xref: /llvm-project/clang/lib/Tooling/Syntax/BuildTree.cpp (revision 87f0b51d68de40e7106be89d934b5191d983e3d5)
1 //===- BuildTree.cpp ------------------------------------------*- C++ -*-=====//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 #include "clang/Tooling/Syntax/BuildTree.h"
9 #include "clang/AST/ASTFwd.h"
10 #include "clang/AST/Decl.h"
11 #include "clang/AST/DeclBase.h"
12 #include "clang/AST/DeclCXX.h"
13 #include "clang/AST/DeclarationName.h"
14 #include "clang/AST/Expr.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/AST/IgnoreExpr.h"
17 #include "clang/AST/OperationKinds.h"
18 #include "clang/AST/RecursiveASTVisitor.h"
19 #include "clang/AST/Stmt.h"
20 #include "clang/AST/TypeLoc.h"
21 #include "clang/AST/TypeLocVisitor.h"
22 #include "clang/Basic/LLVM.h"
23 #include "clang/Basic/SourceLocation.h"
24 #include "clang/Basic/SourceManager.h"
25 #include "clang/Basic/Specifiers.h"
26 #include "clang/Basic/TokenKinds.h"
27 #include "clang/Lex/Lexer.h"
28 #include "clang/Lex/LiteralSupport.h"
29 #include "clang/Tooling/Syntax/Nodes.h"
30 #include "clang/Tooling/Syntax/Tokens.h"
31 #include "clang/Tooling/Syntax/Tree.h"
32 #include "llvm/ADT/ArrayRef.h"
33 #include "llvm/ADT/DenseMap.h"
34 #include "llvm/ADT/PointerUnion.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include "llvm/ADT/ScopeExit.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/Support/Allocator.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/FormatVariadic.h"
42 #include "llvm/Support/MemoryBuffer.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include <cstddef>
45 #include <map>
46 
47 using namespace clang;
48 
49 // Ignores the implicit `CXXConstructExpr` for copy/move constructor calls
50 // generated by the compiler, as well as in implicit conversions like the one
51 // wrapping `1` in `X x = 1;`.
52 static Expr *IgnoreImplicitConstructorSingleStep(Expr *E) {
53   if (auto *C = dyn_cast<CXXConstructExpr>(E)) {
54     auto NumArgs = C->getNumArgs();
55     if (NumArgs == 1 || (NumArgs > 1 && isa<CXXDefaultArgExpr>(C->getArg(1)))) {
56       Expr *A = C->getArg(0);
57       if (C->getParenOrBraceRange().isInvalid())
58         return A;
59     }
60   }
61   return E;
62 }
63 
64 // In:
65 // struct X {
66 //   X(int)
67 // };
68 // X x = X(1);
69 // Ignores the implicit `CXXFunctionalCastExpr` that wraps
70 // `CXXConstructExpr X(1)`.
71 static Expr *IgnoreCXXFunctionalCastExprWrappingConstructor(Expr *E) {
72   if (auto *F = dyn_cast<CXXFunctionalCastExpr>(E)) {
73     if (F->getCastKind() == CK_ConstructorConversion)
74       return F->getSubExpr();
75   }
76   return E;
77 }
78 
79 static Expr *IgnoreImplicit(Expr *E) {
80   return IgnoreExprNodes(E, IgnoreImplicitSingleStep,
81                          IgnoreImplicitConstructorSingleStep,
82                          IgnoreCXXFunctionalCastExprWrappingConstructor);
83 }
84 
85 LLVM_ATTRIBUTE_UNUSED
86 static bool isImplicitExpr(Expr *E) { return IgnoreImplicit(E) != E; }
87 
88 namespace {
89 /// Get start location of the Declarator from the TypeLoc.
90 /// E.g.:
91 ///   loc of `(` in `int (a)`
92 ///   loc of `*` in `int *(a)`
93 ///   loc of the first `(` in `int (*a)(int)`
94 ///   loc of the `*` in `int *(a)(int)`
95 ///   loc of the first `*` in `const int *const *volatile a;`
96 ///
97 /// It is non-trivial to get the start location because TypeLocs are stored
98 /// inside out. In the example above `*volatile` is the TypeLoc returned
99 /// by `Decl.getTypeSourceInfo()`, and `*const` is what `.getPointeeLoc()`
100 /// returns.
101 struct GetStartLoc : TypeLocVisitor<GetStartLoc, SourceLocation> {
102   SourceLocation VisitParenTypeLoc(ParenTypeLoc T) {
103     auto L = Visit(T.getInnerLoc());
104     if (L.isValid())
105       return L;
106     return T.getLParenLoc();
107   }
108 
109   // Types spelled in the prefix part of the declarator.
110   SourceLocation VisitPointerTypeLoc(PointerTypeLoc T) {
111     return HandlePointer(T);
112   }
113 
114   SourceLocation VisitMemberPointerTypeLoc(MemberPointerTypeLoc T) {
115     return HandlePointer(T);
116   }
117 
118   SourceLocation VisitBlockPointerTypeLoc(BlockPointerTypeLoc T) {
119     return HandlePointer(T);
120   }
121 
122   SourceLocation VisitReferenceTypeLoc(ReferenceTypeLoc T) {
123     return HandlePointer(T);
124   }
125 
126   SourceLocation VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc T) {
127     return HandlePointer(T);
128   }
129 
130   // All other cases are not important, as they are either part of declaration
131   // specifiers (e.g. inheritors of TypeSpecTypeLoc) or introduce modifiers on
132   // existing declarators (e.g. QualifiedTypeLoc). They cannot start the
133   // declarator themselves, but their underlying type can.
134   SourceLocation VisitTypeLoc(TypeLoc T) {
135     auto N = T.getNextTypeLoc();
136     if (!N)
137       return SourceLocation();
138     return Visit(N);
139   }
140 
141   SourceLocation VisitFunctionProtoTypeLoc(FunctionProtoTypeLoc T) {
142     if (T.getTypePtr()->hasTrailingReturn())
143       return SourceLocation(); // avoid recursing into the suffix of declarator.
144     return VisitTypeLoc(T);
145   }
146 
147 private:
148   template <class PtrLoc> SourceLocation HandlePointer(PtrLoc T) {
149     auto L = Visit(T.getPointeeLoc());
150     if (L.isValid())
151       return L;
152     return T.getLocalSourceRange().getBegin();
153   }
154 };
155 } // namespace
156 
157 static CallExpr::arg_range dropDefaultArgs(CallExpr::arg_range Args) {
158   auto FirstDefaultArg = std::find_if(Args.begin(), Args.end(), [](auto It) {
159     return isa<CXXDefaultArgExpr>(It);
160   });
161   return llvm::make_range(Args.begin(), FirstDefaultArg);
162 }
163 
164 static syntax::NodeKind getOperatorNodeKind(const CXXOperatorCallExpr &E) {
165   switch (E.getOperator()) {
166   // Comparison
167   case OO_EqualEqual:
168   case OO_ExclaimEqual:
169   case OO_Greater:
170   case OO_GreaterEqual:
171   case OO_Less:
172   case OO_LessEqual:
173   case OO_Spaceship:
174   // Assignment
175   case OO_Equal:
176   case OO_SlashEqual:
177   case OO_PercentEqual:
178   case OO_CaretEqual:
179   case OO_PipeEqual:
180   case OO_LessLessEqual:
181   case OO_GreaterGreaterEqual:
182   case OO_PlusEqual:
183   case OO_MinusEqual:
184   case OO_StarEqual:
185   case OO_AmpEqual:
186   // Binary computation
187   case OO_Slash:
188   case OO_Percent:
189   case OO_Caret:
190   case OO_Pipe:
191   case OO_LessLess:
192   case OO_GreaterGreater:
193   case OO_AmpAmp:
194   case OO_PipePipe:
195   case OO_ArrowStar:
196   case OO_Comma:
197     return syntax::NodeKind::BinaryOperatorExpression;
198   case OO_Tilde:
199   case OO_Exclaim:
200     return syntax::NodeKind::PrefixUnaryOperatorExpression;
201   // Prefix/Postfix increment/decrement
202   case OO_PlusPlus:
203   case OO_MinusMinus:
204     switch (E.getNumArgs()) {
205     case 1:
206       return syntax::NodeKind::PrefixUnaryOperatorExpression;
207     case 2:
208       return syntax::NodeKind::PostfixUnaryOperatorExpression;
209     default:
210       llvm_unreachable("Invalid number of arguments for operator");
211     }
212   // Operators that can be unary or binary
213   case OO_Plus:
214   case OO_Minus:
215   case OO_Star:
216   case OO_Amp:
217     switch (E.getNumArgs()) {
218     case 1:
219       return syntax::NodeKind::PrefixUnaryOperatorExpression;
220     case 2:
221       return syntax::NodeKind::BinaryOperatorExpression;
222     default:
223       llvm_unreachable("Invalid number of arguments for operator");
224     }
225     return syntax::NodeKind::BinaryOperatorExpression;
226   // Not yet supported by SyntaxTree
227   case OO_New:
228   case OO_Delete:
229   case OO_Array_New:
230   case OO_Array_Delete:
231   case OO_Coawait:
232   case OO_Subscript:
233   case OO_Arrow:
234     return syntax::NodeKind::UnknownExpression;
235   case OO_Call:
236     return syntax::NodeKind::CallExpression;
237   case OO_Conditional: // not overloadable
238   case NUM_OVERLOADED_OPERATORS:
239   case OO_None:
240     llvm_unreachable("Not an overloadable operator");
241   }
242   llvm_unreachable("Unknown OverloadedOperatorKind enum");
243 }
244 
245 /// Get the start of the qualified name. In the examples below it gives the
246 /// location of the `^`:
247 ///     `int ^a;`
248 ///     `int *^a;`
249 ///     `int ^a::S::f(){}`
250 static SourceLocation getQualifiedNameStart(NamedDecl *D) {
251   assert((isa<DeclaratorDecl, TypedefNameDecl>(D)) &&
252          "only DeclaratorDecl and TypedefNameDecl are supported.");
253 
254   auto DN = D->getDeclName();
255   bool IsAnonymous = DN.isIdentifier() && !DN.getAsIdentifierInfo();
256   if (IsAnonymous)
257     return SourceLocation();
258 
259   if (const auto *DD = dyn_cast<DeclaratorDecl>(D)) {
260     if (DD->getQualifierLoc()) {
261       return DD->getQualifierLoc().getBeginLoc();
262     }
263   }
264 
265   return D->getLocation();
266 }
267 
268 /// Gets the range of the initializer inside an init-declarator C++ [dcl.decl].
