xref: /llvm-project/clang/unittests/Interpreter/InterpreterTest.cpp (revision 452cb7f20bc7b976eb6fec4ac9f2d902f4175c08)
1 //===- unittests/Interpreter/InterpreterTest.cpp --- Interpreter tests ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Unit tests for Clang's Interpreter library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/Interpreter/Interpreter.h"
14 
15 #include "clang/AST/Decl.h"
16 #include "clang/AST/DeclGroup.h"
17 #include "clang/AST/Mangle.h"
18 #include "clang/Frontend/CompilerInstance.h"
19 #include "clang/Frontend/TextDiagnosticPrinter.h"
20 #include "clang/Interpreter/Value.h"
21 #include "clang/Sema/Lookup.h"
22 #include "clang/Sema/Sema.h"
23 
24 #include "llvm/ExecutionEngine/Orc/LLJIT.h"
25 #include "llvm/Support/ManagedStatic.h"
26 #include "llvm/Support/TargetSelect.h"
27 
28 #include "gmock/gmock.h"
29 #include "gtest/gtest.h"
30 
31 using namespace clang;
32 
33 #if defined(_AIX)
34 #define CLANG_INTERPRETER_NO_SUPPORT_EXEC
35 #endif
36 
37 int Global = 42;
38 // JIT reports symbol not found on Windows without the visibility attribute.
39 REPL_EXTERNAL_VISIBILITY int getGlobal() { return Global; }
40 REPL_EXTERNAL_VISIBILITY void setGlobal(int val) { Global = val; }
41 
42 namespace {
43 using Args = std::vector<const char *>;
44 static std::unique_ptr<Interpreter>
45 createInterpreter(const Args &ExtraArgs = {},
46                   DiagnosticConsumer *Client = nullptr) {
47   Args ClangArgs = {"-Xclang", "-emit-llvm-only"};
48   ClangArgs.insert(ClangArgs.end(), ExtraArgs.begin(), ExtraArgs.end());
49   auto CB = clang::IncrementalCompilerBuilder();
50   CB.SetCompilerArgs(ClangArgs);
51   auto CI = cantFail(CB.CreateCpp());
52   if (Client)
53     CI->getDiagnostics().setClient(Client, /*ShouldOwnClient=*/false);
54   return cantFail(clang::Interpreter::create(std::move(CI)));
55 }
56 
57 static size_t DeclsSize(TranslationUnitDecl *PTUDecl) {
58   return std::distance(PTUDecl->decls().begin(), PTUDecl->decls().end());
59 }
60 
61 TEST(InterpreterTest, Sanity) {
62   std::unique_ptr<Interpreter> Interp = createInterpreter();
63 
64   using PTU = PartialTranslationUnit;
65 
66   PTU &R1(cantFail(Interp->Parse("void g(); void g() {}")));
67   EXPECT_EQ(2U, DeclsSize(R1.TUPart));
68 
69   PTU &R2(cantFail(Interp->Parse("int i;")));
70   EXPECT_EQ(1U, DeclsSize(R2.TUPart));
71 }
72 
73 static std::string DeclToString(Decl *D) {
74   return llvm::cast<NamedDecl>(D)->getQualifiedNameAsString();
75 }
76 
77 TEST(InterpreterTest, IncrementalInputTopLevelDecls) {
78   std::unique_ptr<Interpreter> Interp = createInterpreter();
79   auto R1 = Interp->Parse("int var1 = 42; int f() { return var1; }");
80   // gtest doesn't expand into explicit bool conversions.
81   EXPECT_TRUE(!!R1);
82   auto R1DeclRange = R1->TUPart->decls();
83   EXPECT_EQ(2U, DeclsSize(R1->TUPart));
84   EXPECT_EQ("var1", DeclToString(*R1DeclRange.begin()));
85   EXPECT_EQ("f", DeclToString(*(++R1DeclRange.begin())));
86 
87   auto R2 = Interp->Parse("int var2 = f();");
88   EXPECT_TRUE(!!R2);
89   auto R2DeclRange = R2->TUPart->decls();
90   EXPECT_EQ(1U, DeclsSize(R2->TUPart));
91   EXPECT_EQ("var2", DeclToString(*R2DeclRange.begin()));
92 }
93 
94 TEST(InterpreterTest, Errors) {
95   Args ExtraArgs = {"-Xclang", "-diagnostic-log-file", "-Xclang", "-"};
96 
97   // Create the diagnostic engine with unowned consumer.
