xref: /llvm-project/clang/lib/Tooling/Syntax/BuildTree.cpp (revision 6c1a23303de9d957cf45ebd04daba862519e393d)
1 //===- BuildTree.cpp ------------------------------------------*- C++ -*-=====//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 #include "clang/Tooling/Syntax/BuildTree.h"
9 #include "clang/AST/ASTFwd.h"
10 #include "clang/AST/Decl.h"
11 #include "clang/AST/DeclBase.h"
12 #include "clang/AST/DeclCXX.h"
13 #include "clang/AST/DeclarationName.h"
14 #include "clang/AST/Expr.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/AST/IgnoreExpr.h"
17 #include "clang/AST/OperationKinds.h"
18 #include "clang/AST/RecursiveASTVisitor.h"
19 #include "clang/AST/Stmt.h"
20 #include "clang/AST/TypeLoc.h"
21 #include "clang/AST/TypeLocVisitor.h"
22 #include "clang/Basic/LLVM.h"
23 #include "clang/Basic/SourceLocation.h"
24 #include "clang/Basic/SourceManager.h"
25 #include "clang/Basic/Specifiers.h"
26 #include "clang/Basic/TokenKinds.h"
27 #include "clang/Lex/Lexer.h"
28 #include "clang/Lex/LiteralSupport.h"
29 #include "clang/Tooling/Syntax/Nodes.h"
30 #include "clang/Tooling/Syntax/Tokens.h"
31 #include "clang/Tooling/Syntax/Tree.h"
32 #include "llvm/ADT/ArrayRef.h"
33 #include "llvm/ADT/DenseMap.h"
34 #include "llvm/ADT/PointerUnion.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include "llvm/ADT/ScopeExit.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/Support/Allocator.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/FormatVariadic.h"
42 #include "llvm/Support/MemoryBuffer.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include <cstddef>
45 #include <map>
46 
47 using namespace clang;
48 
49 // Ignores the implicit `CXXConstructExpr` for copy/move constructor calls
50 // generated by the compiler, as well as in implicit conversions like the one
51 // wrapping `1` in `X x = 1;`.
52 static Expr *IgnoreImplicitConstructorSingleStep(Expr *E) {
53   if (auto *C = dyn_cast<CXXConstructExpr>(E)) {
54     auto NumArgs = C->getNumArgs();
55     if (NumArgs == 1 || (NumArgs > 1 && isa<CXXDefaultArgExpr>(C->getArg(1)))) {
56       Expr *A = C->getArg(0);
57       if (C->getParenOrBraceRange().isInvalid())
58         return A;
59     }
60   }
61   return E;
62 }
63 
64 // In:
65 // struct X {
66 //   X(int)
67 // };
68 // X x = X(1);
69 // Ignores the implicit `CXXFunctionalCastExpr` that wraps
70 // `CXXConstructExpr X(1)`.
71 static Expr *IgnoreCXXFunctionalCastExprWrappingConstructor(Expr *E) {
72   if (auto *F = dyn_cast<CXXFunctionalCastExpr>(E)) {
73     if (F->getCastKind() == CK_ConstructorConversion)
74       return F->getSubExpr();
75   }
76   return E;
77 }
78 
79 static Expr *IgnoreImplicit(Expr *E) {
80   return IgnoreExprNodes(E, IgnoreImplicitSingleStep,
81                          IgnoreImplicitConstructorSingleStep,
82                          IgnoreCXXFunctionalCastExprWrappingConstructor);
83 }
84 
85 LLVM_ATTRIBUTE_UNUSED
86 static bool isImplicitExpr(Expr *E) { return IgnoreImplicit(E) != E; }
87 
88 namespace {
89 /// Get start location of the Declarator from the TypeLoc.
90 /// E.g.:
91 ///   loc of `(` in `int (a)`
92 ///   loc of `*` in `int *(a)`
93 ///   loc of the first `(` in `int (*a)(int)`
94 ///   loc of the `*` in `int *(a)(int)`
95 ///   loc of the first `*` in `const int *const *volatile a;`
96 ///
97 /// It is non-trivial to get the start location because TypeLocs are stored
98 /// inside out. In the example above `*volatile` is the TypeLoc returned
99 /// by `Decl.getTypeSourceInfo()`, and `*const` is what `.getPointeeLoc()`
100 /// returns.
101 struct GetStartLoc : TypeLocVisitor<GetStartLoc, SourceLocation> {
102   SourceLocation VisitParenTypeLoc(ParenTypeLoc T) {
103     auto L = Visit(T.getInnerLoc());
104     if (L.isValid())
105       return L;
106     return T.getLParenLoc();
107   }
108 
109   // Types spelled in the prefix part of the declarator.
110   SourceLocation VisitPointerTypeLoc(PointerTypeLoc T) {
111     return HandlePointer(T);
112   }
113 
114   SourceLocation VisitMemberPointerTypeLoc(MemberPointerTypeLoc T) {
115     return HandlePointer(T);
116   }
117 
118   SourceLocation VisitBlockPointerTypeLoc(BlockPointerTypeLoc T) {
119     return HandlePointer(T);
120   }
121 
122   SourceLocation VisitReferenceTypeLoc(ReferenceTypeLoc T) {
123     return HandlePointer(T);
124   }
125 
126   SourceLocation VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc T) {
127     return HandlePointer(T);
128   }
129 
130   // All other cases are not important, as they are either part of declaration
131   // specifiers (e.g. inheritors of TypeSpecTypeLoc) or introduce modifiers on
132   // existing declarators (e.g. QualifiedTypeLoc). They cannot start the
133   // declarator themselves, but their underlying type can.
134   SourceLocation VisitTypeLoc(TypeLoc T) {
135     auto N = T.getNextTypeLoc();
136     if (!N)
137       return SourceLocation();
138     return Visit(N);
139   }
140 
141   SourceLocation VisitFunctionProtoTypeLoc(FunctionProtoTypeLoc T) {
142     if (T.getTypePtr()->hasTrailingReturn())
143       return SourceLocation(); // avoid recursing into the suffix of declarator.
144     return VisitTypeLoc(T);
145   }
146 
147 private:
148   template <class PtrLoc> SourceLocation HandlePointer(PtrLoc T) {
149     auto L = Visit(T.getPointeeLoc());
150     if (L.isValid())
151       return L;
152     return T.getLocalSourceRange().getBegin();
153   }
154 };
155 } // namespace
156 
157 static CallExpr::arg_range dropDefaultArgs(CallExpr::arg_range Args) {
158   auto FirstDefaultArg = std::find_if(Args.begin(), Args.end(), [](auto It) {
159     return isa<CXXDefaultArgExpr>(It);
160   });
161   return llvm::make_range(Args.begin(), FirstDefaultArg);
162 }
163 
164 static syntax::NodeKind getOperatorNodeKind(const CXXOperatorCallExpr &E) {
165   switch (E.getOperator()) {
166   // Comparison
167   case OO_EqualEqual:
168   case OO_ExclaimEqual:
169   case OO_Greater:
170   case OO_GreaterEqual:
171   case OO_Less:
172   case OO_LessEqual:
173   case OO_Spaceship:
174   // Assignment
175   case OO_Equal:
176   case OO_SlashEqual:
177   case OO_PercentEqual:
178   case OO_CaretEqual:
179   case OO_PipeEqual:
180   case OO_LessLessEqual:
181   case OO_GreaterGreaterEqual:
182   case OO_PlusEqual:
183   case OO_MinusEqual:
184   case OO_StarEqual:
185   case OO_AmpEqual:
186   // Binary computation
187   case OO_Slash:
188   case OO_Percent:
189   case OO_Caret:
190   case OO_Pipe:
191   case OO_LessLess:
192   case OO_GreaterGreater:
193   case OO_AmpAmp:
194   case OO_PipePipe:
195   case OO_ArrowStar:
196   case OO_Comma:
197     return syntax::NodeKind::BinaryOperatorExpression;
198   case OO_Tilde:
199   case OO_Exclaim:
200     return syntax::NodeKind::PrefixUnaryOperatorExpression;
201   // Prefix/Postfix increment/decrement
202   case OO_PlusPlus:
203   case OO_MinusMinus:
204     switch (E.getNumArgs()) {
205     case 1:
206       return syntax::NodeKind::PrefixUnaryOperatorExpression;
207     case 2:
208       return syntax::NodeKind::PostfixUnaryOperatorExpression;
209     default:
210       llvm_unreachable("Invalid number of arguments for operator");
211     }
212   // Operators that can be unary or binary
213   case OO_Plus:
214   case OO_Minus:
215   case OO_Star:
216   case OO_Amp:
217     switch (E.getNumArgs()) {
218     case 1:
219       return syntax::NodeKind::PrefixUnaryOperatorExpression;
220     case 2:
221       return syntax::NodeKind::BinaryOperatorExpression;
222     default:
223       llvm_unreachable("Invalid number of arguments for operator");
224     }
225     return syntax::NodeKind::BinaryOperatorExpression;
226   // Not yet supported by SyntaxTree
227   case OO_New:
228   case OO_Delete:
229   case OO_Array_New:
230   case OO_Array_Delete:
231   case OO_Coawait:
232   case OO_Subscript:
233   case OO_Arrow:
234     return syntax::NodeKind::UnknownExpression;
235   case OO_Call:
236     return syntax::NodeKind::CallExpression;
237   case OO_Conditional: // not overloadable
238   case NUM_OVERLOADED_OPERATORS:
239   case OO_None:
240     llvm_unreachable("Not an overloadable operator");
241   }
242   llvm_unreachable("Unknown OverloadedOperatorKind enum");
243 }
244 
245 /// Get the start of the qualified name. In the examples below it gives the
246 /// location of the `^`:
247 ///     `int ^a;`
248 ///     `int *^a;`
249 ///     `int ^a::S::f(){}`
250 static SourceLocation getQualifiedNameStart(NamedDecl *D) {
251   assert((isa<DeclaratorDecl, TypedefNameDecl>(D)) &&
252          "only DeclaratorDecl and TypedefNameDecl are supported.");
253 
254   auto DN = D->getDeclName();
255   bool IsAnonymous = DN.isIdentifier() && !DN.getAsIdentifierInfo();
256   if (IsAnonymous)
257     return SourceLocation();
258 
259   if (const auto *DD = dyn_cast<DeclaratorDecl>(D)) {
260     if (DD->getQualifierLoc()) {
261       return DD->getQualifierLoc().getBeginLoc();
262     }
263   }
264 
265   return D->getLocation();
266 }
267 
268 /// Gets the range of the initializer inside an init-declarator C++ [dcl.decl].
