1 //===- unittests/Interpreter/InterpreterTest.cpp --- Interpreter tests ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Unit tests for Clang's Interpreter library. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/Interpreter/Interpreter.h" 14 15 #include "clang/AST/Decl.h" 16 #include "clang/AST/DeclGroup.h" 17 #include "clang/AST/Mangle.h" 18 #include "clang/Frontend/CompilerInstance.h" 19 #include "clang/Frontend/TextDiagnosticPrinter.h" 20 #include "clang/Interpreter/Value.h" 21 #include "clang/Sema/Lookup.h" 22 #include "clang/Sema/Sema.h" 23 24 #include "llvm/ExecutionEngine/Orc/LLJIT.h" 25 #include "llvm/Support/ManagedStatic.h" 26 #include "llvm/Support/TargetSelect.h" 27 28 #include "gmock/gmock.h" 29 #include "gtest/gtest.h" 30 31 using namespace clang; 32 33 #if defined(_AIX) 34 #define CLANG_INTERPRETER_NO_SUPPORT_EXEC 35 #endif 36 37 int Global = 42; 38 // JIT reports symbol not found on Windows without the visibility attribute. 39 REPL_EXTERNAL_VISIBILITY int getGlobal() { return Global; } 40 REPL_EXTERNAL_VISIBILITY void setGlobal(int val) { Global = val; } 41 42 namespace { 43 using Args = std::vector<const char *>; 44 static std::unique_ptr<Interpreter> 45 createInterpreter(const Args &ExtraArgs = {}, 46 DiagnosticConsumer *Client = nullptr) { 47 Args ClangArgs = {"-Xclang", "-emit-llvm-only"}; 48 ClangArgs.insert(ClangArgs.end(), ExtraArgs.begin(), ExtraArgs.end()); 49 auto CB = clang::IncrementalCompilerBuilder(); 50 CB.SetCompilerArgs(ClangArgs); 51 auto CI = cantFail(CB.CreateCpp()); 52 if (Client) 53 CI->getDiagnostics().setClient(Client, /*ShouldOwnClient=*/false); 54 return cantFail(clang::Interpreter::create(std::move(CI))); 55 } 56 57 static size_t DeclsSize(TranslationUnitDecl *PTUDecl) { 58 return std::distance(PTUDecl->decls().begin(), PTUDecl->decls().end()); 59 } 60 61 TEST(InterpreterTest, Sanity) { 62 std::unique_ptr<Interpreter> Interp = createInterpreter(); 63 64 using PTU = PartialTranslationUnit; 65 66 PTU &R1(cantFail(Interp->Parse("void g(); void g() {}"))); 67 EXPECT_EQ(2U, DeclsSize(R1.TUPart)); 68 69 PTU &R2(cantFail(Interp->Parse("int i;"))); 70 EXPECT_EQ(1U, DeclsSize(R2.TUPart)); 71 } 72 73 static std::string DeclToString(Decl *D) { 74 return llvm::cast<NamedDecl>(D)->getQualifiedNameAsString(); 75 } 76 77 TEST(InterpreterTest, IncrementalInputTopLevelDecls) { 78 std::unique_ptr<Interpreter> Interp = createInterpreter(); 79 auto R1 = Interp->Parse("int var1 = 42; int f() { return var1; }"); 80 // gtest doesn't expand into explicit bool conversions. 81 EXPECT_TRUE(!!R1); 82 auto R1DeclRange = R1->TUPart->decls(); 83 EXPECT_EQ(2U, DeclsSize(R1->TUPart)); 84 EXPECT_EQ("var1", DeclToString(*R1DeclRange.begin())); 85 EXPECT_EQ("f", DeclToString(*(++R1DeclRange.begin()))); 86 87 auto R2 = Interp->Parse("int var2 = f();"); 88 EXPECT_TRUE(!!R2); 89 auto R2DeclRange = R2->TUPart->decls(); 90 EXPECT_EQ(1U, DeclsSize(R2->TUPart)); 91 EXPECT_EQ("var2", DeclToString(*R2DeclRange.begin())); 92 } 93 94 TEST(InterpreterTest, Errors) { 95 Args ExtraArgs = {"-Xclang", "-diagnostic-log-file", "-Xclang", "-"}; 96 97 // Create the diagnostic engine with unowned consumer. 