1 //===-- sanitizer_allocator_test.cpp --------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of ThreadSanitizer/AddressSanitizer runtime. 10 // Tests for sanitizer_allocator.h. 11 // 12 //===----------------------------------------------------------------------===// 13 #include "sanitizer_common/sanitizer_allocator.h" 14 #include "sanitizer_common/sanitizer_allocator_internal.h" 15 #include "sanitizer_common/sanitizer_common.h" 16 17 #include "sanitizer_test_utils.h" 18 #include "sanitizer_pthread_wrappers.h" 19 20 #include "gtest/gtest.h" 21 22 #include <stdio.h> 23 #include <stdlib.h> 24 #include <algorithm> 25 #include <vector> 26 #include <random> 27 #include <set> 28 29 using namespace __sanitizer; 30 31 #if SANITIZER_SOLARIS && defined(__sparcv9) 32 // FIXME: These tests probably fail because Solaris/sparcv9 uses the full 33 // 64-bit address space. Needs more investigation 34 #define SKIP_ON_SOLARIS_SPARCV9(x) DISABLED_##x 35 #else 36 #define SKIP_ON_SOLARIS_SPARCV9(x) x 37 #endif 38 39 // On 64-bit systems with small virtual address spaces (e.g. 39-bit) we can't 40 // use size class maps with a large number of classes, as that will make the 41 // SizeClassAllocator64 region size too small (< 2^32). 42 #if SANITIZER_ANDROID && defined(__aarch64__) 43 #define ALLOCATOR64_SMALL_SIZE 1 44 #elif SANITIZER_RISCV64 45 #define ALLOCATOR64_SMALL_SIZE 1 46 #else 47 #define ALLOCATOR64_SMALL_SIZE 0 48 #endif 49 50 // Too slow for debug build 51 #if !SANITIZER_DEBUG 52 53 #if SANITIZER_CAN_USE_ALLOCATOR64 54 #if SANITIZER_WINDOWS 55 // On Windows 64-bit there is no easy way to find a large enough fixed address 56 // space that is always available. Thus, a dynamically allocated address space 57 // is used instead (i.e. ~(uptr)0). 58 static const uptr kAllocatorSpace = ~(uptr)0; 59 static const uptr kAllocatorSize = 0x8000000000ULL; // 500G 60 static const u64 kAddressSpaceSize = 1ULL << 47; 61 typedef DefaultSizeClassMap SizeClassMap; 62 #elif SANITIZER_ANDROID && defined(__aarch64__) 63 static const uptr kAllocatorSpace = 0x3000000000ULL; 64 static const uptr kAllocatorSize = 0x2000000000ULL; 65 static const u64 kAddressSpaceSize = 1ULL << 39; 66 typedef VeryCompactSizeClassMap SizeClassMap; 67 #elif SANITIZER_RISCV64 68 const uptr kAllocatorSpace = ~(uptr)0; 69 const uptr kAllocatorSize = 0x2000000000ULL; // 128G. 70 static const u64 kAddressSpaceSize = 1ULL << 38; 71 typedef VeryDenseSizeClassMap SizeClassMap; 72 #else 73 static const uptr kAllocatorSpace = 0x700000000000ULL; 74 static const uptr kAllocatorSize = 0x010000000000ULL; // 1T. 75 static const u64 kAddressSpaceSize = 1ULL << 47; 76 typedef DefaultSizeClassMap SizeClassMap; 77 #endif 78 79 template <typename AddressSpaceViewTy> 80 struct AP64 { // Allocator Params. Short name for shorter demangled names.. 81 static const uptr kSpaceBeg = kAllocatorSpace; 82 static const uptr kSpaceSize = kAllocatorSize; 83 static const uptr kMetadataSize = 16; 84 typedef ::SizeClassMap SizeClassMap; 85 typedef NoOpMapUnmapCallback MapUnmapCallback; 86 static const uptr kFlags = 0; 87 using AddressSpaceView = AddressSpaceViewTy; 88 }; 89 90 template <typename AddressSpaceViewTy> 91 struct AP64Dyn { 92 static const uptr kSpaceBeg = ~(uptr)0; 93 static const uptr kSpaceSize = kAllocatorSize; 94 static const uptr kMetadataSize = 16; 95 typedef ::SizeClassMap SizeClassMap; 96 typedef NoOpMapUnmapCallback MapUnmapCallback; 97 static const uptr kFlags = 0; 98 using AddressSpaceView = AddressSpaceViewTy; 99 }; 100 101 template <typename AddressSpaceViewTy> 102 struct AP64Compact { 103 static const uptr kSpaceBeg = ~(uptr)0; 104 static const uptr kSpaceSize = kAllocatorSize; 105 static const uptr kMetadataSize = 16; 106 typedef CompactSizeClassMap SizeClassMap; 107 typedef NoOpMapUnmapCallback MapUnmapCallback; 108 static const uptr kFlags = 0; 109 using AddressSpaceView = AddressSpaceViewTy; 110 }; 111 112 template <typename AddressSpaceViewTy> 113 struct AP64VeryCompact { 114 static const uptr kSpaceBeg = ~(uptr)0; 115 static const uptr kSpaceSize = 1ULL << 37; 116 static const uptr kMetadataSize = 16; 117 typedef VeryCompactSizeClassMap SizeClassMap; 118 typedef NoOpMapUnmapCallback MapUnmapCallback; 119 static const uptr kFlags = 0; 120 using AddressSpaceView = AddressSpaceViewTy; 121 }; 122 123 template <typename AddressSpaceViewTy> 124 struct AP64Dense { 125 static const uptr kSpaceBeg = kAllocatorSpace; 126 static const uptr kSpaceSize = kAllocatorSize; 127 static const uptr kMetadataSize = 16; 128 typedef DenseSizeClassMap SizeClassMap; 129 typedef NoOpMapUnmapCallback MapUnmapCallback; 130 static const uptr kFlags = 0; 131 using AddressSpaceView = AddressSpaceViewTy; 132 }; 133 134 template <typename AddressSpaceView> 135 using Allocator64ASVT = SizeClassAllocator64<AP64<AddressSpaceView>>; 136 using Allocator64 = Allocator64ASVT<LocalAddressSpaceView>; 137 138 template <typename AddressSpaceView> 139 using Allocator64DynamicASVT = SizeClassAllocator64<AP64Dyn<AddressSpaceView>>; 140 using Allocator64Dynamic = Allocator64DynamicASVT<LocalAddressSpaceView>; 141 142 template <typename AddressSpaceView> 143 using Allocator64CompactASVT = 144 SizeClassAllocator64<AP64Compact<AddressSpaceView>>; 145 using Allocator64Compact = Allocator64CompactASVT<LocalAddressSpaceView>; 146 147 template <typename AddressSpaceView> 148 using Allocator64VeryCompactASVT = 149 SizeClassAllocator64<AP64VeryCompact<AddressSpaceView>>; 150 using Allocator64VeryCompact = 151 Allocator64VeryCompactASVT<LocalAddressSpaceView>; 152 153 template <typename AddressSpaceView> 154 using Allocator64DenseASVT = SizeClassAllocator64<AP64Dense<AddressSpaceView>>; 155 using Allocator64Dense = Allocator64DenseASVT<LocalAddressSpaceView>; 156 157 #elif defined(__mips64) 158 static const u64 kAddressSpaceSize = 1ULL << 40; 159 #elif defined(__aarch64__) 160 static const u64 kAddressSpaceSize = 1ULL << 39; 161 #elif defined(__s390x__) 162 static const u64 kAddressSpaceSize = 1ULL << 53; 163 #elif defined(__s390__) 164 static const u64 kAddressSpaceSize = 1ULL << 31; 165 #else 166 static const u64 kAddressSpaceSize = 1ULL << 32; 167 #endif 168 169 static const uptr kRegionSizeLog = FIRST_32_SECOND_64(20, 24); 170 171 template <typename AddressSpaceViewTy> 172 struct AP32Compact { 173 static const uptr kSpaceBeg = 0; 174 static const u64 kSpaceSize = kAddressSpaceSize; 175 static const uptr kMetadataSize = 16; 176 typedef CompactSizeClassMap SizeClassMap; 177 