xref: /llvm-project/flang/lib/Decimal/decimal-to-binary.cpp (revision 64ab3302d5a130c00b66a6957b2e7f0c9b9c537d)
1 //===-- lib/Decimal/decimal-to-binary.cpp ---------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "big-radix-floating-point.h"
10 #include "flang/Common/bit-population-count.h"
11 #include "flang/Common/leading-zero-bit-count.h"
12 #include "flang/Decimal/binary-floating-point.h"
13 #include "flang/Decimal/decimal.h"
14 #include <cinttypes>
15 #include <cstring>
16 #include <ctype.h>
17 
18 namespace Fortran::decimal {
19 
20 template<int PREC, int LOG10RADIX>
21 bool BigRadixFloatingPointNumber<PREC, LOG10RADIX>::ParseNumber(
22     const char *&p, bool &inexact) {
23   SetToZero();
24   while (*p == ' ') {
25     ++p;
26   }
27   const char *q{p};
28   isNegative_ = *q == '-';
29   if (*q == '-' || *q == '+') {
30     ++q;
31   }
32   const char *start{q};
33   while (*q == '0') {
34     ++q;
35   }
36   const char *first{q};
37   for (; *q >= '0' && *q <= '9'; ++q) {
38   }
39   const char *point{nullptr};
40   if (*q == '.') {
41     point = q;
42     for (++q; *q >= '0' && *q <= '9'; ++q) {
43     }
44   }
45   if (q == start || (q == start + 1 && *start == '.')) {
46     return false;  // require at least one digit
47   }
48   // There's a valid number here; set the reference argument to point to
49   // the first character afterward.
50   p = q;
51   // Strip off trailing zeroes
52   if (point) {
53     while (q[-1] == '0') {
54       --q;
55     }
56     if (q[-1] == '.') {
57       point = nullptr;
58       --q;
59     }
60   }
61   if (!point) {
62     while (q > first && q[-1] == '0') {
63       --q;
64       ++exponent_;
65     }
66   }
67   // Trim any excess digits
68   const char *limit{first + maxDigits * log10Radix + (point != nullptr)};
69   if (q > limit) {
70     inexact = true;
71     if (point >= limit) {
72       q = point;
73       point = nullptr;
74     }
75     if (!point) {
76       exponent_ += q - limit;
77     }
78     q = limit;
79   }
80   if (point) {
81     exponent_ -= static_cast<int>(q - point - 1);
82   }
83   if (q == first) {
84     exponent_ = 0;  // all zeros
85   }
86   // Rack the decimal digits up into big Digits.
87   for (auto times{radix}; q-- > first;) {
88     if (*q != '.') {
89       if (times == radix) {
90         digit_[digits_++] = *q - '0';
91         times = 10;
92       } else {
93         digit_[digits_ - 1] += times * (*q - '0');
94         times *= 10;
95       }
96     }
97   }
98   // Look for an optional exponent field.
99   q = p;
100   switch (*q) {
101   case 'e':
102   case 'E':
103   case 'd':
104   case 'D':
105   case 'q':
106   case 'Q': {
107     bool negExpo{*++q == '-'};
108     if (*q == '-' || *q == '+') {
109       ++q;
110     }
111     if (*q >= '0' && *q <= '9') {
112       int expo{0};
113       while (*q == '0') {
114         ++q;
115       }
116       const char *expDig{q};
117       while (*q >= '0' && *q <= '9') {
118         expo = 10 * expo + *q++ - '0';
119       }
120       if (q >= expDig + 8) {
121         // There's a ridiculous number of nonzero exponent digits.
122         // The decimal->binary conversion routine will cope with
123         // returning 0 or Inf, but we must ensure that "expo" didn't
124         // overflow back around to something legal.
125         expo = 10 * Real::decimalRange;
126         exponent_ = 0;
127       }
128       p = q;  // exponent was valid
129       if (negExpo) {
130         exponent_ -= expo;
131       } else {
132         exponent_ += expo;
133       }
134     }
135   } break;
136   default: break;
137   }
138   return true;
139 }
140 
141 // This local utility class represents an unrounded nonnegative
142 // binary floating-point value with an unbiased (i.e., signed)
143 // binary exponent, an integer value (not a fraction) with an implied
144 // binary point to its *right*, and some guard bits for rounding.