269 ///     `int a;` -> range of ``,
270 ///     `int *a = nullptr` -> range of `= nullptr`.
271 ///     `int a{}` -> range of `{}`.
272 ///     `int a()` -> range of `()`.
273 static SourceRange getInitializerRange(Decl *D) {
274   if (auto *V = dyn_cast<VarDecl>(D)) {
275     auto *I = V->getInit();
276     // Initializers in range-based-for are not part of the declarator
277     if (I && !V->isCXXForRangeDecl())
278       return I->getSourceRange();
279   }
280 
281   return SourceRange();
282 }
283 
284 /// Gets the range of declarator as defined by the C++ grammar. E.g.
285 ///     `int a;` -> range of `a`,
286 ///     `int *a;` -> range of `*a`,
287 ///     `int a[10];` -> range of `a[10]`,
288 ///     `int a[1][2][3];` -> range of `a[1][2][3]`,
289 ///     `int *a = nullptr` -> range of `*a = nullptr`.
290 ///     `int S::f(){}` -> range of `S::f()`.
291 /// FIXME: \p Name must be a source range.
292 static SourceRange getDeclaratorRange(const SourceManager &SM, TypeLoc T,
293                                       SourceLocation Name,
294                                       SourceRange Initializer) {
295   SourceLocation Start = GetStartLoc().Visit(T);
296   SourceLocation End = T.getEndLoc();
297   assert(End.isValid());
298   if (Name.isValid()) {
299     if (Start.isInvalid())
300       Start = Name;
301     if (SM.isBeforeInTranslationUnit(End, Name))
302       End = Name;
303   }
304   if (Initializer.isValid()) {
305     auto InitializerEnd = Initializer.getEnd();
306     assert(SM.isBeforeInTranslationUnit(End, InitializerEnd) ||
307            End == InitializerEnd);
308     End = InitializerEnd;
309   }
310   return SourceRange(Start, End);
311 }
312 
313 namespace {
314 /// All AST hierarchy roots that can be represented as pointers.
315 using ASTPtr = llvm::PointerUnion<Stmt *, Decl *>;
316 /// Maintains a mapping from AST to syntax tree nodes. This class will get more
317 /// complicated as we support more kinds of AST nodes, e.g. TypeLocs.
318 /// FIXME: expose this as public API.
319 class ASTToSyntaxMapping {
320 public:
321   void add(ASTPtr From, syntax::Tree *To) {
322     assert(To != nullptr);
323     assert(!From.isNull());
324 
325     bool Added = Nodes.insert({From, To}).second;
326     (void)Added;
327     assert(Added && "mapping added twice");
328   }
329 
330   void add(NestedNameSpecifierLoc From, syntax::Tree *To) {
331     assert(To != nullptr);
332     assert(From.hasQualifier());
333 
334     bool Added = NNSNodes.insert({From, To}).second;
335     (void)Added;
336     assert(Added && "mapping added twice");
337   }
338 
339   syntax::Tree *find(ASTPtr P) const { return Nodes.lookup(P); }
340 
341   syntax::Tree *find(NestedNameSpecifierLoc P) const {
342     return NNSNodes.lookup(P);
343   }
344 
345 private:
346   llvm::DenseMap<ASTPtr, syntax::Tree *> Nodes;
347   llvm::DenseMap<NestedNameSpecifierLoc, syntax::Tree *> NNSNodes;
348 };
349 } // namespace
350 
351 /// A helper class for constructing the syntax tree while traversing a clang
352 /// AST.
353 ///
354 /// At each point of the traversal we maintain a list of pending nodes.
355 /// Initially all tokens are added as pending nodes. When processing a clang AST
356 /// node, the clients need to:
357 ///   - create a corresponding syntax node,
358 ///   - assign roles to all pending child nodes with 'markChild' and
359 ///     'markChildToken',
360 ///   - replace the child nodes with the new syntax node in the pending list
361 ///     with 'foldNode'.
362 ///
363 /// Note that all children are expected to be processed when building a node.
364 ///
365 /// Call finalize() to finish building the tree and consume the root node.
366 class syntax::TreeBuilder {
367 public:
368   TreeBuilder(syntax::Arena &Arena) : Arena(Arena), Pending(Arena) {
369     for (const auto &T : Arena.getTokenBuffer().expandedTokens())
370       LocationToToken.insert({T.location().getRawEncoding(), &T});
371   }
372 
373   llvm::BumpPtrAllocator &allocator() { return Arena.getAllocator(); }
374   const SourceManager &sourceManager() const {
375     return Arena.getSourceManager();
376   }
377 
378   /// Populate children for \p New node, assuming it covers tokens from \p
379   /// Range.
380   void foldNode(ArrayRef<syntax::Token> Range, syntax::Tree *New, ASTPtr From) {
381     assert(New);
382     Pending.foldChildren(Arena, Range, New);
383     if (From)
384       Mapping.add(From, New);
385   }
386 
387   void foldNode(ArrayRef<syntax::Token> Range, syntax::Tree *New, TypeLoc L) {
388     // FIXME: add mapping for TypeLocs
389     foldNode(Range, New, nullptr);
390   }
391 
392   void foldNode(llvm::ArrayRef<syntax::Token> Range, syntax::Tree *New,
393                 NestedNameSpecifierLoc From) {
394     assert(New);
395     Pending.foldChildren(Arena, Range, New);
396     if (From)
397       Mapping.add(From, New);
398   }
399 
400   /// Notifies that we should not consume trailing semicolon when computing
401   /// token range of \p D.
402   void noticeDeclWithoutSemicolon(Decl *D);
403 
404   /// Mark the \p Child node with a corresponding \p Role. All marked children
405   /// should be consumed by foldNode.
406   /// When called on expressions (clang::Expr is derived from clang::Stmt),
407   /// wraps expressions into expression statement.
408   void markStmtChild(Stmt *Child, NodeRole Role);
409   /// Should be called for expressions in non-statement position to avoid
410   /// wrapping into expression statement.
411   void markExprChild(Expr *Child, NodeRole Role);
412   /// Set role for a token starting at \p Loc.
413   void markChildToken(SourceLocation Loc, NodeRole R);
414   /// Set role for \p T.
415   void markChildToken(const syntax::Token *T, NodeRole R);
416 
417   /// Set role for \p N.
418   void markChild(syntax::Node *N, NodeRole R);
419   /// Set role for the syntax node matching \p N.
420   void markChild(ASTPtr N, NodeRole R);
421   /// Set role for the syntax node matching \p N.
422   void markChild(NestedNameSpecifierLoc N, NodeRole R);
423 
424   /// Finish building the tree and consume the root node.
425   syntax::TranslationUnit *finalize() && {
426     auto Tokens = Arena.getTokenBuffer().expandedTokens();
427     assert(!Tokens.empty());
428     assert(Tokens.back().kind() == tok::eof);
429 
430     // Build the root of the tree, consuming all the children.
431     Pending.foldChildren(Arena, Tokens.drop_back(),
432                          new (Arena.getAllocator()) syntax::TranslationUnit);
433 
434     auto *TU = cast<syntax::TranslationUnit>(std::move(Pending).finalize());
435     TU->assertInvariantsRecursive();
436     return TU;
437   }
438 
439   /// Finds a token starting at \p L. The token must exist if \p L is valid.
440   const syntax::Token *findToken(SourceLocation L) const;
441 
442   /// Finds the syntax tokens corresponding to the \p SourceRange.
443   ArrayRef<syntax::Token> getRange(SourceRange Range) const {
444     assert(Range.isValid());
445     return getRange(Range.getBegin(), Range.getEnd());
446   }
447 
448   /// Finds the syntax tokens corresponding to the passed source locations.
449   /// \p First is the start position of the first token and \p Last is the start
450   /// position of the last token.
451   ArrayRef<syntax::Token> getRange(SourceLocation First,
452                                    SourceLocation Last) const {
453     assert(First.isValid());
454     assert(Last.isValid());
455     assert(First == Last ||
456            Arena.getSourceManager().isBeforeInTranslationUnit(First, Last));
457     return llvm::makeArrayRef(findToken(First), std::next(findToken(Last)));
458   }
459 
460   ArrayRef<syntax::Token>
461   getTemplateRange(const ClassTemplateSpecializationDecl *D) const {
462     auto Tokens = getRange(D->getSourceRange());
463     return maybeAppendSemicolon(Tokens, D);
464   }
465 
466   /// Returns true if \p D is the last declarator in a chain and is thus
467   /// reponsible for creating SimpleDeclaration for the whole chain.
