBits - 3)) | (g & 1);
225   }
226 
227   ConversionToBinaryResult<PREC> ToBinary(
228       bool isNegative, FortranRounding) const;
229 
230 private:
231   static constexpr int guardBits{3}; // guard, round, sticky
232   using GuardType = int;
233   static constexpr GuardType oneHalf{GuardType{1} << (guardBits - 1)};
234 
235   IntType value_{0};
236   GuardType guard_{0};
237   int exponent_{0};
238 };
239 
240 template <int PREC>
241 ConversionToBinaryResult<PREC> IntermediateFloat<PREC>::ToBinary(
242     bool isNegative, FortranRounding rounding) const {
243   using Binary = BinaryFloatingPointNumber<PREC>;
244   // Create a fraction with a binary point to the left of the integer
245   // value_, and bias the exponent.
246   IntType fraction{value_};
247   GuardType guard{guard_};
248   int expo{exponent_ + Binary::exponentBias + (precision - 1)};
249   while (expo < 1 && (fraction > 0 || guard > oneHalf)) {
250     guard = (guard & 1) | (guard >> 1) |
251         ((static_cast<GuardType>(fraction) & 1) << (guardBits - 1));
252     fraction >>= 1;
253     ++expo;
254   }
255   int flags{Exact};
256   if (guard != 0) {
257     flags |= Inexact;
258   }
259   if (fraction == 0) {
260     if (guard <= oneHalf) {
261       if ((!isNegative && rounding == RoundUp) ||
262           (isNegative && rounding == RoundDown)) {
263         // round to minimum nonzero value
264       } else { // round to zero
265         if (guard != 0) {
266           flags |= Underflow;
267         }
268         return {Binary{}, static_cast<enum ConversionResultFlags>(flags)};
269       }
270     }
271   } else {
272     // The value is nonzero; normalize it.
273     while (fraction < topBit && expo > 1) {
274       --expo;
275       fraction = fraction * 2 + (guard >> (guardBits - 2));
276       guard =
277           (((guard >> (guardBits - 2)) & 1) << (guardBits - 1)) | (guard & 1);
278     }
279   }
280   // Apply rounding
281   bool incr{false};
282   switch (rounding) {
283   case RoundNearest:
284     incr = guard > oneHalf || (guard == oneHalf && (fraction & 1));
285     break;
286   case RoundUp:
287     incr = guard != 0 && !isNegative;
288     break;
289   case RoundDown:
290     incr = guard != 0 && isNegative;
291     break;
292   case RoundToZero:
293     break;
294   case RoundCompatible:
295     incr = guard >= oneHalf;
296     break;
297   }
298   if (incr) {
299     if (fraction == mask) {
300       // rounding causes a carry
301       ++expo;
302       fraction = topBit;
303     } else {
304       ++fraction;
305     }
306   }
307   if (expo == 1 && fraction < topBit) {
308     expo = 0; // subnormal
309     flags |= Underflow;
310   } else if (expo == 0) {
311     flags |= Underflow;
312   } else if (expo >= Binary::maxExponent) {
313     expo = Binary::maxExponent; // Inf
314     flags |= Overflow;
315     if constexpr (Binary::bits == 80) { // x87
316       fraction = IntType{1} << 63;
317     } else {
318       fraction = 0;
319     }
320   }
321   using Raw = typename Binary::RawType;
322   Raw raw = static_cast<Raw>(isNegative) << (Binary::bits - 1);
323   raw |= static_cast<Raw>(expo) << Binary::significandBits;
324   if constexpr (Binary::isImplicitMSB) {
325     fraction &= ~topBit;
326   }
327   raw |= fraction;
328   return {Binary(raw), static_cast<enum ConversionResultFlags>(flags)};
329 }
330 
331 template <int PREC, int LOG10RADIX>
332 ConversionToBinaryResult<PREC>
333 BigRadixFloatingPointNumber<PREC, LOG10RADIX>::ConvertToBinary() {
334   // On entry, *this holds a multi-precision integer value in a radix of a
335   // large power of ten.  Its radix point is defined to be to the right of its
336   // digits, and "exponent_" is the power of ten by which it is to be scaled.