static const uptr kRegionSizeLog = ::kRegionSizeLog; 178 using AddressSpaceView = AddressSpaceViewTy; 179 typedef NoOpMapUnmapCallback MapUnmapCallback; 180 static const uptr kFlags = 0; 181 }; 182 template <typename AddressSpaceView> 183 using Allocator32CompactASVT = 184 SizeClassAllocator32<AP32Compact<AddressSpaceView>>; 185 using Allocator32Compact = Allocator32CompactASVT<LocalAddressSpaceView>; 186 187 template <class SizeClassMap> 188 void TestSizeClassMap() { 189 typedef SizeClassMap SCMap; 190 SCMap::Print(); 191 SCMap::Validate(); 192 } 193 194 TEST(SanitizerCommon, DefaultSizeClassMap) { 195 TestSizeClassMap<DefaultSizeClassMap>(); 196 } 197 198 TEST(SanitizerCommon, CompactSizeClassMap) { 199 TestSizeClassMap<CompactSizeClassMap>(); 200 } 201 202 TEST(SanitizerCommon, VeryCompactSizeClassMap) { 203 TestSizeClassMap<VeryCompactSizeClassMap>(); 204 } 205 206 TEST(SanitizerCommon, InternalSizeClassMap) { 207 TestSizeClassMap<InternalSizeClassMap>(); 208 } 209 210 TEST(SanitizerCommon, DenseSizeClassMap) { 211 TestSizeClassMap<VeryCompactSizeClassMap>(); 212 } 213 214 template <class Allocator> 215 void TestSizeClassAllocator(uptr premapped_heap = 0) { 216 Allocator *a = new Allocator; 217 a->Init(kReleaseToOSIntervalNever, premapped_heap); 218 typename Allocator::AllocatorCache cache; 219 memset(&cache, 0, sizeof(cache)); 220 cache.Init(0); 221 222 static const uptr sizes[] = { 223 1, 16, 30, 40, 100, 1000, 10000, 224 50000, 60000, 100000, 120000, 300000, 500000, 1000000, 2000000 225 }; 226 227 std::vector<void *> allocated; 228 229 uptr last_total_allocated = 0; 230 for (int i = 0; i < 3; i++) { 231 // Allocate a bunch of chunks. 232 for (uptr s = 0; s < ARRAY_SIZE(sizes); s++) { 233 uptr size = sizes[s]; 234 if (!a->CanAllocate(size, 1)) continue; 235 // printf("s = %ld\n", size); 236 uptr n_iter = std::max((uptr)6, 4000000 / size); 237 // fprintf(stderr, "size: %ld iter: %ld\n", size, n_iter); 238 for (uptr i = 0; i < n_iter; i++) { 239 uptr class_id0 = Allocator::SizeClassMapT::ClassID(size); 240 char *x = (char*)cache.Allocate(a, class_id0); 241 x[0] = 0; 242 x[size - 1] = 0; 243 x[size / 2] = 0; 244 allocated.push_back(x); 245 CHECK_EQ(x, a->GetBlockBegin(x)); 246 CHECK_EQ(x, a->GetBlockBegin(x + size - 1)); 247 CHECK(a->PointerIsMine(x)); 248 CHECK(a->PointerIsMine(x + size - 1)); 249 CHECK(a->PointerIsMine(x + size / 2)); 250 CHECK_GE(a->GetActuallyAllocatedSize(x), size); 251 uptr class_id = a->GetSizeClass(x); 252 CHECK_EQ(class_id, Allocator::SizeClassMapT::ClassID(size)); 253 uptr *metadata = reinterpret_cast<uptr*>(a->GetMetaData(x)); 254 metadata[0] = reinterpret_cast<uptr>(x) + 1; 255 metadata[1] = 0xABCD; 256 } 257 } 258 // Deallocate all. 259 for (uptr i = 0; i < allocated.size(); i++) { 260 void *x = allocated[i]; 261 uptr *metadata = reinterpret_cast<uptr*>(a->GetMetaData(x)); 262 CHECK_EQ(metadata[0], reinterpret_cast<uptr>(x) + 1); 263 CHECK_EQ(metadata[1], 0xABCD); 264 cache.Deallocate(a, a->GetSizeClass(x), x); 265 } 266 allocated.clear(); 267 uptr total_allocated = a->TotalMemoryUsed(); 268 if (last_total_allocated == 0) 269 last_total_allocated = total_allocated; 270 CHECK_EQ(last_total_allocated, total_allocated); 271 } 272 273 // Check that GetBlockBegin never crashes. 274 for (uptr x = 0, step = kAddressSpaceSize / 100000; 275 x < kAddressSpaceSize - step; x += step) 276 if (a->PointerIsMine(reinterpret_cast<void *>(x))) 277 Ident(a->GetBlockBegin(reinterpret_cast<void *>(x))); 278 279 a->TestOnlyUnmap(); 280 delete a; 281 } 282 283 #if SANITIZER_CAN_USE_ALLOCATOR64 284 285 // Allocates kAllocatorSize aligned bytes on construction and frees it on 286 // destruction. 287 class ScopedPremappedHeap { 288 public: 289 ScopedPremappedHeap() { 290 BasePtr = MmapNoReserveOrDie(2 * kAllocatorSize, "preallocated heap"); 291 AlignedAddr = RoundUpTo(reinterpret_cast<uptr>(BasePtr), kAllocatorSize); 292 } 293 294 ~ScopedPremappedHeap() { UnmapOrDie(BasePtr, kAllocatorSize); } 295 296 uptr Addr() { return AlignedAddr; } 297 298 private: 299 void *BasePtr; 300 uptr AlignedAddr; 301 }; 302 303 // These tests can fail on Windows if memory is somewhat full and lit happens 304 // to run them all at the same time. FIXME: Make them not flaky and reenable. 305 #if !SANITIZER_WINDOWS 306 TEST(SanitizerCommon, SizeClassAllocator64) { 307 TestSizeClassAllocator<Allocator64>(); 308 } 309 310 TEST(SanitizerCommon, SizeClassAllocator64Dynamic) { 311 TestSizeClassAllocator<Allocator64Dynamic>(); 312 } 313 314 #if !ALLOCATOR64_SMALL_SIZE 315 // Android only has 39-bit address space, so mapping 2 * kAllocatorSize 316 // sometimes fails. 317 TEST(SanitizerCommon, SizeClassAllocator64DynamicPremapped) { 318 ScopedPremappedHeap h; 319 TestSizeClassAllocator<Allocator64Dynamic>(h.Addr()); 320 } 321 322 TEST(SanitizerCommon, SizeClassAllocator64Compact) { 323 TestSizeClassAllocator<Allocator64Compact>(); 324 } 325 326 TEST(SanitizerCommon, SizeClassAllocator64Dense) { 327 TestSizeClassAllocator<Allocator64Dense>(); 328 } 329 #endif 330 331 TEST(SanitizerCommon, SizeClassAllocator64VeryCompact) { 332 TestSizeClassAllocator<Allocator64VeryCompact>(); 333 } 334 #endif 335 #endif 336 337 TEST(SanitizerCommon, SizeClassAllocator32Compact) { 338 TestSizeClassAllocator<Allocator32Compact>(); 339 } 340 341 template <typename AddressSpaceViewTy> 342 struct AP32SeparateBatches { 343 static const uptr kSpaceBeg = 0; 344 static const u64 kSpaceSize = kAddressSpaceSize; 345 static const uptr kMetadataSize = 16; 346 typedef DefaultSizeClassMap SizeClassMap; 347 static const uptr kRegionSizeLog = ::kRegionSizeLog; 348 using AddressSpaceView = AddressSpaceViewTy; 349 typedef NoOpMapUnmapCallback MapUnmapCallback; 350 static const uptr kFlags = 351 SizeClassAllocator32FlagMasks::kUseSeparateSizeClassForBatch; 352 }; 353 template <typename AddressSpaceView> 354 using Allocator32SeparateBatchesASVT = 355 SizeClassAllocator32<AP32SeparateBatches<AddressSpaceView>>; 356 using Allocator32SeparateBatches = 357 Allocator32SeparateBatchesASVT<LocalAddressSpaceView>; 358 359 TEST(SanitizerCommon, SizeClassAllocator32SeparateBatches) { 360 TestSizeClassAllocator<Allocator32SeparateBatches>(); 361 } 362 363 template <class Allocator> 364 void SizeClassAllocatorMetadataStress(uptr premapped_heap = 0) { 365 Allocator *a = new Allocator; 366 a->Init(kReleaseToOSIntervalNever, premapped_heap); 367 typename Allocator::AllocatorCache cache; 368 memset(&cache, 0, sizeof(cache)); 369 cache.Init(0); 370 371 const uptr kNumAllocs = 1 << 13; 372 void *allocated[kNumAllocs]; 373 void *meta[kNumAllocs]; 374 for (uptr i = 0; i < kNumAllocs; i++) { 375 void *x = cache.Allocate(a, 1 + i % (Allocator::kNumClasses - 1)); 376 allocated[i] = x; 377 meta[i] = a->GetMetaData(x); 378 } 379 // Get Metadata kNumAllocs^2 times. 