98 std::string DiagnosticOutput; 99 llvm::raw_string_ostream DiagnosticsOS(DiagnosticOutput); 100 auto DiagPrinter = std::make_unique<TextDiagnosticPrinter>( 101 DiagnosticsOS, new DiagnosticOptions()); 102 103 auto Interp = createInterpreter(ExtraArgs, DiagPrinter.get()); 104 auto Err = Interp->Parse("intentional_error v1 = 42; ").takeError(); 105 using ::testing::HasSubstr; 106 EXPECT_THAT(DiagnosticsOS.str(), 107 HasSubstr("error: unknown type name 'intentional_error'")); 108 EXPECT_EQ("Parsing failed.", llvm::toString(std::move(Err))); 109 110 auto RecoverErr = Interp->Parse("int var1 = 42;"); 111 EXPECT_TRUE(!!RecoverErr); 112 } 113 114 // Here we test whether the user can mix declarations and statements. The 115 // interpreter should be smart enough to recognize the declarations from the 116 // statements and wrap the latter into a declaration, producing valid code. 117 TEST(InterpreterTest, DeclsAndStatements) { 118 Args ExtraArgs = {"-Xclang", "-diagnostic-log-file", "-Xclang", "-"}; 119 120 // Create the diagnostic engine with unowned consumer. 121 std::string DiagnosticOutput; 122 llvm::raw_string_ostream DiagnosticsOS(DiagnosticOutput); 123 auto DiagPrinter = std::make_unique<TextDiagnosticPrinter>( 124 DiagnosticsOS, new DiagnosticOptions()); 125 126 auto Interp = createInterpreter(ExtraArgs, DiagPrinter.get()); 127 auto R1 = Interp->Parse( 128 "int var1 = 42; extern \"C\" int printf(const char*, ...);"); 129 // gtest doesn't expand into explicit bool conversions. 130 EXPECT_TRUE(!!R1); 131 132 auto *PTU1 = R1->TUPart; 133 EXPECT_EQ(2U, DeclsSize(PTU1)); 134 135 auto R2 = Interp->Parse("var1++; printf(\"var1 value %d\\n\", var1);"); 136 EXPECT_TRUE(!!R2); 137 } 138 139 TEST(InterpreterTest, UndoCommand) { 140 Args ExtraArgs = {"-Xclang", "-diagnostic-log-file", "-Xclang", "-"}; 141 142 // Create the diagnostic engine with unowned consumer. 143 std::string DiagnosticOutput; 144 llvm::raw_string_ostream DiagnosticsOS(DiagnosticOutput); 145 auto DiagPrinter = std::make_unique<TextDiagnosticPrinter>( 146 DiagnosticsOS, new DiagnosticOptions()); 147 148 auto Interp = createInterpreter(ExtraArgs, DiagPrinter.get()); 149 150 // Fail to undo. 151 auto Err1 = Interp->Undo(); 152 EXPECT_EQ("Operation failed. Too many undos", 153 llvm::toString(std::move(Err1))); 154 auto Err2 = Interp->Parse("int foo = 42;"); 155 EXPECT_TRUE(!!Err2); 156 auto Err3 = Interp->Undo(2); 157 EXPECT_EQ("Operation failed. Too many undos", 158 llvm::toString(std::move(Err3))); 159 160 // Succeed to undo. 161 auto Err4 = Interp->Parse("int x = 42;"); 162 EXPECT_TRUE(!!Err4); 163 auto Err5 = Interp->Undo(); 164 EXPECT_FALSE(Err5); 165 auto Err6 = Interp->Parse("int x = 24;"); 166 EXPECT_TRUE(!!Err6); 167 auto Err7 = Interp->Parse("#define X 42"); 168 EXPECT_TRUE(!!Err7); 169 auto Err8 = Interp->Undo(); 170 EXPECT_FALSE(Err8); 171 auto Err9 = Interp->Parse("#define X 24"); 172 EXPECT_TRUE(!!Err9); 173 174 // Undo input contains errors. 