xref: /llvm-project/clang/lib/Tooling/Syntax/BuildTree.cpp (revision e159a3ced4c54b539c165b1cc26424fa0b34d53e)
1 //===- BuildTree.cpp ------------------------------------------*- C++ -*-=====//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 #include "clang/Tooling/Syntax/BuildTree.h"
9 #include "clang/AST/ASTFwd.h"
10 #include "clang/AST/Decl.h"
11 #include "clang/AST/DeclBase.h"
12 #include "clang/AST/DeclCXX.h"
13 #include "clang/AST/DeclarationName.h"
14 #include "clang/AST/Expr.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/AST/IgnoreExpr.h"
17 #include "clang/AST/OperationKinds.h"
18 #include "clang/AST/RecursiveASTVisitor.h"
19 #include "clang/AST/Stmt.h"
20 #include "clang/AST/TypeLoc.h"
21 #include "clang/AST/TypeLocVisitor.h"
22 #include "clang/Basic/LLVM.h"
23 #include "clang/Basic/SourceLocation.h"
24 #include "clang/Basic/SourceManager.h"
25 #include "clang/Basic/Specifiers.h"
26 #include "clang/Basic/TokenKinds.h"
27 #include "clang/Lex/Lexer.h"
28 #include "clang/Lex/LiteralSupport.h"
29 #include "clang/Tooling/Syntax/Nodes.h"
30 #include "clang/Tooling/Syntax/Tokens.h"
31 #include "clang/Tooling/Syntax/Tree.h"
32 #include "llvm/ADT/ArrayRef.h"
33 #include "llvm/ADT/DenseMap.h"
34 #include "llvm/ADT/PointerUnion.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include "llvm/ADT/ScopeExit.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/Support/Allocator.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/FormatVariadic.h"
42 #include "llvm/Support/MemoryBuffer.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include <cstddef>
45 #include <map>
46 
47 using namespace clang;
48 
49 // Ignores the implicit `CXXConstructExpr` for copy/move constructor calls
50 // generated by the compiler, as well as in implicit conversions like the one
51 // wrapping `1` in `X x = 1;`.
52 static Expr *IgnoreImplicitConstructorSingleStep(Expr *E) {
53   if (auto *C = dyn_cast<CXXConstructExpr>(E)) {
54     auto NumArgs = C->getNumArgs();
55     if (NumArgs == 1 || (NumArgs > 1 && isa<CXXDefaultArgExpr>(C->getArg(1)))) {
56       Expr *A = C->getArg(0);
57       if (C->getParenOrBraceRange().isInvalid())
58         return A;
59     }
60   }
61   return E;
62 }
63 
64 // In:
65 // struct X {
66 //   X(int)
67 // };
68 // X x = X(1);
69 // Ignores the implicit `CXXFunctionalCastExpr` that wraps
70 // `CXXConstructExpr X(1)`.
71 static Expr *IgnoreCXXFunctionalCastExprWrappingConstructor(Expr *E) {
72   if (auto *F = dyn_cast<CXXFunctionalCastExpr>(E)) {
73     if (F->getCastKind() == CK_ConstructorConversion)
74       return F->getSubExpr();
75   }
76   return E;
77 }
78 
79 static Expr *IgnoreImplicit(Expr *E) {
80   return IgnoreExprNodes(E, IgnoreImplicitSingleStep,
81                          IgnoreImplicitConstructorSingleStep,
82                          IgnoreCXXFunctionalCastExprWrappingConstructor);
83 }
84 
85 LLVM_ATTRIBUTE_UNUSED
86 static bool isImplicitExpr(Expr *E) { return IgnoreImplicit(E) != E; }
87 
88 namespace {
89 /// Get start location of the Declarator from the TypeLoc.
90 /// E.g.:
91 ///   loc of `(` in `int (a)`
92 ///   loc of `*` in `int *(a)`
93 ///   loc of the first `(` in `int (*a)(int)`
94 ///   loc of the `*` in `int *(a)(int)`
95 ///   loc of the first `*` in `const int *const *volatile a;`
96 ///
97 /// It is non-trivial to get the start location because TypeLocs are stored
98 /// inside out. In the example above `*volatile` is the TypeLoc returned
99 /// by `Decl.getTypeSourceInfo()`, and `*const` is what `.getPointeeLoc()`
100 /// returns.
101 struct GetStartLoc : TypeLocVisitor<GetStartLoc, SourceLocation> {
102   SourceLocation VisitParenTypeLoc(ParenTypeLoc T) {
103     auto L = Visit(T.getInnerLoc());
104     if (L.isValid())
105       return L;
106     return T.getLParenLoc();
107   }
108 
109   // Types spelled in the prefix part of the declarator.
110   SourceLocation VisitPointerTypeLoc(PointerTypeLoc T) {
111     return HandlePointer(T);
112   }
113 
114   SourceLocation VisitMemberPointerTypeLoc(MemberPointerTypeLoc T) {
115     return HandlePointer(T);
116   }
117 
118   SourceLocation VisitBlockPointerTypeLoc(BlockPointerTypeLoc T) {
119     return HandlePointer(T);
120   }
121 
122   SourceLocation VisitReferenceTypeLoc(ReferenceTypeLoc T) {
123     return HandlePointer(T);
124   }
125 
126   SourceLocation VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc T) {
127     return HandlePointer(T);
128   }
129 
130   // All other cases are not important, as they are either part of declaration
131   // specifiers (e.g. inheritors of TypeSpecTypeLoc) or introduce modifiers on
132   // existing declarators (e.g. QualifiedTypeLoc). They cannot start the
133   // declarator themselves, but their underlying type can.
134   SourceLocation VisitTypeLoc(TypeLoc T) {
135     auto N = T.getNextTypeLoc();
136     if (!N)
137       return SourceLocation();
138     return Visit(N);
139   }
140 
141   SourceLocation VisitFunctionProtoTypeLoc(FunctionProtoTypeLoc T) {
142     if (T.getTypePtr()->hasTrailingReturn())
143       return SourceLocation(); // avoid recursing into the suffix of declarator.
144     return VisitTypeLoc(T);
145   }
146 
147 private:
148   template <class PtrLoc> SourceLocation HandlePointer(PtrLoc T) {
149     auto L = Visit(T.getPointeeLoc());
150     if (L.isValid())
151       return L;
152     return T.getLocalSourceRange().getBegin();
153   }
154 };
155 } // namespace
156 
157 static CallExpr::arg_range dropDefaultArgs(CallExpr::arg_range Args) {
158   auto FirstDefaultArg = std::find_if(Args.begin(), Args.end(), [](auto It) {
159     return isa<CXXDefaultArgExpr>(It);
160   });
161   return llvm::make_range(Args.begin(), FirstDefaultArg);
162 }
163 
164 static syntax::NodeKind getOperatorNodeKind(const CXXOperatorCallExpr &E) {
165   switch (E.getOperator()) {
166   // Comparison
167   case OO_EqualEqual:
168   case OO_ExclaimEqual:
169   case OO_Greater:
170   case OO_GreaterEqual:
171   case OO_Less:
172   case OO_LessEqual:
173   case OO_Spaceship:
174   // Assignment
175   case OO_Equal:
176   case OO_SlashEqual:
177   case OO_PercentEqual:
178   case OO_CaretEqual:
179   case OO_PipeEqual:
180   case OO_LessLessEqual:
181   case OO_GreaterGreaterEqual:
182   case OO_PlusEqual:
183   case OO_MinusEqual:
184   case OO_StarEqual:
185   case OO_AmpEqual:
186   // Binary computation
187   case OO_Slash:
188   case OO_Percent:
189   case OO_Caret:
190   case OO_Pipe:
191   case OO_LessLess:
192   case OO_GreaterGreater:
193   case OO_AmpAmp:
194   case OO_PipePipe:
195   case OO_ArrowStar:
196   case OO_Comma:
197     return syntax::NodeKind::BinaryOperatorExpression;
198   case OO_Tilde:
199   case OO_Exclaim:
200     return syntax::NodeKind::PrefixUnaryOperatorExpression;
201   // Prefix/Postfix increment/decrement
202   case OO_PlusPlus:
203   case OO_MinusMinus:
204     switch (E.getNumArgs()) {
205     case 1:
206       return syntax::NodeKind::PrefixUnaryOperatorExpression;
207     case 2:
208       return syntax::NodeKind::PostfixUnaryOperatorExpression;
209     default:
210       llvm_unreachable("Invalid number of arguments for operator");
211     }
212   // Operators that can be unary or binary
213   case OO_Plus:
214   case OO_Minus:
215   case OO_Star:
216   case OO_Amp:
217     switch (E.getNumArgs()) {
218     case 1:
219       return syntax::NodeKind::PrefixUnaryOperatorExpression;
220     case 2:
221       return syntax::NodeKind::BinaryOperatorExpression;
222     default:
223       llvm_unreachable("Invalid number of arguments for operator");
224     }
225     return syntax::NodeKind::BinaryOperatorExpression;
226   // Not yet supported by SyntaxTree
227   case OO_New:
228   case OO_Delete:
229   case OO_Array_New:
230   case OO_Array_Delete:
231   case OO_Coawait:
232   case OO_Subscript:
233   case OO_Arrow:
234     return syntax::NodeKind::UnknownExpression;
235   case OO_Call:
236     return syntax::NodeKind::CallExpression;
237   case OO_Conditional: // not overloadable
238   case NUM_OVERLOADED_OPERATORS:
239   case OO_None:
240     llvm_unreachable("Not an overloadable operator");
241   }
242   llvm_unreachable("Unknown OverloadedOperatorKind enum");
243 }
244 
245 /// Get the start of the qualified name. In the examples below it gives the
246 /// location of the `^`:
247 ///     `int ^a;`
248 ///     `int *^a;`
249 ///     `int ^a::S::f(){}`
250 static SourceLocation getQualifiedNameStart(NamedDecl *D) {
251   assert((isa<DeclaratorDecl, TypedefNameDecl>(D)) &&
252          "only DeclaratorDecl and TypedefNameDecl are supported.");
253 
254   auto DN = D->getDeclName();
255   bool IsAnonymous = DN.isIdentifier() && !DN.getAsIdentifierInfo();
256   if (IsAnonymous)
257     return SourceLocation();
258 
259   if (const auto *DD = dyn_cast<DeclaratorDecl>(D)) {
260     if (DD->getQualifierLoc()) {
261       return DD->getQualifierLoc().getBeginLoc();
262     }
263   }
264 
265   return D->getLocation();
266 }
267 
268 /// Gets the range of the initializer inside an init-declarator C++ [dcl.decl].