380 for (uptr i = 0; i < kNumAllocs * kNumAllocs; i++) { 381 uptr idx = i % kNumAllocs; 382 void *m = a->GetMetaData(allocated[idx]); 383 EXPECT_EQ(m, meta[idx]); 384 } 385 for (uptr i = 0; i < kNumAllocs; i++) { 386 cache.Deallocate(a, 1 + i % (Allocator::kNumClasses - 1), allocated[i]); 387 } 388 389 a->TestOnlyUnmap(); 390 delete a; 391 } 392 393 #if SANITIZER_CAN_USE_ALLOCATOR64 394 // These tests can fail on Windows if memory is somewhat full and lit happens 395 // to run them all at the same time. FIXME: Make them not flaky and reenable. 396 #if !SANITIZER_WINDOWS 397 TEST(SanitizerCommon, SizeClassAllocator64MetadataStress) { 398 SizeClassAllocatorMetadataStress<Allocator64>(); 399 } 400 401 TEST(SanitizerCommon, SizeClassAllocator64DynamicMetadataStress) { 402 SizeClassAllocatorMetadataStress<Allocator64Dynamic>(); 403 } 404 405 #if !ALLOCATOR64_SMALL_SIZE 406 TEST(SanitizerCommon, SizeClassAllocator64DynamicPremappedMetadataStress) { 407 ScopedPremappedHeap h; 408 SizeClassAllocatorMetadataStress<Allocator64Dynamic>(h.Addr()); 409 } 410 411 TEST(SanitizerCommon, SizeClassAllocator64CompactMetadataStress) { 412 SizeClassAllocatorMetadataStress<Allocator64Compact>(); 413 } 414 #endif 415 416 #endif 417 #endif // SANITIZER_CAN_USE_ALLOCATOR64 418 TEST(SanitizerCommon, SizeClassAllocator32CompactMetadataStress) { 419 SizeClassAllocatorMetadataStress<Allocator32Compact>(); 420 } 421 422 template <class Allocator> 423 void SizeClassAllocatorGetBlockBeginStress(u64 TotalSize, 424 uptr premapped_heap = 0) { 425 Allocator *a = new Allocator; 426 a->Init(kReleaseToOSIntervalNever, premapped_heap); 427 typename Allocator::AllocatorCache cache; 428 memset(&cache, 0, sizeof(cache)); 429 cache.Init(0); 430 431 uptr max_size_class = Allocator::SizeClassMapT::kLargestClassID; 432 uptr size = Allocator::SizeClassMapT::Size(max_size_class); 433 // Make sure we correctly compute GetBlockBegin() w/o overflow. 434 for (size_t i = 0; i <= TotalSize / size; i++) { 435 void *x = cache.Allocate(a, max_size_class); 436 void *beg = a->GetBlockBegin(x); 437 // if ((i & (i - 1)) == 0) 438 // fprintf(stderr, "[%zd] %p %p\n", i, x, beg); 439 EXPECT_EQ(x, beg); 440 } 441 442 a->TestOnlyUnmap(); 443 delete a; 444 } 445 446 #if SANITIZER_CAN_USE_ALLOCATOR64 447 // These tests can fail on Windows if memory is somewhat full and lit happens 448 // to run them all at the same time. FIXME: Make them not flaky and reenable. 449 #if !SANITIZER_WINDOWS 450 TEST(SanitizerCommon, SizeClassAllocator64GetBlockBegin) { 451 SizeClassAllocatorGetBlockBeginStress<Allocator64>( 452 1ULL << (SANITIZER_ANDROID ? 31 : 33)); 453 } 454 TEST(SanitizerCommon, SizeClassAllocator64DynamicGetBlockBegin) { 455 SizeClassAllocatorGetBlockBeginStress<Allocator64Dynamic>( 456 1ULL << (SANITIZER_ANDROID ? 31 : 33)); 457 } 458 #if !ALLOCATOR64_SMALL_SIZE 459 TEST(SanitizerCommon, SizeClassAllocator64DynamicPremappedGetBlockBegin) { 460 ScopedPremappedHeap h; 461 SizeClassAllocatorGetBlockBeginStress<Allocator64Dynamic>( 462 1ULL << (SANITIZER_ANDROID ? 31 : 33), h.Addr()); 463 } 464 TEST(SanitizerCommon, SizeClassAllocator64CompactGetBlockBegin) { 465 SizeClassAllocatorGetBlockBeginStress<Allocator64Compact>(1ULL << 33); 466 } 467 #endif 468 TEST(SanitizerCommon, SizeClassAllocator64VeryCompactGetBlockBegin) { 469 // Does not have > 4Gb for each class. 470 SizeClassAllocatorGetBlockBeginStress<Allocator64VeryCompact>(1ULL << 31); 471 } 472 TEST(SanitizerCommon, SizeClassAllocator32CompactGetBlockBegin) { 473 SizeClassAllocatorGetBlockBeginStress<Allocator32Compact>(1ULL << 33); 474 } 475 #endif 476 #endif // SANITIZER_CAN_USE_ALLOCATOR64 477 478 struct TestMapUnmapCallback { 479 static int map_count, unmap_count; 480 void OnMap(uptr p, uptr size) const { map_count++; } 481 void OnUnmap(uptr p, uptr size) const { unmap_count++; } 482 }; 483 int TestMapUnmapCallback::map_count; 484 int TestMapUnmapCallback::unmap_count; 485 486 #if SANITIZER_CAN_USE_ALLOCATOR64 487 // These tests can fail on Windows if memory is somewhat full and lit happens 488 // to run them all at the same time. FIXME: Make them not flaky and reenable. 489 #if !SANITIZER_WINDOWS 490 491 template <typename AddressSpaceViewTy = LocalAddressSpaceView> 492 struct AP64WithCallback { 493 static const uptr kSpaceBeg = kAllocatorSpace; 494 static const uptr kSpaceSize = kAllocatorSize; 495 static const uptr kMetadataSize = 16; 496 typedef ::SizeClassMap SizeClassMap; 497 typedef TestMapUnmapCallback MapUnmapCallback; 498 static const uptr kFlags = 0; 499 using AddressSpaceView = AddressSpaceViewTy; 500 }; 501 502 TEST(SanitizerCommon, SizeClassAllocator64MapUnmapCallback) { 503 TestMapUnmapCallback::map_count = 0; 504 TestMapUnmapCallback::unmap_count = 0; 505 typedef SizeClassAllocator64<AP64WithCallback<>> Allocator64WithCallBack; 506 Allocator64WithCallBack *a = new Allocator64WithCallBack; 507 a->Init(kReleaseToOSIntervalNever); 508 EXPECT_EQ(TestMapUnmapCallback::map_count, 1); // Allocator state. 509 typename Allocator64WithCallBack::AllocatorCache cache; 510 memset(&cache, 0, sizeof(cache)); 511 cache.Init(0); 512 AllocatorStats stats; 513 stats.Init(); 514 const size_t kNumChunks = 128; 515 uint32_t chunks[kNumChunks]; 516 a->GetFromAllocator(&stats, 30, chunks, kNumChunks); 517 // State + alloc + metadata + freearray. 518 EXPECT_EQ(TestMapUnmapCallback::map_count, 4); 519 a->TestOnlyUnmap(); 520 EXPECT_EQ(TestMapUnmapCallback::unmap_count, 1); // The whole thing. 