xref: /llvm-project/compiler-rt/lib/fuzzer/FuzzerMutate.cpp (revision d153d46884efd6fd4feea6f5b268efa7c6c5573a)
1 //===- FuzzerMutate.cpp - Mutate a test input -----------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 // Mutate a test input.
10 //===----------------------------------------------------------------------===//
11 
12 #include "FuzzerMutate.h"
13 #include "FuzzerCorpus.h"
14 #include "FuzzerDefs.h"
15 #include "FuzzerExtFunctions.h"
16 #include "FuzzerIO.h"
17 #include "FuzzerOptions.h"
18 
19 namespace fuzzer {
20 
21 const size_t Dictionary::kMaxDictSize;
22 
23 static void PrintASCII(const Word &W, const char *PrintAfter) {
24   PrintASCII(W.data(), W.size(), PrintAfter);
25 }
26 
27 MutationDispatcher::MutationDispatcher(Random &Rand,
28                                        const FuzzingOptions &Options)
29     : Rand(Rand), Options(Options) {
30   DefaultMutators.insert(
31       DefaultMutators.begin(),
32       {
33           {&MutationDispatcher::Mutate_EraseBytes, "EraseBytes"},
34           {&MutationDispatcher::Mutate_InsertByte, "InsertByte"},
35           {&MutationDispatcher::Mutate_InsertRepeatedBytes,
36            "InsertRepeatedBytes"},
37           {&MutationDispatcher::Mutate_ChangeByte, "ChangeByte"},
38           {&MutationDispatcher::Mutate_ChangeBit, "ChangeBit"},
39           {&MutationDispatcher::Mutate_ShuffleBytes, "ShuffleBytes"},
40           {&MutationDispatcher::Mutate_ChangeASCIIInteger, "ChangeASCIIInt"},
41           {&MutationDispatcher::Mutate_ChangeBinaryInteger, "ChangeBinInt"},
42           {&MutationDispatcher::Mutate_CopyPart, "CopyPart"},
43           {&MutationDispatcher::Mutate_CrossOver, "CrossOver"},
44           {&MutationDispatcher::Mutate_AddWordFromManualDictionary,
45            "ManualDict"},
46           {&MutationDispatcher::Mutate_AddWordFromPersistentAutoDictionary,
47            "PersAutoDict"},
48       });
49   if(Options.UseCmp)
50     DefaultMutators.push_back(
51         {&MutationDispatcher::Mutate_AddWordFromTORC, "CMP"});
52 
53   if (EF->LLVMFuzzerCustomMutator)
54     Mutators.push_back({&MutationDispatcher::Mutate_Custom, "Custom"});
55   else
56     Mutators = DefaultMutators;
57 
58   if (EF->LLVMFuzzerCustomCrossOver)
59     Mutators.push_back(
60         {&MutationDispatcher::Mutate_CustomCrossOver, "CustomCrossOver"});
61 
62   // Initialize mutation statistic counters.
63   TotalMutations.resize(Mutators.size(), 0);
64   UsefulMutations.resize(Mutators.size(), 0);
65 }
66 
67 static char RandCh(Random &Rand) {
68   if (Rand.RandBool()) return Rand(256);
69   const char Special[] = "!*'();:@&=+$,/?%#[]012Az-`~.\xff\x00";
70   return Special[Rand(sizeof(Special) - 1)];
71 }
72 
73 size_t MutationDispatcher::Mutate_Custom(uint8_t *Data, size_t Size,
74                                          size_t MaxSize) {
75   return EF->LLVMFuzzerCustomMutator(Data, Size, MaxSize, Rand.Rand());
76 }
77 
78 size_t MutationDispatcher::Mutate_CustomCrossOver(uint8_t *Data, size_t Size,
79                                                   size_t MaxSize) {
80   if (!Corpus || Corpus->size() < 2 || Size == 0)
81     return 0;
82   size_t Idx = Rand(Corpus->size());
83   const Unit &Other = (*Corpus)[Idx];
84   if (Other.empty())
85     return 0;
86   CustomCrossOverInPlaceHere.resize(MaxSize);
87   auto &U = CustomCrossOverInPlaceHere;
88   size_t NewSize = EF->LLVMFuzzerCustomCrossOver(
89       Data, Size, Other.data(), Other.size(), U.data(), U.size(), Rand.Rand());
90   if (!NewSize)
91     return 0;
92   assert(NewSize <= MaxSize && "CustomCrossOver returned overisized unit");
93   memcpy(Data, U.data(), NewSize);
94   return NewSize;
95 }
96 
97 size_t MutationDispatcher::Mutate_ShuffleBytes(uint8_t *Data, size_t Size,
98                                                size_t MaxSize) {
99   if (Size > MaxSize || Size == 0) return 0;
