xref: /llvm-project/clang/unittests/Interpreter/InterpreterTest.cpp (revision 2759e47067ea286f6302adcfe93b653cfaf6f2eb)
1 //===- unittests/Interpreter/InterpreterTest.cpp --- Interpreter tests ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Unit tests for Clang's Interpreter library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/Interpreter/Interpreter.h"
14 
15 #include "clang/AST/Decl.h"
16 #include "clang/AST/DeclGroup.h"
17 #include "clang/AST/Mangle.h"
18 #include "clang/Frontend/CompilerInstance.h"
19 #include "clang/Frontend/TextDiagnosticPrinter.h"
20 #include "clang/Interpreter/Value.h"
21 #include "clang/Sema/Lookup.h"
22 #include "clang/Sema/Sema.h"
23 
24 #include "llvm/ExecutionEngine/Orc/LLJIT.h"
25 #include "llvm/Support/ManagedStatic.h"
26 #include "llvm/Support/TargetSelect.h"
27 
28 #include "gmock/gmock.h"
29 #include "gtest/gtest.h"
30 
31 using namespace clang;
32 
33 #if defined(_AIX)
34 #define CLANG_INTERPRETER_NO_SUPPORT_EXEC
35 #endif
36 
37 int Global = 42;
38 // JIT reports symbol not found on Windows without the visibility attribute.
39 REPL_EXTERNAL_VISIBILITY int getGlobal() { return Global; }
40 REPL_EXTERNAL_VISIBILITY void setGlobal(int val) { Global = val; }
41 
42 namespace {
43 using Args = std::vector<const char *>;
44 static std::unique_ptr<Interpreter>
45 createInterpreter(const Args &ExtraArgs = {},
46                   DiagnosticConsumer *Client = nullptr) {
47   Args ClangArgs = {"-Xclang", "-emit-llvm-only"};
48   ClangArgs.insert(ClangArgs.end(), ExtraArgs.begin(), ExtraArgs.end());
49   auto CB = clang::IncrementalCompilerBuilder();
50   CB.SetCompilerArgs(ClangArgs);
51   auto CI = cantFail(CB.CreateCpp());
52   if (Client)
53     CI->getDiagnostics().setClient(Client, /*ShouldOwnClient=*/false);
54   return cantFail(clang::Interpreter::create(std::move(CI)));
55 }
56 
57 static size_t DeclsSize(TranslationUnitDecl *PTUDecl) {
58   return std::distance(PTUDecl->decls().begin(), PTUDecl->decls().end());
59 }
60 
61 TEST(InterpreterTest, Sanity) {
62   std::unique_ptr<Interpreter> Interp = createInterpreter();
63 
64   using PTU = PartialTranslationUnit;
65 
66   PTU &R1(cantFail(Interp->Parse("void g(); void g() {}")));
67   EXPECT_EQ(2U, DeclsSize(R1.TUPart));
68 
69   PTU &R2(cantFail(Interp->Parse("int i;")));
70   EXPECT_EQ(1U, DeclsSize(R2.TUPart));
71 }
72 
73 static std::string DeclToString(Decl *D) {
74   return llvm::cast<NamedDecl>(D)->getQualifiedNameAsString();
75 }
76 
77 TEST(InterpreterTest, IncrementalInputTopLevelDecls) {
78   std::unique_ptr<Interpreter> Interp = createInterpreter();
79   auto R1 = Interp->Parse("int var1 = 42; int f() { return var1; }");
80   // gtest doesn't expand into explicit bool conversions.
81   EXPECT_TRUE(!!R1);
82   auto R1DeclRange = R1->TUPart->decls();
83   EXPECT_EQ(2U, DeclsSize(R1->TUPart));
84   EXPECT_EQ("var1", DeclToString(*R1DeclRange.begin()));
85   EXPECT_EQ("f", DeclToString(*(++R1DeclRange.begin())));
86 
87   auto R2 = Interp->Parse("int var2 = f();");
88   EXPECT_TRUE(!!R2);
89   auto R2DeclRange = R2->TUPart->decls();
90   EXPECT_EQ(1U, DeclsSize(R2->TUPart));
91   EXPECT_EQ("var2", DeclToString(*R2DeclRange.begin()));
92 }
93 
94 TEST(InterpreterTest, Errors) {
95   Args ExtraArgs = {"-Xclang", "-diagnostic-log-file", "-Xclang", "-"};
96 
97   // Create the diagnostic engine with unowned consumer.