269 ///     `int a;` -> range of ``,
270 ///     `int *a = nullptr` -> range of `= nullptr`.
271 ///     `int a{}` -> range of `{}`.
272 ///     `int a()` -> range of `()`.
273 static SourceRange getInitializerRange(Decl *D) {
274   if (auto *V = dyn_cast<VarDecl>(D)) {
275     auto *I = V->getInit();
276     // Initializers in range-based-for are not part of the declarator
277     if (I && !V->isCXXForRangeDecl())
278       return I->getSourceRange();
279   }
280 
281   return SourceRange();
282 }
283 
284 /// Gets the range of declarator as defined by the C++ grammar. E.g.
285 ///     `int a;` -> range of `a`,
286 ///     `int *a;` -> range of `*a`,
287 ///     `int a[10];` -> range of `a[10]`,
288 ///     `int a[1][2][3];` -> range of `a[1][2][3]`,
289 ///     `int *a = nullptr` -> range of `*a = nullptr`.
290 ///     `int S::f(){}` -> range of `S::f()`.
291 /// FIXME: \p Name must be a source range.
292 static SourceRange getDeclaratorRange(const SourceManager &SM, TypeLoc T,
293                                       SourceLocation Name,
294                                       SourceRange Initializer) {
295   SourceLocation Start = GetStartLoc().Visit(T);
296   SourceLocation End = T.getEndLoc();
297   assert(End.isValid());
298   if (Name.isValid()) {
299     if (Start.isInvalid())
300       Start = Name;
301     if (SM.isBeforeInTranslationUnit(End, Name))
302       End = Name;
303   }
304   if (Initializer.isValid()) {
305     auto InitializerEnd = Initializer.getEnd();
306     assert(SM.isBeforeInTranslationUnit(End, InitializerEnd) ||
307            End == InitializerEnd);
308     End = InitializerEnd;
309   }
310   return SourceRange(Start, End);
311 }
312 
313 namespace {
314 /// All AST hierarchy roots that can be represented as pointers.
315 using ASTPtr = llvm::PointerUnion<Stmt *, Decl *>;
316 /// Maintains a mapping from AST to syntax tree nodes. This class will get more
317 /// complicated as we support more kinds of AST nodes, e.g. TypeLocs.
318 /// FIXME: expose this as public API.
319 class ASTToSyntaxMapping {
320 public:
321   void add(ASTPtr From, syntax::Tree *To) {
322     assert(To != nullptr);
323     assert(!From.isNull());
324 
325     bool Added = Nodes.insert({From, To}).second;
326     (void)Added;
327     assert(Added && "mapping added twice");
328   }
329 
330   void add(NestedNameSpecifierLoc From, syntax::Tree *To) {
331     assert(To != nullptr);
332     assert(From.hasQualifier());
333 
334     bool Added = NNSNodes.insert({From, To}).second;
335     (void)Added;
336     assert(Added && "mapping added twice");
337   }
338 
339   syntax::Tree *find(ASTPtr P) const { return Nodes.lookup(P); }
340 
341   syntax::Tree *find(NestedNameSpecifierLoc P) const {
342     return NNSNodes.lookup(P);
343   }
344 
345 private:
346   llvm::DenseMap<ASTPtr, syntax::Tree *> Nodes;
347   llvm::DenseMap<NestedNameSpecifierLoc, syntax::Tree *> NNSNodes;
348 };
349 } // namespace
350 
351 /// A helper class for constructing the syntax tree while traversing a clang
352 /// AST.
353 ///
354 /// At each point of the traversal we maintain a list of pending nodes.
355 /// Initially all tokens are added as pending nodes. When processing a clang AST
356 /// node, the clients need to:
357 ///   - create a corresponding syntax node,
358 ///   - assign roles to all pending child nodes with 'markChild' and
359 ///     'markChildToken',
360 ///   - replace the child nodes with the new syntax node in the pending list
361 ///     with 'foldNode'.
362 ///
363 /// Note that all children are expected to be processed when building a node.
364 ///
365 /// Call finalize() to finish building the tree and consume the root node.
366 class syntax::TreeBuilder {
367 public:
368   TreeBuilder(syntax::Arena &Arena) : Arena(Arena), Pending(Arena) {
369     for (const auto &T : Arena.getTokenBuffer().expandedTokens())
370       LocationToToken.insert({T.location(), &T});
371   }
372 
373   llvm::BumpPtrAllocator &allocator() { return Arena.getAllocator(); }
374   const SourceManager &sourceManager() const {
375     return Arena.getSourceManager();
376   }
377 
378   /// Populate children for \p New node, assuming it covers tokens from \p
379   /// Range.
380   void foldNode(ArrayRef<syntax::Token> Range, syntax::Tree *New, ASTPtr From) {
381     assert(New);
382     Pending.foldChildren(Arena, Range, New);
383     if (From)
384       Mapping.add(From, New);
385   }
386 
387   void foldNode(ArrayRef<syntax::Token> Range, syntax::Tree *New, TypeLoc L) {
388     // FIXME: add mapping for TypeLocs
389     foldNode(Range, New, nullptr);
390   }
391 
392   void foldNode(llvm::ArrayRef<syntax::Token> Range, syntax::Tree *New,
393                 NestedNameSpecifierLoc From) {
394     assert(New);
395     Pending.foldChildren(Arena, Range, New);
396     if (From)
397       Mapping.add(From, New);
398   }
399 
400   /// Populate children for \p New list, assuming it covers tokens from a
401   /// subrange of \p SuperRange.
402   void foldList(ArrayRef<syntax::Token> SuperRange, syntax::List *New,
403                 ASTPtr From) {
404     assert(New);
405     auto ListRange = Pending.shrinkToFitList(SuperRange);
406     Pending.foldChildren(Arena, ListRange, New);
407     if (From)
408       Mapping.add(From, New);
409   }
410 
411   /// Notifies that we should not consume trailing semicolon when computing
412   /// token range of \p D.
413   void noticeDeclWithoutSemicolon(Decl *D);
414 
415   /// Mark the \p Child node with a corresponding \p Role. All marked children
416   /// should be consumed by foldNode.
417   /// When called on expressions (clang::Expr is derived from clang::Stmt),
418   /// wraps expressions into expression statement.
419   void markStmtChild(Stmt *Child, NodeRole Role);
420   /// Should be called for expressions in non-statement position to avoid
421   /// wrapping into expression statement.
422   void markExprChild(Expr *Child, NodeRole Role);
423   /// Set role for a token starting at \p Loc.
424   void markChildToken(SourceLocation Loc, NodeRole R);
425   /// Set role for \p T.
426   void markChildToken(const syntax::Token *T, NodeRole R);
427 
428   /// Set role for \p N.
429   void markChild(syntax::Node *N, NodeRole R);
430   /// Set role for the syntax node matching \p N.
431   void markChild(ASTPtr N, NodeRole R);
432   /// Set role for the syntax node matching \p N.
433   void markChild(NestedNameSpecifierLoc N, NodeRole R);
434 
435   /// Finish building the tree and consume the root node.
436   syntax::TranslationUnit *finalize() && {
437     auto Tokens = Arena.getTokenBuffer().expandedTokens();
438     assert(!Tokens.empty());
439     assert(Tokens.back().kind() == tok::eof);
440 
441     // Build the root of the tree, consuming all the children.
442     Pending.foldChildren(Arena, Tokens.drop_back(),
443                          new (Arena.getAllocator()) syntax::TranslationUnit);
444 
445     auto *TU = cast<syntax::TranslationUnit>(std::move(Pending).finalize());
446     TU->assertInvariantsRecursive();
447     return TU;
448   }
449 
450   /// Finds a token starting at \p L. The token must exist if \p L is valid.
451   const syntax::Token *findToken(SourceLocation L) const;
452 
453   /// Finds the syntax tokens corresponding to the \p SourceRange.
454   ArrayRef<syntax::Token> getRange(SourceRange Range) const {
455     assert(Range.isValid());
456     return getRange(Range.getBegin(), Range.getEnd());
457   }
458 
459   /// Finds the syntax tokens corresponding to the passed source locations.
460   /// \p First is the start position of the first token and \p Last is the start
461   /// position of the last token.