269 ///     `int a;` -> range of ``,
270 ///     `int *a = nullptr` -> range of `= nullptr`.
271 ///     `int a{}` -> range of `{}`.
272 ///     `int a()` -> range of `()`.
273 static SourceRange getInitializerRange(Decl *D) {
274   if (auto *V = dyn_cast<VarDecl>(D)) {
275     auto *I = V->getInit();
276     // Initializers in range-based-for are not part of the declarator
277     if (I && !V->isCXXForRangeDecl())
278       return I->getSourceRange();
279   }
280 
281   return SourceRange();
282 }
283 
284 /// Gets the range of declarator as defined by the C++ grammar. E.g.
285 ///     `int a;` -> range of `a`,
286 ///     `int *a;` -> range of `*a`,
287 ///     `int a[10];` -> range of `a[10]`,
288 ///     `int a[1][2][3];` -> range of `a[1][2][3]`,
289 ///     `int *a = nullptr` -> range of `*a = nullptr`.
290 ///     `int S::f(){}` -> range of `S::f()`.
291 /// FIXME: \p Name must be a source range.
292 static SourceRange getDeclaratorRange(const SourceManager &SM, TypeLoc T,
293                                       SourceLocation Name,
294                                       SourceRange Initializer) {
295   SourceLocation Start = GetStartLoc().Visit(T);
296   SourceLocation End = T.getEndLoc();
297   if (Name.isValid()) {
298     if (Start.isInvalid())
299       Start = Name;
300     // End of TypeLoc could be invalid if the type is invalid, fallback to the
301     // NameLoc.
302     if (End.isInvalid() || SM.isBeforeInTranslationUnit(End, Name))
303       End = Name;
304   }
305   if (Initializer.isValid()) {
306     auto InitializerEnd = Initializer.getEnd();
307     assert(SM.isBeforeInTranslationUnit(End, InitializerEnd) ||
308            End == InitializerEnd);
309     End = InitializerEnd;
310   }
311   return SourceRange(Start, End);
312 }
313 
314 namespace {
315 /// All AST hierarchy roots that can be represented as pointers.
316 using ASTPtr = llvm::PointerUnion<Stmt *, Decl *>;
317 /// Maintains a mapping from AST to syntax tree nodes. This class will get more
318 /// complicated as we support more kinds of AST nodes, e.g. TypeLocs.
319 /// FIXME: expose this as public API.
320 class ASTToSyntaxMapping {
321 public:
322   void add(ASTPtr From, syntax::Tree *To) {
323     assert(To != nullptr);
324     assert(!From.isNull());
325 
326     bool Added = Nodes.insert({From, To}).second;
327     (void)Added;
328     assert(Added && "mapping added twice");
329   }
330 
331   void add(NestedNameSpecifierLoc From, syntax::Tree *To) {
332     assert(To != nullptr);
333     assert(From.hasQualifier());
334 
335     bool Added = NNSNodes.insert({From, To}).second;
336     (void)Added;
337     assert(Added && "mapping added twice");
338   }
339 
340   syntax::Tree *find(ASTPtr P) const { return Nodes.lookup(P); }
341 
342   syntax::Tree *find(NestedNameSpecifierLoc P) const {
343     return NNSNodes.lookup(P);
344   }
345 
346 private:
347   llvm::DenseMap<ASTPtr, syntax::Tree *> Nodes;
348   llvm::DenseMap<NestedNameSpecifierLoc, syntax::Tree *> NNSNodes;
349 };
350 } // namespace
351 
352 /// A helper class for constructing the syntax tree while traversing a clang
353 /// AST.
354 ///
355 /// At each point of the traversal we maintain a list of pending nodes.
356 /// Initially all tokens are added as pending nodes. When processing a clang AST
357 /// node, the clients need to:
358 ///   - create a corresponding syntax node,
359 ///   - assign roles to all pending child nodes with 'markChild' and
360 ///     'markChildToken',
361 ///   - replace the child nodes with the new syntax node in the pending list
362 ///     with 'foldNode'.
363 ///
364 /// Note that all children are expected to be processed when building a node.
365 ///
366 /// Call finalize() to finish building the tree and consume the root node.
367 class syntax::TreeBuilder {
368 public:
369   TreeBuilder(syntax::Arena &Arena) : Arena(Arena), Pending(Arena) {
370     for (const auto &T : Arena.getTokenBuffer().expandedTokens())
371       LocationToToken.insert({T.location(), &T});
372   }
373 
374   llvm::BumpPtrAllocator &allocator() { return Arena.getAllocator(); }
375   const SourceManager &sourceManager() const {
376     return Arena.getSourceManager();
377   }
378 
379   /// Populate children for \p New node, assuming it covers tokens from \p
380   /// Range.
381   void foldNode(ArrayRef<syntax::Token> Range, syntax::Tree *New, ASTPtr From) {
382     assert(New);
383     Pending.foldChildren(Arena, Range, New);
384     if (From)
385       Mapping.add(From, New);
386   }
387 
388   void foldNode(ArrayRef<syntax::Token> Range, syntax::Tree *New, TypeLoc L) {
389     // FIXME: add mapping for TypeLocs
390     foldNode(Range, New, nullptr);
391   }
392 
393   void foldNode(llvm::ArrayRef<syntax::Token> Range, syntax::Tree *New,
394                 NestedNameSpecifierLoc From) {
395     assert(New);
396     Pending.foldChildren(Arena, Range, New);
397     if (From)
398       Mapping.add(From, New);
399   }
400 
401   /// Populate children for \p New list, assuming it covers tokens from a
402   /// subrange of \p SuperRange.
403   void foldList(ArrayRef<syntax::Token> SuperRange, syntax::List *New,
404                 ASTPtr From) {
405     assert(New);
406     auto ListRange = Pending.shrinkToFitList(SuperRange);
407     Pending.foldChildren(Arena, ListRange, New);
408     if (From)
409       Mapping.add(From, New);
410   }
411 
412   /// Notifies that we should not consume trailing semicolon when computing
413   /// token range of \p D.
414   void noticeDeclWithoutSemicolon(Decl *D);
415 
416   /// Mark the \p Child node with a corresponding \p Role. All marked children
417   /// should be consumed by foldNode.
418   /// When called on expressions (clang::Expr is derived from clang::Stmt),
419   /// wraps expressions into expression statement.
420   void markStmtChild(Stmt *Child, NodeRole Role);
421   /// Should be called for expressions in non-statement position to avoid
422   /// wrapping into expression statement.
423   void markExprChild(Expr *Child, NodeRole Role);
424   /// Set role for a token starting at \p Loc.
425   void markChildToken(SourceLocation Loc, NodeRole R);
426   /// Set role for \p T.
427   void markChildToken(const syntax::Token *T, NodeRole R);
428 
429   /// Set role for \p N.
430   void markChild(syntax::Node *N, NodeRole R);
431   /// Set role for the syntax node matching \p N.
432   void markChild(ASTPtr N, NodeRole R);
433   /// Set role for the syntax node matching \p N.
434   void markChild(NestedNameSpecifierLoc N, NodeRole R);
435 
436   /// Finish building the tree and consume the root node.
437   syntax::TranslationUnit *finalize() && {
438     auto Tokens = Arena.getTokenBuffer().expandedTokens();
439     assert(!Tokens.empty());
440     assert(Tokens.back().kind() == tok::eof);
441 
442     // Build the root of the tree, consuming all the children.
443     Pending.foldChildren(Arena, Tokens.drop_back(),
444                          new (Arena.getAllocator()) syntax::TranslationUnit);
445 
446     auto *TU = cast<syntax::TranslationUnit>(std::move(Pending).finalize());
447     TU->assertInvariantsRecursive();
448     return TU;
449   }
450 
451   /// Finds a token starting at \p L. The token must exist if \p L is valid.
452   const syntax::Token *findToken(SourceLocation L) const;
453 
454   /// Finds the syntax tokens corresponding to the \p SourceRange.
455   ArrayRef<syntax::Token> getRange(SourceRange Range) const {
456     assert(Range.isValid());
457     return getRange(Range.getBegin(), Range.getEnd());
458   }
459 
460   /// Finds the syntax tokens corresponding to the passed source locations.
461   /// \p First is the start position of the first token and \p Last is the start
462   /// position of the last token.
463   ArrayRef<syntax::Token> getRange(SourceLocation First,
464                                    SourceLocation Last) const {
465     assert(First.isValid());
466     assert(Last.isValid());
467     assert(First == Last ||
468            Arena.getSourceManager().isBeforeInTranslationUnit(First, Last));
469     return llvm::makeArrayRef(findToken(First), std::next(findToken(Last)));
470   }
471 
472   ArrayRef<syntax::Token>
473   getTemplateRange(const ClassTemplateSpecializationDecl *D) const {
474     auto Tokens = getRange(D->getSourceRange());
475     return maybeAppendSemicolon(Tokens, D);
476   }
477 
478   /// Returns true if \p D is the last declarator in a chain and is thus
479   /// reponsible for creating SimpleDeclaration for the whole chain.
480   bool isResponsibleForCreatingDeclaration(const Decl *D) const {
481     assert((isa<DeclaratorDecl, TypedefNameDecl>(D)) &&
482            "only DeclaratorDecl and TypedefNameDecl are supported.");
483 
484     const Decl *Next = D->getNextDeclInContext();
485 
486     // There's no next sibling, this one is responsible.