468   bool isResponsibleForCreatingDeclaration(const Decl *D) const {
469     assert((isa<DeclaratorDecl, TypedefNameDecl>(D)) &&
470            "only DeclaratorDecl and TypedefNameDecl are supported.");
471 
472     const Decl *Next = D->getNextDeclInContext();
473 
474     // There's no next sibling, this one is responsible.
475     if (Next == nullptr) {
476       return true;
477     }
478 
479     // Next sibling is not the same type, this one is responsible.
480     if (D->getKind() != Next->getKind()) {
481       return true;
482     }
483     // Next sibling doesn't begin at the same loc, it must be a different
484     // declaration, so this declarator is responsible.
485     if (Next->getBeginLoc() != D->getBeginLoc()) {
486       return true;
487     }
488 
489     // NextT is a member of the same declaration, and we need the last member to
490     // create declaration. This one is not responsible.
491     return false;
492   }
493 
494   ArrayRef<syntax::Token> getDeclarationRange(Decl *D) {
495     ArrayRef<syntax::Token> Tokens;
496     // We want to drop the template parameters for specializations.
497     if (const auto *S = dyn_cast<TagDecl>(D))
498       Tokens = getRange(S->TypeDecl::getBeginLoc(), S->getEndLoc());
499     else
500       Tokens = getRange(D->getSourceRange());
501     return maybeAppendSemicolon(Tokens, D);
502   }
503 
504   ArrayRef<syntax::Token> getExprRange(const Expr *E) const {
505     return getRange(E->getSourceRange());
506   }
507 
508   /// Find the adjusted range for the statement, consuming the trailing
509   /// semicolon when needed.
510   ArrayRef<syntax::Token> getStmtRange(const Stmt *S) const {
511     auto Tokens = getRange(S->getSourceRange());
512     if (isa<CompoundStmt>(S))
513       return Tokens;
514 
515     // Some statements miss a trailing semicolon, e.g. 'return', 'continue' and
516     // all statements that end with those. Consume this semicolon here.
517     if (Tokens.back().kind() == tok::semi)
518       return Tokens;
519     return withTrailingSemicolon(Tokens);
520   }
521 
522 private:
523   ArrayRef<syntax::Token> maybeAppendSemicolon(ArrayRef<syntax::Token> Tokens,
524                                                const Decl *D) const {
525     if (isa<NamespaceDecl>(D))
526       return Tokens;
527     if (DeclsWithoutSemicolons.count(D))
528       return Tokens;
529     // FIXME: do not consume trailing semicolon on function definitions.
530     // Most declarations own a semicolon in syntax trees, but not in clang AST.
531     return withTrailingSemicolon(Tokens);
532   }
533 
534   ArrayRef<syntax::Token>
535   withTrailingSemicolon(ArrayRef<syntax::Token> Tokens) const {
536     assert(!Tokens.empty());
537     assert(Tokens.back().kind() != tok::eof);
538     // We never consume 'eof', so looking at the next token is ok.
539     if (Tokens.back().kind() != tok::semi && Tokens.end()->kind() == tok::semi)
540       return llvm::makeArrayRef(Tokens.begin(), Tokens.end() + 1);
541     return Tokens;
542   }
543 
544   void setRole(syntax::Node *N, NodeRole R) {
545     assert(N->getRole() == NodeRole::Detached);
546     N->setRole(R);
547   }
548 
549   /// A collection of trees covering the input tokens.
550   /// When created, each tree corresponds to a single token in the file.
551   /// Clients call 'foldChildren' to attach one or more subtrees to a parent
552   /// node and update the list of trees accordingly.
553   ///
554   /// Ensures that added nodes properly nest and cover the whole token stream.
555   struct Forest {
556     Forest(syntax::Arena &A) {
557       assert(!A.getTokenBuffer().expandedTokens().empty());
558       assert(A.getTokenBuffer().expandedTokens().back().kind() == tok::eof);
559       // Create all leaf nodes.
560       // Note that we do not have 'eof' in the tree.
561       for (const auto &T : A.getTokenBuffer().expandedTokens().drop_back()) {
562         auto *L = new (A.getAllocator()) syntax::Leaf(&T);
563         L->Original = true;
564         L->CanModify = A.getTokenBuffer().spelledForExpanded(T).hasValue();
565         Trees.insert(Trees.end(), {&T, L});
566       }
567     }
568 
569     void assignRole(ArrayRef<syntax::Token> Range, syntax::NodeRole Role) {
570       assert(!Range.empty());
571       auto It = Trees.lower_bound(Range.begin());
572       assert(It != Trees.end() && "no node found");
573       assert(It->first == Range.begin() && "no child with the specified range");
574       assert((std::next(It) == Trees.end() ||
575               std::next(It)->first == Range.end()) &&
576              "no child with the specified range");
577       assert(It->second->getRole() == NodeRole::Detached &&
578              "re-assigning role for a child");
579       It->second->setRole(Role);
580     }
581 
582     /// Add \p Node to the forest and attach child nodes based on \p Tokens.
583     void foldChildren(const syntax::Arena &A, ArrayRef<syntax::Token> Tokens,
584                       syntax::Tree *Node) {
585       // Attach children to `Node`.
586       assert(Node->getFirstChild() == nullptr && "node already has children");
587 
588       auto *FirstToken = Tokens.begin();
589       auto BeginChildren = Trees.lower_bound(FirstToken);
590 
591       assert((BeginChildren == Trees.end() ||
592               BeginChildren->first == FirstToken) &&
593              "fold crosses boundaries of existing subtrees");
594       auto EndChildren = Trees.lower_bound(Tokens.end());
595       assert(
596           (EndChildren == Trees.end() || EndChildren->first == Tokens.end()) &&
597           "fold crosses boundaries of existing subtrees");
598 
599       // We need to go in reverse order, because we can only prepend.
600       for (auto It = EndChildren; It != BeginChildren; --It) {
601         auto *C = std::prev(It)->second;
602         if (C->getRole() == NodeRole::Detached)
603           C->setRole(NodeRole::Unknown);
604         Node->prependChildLowLevel(C);
605       }
606 
607       // Mark that this node came from the AST and is backed by the source code.
608       Node->Original = true;
609       Node->CanModify =
610           A.getTokenBuffer().spelledForExpanded(Tokens).hasValue();
611 
612       Trees.erase(BeginChildren, EndChildren);
613       Trees.insert({FirstToken, Node});
614     }
615 
616     // EXPECTS: all tokens were consumed and are owned by a single root node.
617     syntax::Node *finalize() && {
618       assert(Trees.size() == 1);
619       auto *Root = Trees.begin()->second;
620       Trees = {};
621       return Root;
622     }
623 
624     std::string str(const syntax::Arena &A) const {
625       std::string R;
626       for (auto It = Trees.begin(); It != Trees.end(); ++It) {
627         unsigned CoveredTokens =
628             It != Trees.end()
629                 ? (std::next(It)->first - It->first)
630                 : A.getTokenBuffer().expandedTokens().end() - It->first;
631 
632         R += std::string(
633             formatv("- '{0}' covers '{1}'+{2} tokens\n", It->second->getKind(),
634                     It->first->text(A.getSourceManager()), CoveredTokens));
635         R += It->second->dump(A.getSourceManager());
636       }
637       return R;
638     }
639 
640   private:
641     /// Maps from the start token to a subtree starting at that token.
642     /// Keys in the map are pointers into the array of expanded tokens, so
643     /// pointer order corresponds to the order of preprocessor tokens.
644     std::map<const syntax::Token *, syntax::Node *> Trees;
645   };
646 
647   /// For debugging purposes.
648   std::string str() { return Pending.str(Arena); }
649 
650   syntax::Arena &Arena;
651   /// To quickly find tokens by their start location.
652   llvm::DenseMap</*SourceLocation*/ unsigned, const syntax::Token *>
653       LocationToToken;
654   Forest Pending;
655   llvm::DenseSet<Decl *> DeclsWithoutSemicolons;
656   ASTToSyntaxMapping Mapping;
657 };
658 
659 namespace {
660 class BuildTreeVisitor : public RecursiveASTVisitor<BuildTreeVisitor> {
661 public:
662   explicit BuildTreeVisitor(ASTContext &Context, syntax::TreeBuilder &Builder)
663       : Builder(Builder), Context(Context) {}
664 
665   bool shouldTraversePostOrder() const { return true; }
666 
667   bool WalkUpFromDeclaratorDecl(DeclaratorDecl *DD) {
668     return processDeclaratorAndDeclaration(DD);
669   }
670 
671   bool WalkUpFromTypedefNameDecl(TypedefNameDecl *TD) {
672     return processDeclaratorAndDeclaration(TD);
673   }
674 
675   bool VisitDecl(Decl *D) {
676     assert(!D->isImplicit());
677     Builder.foldNode(Builder.getDeclarationRange(D),
678                      new (allocator()) syntax::UnknownDeclaration(), D);
679     return true;
680   }
681 
682   // RAV does not call WalkUpFrom* on explicit instantiations, so we have to
683   // override Traverse.
684   // FIXME: make RAV call WalkUpFrom* instead.
685   bool
686   TraverseClassTemplateSpecializationDecl(ClassTemplateSpecializationDecl *C) {
687     if (!RecursiveASTVisitor::TraverseClassTemplateSpecializationDecl(C))
688       return false;
689     if (C->isExplicitSpecialization())
690       return true; // we are only interested in explicit instantiations.