100   size_t ShuffleAmount =
101       Rand(std::min(Size, (size_t)8)) + 1; // [1,8] and <= Size.
102   size_t ShuffleStart = Rand(Size - ShuffleAmount);
103   assert(ShuffleStart + ShuffleAmount <= Size);
104   std::shuffle(Data + ShuffleStart, Data + ShuffleStart + ShuffleAmount, Rand);
105   return Size;
106 }
107 
108 size_t MutationDispatcher::Mutate_EraseBytes(uint8_t *Data, size_t Size,
109                                              size_t MaxSize) {
110   if (Size <= 1) return 0;
111   size_t N = Rand(Size / 2) + 1;
112   assert(N < Size);
113   size_t Idx = Rand(Size - N + 1);
114   // Erase Data[Idx:Idx+N].
115   memmove(Data + Idx, Data + Idx + N, Size - Idx - N);
116   // Printf("Erase: %zd %zd => %zd; Idx %zd\n", N, Size, Size - N, Idx);
117   return Size - N;
118 }
119 
120 size_t MutationDispatcher::Mutate_InsertByte(uint8_t *Data, size_t Size,
121                                              size_t MaxSize) {
122   if (Size >= MaxSize) return 0;
123   size_t Idx = Rand(Size + 1);
124   // Insert new value at Data[Idx].
125   memmove(Data + Idx + 1, Data + Idx, Size - Idx);
126   Data[Idx] = RandCh(Rand);
127   return Size + 1;
128 }
129 
130 size_t MutationDispatcher::Mutate_InsertRepeatedBytes(uint8_t *Data,
131                                                       size_t Size,
132                                                       size_t MaxSize) {
133   const size_t kMinBytesToInsert = 3;
134   if (Size + kMinBytesToInsert >= MaxSize) return 0;
135   size_t MaxBytesToInsert = std::min(MaxSize - Size, (size_t)128);
136   size_t N = Rand(MaxBytesToInsert - kMinBytesToInsert + 1) + kMinBytesToInsert;
137   assert(Size + N <= MaxSize && N);
138   size_t Idx = Rand(Size + 1);
139   // Insert new values at Data[Idx].
140   memmove(Data + Idx + N, Data + Idx, Size - Idx);
141   // Give preference to 0x00 and 0xff.
142   uint8_t Byte = Rand.RandBool() ? Rand(256) : (Rand.RandBool() ? 0 : 255);
143   for (size_t i = 0; i < N; i++)
144     Data[Idx + i] = Byte;
145   return Size + N;
146 }
147 
148 size_t MutationDispatcher::Mutate_ChangeByte(uint8_t *Data, size_t Size,
149                                              size_t MaxSize) {
150   if (Size > MaxSize) return 0;
151   size_t Idx = Rand(Size);
152   Data[Idx] = RandCh(Rand);
153   return Size;
154 }
155 
156 size_t MutationDispatcher::Mutate_ChangeBit(uint8_t *Data, size_t Size,
157                                             size_t MaxSize) {
158   if (Size > MaxSize) return 0;
159   size_t Idx = Rand(Size);
160   Data[Idx] ^= 1 << Rand(8);
161   return Size;
162 }
163 
164 size_t MutationDispatcher::Mutate_AddWordFromManualDictionary(uint8_t *Data,
165                                                               size_t Size,
166                                                               size_t MaxSize) {
167   return AddWordFromDictionary(ManualDictionary, Data, Size, MaxSize);
168 }
169 
170 size_t MutationDispatcher::ApplyDictionaryEntry(uint8_t *Data, size_t Size,
171                                                 size_t MaxSize,
172                                                 DictionaryEntry &DE) {
173   const Word &W = DE.GetW();
174   bool UsePositionHint = DE.HasPositionHint() &&
175                          DE.GetPositionHint() + W.size() < Size &&
176                          Rand.RandBool();
177   if (Rand.RandBool()) {  // Insert W.
178     if (Size + W.size() > MaxSize) return 0;
179     size_t Idx = UsePositionHint ? DE.GetPositionHint() : Rand(Size + 1);
180     memmove(Data + Idx + W.size(), Data + Idx, Size - Idx);
181     memcpy(Data + Idx, W.data(), W.size());
182     Size += W.size();
183   } else {  // Overwrite some bytes with W.