487     if (Next == nullptr) {
488       return true;
489     }
490 
491     // Next sibling is not the same type, this one is responsible.
492     if (D->getKind() != Next->getKind()) {
493       return true;
494     }
495     // Next sibling doesn't begin at the same loc, it must be a different
496     // declaration, so this declarator is responsible.
497     if (Next->getBeginLoc() != D->getBeginLoc()) {
498       return true;
499     }
500 
501     // NextT is a member of the same declaration, and we need the last member to
502     // create declaration. This one is not responsible.
503     return false;
504   }
505 
506   ArrayRef<syntax::Token> getDeclarationRange(Decl *D) {
507     ArrayRef<syntax::Token> Tokens;
508     // We want to drop the template parameters for specializations.
509     if (const auto *S = dyn_cast<TagDecl>(D))
510       Tokens = getRange(S->TypeDecl::getBeginLoc(), S->getEndLoc());
511     else
512       Tokens = getRange(D->getSourceRange());
513     return maybeAppendSemicolon(Tokens, D);
514   }
515 
516   ArrayRef<syntax::Token> getExprRange(const Expr *E) const {
517     return getRange(E->getSourceRange());
518   }
519 
520   /// Find the adjusted range for the statement, consuming the trailing
521   /// semicolon when needed.
522   ArrayRef<syntax::Token> getStmtRange(const Stmt *S) const {
523     auto Tokens = getRange(S->getSourceRange());
524     if (isa<CompoundStmt>(S))
525       return Tokens;
526 
527     // Some statements miss a trailing semicolon, e.g. 'return', 'continue' and
528     // all statements that end with those. Consume this semicolon here.
529     if (Tokens.back().kind() == tok::semi)
530       return Tokens;
531     return withTrailingSemicolon(Tokens);
532   }
533 
534 private:
535   ArrayRef<syntax::Token> maybeAppendSemicolon(ArrayRef<syntax::Token> Tokens,
536                                                const Decl *D) const {
537     if (isa<NamespaceDecl>(D))
538       return Tokens;
539     if (DeclsWithoutSemicolons.count(D))
540       return Tokens;
541     // FIXME: do not consume trailing semicolon on function definitions.
542     // Most declarations own a semicolon in syntax trees, but not in clang AST.
543     return withTrailingSemicolon(Tokens);
544   }
545 
546   ArrayRef<syntax::Token>
547   withTrailingSemicolon(ArrayRef<syntax::Token> Tokens) const {
548     assert(!Tokens.empty());
549     assert(Tokens.back().kind() != tok::eof);
550     // We never consume 'eof', so looking at the next token is ok.
551     if (Tokens.back().kind() != tok::semi && Tokens.end()->kind() == tok::semi)
552       return llvm::makeArrayRef(Tokens.begin(), Tokens.end() + 1);
553     return Tokens;
554   }
555 
556   void setRole(syntax::Node *N, NodeRole R) {
557     assert(N->getRole() == NodeRole::Detached);
558     N->setRole(R);
559   }
560 
561   /// A collection of trees covering the input tokens.
562   /// When created, each tree corresponds to a single token in the file.
563   /// Clients call 'foldChildren' to attach one or more subtrees to a parent
564   /// node and update the list of trees accordingly.
565   ///
566   /// Ensures that added nodes properly nest and cover the whole token stream.
567   struct Forest {
568     Forest(syntax::Arena &A) {
569       assert(!A.getTokenBuffer().expandedTokens().empty());
570       assert(A.getTokenBuffer().expandedTokens().back().kind() == tok::eof);
571       // Create all leaf nodes.
572       // Note that we do not have 'eof' in the tree.
573       for (const auto &T : A.getTokenBuffer().expandedTokens().drop_back()) {
574         auto *L = new (A.getAllocator()) syntax::Leaf(&T);
575         L->Original = true;
576         L->CanModify = A.getTokenBuffer().spelledForExpanded(T).hasValue();
577         Trees.insert(Trees.end(), {&T, L});
578       }
579     }
580 
581     void assignRole(ArrayRef<syntax::Token> Range, syntax::NodeRole Role) {
582       assert(!Range.empty());
583       auto It = Trees.lower_bound(Range.begin());
584       assert(It != Trees.end() && "no node found");
585       assert(It->first == Range.begin() && "no child with the specified range");
586       assert((std::next(It) == Trees.end() ||
587               std::next(It)->first == Range.end()) &&
588              "no child with the specified range");
589       assert(It->second->getRole() == NodeRole::Detached &&
590              "re-assigning role for a child");
591       It->second->setRole(Role);
592     }
593 
594     /// Shrink \p Range to a subrange that only contains tokens of a list.
595     /// List elements and delimiters should already have correct roles.
596     ArrayRef<syntax::Token> shrinkToFitList(ArrayRef<syntax::Token> Range) {
597       auto BeginChildren = Trees.lower_bound(Range.begin());
598       assert((BeginChildren == Trees.end() ||
599               BeginChildren->first == Range.begin()) &&
600              "Range crosses boundaries of existing subtrees");
601 
602       auto EndChildren = Trees.lower_bound(Range.end());
603       assert(
604           (EndChildren == Trees.end() || EndChildren->first == Range.end()) &&
605           "Range crosses boundaries of existing subtrees");
606 
607       auto BelongsToList = [](decltype(Trees)::value_type KV) {
608         auto Role = KV.second->getRole();
609         return Role == syntax::NodeRole::ListElement ||
610                Role == syntax::NodeRole::ListDelimiter;
611       };
612 
613       auto BeginListChildren =
614           std::find_if(BeginChildren, EndChildren, BelongsToList);
615 
616       auto EndListChildren =
617           std::find_if_not(BeginListChildren, EndChildren, BelongsToList);
618 
619       return ArrayRef<syntax::Token>(BeginListChildren->first,
620                                      EndListChildren->first);
621     }
622 
623     /// Add \p Node to the forest and attach child nodes based on \p Tokens.
624     void foldChildren(const syntax::Arena &A, ArrayRef<syntax::Token> Tokens,
625                       syntax::Tree *Node) {
626       // Attach children to `Node`.
627       assert(Node->getFirstChild() == nullptr && "node already has children");
628 
629       auto *FirstToken = Tokens.begin();
630       auto BeginChildren = Trees.lower_bound(FirstToken);
631 
632       assert((BeginChildren == Trees.end() ||
633               BeginChildren->first == FirstToken) &&
634              "fold crosses boundaries of existing subtrees");
635       auto EndChildren = Trees.lower_bound(Tokens.end());
636       assert(
637           (EndChildren == Trees.end() || EndChildren->first == Tokens.end()) &&
638           "fold crosses boundaries of existing subtrees");
639 
640       for (auto It = BeginChildren; It != EndChildren; ++It) {
641         auto *C = It->second;
642         if (C->getRole() == NodeRole::Detached)
643           C->setRole(NodeRole::Unknown);
644         Node->appendChildLowLevel(C);
645       }
646 
647       // Mark that this node came from the AST and is backed by the source code.
648       Node->Original = true;
649       Node->CanModify =
650           A.getTokenBuffer().spelledForExpanded(Tokens).hasValue();
651 
652       Trees.erase(BeginChildren, EndChildren);
653       Trees.insert({FirstToken, Node});
654     }
655 
656     // EXPECTS: all tokens were consumed and are owned by a single root node.
657     syntax::Node *finalize() && {
658       assert(Trees.size() == 1);
659       auto *Root = Trees.begin()->second;
660       Trees = {};
661       return Root;
662     }
663 
664     std::string str(const syntax::Arena &A) const {
665       std::string R;
666       for (auto It = Trees.begin(); It != Trees.end(); ++It) {
667         unsigned CoveredTokens =
668             It != Trees.end()
669                 ? (std::next(It)->first - It->first)
670                 : A.getTokenBuffer().expandedTokens().end() - It->first;
671 
672         R += std::string(
673             formatv("- '{0}' covers '{1}'+{2} tokens\n", It->second->getKind(),
674                     It->first->text(A.getSourceManager()), CoveredTokens));
675         R += It->second->dump(A.getSourceManager());
676       }
677       return R;
678     }
679 
680   private:
681     /// Maps from the start token to a subtree starting at that token.
682     /// Keys in the map are pointers into the array of expanded tokens, so
683     /// pointer order corresponds to the order of preprocessor tokens.
684     std::map<const syntax::Token *, syntax::Node *> Trees;
685   };
686 
687   /// For debugging purposes.
688   std::string str() { return Pending.str(Arena); }
689 
690   syntax::Arena &Arena;
691   /// To quickly find tokens by their start location.
692   llvm::DenseMap<SourceLocation, const syntax::Token *> LocationToToken;
693   Forest Pending;
694   llvm::DenseSet<Decl *> DeclsWithoutSemicolons;
695   ASTToSyntaxMapping Mapping;
696 };
697 
698 namespace {
699 class BuildTreeVisitor : public RecursiveASTVisitor<BuildTreeVisitor> {
700 public:
701   explicit BuildTreeVisitor(ASTContext &Context, syntax::TreeBuilder &Builder)
702       : Builder(Builder), Context(Context) {}
703 
704   bool shouldTraversePostOrder() const { return true; }
705 
706   bool WalkUpFromDeclaratorDecl(DeclaratorDecl *DD) {
707     return processDeclaratorAndDeclaration(DD);
708   }
709 
710   bool WalkUpFromTypedefNameDecl(TypedefNameDecl *TD) {
711     return processDeclaratorAndDeclaration(TD);
712   }
713 
714   bool VisitDecl(Decl *D) {
715     assert(!D->isImplicit());
716     Builder.foldNode(Builder.getDeclarationRange(D),
717                      new (allocator()) syntax::UnknownDeclaration(), D);
718     return true;
719   }
720 
721   // RAV does not call WalkUpFrom* on explicit instantiations, so we have to
722   // override Traverse.