175 auto Err10 = Interp->Parse("int y = ;"); 176 EXPECT_FALSE(!!Err10); 177 EXPECT_EQ("Parsing failed.", llvm::toString(Err10.takeError())); 178 auto Err11 = Interp->Parse("int y = 42;"); 179 EXPECT_TRUE(!!Err11); 180 auto Err12 = Interp->Undo(); 181 EXPECT_FALSE(Err12); 182 } 183 184 static std::string MangleName(NamedDecl *ND) { 185 ASTContext &C = ND->getASTContext(); 186 std::unique_ptr<MangleContext> MangleC(C.createMangleContext()); 187 std::string mangledName; 188 llvm::raw_string_ostream RawStr(mangledName); 189 MangleC->mangleName(ND, RawStr); 190 return RawStr.str(); 191 } 192 193 static bool HostSupportsJit() { 194 auto J = llvm::orc::LLJITBuilder().create(); 195 if (J) 196 return true; 197 LLVMConsumeError(llvm::wrap(J.takeError())); 198 return false; 199 } 200 201 struct LLVMInitRAII { 202 LLVMInitRAII() { 203 llvm::InitializeNativeTarget(); 204 llvm::InitializeNativeTargetAsmPrinter(); 205 } 206 ~LLVMInitRAII() { llvm::llvm_shutdown(); } 207 } LLVMInit; 208 209 #ifdef CLANG_INTERPRETER_NO_SUPPORT_EXEC 210 TEST(IncrementalProcessing, DISABLED_FindMangledNameSymbol) { 211 #else 212 TEST(IncrementalProcessing, FindMangledNameSymbol) { 213 #endif 214 215 std::unique_ptr<Interpreter> Interp = createInterpreter(); 216 217 auto &PTU(cantFail(Interp->Parse("int f(const char*) {return 0;}"))); 218 EXPECT_EQ(1U, DeclsSize(PTU.TUPart)); 219 auto R1DeclRange = PTU.TUPart->decls(); 220 221 // We cannot execute on the platform. 222 if (!HostSupportsJit()) { 223 return; 224 } 225 226 NamedDecl *FD = cast<FunctionDecl>(*R1DeclRange.begin()); 227 // Lower the PTU 228 if (llvm::Error Err = Interp->Execute(PTU)) { 229 // We cannot execute on the platform. 230 consumeError(std::move(Err)); 231 return; 232 } 233 234 std::string MangledName = MangleName(FD); 235 auto Addr = cantFail(Interp->getSymbolAddress(MangledName)); 236 EXPECT_NE(0U, Addr.getValue()); 237 GlobalDecl GD(FD); 238 EXPECT_EQ(Addr, cantFail(Interp->getSymbolAddress(GD))); 239 } 240 241 static void *AllocateObject(TypeDecl *TD, Interpreter &Interp) { 242 std::string Name = TD->getQualifiedNameAsString(); 243 const clang::Type *RDTy = TD->getTypeForDecl(); 244 clang::ASTContext &C = Interp.getCompilerInstance()->getASTContext(); 245 size_t Size = C.getTypeSize(RDTy); 246 void *Addr = malloc(Size); 247 248 // Tell the interpreter to call the default ctor with this memory. Synthesize: 249 // new (loc) ClassName; 250 static unsigned Counter = 0; 251 std::stringstream SS; 252 SS << "auto _v" << Counter++ << " = " 253 << "new ((void*)" 254 // Windows needs us to prefix the hexadecimal value of a pointer with '0x'. 