337   Normalize();
338   if (digits_ == 0) { // zero value
339     return {Real{SignBit()}};
340   }
341   // The value is not zero:  x = D. * 10.**E
342   // Shift our perspective on the radix (& decimal) point so that
343   // it sits to the *left* of the digits: i.e., x = .D * 10.**E
344   exponent_ += digits_ * log10Radix;
345   // Sanity checks for ridiculous exponents
346   static constexpr int crazy{2 * Real::decimalRange + log10Radix};
347   if (exponent_ < -crazy) {
348     enum ConversionResultFlags flags {
349       static_cast<enum ConversionResultFlags>(Inexact | Underflow)
350     };
351     if ((!isNegative_ && rounding_ == RoundUp) ||
352         (isNegative_ && rounding_ == RoundDown)) {
353       // return least nonzero value
354       return {Real{Raw{1} | SignBit()}, flags};
355     } else { // underflow to +/-0.
356       return {Real{SignBit()}, flags};
357     }
358   } else if (exponent_ > crazy) { // overflow to +/-Inf.
359     return {Real{Infinity()}, Overflow};
360   }
361   // Apply any negative decimal exponent by multiplication
362   // by a power of two, adjusting the binary exponent to compensate.
363   IntermediateFloat<PREC> f;
364   while (exponent_ < log10Radix) {
365     // x = 0.D * 10.**E * 2.**(f.ex) -> 512 * 0.D * 10.**E * 2.**(f.ex-9)
366     f.AdjustExponent(-9);
367     digitLimit_ = digits_;
368     if (int carry{MultiplyWithoutNormalization<512>()}) {
369       // x = c.D * 10.**E * 2.**(f.ex) -> .cD * 10.**(E+16) * 2.**(f.ex)
370       PushCarry(carry);
371       exponent_ += log10Radix;
372     }
373   }
374   // Apply any positive decimal exponent greater than
375   // is needed to treat the topmost digit as an integer
376   // part by multiplying by 10 or 10000 repeatedly.
377   while (exponent_ > log10Radix) {
378     digitLimit_ = digits_;
379     int carry;
380     if (exponent_ >= log10Radix + 4) {
381       // x = 0.D * 10.**E * 2.**(f.ex) -> 625 * .D * 10.**(E-4) * 2.**(f.ex+4)
382       exponent_ -= 4;
383       carry = MultiplyWithoutNormalization<(5 * 5 * 5 * 5)>();
384       f.AdjustExponent(4);
385     } else {
386       // x = 0.D * 10.**E * 2.**(f.ex) -> 5 * .D * 10.**(E-1) * 2.**(f.ex+1)
387       --exponent_;
388       carry = MultiplyWithoutNormalization<5>();
389       f.AdjustExponent(1);
390     }
391     if (carry != 0) {
392       // x = c.D * 10.**E * 2.**(f.ex) -> .cD * 10.**(E+16) * 2.**(f.ex)
393       PushCarry(carry);
394       exponent_ += log10Radix;
395     }
396   }
397   // So exponent_ is now log10Radix, meaning that the
398   // MSD can be taken as an integer part and transferred
399   // to the binary result.
400   // x = .jD * 10.**16 * 2.**(f.ex) -> .D * j * 2.**(f.ex)
401   int guardShift{f.SetTo(digit_[--digits_])};
402   // Transfer additional bits until the result is normal.
403   digitLimit_ = digits_;
404   while (!f.IsFull()) {
405     // x = ((b.D)/2) * j * 2.**(f.ex) -> .D * (2j + b) * 2.**(f.ex-1)
406     f.AdjustExponent(-1);
407     std::uint32_t carry = MultiplyWithoutNormalization<2>();
408     f.ShiftIn(carry);
409   }
410   // Get the next few bits for rounding.  Allow for some guard bits
411   // that may have already been set in f.SetTo() above.
412   int guard{0};
413   if (guardShift == 0) {
414     guard = MultiplyWithoutNormalization<4>();
415   } else if (guardShift == 1) {
416     guard = MultiplyWithoutNormalization<2>();
417   }
418   guard = guard + guard + !IsZero();
419   f.SetGuard(guard);
420   return f.ToBinary(isNegative_, rounding_);
421 }
422 
423 template <int PREC, int LOG10RADIX>
424 ConversionToBinaryResult<PREC>
425 BigRadixFloatingPointNumber<PREC, LOG10RADIX>::ConvertToBinary(
426     const char *&p, const char *limit) {
427   bool inexact{false};
428   if (ParseNumber(p, inexact, limit)) {
429     auto result{ConvertToBinary()};
430     if (inexact) {
431       result.flags =
432           static_cast<enum ConversionResultFlags>(result.flags | Inexact);
433     }
434     return result;
435   } else {
436     // Could not parse a decimal floating-point number.  p has been
437     // advanced over any leading spaces.  Most Fortran compilers set
438     // the sign bit for -NaN.