184     if (W.size() > Size) return 0;
185     size_t Idx = UsePositionHint ? DE.GetPositionHint() : Rand(Size - W.size());
186     memcpy(Data + Idx, W.data(), W.size());
187   }
188   return Size;
189 }
190 
191 // Somewhere in the past we have observed a comparison instructions
192 // with arguments Arg1 Arg2. This function tries to guess a dictionary
193 // entry that will satisfy that comparison.
194 // It first tries to find one of the arguments (possibly swapped) in the
195 // input and if it succeeds it creates a DE with a position hint.
196 // Otherwise it creates a DE with one of the arguments w/o a position hint.
197 DictionaryEntry MutationDispatcher::MakeDictionaryEntryFromCMP(
198     const void *Arg1, const void *Arg2,
199     const void *Arg1Mutation, const void *Arg2Mutation,
200     size_t ArgSize, const uint8_t *Data,
201     size_t Size) {
202   ScopedDoingMyOwnMemOrStr scoped_doing_my_own_mem_os_str;
203   bool HandleFirst = Rand.RandBool();
204   const void *ExistingBytes, *DesiredBytes;
205   Word W;
206   const uint8_t *End = Data + Size;
207   for (int Arg = 0; Arg < 2; Arg++) {
208     ExistingBytes = HandleFirst ? Arg1 : Arg2;
209     DesiredBytes = HandleFirst ? Arg2Mutation : Arg1Mutation;
210     HandleFirst = !HandleFirst;
211     W.Set(reinterpret_cast<const uint8_t*>(DesiredBytes), ArgSize);
212     const size_t kMaxNumPositions = 8;
213     size_t Positions[kMaxNumPositions];
214     size_t NumPositions = 0;
215     for (const uint8_t *Cur = Data;
216          Cur < End && NumPositions < kMaxNumPositions; Cur++) {
217       Cur =
218           (const uint8_t *)SearchMemory(Cur, End - Cur, ExistingBytes, ArgSize);
219       if (!Cur) break;
220       Positions[NumPositions++] = Cur - Data;
221     }
222     if (!NumPositions) continue;
223     return DictionaryEntry(W, Positions[Rand(NumPositions)]);
224   }
225   DictionaryEntry DE(W);
226   return DE;
227 }
228 
229 
230 template <class T>
231 DictionaryEntry MutationDispatcher::MakeDictionaryEntryFromCMP(
232     T Arg1, T Arg2, const uint8_t *Data, size_t Size) {
233   if (Rand.RandBool()) Arg1 = Bswap(Arg1);
234   if (Rand.RandBool()) Arg2 = Bswap(Arg2);
235   T Arg1Mutation = Arg1 + Rand(-1, 1);
236   T Arg2Mutation = Arg2 + Rand(-1, 1);
237   return MakeDictionaryEntryFromCMP(&Arg1, &Arg2, &Arg1Mutation, &Arg2Mutation,
238                                     sizeof(Arg1), Data, Size);
239 }
240 
241 DictionaryEntry MutationDispatcher::MakeDictionaryEntryFromCMP(
242     const Word &Arg1, const Word &Arg2, const uint8_t *Data, size_t Size) {
243   return MakeDictionaryEntryFromCMP(Arg1.data(), Arg2.data(), Arg1.data(),
244                                     Arg2.data(), Arg1.size(), Data, Size);
245 }
246 
247 size_t MutationDispatcher::Mutate_AddWordFromTORC(
248     uint8_t *Data, size_t Size, size_t MaxSize) {
249   Word W;
250   DictionaryEntry DE;
251   switch (Rand(4)) {
252   case 0: {
253     auto X = TPC.TORC8.Get(Rand.Rand());
254     DE = MakeDictionaryEntryFromCMP(X.A, X.B, Data, Size);
255   } break;
256   case 1: {
257     auto X = TPC.TORC4.Get(Rand.Rand());
258     if ((X.A >> 16) == 0 && (X.B >> 16) == 0 && Rand.RandBool())
259       DE = MakeDictionaryEntryFromCMP((uint16_t)X.A, (uint16_t)X.B, Data, Size);
260     else
261       DE = MakeDictionaryEntryFromCMP(X.A, X.B, Data, Size);
262   } break;
263   case 2: {
264     auto X = TPC.TORCW.Get(Rand.Rand());
265     DE = MakeDictionaryEntryFromCMP(X.A, X.B, Data, Size);
266   } break;