255 << std::hex << std::showbase << (size_t)Addr << ")" << Name << "();"; 256 257 auto R = Interp.ParseAndExecute(SS.str()); 258 if (!R) { 259 free(Addr); 260 return nullptr; 261 } 262 263 return Addr; 264 } 265 266 static NamedDecl *LookupSingleName(Interpreter &Interp, const char *Name) { 267 Sema &SemaRef = Interp.getCompilerInstance()->getSema(); 268 ASTContext &C = SemaRef.getASTContext(); 269 DeclarationName DeclName = &C.Idents.get(Name); 270 LookupResult R(SemaRef, DeclName, SourceLocation(), Sema::LookupOrdinaryName); 271 SemaRef.LookupName(R, SemaRef.TUScope); 272 assert(!R.empty()); 273 return R.getFoundDecl(); 274 } 275 276 #ifdef CLANG_INTERPRETER_NO_SUPPORT_EXEC 277 TEST(IncrementalProcessing, DISABLED_InstantiateTemplate) { 278 #else 279 TEST(IncrementalProcessing, InstantiateTemplate) { 280 #endif 281 // FIXME: We cannot yet handle delayed template parsing. If we run with 282 // -fdelayed-template-parsing we try adding the newly created decl to the 283 // active PTU which causes an assert. 284 std::vector<const char *> Args = {"-fno-delayed-template-parsing"}; 285 std::unique_ptr<Interpreter> Interp = createInterpreter(Args); 286 287 llvm::cantFail(Interp->Parse("extern \"C\" int printf(const char*,...);" 288 "class A {};" 289 "struct B {" 290 " template<typename T>" 291 " static int callme(T) { return 42; }" 292 "};")); 293 auto &PTU = llvm::cantFail(Interp->Parse("auto _t = &B::callme<A*>;")); 294 auto PTUDeclRange = PTU.TUPart->decls(); 295 EXPECT_EQ(1, std::distance(PTUDeclRange.begin(), PTUDeclRange.end())); 296 297 // We cannot execute on the platform. 298 if (!HostSupportsJit()) { 299 return; 300 } 301 302 // Lower the PTU 303 if (llvm::Error Err = Interp->Execute(PTU)) { 304 // We cannot execute on the platform. 305 consumeError(std::move(Err)); 306 return; 307 } 308 309 TypeDecl *TD = cast<TypeDecl>(LookupSingleName(*Interp, "A")); 310 void *NewA = AllocateObject(TD, *Interp); 311 312 // Find back the template specialization 313 VarDecl *VD = static_cast<VarDecl *>(*PTUDeclRange.begin()); 314 UnaryOperator *UO = llvm::cast<UnaryOperator>(VD->getInit()); 315 NamedDecl *TmpltSpec = llvm::cast<DeclRefExpr>(UO->getSubExpr())->getDecl(); 316 317 std::string MangledName = MangleName(TmpltSpec); 318 typedef int (*TemplateSpecFn)(void *); 319 auto fn = 320 cantFail(Interp->getSymbolAddress(MangledName)).toPtr<TemplateSpecFn>(); 321 EXPECT_EQ(42, fn(NewA)); 322 free(NewA); 323 } 324 325 #ifdef CLANG_INTERPRETER_NO_SUPPORT_EXEC 326 TEST(InterpreterTest, DISABLED_Value) { 327 #else 328 TEST(InterpreterTest, Value) { 329 #endif 330 // We cannot execute on the platform. 331 if (!HostSupportsJit()) 332 return; 333 334 std::unique_ptr<Interpreter> Interp = createInterpreter(); 335 336 Value V1; 337 llvm::cantFail(Interp->ParseAndExecute("int x = 42;")); 338 llvm::cantFail(Interp->ParseAndExecute("x", &V1)); 339 EXPECT_TRUE(V1.isValid()); 340 EXPECT_TRUE(V1.hasValue()); 341 EXPECT_EQ(V1.getInt(), 42); 342 EXPECT_EQ(V1.convertTo<int>(), 42); 343 EXPECT_TRUE(V1.getType()->isIntegerType()); 344 EXPECT_EQ(V1.getKind(), Value::K_Int); 345 EXPECT_FALSE(V1.isManuallyAlloc()); 346 347 Value V2; 348 llvm::cantFail(Interp->ParseAndExecute("double