521 delete a; 522 } 523 #endif 524 #endif 525 526 template <typename AddressSpaceViewTy = LocalAddressSpaceView> 527 struct AP32WithCallback { 528 static const uptr kSpaceBeg = 0; 529 static const u64 kSpaceSize = kAddressSpaceSize; 530 static const uptr kMetadataSize = 16; 531 typedef CompactSizeClassMap SizeClassMap; 532 static const uptr kRegionSizeLog = ::kRegionSizeLog; 533 using AddressSpaceView = AddressSpaceViewTy; 534 typedef TestMapUnmapCallback MapUnmapCallback; 535 static const uptr kFlags = 0; 536 }; 537 538 TEST(SanitizerCommon, SizeClassAllocator32MapUnmapCallback) { 539 TestMapUnmapCallback::map_count = 0; 540 TestMapUnmapCallback::unmap_count = 0; 541 typedef SizeClassAllocator32<AP32WithCallback<>> Allocator32WithCallBack; 542 Allocator32WithCallBack *a = new Allocator32WithCallBack; 543 a->Init(kReleaseToOSIntervalNever); 544 EXPECT_EQ(TestMapUnmapCallback::map_count, 0); 545 Allocator32WithCallBack::AllocatorCache cache; 546 memset(&cache, 0, sizeof(cache)); 547 cache.Init(0); 548 AllocatorStats stats; 549 stats.Init(); 550 a->AllocateBatch(&stats, &cache, 32); 551 EXPECT_EQ(TestMapUnmapCallback::map_count, 1); 552 a->TestOnlyUnmap(); 553 EXPECT_EQ(TestMapUnmapCallback::unmap_count, 1); 554 delete a; 555 // fprintf(stderr, "Map: %d Unmap: %d\n", 556 // TestMapUnmapCallback::map_count, 557 // TestMapUnmapCallback::unmap_count); 558 } 559 560 TEST(SanitizerCommon, LargeMmapAllocatorMapUnmapCallback) { 561 TestMapUnmapCallback::map_count = 0; 562 TestMapUnmapCallback::unmap_count = 0; 563 LargeMmapAllocator<TestMapUnmapCallback> a; 564 a.Init(); 565 AllocatorStats stats; 566 stats.Init(); 567 void *x = a.Allocate(&stats, 1 << 20, 1); 568 EXPECT_EQ(TestMapUnmapCallback::map_count, 1); 569 a.Deallocate(&stats, x); 570 EXPECT_EQ(TestMapUnmapCallback::unmap_count, 1); 571 } 572 573 // Don't test OOM conditions on Win64 because it causes other tests on the same 574 // machine to OOM. 575 #if SANITIZER_CAN_USE_ALLOCATOR64 && !SANITIZER_WINDOWS64 576 TEST(SanitizerCommon, SizeClassAllocator64Overflow) { 577 Allocator64 a; 578 a.Init(kReleaseToOSIntervalNever); 579 Allocator64::AllocatorCache cache; 580 memset(&cache, 0, sizeof(cache)); 581 cache.Init(0); 582 AllocatorStats stats; 583 stats.Init(); 584 585 const size_t kNumChunks = 128; 586 uint32_t chunks[kNumChunks]; 587 bool allocation_failed = false; 588 for (int i = 0; i < 1000000; i++) { 589 uptr class_id = a.kNumClasses - 1; 590 if (!a.GetFromAllocator(&stats, class_id, chunks, kNumChunks)) { 591 allocation_failed = true; 592 break; 593 } 594 } 595 EXPECT_EQ(allocation_failed, true); 596 597 a.TestOnlyUnmap(); 598 } 599 #endif 600 601 TEST(SanitizerCommon, LargeMmapAllocator) { 602 LargeMmapAllocator<NoOpMapUnmapCallback> a; 603 a.Init(); 604 AllocatorStats stats; 605 stats.Init(); 606 607 static const int kNumAllocs = 1000; 608 char *allocated[kNumAllocs]; 609 static const uptr size = 4000; 610 // Allocate some. 611 for (int i = 0; i < kNumAllocs; i++) { 612 allocated[i] = (char *)a.Allocate(&stats, size, 1); 613 CHECK(a.PointerIsMine(allocated[i])); 614 } 615 // Deallocate all. 616 CHECK_GT(a.TotalMemoryUsed(), size * kNumAllocs); 617 for (int i = 0; i < kNumAllocs; i++) { 618 char *p = allocated[i]; 619 CHECK(a.PointerIsMine(p)); 620 a.Deallocate(&stats, p); 621 } 622 // Check that non left. 623 CHECK_EQ(a.TotalMemoryUsed(), 0); 624 625 // Allocate some more, also add metadata. 626 for (int i = 0; i < kNumAllocs; i++) { 627 char *x = (char *)a.Allocate(&stats, size, 1); 628 CHECK_GE(a.GetActuallyAllocatedSize(x), size); 629 uptr *meta = reinterpret_cast<uptr*>(a.GetMetaData(x)); 630 *meta = i; 631 allocated[i] = x; 632 } 633 for (int i = 0; i < kNumAllocs * kNumAllocs; i++) { 634 char *p = allocated[i % kNumAllocs]; 635 CHECK(a.PointerIsMine(p)); 636 CHECK(a.PointerIsMine(p + 2000)); 637 } 638 CHECK_GT(a.TotalMemoryUsed(), size * kNumAllocs); 639 // Deallocate all in reverse order. 640 for (int i = 0; i < kNumAllocs; i++) { 641 int idx = kNumAllocs - i - 1; 642 char *p = allocated[idx]; 643 uptr *meta = reinterpret_cast<uptr*>(a.GetMetaData(p)); 644 CHECK_EQ(*meta, idx); 645 CHECK(a.PointerIsMine(p)); 646 a.Deallocate(&stats, p); 647 } 648 CHECK_EQ(a.TotalMemoryUsed(), 0); 649 650 // Test alignments. Test with 512MB alignment on x64 non-Windows machines. 651 // Windows doesn't overcommit, and many machines do not have 51.2GB of swap. 652 uptr max_alignment = 653 (SANITIZER_WORDSIZE == 64 && !SANITIZER_WINDOWS) ? (1 << 28) : (1 << 24); 654 for (uptr alignment = 8; alignment <= max_alignment; alignment *= 2) { 655 const uptr kNumAlignedAllocs = 100; 656 for (uptr i = 0; i < kNumAlignedAllocs; i++) { 657 uptr size = ((i % 10) + 1) * 4096; 658 char *p = allocated[i] = (char *)a.Allocate(&stats, size, alignment); 659 CHECK_EQ(p, a.GetBlockBegin(p)); 660 CHECK_EQ(p, a.GetBlockBegin(p + size - 1)); 661 CHECK_EQ(p, a.GetBlockBegin(p + size / 2)); 662 CHECK_EQ(0, (uptr)allocated[i] % alignment); 663 p[0] = p[size - 1] = 0; 664 } 665 for (uptr i = 0; i < kNumAlignedAllocs; i++) { 666 a.Deallocate(&stats, allocated[i]); 667 } 668 } 669 670 // Regression test for boundary condition in GetBlockBegin(). 671 uptr page_size = GetPageSizeCached(); 672 char *p = (char *)a.Allocate(&stats, page_size, 1); 673 CHECK_EQ(p, a.GetBlockBegin(p)); 674 CHECK_EQ(p, (char *)a.GetBlockBegin(p + page_size - 1)); 675 CHECK_NE(p, (char *)a.GetBlockBegin(p + page_size)); 676 a.Deallocate(&stats, p); 677 } 678 679 template <class PrimaryAllocator> 680 void TestCombinedAllocator(uptr premapped_heap = 0) { 681 typedef CombinedAllocator<PrimaryAllocator> Allocator; 682 Allocator *a = new Allocator; 683 a->Init(kReleaseToOSIntervalNever, premapped_heap); 684 std::mt19937 r; 685 686 typename Allocator::AllocatorCache cache; 687 memset(&cache, 0, sizeof(cache)); 688 a->InitCache(&cache); 689 690 EXPECT_EQ(a->Allocate(&cache, -1, 1), (void*)0); 691 EXPECT_EQ(a->Allocate(&cache, -1, 1024), (void*)0); 692 EXPECT_EQ(a->Allocate(&cache, (uptr)-1 - 1024, 1), (void*)0); 693 EXPECT_EQ(a->Allocate(&cache, (uptr)-1 - 1024, 1024), (void*)0); 694 EXPECT_EQ(a->Allocate(&cache, (uptr)-1 - 1023, 1024), (void*)0); 695 EXPECT_EQ(a->Allocate(&cache, -1, 1), (void*)0); 696 697 const uptr kNumAllocs = 100000; 698 const uptr kNumIter = 10; 699 for (uptr iter = 0; iter < kNumIter; iter++) { 700 std::vector<void*> allocated; 701 for (uptr i = 0; i < kNumAllocs; i++) { 702 uptr size = (i % (1 << 14)) + 1; 703 if ((i % 1024) == 0) 704 size = 1 << (10 + (i % 14)); 705 void *x = a->Allocate(&cache, size, 1); 706 uptr *meta = reinterpret_cast<uptr*>(a->GetMetaData(x)); 707 CHECK_EQ(*meta, 0); 708 *meta = size; 709 allocated.push_back(x); 710 } 711 712 std::shuffle(allocated.begin(), allocated.end(), r); 713 714 // Test ForEachChunk(...) 