691     auto *Declaration =
692         cast<syntax::SimpleDeclaration>(handleFreeStandingTagDecl(C));
693     foldExplicitTemplateInstantiation(
694         Builder.getTemplateRange(C), Builder.findToken(C->getExternLoc()),
695         Builder.findToken(C->getTemplateKeywordLoc()), Declaration, C);
696     return true;
697   }
698 
699   bool WalkUpFromTemplateDecl(TemplateDecl *S) {
700     foldTemplateDeclaration(
701         Builder.getDeclarationRange(S),
702         Builder.findToken(S->getTemplateParameters()->getTemplateLoc()),
703         Builder.getDeclarationRange(S->getTemplatedDecl()), S);
704     return true;
705   }
706 
707   bool WalkUpFromTagDecl(TagDecl *C) {
708     // FIXME: build the ClassSpecifier node.
709     if (!C->isFreeStanding()) {
710       assert(C->getNumTemplateParameterLists() == 0);
711       return true;
712     }
713     handleFreeStandingTagDecl(C);
714     return true;
715   }
716 
717   syntax::Declaration *handleFreeStandingTagDecl(TagDecl *C) {
718     assert(C->isFreeStanding());
719     // Class is a declaration specifier and needs a spanning declaration node.
720     auto DeclarationRange = Builder.getDeclarationRange(C);
721     syntax::Declaration *Result = new (allocator()) syntax::SimpleDeclaration;
722     Builder.foldNode(DeclarationRange, Result, nullptr);
723 
724     // Build TemplateDeclaration nodes if we had template parameters.
725     auto ConsumeTemplateParameters = [&](const TemplateParameterList &L) {
726       const auto *TemplateKW = Builder.findToken(L.getTemplateLoc());
727       auto R = llvm::makeArrayRef(TemplateKW, DeclarationRange.end());
728       Result =
729           foldTemplateDeclaration(R, TemplateKW, DeclarationRange, nullptr);
730       DeclarationRange = R;
731     };
732     if (auto *S = dyn_cast<ClassTemplatePartialSpecializationDecl>(C))
733       ConsumeTemplateParameters(*S->getTemplateParameters());
734     for (unsigned I = C->getNumTemplateParameterLists(); 0 < I; --I)
735       ConsumeTemplateParameters(*C->getTemplateParameterList(I - 1));
736     return Result;
737   }
738 
739   bool WalkUpFromTranslationUnitDecl(TranslationUnitDecl *TU) {
740     // We do not want to call VisitDecl(), the declaration for translation
741     // unit is built by finalize().
742     return true;
743   }
744 
745   bool WalkUpFromCompoundStmt(CompoundStmt *S) {
746     using NodeRole = syntax::NodeRole;
747 
748     Builder.markChildToken(S->getLBracLoc(), NodeRole::OpenParen);
749     for (auto *Child : S->body())
750       Builder.markStmtChild(Child, NodeRole::Statement);
751     Builder.markChildToken(S->getRBracLoc(), NodeRole::CloseParen);
752 
753     Builder.foldNode(Builder.getStmtRange(S),
754                      new (allocator()) syntax::CompoundStatement, S);
755     return true;
756   }
757 
758   // Some statements are not yet handled by syntax trees.
759   bool WalkUpFromStmt(Stmt *S) {
760     Builder.foldNode(Builder.getStmtRange(S),
761                      new (allocator()) syntax::UnknownStatement, S);
762     return true;
763   }
764 
765   bool TraverseCXXForRangeStmt(CXXForRangeStmt *S) {
766     // We override to traverse range initializer as VarDecl.
767     // RAV traverses it as a statement, we produce invalid node kinds in that
768     // case.
769     // FIXME: should do this in RAV instead?
770     bool Result = [&, this]() {
771       if (S->getInit() && !TraverseStmt(S->getInit()))
772         return false;
773       if (S->getLoopVariable() && !TraverseDecl(S->getLoopVariable()))
774         return false;
775       if (S->getRangeInit() && !TraverseStmt(S->getRangeInit()))
776         return false;
777       if (S->getBody() && !TraverseStmt(S->getBody()))
778         return false;
779       return true;
780     }();
781     WalkUpFromCXXForRangeStmt(S);
782     return Result;
783   }
784 
785   bool TraverseStmt(Stmt *S) {
786     if (auto *DS = dyn_cast_or_null<DeclStmt>(S)) {
787       // We want to consume the semicolon, make sure SimpleDeclaration does not.
788       for (auto *D : DS->decls())
789         Builder.noticeDeclWithoutSemicolon(D);
790     } else if (auto *E = dyn_cast_or_null<Expr>(S)) {
791       return RecursiveASTVisitor::TraverseStmt(IgnoreImplicit(E));
792     }
793     return RecursiveASTVisitor::TraverseStmt(S);
794   }
795 
796   // Some expressions are not yet handled by syntax trees.
797   bool WalkUpFromExpr(Expr *E) {
798     assert(!isImplicitExpr(E) && "should be handled by TraverseStmt");
799     Builder.foldNode(Builder.getExprRange(E),
800                      new (allocator()) syntax::UnknownExpression, E);
801     return true;
802   }
803 
804   bool TraverseUserDefinedLiteral(UserDefinedLiteral *S) {
805     // The semantic AST node `UserDefinedLiteral` (UDL) may have one child node
806     // referencing the location of the UDL suffix (`_w` in `1.2_w`). The
807     // UDL suffix location does not point to the beginning of a token, so we
808     // can't represent the UDL suffix as a separate syntax tree node.
809 
810     return WalkUpFromUserDefinedLiteral(S);
811   }
812 
813   syntax::UserDefinedLiteralExpression *
814   buildUserDefinedLiteral(UserDefinedLiteral *S) {
815     switch (S->getLiteralOperatorKind()) {
816     case UserDefinedLiteral::LOK_Integer:
817       return new (allocator()) syntax::IntegerUserDefinedLiteralExpression;
818     case UserDefinedLiteral::LOK_Floating:
819       return new (allocator()) syntax::FloatUserDefinedLiteralExpression;
820     case UserDefinedLiteral::LOK_Character:
821       return new (allocator()) syntax::CharUserDefinedLiteralExpression;
822     case UserDefinedLiteral::LOK_String:
823       return new (allocator()) syntax::StringUserDefinedLiteralExpression;
824     case UserDefinedLiteral::LOK_Raw:
825     case UserDefinedLiteral::LOK_Template:
826       // For raw literal operator and numeric literal operator template we
827       // cannot get the type of the operand in the semantic AST. We get this
828       // information from the token. As integer and floating point have the same
829       // token kind, we run `NumericLiteralParser` again to distinguish them.
830       auto TokLoc = S->getBeginLoc();
831       auto TokSpelling =
832           Builder.findToken(TokLoc)->text(Context.getSourceManager());
833       auto Literal =
834           NumericLiteralParser(TokSpelling, TokLoc, Context.getSourceManager(),
835                                Context.getLangOpts(), Context.getTargetInfo(),
836                                Context.getDiagnostics());
837       if (Literal.isIntegerLiteral())
838         return new (allocator()) syntax::IntegerUserDefinedLiteralExpression;
839       else {
840         assert(Literal.isFloatingLiteral());
841         return new (allocator()) syntax::FloatUserDefinedLiteralExpression;
842       }
843     }
844     llvm_unreachable("Unknown literal operator kind.");
845   }
846 
847   bool WalkUpFromUserDefinedLiteral(UserDefinedLiteral *S) {
848     Builder.markChildToken(S->getBeginLoc(), syntax::NodeRole::LiteralToken);
849     Builder.foldNode(Builder.getExprRange(S), buildUserDefinedLiteral(S), S);
850     return true;
851   }
852 
853   // FIXME: Fix `NestedNameSpecifierLoc::getLocalSourceRange` for the
854   // `DependentTemplateSpecializationType` case.
855   /// Given a nested-name-specifier return the range for the last name
856   /// specifier.
857   ///
858   /// e.g. `std::T::template X<U>::` => `template X<U>::`
859   SourceRange getLocalSourceRange(const NestedNameSpecifierLoc &NNSLoc) {
860     auto SR = NNSLoc.getLocalSourceRange();
861 
862     // The method `NestedNameSpecifierLoc::getLocalSourceRange` *should*
863     // return the desired `SourceRange`, but there is a corner case. For a
864     // `DependentTemplateSpecializationType` this method returns its
865     // qualifiers as well, in other words in the example above this method
866     // returns `T::template X<U>::` instead of only `template X<U>::`
867     if (auto TL = NNSLoc.getTypeLoc()) {
868       if (auto DependentTL =
869               TL.getAs<DependentTemplateSpecializationTypeLoc>()) {
870         // The 'template' keyword is always present in dependent template
871         // specializations. Except in the case of incorrect code
872         // TODO: Treat the case of incorrect code.