y = 3.14;")); 349 llvm::cantFail(Interp->ParseAndExecute("y", &V2)); 350 EXPECT_TRUE(V2.isValid()); 351 EXPECT_TRUE(V2.hasValue()); 352 EXPECT_EQ(V2.getDouble(), 3.14); 353 EXPECT_EQ(V2.convertTo<double>(), 3.14); 354 EXPECT_TRUE(V2.getType()->isFloatingType()); 355 EXPECT_EQ(V2.getKind(), Value::K_Double); 356 EXPECT_FALSE(V2.isManuallyAlloc()); 357 358 Value V3; 359 llvm::cantFail(Interp->ParseAndExecute( 360 "struct S { int* p; S() { p = new int(42); } ~S() { delete p; }};")); 361 llvm::cantFail(Interp->ParseAndExecute("S{}", &V3)); 362 EXPECT_TRUE(V3.isValid()); 363 EXPECT_TRUE(V3.hasValue()); 364 EXPECT_TRUE(V3.getType()->isRecordType()); 365 EXPECT_EQ(V3.getKind(), Value::K_PtrOrObj); 366 EXPECT_TRUE(V3.isManuallyAlloc()); 367 368 Value V4; 369 llvm::cantFail(Interp->ParseAndExecute("int getGlobal();")); 370 llvm::cantFail(Interp->ParseAndExecute("void setGlobal(int);")); 371 llvm::cantFail(Interp->ParseAndExecute("getGlobal()", &V4)); 372 EXPECT_EQ(V4.getInt(), 42); 373 EXPECT_TRUE(V4.getType()->isIntegerType()); 374 375 Value V5; 376 // Change the global from the compiled code. 377 setGlobal(43); 378 llvm::cantFail(Interp->ParseAndExecute("getGlobal()", &V5)); 379 EXPECT_EQ(V5.getInt(), 43); 380 EXPECT_TRUE(V5.getType()->isIntegerType()); 381 382 // Change the global from the interpreted code. 383 llvm::cantFail(Interp->ParseAndExecute("setGlobal(44);")); 384 EXPECT_EQ(getGlobal(), 44); 385 386 Value V6; 387 llvm::cantFail(Interp->ParseAndExecute("void foo() {}")); 388 llvm::cantFail(Interp->ParseAndExecute("foo()", &V6)); 389 EXPECT_TRUE(V6.isValid()); 390 EXPECT_FALSE(V6.hasValue()); 391 EXPECT_TRUE(V6.getType()->isVoidType()); 392 EXPECT_EQ(V6.getKind(), Value::K_Void); 393 EXPECT_FALSE(V2.isManuallyAlloc()); 394 395 Value V7; 396 llvm::cantFail(Interp->ParseAndExecute("foo", &V7)); 397 EXPECT_TRUE(V7.isValid()); 398 EXPECT_TRUE(V7.hasValue()); 399 EXPECT_TRUE(V7.getType()->isFunctionProtoType()); 400 EXPECT_EQ(V7.getKind(), Value::K_PtrOrObj); 401 EXPECT_FALSE(V7.isManuallyAlloc()); 402 403 Value V8; 404 llvm::cantFail(Interp->ParseAndExecute("struct SS{ void f() {} };")); 405 llvm::cantFail(Interp->ParseAndExecute("&SS::f", &V8)); 406 EXPECT_TRUE(V8.isValid()); 407 EXPECT_TRUE(V8.hasValue()); 408 EXPECT_TRUE(V8.getType()->isMemberFunctionPointerType()); 409 EXPECT_EQ(V8.getKind(), Value::K_PtrOrObj); 410 EXPECT_TRUE(V8.isManuallyAlloc()); 411 412 Value V9; 413 llvm::cantFail(Interp->ParseAndExecute("struct A { virtual int f(); };")); 414 llvm::cantFail( 415 Interp->ParseAndExecute("struct B : A { int f() { return 42; }};")); 416 llvm::cantFail(Interp->ParseAndExecute("int (B::*ptr)() = &B::f;")); 417 llvm::cantFail(Interp->ParseAndExecute("ptr", &V9)); 418 EXPECT_TRUE(V9.isValid()); 419 EXPECT_TRUE(V9.hasValue()); 420 EXPECT_TRUE(V9.getType()->isMemberFunctionPointerType()); 421 EXPECT_EQ(V9.getKind(), Value::K_PtrOrObj); 422 EXPECT_TRUE(V9.isManuallyAlloc()); 423 } 424 } // end anonymous namespace 425