723   // FIXME: make RAV call WalkUpFrom* instead.
724   bool
725   TraverseClassTemplateSpecializationDecl(ClassTemplateSpecializationDecl *C) {
726     if (!RecursiveASTVisitor::TraverseClassTemplateSpecializationDecl(C))
727       return false;
728     if (C->isExplicitSpecialization())
729       return true; // we are only interested in explicit instantiations.
730     auto *Declaration =
731         cast<syntax::SimpleDeclaration>(handleFreeStandingTagDecl(C));
732     foldExplicitTemplateInstantiation(
733         Builder.getTemplateRange(C), Builder.findToken(C->getExternLoc()),
734         Builder.findToken(C->getTemplateKeywordLoc()), Declaration, C);
735     return true;
736   }
737 
738   bool WalkUpFromTemplateDecl(TemplateDecl *S) {
739     foldTemplateDeclaration(
740         Builder.getDeclarationRange(S),
741         Builder.findToken(S->getTemplateParameters()->getTemplateLoc()),
742         Builder.getDeclarationRange(S->getTemplatedDecl()), S);
743     return true;
744   }
745 
746   bool WalkUpFromTagDecl(TagDecl *C) {
747     // FIXME: build the ClassSpecifier node.
748     if (!C->isFreeStanding()) {
749       assert(C->getNumTemplateParameterLists() == 0);
750       return true;
751     }
752     handleFreeStandingTagDecl(C);
753     return true;
754   }
755 
756   syntax::Declaration *handleFreeStandingTagDecl(TagDecl *C) {
757     assert(C->isFreeStanding());
758     // Class is a declaration specifier and needs a spanning declaration node.
759     auto DeclarationRange = Builder.getDeclarationRange(C);
760     syntax::Declaration *Result = new (allocator()) syntax::SimpleDeclaration;
761     Builder.foldNode(DeclarationRange, Result, nullptr);
762 
763     // Build TemplateDeclaration nodes if we had template parameters.
764     auto ConsumeTemplateParameters = [&](const TemplateParameterList &L) {
765       const auto *TemplateKW = Builder.findToken(L.getTemplateLoc());
766       auto R = llvm::makeArrayRef(TemplateKW, DeclarationRange.end());
767       Result =
768           foldTemplateDeclaration(R, TemplateKW, DeclarationRange, nullptr);
769       DeclarationRange = R;
770     };
771     if (auto *S = dyn_cast<ClassTemplatePartialSpecializationDecl>(C))
772       ConsumeTemplateParameters(*S->getTemplateParameters());
773     for (unsigned I = C->getNumTemplateParameterLists(); 0 < I; --I)
774       ConsumeTemplateParameters(*C->getTemplateParameterList(I - 1));
775     return Result;
776   }
777 
778   bool WalkUpFromTranslationUnitDecl(TranslationUnitDecl *TU) {
779     // We do not want to call VisitDecl(), the declaration for translation
780     // unit is built by finalize().
781     return true;
782   }
783 
784   bool WalkUpFromCompoundStmt(CompoundStmt *S) {
785     using NodeRole = syntax::NodeRole;
786 
787     Builder.markChildToken(S->getLBracLoc(), NodeRole::OpenParen);
788     for (auto *Child : S->body())
789       Builder.markStmtChild(Child, NodeRole::Statement);
790     Builder.markChildToken(S->getRBracLoc(), NodeRole::CloseParen);
791 
792     Builder.foldNode(Builder.getStmtRange(S),
793                      new (allocator()) syntax::CompoundStatement, S);
794     return true;
795   }
796 
797   // Some statements are not yet handled by syntax trees.
798   bool WalkUpFromStmt(Stmt *S) {
799     Builder.foldNode(Builder.getStmtRange(S),
800                      new (allocator()) syntax::UnknownStatement, S);
801     return true;
802   }
803 
804   bool TraverseIfStmt(IfStmt *S) {
805     bool Result = [&, this]() {
806       if (S->getInit() && !TraverseStmt(S->getInit())) {
807         return false;
808       }
809       // In cases where the condition is an initialized declaration in a
810       // statement, we want to preserve the declaration and ignore the
811       // implicit condition expression in the syntax tree.
812       if (S->hasVarStorage()) {
813         if (!TraverseStmt(S->getConditionVariableDeclStmt()))
814           return false;
815       } else if (S->getCond() && !TraverseStmt(S->getCond()))
816         return false;
817 
818       if (S->getThen() && !TraverseStmt(S->getThen()))
819         return false;
820       if (S->getElse() && !TraverseStmt(S->getElse()))
821         return false;
822       return true;
823     }();
824     WalkUpFromIfStmt(S);
825     return Result;
826   }
827 
828   bool TraverseCXXForRangeStmt(CXXForRangeStmt *S) {
829     // We override to traverse range initializer as VarDecl.
830     // RAV traverses it as a statement, we produce invalid node kinds in that
831     // case.
832     // FIXME: should do this in RAV instead?
833     bool Result = [&, this]() {
834       if (S->getInit() && !TraverseStmt(S->getInit()))
835         return false;
836       if (S->getLoopVariable() && !TraverseDecl(S->getLoopVariable()))
837         return false;
838       if (S->getRangeInit() && !TraverseStmt(S->getRangeInit()))
839         return false;
840       if (S->getBody() && !TraverseStmt(S->getBody()))
841         return false;
842       return true;
843     }();
844     WalkUpFromCXXForRangeStmt(S);
845     return Result;
846   }
847 
848   bool TraverseStmt(Stmt *S) {
849     if (auto *DS = dyn_cast_or_null<DeclStmt>(S)) {
850       // We want to consume the semicolon, make sure SimpleDeclaration does not.
851       for (auto *D : DS->decls())
852         Builder.noticeDeclWithoutSemicolon(D);
853     } else if (auto *E = dyn_cast_or_null<Expr>(S)) {
854       return RecursiveASTVisitor::TraverseStmt(IgnoreImplicit(E));
855     }
856     return RecursiveASTVisitor::TraverseStmt(S);
857   }
858 
859   // Some expressions are not yet handled by syntax trees.
860   bool WalkUpFromExpr(Expr *E) {
861     assert(!isImplicitExpr(E) && "should be handled by TraverseStmt");
862     Builder.foldNode(Builder.getExprRange(E),
863                      new (allocator()) syntax::UnknownExpression, E);
864     return true;
865   }
866 
867   bool TraverseUserDefinedLiteral(UserDefinedLiteral *S) {
868     // The semantic AST node `UserDefinedLiteral` (UDL) may have one child node
869     // referencing the location of the UDL suffix (`_w` in `1.2_w`). The
870     // UDL suffix location does not point to the beginning of a token, so we
871     // can't represent the UDL suffix as a separate syntax tree node.
872 
873     return WalkUpFromUserDefinedLiteral(S);
874   }
875 
876   syntax::UserDefinedLiteralExpression *
877   buildUserDefinedLiteral(UserDefinedLiteral *S) {
878     switch (S->getLiteralOperatorKind()) {
879     case UserDefinedLiteral::LOK_Integer:
880       return new (allocator()) syntax::IntegerUserDefinedLiteralExpression;
881     case UserDefinedLiteral::LOK_Floating:
882       return new (allocator()) syntax::FloatUserDefinedLiteralExpression;
883     case UserDefinedLiteral::LOK_Character:
884       return new (allocator()) syntax::CharUserDefinedLiteralExpression;
885     case UserDefinedLiteral::LOK_String:
886       return new (allocator()) syntax::StringUserDefinedLiteralExpression;
887     case UserDefinedLiteral::LOK_Raw:
888     case UserDefinedLiteral::LOK_Template:
889       // For raw literal operator and numeric literal operator template we
890       // cannot get the type of the operand in the semantic AST. We get this
891       // information from the token. As integer and floating point have the same
892       // token kind, we run `NumericLiteralParser` again to distinguish them.
893       auto TokLoc = S->getBeginLoc();
894       auto TokSpelling =
895           Builder.findToken(TokLoc)->text(Context.getSourceManager());
896       auto Literal =
897           NumericLiteralParser(TokSpelling, TokLoc, Context.getSourceManager(),
898                                Context.getLangOpts(), Context.getTargetInfo(),
899                                Context.getDiagnostics());
900       if (Literal.isIntegerLiteral())
901         return new (allocator()) syntax::IntegerUserDefinedLiteralExpression;
902       else {
903         assert(Literal.isFloatingLiteral());
904         return new (allocator()) syntax::FloatUserDefinedLiteralExpression;
905       }
906     }
907     llvm_unreachable("Unknown literal operator kind.");
908   }
909 
910   bool WalkUpFromUserDefinedLiteral(UserDefinedLiteral *S) {
911     Builder.markChildToken(S->getBeginLoc(), syntax::NodeRole::LiteralToken);
912     Builder.foldNode(Builder.getExprRange(S), buildUserDefinedLiteral(S), S);
913     return true;
914   }
915 
916   // FIXME: Fix `NestedNameSpecifierLoc::getLocalSourceRange` for the
917   // `DependentTemplateSpecializationType` case.
918   /// Given a nested-name-specifier return the range for the last name
919   /// specifier.
920   ///
921   /// e.g. `std::T::template X<U>::` => `template X<U>::`
922   SourceRange getLocalSourceRange(const NestedNameSpecifierLoc &NNSLoc) {
923     auto SR = NNSLoc.getLocalSourceRange();
924 
925     // The method `NestedNameSpecifierLoc::getLocalSourceRange` *should*
926     // return the desired `SourceRange`, but there is a corner case. For a
927     // `DependentTemplateSpecializationType` this method returns its
928     // qualifiers as well, in other words in the example above this method
929     // returns `T::template X<U>::` instead of only `template X<U>::`
930     if (auto TL = NNSLoc.getTypeLoc()) {
931       if (auto DependentTL =
932               TL.getAs<DependentTemplateSpecializationTypeLoc>()) {
933         // The 'template' keyword is always present in dependent template
934         // specializations. Except in the case of incorrect code
935         // TODO: Treat the case of incorrect code.