873         SR.setBegin(DependentTL.getTemplateKeywordLoc());
874       }
875     }
876 
877     return SR;
878   }
879 
880   syntax::NodeKind getNameSpecifierKind(const NestedNameSpecifier &NNS) {
881     switch (NNS.getKind()) {
882     case NestedNameSpecifier::Global:
883       return syntax::NodeKind::GlobalNameSpecifier;
884     case NestedNameSpecifier::Namespace:
885     case NestedNameSpecifier::NamespaceAlias:
886     case NestedNameSpecifier::Identifier:
887       return syntax::NodeKind::IdentifierNameSpecifier;
888     case NestedNameSpecifier::TypeSpecWithTemplate:
889       return syntax::NodeKind::SimpleTemplateNameSpecifier;
890     case NestedNameSpecifier::TypeSpec: {
891       const auto *NNSType = NNS.getAsType();
892       assert(NNSType);
893       if (isa<DecltypeType>(NNSType))
894         return syntax::NodeKind::DecltypeNameSpecifier;
895       if (isa<TemplateSpecializationType, DependentTemplateSpecializationType>(
896               NNSType))
897         return syntax::NodeKind::SimpleTemplateNameSpecifier;
898       return syntax::NodeKind::IdentifierNameSpecifier;
899     }
900     default:
901       // FIXME: Support Microsoft's __super
902       llvm::report_fatal_error("We don't yet support the __super specifier",
903                                true);
904     }
905   }
906 
907   syntax::NameSpecifier *
908   buildNameSpecifier(const NestedNameSpecifierLoc &NNSLoc) {
909     assert(NNSLoc.hasQualifier());
910     auto NameSpecifierTokens =
911         Builder.getRange(getLocalSourceRange(NNSLoc)).drop_back();
912     switch (getNameSpecifierKind(*NNSLoc.getNestedNameSpecifier())) {
913     case syntax::NodeKind::GlobalNameSpecifier:
914       return new (allocator()) syntax::GlobalNameSpecifier;
915     case syntax::NodeKind::IdentifierNameSpecifier: {
916       assert(NameSpecifierTokens.size() == 1);
917       Builder.markChildToken(NameSpecifierTokens.begin(),
918                              syntax::NodeRole::Unknown);
919       auto *NS = new (allocator()) syntax::IdentifierNameSpecifier;
920       Builder.foldNode(NameSpecifierTokens, NS, nullptr);
921       return NS;
922     }
923     case syntax::NodeKind::SimpleTemplateNameSpecifier: {
924       // TODO: Build `SimpleTemplateNameSpecifier` children and implement
925       // accessors to them.
926       // Be aware, we cannot do that simply by calling `TraverseTypeLoc`,
927       // some `TypeLoc`s have inside them the previous name specifier and
928       // we want to treat them independently.
929       auto *NS = new (allocator()) syntax::SimpleTemplateNameSpecifier;
930       Builder.foldNode(NameSpecifierTokens, NS, nullptr);
931       return NS;
932     }
933     case syntax::NodeKind::DecltypeNameSpecifier: {
934       const auto TL = NNSLoc.getTypeLoc().castAs<DecltypeTypeLoc>();
935       if (!RecursiveASTVisitor::TraverseDecltypeTypeLoc(TL))
936         return nullptr;
937       auto *NS = new (allocator()) syntax::DecltypeNameSpecifier;
938       // TODO: Implement accessor to `DecltypeNameSpecifier` inner
939       // `DecltypeTypeLoc`.
940       // For that add mapping from `TypeLoc` to `syntax::Node*` then:
941       // Builder.markChild(TypeLoc, syntax::NodeRole);
942       Builder.foldNode(NameSpecifierTokens, NS, nullptr);
943       return NS;
944     }
945     default:
946       llvm_unreachable("getChildKind() does not return this value");
947     }
948   }
949 
950   // To build syntax tree nodes for NestedNameSpecifierLoc we override
951   // Traverse instead of WalkUpFrom because we want to traverse the children
952   // ourselves and build a list instead of a nested tree of name specifier
953   // prefixes.
954   bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc QualifierLoc) {
955     if (!QualifierLoc)
956       return true;
957     for (auto It = QualifierLoc; It; It = It.getPrefix()) {
958       auto *NS = buildNameSpecifier(It);
959       if (!NS)
960         return false;
961       Builder.markChild(NS, syntax::NodeRole::ListElement);
962       Builder.markChildToken(It.getEndLoc(), syntax::NodeRole::ListDelimiter);
963     }
964     Builder.foldNode(Builder.getRange(QualifierLoc.getSourceRange()),
965                      new (allocator()) syntax::NestedNameSpecifier,
966                      QualifierLoc);
967     return true;
968   }
969 
970   syntax::IdExpression *buildIdExpression(NestedNameSpecifierLoc QualifierLoc,
971                                           SourceLocation TemplateKeywordLoc,
972                                           SourceRange UnqualifiedIdLoc,
973                                           ASTPtr From) {
974     if (QualifierLoc) {
975       Builder.markChild(QualifierLoc, syntax::NodeRole::Qualifier);
976       if (TemplateKeywordLoc.isValid())
977         Builder.markChildToken(TemplateKeywordLoc,
978                                syntax::NodeRole::TemplateKeyword);
979     }
980 
981     auto *TheUnqualifiedId = new (allocator()) syntax::UnqualifiedId;
982     Builder.foldNode(Builder.getRange(UnqualifiedIdLoc), TheUnqualifiedId,
983                      nullptr);
984     Builder.markChild(TheUnqualifiedId, syntax::NodeRole::UnqualifiedId);
985 
986     auto IdExpressionBeginLoc =
987         QualifierLoc ? QualifierLoc.getBeginLoc() : UnqualifiedIdLoc.getBegin();
988 
989     auto *TheIdExpression = new (allocator()) syntax::IdExpression;
990     Builder.foldNode(
991         Builder.getRange(IdExpressionBeginLoc, UnqualifiedIdLoc.getEnd()),
992         TheIdExpression, From);
993 
994     return TheIdExpression;
995   }
996 
997   bool WalkUpFromMemberExpr(MemberExpr *S) {
998     // For `MemberExpr` with implicit `this->` we generate a simple
999     // `id-expression` syntax node, beacuse an implicit `member-expression` is
1000     // syntactically undistinguishable from an `id-expression`
1001     if (S->isImplicitAccess()) {
1002       buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(),
1003                         SourceRange(S->getMemberLoc(), S->getEndLoc()), S);
1004       return true;
1005     }
1006 
1007     auto *TheIdExpression = buildIdExpression(
1008         S->getQualifierLoc(), S->getTemplateKeywordLoc(),
1009         SourceRange(S->getMemberLoc(), S->getEndLoc()), nullptr);
1010 
1011     Builder.markChild(TheIdExpression, syntax::NodeRole::Member);
1012 
1013     Builder.markExprChild(S->getBase(), syntax::NodeRole::Object);
1014     Builder.markChildToken(S->getOperatorLoc(), syntax::NodeRole::AccessToken);
1015 
1016     Builder.foldNode(Builder.getExprRange(S),
1017                      new (allocator()) syntax::MemberExpression, S);
1018     return true;
1019   }
1020 
1021   bool WalkUpFromDeclRefExpr(DeclRefExpr *S) {
1022     buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(),
1023                       SourceRange(S->getLocation(), S->getEndLoc()), S);
1024 
1025     return true;
1026   }
1027 
1028   // Same logic as DeclRefExpr.
1029   bool WalkUpFromDependentScopeDeclRefExpr(DependentScopeDeclRefExpr *S) {
1030     buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(),
1031                       SourceRange(S->getLocation(), S->getEndLoc()), S);
1032 
1033     return true;
1034   }
1035 
1036   bool WalkUpFromCXXThisExpr(CXXThisExpr *S) {
1037     if (!S->isImplicit()) {
1038       Builder.markChildToken(S->getLocation(),
1039                              syntax::NodeRole::IntroducerKeyword);
1040       Builder.foldNode(Builder.getExprRange(S),
1041                        new (allocator()) syntax::ThisExpression, S);
1042     }
1043     return true;
1044   }
1045 
1046   bool WalkUpFromParenExpr(ParenExpr *S) {
1047     Builder.markChildToken(S->getLParen(), syntax::NodeRole::OpenParen);
1048     Builder.markExprChild(S->getSubExpr(), syntax::NodeRole::SubExpression);
1049     Builder.markChildToken(S->getRParen(), syntax::NodeRole::CloseParen);
1050     Builder.foldNode(Builder.getExprRange(S),
1051                      new (allocator()) syntax::ParenExpression, S);
1052     return true;
1053   }
1054 
1055   bool WalkUpFromIntegerLiteral(IntegerLiteral *S) {
1056     Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
1057     Builder.foldNode(Builder.getExprRange(S),
1058                      new (allocator()) syntax::IntegerLiteralExpression, S);
1059     return true;
1060   }
1061 
1062   bool WalkUpFromCharacterLiteral(CharacterLiteral *S) {
1063     Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
1064     Builder.foldNode(Builder.getExprRange(S),
1065                      new (allocator()) syntax::CharacterLiteralExpression, S);
1066     return true;
1067   }
1068 
1069   bool WalkUpFromFloatingLiteral(FloatingLiteral *S) {
1070     Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
1071     Builder.foldNode(Builder.getExprRange(S),
1072                      new (allocator()) syntax::FloatingLiteralExpression, S);
1073     return true;
1074   }
1075 
1076   bool WalkUpFromStringLiteral(StringLiteral *S) {
1077     Builder.markChildToken(S->getBeginLoc(), syntax::NodeRole::LiteralToken);
1078     Builder.foldNode(Builder.getExprRange(S),
1079                      new (allocator()) syntax::StringLiteralExpression, S);
1080     return true;
1081   }
1082 
1083   bool WalkUpFromCXXBoolLiteralExpr(CXXBoolLiteralExpr *S) {
1084     Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
1085     Builder.foldNode(Builder.getExprRange(S),
1086                      new (allocator()) syntax::BoolLiteralExpression, S);
1087     return true;
1088   }
1089 
1090   bool WalkUpFromCXXNullPtrLiteralExpr(CXXNullPtrLiteralExpr *S) {
1091     Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
1092     Builder.foldNode(Builder.getExprRange(S),
1093                      new (allocator()) syntax::CxxNullPtrExpression, S);
1094     return true;
1095   }
1096 
1097   bool WalkUpFromUnaryOperator(UnaryOperator *S) {
1098     Builder.markChildToken(S->getOperatorLoc(),
1099                            syntax::NodeRole::OperatorToken);
1100     Builder.markExprChild(S->getSubExpr(), syntax::NodeRole::Operand);
1101 
1102     if (S->isPostfix())
1103       Builder.foldNode(Builder.getExprRange(S),
1104                        new (allocator()) syntax::PostfixUnaryOperatorExpression,
1105                        S);
1106     else
1107       Builder.foldNode(Builder.getExprRange(S),
1108                        new (allocator()) syntax::PrefixUnaryOperatorExpression,
1109                        S);
1110 
1111     return true;
1112   }
1113 
1114   bool WalkUpFromBinaryOperator(BinaryOperator *S) {
1115     Builder.markExprChild(S->getLHS(), syntax::NodeRole::LeftHandSide);
1116     Builder.markChildToken(S->getOperatorLoc(),
1117                            syntax::NodeRole::OperatorToken);
1118     Builder.markExprChild(S->getRHS(), syntax::NodeRole::RightHandSide);
1119     Builder.foldNode(Builder.getExprRange(S),
1120                      new (allocator()) syntax::BinaryOperatorExpression, S);
1121     return true;
1122   }
1123 
1124   /// Builds `CallArguments` syntax node from arguments that appear in source
1125   /// code, i.e. not default arguments.