462   ArrayRef<syntax::Token> getRange(SourceLocation First,
463                                    SourceLocation Last) const {
464     assert(First.isValid());
465     assert(Last.isValid());
466     assert(First == Last ||
467            Arena.getSourceManager().isBeforeInTranslationUnit(First, Last));
468     return llvm::makeArrayRef(findToken(First), std::next(findToken(Last)));
469   }
470 
471   ArrayRef<syntax::Token>
472   getTemplateRange(const ClassTemplateSpecializationDecl *D) const {
473     auto Tokens = getRange(D->getSourceRange());
474     return maybeAppendSemicolon(Tokens, D);
475   }
476 
477   /// Returns true if \p D is the last declarator in a chain and is thus
478   /// reponsible for creating SimpleDeclaration for the whole chain.
479   bool isResponsibleForCreatingDeclaration(const Decl *D) const {
480     assert((isa<DeclaratorDecl, TypedefNameDecl>(D)) &&
481            "only DeclaratorDecl and TypedefNameDecl are supported.");
482 
483     const Decl *Next = D->getNextDeclInContext();
484 
485     // There's no next sibling, this one is responsible.
486     if (Next == nullptr) {
487       return true;
488     }
489 
490     // Next sibling is not the same type, this one is responsible.
491     if (D->getKind() != Next->getKind()) {
492       return true;
493     }
494     // Next sibling doesn't begin at the same loc, it must be a different
495     // declaration, so this declarator is responsible.
496     if (Next->getBeginLoc() != D->getBeginLoc()) {
497       return true;
498     }
499 
500     // NextT is a member of the same declaration, and we need the last member to
501     // create declaration. This one is not responsible.
502     return false;
503   }
504 
505   ArrayRef<syntax::Token> getDeclarationRange(Decl *D) {
506     ArrayRef<syntax::Token> Tokens;
507     // We want to drop the template parameters for specializations.
508     if (const auto *S = dyn_cast<TagDecl>(D))
509       Tokens = getRange(S->TypeDecl::getBeginLoc(), S->getEndLoc());
510     else
511       Tokens = getRange(D->getSourceRange());
512     return maybeAppendSemicolon(Tokens, D);
513   }
514 
515   ArrayRef<syntax::Token> getExprRange(const Expr *E) const {
516     return getRange(E->getSourceRange());
517   }
518 
519   /// Find the adjusted range for the statement, consuming the trailing
520   /// semicolon when needed.
521   ArrayRef<syntax::Token> getStmtRange(const Stmt *S) const {
522     auto Tokens = getRange(S->getSourceRange());
523     if (isa<CompoundStmt>(S))
524       return Tokens;
525 
526     // Some statements miss a trailing semicolon, e.g. 'return', 'continue' and
527     // all statements that end with those. Consume this semicolon here.
528     if (Tokens.back().kind() == tok::semi)
529       return Tokens;
530     return withTrailingSemicolon(Tokens);
531   }
532 
533 private:
534   ArrayRef<syntax::Token> maybeAppendSemicolon(ArrayRef<syntax::Token> Tokens,
535                                                const Decl *D) const {
536     if (isa<NamespaceDecl>(D))
537       return Tokens;
538     if (DeclsWithoutSemicolons.count(D))
539       return Tokens;
540     // FIXME: do not consume trailing semicolon on function definitions.
541     // Most declarations own a semicolon in syntax trees, but not in clang AST.
542     return withTrailingSemicolon(Tokens);
543   }
544 
545   ArrayRef<syntax::Token>
546   withTrailingSemicolon(ArrayRef<syntax::Token> Tokens) const {
547     assert(!Tokens.empty());
548     assert(Tokens.back().kind() != tok::eof);
549     // We never consume 'eof', so looking at the next token is ok.
550     if (Tokens.back().kind() != tok::semi && Tokens.end()->kind() == tok::semi)
551       return llvm::makeArrayRef(Tokens.begin(), Tokens.end() + 1);
552     return Tokens;
553   }
554 
555   void setRole(syntax::Node *N, NodeRole R) {
556     assert(N->getRole() == NodeRole::Detached);
557     N->setRole(R);
558   }
559 
560   /// A collection of trees covering the input tokens.
561   /// When created, each tree corresponds to a single token in the file.
562   /// Clients call 'foldChildren' to attach one or more subtrees to a parent
563   /// node and update the list of trees accordingly.
564   ///
565   /// Ensures that added nodes properly nest and cover the whole token stream.
566   struct Forest {
567     Forest(syntax::Arena &A) {
568       assert(!A.getTokenBuffer().expandedTokens().empty());
569       assert(A.getTokenBuffer().expandedTokens().back().kind() == tok::eof);
570       // Create all leaf nodes.
571       // Note that we do not have 'eof' in the tree.
572       for (const auto &T : A.getTokenBuffer().expandedTokens().drop_back()) {
573         auto *L = new (A.getAllocator()) syntax::Leaf(&T);
574         L->Original = true;
575         L->CanModify = A.getTokenBuffer().spelledForExpanded(T).hasValue();
576         Trees.insert(Trees.end(), {&T, L});
577       }
578     }
579 
580     void assignRole(ArrayRef<syntax::Token> Range, syntax::NodeRole Role) {
581       assert(!Range.empty());
582       auto It = Trees.lower_bound(Range.begin());
583       assert(It != Trees.end() && "no node found");
584       assert(It->first == Range.begin() && "no child with the specified range");
585       assert((std::next(It) == Trees.end() ||
586               std::next(It)->first == Range.end()) &&
587              "no child with the specified range");
588       assert(It->second->getRole() == NodeRole::Detached &&
589              "re-assigning role for a child");
590       It->second->setRole(Role);
591     }
592 
593     /// Shrink \p Range to a subrange that only contains tokens of a list.
594     /// List elements and delimiters should already have correct roles.
595     ArrayRef<syntax::Token> shrinkToFitList(ArrayRef<syntax::Token> Range) {
596       auto BeginChildren = Trees.lower_bound(Range.begin());
597       assert((BeginChildren == Trees.end() ||
598               BeginChildren->first == Range.begin()) &&
599              "Range crosses boundaries of existing subtrees");
600 
601       auto EndChildren = Trees.lower_bound(Range.end());
602       assert(
603           (EndChildren == Trees.end() || EndChildren->first == Range.end()) &&
604           "Range crosses boundaries of existing subtrees");
605 
606       auto BelongsToList = [](decltype(Trees)::value_type KV) {
607         auto Role = KV.second->getRole();
608         return Role == syntax::NodeRole::ListElement ||
609                Role == syntax::NodeRole::ListDelimiter;
610       };
611 
612       auto BeginListChildren =
613           std::find_if(BeginChildren, EndChildren, BelongsToList);
614 
615       auto EndListChildren =
616           std::find_if_not(BeginListChildren, EndChildren, BelongsToList);
617 
618       return ArrayRef<syntax::Token>(BeginListChildren->first,
619                                      EndListChildren->first);
620     }
621 
622     /// Add \p Node to the forest and attach child nodes based on \p Tokens.
623     void foldChildren(const syntax::Arena &A, ArrayRef<syntax::Token> Tokens,
624                       syntax::Tree *Node) {
625       // Attach children to `Node`.
626       assert(Node->getFirstChild() == nullptr && "node already has children");
627 
628       auto *FirstToken = Tokens.begin();
629       auto BeginChildren = Trees.lower_bound(FirstToken);
630 
631       assert((BeginChildren == Trees.end() ||
632               BeginChildren->first == FirstToken) &&
633              "fold crosses boundaries of existing subtrees");
634       auto EndChildren = Trees.lower_bound(Tokens.end());
635       assert(
636           (EndChildren == Trees.end() || EndChildren->first == Tokens.end()) &&
637           "fold crosses boundaries of existing subtrees");
638 
639       for (auto It = BeginChildren; It != EndChildren; ++It) {
640         auto *C = It->second;
641         if (C->getRole() == NodeRole::Detached)
642           C->setRole(NodeRole::Unknown);
643         Node->appendChildLowLevel(C);
644       }
645 
646       // Mark that this node came from the AST and is backed by the source code.
647       Node->Original = true;
648       Node->CanModify =
649           A.getTokenBuffer().spelledForExpanded(Tokens).hasValue();
650 
651       Trees.erase(BeginChildren, EndChildren);
652       Trees.insert({FirstToken, Node});
653     }
654 
655     // EXPECTS: all tokens were consumed and are owned by a single root node.
656     syntax::Node *finalize() && {
657       assert(Trees.size() == 1);
658       auto *Root = Trees.begin()->second;
659       Trees = {};
660       return Root;
661     }
662 
663     std::string str(const syntax::Arena &A) const {
664       std::string R;
665       for (auto It = Trees.begin(); It != Trees.end(); ++It) {
666         unsigned CoveredTokens =
667             It != Trees.end()
668                 ? (std::next(It)->first - It->first)
669                 : A.getTokenBuffer().expandedTokens().end() - It->first;
670 
671         R += std::string(
672             formatv("- '{0}' covers '{1}'+{2} tokens\n", It->second->getKind(),
673                     It->first->text(A.getSourceManager()), CoveredTokens));
674         R += It->second->dump(A.getSourceManager());
675       }
676       return R;
677     }
678 
679   private:
680     /// Maps from the start token to a subtree starting at that token.
681     /// Keys in the map are pointers into the array of expanded tokens, so
682     /// pointer order corresponds to the order of preprocessor tokens.