98   std::string DiagnosticOutput;
99   llvm::raw_string_ostream DiagnosticsOS(DiagnosticOutput);
100   auto DiagPrinter = std::make_unique<TextDiagnosticPrinter>(
101       DiagnosticsOS, new DiagnosticOptions());
102 
103   auto Interp = createInterpreter(ExtraArgs, DiagPrinter.get());
104   auto Err = Interp->Parse("intentional_error v1 = 42; ").takeError();
105   using ::testing::HasSubstr;
106   EXPECT_THAT(DiagnosticsOS.str(),
107               HasSubstr("error: unknown type name 'intentional_error'"));
108   EXPECT_EQ("Parsing failed.", llvm::toString(std::move(Err)));
109 
110   auto RecoverErr = Interp->Parse("int var1 = 42;");
111   EXPECT_TRUE(!!RecoverErr);
112 }
113 
114 // Here we test whether the user can mix declarations and statements. The
115 // interpreter should be smart enough to recognize the declarations from the
116 // statements and wrap the latter into a declaration, producing valid code.
117 TEST(InterpreterTest, DeclsAndStatements) {
118   Args ExtraArgs = {"-Xclang", "-diagnostic-log-file", "-Xclang", "-"};
119 
120   // Create the diagnostic engine with unowned consumer.
121   std::string DiagnosticOutput;
122   llvm::raw_string_ostream DiagnosticsOS(DiagnosticOutput);
123   auto DiagPrinter = std::make_unique<TextDiagnosticPrinter>(
124       DiagnosticsOS, new DiagnosticOptions());
125 
126   auto Interp = createInterpreter(ExtraArgs, DiagPrinter.get());
127   auto R1 = Interp->Parse(
128       "int var1 = 42; extern \"C\" int printf(const char*, ...);");
129   // gtest doesn't expand into explicit bool conversions.
130   EXPECT_TRUE(!!R1);
131 
132   auto *PTU1 = R1->TUPart;
133   EXPECT_EQ(2U, DeclsSize(PTU1));
134 
135   auto R2 = Interp->Parse("var1++; printf(\"var1 value %d\\n\", var1);");
136   EXPECT_TRUE(!!R2);
137 }
138 
139 TEST(InterpreterTest, UndoCommand) {
140   Args ExtraArgs = {"-Xclang", "-diagnostic-log-file", "-Xclang", "-"};
141 
142   // Create the diagnostic engine with unowned consumer.
143   std::string DiagnosticOutput;
144   llvm::raw_string_ostream DiagnosticsOS(DiagnosticOutput);
145   auto DiagPrinter = std::make_unique<TextDiagnosticPrinter>(
146       DiagnosticsOS, new DiagnosticOptions());
147 
148   auto Interp = createInterpreter(ExtraArgs, DiagPrinter.get());
149 
150   // Fail to undo.
151   auto Err1 = Interp->Undo();
152   EXPECT_EQ("Operation failed. Too many undos",
153             llvm::toString(std::move(Err1)));
154   auto Err2 = Interp->Parse("int foo = 42;");
155   EXPECT_TRUE(!!Err2);
156   auto Err3 = Interp->Undo(2);
157   EXPECT_EQ("Operation failed. Too many undos",
158             llvm::toString(std::move(Err3)));
159 
160   // Succeed to undo.
161   auto Err4 = Interp->Parse("int x = 42;");
162   EXPECT_TRUE(!!Err4);
163   auto Err5 = Interp->Undo();
164   EXPECT_FALSE(Err5);
165   auto Err6 = Interp->Parse("int x = 24;");
166   EXPECT_TRUE(!!Err6);
167   auto Err7 = Interp->Parse("#define X 42");
168   EXPECT_TRUE(!!Err7);
169   auto Err8 = Interp->Undo();
170   EXPECT_FALSE(Err8);
171   auto Err9 = Interp->Parse("#define X 24");
172   EXPECT_TRUE(!!Err9);
173 
174   // Undo input contains errors.