439     const char *q{p};
440     if (!limit || q < limit) {
441       isNegative_ = *q == '-';
442       if (isNegative_ || *q == '+') {
443         ++q;
444       }
445     }
446     if ((!limit || limit >= q + 3) && toupper(q[0]) == 'N' &&
447         toupper(q[1]) == 'A' && toupper(q[2]) == 'N') {
448       // NaN
449       p = q + 3;
450       bool isQuiet{true};
451       if ((!limit || p < limit) && *p == '(') {
452         int depth{1};
453         do {
454           ++p;
455           if (limit && p >= limit) {
456             // Invalid input
457             return {Real{NaN(false)}, Invalid};
458           } else if (*p == '(') {
459             ++depth;
460           } else if (*p == ')') {
461             --depth;
462           } else if (*p != ' ') {
463             // Implementation dependent, but other compilers
464             // all return quiet NaNs.
465           }
466         } while (depth > 0);
467         ++p;
468       }
469       return {Real{NaN(isQuiet)}};
470     } else { // Inf?
471       if ((!limit || limit >= q + 3) && toupper(q[0]) == 'I' &&
472           toupper(q[1]) == 'N' && toupper(q[2]) == 'F') {
473         if ((!limit || limit >= q + 8) && toupper(q[3]) == 'I' &&
474             toupper(q[4]) == 'N' && toupper(q[5]) == 'I' &&
475             toupper(q[6]) == 'T' && toupper(q[7]) == 'Y') {
476           p = q + 8;
477         } else {
478           p = q + 3;
479         }
480         return {Real{Infinity()}};
481       } else {
482         // Invalid input
483         return {Real{NaN()}, Invalid};
484       }
485     }
486   }
487 }
488 
489 template <int PREC>
490 ConversionToBinaryResult<PREC> ConvertToBinary(
491     const char *&p, enum FortranRounding rounding, const char *end) {
492   return BigRadixFloatingPointNumber<PREC>{rounding}.ConvertToBinary(p, end);
493 }
494 
495 template ConversionToBinaryResult<8> ConvertToBinary<8>(
496     const char *&, enum FortranRounding, const char *end);
497 template ConversionToBinaryResult<11> ConvertToBinary<11>(
498     const char *&, enum FortranRounding, const char *end);
499 template ConversionToBinaryResult<24> ConvertToBinary<24>(
500     const char *&, enum FortranRounding, const char *end);
501 template ConversionToBinaryResult<53> ConvertToBinary<53>(
502     const char *&, enum FortranRounding, const char *end);
503 template ConversionToBinaryResult<64> ConvertToBinary<64>(
504     const char *&, enum FortranRounding, const char *end);
505 template ConversionToBinaryResult<113> ConvertToBinary<113>(
506     const char *&, enum FortranRounding, const char *end);
507 
508 extern "C" {
509 enum ConversionResultFlags ConvertDecimalToFloat(
510     const char **p, float *f, enum FortranRounding rounding) {
511   auto result{Fortran::decimal::ConvertToBinary<24>(*p, rounding)};
512   std::memcpy(reinterpret_cast<void *>(f),
513       reinterpret_cast<const void *>(&result.binary), sizeof *f);
514   return result.flags;
515 }
516 enum ConversionResultFlags ConvertDecimalToDouble(
517     const char **p, double *d, enum FortranRounding rounding) {
518   auto result{Fortran::decimal::ConvertToBinary<53>(*p, rounding)};
519   std::memcpy(reinterpret_cast<void *>(d),
520       reinterpret_cast<const void *>(&result.binary), sizeof *d);
521   return result.flags;
522 }
523 enum ConversionResultFlags ConvertDecimalToLongDouble(
524     const char **p, long double *ld, enum FortranRounding rounding) {
525   auto result{Fortran::decimal::ConvertToBinary<64>(*p, rounding)};
526   std::memcpy(reinterpret_cast<void *>(ld),
527       reinterpret_cast<const void *>(&result.binary), sizeof *ld);
528   return result.flags;
529 }
530 }
531 } // namespace Fortran::decimal
532