683     std::map<const syntax::Token *, syntax::Node *> Trees;
684   };
685 
686   /// For debugging purposes.
687   std::string str() { return Pending.str(Arena); }
688 
689   syntax::Arena &Arena;
690   /// To quickly find tokens by their start location.
691   llvm::DenseMap<SourceLocation, const syntax::Token *> LocationToToken;
692   Forest Pending;
693   llvm::DenseSet<Decl *> DeclsWithoutSemicolons;
694   ASTToSyntaxMapping Mapping;
695 };
696 
697 namespace {
698 class BuildTreeVisitor : public RecursiveASTVisitor<BuildTreeVisitor> {
699 public:
700   explicit BuildTreeVisitor(ASTContext &Context, syntax::TreeBuilder &Builder)
701       : Builder(Builder), Context(Context) {}
702 
703   bool shouldTraversePostOrder() const { return true; }
704 
705   bool WalkUpFromDeclaratorDecl(DeclaratorDecl *DD) {
706     return processDeclaratorAndDeclaration(DD);
707   }
708 
709   bool WalkUpFromTypedefNameDecl(TypedefNameDecl *TD) {
710     return processDeclaratorAndDeclaration(TD);
711   }
712 
713   bool VisitDecl(Decl *D) {
714     assert(!D->isImplicit());
715     Builder.foldNode(Builder.getDeclarationRange(D),
716                      new (allocator()) syntax::UnknownDeclaration(), D);
717     return true;
718   }
719 
720   // RAV does not call WalkUpFrom* on explicit instantiations, so we have to
721   // override Traverse.
722   // FIXME: make RAV call WalkUpFrom* instead.
723   bool
724   TraverseClassTemplateSpecializationDecl(ClassTemplateSpecializationDecl *C) {
725     if (!RecursiveASTVisitor::TraverseClassTemplateSpecializationDecl(C))
726       return false;
727     if (C->isExplicitSpecialization())
728       return true; // we are only interested in explicit instantiations.
729     auto *Declaration =
730         cast<syntax::SimpleDeclaration>(handleFreeStandingTagDecl(C));
731     foldExplicitTemplateInstantiation(
732         Builder.getTemplateRange(C), Builder.findToken(C->getExternLoc()),
733         Builder.findToken(C->getTemplateKeywordLoc()), Declaration, C);
734     return true;
735   }
736 
737   bool WalkUpFromTemplateDecl(TemplateDecl *S) {
738     foldTemplateDeclaration(
739         Builder.getDeclarationRange(S),
740         Builder.findToken(S->getTemplateParameters()->getTemplateLoc()),
741         Builder.getDeclarationRange(S->getTemplatedDecl()), S);
742     return true;
743   }
744 
745   bool WalkUpFromTagDecl(TagDecl *C) {
746     // FIXME: build the ClassSpecifier node.
747     if (!C->isFreeStanding()) {
748       assert(C->getNumTemplateParameterLists() == 0);
749       return true;
750     }
751     handleFreeStandingTagDecl(C);
752     return true;
753   }
754 
755   syntax::Declaration *handleFreeStandingTagDecl(TagDecl *C) {
756     assert(C->isFreeStanding());
757     // Class is a declaration specifier and needs a spanning declaration node.
758     auto DeclarationRange = Builder.getDeclarationRange(C);
759     syntax::Declaration *Result = new (allocator()) syntax::SimpleDeclaration;
760     Builder.foldNode(DeclarationRange, Result, nullptr);
761 
762     // Build TemplateDeclaration nodes if we had template parameters.
763     auto ConsumeTemplateParameters = [&](const TemplateParameterList &L) {
764       const auto *TemplateKW = Builder.findToken(L.getTemplateLoc());
765       auto R = llvm::makeArrayRef(TemplateKW, DeclarationRange.end());
766       Result =
767           foldTemplateDeclaration(R, TemplateKW, DeclarationRange, nullptr);
768       DeclarationRange = R;
769     };
770     if (auto *S = dyn_cast<ClassTemplatePartialSpecializationDecl>(C))
771       ConsumeTemplateParameters(*S->getTemplateParameters());
772     for (unsigned I = C->getNumTemplateParameterLists(); 0 < I; --I)
773       ConsumeTemplateParameters(*C->getTemplateParameterList(I - 1));
774     return Result;
775   }
776 
777   bool WalkUpFromTranslationUnitDecl(TranslationUnitDecl *TU) {
778     // We do not want to call VisitDecl(), the declaration for translation
779     // unit is built by finalize().
780     return true;
781   }
782 
783   bool WalkUpFromCompoundStmt(CompoundStmt *S) {
784     using NodeRole = syntax::NodeRole;
785 
786     Builder.markChildToken(S->getLBracLoc(), NodeRole::OpenParen);
787     for (auto *Child : S->body())
788       Builder.markStmtChild(Child, NodeRole::Statement);
789     Builder.markChildToken(S->getRBracLoc(), NodeRole::CloseParen);
790 
791     Builder.foldNode(Builder.getStmtRange(S),
792                      new (allocator()) syntax::CompoundStatement, S);
793     return true;
794   }
795 
796   // Some statements are not yet handled by syntax trees.
797   bool WalkUpFromStmt(Stmt *S) {
798     Builder.foldNode(Builder.getStmtRange(S),
799                      new (allocator()) syntax::UnknownStatement, S);
800     return true;
801   }
802 
803   bool TraverseIfStmt(IfStmt *S) {
804     bool Result = [&, this]() {
805       if (S->getInit() && !TraverseStmt(S->getInit())) {
806         return false;
807       }
808       // In cases where the condition is an initialized declaration in a
809       // statement, we want to preserve the declaration and ignore the
810       // implicit condition expression in the syntax tree.
811       if (S->hasVarStorage()) {
812         if (!TraverseStmt(S->getConditionVariableDeclStmt()))
813           return false;
814       } else if (S->getCond() && !TraverseStmt(S->getCond()))
815         return false;
816 
817       if (S->getThen() && !TraverseStmt(S->getThen()))
818         return false;
819       if (S->getElse() && !TraverseStmt(S->getElse()))
820         return false;
821       return true;
822     }();
823     WalkUpFromIfStmt(S);
824     return Result;
825   }
826 
827   bool TraverseCXXForRangeStmt(CXXForRangeStmt *S) {
828     // We override to traverse range initializer as VarDecl.
829     // RAV traverses it as a statement, we produce invalid node kinds in that
830     // case.
831     // FIXME: should do this in RAV instead?
832     bool Result = [&, this]() {
833       if (S->getInit() && !TraverseStmt(S->getInit()))
834         return false;
835       if (S->getLoopVariable() && !TraverseDecl(S->getLoopVariable()))
836         return false;
837       if (S->getRangeInit() && !TraverseStmt(S->getRangeInit()))
838         return false;
839       if (S->getBody() && !TraverseStmt(S->getBody()))
840         return false;
841       return true;
842     }();
843     WalkUpFromCXXForRangeStmt(S);
844     return Result;
845   }
846 
847   bool TraverseStmt(Stmt *S) {
848     if (auto *DS = dyn_cast_or_null<DeclStmt>(S)) {
849       // We want to consume the semicolon, make sure SimpleDeclaration does not.
850       for (auto *D : DS->decls())
851         Builder.noticeDeclWithoutSemicolon(D);
852     } else if (auto *E = dyn_cast_or_null<Expr>(S)) {
853       return RecursiveASTVisitor::TraverseStmt(IgnoreImplicit(E));
854     }
855     return RecursiveASTVisitor::TraverseStmt(S);
856   }
857 
858   // Some expressions are not yet handled by syntax trees.
859   bool WalkUpFromExpr(Expr *E) {
860     assert(!isImplicitExpr(E) && "should be handled by TraverseStmt");
861     Builder.foldNode(Builder.getExprRange(E),
862                      new (allocator()) syntax::UnknownExpression, E);
863     return true;
864   }
865 
866   bool TraverseUserDefinedLiteral(UserDefinedLiteral *S) {
867     // The semantic AST node `UserDefinedLiteral` (UDL) may have one child node
868     // referencing the location of the UDL suffix (`_w` in `1.2_w`). The
869     // UDL suffix location does not point to the beginning of a token, so we
870     // can't represent the UDL suffix as a separate syntax tree node.
871 
872     return WalkUpFromUserDefinedLiteral(S);
873   }
874 
875   syntax::UserDefinedLiteralExpression *
876   buildUserDefinedLiteral(UserDefinedLiteral *S) {
877     switch (S->getLiteralOperatorKind()) {
878     case UserDefinedLiteral::LOK_Integer:
879       return new (allocator()) syntax::IntegerUserDefinedLiteralExpression;
880     case UserDefinedLiteral::LOK_Floating:
881       return new (allocator()) syntax::FloatUserDefinedLiteralExpression;
882     case UserDefinedLiteral::LOK_Character:
883       return new (allocator()) syntax::CharUserDefinedLiteralExpression;
884     case UserDefinedLiteral::LOK_String:
885       return new (allocator()) syntax::StringUserDefinedLiteralExpression;
886     case UserDefinedLiteral::LOK_Raw:
887     case UserDefinedLiteral::LOK_Template:
888       // For raw literal operator and numeric literal operator template we
889       // cannot get the type of the operand in the semantic AST. We get this
890       // information from the token. As integer and floating point have the same
891       // token kind, we run `NumericLiteralParser` again to distinguish them.