175   auto Err10 = Interp->Parse("int y = ;");
176   EXPECT_FALSE(!!Err10);
177   EXPECT_EQ("Parsing failed.", llvm::toString(Err10.takeError()));
178   auto Err11 = Interp->Parse("int y = 42;");
179   EXPECT_TRUE(!!Err11);
180   auto Err12 = Interp->Undo();
181   EXPECT_FALSE(Err12);
182 }
183 
184 static std::string MangleName(NamedDecl *ND) {
185   ASTContext &C = ND->getASTContext();
186   std::unique_ptr<MangleContext> MangleC(C.createMangleContext());
187   std::string mangledName;
188   llvm::raw_string_ostream RawStr(mangledName);
189   MangleC->mangleName(ND, RawStr);
190   return RawStr.str();
191 }
192 
193 static bool HostSupportsJit() {
194   auto J = llvm::orc::LLJITBuilder().create();
195   if (J)
196     return true;
197   LLVMConsumeError(llvm::wrap(J.takeError()));
198   return false;
199 }
200 
201 struct LLVMInitRAII {
202   LLVMInitRAII() {
203     llvm::InitializeNativeTarget();
204     llvm::InitializeNativeTargetAsmPrinter();
205   }
206   ~LLVMInitRAII() { llvm::llvm_shutdown(); }
207 } LLVMInit;
208 
209 #ifdef CLANG_INTERPRETER_NO_SUPPORT_EXEC
210 TEST(IncrementalProcessing, DISABLED_FindMangledNameSymbol) {
211 #else
212 TEST(IncrementalProcessing, FindMangledNameSymbol) {
213 #endif
214 
215   std::unique_ptr<Interpreter> Interp = createInterpreter();
216 
217   auto &PTU(cantFail(Interp->Parse("int f(const char*) {return 0;}")));
218   EXPECT_EQ(1U, DeclsSize(PTU.TUPart));
219   auto R1DeclRange = PTU.TUPart->decls();
220 
221   // We cannot execute on the platform.
222   if (!HostSupportsJit()) {
223     return;
224   }
225 
226   NamedDecl *FD = cast<FunctionDecl>(*R1DeclRange.begin());
227   // Lower the PTU
228   if (llvm::Error Err = Interp->Execute(PTU)) {
229     // We cannot execute on the platform.
230     consumeError(std::move(Err));
231     return;
232   }
233 
234   std::string MangledName = MangleName(FD);
235   auto Addr = Interp->getSymbolAddress(MangledName);
236   EXPECT_FALSE(!Addr);
237   EXPECT_NE(0U, Addr->getValue());
238   GlobalDecl GD(FD);
239   EXPECT_EQ(*Addr, cantFail(Interp->getSymbolAddress(GD)));
240   cantFail(
241       Interp->ParseAndExecute("extern \"C\" int printf(const char*,...);"));
242   Addr = Interp->getSymbolAddress("printf");
243   EXPECT_FALSE(!Addr);
244 
245   // FIXME: Re-enable when we investigate the way we handle dllimports on Win.
246 #ifndef _WIN32
247   EXPECT_EQ((uintptr_t)&printf, Addr->getValue());
248 #endif // _WIN32
249 }
250 
251 static Value AllocateObject(TypeDecl *TD, Interpreter &Interp) {
252   std::string Name = TD->getQualifiedNameAsString();
253   Value Addr;
254   // FIXME: Consider providing an option in clang::Value to take ownership of
255   // the memory created from the interpreter.
256   // cantFail(Interp.ParseAndExecute("new " + Name + "()", &Addr));
257 
258   // The lifetime of the temporary is extended by the clang::Value.