715 { 716 std::set<void *> reported_chunks; 717 auto cb = [](uptr chunk, void *arg) { 718 auto reported_chunks_ptr = reinterpret_cast<std::set<void *> *>(arg); 719 auto pair = 720 reported_chunks_ptr->insert(reinterpret_cast<void *>(chunk)); 721 // Check chunk is never reported more than once. 722 ASSERT_TRUE(pair.second); 723 }; 724 a->ForEachChunk(cb, reinterpret_cast<void *>(&reported_chunks)); 725 for (const auto &allocated_ptr : allocated) { 726 ASSERT_NE(reported_chunks.find(allocated_ptr), reported_chunks.end()); 727 } 728 } 729 730 for (uptr i = 0; i < kNumAllocs; i++) { 731 void *x = allocated[i]; 732 uptr *meta = reinterpret_cast<uptr*>(a->GetMetaData(x)); 733 CHECK_NE(*meta, 0); 734 CHECK(a->PointerIsMine(x)); 735 *meta = 0; 736 a->Deallocate(&cache, x); 737 } 738 allocated.clear(); 739 a->SwallowCache(&cache); 740 } 741 a->DestroyCache(&cache); 742 a->TestOnlyUnmap(); 743 } 744 745 #if SANITIZER_CAN_USE_ALLOCATOR64 746 TEST(SanitizerCommon, CombinedAllocator64) { 747 TestCombinedAllocator<Allocator64>(); 748 } 749 750 TEST(SanitizerCommon, CombinedAllocator64Dynamic) { 751 TestCombinedAllocator<Allocator64Dynamic>(); 752 } 753 754 #if !ALLOCATOR64_SMALL_SIZE 755 #if !SANITIZER_WINDOWS 756 // Windows fails to map 1TB, so disable this test. 757 TEST(SanitizerCommon, CombinedAllocator64DynamicPremapped) { 758 ScopedPremappedHeap h; 759 TestCombinedAllocator<Allocator64Dynamic>(h.Addr()); 760 } 761 #endif 762 763 TEST(SanitizerCommon, CombinedAllocator64Compact) { 764 TestCombinedAllocator<Allocator64Compact>(); 765 } 766 #endif 767 768 TEST(SanitizerCommon, CombinedAllocator64VeryCompact) { 769 TestCombinedAllocator<Allocator64VeryCompact>(); 770 } 771 #endif 772 773 TEST(SanitizerCommon, SKIP_ON_SOLARIS_SPARCV9(CombinedAllocator32Compact)) { 774 TestCombinedAllocator<Allocator32Compact>(); 775 } 776 777 template <class Allocator> 778 void TestSizeClassAllocatorLocalCache(uptr premapped_heap = 0) { 779 using AllocatorCache = typename Allocator::AllocatorCache; 780 AllocatorCache cache; 781 Allocator *a = new Allocator(); 782 783 a->Init(kReleaseToOSIntervalNever, premapped_heap); 784 memset(&cache, 0, sizeof(cache)); 785 cache.Init(0); 786 787 const uptr kNumAllocs = 10000; 788 const int kNumIter = 100; 789 uptr saved_total = 0; 790 for (int class_id = 1; class_id <= 5; class_id++) { 791 for (int it = 0; it < kNumIter; it++) { 792 void *allocated[kNumAllocs]; 793 for (uptr i = 0; i < kNumAllocs; i++) { 794 allocated[i] = cache.Allocate(a, class_id); 795 } 796 for (uptr i = 0; i < kNumAllocs; i++) { 797 cache.Deallocate(a, class_id, allocated[i]); 798 } 799 cache.Drain(a); 800 uptr total_allocated = a->TotalMemoryUsed(); 801 if (it) 802 CHECK_EQ(saved_total, total_allocated); 803 saved_total = total_allocated; 804 } 805 } 806 807 a->TestOnlyUnmap(); 808 delete a; 809 } 810 811 #if SANITIZER_CAN_USE_ALLOCATOR64 812 // These tests can fail on Windows if memory is somewhat full and lit happens 813 // to run them all at the same time. FIXME: Make them not flaky and reenable. 814 #if !SANITIZER_WINDOWS 815 TEST(SanitizerCommon, SizeClassAllocator64LocalCache) { 816 TestSizeClassAllocatorLocalCache<Allocator64>(); 817 } 818 819 TEST(SanitizerCommon, SizeClassAllocator64DynamicLocalCache) { 820 TestSizeClassAllocatorLocalCache<Allocator64Dynamic>(); 821 } 822 823 #if !ALLOCATOR64_SMALL_SIZE 824 TEST(SanitizerCommon, SizeClassAllocator64DynamicPremappedLocalCache) { 825 ScopedPremappedHeap h; 826 TestSizeClassAllocatorLocalCache<Allocator64Dynamic>(h.Addr()); 827 } 828 829 TEST(SanitizerCommon, SizeClassAllocator64CompactLocalCache) { 830 TestSizeClassAllocatorLocalCache<Allocator64Compact>(); 831 } 832 #endif 833 TEST(SanitizerCommon, SizeClassAllocator64VeryCompactLocalCache) { 834 TestSizeClassAllocatorLocalCache<Allocator64VeryCompact>(); 835 } 836 #endif 837 #endif 838 839 TEST(SanitizerCommon, SizeClassAllocator32CompactLocalCache) { 840 TestSizeClassAllocatorLocalCache<Allocator32Compact>(); 841 } 842 843 #if SANITIZER_CAN_USE_ALLOCATOR64 844 typedef Allocator64::AllocatorCache AllocatorCache; 845 static AllocatorCache static_allocator_cache; 846 847 void *AllocatorLeakTestWorker(void *arg) { 848 typedef AllocatorCache::Allocator Allocator; 849 Allocator *a = (Allocator*)(arg); 850 static_allocator_cache.Allocate(a, 10); 851 static_allocator_cache.Drain(a); 852 return 0; 853 } 854 855 TEST(SanitizerCommon, AllocatorLeakTest) { 856 typedef AllocatorCache::Allocator Allocator; 857 Allocator a; 858 a.Init(kReleaseToOSIntervalNever); 859 uptr total_used_memory = 0; 860 for (int i = 0; i < 100; i++) { 861 pthread_t t; 862 PTHREAD_CREATE(&t, 0, AllocatorLeakTestWorker, &a); 863 PTHREAD_JOIN(t, 0); 864 if (i == 0) 865 total_used_memory = a.TotalMemoryUsed(); 866 EXPECT_EQ(a.TotalMemoryUsed(), total_used_memory); 867 } 868 869 a.TestOnlyUnmap(); 870 } 871 872 // Struct which is allocated to pass info to new threads. The new thread frees 873 // it. 874 struct NewThreadParams { 875 AllocatorCache *thread_cache; 876 AllocatorCache::Allocator *allocator; 877 uptr class_id; 878 }; 879 880 // Called in a new thread. Just frees its argument. 881 static void *DeallocNewThreadWorker(void *arg) { 882 NewThreadParams *params = reinterpret_cast<NewThreadParams*>(arg); 883 params->thread_cache->Deallocate(params->allocator, params->class_id, params); 884 return NULL; 885 } 886 887 // The allocator cache is supposed to be POD and zero initialized. We should be 888 // able to call Deallocate on a zeroed cache, and it will self-initialize. 889 TEST(Allocator, AllocatorCacheDeallocNewThread) { 890 AllocatorCache::Allocator allocator; 891 allocator.Init(kReleaseToOSIntervalNever); 892 AllocatorCache main_cache; 893 AllocatorCache child_cache; 894 memset(&main_cache, 0, sizeof(main_cache)); 895 memset(&child_cache, 0, sizeof(child_cache)); 896 897 uptr class_id = DefaultSizeClassMap::ClassID(sizeof(NewThreadParams)); 898 NewThreadParams *params = reinterpret_cast<NewThreadParams*>( 899 main_cache.Allocate(&allocator, class_id)); 900 params->thread_cache = &child_cache; 901 params->allocator = &allocator; 902 params->class_id = class_id; 903 pthread_t t; 904 PTHREAD_CREATE(&t, 0, DeallocNewThreadWorker, params); 905 PTHREAD_JOIN(t, 0); 906 907 allocator.TestOnlyUnmap(); 908 } 909 #endif 910 911 TEST(Allocator, Basic) { 912 char *p = (char*)InternalAlloc(10); 913 EXPECT_NE(p, (char*)0); 914 char *p2 = (char*)InternalAlloc(20); 915 EXPECT_NE(p2, (char*)0); 916 EXPECT_NE(p2, p); 917 InternalFree(p); 918 InternalFree(p2); 919 } 920 921 TEST(Allocator, Stress) { 922 const int kCount = 1000; 923 char *ptrs[kCount]; 924 unsigned rnd = 42; 925 for (int i = 0; i < kCount; i++) { 926 uptr sz = my_rand_r(&rnd) % 1000; 927 char *p = (char*)InternalAlloc(sz); 928 EXPECT_NE(p, (char*)0); 929 ptrs[i] = p; 930 } 931 for (int i = 0; i < kCount; i++) { 932 InternalFree(ptrs[i]); 933 } 934 } 935 936 TEST(Allocator, LargeAlloc) { 937 void *p = InternalAlloc(10 << 20); 938 InternalFree(p); 939 } 940 941 TEST(Allocator, ScopedBuffer) { 942 const int kSize = 512; 943 { 944 InternalMmapVector<int> int_buf(kSize); 945 EXPECT_EQ((uptr)kSize, int_buf.size()); 946 } 947 InternalMmapVector<char> char_buf(kSize); 948 EXPECT_EQ((uptr)kSize, char_buf.size()); 949 internal_memset(char_buf.data(), 'c', kSize); 950 for (int i = 0; i < kSize; i++) { 951 EXPECT_EQ('c', char_buf[i]); 952 } 953 } 954 955 void IterationTestCallback(uptr chunk, void *arg) { 956 reinterpret_cast<std::set<uptr> *>(arg)->insert(chunk); 957 } 958 959 template <class Allocator> 960 void TestSizeClassAllocatorIteration(uptr premapped_heap = 0) { 961 Allocator *a = new Allocator; 962 a->Init(kReleaseToOSIntervalNever, premapped_heap); 963 typename Allocator::AllocatorCache cache; 964 memset(&cache, 0, sizeof(cache)); 965 cache.Init(0); 966 967 static const uptr sizes[] = {1, 16, 30, 40, 100, 1000, 10000, 968 50000, 60000, 100000, 120000, 300000, 500000, 1000000, 2000000}; 969 970 std::vector<void *> allocated; 971 972 // Allocate a bunch of chunks. 973 for (uptr s = 0; s < ARRAY_SIZE(sizes); s++) { 974 uptr size = sizes[s]; 975 if (!a->CanAllocate(size, 1)) continue; 976 // printf("s = %ld\n", size); 977 uptr n_iter = std::max((uptr)6, 80000 / size); 978 // fprintf(stderr, "size: %ld iter: %ld\n", size, n_iter); 979 for (uptr j = 0; j < n_iter; j++) { 980 uptr class_id0 = Allocator::SizeClassMapT::ClassID(size); 981 void *x = cache.Allocate(a, class_id0); 982 allocated.push_back(x); 983 } 984 } 985 986 std::set<uptr> reported_chunks; 987 a->ForceLock(); 988 a->ForEachChunk(IterationTestCallback, &reported_chunks); 989 a->ForceUnlock(); 990 991 for (uptr i = 0; i < allocated.size(); i++) { 992 // Don't use EXPECT_NE. Reporting the first mismatch is enough. 993 ASSERT_NE(reported_chunks.find(reinterpret_cast<uptr>(allocated[i])), 994 reported_chunks.end()); 995 } 996 997 a->TestOnlyUnmap(); 998 delete a; 999 } 1000 1001 #if SANITIZER_CAN_USE_ALLOCATOR64 1002 // These tests can fail on Windows if memory is somewhat full and lit happens 1003 // to run them all at the same time. FIXME: Make them not flaky and reenable. 1004 #if !SANITIZER_WINDOWS 1005 TEST(SanitizerCommon, SizeClassAllocator64Iteration) { 1006 TestSizeClassAllocatorIteration<Allocator64>(); 1007 } 1008 TEST(SanitizerCommon, SizeClassAllocator64DynamicIteration) { 1009 TestSizeClassAllocatorIteration<Allocator64Dynamic>(); 1010 } 1011 #if !ALLOCATOR64_SMALL_SIZE 1012 TEST(SanitizerCommon, SizeClassAllocator64DynamicPremappedIteration) { 1013 ScopedPremappedHeap h; 1014 TestSizeClassAllocatorIteration<Allocator64Dynamic>(h.Addr()); 1015 } 1016 #endif 1017 #endif 1018 #endif 1019 1020 TEST(SanitizerCommon, SKIP_ON_SOLARIS_SPARCV9(SizeClassAllocator32Iteration)) { 1021 TestSizeClassAllocatorIteration<Allocator32Compact>(); 1022 } 1023 1024 TEST(SanitizerCommon, LargeMmapAllocatorIteration) { 1025 LargeMmapAllocator<NoOpMapUnmapCallback> a; 1026 a.Init(); 1027 AllocatorStats stats; 1028 stats.Init(); 1029 1030 static const uptr kNumAllocs = 1000; 1031 char *allocated[kNumAllocs]; 1032 static const uptr size = 40; 1033 // Allocate some. 1034 for (uptr i = 0; i < kNumAllocs; i++) 1035 allocated[i] = (char *)a.Allocate(&stats, size, 1); 1036 1037 std::set<uptr> reported_chunks; 1038 a.ForceLock(); 1039 a.ForEachChunk(IterationTestCallback, &reported_chunks); 1040 a.ForceUnlock(); 1041 1042 for (uptr i = 0; i < kNumAllocs; i++) { 1043 // Don't use EXPECT_NE. Reporting the first mismatch is enough. 1044 ASSERT_NE(reported_chunks.find(reinterpret_cast<uptr>(allocated[i])), 1045 reported_chunks.end()); 1046 } 1047 for (uptr i = 0; i < kNumAllocs; i++) 1048 a.Deallocate(&stats, allocated[i]); 1049 } 1050 1051 TEST(SanitizerCommon, LargeMmapAllocatorBlockBegin) { 1052 LargeMmapAllocator<NoOpMapUnmapCallback> a; 1053 a.Init(); 1054 AllocatorStats stats; 1055 stats.Init(); 1056 1057 static const uptr kNumAllocs = 1024; 1058 static const uptr kNumExpectedFalseLookups = 10000000; 1059 char *allocated[kNumAllocs]; 1060 static const uptr size = 4096; 1061 // Allocate some. 1062 for (uptr i = 0; i < kNumAllocs; i++) { 1063 allocated[i] = (char *)a.Allocate(&stats, size, 1); 1064 } 1065 1066 a.ForceLock(); 1067 for (uptr i = 0; i < kNumAllocs * kNumAllocs; i++) { 1068 // if ((i & (i - 1)) == 0) fprintf(stderr, "[%zd]\n", i); 1069 char *p1 = allocated[i % kNumAllocs]; 1070 EXPECT_EQ(p1, a.GetBlockBeginFastLocked(p1)); 1071 EXPECT_EQ(p1, a.GetBlockBeginFastLocked(p1 + size / 2)); 1072 EXPECT_EQ(p1, a.GetBlockBeginFastLocked(p1 + size - 1)); 1073 EXPECT_EQ(p1, a.GetBlockBeginFastLocked(p1 - 100)); 1074 } 1075 1076 for (uptr i = 0; i < kNumExpectedFalseLookups; i++) { 1077 void *p = reinterpret_cast<void *>(i % 1024); 1078 EXPECT_EQ((void *)0, a.GetBlockBeginFastLocked(p)); 1079 p = reinterpret_cast<void *>(~0L - (i % 1024)); 1080 EXPECT_EQ((void *)0, a.GetBlockBeginFastLocked(p)); 1081 } 1082 a.ForceUnlock(); 1083 1084 for (uptr i = 0; i < kNumAllocs; i++) 1085 a.Deallocate(&stats, allocated[i]); 1086 } 1087 1088 1089 // Don't test OOM conditions on Win64 because it causes other tests on the same 1090 // machine to OOM. 1091 #if SANITIZER_CAN_USE_ALLOCATOR64 && !SANITIZER_WINDOWS64 1092 typedef __sanitizer::SizeClassMap<2, 22, 22, 34, 128, 16> SpecialSizeClassMap; 1093 template <typename AddressSpaceViewTy = LocalAddressSpaceView> 1094 struct AP64_SpecialSizeClassMap { 1095 static const uptr kSpaceBeg = kAllocatorSpace; 1096 static const uptr kSpaceSize = kAllocatorSize; 1097 static const uptr kMetadataSize = 0; 1098 typedef SpecialSizeClassMap SizeClassMap; 1099 typedef NoOpMapUnmapCallback MapUnmapCallback; 1100 static const uptr kFlags = 0; 1101 using AddressSpaceView = AddressSpaceViewTy; 1102 }; 1103 1104 // Regression test for out-of-memory condition in PopulateFreeList(). 1105 TEST(SanitizerCommon, SizeClassAllocator64PopulateFreeListOOM) { 1106 // In a world where regions are small and chunks are huge... 1107 typedef SizeClassAllocator64<AP64_SpecialSizeClassMap<>> SpecialAllocator64; 1108 const uptr kRegionSize = 1109 kAllocatorSize / SpecialSizeClassMap::kNumClassesRounded; 1110 SpecialAllocator64 *a = new SpecialAllocator64; 1111 a->Init(kReleaseToOSIntervalNever); 1112 SpecialAllocator64::AllocatorCache cache; 1113 memset(&cache, 0, sizeof(cache)); 1114 cache.Init(0); 1115 1116 // ...one man is on a mission to overflow a region with a series of 1117 // successive allocations. 