98   std::string DiagnosticOutput;
99   llvm::raw_string_ostream DiagnosticsOS(DiagnosticOutput);
100   auto DiagPrinter = std::make_unique<TextDiagnosticPrinter>(
101       DiagnosticsOS, new DiagnosticOptions());
102 
103   auto Interp = createInterpreter(ExtraArgs, DiagPrinter.get());
104   auto Err = Interp->Parse("intentional_error v1 = 42; ").takeError();
105   using ::testing::HasSubstr;
106   EXPECT_THAT(DiagnosticsOS.str(),
107               HasSubstr("error: unknown type name 'intentional_error'"));
108   EXPECT_EQ("Parsing failed.", llvm::toString(std::move(Err)));
109 
110   auto RecoverErr = Interp->Parse("int var1 = 42;");
111   EXPECT_TRUE(!!RecoverErr);
112 }
113 
114 // Here we test whether the user can mix declarations and statements. The
115 // interpreter should be smart enough to recognize the declarations from the
116 // statements and wrap the latter into a declaration, producing valid code.
117 TEST(InterpreterTest, DeclsAndStatements) {
118   Args ExtraArgs = {"-Xclang", "-diagnostic-log-file", "-Xclang", "-"};
119 
120   // Create the diagnostic engine with unowned consumer.
121   std::string DiagnosticOutput;
122   llvm::raw_string_ostream DiagnosticsOS(DiagnosticOutput);
123   auto DiagPrinter = std::make_unique<TextDiagnosticPrinter>(
124       DiagnosticsOS, new DiagnosticOptions());
125 
126   auto Interp = createInterpreter(ExtraArgs, DiagPrinter.get());
127   auto R1 = Interp->Parse(
128       "int var1 = 42; extern \"C\" int printf(const char*, ...);");
129   // gtest doesn't expand into explicit bool conversions.
130   EXPECT_TRUE(!!R1);
131 
132   auto *PTU1 = R1->TUPart;
133   EXPECT_EQ(2U, DeclsSize(PTU1));
134 
135   auto R2 = Interp->Parse("var1++; printf(\"var1 value %d\\n\", var1);");
136   EXPECT_TRUE(!!R2);
137 }
138 
139 TEST(InterpreterTest, UndoCommand) {
140   Args ExtraArgs = {"-Xclang", "-diagnostic-log-file", "-Xclang", "-"};
141 
142   // Create the diagnostic engine with unowned consumer.
143   std::string DiagnosticOutput;
144   llvm::raw_string_ostream DiagnosticsOS(DiagnosticOutput);
145   auto DiagPrinter = std::make_unique<TextDiagnosticPrinter>(
146       DiagnosticsOS, new DiagnosticOptions());
147 
148   auto Interp = createInterpreter(ExtraArgs, DiagPrinter.get());
149 
150   // Fail to undo.
151   auto Err1 = Interp->Undo();
152   EXPECT_EQ("Operation failed. Too many undos",
153             llvm::toString(std::move(Err1)));
154   auto Err2 = Interp->Parse("int foo = 42;");
155   EXPECT_TRUE(!!Err2);
156   auto Err3 = Interp->Undo(2);
157   EXPECT_EQ("Operation failed. Too many undos",
158             llvm::toString(std::move(Err3)));
159 
160   // Succeed to undo.
161   auto Err4 = Interp->Parse("int x = 42;");
162   EXPECT_TRUE(!!Err4);
163   auto Err5 = Interp->Undo();
164   EXPECT_FALSE(Err5);
165   auto Err6 = Interp->Parse("int x = 24;");
166   EXPECT_TRUE(!!Err6);
167   auto Err7 = Interp->Parse("#define X 42");
168   EXPECT_TRUE(!!Err7);
169   auto Err8 = Interp->Undo();
170   EXPECT_FALSE(Err8);
171   auto Err9 = Interp->Parse("#define X 24");
172   EXPECT_TRUE(!!Err9);
173 
174   // Undo input contains errors.