259   cantFail(Interp.ParseAndExecute(Name + "()", &Addr));
260   return Addr;
261 }
262 
263 static NamedDecl *LookupSingleName(Interpreter &Interp, const char *Name) {
264   Sema &SemaRef = Interp.getCompilerInstance()->getSema();
265   ASTContext &C = SemaRef.getASTContext();
266   DeclarationName DeclName = &C.Idents.get(Name);
267   LookupResult R(SemaRef, DeclName, SourceLocation(), Sema::LookupOrdinaryName);
268   SemaRef.LookupName(R, SemaRef.TUScope);
269   assert(!R.empty());
270   return R.getFoundDecl();
271 }
272 
273 #ifdef CLANG_INTERPRETER_NO_SUPPORT_EXEC
274 TEST(IncrementalProcessing, DISABLED_InstantiateTemplate) {
275 #else
276 TEST(IncrementalProcessing, InstantiateTemplate) {
277 #endif
278   // FIXME: We cannot yet handle delayed template parsing. If we run with
279   // -fdelayed-template-parsing we try adding the newly created decl to the
280   // active PTU which causes an assert.
281   std::vector<const char *> Args = {"-fno-delayed-template-parsing"};
282   std::unique_ptr<Interpreter> Interp = createInterpreter(Args);
283 
284   llvm::cantFail(Interp->Parse("extern \"C\" int printf(const char*,...);"
285                                "class A {};"
286                                "struct B {"
287                                "  template<typename T>"
288                                "  static int callme(T) { return 42; }"
289                                "};"));
290   auto &PTU = llvm::cantFail(Interp->Parse("auto _t = &B::callme<A*>;"));
291   auto PTUDeclRange = PTU.TUPart->decls();
292   EXPECT_EQ(1, std::distance(PTUDeclRange.begin(), PTUDeclRange.end()));
293 
294   // We cannot execute on the platform.
295   if (!HostSupportsJit()) {
296     return;
297   }
298 
299   // Lower the PTU
300   if (llvm::Error Err = Interp->Execute(PTU)) {
301     // We cannot execute on the platform.
302     consumeError(std::move(Err));
303     return;
304   }
305 
306   TypeDecl *TD = cast<TypeDecl>(LookupSingleName(*Interp, "A"));
307   Value NewA = AllocateObject(TD, *Interp);
308 
309   // Find back the template specialization
310   VarDecl *VD = static_cast<VarDecl *>(*PTUDeclRange.begin());
311   UnaryOperator *UO = llvm::cast<UnaryOperator>(VD->getInit());
312   NamedDecl *TmpltSpec = llvm::cast<DeclRefExpr>(UO->getSubExpr())->getDecl();
313 
314   std::string MangledName = MangleName(TmpltSpec);
315   typedef int (*TemplateSpecFn)(void *);
316   auto fn =
317       cantFail(Interp->getSymbolAddress(MangledName)).toPtr<TemplateSpecFn>();
318   EXPECT_EQ(42, fn(NewA.getPtr()));
319 }
320 
321 #ifdef CLANG_INTERPRETER_NO_SUPPORT_EXEC
322 TEST(InterpreterTest, DISABLED_Value) {
323 #else
324 TEST(InterpreterTest, Value) {
325 #endif
326   // We cannot execute on the platform.
