1 //===-- lib/fp_lib.h - Floating-point utilities -------------------*- C -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is dual licensed under the MIT and the University of Illinois Open 6 // Source Licenses. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file is a configuration header for soft-float routines in compiler-rt. 11 // This file does not provide any part of the compiler-rt interface, but defines 12 // many useful constants and utility routines that are used in the 13 // implementation of the soft-float routines in compiler-rt. 14 // 15 // Assumes that float, double and long double correspond to the IEEE-754 16 // binary32, binary64 and binary 128 types, respectively, and that integer 17 // endianness matches floating point endianness on the target platform. 18 // 19 //===----------------------------------------------------------------------===// 20 21 #ifndef FP_LIB_HEADER 22 #define FP_LIB_HEADER 23 24 #include <stdint.h> 25 #include <stdbool.h> 26 #include <limits.h> 27 #include "int_lib.h" 28 #include "int_math.h" 29 30 // x86_64 FreeBSD prior v9.3 define fixed-width types incorrectly in 31 // 32-bit mode. 32 #if defined(__FreeBSD__) && defined(__i386__) 33 # include <sys/param.h> 34 # if __FreeBSD_version < 903000 // v9.3 35 # define uint64_t unsigned long long 36 # define int64_t long long 37 # undef UINT64_C 38 # define UINT64_C(c) (c ## ULL) 39 # endif 40 #endif 41 42 #if defined SINGLE_PRECISION 43 44 typedef uint32_t rep_t; 45 typedef int32_t srep_t; 46 typedef float fp_t; 47 #define REP_C UINT32_C 48 #define significandBits 23 49 50 static __inline int rep_clz(rep_t a) { 51 return __builtin_clz(a); 52 } 53 54 // 32x32 --> 64 bit multiply 55 static __inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) { 56 const uint64_t product = (uint64_t)a*b; 57 *hi = product >> 32; 58 *lo = product; 59 } 60 COMPILER_RT_ABI fp_t __addsf3(fp_t a, fp_t b); 61 62 #elif defined DOUBLE_PRECISION 63 64 typedef uint64_t rep_t; 65 typedef int64_t srep_t; 66 typedef double fp_t; 67 #define REP_C UINT64_C 68 #define significandBits 52 69 70 static __inline int rep_clz(rep_t a) { 71 #if defined __LP64__ 72 return __builtin_clzl(a); 73 #else 74 if (a & REP_C(0xffffffff00000000)) 75 return __builtin_clz(a >> 32); 76 else 77 return 32 + __builtin_clz(a & REP_C(0xffffffff)); 78 #endif 79 } 80 81 #define loWord(a) (a & 0xffffffffU) 82 #define hiWord(a) (a >> 32) 83 84 // 64x64 -> 128 wide multiply for platforms that don't have such an operation; 85 // many 64-bit platforms have this operation, but they tend to have hardware 86 // floating-point, so we don't bother with a special case for them here. 87 static __inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) { 88 // Each of the component 32x32 -> 64 products 89 const uint64_t plolo = loWord(a) * loWord(b); 90 const uint64_t plohi = loWord(a) * hiWord(b); 91 const uint64_t philo = hiWord(a) * loWord(b); 92 const uint64_t phihi = hiWord(a) * hiWord(b); 93 // Sum terms that contribute to lo in a way that allows us to get the carry 94 const uint64_t r0 = loWord(plolo); 95 const uint64_t r1 = hiWord(plolo) + loWord(plohi) + loWord(philo); 96 *lo = r0 + (r1 << 32); 97 // Sum terms contributing to hi with the carry from lo 98 *hi = hiWord(plohi) + hiWord(philo) + hiWord(r1) + phihi; 99 } 100 #undef loWord 101 #undef hiWord 102 103 COMPILER_RT_ABI fp_t __adddf3(fp_t a, fp_t b); 104 105 #elif defined QUAD_PRECISION 106 #if __LDBL_MANT_DIG__ == 113 107 #define CRT_LDBL_128BIT 108 typedef __uint128_t rep_t; 109 typedef __int128_t srep_t; 110 typedef long double fp_t; 111 #define REP_C (__uint128_t) 112 // Note: Since there is no explicit way to tell compiler the constant is a 113 // 128-bit integer, we let the constant be casted to 128-bit integer 114 #define significandBits 112 115 116 static __inline int rep_clz(rep_t a) { 117 const union 118 { 119 __uint128_t ll; 120 #if _YUGA_BIG_ENDIAN 121 struct { uint64_t high, low; } s; 122 #else 123 struct { uint64_t low, high; } s; 124 #endif 125 } uu = { .ll = a }; 126 127 uint64_t word; 128 uint64_t add; 129 130 if (uu.s.high){ 131 word = uu.s.high; 132 add = 0; 133 } 134 else{ 135 word = uu.s.low; 136 add = 64; 137 } 138 return __builtin_clzll(word) + add; 139 } 140 141 #define Word_LoMask UINT64_C(0x00000000ffffffff) 142 #define Word_HiMask UINT64_C(0xffffffff00000000) 143 #define Word_FullMask UINT64_C(0xffffffffffffffff) 144 #define Word_1(a) (uint64_t)((a >> 96) & Word_LoMask) 145 #define Word_2(a) (uint64_t)((a >> 64) & Word_LoMask) 146 #define Word_3(a) (uint64_t)((a >> 32) & Word_LoMask) 147 #define Word_4(a) (uint64_t)(a & Word_LoMask) 148 149 // 128x128 -> 256 wide multiply for platforms that don't have such an operation; 150 // many 64-bit platforms have this operation, but they tend to have hardware 151 // floating-point, so we don't bother with a special case for them here. 152 static __inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) { 153 154 const uint64_t product11 = Word_1(a) * Word_1(b); 155 const uint64_t product12 = Word_1(a) * Word_2(b); 156 const uint64_t product13 = Word_1(a) * Word_3(b); 157 const uint64_t product14 = Word_1(a) * Word_4(b); 158 const uint64_t product21 = Word_2(a) * Word_1(b); 159 const uint64_t product22 = Word_2(a) * Word_2(b); 160 const uint64_t product23 = Word_2(a) * Word_3(b); 161 const uint64_t product24 = Word_2(a) * Word_4(b); 162 const uint64_t product31 = Word_3(a) * Word_1(b); 163 const uint64_t product32 = Word_3(a) * Word_2(b); 164 const uint64_t product33 = Word_3(a) * Word_3(b); 165 const uint64_t product34 = Word_3(a) * Word_4(b); 166 const uint64_t product41 = Word_4(a) * Word_1(b); 167 const uint64_t product42 = Word_4(a) * Word_2(b); 168 const uint64_t product43 = Word_4(a) * Word_3(b); 169 const uint64_t product44 = Word_4(a) * Word_4(b); 170 171 const __uint128_t sum0 = (__uint128_t)product44; 172 const __uint128_t sum1 = (__uint128_t)product34 + 173 (__uint128_t)product43; 174 const __uint128_t sum2 = (__uint128_t)product24 + 175 (__uint128_t)product33 + 176 (__uint128_t)product42; 177 const __uint128_t sum3 = (__uint128_t)product14 + 178 (__uint128_t)product23 + 179 (__uint128_t)product32 + 180 (__uint128_t)product41; 181 const __uint128_t sum4 = (__uint128_t)product13 + 182 (__uint128_t)product22 + 183 (__uint128_t)product31; 184 const __uint128_t sum5 = (__uint128_t)product12 + 185 (__uint128_t)product21; 186 const __uint128_t sum6 = (__uint128_t)product11; 187 188 const __uint128_t r0 = (sum0 & Word_FullMask) + 189 ((sum1 & Word_LoMask) << 32); 190 const __uint128_t r1 = (sum0 >> 64) + 191 ((sum1 >> 32) & Word_FullMask) + 192 (sum2 & Word_FullMask) + 193 ((sum3 << 32) & Word_HiMask); 194 195 *lo = r0 + (r1 << 64); 196 *hi = (r1 >> 64) + 197 (sum1 >> 96) + 198 (sum2 >> 64) + 199 (sum3 >> 32) + 200 sum4 + 201 (sum5 << 32) + 202 (sum6 << 64); 203 } 204 #undef Word_1 205 #undef Word_2 206 #undef Word_3 207 #undef Word_4 208 #undef Word_HiMask 209 #undef Word_LoMask 210 #undef Word_FullMask 211 #endif // __LDBL_MANT_DIG__ == 113 212 #else 213 #error SINGLE_PRECISION, DOUBLE_PRECISION or QUAD_PRECISION must be defined. 