936         SR.setBegin(DependentTL.getTemplateKeywordLoc());
937       }
938     }
939 
940     return SR;
941   }
942 
943   syntax::NodeKind getNameSpecifierKind(const NestedNameSpecifier &NNS) {
944     switch (NNS.getKind()) {
945     case NestedNameSpecifier::Global:
946       return syntax::NodeKind::GlobalNameSpecifier;
947     case NestedNameSpecifier::Namespace:
948     case NestedNameSpecifier::NamespaceAlias:
949     case NestedNameSpecifier::Identifier:
950       return syntax::NodeKind::IdentifierNameSpecifier;
951     case NestedNameSpecifier::TypeSpecWithTemplate:
952       return syntax::NodeKind::SimpleTemplateNameSpecifier;
953     case NestedNameSpecifier::TypeSpec: {
954       const auto *NNSType = NNS.getAsType();
955       assert(NNSType);
956       if (isa<DecltypeType>(NNSType))
957         return syntax::NodeKind::DecltypeNameSpecifier;
958       if (isa<TemplateSpecializationType, DependentTemplateSpecializationType>(
959               NNSType))
960         return syntax::NodeKind::SimpleTemplateNameSpecifier;
961       return syntax::NodeKind::IdentifierNameSpecifier;
962     }
963     default:
964       // FIXME: Support Microsoft's __super
965       llvm::report_fatal_error("We don't yet support the __super specifier",
966                                true);
967     }
968   }
969 
970   syntax::NameSpecifier *
971   buildNameSpecifier(const NestedNameSpecifierLoc &NNSLoc) {
972     assert(NNSLoc.hasQualifier());
973     auto NameSpecifierTokens =
974         Builder.getRange(getLocalSourceRange(NNSLoc)).drop_back();
975     switch (getNameSpecifierKind(*NNSLoc.getNestedNameSpecifier())) {
976     case syntax::NodeKind::GlobalNameSpecifier:
977       return new (allocator()) syntax::GlobalNameSpecifier;
978     case syntax::NodeKind::IdentifierNameSpecifier: {
979       assert(NameSpecifierTokens.size() == 1);
980       Builder.markChildToken(NameSpecifierTokens.begin(),
981                              syntax::NodeRole::Unknown);
982       auto *NS = new (allocator()) syntax::IdentifierNameSpecifier;
983       Builder.foldNode(NameSpecifierTokens, NS, nullptr);
984       return NS;
985     }
986     case syntax::NodeKind::SimpleTemplateNameSpecifier: {
987       // TODO: Build `SimpleTemplateNameSpecifier` children and implement
988       // accessors to them.
989       // Be aware, we cannot do that simply by calling `TraverseTypeLoc`,
990       // some `TypeLoc`s have inside them the previous name specifier and
991       // we want to treat them independently.
992       auto *NS = new (allocator()) syntax::SimpleTemplateNameSpecifier;
993       Builder.foldNode(NameSpecifierTokens, NS, nullptr);
994       return NS;
995     }
996     case syntax::NodeKind::DecltypeNameSpecifier: {
997       const auto TL = NNSLoc.getTypeLoc().castAs<DecltypeTypeLoc>();
998       if (!RecursiveASTVisitor::TraverseDecltypeTypeLoc(TL))
999         return nullptr;
1000       auto *NS = new (allocator()) syntax::DecltypeNameSpecifier;
1001       // TODO: Implement accessor to `DecltypeNameSpecifier` inner
1002       // `DecltypeTypeLoc`.
1003       // For that add mapping from `TypeLoc` to `syntax::Node*` then:
1004       // Builder.markChild(TypeLoc, syntax::NodeRole);
1005       Builder.foldNode(NameSpecifierTokens, NS, nullptr);
1006       return NS;
1007     }
1008     default:
1009       llvm_unreachable("getChildKind() does not return this value");
1010     }
1011   }
1012 
1013   // To build syntax tree nodes for NestedNameSpecifierLoc we override
1014   // Traverse instead of WalkUpFrom because we want to traverse the children
1015   // ourselves and build a list instead of a nested tree of name specifier
1016   // prefixes.
1017   bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc QualifierLoc) {
1018     if (!QualifierLoc)
1019       return true;
1020     for (auto It = QualifierLoc; It; It = It.getPrefix()) {
1021       auto *NS = buildNameSpecifier(It);
1022       if (!NS)
1023         return false;
1024       Builder.markChild(NS, syntax::NodeRole::ListElement);
1025       Builder.markChildToken(It.getEndLoc(), syntax::NodeRole::ListDelimiter);
1026     }
1027     Builder.foldNode(Builder.getRange(QualifierLoc.getSourceRange()),
1028                      new (allocator()) syntax::NestedNameSpecifier,
1029                      QualifierLoc);
1030     return true;
1031   }
1032 
1033   syntax::IdExpression *buildIdExpression(NestedNameSpecifierLoc QualifierLoc,
1034                                           SourceLocation TemplateKeywordLoc,
1035                                           SourceRange UnqualifiedIdLoc,
1036                                           ASTPtr From) {
1037     if (QualifierLoc) {
1038       Builder.markChild(QualifierLoc, syntax::NodeRole::Qualifier);
1039       if (TemplateKeywordLoc.isValid())
1040         Builder.markChildToken(TemplateKeywordLoc,
1041                                syntax::NodeRole::TemplateKeyword);
1042     }
1043 
1044     auto *TheUnqualifiedId = new (allocator()) syntax::UnqualifiedId;
1045     Builder.foldNode(Builder.getRange(UnqualifiedIdLoc), TheUnqualifiedId,
1046                      nullptr);
1047     Builder.markChild(TheUnqualifiedId, syntax::NodeRole::UnqualifiedId);
1048 
1049     auto IdExpressionBeginLoc =
1050         QualifierLoc ? QualifierLoc.getBeginLoc() : UnqualifiedIdLoc.getBegin();
1051 
1052     auto *TheIdExpression = new (allocator()) syntax::IdExpression;
1053     Builder.foldNode(
1054         Builder.getRange(IdExpressionBeginLoc, UnqualifiedIdLoc.getEnd()),
1055         TheIdExpression, From);
1056 
1057     return TheIdExpression;
1058   }
1059 
1060   bool WalkUpFromMemberExpr(MemberExpr *S) {
1061     // For `MemberExpr` with implicit `this->` we generate a simple
1062     // `id-expression` syntax node, beacuse an implicit `member-expression` is
1063     // syntactically undistinguishable from an `id-expression`
1064     if (S->isImplicitAccess()) {
1065       buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(),
1066                         SourceRange(S->getMemberLoc(), S->getEndLoc()), S);
1067       return true;
1068     }
1069 
1070     auto *TheIdExpression = buildIdExpression(
1071         S->getQualifierLoc(), S->getTemplateKeywordLoc(),
1072         SourceRange(S->getMemberLoc(), S->getEndLoc()), nullptr);
1073 
1074     Builder.markChild(TheIdExpression, syntax::NodeRole::Member);
1075 
1076     Builder.markExprChild(S->getBase(), syntax::NodeRole::Object);
1077     Builder.markChildToken(S->getOperatorLoc(), syntax::NodeRole::AccessToken);
1078 
1079     Builder.foldNode(Builder.getExprRange(S),
1080                      new (allocator()) syntax::MemberExpression, S);
1081     return true;
1082   }
1083 
1084   bool WalkUpFromDeclRefExpr(DeclRefExpr *S) {
1085     buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(),
1086                       SourceRange(S->getLocation(), S->getEndLoc()), S);
1087 
1088     return true;
1089   }
1090 
1091   // Same logic as DeclRefExpr.
1092   bool WalkUpFromDependentScopeDeclRefExpr(DependentScopeDeclRefExpr *S) {
1093     buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(),
1094                       SourceRange(S->getLocation(), S->getEndLoc()), S);
1095 
1096     return true;
1097   }
1098 
1099   bool WalkUpFromCXXThisExpr(CXXThisExpr *S) {
1100     if (!S->isImplicit()) {
1101       Builder.markChildToken(S->getLocation(),
1102                              syntax::NodeRole::IntroducerKeyword);
1103       Builder.foldNode(Builder.getExprRange(S),
1104                        new (allocator()) syntax::ThisExpression, S);
1105     }
1106     return true;
1107   }
1108 
1109   bool WalkUpFromParenExpr(ParenExpr *S) {
1110     Builder.markChildToken(S->getLParen(), syntax::NodeRole::OpenParen);
1111     Builder.markExprChild(S->getSubExpr(), syntax::NodeRole::SubExpression);
1112     Builder.markChildToken(S->getRParen(), syntax::NodeRole::CloseParen);
1113     Builder.foldNode(Builder.getExprRange(S),
1114                      new (allocator()) syntax::ParenExpression, S);
1115     return true;
1116   }
1117 
1118   bool WalkUpFromIntegerLiteral(IntegerLiteral *S) {
1119     Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
1120     Builder.foldNode(Builder.getExprRange(S),
1121                      new (allocator()) syntax::IntegerLiteralExpression, S);
1122     return true;
1123   }
1124 
1125   bool WalkUpFromCharacterLiteral(CharacterLiteral *S) {
1126     Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
1127     Builder.foldNode(Builder.getExprRange(S),
1128                      new (allocator()) syntax::CharacterLiteralExpression, S);
1129     return true;
1130   }
1131 
1132   bool WalkUpFromFloatingLiteral(FloatingLiteral *S) {
1133     Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
1134     Builder.foldNode(Builder.getExprRange(S),
1135                      new (allocator()) syntax::FloatingLiteralExpression, S);
1136     return true;
1137   }
1138 
1139   bool WalkUpFromStringLiteral(StringLiteral *S) {
1140     Builder.markChildToken(S->getBeginLoc(), syntax::NodeRole::LiteralToken);
1141     Builder.foldNode(Builder.getExprRange(S),
1142                      new (allocator()) syntax::StringLiteralExpression, S);
1143     return true;
1144   }
1145 
1146   bool WalkUpFromCXXBoolLiteralExpr(CXXBoolLiteralExpr *S) {
1147     Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
1148     Builder.foldNode(Builder.getExprRange(S),
1149                      new (allocator()) syntax::BoolLiteralExpression, S);
1150     return true;
1151   }
1152 
1153   bool WalkUpFromCXXNullPtrLiteralExpr(CXXNullPtrLiteralExpr *S) {
1154     Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
1155     Builder.foldNode(Builder.getExprRange(S),
1156                      new (allocator()) syntax::CxxNullPtrExpression, S);
1157     return true;
1158   }
1159 
1160   bool WalkUpFromUnaryOperator(UnaryOperator *S) {
1161     Builder.markChildToken(S->getOperatorLoc(),
1162                            syntax::NodeRole::OperatorToken);
1163     Builder.markExprChild(S->getSubExpr(), syntax::NodeRole::Operand);
1164 
1165     if (S->isPostfix())
1166       Builder.foldNode(Builder.getExprRange(S),
1167                        new (allocator()) syntax::PostfixUnaryOperatorExpression,
1168                        S);
1169     else
1170       Builder.foldNode(Builder.getExprRange(S),
1171                        new (allocator()) syntax::PrefixUnaryOperatorExpression,
1172                        S);
1173 
1174     return true;
1175   }
1176 
1177   bool WalkUpFromBinaryOperator(BinaryOperator *S) {
1178     Builder.markExprChild(S->getLHS(), syntax::NodeRole::LeftHandSide);
1179     Builder.markChildToken(S->getOperatorLoc(),
1180                            syntax::NodeRole::OperatorToken);
1181     Builder.markExprChild(S->getRHS(), syntax::NodeRole::RightHandSide);
1182     Builder.foldNode(Builder.getExprRange(S),
1183                      new (allocator()) syntax::BinaryOperatorExpression, S);
1184     return true;
1185   }
1186 
1187   /// Builds `CallArguments` syntax node from arguments that appear in source
1188   /// code, i.e. not default arguments.