1118 1119 const uptr kClassID = ALLOCATOR64_SMALL_SIZE ? 18 : 24; 1120 const uptr kAllocationSize = SpecialSizeClassMap::Size(kClassID); 1121 ASSERT_LT(2 * kAllocationSize, kRegionSize); 1122 ASSERT_GT(3 * kAllocationSize, kRegionSize); 1123 EXPECT_NE(cache.Allocate(a, kClassID), nullptr); 1124 EXPECT_NE(cache.Allocate(a, kClassID), nullptr); 1125 EXPECT_EQ(cache.Allocate(a, kClassID), nullptr); 1126 1127 const uptr Class2 = ALLOCATOR64_SMALL_SIZE ? 15 : 21; 1128 const uptr Size2 = SpecialSizeClassMap::Size(Class2); 1129 ASSERT_EQ(Size2 * 8, kRegionSize); 1130 char *p[7]; 1131 for (int i = 0; i < 7; i++) { 1132 p[i] = (char*)cache.Allocate(a, Class2); 1133 EXPECT_NE(p[i], nullptr); 1134 fprintf(stderr, "p[%d] %p s = %lx\n", i, (void*)p[i], Size2); 1135 p[i][Size2 - 1] = 42; 1136 if (i) ASSERT_LT(p[i - 1], p[i]); 1137 } 1138 EXPECT_EQ(cache.Allocate(a, Class2), nullptr); 1139 cache.Deallocate(a, Class2, p[0]); 1140 cache.Drain(a); 1141 ASSERT_EQ(p[6][Size2 - 1], 42); 1142 a->TestOnlyUnmap(); 1143 delete a; 1144 } 1145 1146 #endif 1147 1148 #if SANITIZER_CAN_USE_ALLOCATOR64 1149 1150 class NoMemoryMapper { 1151 public: 1152 uptr last_request_buffer_size; 1153 1154 NoMemoryMapper() : last_request_buffer_size(0) {} 1155 1156 void *MapPackedCounterArrayBuffer(uptr buffer_size) { 1157 last_request_buffer_size = buffer_size; 1158 return nullptr; 1159 } 1160 void UnmapPackedCounterArrayBuffer(void *buffer, uptr buffer_size) {} 1161 }; 1162 1163 class RedZoneMemoryMapper { 1164 public: 1165 RedZoneMemoryMapper() { 1166 const auto page_size = GetPageSize(); 1167 buffer = MmapOrDie(3ULL * page_size, ""); 1168 MprotectNoAccess(reinterpret_cast<uptr>(buffer), page_size); 1169 MprotectNoAccess(reinterpret_cast<uptr>(buffer) + page_size * 2, page_size); 1170 } 1171 ~RedZoneMemoryMapper() { 1172 UnmapOrDie(buffer, 3 * GetPageSize()); 1173 } 1174 1175 void *MapPackedCounterArrayBuffer(uptr buffer_size) { 1176 const auto page_size = GetPageSize(); 1177 CHECK_EQ(buffer_size, page_size); 1178 void *p = 1179 reinterpret_cast<void *>(reinterpret_cast<uptr>(buffer) + page_size); 1180 memset(p, 0, page_size); 1181 return p; 1182 } 1183 void UnmapPackedCounterArrayBuffer(void *buffer, uptr buffer_size) {} 1184 1185 private: 1186 void *buffer; 1187 }; 1188 1189 TEST(SanitizerCommon, SizeClassAllocator64PackedCounterArray) { 1190 NoMemoryMapper no_memory_mapper; 1191 for (int i = 0; i < 64; i++) { 1192 // Various valid counter's max values packed into one word. 1193 Allocator64::PackedCounterArray counters_2n(1, 1ULL << i, 1194 &no_memory_mapper); 1195 EXPECT_EQ(8ULL, no_memory_mapper.last_request_buffer_size); 1196 1197 // Check the "all bit set" values too. 1198 Allocator64::PackedCounterArray counters_2n1_1(1, ~0ULL >> i, 1199 &no_memory_mapper); 1200 EXPECT_EQ(8ULL, no_memory_mapper.last_request_buffer_size); 1201 1202 // Verify the packing ratio, the counter is expected to be packed into the 1203 // closest power of 2 bits. 1204 Allocator64::PackedCounterArray counters(64, 1ULL << i, &no_memory_mapper); 1205 EXPECT_EQ(8ULL * RoundUpToPowerOfTwo(i + 1), 1206 no_memory_mapper.last_request_buffer_size); 1207 } 1208 1209 RedZoneMemoryMapper memory_mapper; 1210 // Go through 1, 2, 4, 8, .. 64 bits per counter. 1211 for (int i = 0; i < 7; i++) { 1212 // Make sure counters request one memory page for the buffer. 1213 const u64 kNumCounters = (GetPageSize() / 8) * (64 >> i); 1214 Allocator64::PackedCounterArray counters( 1215 kNumCounters, 1ULL << ((1 << i) - 1), &memory_mapper); 1216 counters.Inc(0); 1217 for (u64 c = 1; c < kNumCounters - 1; c++) { 1218 ASSERT_EQ(0ULL, counters.Get(c)); 1219 counters.Inc(c); 1220 ASSERT_EQ(1ULL, counters.Get(c - 1)); 1221 } 1222 ASSERT_EQ(0ULL, counters.Get(kNumCounters - 1)); 1223 counters.Inc(kNumCounters - 1); 1224 1225 if (i > 0) { 1226 counters.IncRange(0, kNumCounters - 1); 1227 for (u64 c = 0; c < kNumCounters; c++) 1228 ASSERT_EQ(2ULL, counters.Get(c)); 1229 } 1230 } 1231 } 1232 1233 class RangeRecorder { 1234 public: 1235 std::string reported_pages; 1236 1237 RangeRecorder() 1238 : page_size_scaled_log( 1239 Log2(GetPageSizeCached() >> Allocator64::kCompactPtrScale)), 1240 last_page_reported(0) {} 1241 1242 void ReleasePageRangeToOS(u32 class_id, u32 from, u32 to) { 1243 from >>= page_size_scaled_log; 1244 to >>= page_size_scaled_log; 1245 ASSERT_LT(from, to); 1246 if (!reported_pages.empty()) 1247 ASSERT_LT(last_page_reported, from); 1248 reported_pages.append(from - last_page_reported, '.'); 1249 reported_pages.append(to - from, 'x'); 1250 last_page_reported = to; 1251 } 1252 1253 private: 1254 const uptr page_size_scaled_log; 1255 u32 last_page_reported; 1256 }; 1257 1258 TEST(SanitizerCommon, SizeClassAllocator64FreePagesRangeTracker) { 1259 typedef Allocator64::FreePagesRangeTracker<RangeRecorder> RangeTracker; 1260 1261 // 'x' denotes a page to be released, '.' denotes a page to be kept around. 1262 const char* test_cases[] = { 1263 "", 1264 ".", 1265 "x", 1266 "........", 1267 "xxxxxxxxxxx", 1268 "..............xxxxx", 1269 "xxxxxxxxxxxxxxxxxx.....", 1270 "......xxxxxxxx........", 1271 "xxx..........xxxxxxxxxxxxxxx", 1272 "......xxxx....xxxx........", 1273 "xxx..........xxxxxxxx....xxxxxxx", 1274 "x.x.x.x.x.x.x.x.x.x.x.x.", 1275 ".x.x.x.x.x.x.x.x.x.x.x.x", 1276 ".x.x.x.x.x.x.x.x.x.x.x.x.", 1277 "x.x.x.x.x.x.x.x.x.x.x.x.x", 1278 }; 1279 1280 for (auto test_case : test_cases) { 1281 RangeRecorder range_recorder; 1282 RangeTracker tracker(&range_recorder, 1); 1283 for (int i = 0; test_case[i] != 0; i++) 1284 tracker.NextPage(test_case[i] == 'x'); 1285 tracker.Done(); 1286 // Strip trailing '.'-pages before comparing the results as they are not 1287 // going to be reported to range_recorder anyway. 1288 const char* last_x = strrchr(test_case, 'x'); 1289 std::string expected( 1290 test_case, 1291 last_x == nullptr ? 