1126   syntax::CallArguments *
1127   buildCallArguments(CallExpr::arg_range ArgsAndDefaultArgs) {
1128     auto Args = dropDefaultArgs(ArgsAndDefaultArgs);
1129     for (auto *Arg : Args) {
1130       Builder.markExprChild(Arg, syntax::NodeRole::ListElement);
1131       const auto *DelimiterToken =
1132           std::next(Builder.findToken(Arg->getEndLoc()));
1133       if (DelimiterToken->kind() == clang::tok::TokenKind::comma)
1134         Builder.markChildToken(DelimiterToken, syntax::NodeRole::ListDelimiter);
1135     }
1136 
1137     auto *Arguments = new (allocator()) syntax::CallArguments;
1138     if (!Args.empty())
1139       Builder.foldNode(Builder.getRange((*Args.begin())->getBeginLoc(),
1140                                         (*(Args.end() - 1))->getEndLoc()),
1141                        Arguments, nullptr);
1142 
1143     return Arguments;
1144   }
1145 
1146   bool WalkUpFromCallExpr(CallExpr *S) {
1147     Builder.markExprChild(S->getCallee(), syntax::NodeRole::Callee);
1148 
1149     const auto *LParenToken =
1150         std::next(Builder.findToken(S->getCallee()->getEndLoc()));
1151     // FIXME: Assert that `LParenToken` is indeed a `l_paren` once we have fixed
1152     // the test on decltype desctructors.
1153     if (LParenToken->kind() == clang::tok::l_paren)
1154       Builder.markChildToken(LParenToken, syntax::NodeRole::OpenParen);
1155 
1156     Builder.markChild(buildCallArguments(S->arguments()),
1157                       syntax::NodeRole::Arguments);
1158 
1159     Builder.markChildToken(S->getRParenLoc(), syntax::NodeRole::CloseParen);
1160 
1161     Builder.foldNode(Builder.getRange(S->getSourceRange()),
1162                      new (allocator()) syntax::CallExpression, S);
1163     return true;
1164   }
1165 
1166   bool WalkUpFromCXXConstructExpr(CXXConstructExpr *S) {
1167     // Ignore the implicit calls to default constructors.
1168     if ((S->getNumArgs() == 0 || isa<CXXDefaultArgExpr>(S->getArg(0))) &&
1169         S->getParenOrBraceRange().isInvalid())
1170       return true;
1171     return RecursiveASTVisitor::WalkUpFromCXXConstructExpr(S);
1172   }
1173 
1174   bool TraverseCXXOperatorCallExpr(CXXOperatorCallExpr *S) {
1175     // To construct a syntax tree of the same shape for calls to built-in and
1176     // user-defined operators, ignore the `DeclRefExpr` that refers to the
1177     // operator and treat it as a simple token. Do that by traversing
1178     // arguments instead of children.
1179     for (auto *child : S->arguments()) {
1180       // A postfix unary operator is declared as taking two operands. The
1181       // second operand is used to distinguish from its prefix counterpart. In
1182       // the semantic AST this "phantom" operand is represented as a
1183       // `IntegerLiteral` with invalid `SourceLocation`. We skip visiting this
1184       // operand because it does not correspond to anything written in source
1185       // code.
1186       if (child->getSourceRange().isInvalid()) {
1187         assert(getOperatorNodeKind(*S) ==
1188                syntax::NodeKind::PostfixUnaryOperatorExpression);
1189         continue;
1190       }
1191       if (!TraverseStmt(child))
1192         return false;
1193     }
1194     return WalkUpFromCXXOperatorCallExpr(S);
1195   }
1196 
1197   bool WalkUpFromCXXOperatorCallExpr(CXXOperatorCallExpr *S) {
1198     switch (getOperatorNodeKind(*S)) {
1199     case syntax::NodeKind::BinaryOperatorExpression:
1200       Builder.markExprChild(S->getArg(0), syntax::NodeRole::LeftHandSide);
1201       Builder.markChildToken(S->getOperatorLoc(),
1202                              syntax::NodeRole::OperatorToken);
1203       Builder.markExprChild(S->getArg(1), syntax::NodeRole::RightHandSide);
1204       Builder.foldNode(Builder.getExprRange(S),
1205                        new (allocator()) syntax::BinaryOperatorExpression, S);
1206       return true;
1207     case syntax::NodeKind::PrefixUnaryOperatorExpression:
1208       Builder.markChildToken(S->getOperatorLoc(),
1209                              syntax::NodeRole::OperatorToken);
1210       Builder.markExprChild(S->getArg(0), syntax::NodeRole::Operand);
1211       Builder.foldNode(Builder.getExprRange(S),
1212                        new (allocator()) syntax::PrefixUnaryOperatorExpression,
1213                        S);
1214       return true;
1215     case syntax::NodeKind::PostfixUnaryOperatorExpression:
1216       Builder.markChildToken(S->getOperatorLoc(),
1217                              syntax::NodeRole::OperatorToken);
1218       Builder.markExprChild(S->getArg(0), syntax::NodeRole::Operand);
1219       Builder.foldNode(Builder.getExprRange(S),
1220                        new (allocator()) syntax::PostfixUnaryOperatorExpression,
1221                        S);
1222       return true;
1223     case syntax::NodeKind::CallExpression: {
1224       Builder.markExprChild(S->getArg(0), syntax::NodeRole::Callee);
1225 
1226       const auto *LParenToken =
1227           std::next(Builder.findToken(S->getArg(0)->getEndLoc()));
1228       // FIXME: Assert that `LParenToken` is indeed a `l_paren` once we have
1229       // fixed the test on decltype desctructors.
1230       if (LParenToken->kind() == clang::tok::l_paren)
1231         Builder.markChildToken(LParenToken, syntax::NodeRole::OpenParen);
1232 
1233       Builder.markChild(buildCallArguments(CallExpr::arg_range(
1234                             S->arg_begin() + 1, S->arg_end())),
1235                         syntax::NodeRole::Arguments);
1236 
1237       Builder.markChildToken(S->getRParenLoc(), syntax::NodeRole::CloseParen);
1238 
1239       Builder.foldNode(Builder.getRange(S->getSourceRange()),
1240                        new (allocator()) syntax::CallExpression, S);
1241       return true;
1242     }
1243     case syntax::NodeKind::UnknownExpression:
1244       return WalkUpFromExpr(S);
1245     default:
1246       llvm_unreachable("getOperatorNodeKind() does not return this value");
1247     }
1248   }
1249 
1250   bool WalkUpFromCXXDefaultArgExpr(CXXDefaultArgExpr *S) { return true; }
1251 
1252   bool WalkUpFromNamespaceDecl(NamespaceDecl *S) {
1253     auto Tokens = Builder.getDeclarationRange(S);
1254     if (Tokens.front().kind() == tok::coloncolon) {
1255       // Handle nested namespace definitions. Those start at '::' token, e.g.
1256       // namespace a^::b {}
1257       // FIXME: build corresponding nodes for the name of this namespace.
1258       return true;
1259     }
1260     Builder.foldNode(Tokens, new (allocator()) syntax::NamespaceDefinition, S);
1261     return true;
1262   }
1263 
1264   // FIXME: Deleting the `TraverseParenTypeLoc` override doesn't change test
1265   // results. Find test coverage or remove it.
1266   bool TraverseParenTypeLoc(ParenTypeLoc L) {
1267     // We reverse order of traversal to get the proper syntax structure.