1189   syntax::CallArguments *
1190   buildCallArguments(CallExpr::arg_range ArgsAndDefaultArgs) {
1191     auto Args = dropDefaultArgs(ArgsAndDefaultArgs);
1192     for (auto *Arg : Args) {
1193       Builder.markExprChild(Arg, syntax::NodeRole::ListElement);
1194       const auto *DelimiterToken =
1195           std::next(Builder.findToken(Arg->getEndLoc()));
1196       if (DelimiterToken->kind() == clang::tok::TokenKind::comma)
1197         Builder.markChildToken(DelimiterToken, syntax::NodeRole::ListDelimiter);
1198     }
1199 
1200     auto *Arguments = new (allocator()) syntax::CallArguments;
1201     if (!Args.empty())
1202       Builder.foldNode(Builder.getRange((*Args.begin())->getBeginLoc(),
1203                                         (*(Args.end() - 1))->getEndLoc()),
1204                        Arguments, nullptr);
1205 
1206     return Arguments;
1207   }
1208 
1209   bool WalkUpFromCallExpr(CallExpr *S) {
1210     Builder.markExprChild(S->getCallee(), syntax::NodeRole::Callee);
1211 
1212     const auto *LParenToken =
1213         std::next(Builder.findToken(S->getCallee()->getEndLoc()));
1214     // FIXME: Assert that `LParenToken` is indeed a `l_paren` once we have fixed
1215     // the test on decltype desctructors.
1216     if (LParenToken->kind() == clang::tok::l_paren)
1217       Builder.markChildToken(LParenToken, syntax::NodeRole::OpenParen);
1218 
1219     Builder.markChild(buildCallArguments(S->arguments()),
1220                       syntax::NodeRole::Arguments);
1221 
1222     Builder.markChildToken(S->getRParenLoc(), syntax::NodeRole::CloseParen);
1223 
1224     Builder.foldNode(Builder.getRange(S->getSourceRange()),
1225                      new (allocator()) syntax::CallExpression, S);
1226     return true;
1227   }
1228 
1229   bool WalkUpFromCXXConstructExpr(CXXConstructExpr *S) {
1230     // Ignore the implicit calls to default constructors.
1231     if ((S->getNumArgs() == 0 || isa<CXXDefaultArgExpr>(S->getArg(0))) &&
1232         S->getParenOrBraceRange().isInvalid())
1233       return true;
1234     return RecursiveASTVisitor::WalkUpFromCXXConstructExpr(S);
1235   }
1236 
1237   bool TraverseCXXOperatorCallExpr(CXXOperatorCallExpr *S) {
1238     // To construct a syntax tree of the same shape for calls to built-in and
1239     // user-defined operators, ignore the `DeclRefExpr` that refers to the
1240     // operator and treat it as a simple token. Do that by traversing
1241     // arguments instead of children.
1242     for (auto *child : S->arguments()) {
1243       // A postfix unary operator is declared as taking two operands. The
1244       // second operand is used to distinguish from its prefix counterpart. In
1245       // the semantic AST this "phantom" operand is represented as a
1246       // `IntegerLiteral` with invalid `SourceLocation`. We skip visiting this
1247       // operand because it does not correspond to anything written in source
1248       // code.
1249       if (child->getSourceRange().isInvalid()) {
1250         assert(getOperatorNodeKind(*S) ==
1251                syntax::NodeKind::PostfixUnaryOperatorExpression);
1252         continue;
1253       }
1254       if (!TraverseStmt(child))
1255         return false;
1256     }
1257     return WalkUpFromCXXOperatorCallExpr(S);
1258   }
1259 
1260   bool WalkUpFromCXXOperatorCallExpr(CXXOperatorCallExpr *S) {
1261     switch (getOperatorNodeKind(*S)) {
1262     case syntax::NodeKind::BinaryOperatorExpression:
1263       Builder.markExprChild(S->getArg(0), syntax::NodeRole::LeftHandSide);
1264       Builder.markChildToken(S->getOperatorLoc(),
1265                              syntax::NodeRole::OperatorToken);
1266       Builder.markExprChild(S->getArg(1), syntax::NodeRole::RightHandSide);
1267       Builder.foldNode(Builder.getExprRange(S),
1268                        new (allocator()) syntax::BinaryOperatorExpression, S);
1269       return true;
1270     case syntax::NodeKind::PrefixUnaryOperatorExpression:
1271       Builder.markChildToken(S->getOperatorLoc(),
1272                              syntax::NodeRole::OperatorToken);
1273       Builder.markExprChild(S->getArg(0), syntax::NodeRole::Operand);
1274       Builder.foldNode(Builder.getExprRange(S),
1275                        new (allocator()) syntax::PrefixUnaryOperatorExpression,
1276                        S);
1277       return true;
1278     case syntax::NodeKind::PostfixUnaryOperatorExpression:
1279       Builder.markChildToken(S->getOperatorLoc(),
1280                              syntax::NodeRole::OperatorToken);
1281       Builder.markExprChild(S->getArg(0), syntax::NodeRole::Operand);
1282       Builder.foldNode(Builder.getExprRange(S),
1283                        new (allocator()) syntax::PostfixUnaryOperatorExpression,
1284                        S);
1285       return true;
1286     case syntax::NodeKind::CallExpression: {
1287       Builder.markExprChild(S->getArg(0), syntax::NodeRole::Callee);
1288 
1289       const auto *LParenToken =
1290           std::next(Builder.findToken(S->getArg(0)->getEndLoc()));
1291       // FIXME: Assert that `LParenToken` is indeed a `l_paren` once we have
1292       // fixed the test on decltype desctructors.
1293       if (LParenToken->kind() == clang::tok::l_paren)
1294         Builder.markChildToken(LParenToken, syntax::NodeRole::OpenParen);
1295 
1296       Builder.markChild(buildCallArguments(CallExpr::arg_range(
1297                             S->arg_begin() + 1, S->arg_end())),
1298                         syntax::NodeRole::Arguments);
1299 
1300       Builder.markChildToken(S->getRParenLoc(), syntax::NodeRole::CloseParen);
1301 
1302       Builder.foldNode(Builder.getRange(S->getSourceRange()),
1303                        new (allocator()) syntax::CallExpression, S);
1304       return true;
1305     }
1306     case syntax::NodeKind::UnknownExpression:
1307       return WalkUpFromExpr(S);
1308     default:
1309       llvm_unreachable("getOperatorNodeKind() does not return this value");
1310     }
1311   }
1312 
1313   bool WalkUpFromCXXDefaultArgExpr(CXXDefaultArgExpr *S) { return true; }
1314 
1315   bool WalkUpFromNamespaceDecl(NamespaceDecl *S) {
1316     auto Tokens = Builder.getDeclarationRange(S);
1317     if (Tokens.front().kind() == tok::coloncolon) {
1318       // Handle nested namespace definitions. Those start at '::' token, e.g.
1319       // namespace a^::b {}
1320       // FIXME: build corresponding nodes for the name of this namespace.
1321       return true;
1322     }
1323     Builder.foldNode(Tokens, new (allocator()) syntax::NamespaceDefinition, S);
1324     return true;
1325   }
1326 
1327   // FIXME: Deleting the `TraverseParenTypeLoc` override doesn't change test
1328   // results. Find test coverage or remove it.
1329   bool TraverseParenTypeLoc(ParenTypeLoc L) {
1330     // We reverse order of traversal to get the proper syntax structure.
1331     if (!WalkUpFromParenTypeLoc(L))
1332       return false;
1333     return TraverseTypeLoc(L.getInnerLoc());
1334   }
1335 
1336   bool WalkUpFromParenTypeLoc(ParenTypeLoc L) {
1337     Builder.markChildToken(L.getLParenLoc(), syntax::NodeRole::OpenParen);
1338     Builder.markChildToken(L.getRParenLoc(), syntax::NodeRole::CloseParen);
1339     Builder.foldNode(Builder.getRange(L.getLParenLoc(), L.getRParenLoc()),
1340                      new (allocator()) syntax::ParenDeclarator, L);
1341     return true;
1342   }
1343 
1344   // Declarator chunks, they are produced by type locs and some clang::Decls.