175   auto Err10 = Interp->Parse("int y = ;");
176   EXPECT_FALSE(!!Err10);
177   EXPECT_EQ("Parsing failed.", llvm::toString(Err10.takeError()));
178   auto Err11 = Interp->Parse("int y = 42;");
179   EXPECT_TRUE(!!Err11);
180   auto Err12 = Interp->Undo();
181   EXPECT_FALSE(Err12);
182 }
183 
184 static std::string MangleName(NamedDecl *ND) {
185   ASTContext &C = ND->getASTContext();
186   std::unique_ptr<MangleContext> MangleC(C.createMangleContext());
187   std::string mangledName;
188   llvm::raw_string_ostream RawStr(mangledName);
189   MangleC->mangleName(ND, RawStr);
190   return RawStr.str();
191 }
192 
193 static bool HostSupportsJit() {
194   auto J = llvm::orc::LLJITBuilder()
195              .setEnableDebuggerSupport(true)
196              .create();
197   if (J)
198     return true;
199   LLVMConsumeError(llvm::wrap(J.takeError()));
200   return false;
201 }
202 
203 struct LLVMInitRAII {
204   LLVMInitRAII() {
205     llvm::InitializeNativeTarget();
206     llvm::InitializeNativeTargetAsmPrinter();
207   }
208   ~LLVMInitRAII() { llvm::llvm_shutdown(); }
209 } LLVMInit;
210 
211 #ifdef CLANG_INTERPRETER_NO_SUPPORT_EXEC
212 TEST(IncrementalProcessing, DISABLED_FindMangledNameSymbol) {
213 #else
214 TEST(IncrementalProcessing, FindMangledNameSymbol) {
215 #endif
216 
217   std::unique_ptr<Interpreter> Interp = createInterpreter();
218 
219   auto &PTU(cantFail(Interp->Parse("int f(const char*) {return 0;}")));
220   EXPECT_EQ(1U, DeclsSize(PTU.TUPart));
221   auto R1DeclRange = PTU.TUPart->decls();
222 
223   // We cannot execute on the platform.
224   if (!HostSupportsJit()) {
225     return;
226   }
227 
228   NamedDecl *FD = cast<FunctionDecl>(*R1DeclRange.begin());
229   // Lower the PTU
230   if (llvm::Error Err = Interp->Execute(PTU)) {
231     // We cannot execute on the platform.
232     consumeError(std::move(Err));
233     return;
234   }
235 
236   std::string MangledName = MangleName(FD);
237   auto Addr = Interp->getSymbolAddress(MangledName);
238   EXPECT_FALSE(!Addr);
239   EXPECT_NE(0U, Addr->getValue());
240   GlobalDecl GD(FD);
241   EXPECT_EQ(*Addr, cantFail(Interp->getSymbolAddress(GD)));
242   cantFail(
243       Interp->ParseAndExecute("extern \"C\" int printf(const char*,...);"));
244   Addr = Interp->getSymbolAddress("printf");
245   EXPECT_FALSE(!Addr);
246 
247   // FIXME: Re-enable when we investigate the way we handle dllimports on Win.
248 #ifndef _WIN32
249   EXPECT_EQ((unsigned long long)&printf, Addr->getValue());
250 #endif // _WIN32
251 }
252 
253 static void *AllocateObject(TypeDecl *TD, Interpreter &Interp) {
254   std::string Name = TD->getQualifiedNameAsString();
255   const clang::Type *RDTy = TD->getTypeForDecl();
256   clang::ASTContext &C = Interp.getCompilerInstance()->getASTContext();
257   size_t Size = C.getTypeSize(RDTy);
258   void *Addr = malloc(Size);
259 
260   // Tell the interpreter to call the default ctor with this memory. Synthesize:
261   // new (loc) ClassName;
262   static unsigned Counter = 0;
263   std::stringstream SS;
264   SS << "auto _v" << Counter++ << " = "
265      << "new ((void*)"
266      // Windows needs us to prefix the hexadecimal value of a pointer with '0x'.