145 template<int PREC> class IntermediateFloat {
146 public:
147   static constexpr int precision{PREC};
148   using IntType = common::HostUnsignedIntType<precision>;
149   static constexpr IntType topBit{IntType{1} << (precision - 1)};
150   static constexpr IntType mask{topBit + (topBit - 1)};
151 
152   IntermediateFloat() {}
153   IntermediateFloat(const IntermediateFloat &) = default;
154 
155   // Assumes that exponent_ is valid on entry, and may increment it.
156   // Returns the number of guard_ bits that have been determined.
157   template<typename UINT> bool SetTo(UINT n) {
158     static constexpr int nBits{CHAR_BIT * sizeof n};
159     if constexpr (precision >= nBits) {
160       value_ = n;
161       guard_ = 0;
162       return 0;
163     } else {
164       int shift{common::BitsNeededFor(n) - precision};
165       if (shift <= 0) {
166         value_ = n;
167         guard_ = 0;
168         return 0;
169       } else {
170         value_ = n >> shift;
171         exponent_ += shift;
172         n <<= nBits - shift;
173         guard_ = (n >> (nBits - guardBits)) | ((n << guardBits) != 0);
174         return shift;
175       }
176     }
177   }
178 
179   void ShiftIn(int bit = 0) { value_ = value_ + value_ + bit; }
180   bool IsFull() const { return value_ >= topBit; }
181   void AdjustExponent(int by) { exponent_ += by; }
182   void SetGuard(int g) {
183     guard_ |= (static_cast<GuardType>(g & 6) << (guardBits - 3)) | (g & 1);
184   }
185 
186   ConversionToBinaryResult<PREC> ToBinary(
187       bool isNegative, FortranRounding) const;
188 
189 private:
190   static constexpr int guardBits{3};  // guard, round, sticky
191   using GuardType = int;
192   static constexpr GuardType oneHalf{GuardType{1} << (guardBits - 1)};
193 
194   IntType value_{0};
195   GuardType guard_{0};
196   int exponent_{0};
197 };
198 
199 template<int PREC>
200 ConversionToBinaryResult<PREC> IntermediateFloat<PREC>::ToBinary(
201     bool isNegative, FortranRounding rounding) const {
202   using Binary = BinaryFloatingPointNumber<PREC>;
203   // Create a fraction with a binary point to the left of the integer
204   // value_, and bias the exponent.
205   IntType fraction{value_};
206   GuardType guard{guard_};
207   int expo{exponent_ + Binary::exponentBias + (precision - 1)};
208   while (expo < 1 && (fraction > 0 || guard > oneHalf)) {
209     guard = (guard & 1) | (guard >> 1) |
210         ((static_cast<GuardType>(fraction) & 1) << (guardBits - 1));
211     fraction >>= 1;
212     ++expo;
213   }
214   int flags{Exact};
215   if (guard != 0) {
216     flags |= Inexact;
217   }
218   if (fraction == 0 && guard <= oneHalf) {
219     return {Binary{}, static_cast<enum ConversionResultFlags>(flags)};
220   }
221   // The value is nonzero; normalize it.
222   while (fraction < topBit && expo > 1) {
223     --expo;
224     fraction = fraction * 2 + (guard >> (guardBits - 2));
225     guard = (((guard >> (guardBits - 2)) & 1) << (guardBits - 1)) | (guard & 1);
226   }
227   // Apply rounding
228   bool incr{false};
229   switch (rounding) {
230   case RoundNearest:
231   case RoundDefault:
232     incr = guard > oneHalf || (guard == oneHalf && (fraction & 1));
233     break;
234   case RoundUp: incr = guard != 0 && !isNegative; break;
235   case RoundDown: incr = guard != 0 && isNegative; break;
236   case RoundToZero: break;
237   case RoundCompatible: incr = guard >= oneHalf; break;
238   }
239   if (incr) {
240     if (fraction == mask) {
241       // rounding causes a carry
242       ++expo;
243       fraction = topBit;
244     } else {
245       ++fraction;
246     }
247   }
248   if (expo == 1 && fraction < topBit) {
249     expo = 0;  // subnormal
250   }
251   if (expo >= Binary::maxExponent) {
252     expo = Binary::maxExponent;  // Inf
253     flags |= Overflow;
254     fraction = 0;
255   }
256   using Raw = typename Binary::RawType;
257   Raw raw = static_cast<Raw>(isNegative) << (Binary::bits - 1);
258   raw |= static_cast<Raw>(expo) << Binary::significandBits;
259   if constexpr (Binary::isImplicitMSB) {
260     fraction &= ~topBit;
261   }
262   raw |= fraction;
263   return {Binary(raw), static_cast<enum ConversionResultFlags>(flags)};
264 }
265 
266 template<int PREC, int LOG10RADIX>
267 ConversionToBinaryResult<PREC>
268 BigRadixFloatingPointNumber<PREC, LOG10RADIX>::ConvertToBinary() {
269   // On entry, *this holds a multi-precision integer value in a radix of a
270   // large power of ten.  Its radix point is defined to be to the right of its
271   // digits, and "exponent_" is the power of ten by which it is to be scaled.