892       auto TokLoc = S->getBeginLoc();
893       auto TokSpelling =
894           Builder.findToken(TokLoc)->text(Context.getSourceManager());
895       auto Literal =
896           NumericLiteralParser(TokSpelling, TokLoc, Context.getSourceManager(),
897                                Context.getLangOpts(), Context.getTargetInfo(),
898                                Context.getDiagnostics());
899       if (Literal.isIntegerLiteral())
900         return new (allocator()) syntax::IntegerUserDefinedLiteralExpression;
901       else {
902         assert(Literal.isFloatingLiteral());
903         return new (allocator()) syntax::FloatUserDefinedLiteralExpression;
904       }
905     }
906     llvm_unreachable("Unknown literal operator kind.");
907   }
908 
909   bool WalkUpFromUserDefinedLiteral(UserDefinedLiteral *S) {
910     Builder.markChildToken(S->getBeginLoc(), syntax::NodeRole::LiteralToken);
911     Builder.foldNode(Builder.getExprRange(S), buildUserDefinedLiteral(S), S);
912     return true;
913   }
914 
915   // FIXME: Fix `NestedNameSpecifierLoc::getLocalSourceRange` for the
916   // `DependentTemplateSpecializationType` case.
917   /// Given a nested-name-specifier return the range for the last name
918   /// specifier.
919   ///
920   /// e.g. `std::T::template X<U>::` => `template X<U>::`
921   SourceRange getLocalSourceRange(const NestedNameSpecifierLoc &NNSLoc) {
922     auto SR = NNSLoc.getLocalSourceRange();
923 
924     // The method `NestedNameSpecifierLoc::getLocalSourceRange` *should*
925     // return the desired `SourceRange`, but there is a corner case. For a
926     // `DependentTemplateSpecializationType` this method returns its
927     // qualifiers as well, in other words in the example above this method
928     // returns `T::template X<U>::` instead of only `template X<U>::`
929     if (auto TL = NNSLoc.getTypeLoc()) {
930       if (auto DependentTL =
931               TL.getAs<DependentTemplateSpecializationTypeLoc>()) {
932         // The 'template' keyword is always present in dependent template
933         // specializations. Except in the case of incorrect code
934         // TODO: Treat the case of incorrect code.
935         SR.setBegin(DependentTL.getTemplateKeywordLoc());
936       }
937     }
938 
939     return SR;
940   }
941 
942   syntax::NodeKind getNameSpecifierKind(const NestedNameSpecifier &NNS) {
943     switch (NNS.getKind()) {
944     case NestedNameSpecifier::Global:
945       return syntax::NodeKind::GlobalNameSpecifier;
946     case NestedNameSpecifier::Namespace:
947     case NestedNameSpecifier::NamespaceAlias:
948     case NestedNameSpecifier::Identifier:
949       return syntax::NodeKind::IdentifierNameSpecifier;
950     case NestedNameSpecifier::TypeSpecWithTemplate:
951       return syntax::NodeKind::SimpleTemplateNameSpecifier;
952     case NestedNameSpecifier::TypeSpec: {
953       const auto *NNSType = NNS.getAsType();
954       assert(NNSType);
955       if (isa<DecltypeType>(NNSType))
956         return syntax::NodeKind::DecltypeNameSpecifier;
957       if (isa<TemplateSpecializationType, DependentTemplateSpecializationType>(
958               NNSType))
959         return syntax::NodeKind::SimpleTemplateNameSpecifier;
960       return syntax::NodeKind::IdentifierNameSpecifier;
961     }
962     default:
963       // FIXME: Support Microsoft's __super
964       llvm::report_fatal_error("We don't yet support the __super specifier",
965                                true);
966     }
967   }
968 
969   syntax::NameSpecifier *
970   buildNameSpecifier(const NestedNameSpecifierLoc &NNSLoc) {
971     assert(NNSLoc.hasQualifier());
972     auto NameSpecifierTokens =
973         Builder.getRange(getLocalSourceRange(NNSLoc)).drop_back();
974     switch (getNameSpecifierKind(*NNSLoc.getNestedNameSpecifier())) {
975     case syntax::NodeKind::GlobalNameSpecifier:
976       return new (allocator()) syntax::GlobalNameSpecifier;
977     case syntax::NodeKind::IdentifierNameSpecifier: {
978       assert(NameSpecifierTokens.size() == 1);
979       Builder.markChildToken(NameSpecifierTokens.begin(),
980                              syntax::NodeRole::Unknown);
981       auto *NS = new (allocator()) syntax::IdentifierNameSpecifier;
982       Builder.foldNode(NameSpecifierTokens, NS, nullptr);
983       return NS;
984     }
985     case syntax::NodeKind::SimpleTemplateNameSpecifier: {
986       // TODO: Build `SimpleTemplateNameSpecifier` children and implement
987       // accessors to them.
988       // Be aware, we cannot do that simply by calling `TraverseTypeLoc`,
989       // some `TypeLoc`s have inside them the previous name specifier and
990       // we want to treat them independently.
991       auto *NS = new (allocator()) syntax::SimpleTemplateNameSpecifier;
992       Builder.foldNode(NameSpecifierTokens, NS, nullptr);
993       return NS;
994     }
995     case syntax::NodeKind::DecltypeNameSpecifier: {
996       const auto TL = NNSLoc.getTypeLoc().castAs<DecltypeTypeLoc>();
997       if (!RecursiveASTVisitor::TraverseDecltypeTypeLoc(TL))
998         return nullptr;
999       auto *NS = new (allocator()) syntax::DecltypeNameSpecifier;
1000       // TODO: Implement accessor to `DecltypeNameSpecifier` inner
1001       // `DecltypeTypeLoc`.
1002       // For that add mapping from `TypeLoc` to `syntax::Node*` then:
1003       // Builder.markChild(TypeLoc, syntax::NodeRole);
1004       Builder.foldNode(NameSpecifierTokens, NS, nullptr);
1005       return NS;
1006     }
1007     default:
1008       llvm_unreachable("getChildKind() does not return this value");
1009     }
1010   }
1011 
1012   // To build syntax tree nodes for NestedNameSpecifierLoc we override
1013   // Traverse instead of WalkUpFrom because we want to traverse the children
1014   // ourselves and build a list instead of a nested tree of name specifier
1015   // prefixes.
1016   bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc QualifierLoc) {
1017     if (!QualifierLoc)
1018       return true;
1019     for (auto It = QualifierLoc; It; It = It.getPrefix()) {
1020       auto *NS = buildNameSpecifier(It);
1021       if (!NS)
1022         return false;
1023       Builder.markChild(NS, syntax::NodeRole::ListElement);
1024       Builder.markChildToken(It.getEndLoc(), syntax::NodeRole::ListDelimiter);
1025     }
1026     Builder.foldNode(Builder.getRange(QualifierLoc.getSourceRange()),
1027                      new (allocator()) syntax::NestedNameSpecifier,
1028                      QualifierLoc);
1029     return true;
1030   }
1031 
1032   syntax::IdExpression *buildIdExpression(NestedNameSpecifierLoc QualifierLoc,
1033                                           SourceLocation TemplateKeywordLoc,
1034                                           SourceRange UnqualifiedIdLoc,
1035                                           ASTPtr From) {
1036     if (QualifierLoc) {
1037       Builder.markChild(QualifierLoc, syntax::NodeRole::Qualifier);
1038       if (TemplateKeywordLoc.isValid())
1039         Builder.markChildToken(TemplateKeywordLoc,
1040                                syntax::NodeRole::TemplateKeyword);
1041     }
1042 
1043     auto *TheUnqualifiedId = new (allocator()) syntax::UnqualifiedId;
1044     Builder.foldNode(Builder.getRange(UnqualifiedIdLoc), TheUnqualifiedId,
1045                      nullptr);
1046     Builder.markChild(TheUnqualifiedId, syntax::NodeRole::UnqualifiedId);
1047 
1048     auto IdExpressionBeginLoc =
1049         QualifierLoc ? QualifierLoc.getBeginLoc() : UnqualifiedIdLoc.getBegin();
1050 
1051     auto *TheIdExpression = new (allocator()) syntax::IdExpression;
1052     Builder.foldNode(
1053         Builder.getRange(IdExpressionBeginLoc, UnqualifiedIdLoc.getEnd()),
1054         TheIdExpression, From);
1055 
1056     return TheIdExpression;
1057   }
1058 
1059   bool WalkUpFromMemberExpr(MemberExpr *S) {
1060     // For `MemberExpr` with implicit `this->` we generate a simple
1061     // `id-expression` syntax node, beacuse an implicit `member-expression` is
1062     // syntactically undistinguishable from an `id-expression`
1063     if (S->isImplicitAccess()) {
1064       buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(),
1065                         SourceRange(S->getMemberLoc(), S->getEndLoc()), S);
1066       return true;
1067     }
1068 
1069     auto *TheIdExpression = buildIdExpression(
1070         S->getQualifierLoc(), S->getTemplateKeywordLoc(),
1071         SourceRange(S->getMemberLoc(), S->getEndLoc()), nullptr);
1072 
1073     Builder.markChild(TheIdExpression, syntax::NodeRole::Member);
1074 
1075     Builder.markExprChild(S->getBase(), syntax::NodeRole::Object);
1076     Builder.markChildToken(S->getOperatorLoc(), syntax::NodeRole::AccessToken);
1077 
1078     Builder.foldNode(Builder.getExprRange(S),
1079                      new (allocator()) syntax::MemberExpression, S);
1080     return true;
1081   }
1082 
1083   bool WalkUpFromDeclRefExpr(DeclRefExpr *S) {
1084     buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(),
1085                       SourceRange(S->getLocation(), S->getEndLoc()), S);
1086 
1087     return true;
1088   }
1089 
1090   // Same logic as DeclRefExpr.