267      << std::hex << std::showbase << (size_t)Addr << ")" << Name << "();";
268 
269   auto R = Interp.ParseAndExecute(SS.str());
270   if (!R) {
271     free(Addr);
272     return nullptr;
273   }
274 
275   return Addr;
276 }
277 
278 static NamedDecl *LookupSingleName(Interpreter &Interp, const char *Name) {
279   Sema &SemaRef = Interp.getCompilerInstance()->getSema();
280   ASTContext &C = SemaRef.getASTContext();
281   DeclarationName DeclName = &C.Idents.get(Name);
282   LookupResult R(SemaRef, DeclName, SourceLocation(), Sema::LookupOrdinaryName);
283   SemaRef.LookupName(R, SemaRef.TUScope);
284   assert(!R.empty());
285   return R.getFoundDecl();
286 }
287 
288 #ifdef CLANG_INTERPRETER_NO_SUPPORT_EXEC
289 TEST(IncrementalProcessing, DISABLED_InstantiateTemplate) {
290 #else
291 TEST(IncrementalProcessing, InstantiateTemplate) {
292 #endif
293   // FIXME: We cannot yet handle delayed template parsing. If we run with
294   // -fdelayed-template-parsing we try adding the newly created decl to the
295   // active PTU which causes an assert.
296   std::vector<const char *> Args = {"-fno-delayed-template-parsing"};
297   std::unique_ptr<Interpreter> Interp = createInterpreter(Args);
298 
299   llvm::cantFail(Interp->Parse("extern \"C\" int printf(const char*,...);"
300                                "class A {};"
301                                "struct B {"
302                                "  template<typename T>"
303                                "  static int callme(T) { return 42; }"
304                                "};"));
305   auto &PTU = llvm::cantFail(Interp->Parse("auto _t = &B::callme<A*>;"));
306   auto PTUDeclRange = PTU.TUPart->decls();
307   EXPECT_EQ(1, std::distance(PTUDeclRange.begin(), PTUDeclRange.end()));
308 
309   // We cannot execute on the platform.
310   if (!HostSupportsJit()) {
311     return;
312   }
313 
314   // Lower the PTU
315   if (llvm::Error Err = Interp->Execute(PTU)) {
316     // We cannot execute on the platform.
317     consumeError(std::move(Err));
318     return;
319   }
320 
321   TypeDecl *TD = cast<TypeDecl>(LookupSingleName(*Interp, "A"));
322   void *NewA = AllocateObject(TD, *Interp);
323 
324   // Find back the template specialization
325   VarDecl *VD = static_cast<VarDecl *>(*PTUDeclRange.begin());
326   UnaryOperator *UO = llvm::cast<UnaryOperator>(VD->getInit());
327   NamedDecl *TmpltSpec = llvm::cast<DeclRefExpr>(UO->getSubExpr())->getDecl();
328 
329   std::string MangledName = MangleName(TmpltSpec);
330   typedef int (*TemplateSpecFn)(void *);
331   auto fn =
332       cantFail(Interp->getSymbolAddress(MangledName)).toPtr<TemplateSpecFn>();
333   EXPECT_EQ(42, fn(NewA));
334   free(NewA);
335 }
336 
337 #ifdef CLANG_INTERPRETER_NO_SUPPORT_EXEC
338 TEST(InterpreterTest, DISABLED_Value) {
339 #else
340 TEST(InterpreterTest, Value) {
341 #endif
342   // We cannot execute on the platform.