1345   bool WalkUpFromArrayTypeLoc(ArrayTypeLoc L) {
1346     Builder.markChildToken(L.getLBracketLoc(), syntax::NodeRole::OpenParen);
1347     Builder.markExprChild(L.getSizeExpr(), syntax::NodeRole::Size);
1348     Builder.markChildToken(L.getRBracketLoc(), syntax::NodeRole::CloseParen);
1349     Builder.foldNode(Builder.getRange(L.getLBracketLoc(), L.getRBracketLoc()),
1350                      new (allocator()) syntax::ArraySubscript, L);
1351     return true;
1352   }
1353 
1354   syntax::ParameterDeclarationList *
1355   buildParameterDeclarationList(ArrayRef<ParmVarDecl *> Params) {
1356     for (auto *P : Params) {
1357       Builder.markChild(P, syntax::NodeRole::ListElement);
1358       const auto *DelimiterToken = std::next(Builder.findToken(P->getEndLoc()));
1359       if (DelimiterToken->kind() == clang::tok::TokenKind::comma)
1360         Builder.markChildToken(DelimiterToken, syntax::NodeRole::ListDelimiter);
1361     }
1362     auto *Parameters = new (allocator()) syntax::ParameterDeclarationList;
1363     if (!Params.empty())
1364       Builder.foldNode(Builder.getRange(Params.front()->getBeginLoc(),
1365                                         Params.back()->getEndLoc()),
1366                        Parameters, nullptr);
1367     return Parameters;
1368   }
1369 
1370   bool WalkUpFromFunctionTypeLoc(FunctionTypeLoc L) {
1371     Builder.markChildToken(L.getLParenLoc(), syntax::NodeRole::OpenParen);
1372 
1373     Builder.markChild(buildParameterDeclarationList(L.getParams()),
1374                       syntax::NodeRole::Parameters);
1375 
1376     Builder.markChildToken(L.getRParenLoc(), syntax::NodeRole::CloseParen);
1377     Builder.foldNode(Builder.getRange(L.getLParenLoc(), L.getEndLoc()),
1378                      new (allocator()) syntax::ParametersAndQualifiers, L);
1379     return true;
1380   }
1381 
1382   bool WalkUpFromFunctionProtoTypeLoc(FunctionProtoTypeLoc L) {
1383     if (!L.getTypePtr()->hasTrailingReturn())
1384       return WalkUpFromFunctionTypeLoc(L);
1385 
1386     auto *TrailingReturnTokens = buildTrailingReturn(L);
1387     // Finish building the node for parameters.
1388     Builder.markChild(TrailingReturnTokens, syntax::NodeRole::TrailingReturn);
1389     return WalkUpFromFunctionTypeLoc(L);
1390   }
1391 
1392   bool TraverseMemberPointerTypeLoc(MemberPointerTypeLoc L) {
1393     // In the source code "void (Y::*mp)()" `MemberPointerTypeLoc` corresponds
1394     // to "Y::*" but it points to a `ParenTypeLoc` that corresponds to
1395     // "(Y::*mp)" We thus reverse the order of traversal to get the proper
1396     // syntax structure.
1397     if (!WalkUpFromMemberPointerTypeLoc(L))
1398       return false;
1399     return TraverseTypeLoc(L.getPointeeLoc());
1400   }
1401 
1402   bool WalkUpFromMemberPointerTypeLoc(MemberPointerTypeLoc L) {
1403     auto SR = L.getLocalSourceRange();
1404     Builder.foldNode(Builder.getRange(SR),
1405                      new (allocator()) syntax::MemberPointer, L);
1406     return true;
1407   }
1408 
1409   // The code below is very regular, it could even be generated with some
1410   // preprocessor magic. We merely assign roles to the corresponding children
1411   // and fold resulting nodes.
1412   bool WalkUpFromDeclStmt(DeclStmt *S) {
1413     Builder.foldNode(Builder.getStmtRange(S),
1414                      new (allocator()) syntax::DeclarationStatement, S);
1415     return true;
1416   }
1417 
1418   bool WalkUpFromNullStmt(NullStmt *S) {
1419     Builder.foldNode(Builder.getStmtRange(S),
1420                      new (allocator()) syntax::EmptyStatement, S);
1421     return true;
1422   }
1423 
1424   bool WalkUpFromSwitchStmt(SwitchStmt *S) {
1425     Builder.markChildToken(S->getSwitchLoc(),
1426                            syntax::NodeRole::IntroducerKeyword);
1427     Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
1428     Builder.foldNode(Builder.getStmtRange(S),
1429                      new (allocator()) syntax::SwitchStatement, S);
1430     return true;
1431   }
1432 
1433   bool WalkUpFromCaseStmt(CaseStmt *S) {
1434     Builder.markChildToken(S->getKeywordLoc(),
1435                            syntax::NodeRole::IntroducerKeyword);
1436     Builder.markExprChild(S->getLHS(), syntax::NodeRole::CaseValue);
1437     Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement);
1438     Builder.foldNode(Builder.getStmtRange(S),
1439                      new (allocator()) syntax::CaseStatement, S);
1440     return true;
1441   }
1442 
1443   bool WalkUpFromDefaultStmt(DefaultStmt *S) {
1444     Builder.markChildToken(S->getKeywordLoc(),
1445                            syntax::NodeRole::IntroducerKeyword);
1446     Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement);
1447     Builder.foldNode(Builder.getStmtRange(S),
1448                      new (allocator()) syntax::DefaultStatement, S);
1449     return true;
1450   }
1451 
1452   bool WalkUpFromIfStmt(IfStmt *S) {
1453     Builder.markChildToken(S->getIfLoc(), syntax::NodeRole::IntroducerKeyword);
1454     Stmt *ConditionStatement = S->getCond();
1455     if (S->hasVarStorage())
1456       ConditionStatement = S->getConditionVariableDeclStmt();
1457     Builder.markStmtChild(ConditionStatement, syntax::NodeRole::Condition);
1458     Builder.markStmtChild(S->getThen(), syntax::NodeRole::ThenStatement);
1459     Builder.markChildToken(S->getElseLoc(), syntax::NodeRole::ElseKeyword);
1460     Builder.markStmtChild(S->getElse(), syntax::NodeRole::ElseStatement);
1461     Builder.foldNode(Builder.getStmtRange(S),
1462                      new (allocator()) syntax::IfStatement, S);
1463     return true;
1464   }
1465 
1466   bool WalkUpFromForStmt(ForStmt *S) {
1467     Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword);
1468     Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
1469     Builder.foldNode(Builder.getStmtRange(S),
1470                      new (allocator()) syntax::ForStatement, S);
1471     return true;
1472   }
1473 
1474   bool WalkUpFromWhileStmt(WhileStmt *S) {
1475     Builder.markChildToken(S->getWhileLoc(),
1476                            syntax::NodeRole::IntroducerKeyword);
1477     Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
1478     Builder.foldNode(Builder.getStmtRange(S),
1479                      new (allocator()) syntax::WhileStatement, S);
1480     return true;
1481   }
1482 
1483   bool WalkUpFromContinueStmt(ContinueStmt *S) {
1484     Builder.markChildToken(S->getContinueLoc(),
1485                            syntax::NodeRole::IntroducerKeyword);
1486     Builder.foldNode(Builder.getStmtRange(S),
1487                      new (allocator()) syntax::ContinueStatement, S);
1488     return true;
1489   }
1490 
1491   bool WalkUpFromBreakStmt(BreakStmt *S) {
1492     Builder.markChildToken(S->getBreakLoc(),
1493                            syntax::NodeRole::IntroducerKeyword);
1494     Builder.foldNode(Builder.getStmtRange(S),
1495                      new (allocator()) syntax::BreakStatement, S);
1496     return true;
1497   }
1498 
1499   bool WalkUpFromReturnStmt(ReturnStmt *S) {
1500     Builder.markChildToken(S->getReturnLoc(),
1501                            syntax::NodeRole::IntroducerKeyword);
1502     Builder.markExprChild(S->getRetValue(), syntax::NodeRole::ReturnValue);
1503     Builder.foldNode(Builder.getStmtRange(S),
1504                      new (allocator()) syntax::ReturnStatement, S);
1505     return true;
1506   }
1507 
1508   bool WalkUpFromCXXForRangeStmt(CXXForRangeStmt *S) {
1509     Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword);
1510     Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
1511     Builder.foldNode(Builder.getStmtRange(S),
1512                      new (allocator()) syntax::RangeBasedForStatement, S);
1513     return true;
1514   }
1515 
1516   bool WalkUpFromEmptyDecl(EmptyDecl *S) {
1517     Builder.foldNode(Builder.getDeclarationRange(S),
1518                      new (allocator()) syntax::EmptyDeclaration, S);
1519     return true;
1520   }
1521 
1522   bool WalkUpFromStaticAssertDecl(StaticAssertDecl *S) {
1523     Builder.markExprChild(S->getAssertExpr(), syntax::NodeRole::Condition);
1524     Builder.markExprChild(S->getMessage(), syntax::NodeRole::Message);
1525     Builder.foldNode(Builder.getDeclarationRange(S),
1526                      new (allocator()) syntax::StaticAssertDeclaration, S);
1527     return true;
1528   }
1529 
1530   bool WalkUpFromLinkageSpecDecl(LinkageSpecDecl *S) {
1531     Builder.foldNode(Builder.getDeclarationRange(S),
1532                      new (allocator()) syntax::LinkageSpecificationDeclaration,
1533                      S);
1534     return true;
1535   }
1536 
1537   bool WalkUpFromNamespaceAliasDecl(NamespaceAliasDecl *S) {
1538     Builder.foldNode(Builder.getDeclarationRange(S),
1539                      new (allocator()) syntax::NamespaceAliasDefinition, S);
1540     return true;
1541   }
1542 
1543   bool WalkUpFromUsingDirectiveDecl(UsingDirectiveDecl *S) {
1544     Builder.foldNode(Builder.getDeclarationRange(S),
1545                      new (allocator()) syntax::UsingNamespaceDirective, S);
1546     return true;
1547   }
1548 
1549   bool WalkUpFromUsingDecl(UsingDecl *S) {
1550     Builder.foldNode(Builder.getDeclarationRange(S),
1551                      new (allocator()) syntax::UsingDeclaration, S);
1552     return true;
1553   }
1554 
1555   bool WalkUpFromUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *S) {
1556     Builder.foldNode(Builder.getDeclarationRange(S),
1557                      new (allocator()) syntax::UsingDeclaration, S);
1558     return true;
1559   }
1560 
1561   bool WalkUpFromUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *S) {
1562     Builder.foldNode(Builder.getDeclarationRange(S),
1563                      new (allocator()) syntax::UsingDeclaration, S);
1564     return true;
1565   }
1566 
1567   bool WalkUpFromTypeAliasDecl(TypeAliasDecl *S) {
1568     Builder.foldNode(Builder.getDeclarationRange(S),
1569                      new (allocator()) syntax::TypeAliasDeclaration, S);
1570     return true;
1571   }
1572 
1573 private:
1574   /// Folds SimpleDeclarator node (if present) and in case this is the last
1575   /// declarator in the chain it also folds SimpleDeclaration node.