1091   bool WalkUpFromDependentScopeDeclRefExpr(DependentScopeDeclRefExpr *S) {
1092     buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(),
1093                       SourceRange(S->getLocation(), S->getEndLoc()), S);
1094 
1095     return true;
1096   }
1097 
1098   bool WalkUpFromCXXThisExpr(CXXThisExpr *S) {
1099     if (!S->isImplicit()) {
1100       Builder.markChildToken(S->getLocation(),
1101                              syntax::NodeRole::IntroducerKeyword);
1102       Builder.foldNode(Builder.getExprRange(S),
1103                        new (allocator()) syntax::ThisExpression, S);
1104     }
1105     return true;
1106   }
1107 
1108   bool WalkUpFromParenExpr(ParenExpr *S) {
1109     Builder.markChildToken(S->getLParen(), syntax::NodeRole::OpenParen);
1110     Builder.markExprChild(S->getSubExpr(), syntax::NodeRole::SubExpression);
1111     Builder.markChildToken(S->getRParen(), syntax::NodeRole::CloseParen);
1112     Builder.foldNode(Builder.getExprRange(S),
1113                      new (allocator()) syntax::ParenExpression, S);
1114     return true;
1115   }
1116 
1117   bool WalkUpFromIntegerLiteral(IntegerLiteral *S) {
1118     Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
1119     Builder.foldNode(Builder.getExprRange(S),
1120                      new (allocator()) syntax::IntegerLiteralExpression, S);
1121     return true;
1122   }
1123 
1124   bool WalkUpFromCharacterLiteral(CharacterLiteral *S) {
1125     Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
1126     Builder.foldNode(Builder.getExprRange(S),
1127                      new (allocator()) syntax::CharacterLiteralExpression, S);
1128     return true;
1129   }
1130 
1131   bool WalkUpFromFloatingLiteral(FloatingLiteral *S) {
1132     Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
1133     Builder.foldNode(Builder.getExprRange(S),
1134                      new (allocator()) syntax::FloatingLiteralExpression, S);
1135     return true;
1136   }
1137 
1138   bool WalkUpFromStringLiteral(StringLiteral *S) {
1139     Builder.markChildToken(S->getBeginLoc(), syntax::NodeRole::LiteralToken);
1140     Builder.foldNode(Builder.getExprRange(S),
1141                      new (allocator()) syntax::StringLiteralExpression, S);
1142     return true;
1143   }
1144 
1145   bool WalkUpFromCXXBoolLiteralExpr(CXXBoolLiteralExpr *S) {
1146     Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
1147     Builder.foldNode(Builder.getExprRange(S),
1148                      new (allocator()) syntax::BoolLiteralExpression, S);
1149     return true;
1150   }
1151 
1152   bool WalkUpFromCXXNullPtrLiteralExpr(CXXNullPtrLiteralExpr *S) {
1153     Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
1154     Builder.foldNode(Builder.getExprRange(S),
1155                      new (allocator()) syntax::CxxNullPtrExpression, S);
1156     return true;
1157   }
1158 
1159   bool WalkUpFromUnaryOperator(UnaryOperator *S) {
1160     Builder.markChildToken(S->getOperatorLoc(),
1161                            syntax::NodeRole::OperatorToken);
1162     Builder.markExprChild(S->getSubExpr(), syntax::NodeRole::Operand);
1163 
1164     if (S->isPostfix())
1165       Builder.foldNode(Builder.getExprRange(S),
1166                        new (allocator()) syntax::PostfixUnaryOperatorExpression,
1167                        S);
1168     else
1169       Builder.foldNode(Builder.getExprRange(S),
1170                        new (allocator()) syntax::PrefixUnaryOperatorExpression,
1171                        S);
1172 
1173     return true;
1174   }
1175 
1176   bool WalkUpFromBinaryOperator(BinaryOperator *S) {
1177     Builder.markExprChild(S->getLHS(), syntax::NodeRole::LeftHandSide);
1178     Builder.markChildToken(S->getOperatorLoc(),
1179                            syntax::NodeRole::OperatorToken);
1180     Builder.markExprChild(S->getRHS(), syntax::NodeRole::RightHandSide);
1181     Builder.foldNode(Builder.getExprRange(S),
1182                      new (allocator()) syntax::BinaryOperatorExpression, S);
1183     return true;
1184   }
1185 
1186   /// Builds `CallArguments` syntax node from arguments that appear in source
1187   /// code, i.e. not default arguments.
1188   syntax::CallArguments *
1189   buildCallArguments(CallExpr::arg_range ArgsAndDefaultArgs) {
1190     auto Args = dropDefaultArgs(ArgsAndDefaultArgs);
1191     for (auto *Arg : Args) {
1192       Builder.markExprChild(Arg, syntax::NodeRole::ListElement);
1193       const auto *DelimiterToken =
1194           std::next(Builder.findToken(Arg->getEndLoc()));
1195       if (DelimiterToken->kind() == clang::tok::TokenKind::comma)
1196         Builder.markChildToken(DelimiterToken, syntax::NodeRole::ListDelimiter);
1197     }
1198 
1199     auto *Arguments = new (allocator()) syntax::CallArguments;
1200     if (!Args.empty())
1201       Builder.foldNode(Builder.getRange((*Args.begin())->getBeginLoc(),
1202                                         (*(Args.end() - 1))->getEndLoc()),
1203                        Arguments, nullptr);
1204 
1205     return Arguments;
1206   }
1207 
1208   bool WalkUpFromCallExpr(CallExpr *S) {
1209     Builder.markExprChild(S->getCallee(), syntax::NodeRole::Callee);
1210 
1211     const auto *LParenToken =
1212         std::next(Builder.findToken(S->getCallee()->getEndLoc()));
1213     // FIXME: Assert that `LParenToken` is indeed a `l_paren` once we have fixed
1214     // the test on decltype desctructors.
1215     if (LParenToken->kind() == clang::tok::l_paren)
1216       Builder.markChildToken(LParenToken, syntax::NodeRole::OpenParen);
1217 
1218     Builder.markChild(buildCallArguments(S->arguments()),
1219                       syntax::NodeRole::Arguments);
1220 
1221     Builder.markChildToken(S->getRParenLoc(), syntax::NodeRole::CloseParen);
1222 
1223     Builder.foldNode(Builder.getRange(S->getSourceRange()),
1224                      new (allocator()) syntax::CallExpression, S);
1225     return true;
1226   }
1227 
1228   bool WalkUpFromCXXConstructExpr(CXXConstructExpr *S) {
1229     // Ignore the implicit calls to default constructors.
1230     if ((S->getNumArgs() == 0 || isa<CXXDefaultArgExpr>(S->getArg(0))) &&
1231         S->getParenOrBraceRange().isInvalid())
1232       return true;
1233     return RecursiveASTVisitor::WalkUpFromCXXConstructExpr(S);
1234   }
1235 
1236   bool TraverseCXXOperatorCallExpr(CXXOperatorCallExpr *S) {
1237     // To construct a syntax tree of the same shape for calls to built-in and
1238     // user-defined operators, ignore the `DeclRefExpr` that refers to the
1239     // operator and treat it as a simple token. Do that by traversing
1240     // arguments instead of children.
1241     for (auto *child : S->arguments()) {
1242       // A postfix unary operator is declared as taking two operands. The
1243       // second operand is used to distinguish from its prefix counterpart. In
1244       // the semantic AST this "phantom" operand is represented as a
1245       // `IntegerLiteral` with invalid `SourceLocation`. We skip visiting this
1246       // operand because it does not correspond to anything written in source
1247       // code.
1248       if (child->getSourceRange().isInvalid()) {
1249         assert(getOperatorNodeKind(*S) ==
1250                syntax::NodeKind::PostfixUnaryOperatorExpression);
1251         continue;
1252       }
1253       if (!TraverseStmt(child))
1254         return false;
1255     }
1256     return WalkUpFromCXXOperatorCallExpr(S);
1257   }
1258 
1259   bool WalkUpFromCXXOperatorCallExpr(CXXOperatorCallExpr *S) {
1260     switch (getOperatorNodeKind(*S)) {
1261     case syntax::NodeKind::BinaryOperatorExpression:
1262       Builder.markExprChild(S->getArg(0), syntax::NodeRole::LeftHandSide);
1263       Builder.markChildToken(S->getOperatorLoc(),
1264                              syntax::NodeRole::OperatorToken);
1265       Builder.markExprChild(S->getArg(1), syntax::NodeRole::RightHandSide);
1266       Builder.foldNode(Builder.getExprRange(S),
1267                        new (allocator()) syntax::BinaryOperatorExpression, S);
1268       return true;
1269     case syntax::NodeKind::PrefixUnaryOperatorExpression:
1270       Builder.markChildToken(S->getOperatorLoc(),
1271                              syntax::NodeRole::OperatorToken);
1272       Builder.markExprChild(S->getArg(0), syntax::NodeRole::Operand);
1273       Builder.foldNode(Builder.getExprRange(S),
1274                        new (allocator()) syntax::PrefixUnaryOperatorExpression,
1275                        S);
1276       return true;
1277     case syntax::NodeKind::PostfixUnaryOperatorExpression:
1278       Builder.markChildToken(S->getOperatorLoc(),
1279                              syntax::NodeRole::OperatorToken);
1280       Builder.markExprChild(S->getArg(0), syntax::NodeRole::Operand);
1281       Builder.foldNode(Builder.getExprRange(S),
1282                        new (allocator()) syntax::PostfixUnaryOperatorExpression,
1283                        S);
1284       return true;
1285     case syntax::NodeKind::CallExpression: {
1286       Builder.markExprChild(S->getArg(0), syntax::NodeRole::Callee);
1287 
1288       const auto *LParenToken =
1289           std::next(Builder.findToken(S->getArg(0)->getEndLoc()));
1290       // FIXME: Assert that `LParenToken` is indeed a `l_paren` once we have
1291       // fixed the test on decltype desctructors.