214 #endif 215 216 #if defined(SINGLE_PRECISION) || defined(DOUBLE_PRECISION) || defined(CRT_LDBL_128BIT) 217 #define typeWidth (sizeof(rep_t)*CHAR_BIT) 218 #define exponentBits (typeWidth - significandBits - 1) 219 #define maxExponent ((1 << exponentBits) - 1) 220 #define exponentBias (maxExponent >> 1) 221 222 #define implicitBit (REP_C(1) << significandBits) 223 #define significandMask (implicitBit - 1U) 224 #define signBit (REP_C(1) << (significandBits + exponentBits)) 225 #define absMask (signBit - 1U) 226 #define exponentMask (absMask ^ significandMask) 227 #define oneRep ((rep_t)exponentBias << significandBits) 228 #define infRep exponentMask 229 #define quietBit (implicitBit >> 1) 230 #define qnanRep (exponentMask | quietBit) 231 232 static __inline rep_t toRep(fp_t x) { 233 const union { fp_t f; rep_t i; } rep = {.f = x}; 234 return rep.i; 235 } 236 237 static __inline fp_t fromRep(rep_t x) { 238 const union { fp_t f; rep_t i; } rep = {.i = x}; 239 return rep.f; 240 } 241 242 static __inline int normalize(rep_t *significand) { 243 const int shift = rep_clz(*significand) - rep_clz(implicitBit); 244 *significand <<= shift; 245 return 1 - shift; 246 } 247 248 static __inline void wideLeftShift(rep_t *hi, rep_t *lo, int count) { 249 *hi = *hi << count | *lo >> (typeWidth - count); 250 *lo = *lo << count; 251 } 252 253 static __inline void wideRightShiftWithSticky(rep_t *hi, rep_t *lo, unsigned int count) { 254 if (count < typeWidth) { 255 const bool sticky = *lo << (typeWidth - count); 256 *lo = *hi << (typeWidth - count) | *lo >> count | sticky; 257 *hi = *hi >> count; 258 } 259 else if (count < 2*typeWidth) { 260 const bool sticky = *hi << (2*typeWidth - count) | *lo; 261 *lo = *hi >> (count - typeWidth) | sticky; 262 *hi = 0; 263 } else { 264 const bool sticky = *hi | *lo; 265 *lo = sticky; 266 *hi = 0; 267 } 268 } 269 270 // Implements logb methods (logb, logbf, logbl) for IEEE-754. This avoids 271 // pulling in a libm dependency from compiler-rt, but is not meant to replace 272 // it (i.e. code calling logb() should get the one from libm, not this), hence 273 // the __compiler_rt prefix. 274 static __inline fp_t __compiler_rt_logbX(fp_t x) { 275 rep_t rep = toRep(x); 276 int exp = (rep & exponentMask) >> significandBits; 277 278 // Abnormal cases: 279 // 1) +/- inf returns +inf; NaN returns NaN 280 // 2) 0.0 returns -inf 281 if (exp == maxExponent) { 282 if (((rep & signBit) == 0) || (x != x)) { 283 return x; // NaN or +inf: return x 284 } else { 285 return -x; // -inf: return -x 286 } 287 } else if (x == 0.0) { 288 // 0.0: return -inf 289 return fromRep(infRep | signBit); 290 } 291 292 if (exp != 0) { 293 // Normal number 294 return exp - exponentBias; // Unbias exponent 295 } else { 296 // Subnormal number; normalize and repeat 297 rep &= absMask; 298 const int shift = 1 - normalize(&rep); 299 exp = (rep & exponentMask) >> significandBits; 300 return exp - exponentBias - shift; // Unbias exponent 301 } 302 } 303 #endif 304 305 #if defined(SINGLE_PRECISION) 306 static __inline fp_t __compiler_rt_logbf(fp_t x) { 307 return __compiler_rt_logbX(x); 308 } 309 #elif defined(DOUBLE_PRECISION) 310 static __inline fp_t __compiler_rt_logb(fp_t x) { 311 return __compiler_rt_logbX(x); 312 } 313 #elif defined(QUAD_PRECISION) 314 #if defined(CRT_LDBL_128BIT) 315 static __inline fp_t __compiler_rt_logbl(fp_t x) { 316 return __compiler_rt_logbX(x); 317 } 318 #else 319 // The generic implementation only works for ieee754 floating point. For other 320 // floating point types, continue to rely on the libm implementation for now. 321 static __inline long double __compiler_rt_logbl(long double x) { 322 return crt_logbl(x); 323 } 324 #endif 325 #endif 326 327 #endif // FP_LIB_HEADER 328