272   Normalize();
273   if (digits_ == 0) {  // zero value
274     return {Real{SignBit()}};
275   }
276   // The value is not zero:  x = D. * 10.**E
277   // Shift our perspective on the radix (& decimal) point so that
278   // it sits to the *left* of the digits: i.e., x = .D * 10.**E
279   exponent_ += digits_ * log10Radix;
280   // Sanity checks for ridiculous exponents
281   static constexpr int crazy{2 * Real::decimalRange + log10Radix};
282   if (exponent_ < -crazy) {  // underflow to +/-0.
283     return {Real{SignBit()}, Inexact};
284   } else if (exponent_ > crazy) {  // overflow to +/-Inf.
285     return {Real{Infinity()}, Overflow};
286   }
287   // Apply any negative decimal exponent by multiplication
288   // by a power of two, adjusting the binary exponent to compensate.
289   IntermediateFloat<PREC> f;
290   while (exponent_ < log10Radix) {
291     // x = 0.D * 10.**E * 2.**(f.ex) -> 512 * 0.D * 10.**E * 2.**(f.ex-9)
292     f.AdjustExponent(-9);
293     digitLimit_ = digits_;
294     if (int carry{MultiplyWithoutNormalization<512>()}) {
295       // x = c.D * 10.**E * 2.**(f.ex) -> .cD * 10.**(E+16) * 2.**(f.ex)
296       PushCarry(carry);
297       exponent_ += log10Radix;
298     }
299   }
300   // Apply any positive decimal exponent greater than
301   // is needed to treat the topmost digit as an integer
302   // part by multiplying by 10 or 10000 repeatedly.
303   while (exponent_ > log10Radix) {
304     digitLimit_ = digits_;
305     int carry;
306     if (exponent_ >= log10Radix + 4) {
307       // x = 0.D * 10.**E * 2.**(f.ex) -> 625 * .D * 10.**(E-4) * 2.**(f.ex+4)
308       exponent_ -= 4;
309       carry = MultiplyWithoutNormalization<(5 * 5 * 5 * 5)>();
310       f.AdjustExponent(4);
311     } else {
312       // x = 0.D * 10.**E * 2.**(f.ex) -> 5 * .D * 10.**(E-1) * 2.**(f.ex+1)
313       --exponent_;
314       carry = MultiplyWithoutNormalization<5>();
315       f.AdjustExponent(1);
316     }
317     if (carry != 0) {
318       // x = c.D * 10.**E * 2.**(f.ex) -> .cD * 10.**(E+16) * 2.**(f.ex)
319       PushCarry(carry);
320       exponent_ += log10Radix;
321     }
322   }
323   // So exponent_ is now log10Radix, meaning that the
324   // MSD can be taken as an integer part and transferred
325   // to the binary result.
326   // x = .jD * 10.**16 * 2.**(f.ex) -> .D * j * 2.**(f.ex)
327   int guardShift{f.SetTo(digit_[--digits_])};
328   // Transfer additional bits until the result is normal.
329   digitLimit_ = digits_;
330   while (!f.IsFull()) {
331     // x = ((b.D)/2) * j * 2.**(f.ex) -> .D * (2j + b) * 2.**(f.ex-1)
332     f.AdjustExponent(-1);
333     std::uint32_t carry = MultiplyWithoutNormalization<2>();
334     f.ShiftIn(carry);
335   }
336   // Get the next few bits for rounding.  Allow for some guard bits
337   // that may have already been set in f.SetTo() above.