343   if (!HostSupportsJit())
344     return;
345 
346   std::unique_ptr<Interpreter> Interp = createInterpreter();
347 
348   Value V1;
349   llvm::cantFail(Interp->ParseAndExecute("int x = 42;"));
350   llvm::cantFail(Interp->ParseAndExecute("x", &V1));
351   EXPECT_TRUE(V1.isValid());
352   EXPECT_TRUE(V1.hasValue());
353   EXPECT_EQ(V1.getInt(), 42);
354   EXPECT_EQ(V1.convertTo<int>(), 42);
355   EXPECT_TRUE(V1.getType()->isIntegerType());
356   EXPECT_EQ(V1.getKind(), Value::K_Int);
357   EXPECT_FALSE(V1.isManuallyAlloc());
358 
359   Value V2;
360   llvm::cantFail(Interp->ParseAndExecute("double y = 3.14;"));
361   llvm::cantFail(Interp->ParseAndExecute("y", &V2));
362   EXPECT_TRUE(V2.isValid());
363   EXPECT_TRUE(V2.hasValue());
364   EXPECT_EQ(V2.getDouble(), 3.14);
365   EXPECT_EQ(V2.convertTo<double>(), 3.14);
366   EXPECT_TRUE(V2.getType()->isFloatingType());
367   EXPECT_EQ(V2.getKind(), Value::K_Double);
368   EXPECT_FALSE(V2.isManuallyAlloc());
369 
370   Value V3;
371   llvm::cantFail(Interp->ParseAndExecute(
372       "struct S { int* p; S() { p = new int(42); } ~S() { delete p; }};"));
373   llvm::cantFail(Interp->ParseAndExecute("S{}", &V3));
374   EXPECT_TRUE(V3.isValid());
375   EXPECT_TRUE(V3.hasValue());
376   EXPECT_TRUE(V3.getType()->isRecordType());
377   EXPECT_EQ(V3.getKind(), Value::K_PtrOrObj);
378   EXPECT_TRUE(V3.isManuallyAlloc());
379 
380   Value V4;
381   llvm::cantFail(Interp->ParseAndExecute("int getGlobal();"));
382   llvm::cantFail(Interp->ParseAndExecute("void setGlobal(int);"));
383   llvm::cantFail(Interp->ParseAndExecute("getGlobal()", &V4));
384   EXPECT_EQ(V4.getInt(), 42);
385   EXPECT_TRUE(V4.getType()->isIntegerType());
386 
387   Value V5;
388   // Change the global from the compiled code.
389   setGlobal(43);
390   llvm::cantFail(Interp->ParseAndExecute("getGlobal()", &V5));
391   EXPECT_EQ(V5.getInt(), 43);
392   EXPECT_TRUE(V5.getType()->isIntegerType());
393 
394   // Change the global from the interpreted code.
395   llvm::cantFail(Interp->ParseAndExecute("setGlobal(44);"));
396   EXPECT_EQ(getGlobal(), 44);
397 
398   Value V6;
399   llvm::cantFail(Interp->ParseAndExecute("void foo() {}"));
400   llvm::cantFail(Interp->ParseAndExecute("foo()", &V6));
401   EXPECT_TRUE(V6.isValid());
402   EXPECT_FALSE(V6.hasValue());
403   EXPECT_TRUE(V6.getType()->isVoidType());
404   EXPECT_EQ(V6.getKind(), Value::K_Void);
405   EXPECT_FALSE(V2.isManuallyAlloc());
406 
407   Value V7;
408   llvm::cantFail(Interp->ParseAndExecute("foo", &V7));
409   EXPECT_TRUE(V7.isValid());
410   EXPECT_TRUE(V7.hasValue());
411   EXPECT_TRUE(V7.getType()->isFunctionProtoType());
412   EXPECT_EQ(V7.getKind(), Value::K_PtrOrObj);
413   EXPECT_FALSE(V7.isManuallyAlloc());
414 
415   Value V8;
416   llvm::cantFail(Interp->ParseAndExecute("struct SS{ void f() {} };"));
417   llvm::cantFail(Interp->ParseAndExecute("&SS::f", &V8));
418   EXPECT_TRUE(V8.isValid());
419   EXPECT_TRUE(V8.hasValue());
420   EXPECT_TRUE(V8.getType()->isMemberFunctionPointerType());
421   EXPECT_EQ(V8.getKind(), Value::K_PtrOrObj);
422   EXPECT_TRUE(V8.isManuallyAlloc());
423 
424   Value V9;
425   llvm::cantFail(Interp->ParseAndExecute("struct A { virtual int f(); };"));
426   llvm::cantFail(
427       Interp->ParseAndExecute("struct B : A { int f() { return 42; }};"));
428   llvm::cantFail(Interp->ParseAndExecute("int (B::*ptr)() = &B::f;"));
429   llvm::cantFail(Interp->ParseAndExecute("ptr", &V9));
430   EXPECT_TRUE(V9.isValid());
431   EXPECT_TRUE(V9.hasValue());
432   EXPECT_TRUE(V9.getType()->isMemberFunctionPointerType());
433   EXPECT_EQ(V9.getKind(), Value::K_PtrOrObj);
434   EXPECT_TRUE(V9.isManuallyAlloc());
435 }
436 } // end anonymous namespace
437