267   case 3: if (Options.UseMemmem) {
268       auto X = TPC.MMT.Get(Rand.Rand());
269       DE = DictionaryEntry(X);
270     } break;
271   default:
272     assert(0);
273   }
274   if (!DE.GetW().size()) return 0;
275   Size = ApplyDictionaryEntry(Data, Size, MaxSize, DE);
276   if (!Size) return 0;
277   DictionaryEntry &DERef =
278       CmpDictionaryEntriesDeque[CmpDictionaryEntriesDequeIdx++ %
279                                 kCmpDictionaryEntriesDequeSize];
280   DERef = DE;
281   CurrentDictionaryEntrySequence.push_back(&DERef);
282   return Size;
283 }
284 
285 size_t MutationDispatcher::Mutate_AddWordFromPersistentAutoDictionary(
286     uint8_t *Data, size_t Size, size_t MaxSize) {
287   return AddWordFromDictionary(PersistentAutoDictionary, Data, Size, MaxSize);
288 }
289 
290 size_t MutationDispatcher::AddWordFromDictionary(Dictionary &D, uint8_t *Data,
291                                                  size_t Size, size_t MaxSize) {
292   if (Size > MaxSize) return 0;
293   if (D.empty()) return 0;
294   DictionaryEntry &DE = D[Rand(D.size())];
295   Size = ApplyDictionaryEntry(Data, Size, MaxSize, DE);
296   if (!Size) return 0;
297   DE.IncUseCount();
298   CurrentDictionaryEntrySequence.push_back(&DE);
299   return Size;
300 }
301 
302 // Overwrites part of To[0,ToSize) with a part of From[0,FromSize).
303 // Returns ToSize.
304 size_t MutationDispatcher::CopyPartOf(const uint8_t *From, size_t FromSize,
305                                       uint8_t *To, size_t ToSize) {
306   // Copy From[FromBeg, FromBeg + CopySize) into To[ToBeg, ToBeg + CopySize).
307   size_t ToBeg = Rand(ToSize);
308   size_t CopySize = Rand(ToSize - ToBeg) + 1;
309   assert(ToBeg + CopySize <= ToSize);
310   CopySize = std::min(CopySize, FromSize);
311   size_t FromBeg = Rand(FromSize - CopySize + 1);
312   assert(FromBeg + CopySize <= FromSize);
313   memmove(To + ToBeg, From + FromBeg, CopySize);
314   return ToSize;
315 }
316 
317 // Inserts part of From[0,ToSize) into To.
318 // Returns new size of To on success or 0 on failure.
319 size_t MutationDispatcher::InsertPartOf(const uint8_t *From, size_t FromSize,
320                                         uint8_t *To, size_t ToSize,
321                                         size_t MaxToSize) {
322   if (ToSize >= MaxToSize) return 0;
323   size_t AvailableSpace = MaxToSize - ToSize;
324   size_t MaxCopySize = std::min(AvailableSpace, FromSize);
325   size_t CopySize = Rand(MaxCopySize) + 1;
326   size_t FromBeg = Rand(FromSize - CopySize + 1);
327   assert(FromBeg + CopySize <= FromSize);
328   size_t ToInsertPos = Rand(ToSize + 1);
329   assert(ToInsertPos + CopySize <= MaxToSize);
330   size_t TailSize = ToSize - ToInsertPos;
331   if (To == From) {
332     MutateInPlaceHere.resize(MaxToSize);
333     memcpy(MutateInPlaceHere.data(), From + FromBeg, CopySize);
334     memmove(To + ToInsertPos + CopySize, To + ToInsertPos, TailSize);
335     memmove(To + ToInsertPos, MutateInPlaceHere.data(), CopySize);
336   } else {
337     memmove(To + ToInsertPos + CopySize, To + ToInsertPos, TailSize);
338     memmove(To + ToInsertPos, From + FromBeg, CopySize);
339   }
340   return ToSize + CopySize;
341 }
342 
343 size_t MutationDispatcher::Mutate_CopyPart(uint8_t *Data, size_t Size,
344                                            size_t MaxSize) {
345   if (Size > MaxSize || Size == 0) return 0;
346   // If Size == MaxSize, `InsertPartOf(...)` will
347   // fail so there's no point using it in this case.