338   int guard{0};
339   if (guardShift == 0) {
340     guard = MultiplyWithoutNormalization<4>();
341   } else if (guardShift == 1) {
342     guard = MultiplyWithoutNormalization<2>();
343   }
344   guard = guard + guard + !IsZero();
345   f.SetGuard(guard);
346   return f.ToBinary(isNegative_, rounding_);
347 }
348 
349 template<int PREC, int LOG10RADIX>
350 ConversionToBinaryResult<PREC>
351 BigRadixFloatingPointNumber<PREC, LOG10RADIX>::ConvertToBinary(const char *&p) {
352   bool inexact{false};
353   if (ParseNumber(p, inexact)) {
354     auto result{ConvertToBinary()};
355     if (inexact) {
356       result.flags =
357           static_cast<enum ConversionResultFlags>(result.flags | Inexact);
358     }
359     return result;
360   } else {
361     // Could not parse a decimal floating-point number.  p has been
362     // advanced over any leading spaces.
363     if (toupper(p[0]) == 'N' && toupper(p[1]) == 'A' && toupper(p[2]) == 'N') {
364       // NaN
365       p += 3;
366       return {Real{NaN()}};
367     } else {
368       // Try to parse Inf, maybe with a sign
369       const char *q{p};
370       isNegative_ = *q == '-';
371       if (*q == '-' || *q == '+') {
372         ++q;
373       }
374       if (toupper(q[0]) == 'I' && toupper(q[1]) == 'N' &&
375           toupper(q[2]) == 'F') {
376         p = q + 3;
377         return {Real{Infinity()}};
378       } else {
379         // Invalid input
380         return {Real{NaN()}, Invalid};
381       }
382     }
383   }
384 }
385 
386 template<int PREC>
387 ConversionToBinaryResult<PREC> ConvertToBinary(
388     const char *&p, enum FortranRounding rounding) {
389   return BigRadixFloatingPointNumber<PREC>{rounding}.ConvertToBinary(p);
390 }
391 
392 template ConversionToBinaryResult<8> ConvertToBinary<8>(
393     const char *&, enum FortranRounding);
394 template ConversionToBinaryResult<11> ConvertToBinary<11>(
395     const char *&, enum FortranRounding);
396 template ConversionToBinaryResult<24> ConvertToBinary<24>(
397     const char *&, enum FortranRounding);
398 template ConversionToBinaryResult<53> ConvertToBinary<53>(
399     const char *&, enum FortranRounding);
400 template ConversionToBinaryResult<64> ConvertToBinary<64>(
401     const char *&, enum FortranRounding);
402 template ConversionToBinaryResult<112> ConvertToBinary<112>(
403     const char *&, enum FortranRounding);
404 
405 extern "C" {
406 enum ConversionResultFlags ConvertDecimalToFloat(
407     const char **p, float *f, enum FortranRounding rounding) {
408   auto result{Fortran::decimal::ConvertToBinary<24>(*p, rounding)};
409   std::memcpy(reinterpret_cast<void *>(f),
410       reinterpret_cast<const void *>(&result.binary), sizeof *f);
411   return result.flags;
412 }
413 enum ConversionResultFlags ConvertDecimalToDouble(
414     const char **p, double *d, enum FortranRounding rounding) {
415   auto result{Fortran::decimal::ConvertToBinary<53>(*p, rounding)};
416   std::memcpy(reinterpret_cast<void *>(d),
417       reinterpret_cast<const void *>(&result.binary), sizeof *d);
418   return result.flags;
419 }
420 #if __x86_64__ && !defined(_MSC_VER)
421 enum ConversionResultFlags ConvertDecimalToLongDouble(
422     const char **p, long double *ld, enum FortranRounding rounding) {
423   auto result{Fortran::decimal::ConvertToBinary<64>(*p, rounding)};
424   std::memcpy(reinterpret_cast<void *>(ld),
425       reinterpret_cast<const void *>(&result.binary), sizeof *ld);
426   return result.flags;
427 }
428 #endif
429 }
430 }
431