1268     if (!WalkUpFromParenTypeLoc(L))
1269       return false;
1270     return TraverseTypeLoc(L.getInnerLoc());
1271   }
1272 
1273   bool WalkUpFromParenTypeLoc(ParenTypeLoc L) {
1274     Builder.markChildToken(L.getLParenLoc(), syntax::NodeRole::OpenParen);
1275     Builder.markChildToken(L.getRParenLoc(), syntax::NodeRole::CloseParen);
1276     Builder.foldNode(Builder.getRange(L.getLParenLoc(), L.getRParenLoc()),
1277                      new (allocator()) syntax::ParenDeclarator, L);
1278     return true;
1279   }
1280 
1281   // Declarator chunks, they are produced by type locs and some clang::Decls.
1282   bool WalkUpFromArrayTypeLoc(ArrayTypeLoc L) {
1283     Builder.markChildToken(L.getLBracketLoc(), syntax::NodeRole::OpenParen);
1284     Builder.markExprChild(L.getSizeExpr(), syntax::NodeRole::Size);
1285     Builder.markChildToken(L.getRBracketLoc(), syntax::NodeRole::CloseParen);
1286     Builder.foldNode(Builder.getRange(L.getLBracketLoc(), L.getRBracketLoc()),
1287                      new (allocator()) syntax::ArraySubscript, L);
1288     return true;
1289   }
1290 
1291   syntax::ParameterDeclarationList *
1292   buildParameterDeclarationList(ArrayRef<ParmVarDecl *> Params) {
1293     for (auto *P : Params) {
1294       Builder.markChild(P, syntax::NodeRole::ListElement);
1295       const auto *DelimiterToken = std::next(Builder.findToken(P->getEndLoc()));
1296       if (DelimiterToken->kind() == clang::tok::TokenKind::comma)
1297         Builder.markChildToken(DelimiterToken, syntax::NodeRole::ListDelimiter);
1298     }
1299     auto *Parameters = new (allocator()) syntax::ParameterDeclarationList;
1300     if (!Params.empty())
1301       Builder.foldNode(Builder.getRange(Params.front()->getBeginLoc(),
1302                                         Params.back()->getEndLoc()),
1303                        Parameters, nullptr);
1304     return Parameters;
1305   }
1306 
1307   bool WalkUpFromFunctionTypeLoc(FunctionTypeLoc L) {
1308     Builder.markChildToken(L.getLParenLoc(), syntax::NodeRole::OpenParen);
1309 
1310     Builder.markChild(buildParameterDeclarationList(L.getParams()),
1311                       syntax::NodeRole::Parameters);
1312 
1313     Builder.markChildToken(L.getRParenLoc(), syntax::NodeRole::CloseParen);
1314     Builder.foldNode(Builder.getRange(L.getLParenLoc(), L.getEndLoc()),
1315                      new (allocator()) syntax::ParametersAndQualifiers, L);
1316     return true;
1317   }
1318 
1319   bool WalkUpFromFunctionProtoTypeLoc(FunctionProtoTypeLoc L) {
1320     if (!L.getTypePtr()->hasTrailingReturn())
1321       return WalkUpFromFunctionTypeLoc(L);
1322 
1323     auto *TrailingReturnTokens = buildTrailingReturn(L);
1324     // Finish building the node for parameters.
1325     Builder.markChild(TrailingReturnTokens, syntax::NodeRole::TrailingReturn);
1326     return WalkUpFromFunctionTypeLoc(L);
1327   }
1328 
1329   bool TraverseMemberPointerTypeLoc(MemberPointerTypeLoc L) {
1330     // In the source code "void (Y::*mp)()" `MemberPointerTypeLoc` corresponds
1331     // to "Y::*" but it points to a `ParenTypeLoc` that corresponds to
1332     // "(Y::*mp)" We thus reverse the order of traversal to get the proper
1333     // syntax structure.
1334     if (!WalkUpFromMemberPointerTypeLoc(L))
1335       return false;
1336     return TraverseTypeLoc(L.getPointeeLoc());
1337   }
1338 
1339   bool WalkUpFromMemberPointerTypeLoc(MemberPointerTypeLoc L) {
1340     auto SR = L.getLocalSourceRange();
1341     Builder.foldNode(Builder.getRange(SR),
1342                      new (allocator()) syntax::MemberPointer, L);
1343     return true;
1344   }
1345 
1346   // The code below is very regular, it could even be generated with some
1347   // preprocessor magic. We merely assign roles to the corresponding children
1348   // and fold resulting nodes.
1349   bool WalkUpFromDeclStmt(DeclStmt *S) {
1350     Builder.foldNode(Builder.getStmtRange(S),
1351                      new (allocator()) syntax::DeclarationStatement, S);
1352     return true;
1353   }
1354 
1355   bool WalkUpFromNullStmt(NullStmt *S) {
1356     Builder.foldNode(Builder.getStmtRange(S),
1357                      new (allocator()) syntax::EmptyStatement, S);
1358     return true;
1359   }
1360 
1361   bool WalkUpFromSwitchStmt(SwitchStmt *S) {
1362     Builder.markChildToken(S->getSwitchLoc(),
1363                            syntax::NodeRole::IntroducerKeyword);
1364     Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
1365     Builder.foldNode(Builder.getStmtRange(S),
1366                      new (allocator()) syntax::SwitchStatement, S);
1367     return true;
1368   }
1369 
1370   bool WalkUpFromCaseStmt(CaseStmt *S) {
1371     Builder.markChildToken(S->getKeywordLoc(),
1372                            syntax::NodeRole::IntroducerKeyword);
1373     Builder.markExprChild(S->getLHS(), syntax::NodeRole::CaseValue);
1374     Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement);
1375     Builder.foldNode(Builder.getStmtRange(S),
1376                      new (allocator()) syntax::CaseStatement, S);
1377     return true;
1378   }
1379 
1380   bool WalkUpFromDefaultStmt(DefaultStmt *S) {
1381     Builder.markChildToken(S->getKeywordLoc(),
1382                            syntax::NodeRole::IntroducerKeyword);
1383     Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement);
1384     Builder.foldNode(Builder.getStmtRange(S),
1385                      new (allocator()) syntax::DefaultStatement, S);
1386     return true;
1387   }
1388 
1389   bool WalkUpFromIfStmt(IfStmt *S) {
1390     Builder.markChildToken(S->getIfLoc(), syntax::NodeRole::IntroducerKeyword);
1391     Builder.markStmtChild(S->getThen(), syntax::NodeRole::ThenStatement);
1392     Builder.markChildToken(S->getElseLoc(), syntax::NodeRole::ElseKeyword);
1393     Builder.markStmtChild(S->getElse(), syntax::NodeRole::ElseStatement);
1394     Builder.foldNode(Builder.getStmtRange(S),
1395                      new (allocator()) syntax::IfStatement, S);
1396     return true;
1397   }
1398 
1399   bool WalkUpFromForStmt(ForStmt *S) {
1400     Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword);
1401     Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
1402     Builder.foldNode(Builder.getStmtRange(S),
1403                      new (allocator()) syntax::ForStatement, S);
1404     return true;
1405   }
1406 
1407   bool WalkUpFromWhileStmt(WhileStmt *S) {
1408     Builder.markChildToken(S->getWhileLoc(),
1409                            syntax::NodeRole::IntroducerKeyword);
1410     Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
1411     Builder.foldNode(Builder.getStmtRange(S),
1412                      new (allocator()) syntax::WhileStatement, S);
1413     return true;
1414   }
1415 
1416   bool WalkUpFromContinueStmt(ContinueStmt *S) {
1417     Builder.markChildToken(S->getContinueLoc(),
1418                            syntax::NodeRole::IntroducerKeyword);
1419     Builder.foldNode(Builder.getStmtRange(S),
1420                      new (allocator()) syntax::ContinueStatement, S);
1421     return true;
1422   }
1423 
1424   bool WalkUpFromBreakStmt(BreakStmt *S) {
1425     Builder.markChildToken(S->getBreakLoc(),
1426                            syntax::NodeRole::IntroducerKeyword);
1427     Builder.foldNode(Builder.getStmtRange(S),
1428                      new (allocator()) syntax::BreakStatement, S);
1429     return true;
1430   }
1431 
1432   bool WalkUpFromReturnStmt(ReturnStmt *S) {
1433     Builder.markChildToken(S->getReturnLoc(),
1434                            syntax::NodeRole::IntroducerKeyword);
1435     Builder.markExprChild(S->getRetValue(), syntax::NodeRole::ReturnValue);
1436     Builder.foldNode(Builder.getStmtRange(S),
1437                      new (allocator()) syntax::ReturnStatement, S);
1438     return true;
1439   }
1440 
1441   bool WalkUpFromCXXForRangeStmt(CXXForRangeStmt *S) {
1442     Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword);
1443     Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
1444     Builder.foldNode(Builder.getStmtRange(S),
1445                      new (allocator()) syntax::RangeBasedForStatement, S);
1446     return true;
1447   }
1448 
1449   bool WalkUpFromEmptyDecl(EmptyDecl *S) {
1450     Builder.foldNode(Builder.getDeclarationRange(S),
1451                      new (allocator()) syntax::EmptyDeclaration, S);
1452     return true;
1453   }
1454 
1455   bool WalkUpFromStaticAssertDecl(StaticAssertDecl *S) {
1456     Builder.markExprChild(S->getAssertExpr(), syntax::NodeRole::Condition);
1457     Builder.markExprChild(S->getMessage(), syntax::NodeRole::Message);
1458     Builder.foldNode(Builder.getDeclarationRange(S),
1459                      new (allocator()) syntax::StaticAssertDeclaration, S);
1460     return true;
1461   }
1462 
1463   bool WalkUpFromLinkageSpecDecl(LinkageSpecDecl *S) {
1464     Builder.foldNode(Builder.getDeclarationRange(S),
1465                      new (allocator()) syntax::LinkageSpecificationDeclaration,
1466                      S);
1467     return true;
1468   }
1469 
1470   bool WalkUpFromNamespaceAliasDecl(NamespaceAliasDecl *S) {
1471     Builder.foldNode(Builder.getDeclarationRange(S),
1472                      new (allocator()) syntax::NamespaceAliasDefinition, S);
1473     return true;
1474   }
1475 
1476   bool WalkUpFromUsingDirectiveDecl(UsingDirectiveDecl *S) {
1477     Builder.foldNode(Builder.getDeclarationRange(S),
1478                      new (allocator()) syntax::UsingNamespaceDirective, S);
1479     return true;
1480   }
1481 
1482   bool WalkUpFromUsingDecl(UsingDecl *S) {
1483     Builder.foldNode(Builder.getDeclarationRange(S),
1484                      new (allocator()) syntax::UsingDeclaration, S);
1485     return true;
1486   }
1487 
1488   bool WalkUpFromUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *S) {
1489     Builder.foldNode(Builder.getDeclarationRange(S),
1490                      new (allocator()) syntax::UsingDeclaration, S);
1491     return true;
1492   }
1493 
1494   bool WalkUpFromUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *S) {
1495     Builder.foldNode(Builder.getDeclarationRange(S),
1496                      new (allocator()) syntax::UsingDeclaration, S);
1497     return true;
1498   }
1499 
1500   bool WalkUpFromTypeAliasDecl(TypeAliasDecl *S) {
1501     Builder.foldNode(Builder.getDeclarationRange(S),
1502                      new (allocator()) syntax::TypeAliasDeclaration, S);
1503     return true;
1504   }
1505 
1506 private:
1507   /// Folds SimpleDeclarator node (if present) and in case this is the last
1508   /// declarator in the chain it also folds SimpleDeclaration node.