348   if (Size == MaxSize || Rand.RandBool())
349     return CopyPartOf(Data, Size, Data, Size);
350   else
351     return InsertPartOf(Data, Size, Data, Size, MaxSize);
352 }
353 
354 size_t MutationDispatcher::Mutate_ChangeASCIIInteger(uint8_t *Data, size_t Size,
355                                                      size_t MaxSize) {
356   if (Size > MaxSize) return 0;
357   size_t B = Rand(Size);
358   while (B < Size && !isdigit(Data[B])) B++;
359   if (B == Size) return 0;
360   size_t E = B;
361   while (E < Size && isdigit(Data[E])) E++;
362   assert(B < E);
363   // now we have digits in [B, E).
364   // strtol and friends don't accept non-zero-teminated data, parse it manually.
365   uint64_t Val = Data[B] - '0';
366   for (size_t i = B + 1; i < E; i++)
367     Val = Val * 10 + Data[i] - '0';
368 
369   // Mutate the integer value.
370   switch(Rand(5)) {
371     case 0: Val++; break;
372     case 1: Val--; break;
373     case 2: Val /= 2; break;
374     case 3: Val *= 2; break;
375     case 4: Val = Rand(Val * Val); break;
376     default: assert(0);
377   }
378   // Just replace the bytes with the new ones, don't bother moving bytes.
379   for (size_t i = B; i < E; i++) {
380     size_t Idx = E + B - i - 1;
381     assert(Idx >= B && Idx < E);
382     Data[Idx] = (Val % 10) + '0';
383     Val /= 10;
384   }
385   return Size;
386 }
387 
388 template<class T>
389 size_t ChangeBinaryInteger(uint8_t *Data, size_t Size, Random &Rand) {
390   if (Size < sizeof(T)) return 0;
391   size_t Off = Rand(Size - sizeof(T) + 1);
392   assert(Off + sizeof(T) <= Size);
393   T Val;
394   if (Off < 64 && !Rand(4)) {
395     Val = Size;
396     if (Rand.RandBool())
397       Val = Bswap(Val);
398   } else {
399     memcpy(&Val, Data + Off, sizeof(Val));
400     T Add = Rand(21);
401     Add -= 10;
402     if (Rand.RandBool())
403       Val = Bswap(T(Bswap(Val) + Add)); // Add assuming different endiannes.
404     else
405       Val = Val + Add;               // Add assuming current endiannes.
406     if (Add == 0 || Rand.RandBool()) // Maybe negate.
407       Val = -Val;
408   }
409   memcpy(Data + Off, &Val, sizeof(Val));
410   return Size;
411 }
412 
413 size_t MutationDispatcher::Mutate_ChangeBinaryInteger(uint8_t *Data,
414                                                       size_t Size,
415                                                       size_t MaxSize) {
416   if (Size > MaxSize) return 0;
417   switch (Rand(4)) {
418     case 3: return ChangeBinaryInteger<uint64_t>(Data, Size, Rand);
419     case 2: return ChangeBinaryInteger<uint32_t>(Data, Size, Rand);
420     case 1: return ChangeBinaryInteger<uint16_t>(Data, Size, Rand);
421     case 0: return ChangeBinaryInteger<uint8_t>(Data, Size, Rand);
422     default: assert(0);
423   }
424   return 0;
425 }
426 
427 size_t MutationDispatcher::Mutate_CrossOver(uint8_t *Data, size_t Size,
428                                             size_t MaxSize) {
429   if (Size > MaxSize) return 0;
430   if (!Corpus || Corpus->size() < 2 || Size == 0) return 0;
431   size_t Idx = Rand(Corpus->size());
432   const Unit &O = (*Corpus)[Idx];
433   if (O.empty()) return 0;
434   MutateInPlaceHere.resize(MaxSize);
435   auto &U = MutateInPlaceHere;
436   size_t NewSize = 0;
437   switch(Rand(3)) {
438   case 0:
439     NewSize = CrossOver(Data, Size, O.data(), O.size(), U.data(), U.size());
440     break;
441   case 1:
442     NewSize = InsertPartOf(O.data(), O.size(), U.data(), U.size(), MaxSize);
443     if (!NewSize)
444       NewSize = CopyPartOf(O.data(), O.size(), U.data(), U.size());
445     break;
446   case 2:
447     NewSize = CopyPartOf(O.data(), O.size(), U.data(), U.size());
448     break;
449   default: assert(0);
450   }
451   assert(NewSize > 0 && "CrossOver returned empty unit");
452   assert(NewSize <= MaxSize && "CrossOver returned overisized unit");
453   memcpy(Data, U.data(), NewSize);
454   return NewSize;
455 }
456 
457 void MutationDispatcher::StartMutationSequence() {
458   CurrentMutatorIdxSequence.clear();
459   CurrentDictionaryEntrySequence.clear();
460 }
461 
462 // Copy successful dictionary entries to PersistentAutoDictionary.