327   if (!HostSupportsJit())
328     return;
329 
330   std::unique_ptr<Interpreter> Interp = createInterpreter();
331 
332   Value V1;
333   llvm::cantFail(Interp->ParseAndExecute("int x = 42;"));
334   llvm::cantFail(Interp->ParseAndExecute("x", &V1));
335   EXPECT_TRUE(V1.isValid());
336   EXPECT_TRUE(V1.hasValue());
337   EXPECT_EQ(V1.getInt(), 42);
338   EXPECT_EQ(V1.convertTo<int>(), 42);
339   EXPECT_TRUE(V1.getType()->isIntegerType());
340   EXPECT_EQ(V1.getKind(), Value::K_Int);
341   EXPECT_FALSE(V1.isManuallyAlloc());
342 
343   Value V2;
344   llvm::cantFail(Interp->ParseAndExecute("double y = 3.14;"));
345   llvm::cantFail(Interp->ParseAndExecute("y", &V2));
346   EXPECT_TRUE(V2.isValid());
347   EXPECT_TRUE(V2.hasValue());
348   EXPECT_EQ(V2.getDouble(), 3.14);
349   EXPECT_EQ(V2.convertTo<double>(), 3.14);
350   EXPECT_TRUE(V2.getType()->isFloatingType());
351   EXPECT_EQ(V2.getKind(), Value::K_Double);
352   EXPECT_FALSE(V2.isManuallyAlloc());
353 
354   Value V3;
355   llvm::cantFail(Interp->ParseAndExecute(
356       "struct S { int* p; S() { p = new int(42); } ~S() { delete p; }};"));
357   llvm::cantFail(Interp->ParseAndExecute("S{}", &V3));
358   EXPECT_TRUE(V3.isValid());
359   EXPECT_TRUE(V3.hasValue());
360   EXPECT_TRUE(V3.getType()->isRecordType());
361   EXPECT_EQ(V3.getKind(), Value::K_PtrOrObj);
362   EXPECT_TRUE(V3.isManuallyAlloc());
363 
364   Value V4;
365   llvm::cantFail(Interp->ParseAndExecute("int getGlobal();"));
366   llvm::cantFail(Interp->ParseAndExecute("void setGlobal(int);"));
367   llvm::cantFail(Interp->ParseAndExecute("getGlobal()", &V4));
368   EXPECT_EQ(V4.getInt(), 42);
369   EXPECT_TRUE(V4.getType()->isIntegerType());
370 
371   Value V5;
372   // Change the global from the compiled code.
373   setGlobal(43);
374   llvm::cantFail(Interp->ParseAndExecute("getGlobal()", &V5));
375   EXPECT_EQ(V5.getInt(), 43);
376   EXPECT_TRUE(V5.getType()->isIntegerType());
377 
378   // Change the global from the interpreted code.
379   llvm::cantFail(Interp->ParseAndExecute("setGlobal(44);"));
380   EXPECT_EQ(getGlobal(), 44);
381 
382   Value V6;
383   llvm::cantFail(Interp->ParseAndExecute("void foo() {}"));
384   llvm::cantFail(Interp->ParseAndExecute("foo()", &V6));
385   EXPECT_TRUE(V6.isValid());
386   EXPECT_FALSE(V6.hasValue());
387   EXPECT_TRUE(V6.getType()->isVoidType());
388   EXPECT_EQ(V6.getKind(), Value::K_Void);
389   EXPECT_FALSE(V2.isManuallyAlloc());
390 
391   Value V7;
392   llvm::cantFail(Interp->ParseAndExecute("foo", &V7));
393   EXPECT_TRUE(V7.isValid());
394   EXPECT_TRUE(V7.hasValue());
395   EXPECT_TRUE(V7.getType()->isFunctionProtoType());
396   EXPECT_EQ(V7.getKind(), Value::K_PtrOrObj);
397   EXPECT_FALSE(V7.isManuallyAlloc());
398 
399   Value V8;
400   llvm::cantFail(Interp->ParseAndExecute("struct SS{ void f() {} };"));
401   llvm::cantFail(Interp->ParseAndExecute("&SS::f", &V8));
402   EXPECT_TRUE(V8.isValid());
403   EXPECT_TRUE(V8.hasValue());
404   EXPECT_TRUE(V8.getType()->isMemberFunctionPointerType());
405   EXPECT_EQ(V8.getKind(), Value::K_PtrOrObj);
406   EXPECT_TRUE(V8.isManuallyAlloc());
407 
408   Value V9;
409   llvm::cantFail(Interp->ParseAndExecute("struct A { virtual int f(); };"));
410   llvm::cantFail(
411       Interp->ParseAndExecute("struct B : A { int f() { return 42; }};"));
412   llvm::cantFail(Interp->ParseAndExecute("int (B::*ptr)() = &B::f;"));
413   llvm::cantFail(Interp->ParseAndExecute("ptr", &V9));
414   EXPECT_TRUE(V9.isValid());
415   EXPECT_TRUE(V9.hasValue());
416   EXPECT_TRUE(V9.getType()->isMemberFunctionPointerType());
417   EXPECT_EQ(V9.getKind(), Value::K_PtrOrObj);
418   EXPECT_TRUE(V9.isManuallyAlloc());
419 }
420 } // end anonymous namespace
421