0 : (last_x - test_case + 1)); 1292 EXPECT_STREQ(expected.c_str(), range_recorder.reported_pages.c_str()); 1293 } 1294 } 1295 1296 class ReleasedPagesTrackingMemoryMapper { 1297 public: 1298 std::set<u32> reported_pages; 1299 1300 void *MapPackedCounterArrayBuffer(uptr buffer_size) { 1301 reported_pages.clear(); 1302 return calloc(1, buffer_size); 1303 } 1304 void UnmapPackedCounterArrayBuffer(void *buffer, uptr buffer_size) { 1305 free(buffer); 1306 } 1307 1308 void ReleasePageRangeToOS(u32 class_id, u32 from, u32 to) { 1309 uptr page_size_scaled = 1310 GetPageSizeCached() >> Allocator64::kCompactPtrScale; 1311 for (u32 i = from; i < to; i += page_size_scaled) 1312 reported_pages.insert(i); 1313 } 1314 }; 1315 1316 template <class Allocator> 1317 void TestReleaseFreeMemoryToOS() { 1318 ReleasedPagesTrackingMemoryMapper memory_mapper; 1319 const uptr kAllocatedPagesCount = 1024; 1320 const uptr page_size = GetPageSizeCached(); 1321 const uptr page_size_scaled = page_size >> Allocator::kCompactPtrScale; 1322 std::mt19937 r; 1323 uint32_t rnd_state = 42; 1324 1325 for (uptr class_id = 1; class_id <= Allocator::SizeClassMapT::kLargestClassID; 1326 class_id++) { 1327 const uptr chunk_size = Allocator::SizeClassMapT::Size(class_id); 1328 const uptr chunk_size_scaled = chunk_size >> Allocator::kCompactPtrScale; 1329 const uptr max_chunks = 1330 kAllocatedPagesCount * GetPageSizeCached() / chunk_size; 1331 1332 // Generate the random free list. 1333 std::vector<u32> free_array; 1334 bool in_free_range = false; 1335 uptr current_range_end = 0; 1336 for (uptr i = 0; i < max_chunks; i++) { 1337 if (i == current_range_end) { 1338 in_free_range = (my_rand_r(&rnd_state) & 1U) == 1; 1339 current_range_end += my_rand_r(&rnd_state) % 100 + 1; 1340 } 1341 if (in_free_range) 1342 free_array.push_back(i * chunk_size_scaled); 1343 } 1344 if (free_array.empty()) 1345 continue; 1346 // Shuffle free_list to verify that ReleaseFreeMemoryToOS does not depend on 1347 // the list ordering. 1348 std::shuffle(free_array.begin(), free_array.end(), r); 1349 1350 Allocator::ReleaseFreeMemoryToOS(&free_array[0], free_array.size(), 1351 chunk_size, kAllocatedPagesCount, 1352 &memory_mapper, class_id); 1353 1354 // Verify that there are no released pages touched by used chunks and all 1355 // ranges of free chunks big enough to contain the entire memory pages had 1356 // these pages released. 1357 uptr verified_released_pages = 0; 1358 std::set<u32> free_chunks(free_array.begin(), free_array.end()); 1359 1360 u32 current_chunk = 0; 1361 in_free_range = false; 1362 u32 current_free_range_start = 0; 1363 for (uptr i = 0; i <= max_chunks; i++) { 1364 bool is_free_chunk = free_chunks.find(current_chunk) != free_chunks.end(); 1365 1366 if (is_free_chunk) { 1367 if (!in_free_range) { 1368 in_free_range = true; 1369 current_free_range_start = current_chunk; 1370 } 1371 } else { 1372 // Verify that this used chunk does not touch any released page. 1373 for (uptr i_page = current_chunk / page_size_scaled; 1374 i_page <= (current_chunk + chunk_size_scaled - 1) / 1375 page_size_scaled; 1376 i_page++) { 1377 bool page_released = 1378 memory_mapper.reported_pages.find(i_page * page_size_scaled) != 1379 memory_mapper.reported_pages.end(); 1380 ASSERT_EQ(false, page_released); 1381 } 1382 1383 if (in_free_range) { 1384 in_free_range = false; 1385 // Verify that all entire memory pages covered by this range of free 1386 // chunks were released. 1387 u32 page = RoundUpTo(current_free_range_start, page_size_scaled); 1388 while (page + page_size_scaled <= current_chunk) { 1389 bool page_released = 1390 memory_mapper.reported_pages.find(page) != 1391 memory_mapper.reported_pages.end(); 1392 ASSERT_EQ(true, page_released); 1393 verified_released_pages++; 1394 page += page_size_scaled; 1395 } 1396 } 1397 } 1398 1399 current_chunk += chunk_size_scaled; 1400 } 1401 1402 ASSERT_EQ(memory_mapper.reported_pages.size(), verified_released_pages); 1403 } 1404 } 1405 1406 TEST(SanitizerCommon, SizeClassAllocator64ReleaseFreeMemoryToOS) { 1407 TestReleaseFreeMemoryToOS<Allocator64>(); 1408 } 1409 1410 #if !ALLOCATOR64_SMALL_SIZE 1411 TEST(SanitizerCommon, SizeClassAllocator64CompactReleaseFreeMemoryToOS) { 1412 TestReleaseFreeMemoryToOS<Allocator64Compact>(); 1413 } 1414 1415 TEST(SanitizerCommon, SizeClassAllocator64VeryCompactReleaseFreeMemoryToOS) { 1416 TestReleaseFreeMemoryToOS<Allocator64VeryCompact>(); 1417 } 1418 #endif // !ALLOCATOR64_SMALL_SIZE 1419 1420 #endif // SANITIZER_CAN_USE_ALLOCATOR64 1421 1422 TEST(SanitizerCommon, TwoLevelByteMap) { 1423 const u64 kSize1 = 1 << 6, kSize2 = 1 << 12; 1424 const u64 n = kSize1 * kSize2; 1425 TwoLevelByteMap<kSize1, kSize2> m; 1426 m.Init(); 1427 for (u64 i = 0; i < n; i += 7) { 1428 m.set(i, (i % 100) + 1); 1429 } 1430 for (u64 j = 0; j < n; j++) { 1431 if (j % 7) 1432 EXPECT_EQ(m[j], 0); 1433 else 1434 EXPECT_EQ(m[j], (j % 100) + 1); 1435 } 1436 1437 m.TestOnlyUnmap(); 1438 } 1439 1440 template <typename AddressSpaceView> 1441 using TestByteMapASVT = 1442 TwoLevelByteMap<1 << 12, 1 << 13, AddressSpaceView, TestMapUnmapCallback>; 1443 using TestByteMap = TestByteMapASVT<LocalAddressSpaceView>; 1444 1445 struct TestByteMapParam { 1446 TestByteMap *m; 1447 size_t shard; 1448 size_t num_shards; 1449 }; 1450 1451 void *TwoLevelByteMapUserThread(void *param) { 1452 TestByteMapParam *p = (TestByteMapParam*)param; 1453 for (size_t i = p->shard; i < p->m->size(); i += p->num_shards) { 1454 size_t val = (i % 100) + 1; 1455 p->m->set(i, val); 1456 EXPECT_EQ((*p->m)[i], val); 1457 } 1458 return 0; 1459 } 1460 1461 TEST(SanitizerCommon, ThreadedTwoLevelByteMap) { 1462 TestByteMap m; 1463 m.Init(); 1464 TestMapUnmapCallback::map_count = 0; 1465 TestMapUnmapCallback::unmap_count = 0; 1466 static const int kNumThreads = 4; 1467 pthread_t t[kNumThreads]; 1468 TestByteMapParam p[kNumThreads]; 1469 for (int i = 0; i < kNumThreads; i++) { 1470 p[i].m = &m; 1471 p[i].shard = i; 1472 p[i].num_shards = kNumThreads; 1473 PTHREAD_CREATE(&t[i], 0, TwoLevelByteMapUserThread, &p[i]); 1474 } 1475 for (int i = 0; i < kNumThreads; i++) { 1476 PTHREAD_JOIN(t[i], 0); 1477 } 1478 EXPECT_EQ((uptr)TestMapUnmapCallback::map_count, m.size1()); 1479 EXPECT_EQ((uptr)TestMapUnmapCallback::unmap_count, 0UL); 1480 m.TestOnlyUnmap(); 1481 EXPECT_EQ((uptr)TestMapUnmapCallback::map_count, m.size1()); 1482 EXPECT_EQ((uptr)TestMapUnmapCallback::unmap_count, m.size1()); 1483 } 1484 1485 TEST(SanitizerCommon, LowLevelAllocatorShouldRoundUpSizeOnAlloc) { 1486 // When allocating a memory block slightly bigger than a memory page and 1487 // LowLevelAllocator calls MmapOrDie for the internal buffer, it should round 1488 // the size up to the page size, so that subsequent calls to the allocator 1489 // can use the remaining space in the last allocated page. 1490 static LowLevelAllocator allocator; 1491 char *ptr1 = (char *)allocator.Allocate(GetPageSizeCached() + 16); 1492 char *ptr2 = (char *)allocator.Allocate(16); 1493 EXPECT_EQ(ptr2, ptr1 + GetPageSizeCached() + 16); 1494 } 1495 1496 #endif // #if !SANITIZER_DEBUG 1497