463 void MutationDispatcher::RecordSuccessfulMutationSequence() {
464   for (auto DE : CurrentDictionaryEntrySequence) {
465     // PersistentAutoDictionary.AddWithSuccessCountOne(DE);
466     DE->IncSuccessCount();
467     assert(DE->GetW().size());
468     // Linear search is fine here as this happens seldom.
469     if (!PersistentAutoDictionary.ContainsWord(DE->GetW()))
470       PersistentAutoDictionary.push_back({DE->GetW(), 1});
471   }
472   RecordUsefulMutations();
473 }
474 
475 void MutationDispatcher::PrintRecommendedDictionary() {
476   Vector<DictionaryEntry> V;
477   for (auto &DE : PersistentAutoDictionary)
478     if (!ManualDictionary.ContainsWord(DE.GetW()))
479       V.push_back(DE);
480   if (V.empty()) return;
481   Printf("###### Recommended dictionary. ######\n");
482   for (auto &DE: V) {
483     assert(DE.GetW().size());
484     Printf("\"");
485     PrintASCII(DE.GetW(), "\"");
486     Printf(" # Uses: %zd\n", DE.GetUseCount());
487   }
488   Printf("###### End of recommended dictionary. ######\n");
489 }
490 
491 void MutationDispatcher::PrintMutationSequence() {
492   Printf("MS: %zd ", CurrentMutatorIdxSequence.size());
493   for (auto M : CurrentMutatorIdxSequence)
494     Printf("%s-", Mutators[M].Name);
495   if (!CurrentDictionaryEntrySequence.empty()) {
496     Printf(" DE: ");
497     for (auto DE : CurrentDictionaryEntrySequence) {
498       Printf("\"");
499       PrintASCII(DE->GetW(), "\"-");
500     }
501   }
502 }
503 
504 size_t MutationDispatcher::Mutate(uint8_t *Data, size_t Size, size_t MaxSize) {
505   return MutateImpl(Data, Size, MaxSize, Mutators);
506 }
507 
508 size_t MutationDispatcher::DefaultMutate(uint8_t *Data, size_t Size,
509                                          size_t MaxSize) {
510   return MutateImpl(Data, Size, MaxSize, DefaultMutators);
511 }
512 
513 // Mutates Data in place, returns new size.
514 size_t MutationDispatcher::MutateImpl(uint8_t *Data, size_t Size,
515                                       size_t MaxSize,
516                                       Vector<Mutator> &Mutators) {
517   assert(MaxSize > 0);
518   // Some mutations may fail (e.g. can't insert more bytes if Size == MaxSize),
519   // in which case they will return 0.
520   // Try several times before returning un-mutated data.
521   for (int Iter = 0; Iter < 100; Iter++) {
522     size_t MutatorIdx = Rand(Mutators.size());
523     auto M = Mutators[MutatorIdx];
524     size_t NewSize = (this->*(M.Fn))(Data, Size, MaxSize);
525     if (NewSize && NewSize <= MaxSize) {
526       if (Options.OnlyASCII)
527         ToASCII(Data, NewSize);
528       CurrentMutatorIdxSequence.push_back(MutatorIdx);
529       TotalMutations[MutatorIdx]++;
530       return NewSize;
531     }
532   }
533   *Data = ' ';
534   return 1;   // Fallback, should not happen frequently.
535 }
536 
537 void MutationDispatcher::AddWordToManualDictionary(const Word &W) {
538   ManualDictionary.push_back(
539       {W, std::numeric_limits<size_t>::max()});
540 }
541 
542 void MutationDispatcher::RecordUsefulMutations() {
543   for (const size_t M : CurrentMutatorIdxSequence)
544     UsefulMutations[M]++;
545 }
546 
547 void MutationDispatcher::PrintMutationStats() {
548   Printf("\nstat::mutation_usefulness:      ");
549   for (size_t i = 0; i < Mutators.size(); i++) {
550     double UsefulPercentage =
551         TotalMutations[i]
552             ? (100.0 * UsefulMutations[i]) / TotalMutations[i]
553             : 0;
554     Printf("%.3f", UsefulPercentage);
555     if (i < Mutators.size() - 1)
556       Printf(",");
557   }
558   Printf("\n");
559 }
560 
561 }  // namespace fuzzer
562