1576   template <class T> bool processDeclaratorAndDeclaration(T *D) {
1577     auto Range = getDeclaratorRange(
1578         Builder.sourceManager(), D->getTypeSourceInfo()->getTypeLoc(),
1579         getQualifiedNameStart(D), getInitializerRange(D));
1580 
1581     // There doesn't have to be a declarator (e.g. `void foo(int)` only has
1582     // declaration, but no declarator).
1583     if (!Range.getBegin().isValid()) {
1584       Builder.markChild(new (allocator()) syntax::DeclaratorList,
1585                         syntax::NodeRole::Declarators);
1586       Builder.foldNode(Builder.getDeclarationRange(D),
1587                        new (allocator()) syntax::SimpleDeclaration, D);
1588       return true;
1589     }
1590 
1591     auto *N = new (allocator()) syntax::SimpleDeclarator;
1592     Builder.foldNode(Builder.getRange(Range), N, nullptr);
1593     Builder.markChild(N, syntax::NodeRole::ListElement);
1594 
1595     if (!Builder.isResponsibleForCreatingDeclaration(D)) {
1596       // If this is not the last declarator in the declaration we expect a
1597       // delimiter after it.
1598       const auto *DelimiterToken = std::next(Builder.findToken(Range.getEnd()));
1599       if (DelimiterToken->kind() == clang::tok::TokenKind::comma)
1600         Builder.markChildToken(DelimiterToken, syntax::NodeRole::ListDelimiter);
1601     } else {
1602       auto *DL = new (allocator()) syntax::DeclaratorList;
1603       auto DeclarationRange = Builder.getDeclarationRange(D);
1604       Builder.foldList(DeclarationRange, DL, nullptr);
1605 
1606       Builder.markChild(DL, syntax::NodeRole::Declarators);
1607       Builder.foldNode(DeclarationRange,
1608                        new (allocator()) syntax::SimpleDeclaration, D);
1609     }
1610     return true;
1611   }
1612 
1613   /// Returns the range of the built node.
1614   syntax::TrailingReturnType *buildTrailingReturn(FunctionProtoTypeLoc L) {
1615     assert(L.getTypePtr()->hasTrailingReturn());
1616 
1617     auto ReturnedType = L.getReturnLoc();
1618     // Build node for the declarator, if any.
1619     auto ReturnDeclaratorRange = SourceRange(GetStartLoc().Visit(ReturnedType),
1620                                              ReturnedType.getEndLoc());
1621     syntax::SimpleDeclarator *ReturnDeclarator = nullptr;
1622     if (ReturnDeclaratorRange.isValid()) {
1623       ReturnDeclarator = new (allocator()) syntax::SimpleDeclarator;
1624       Builder.foldNode(Builder.getRange(ReturnDeclaratorRange),
1625                        ReturnDeclarator, nullptr);
1626     }
1627 
1628     // Build node for trailing return type.
1629     auto Return = Builder.getRange(ReturnedType.getSourceRange());
1630     const auto *Arrow = Return.begin() - 1;
1631     assert(Arrow->kind() == tok::arrow);
1632     auto Tokens = llvm::makeArrayRef(Arrow, Return.end());
1633     Builder.markChildToken(Arrow, syntax::NodeRole::ArrowToken);
1634     if (ReturnDeclarator)
1635       Builder.markChild(ReturnDeclarator, syntax::NodeRole::Declarator);
1636     auto *R = new (allocator()) syntax::TrailingReturnType;
1637     Builder.foldNode(Tokens, R, L);
1638     return R;
1639   }
1640 
1641   void foldExplicitTemplateInstantiation(
1642       ArrayRef<syntax::Token> Range, const syntax::Token *ExternKW,
1643       const syntax::Token *TemplateKW,
1644       syntax::SimpleDeclaration *InnerDeclaration, Decl *From) {
1645     assert(!ExternKW || ExternKW->kind() == tok::kw_extern);
1646     assert(TemplateKW && TemplateKW->kind() == tok::kw_template);
1647     Builder.markChildToken(ExternKW, syntax::NodeRole::ExternKeyword);
1648     Builder.markChildToken(TemplateKW, syntax::NodeRole::IntroducerKeyword);
1649     Builder.markChild(InnerDeclaration, syntax::NodeRole::Declaration);
1650     Builder.foldNode(
1651         Range, new (allocator()) syntax::ExplicitTemplateInstantiation, From);
1652   }
1653 
1654   syntax::TemplateDeclaration *foldTemplateDeclaration(
1655       ArrayRef<syntax::Token> Range, const syntax::Token *TemplateKW,
1656       ArrayRef<syntax::Token> TemplatedDeclaration, Decl *From) {
1657     assert(TemplateKW && TemplateKW->kind() == tok::kw_template);
1658     Builder.markChildToken(TemplateKW, syntax::NodeRole::IntroducerKeyword);
1659 
1660     auto *N = new (allocator()) syntax::TemplateDeclaration;
1661     Builder.foldNode(Range, N, From);
1662     Builder.markChild(N, syntax::NodeRole::Declaration);
1663     return N;
1664   }
1665 
1666   /// A small helper to save some typing.
1667   llvm::BumpPtrAllocator &allocator() { return Builder.allocator(); }
1668 
1669   syntax::TreeBuilder &Builder;
1670   const ASTContext &Context;
1671 };
1672 } // namespace
1673 
1674 void syntax::TreeBuilder::noticeDeclWithoutSemicolon(Decl *D) {
1675   DeclsWithoutSemicolons.insert(D);
1676 }
1677 
1678 void syntax::TreeBuilder::markChildToken(SourceLocation Loc, NodeRole Role) {
1679   if (Loc.isInvalid())
1680     return;
1681   Pending.assignRole(*findToken(Loc), Role);
1682 }
1683 
1684 void syntax::TreeBuilder::markChildToken(const syntax::Token *T, NodeRole R) {
1685   if (!T)
1686     return;
1687   Pending.assignRole(*T, R);
1688 }
1689 
1690 void syntax::TreeBuilder::markChild(syntax::Node *N, NodeRole R) {
1691   assert(N);
1692   setRole(N, R);
1693 }
1694 
1695 void syntax::TreeBuilder::markChild(ASTPtr N, NodeRole R) {
1696   auto *SN = Mapping.find(N);
1697   assert(SN != nullptr);
1698   setRole(SN, R);
1699 }
1700 void syntax::TreeBuilder::markChild(NestedNameSpecifierLoc NNSLoc, NodeRole R) {
1701   auto *SN = Mapping.find(NNSLoc);
1702   assert(SN != nullptr);
1703   setRole(SN, R);
1704 }
1705 
1706 void syntax::TreeBuilder::markStmtChild(Stmt *Child, NodeRole Role) {
1707   if (!Child)
1708     return;
1709 
1710   syntax::Tree *ChildNode;
1711   if (Expr *ChildExpr = dyn_cast<Expr>(Child)) {
1712     // This is an expression in a statement position, consume the trailing
1713     // semicolon and form an 'ExpressionStatement' node.
1714     markExprChild(ChildExpr, NodeRole::Expression);
1715     ChildNode = new (allocator()) syntax::ExpressionStatement;
1716     // (!) 'getStmtRange()' ensures this covers a trailing semicolon.
1717     Pending.foldChildren(Arena, getStmtRange(Child), ChildNode);
1718   } else {
1719     ChildNode = Mapping.find(Child);
1720   }
1721   assert(ChildNode != nullptr);
1722   setRole(ChildNode, Role);
1723 }
1724 
1725 void syntax::TreeBuilder::markExprChild(Expr *Child, NodeRole Role) {
1726   if (!Child)
1727     return;
1728   Child = IgnoreImplicit(Child);
1729 
1730   syntax::Tree *ChildNode = Mapping.find(Child);
1731   assert(ChildNode != nullptr);
1732   setRole(ChildNode, Role);
1733 }
1734 
1735 const syntax::Token *syntax::TreeBuilder::findToken(SourceLocation L) const {
1736   if (L.isInvalid())
1737     return nullptr;
1738   auto It = LocationToToken.find(L);
1739   assert(It != LocationToToken.end());
1740   return It->second;
1741 }
1742 
1743 syntax::TranslationUnit *syntax::buildSyntaxTree(Arena &A,
1744                                                  ASTContext &Context) {
1745   TreeBuilder Builder(A);
1746   BuildTreeVisitor(Context, Builder).TraverseAST(Context);
1747   return std::move(Builder).finalize();
1748 }
1749