1292       if (LParenToken->kind() == clang::tok::l_paren)
1293         Builder.markChildToken(LParenToken, syntax::NodeRole::OpenParen);
1294 
1295       Builder.markChild(buildCallArguments(CallExpr::arg_range(
1296                             S->arg_begin() + 1, S->arg_end())),
1297                         syntax::NodeRole::Arguments);
1298 
1299       Builder.markChildToken(S->getRParenLoc(), syntax::NodeRole::CloseParen);
1300 
1301       Builder.foldNode(Builder.getRange(S->getSourceRange()),
1302                        new (allocator()) syntax::CallExpression, S);
1303       return true;
1304     }
1305     case syntax::NodeKind::UnknownExpression:
1306       return WalkUpFromExpr(S);
1307     default:
1308       llvm_unreachable("getOperatorNodeKind() does not return this value");
1309     }
1310   }
1311 
1312   bool WalkUpFromCXXDefaultArgExpr(CXXDefaultArgExpr *S) { return true; }
1313 
1314   bool WalkUpFromNamespaceDecl(NamespaceDecl *S) {
1315     auto Tokens = Builder.getDeclarationRange(S);
1316     if (Tokens.front().kind() == tok::coloncolon) {
1317       // Handle nested namespace definitions. Those start at '::' token, e.g.
1318       // namespace a^::b {}
1319       // FIXME: build corresponding nodes for the name of this namespace.
1320       return true;
1321     }
1322     Builder.foldNode(Tokens, new (allocator()) syntax::NamespaceDefinition, S);
1323     return true;
1324   }
1325 
1326   // FIXME: Deleting the `TraverseParenTypeLoc` override doesn't change test
1327   // results. Find test coverage or remove it.
1328   bool TraverseParenTypeLoc(ParenTypeLoc L) {
1329     // We reverse order of traversal to get the proper syntax structure.
1330     if (!WalkUpFromParenTypeLoc(L))
1331       return false;
1332     return TraverseTypeLoc(L.getInnerLoc());
1333   }
1334 
1335   bool WalkUpFromParenTypeLoc(ParenTypeLoc L) {
1336     Builder.markChildToken(L.getLParenLoc(), syntax::NodeRole::OpenParen);
1337     Builder.markChildToken(L.getRParenLoc(), syntax::NodeRole::CloseParen);
1338     Builder.foldNode(Builder.getRange(L.getLParenLoc(), L.getRParenLoc()),
1339                      new (allocator()) syntax::ParenDeclarator, L);
1340     return true;
1341   }
1342 
1343   // Declarator chunks, they are produced by type locs and some clang::Decls.
1344   bool WalkUpFromArrayTypeLoc(ArrayTypeLoc L) {
1345     Builder.markChildToken(L.getLBracketLoc(), syntax::NodeRole::OpenParen);
1346     Builder.markExprChild(L.getSizeExpr(), syntax::NodeRole::Size);
1347     Builder.markChildToken(L.getRBracketLoc(), syntax::NodeRole::CloseParen);
1348     Builder.foldNode(Builder.getRange(L.getLBracketLoc(), L.getRBracketLoc()),
1349                      new (allocator()) syntax::ArraySubscript, L);
1350     return true;
1351   }
1352 
1353   syntax::ParameterDeclarationList *
1354   buildParameterDeclarationList(ArrayRef<ParmVarDecl *> Params) {
1355     for (auto *P : Params) {
1356       Builder.markChild(P, syntax::NodeRole::ListElement);
1357       const auto *DelimiterToken = std::next(Builder.findToken(P->getEndLoc()));
1358       if (DelimiterToken->kind() == clang::tok::TokenKind::comma)
1359         Builder.markChildToken(DelimiterToken, syntax::NodeRole::ListDelimiter);
1360     }
1361     auto *Parameters = new (allocator()) syntax::ParameterDeclarationList;
1362     if (!Params.empty())
1363       Builder.foldNode(Builder.getRange(Params.front()->getBeginLoc(),
1364                                         Params.back()->getEndLoc()),
1365                        Parameters, nullptr);
1366     return Parameters;
1367   }
1368 
1369   bool WalkUpFromFunctionTypeLoc(FunctionTypeLoc L) {
1370     Builder.markChildToken(L.getLParenLoc(), syntax::NodeRole::OpenParen);
1371 
1372     Builder.markChild(buildParameterDeclarationList(L.getParams()),
1373                       syntax::NodeRole::Parameters);
1374 
1375     Builder.markChildToken(L.getRParenLoc(), syntax::NodeRole::CloseParen);
1376     Builder.foldNode(Builder.getRange(L.getLParenLoc(), L.getEndLoc()),
1377                      new (allocator()) syntax::ParametersAndQualifiers, L);
1378     return true;
1379   }
1380 
1381   bool WalkUpFromFunctionProtoTypeLoc(FunctionProtoTypeLoc L) {
1382     if (!L.getTypePtr()->hasTrailingReturn())
1383       return WalkUpFromFunctionTypeLoc(L);
1384 
1385     auto *TrailingReturnTokens = buildTrailingReturn(L);
1386     // Finish building the node for parameters.
1387     Builder.markChild(TrailingReturnTokens, syntax::NodeRole::TrailingReturn);
1388     return WalkUpFromFunctionTypeLoc(L);
1389   }
1390 
1391   bool TraverseMemberPointerTypeLoc(MemberPointerTypeLoc L) {
1392     // In the source code "void (Y::*mp)()" `MemberPointerTypeLoc` corresponds
1393     // to "Y::*" but it points to a `ParenTypeLoc` that corresponds to
1394     // "(Y::*mp)" We thus reverse the order of traversal to get the proper
1395     // syntax structure.
1396     if (!WalkUpFromMemberPointerTypeLoc(L))
1397       return false;
1398     return TraverseTypeLoc(L.getPointeeLoc());
1399   }
1400 
1401   bool WalkUpFromMemberPointerTypeLoc(MemberPointerTypeLoc L) {
1402     auto SR = L.getLocalSourceRange();
1403     Builder.foldNode(Builder.getRange(SR),
1404                      new (allocator()) syntax::MemberPointer, L);
1405     return true;
1406   }
1407 
1408   // The code below is very regular, it could even be generated with some
1409   // preprocessor magic. We merely assign roles to the corresponding children
1410   // and fold resulting nodes.