1509   template <class T> bool processDeclaratorAndDeclaration(T *D) {
1510     auto Range = getDeclaratorRange(
1511         Builder.sourceManager(), D->getTypeSourceInfo()->getTypeLoc(),
1512         getQualifiedNameStart(D), getInitializerRange(D));
1513 
1514     // There doesn't have to be a declarator (e.g. `void foo(int)` only has
1515     // declaration, but no declarator).
1516     if (Range.getBegin().isValid()) {
1517       auto *N = new (allocator()) syntax::SimpleDeclarator;
1518       Builder.foldNode(Builder.getRange(Range), N, nullptr);
1519       Builder.markChild(N, syntax::NodeRole::Declarator);
1520     }
1521 
1522     if (Builder.isResponsibleForCreatingDeclaration(D)) {
1523       Builder.foldNode(Builder.getDeclarationRange(D),
1524                        new (allocator()) syntax::SimpleDeclaration, D);
1525     }
1526     return true;
1527   }
1528 
1529   /// Returns the range of the built node.
1530   syntax::TrailingReturnType *buildTrailingReturn(FunctionProtoTypeLoc L) {
1531     assert(L.getTypePtr()->hasTrailingReturn());
1532 
1533     auto ReturnedType = L.getReturnLoc();
1534     // Build node for the declarator, if any.
1535     auto ReturnDeclaratorRange = SourceRange(GetStartLoc().Visit(ReturnedType),
1536                                              ReturnedType.getEndLoc());
1537     syntax::SimpleDeclarator *ReturnDeclarator = nullptr;
1538     if (ReturnDeclaratorRange.isValid()) {
1539       ReturnDeclarator = new (allocator()) syntax::SimpleDeclarator;
1540       Builder.foldNode(Builder.getRange(ReturnDeclaratorRange),
1541                        ReturnDeclarator, nullptr);
1542     }
1543 
1544     // Build node for trailing return type.
1545     auto Return = Builder.getRange(ReturnedType.getSourceRange());
1546     const auto *Arrow = Return.begin() - 1;
1547     assert(Arrow->kind() == tok::arrow);
1548     auto Tokens = llvm::makeArrayRef(Arrow, Return.end());
1549     Builder.markChildToken(Arrow, syntax::NodeRole::ArrowToken);
1550     if (ReturnDeclarator)
1551       Builder.markChild(ReturnDeclarator, syntax::NodeRole::Declarator);
1552     auto *R = new (allocator()) syntax::TrailingReturnType;
1553     Builder.foldNode(Tokens, R, L);
1554     return R;
1555   }
1556 
1557   void foldExplicitTemplateInstantiation(
1558       ArrayRef<syntax::Token> Range, const syntax::Token *ExternKW,
1559       const syntax::Token *TemplateKW,
1560       syntax::SimpleDeclaration *InnerDeclaration, Decl *From) {
1561     assert(!ExternKW || ExternKW->kind() == tok::kw_extern);
1562     assert(TemplateKW && TemplateKW->kind() == tok::kw_template);
1563     Builder.markChildToken(ExternKW, syntax::NodeRole::ExternKeyword);
1564     Builder.markChildToken(TemplateKW, syntax::NodeRole::IntroducerKeyword);
1565     Builder.markChild(InnerDeclaration, syntax::NodeRole::Declaration);
1566     Builder.foldNode(
1567         Range, new (allocator()) syntax::ExplicitTemplateInstantiation, From);
1568   }
1569 
1570   syntax::TemplateDeclaration *foldTemplateDeclaration(
1571       ArrayRef<syntax::Token> Range, const syntax::Token *TemplateKW,
1572       ArrayRef<syntax::Token> TemplatedDeclaration, Decl *From) {
1573     assert(TemplateKW && TemplateKW->kind() == tok::kw_template);
1574     Builder.markChildToken(TemplateKW, syntax::NodeRole::IntroducerKeyword);
1575 
1576     auto *N = new (allocator()) syntax::TemplateDeclaration;
1577     Builder.foldNode(Range, N, From);
1578     Builder.markChild(N, syntax::NodeRole::Declaration);
1579     return N;
1580   }
1581 
1582   /// A small helper to save some typing.
1583   llvm::BumpPtrAllocator &allocator() { return Builder.allocator(); }
1584 
1585   syntax::TreeBuilder &Builder;
1586   const ASTContext &Context;
1587 };
1588 } // namespace
1589 
1590 void syntax::TreeBuilder::noticeDeclWithoutSemicolon(Decl *D) {
1591   DeclsWithoutSemicolons.insert(D);
1592 }
1593 
1594 void syntax::TreeBuilder::markChildToken(SourceLocation Loc, NodeRole Role) {
1595   if (Loc.isInvalid())
1596     return;
1597   Pending.assignRole(*findToken(Loc), Role);
1598 }
1599 
1600 void syntax::TreeBuilder::markChildToken(const syntax::Token *T, NodeRole R) {
1601   if (!T)
1602     return;
1603   Pending.assignRole(*T, R);
1604 }
1605 
1606 void syntax::TreeBuilder::markChild(syntax::Node *N, NodeRole R) {
1607   assert(N);
1608   setRole(N, R);
1609 }
1610 
1611 void syntax::TreeBuilder::markChild(ASTPtr N, NodeRole R) {
1612   auto *SN = Mapping.find(N);
1613   assert(SN != nullptr);
1614   setRole(SN, R);
1615 }
1616 void syntax::TreeBuilder::markChild(NestedNameSpecifierLoc NNSLoc, NodeRole R) {
1617   auto *SN = Mapping.find(NNSLoc);
1618   assert(SN != nullptr);
1619   setRole(SN, R);
1620 }
1621 
1622 void syntax::TreeBuilder::markStmtChild(Stmt *Child, NodeRole Role) {
1623   if (!Child)
1624     return;
1625 
1626   syntax::Tree *ChildNode;
1627   if (Expr *ChildExpr = dyn_cast<Expr>(Child)) {
1628     // This is an expression in a statement position, consume the trailing
1629     // semicolon and form an 'ExpressionStatement' node.
1630     markExprChild(ChildExpr, NodeRole::Expression);
1631     ChildNode = new (allocator()) syntax::ExpressionStatement;
1632     // (!) 'getStmtRange()' ensures this covers a trailing semicolon.
1633     Pending.foldChildren(Arena, getStmtRange(Child), ChildNode);
1634   } else {
1635     ChildNode = Mapping.find(Child);
1636   }
1637   assert(ChildNode != nullptr);
1638   setRole(ChildNode, Role);
1639 }
1640 
1641 void syntax::TreeBuilder::markExprChild(Expr *Child, NodeRole Role) {
1642   if (!Child)
1643     return;
1644   Child = IgnoreImplicit(Child);
1645 
1646   syntax::Tree *ChildNode = Mapping.find(Child);
1647   assert(ChildNode != nullptr);
1648   setRole(ChildNode, Role);
1649 }
1650 
1651 const syntax::Token *syntax::TreeBuilder::findToken(SourceLocation L) const {
1652   if (L.isInvalid())
1653     return nullptr;
1654   auto It = LocationToToken.find(L.getRawEncoding());
1655   assert(It != LocationToToken.end());
1656   return It->second;
1657 }
1658 
1659 syntax::TranslationUnit *
1660 syntax::buildSyntaxTree(Arena &A, const TranslationUnitDecl &TU) {
1661   TreeBuilder Builder(A);
1662   BuildTreeVisitor(TU.getASTContext(), Builder).TraverseAST(TU.getASTContext());
1663   return std::move(Builder).finalize();
1664 }
1665