1411   bool WalkUpFromDeclStmt(DeclStmt *S) {
1412     Builder.foldNode(Builder.getStmtRange(S),
1413                      new (allocator()) syntax::DeclarationStatement, S);
1414     return true;
1415   }
1416 
1417   bool WalkUpFromNullStmt(NullStmt *S) {
1418     Builder.foldNode(Builder.getStmtRange(S),
1419                      new (allocator()) syntax::EmptyStatement, S);
1420     return true;
1421   }
1422 
1423   bool WalkUpFromSwitchStmt(SwitchStmt *S) {
1424     Builder.markChildToken(S->getSwitchLoc(),
1425                            syntax::NodeRole::IntroducerKeyword);
1426     Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
1427     Builder.foldNode(Builder.getStmtRange(S),
1428                      new (allocator()) syntax::SwitchStatement, S);
1429     return true;
1430   }
1431 
1432   bool WalkUpFromCaseStmt(CaseStmt *S) {
1433     Builder.markChildToken(S->getKeywordLoc(),
1434                            syntax::NodeRole::IntroducerKeyword);
1435     Builder.markExprChild(S->getLHS(), syntax::NodeRole::CaseValue);
1436     Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement);
1437     Builder.foldNode(Builder.getStmtRange(S),
1438                      new (allocator()) syntax::CaseStatement, S);
1439     return true;
1440   }
1441 
1442   bool WalkUpFromDefaultStmt(DefaultStmt *S) {
1443     Builder.markChildToken(S->getKeywordLoc(),
1444                            syntax::NodeRole::IntroducerKeyword);
1445     Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement);
1446     Builder.foldNode(Builder.getStmtRange(S),
1447                      new (allocator()) syntax::DefaultStatement, S);
1448     return true;
1449   }
1450 
1451   bool WalkUpFromIfStmt(IfStmt *S) {
1452     Builder.markChildToken(S->getIfLoc(), syntax::NodeRole::IntroducerKeyword);
1453     Stmt *ConditionStatement = S->getCond();
1454     if (S->hasVarStorage())
1455       ConditionStatement = S->getConditionVariableDeclStmt();
1456     Builder.markStmtChild(ConditionStatement, syntax::NodeRole::Condition);
1457     Builder.markStmtChild(S->getThen(), syntax::NodeRole::ThenStatement);
1458     Builder.markChildToken(S->getElseLoc(), syntax::NodeRole::ElseKeyword);
1459     Builder.markStmtChild(S->getElse(), syntax::NodeRole::ElseStatement);
1460     Builder.foldNode(Builder.getStmtRange(S),
1461                      new (allocator()) syntax::IfStatement, S);
1462     return true;
1463   }
1464 
1465   bool WalkUpFromForStmt(ForStmt *S) {
1466     Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword);
1467     Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
1468     Builder.foldNode(Builder.getStmtRange(S),
1469                      new (allocator()) syntax::ForStatement, S);
1470     return true;
1471   }
1472 
1473   bool WalkUpFromWhileStmt(WhileStmt *S) {
1474     Builder.markChildToken(S->getWhileLoc(),
1475                            syntax::NodeRole::IntroducerKeyword);
1476     Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
1477     Builder.foldNode(Builder.getStmtRange(S),
1478                      new (allocator()) syntax::WhileStatement, S);
1479     return true;
1480   }
1481 
1482   bool WalkUpFromContinueStmt(ContinueStmt *S) {
1483     Builder.markChildToken(S->getContinueLoc(),
1484                            syntax::NodeRole::IntroducerKeyword);
1485     Builder.foldNode(Builder.getStmtRange(S),
1486                      new (allocator()) syntax::ContinueStatement, S);
1487     return true;
1488   }
1489 
1490   bool WalkUpFromBreakStmt(BreakStmt *S) {
1491     Builder.markChildToken(S->getBreakLoc(),
1492                            syntax::NodeRole::IntroducerKeyword);
1493     Builder.foldNode(Builder.getStmtRange(S),
1494                      new (allocator()) syntax::BreakStatement, S);
1495     return true;
1496   }
1497 
1498   bool WalkUpFromReturnStmt(ReturnStmt *S) {
1499     Builder.markChildToken(S->getReturnLoc(),
1500                            syntax::NodeRole::IntroducerKeyword);
1501     Builder.markExprChild(S->getRetValue(), syntax::NodeRole::ReturnValue);
1502     Builder.foldNode(Builder.getStmtRange(S),
1503                      new (allocator()) syntax::ReturnStatement, S);
1504     return true;
1505   }
1506 
1507   bool WalkUpFromCXXForRangeStmt(CXXForRangeStmt *S) {
1508     Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword);
1509     Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
1510     Builder.foldNode(Builder.getStmtRange(S),
1511                      new (allocator()) syntax::RangeBasedForStatement, S);
1512     return true;
1513   }
1514 
1515   bool WalkUpFromEmptyDecl(EmptyDecl *S) {
1516     Builder.foldNode(Builder.getDeclarationRange(S),
1517                      new (allocator()) syntax::EmptyDeclaration, S);
1518     return true;
1519   }
1520 
1521   bool WalkUpFromStaticAssertDecl(StaticAssertDecl *S) {
1522     Builder.markExprChild(S->getAssertExpr(), syntax::NodeRole::Condition);
1523     Builder.markExprChild(S->getMessage(), syntax::NodeRole::Message);
1524     Builder.foldNode(Builder.getDeclarationRange(S),
1525                      new (allocator()) syntax::StaticAssertDeclaration, S);
1526     return true;
1527   }
1528 
1529   bool WalkUpFromLinkageSpecDecl(LinkageSpecDecl *S) {
1530     Builder.foldNode(Builder.getDeclarationRange(S),
1531                      new (allocator()) syntax::LinkageSpecificationDeclaration,
1532                      S);
1533     return true;
1534   }
1535 
1536   bool WalkUpFromNamespaceAliasDecl(NamespaceAliasDecl *S) {
1537     Builder.foldNode(Builder.getDeclarationRange(S),
1538                      new (allocator()) syntax::NamespaceAliasDefinition, S);
1539     return true;
1540   }
1541 
1542   bool WalkUpFromUsingDirectiveDecl(UsingDirectiveDecl *S) {
1543     Builder.foldNode(Builder.getDeclarationRange(S),
1544                      new (allocator()) syntax::UsingNamespaceDirective, S);
1545     return true;
1546   }
1547 
1548   bool WalkUpFromUsingDecl(UsingDecl *S) {
1549     Builder.foldNode(Builder.getDeclarationRange(S),
1550                      new (allocator()) syntax::UsingDeclaration, S);
1551     return true;
1552   }
1553 
1554   bool WalkUpFromUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *S) {
1555     Builder.foldNode(Builder.getDeclarationRange(S),
1556                      new (allocator()) syntax::UsingDeclaration, S);
1557     return true;
1558   }
1559 
1560   bool WalkUpFromUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *S) {
1561     Builder.foldNode(Builder.getDeclarationRange(S),
1562                      new (allocator()) syntax::UsingDeclaration, S);
1563     return true;
1564   }
1565 
1566   bool WalkUpFromTypeAliasDecl(TypeAliasDecl *S) {
1567     Builder.foldNode(Builder.getDeclarationRange(S),
1568                      new (allocator()) syntax::TypeAliasDeclaration, S);
1569     return true;
1570   }
1571 
1572 private:
1573   /// Folds SimpleDeclarator node (if present) and in case this is the last
1574   /// declarator in the chain it also folds SimpleDeclaration node.
1575   template <class T> bool processDeclaratorAndDeclaration(T *D) {
1576     auto Range = getDeclaratorRange(
1577         Builder.sourceManager(), D->getTypeSourceInfo()->getTypeLoc(),
1578         getQualifiedNameStart(D), getInitializerRange(D));
1579 
1580     // There doesn't have to be a declarator (e.g. `void foo(int)` only has
1581     // declaration, but no declarator).
1582     if (!Range.getBegin().isValid()) {
1583       Builder.markChild(new (allocator()) syntax::DeclaratorList,
1584                         syntax::NodeRole::Declarators);
1585       Builder.foldNode(Builder.getDeclarationRange(D),
1586                        new (allocator()) syntax::SimpleDeclaration, D);
1587       return true;
1588     }
1589 
1590     auto *N = new (allocator()) syntax::SimpleDeclarator;
1591     Builder.foldNode(Builder.getRange(Range), N, nullptr);
1592     Builder.markChild(N, syntax::NodeRole::ListElement);
1593 
1594     if (!Builder.isResponsibleForCreatingDeclaration(D)) {
1595       // If this is not the last declarator in the declaration we expect a
1596       // delimiter after it.
1597       const auto *DelimiterToken = std::next(Builder.findToken(Range.getEnd()));
1598       if (DelimiterToken->kind() == clang::tok::TokenKind::comma)
1599         Builder.markChildToken(DelimiterToken, syntax::NodeRole::ListDelimiter);
1600     } else {
1601       auto *DL = new (allocator()) syntax::DeclaratorList;
1602       auto DeclarationRange = Builder.getDeclarationRange(D);
1603       Builder.foldList(DeclarationRange, DL, nullptr);
1604 
1605       Builder.markChild(DL, syntax::NodeRole::Declarators);
1606       Builder.foldNode(DeclarationRange,
1607                        new (allocator()) syntax::SimpleDeclaration, D);
1608     }
1609     return true;
1610   }
1611 
1612   /// Returns the range of the built node.
1613   syntax::TrailingReturnType *buildTrailingReturn(FunctionProtoTypeLoc L) {
1614     assert(L.getTypePtr()->hasTrailingReturn());
1615 
1616     auto ReturnedType = L.getReturnLoc();
1617     // Build node for the declarator, if any.
1618     auto ReturnDeclaratorRange = SourceRange(GetStartLoc().Visit(ReturnedType),
1619                                              ReturnedType.getEndLoc());
1620     syntax::SimpleDeclarator *ReturnDeclarator = nullptr;
1621     if (ReturnDeclaratorRange.isValid()) {
1622       ReturnDeclarator = new (allocator()) syntax::SimpleDeclarator;
1623       Builder.foldNode(Builder.getRange(ReturnDeclaratorRange),
1624                        ReturnDeclarator, nullptr);
1625     }
1626 
1627     // Build node for trailing return type.
1628     auto Return = Builder.getRange(ReturnedType.getSourceRange());
1629     const auto *Arrow = Return.begin() - 1;
1630     assert(Arrow->kind() == tok::arrow);
1631     auto Tokens = llvm::makeArrayRef(Arrow, Return.end());
1632     Builder.markChildToken(Arrow, syntax::NodeRole::ArrowToken);
1633     if (ReturnDeclarator)
1634       Builder.markChild(ReturnDeclarator, syntax::NodeRole::Declarator);
1635     auto *R = new (allocator()) syntax::TrailingReturnType;
1636     Builder.foldNode(Tokens, R, L);
1637     return R;
1638   }
1639 
1640   void foldExplicitTemplateInstantiation(
1641       ArrayRef<syntax::Token> Range, const syntax::Token *ExternKW,
1642       const syntax::Token *TemplateKW,
1643       syntax::SimpleDeclaration *InnerDeclaration, Decl *From) {
1644     assert(!ExternKW || ExternKW->kind() == tok::kw_extern);
1645     assert(TemplateKW && TemplateKW->kind() == tok::kw_template);
1646     Builder.markChildToken(ExternKW, syntax::NodeRole::ExternKeyword);
1647     Builder.markChildToken(TemplateKW, syntax::NodeRole::IntroducerKeyword);
1648     Builder.markChild(InnerDeclaration, syntax::NodeRole::Declaration);
1649     Builder.foldNode(
1650         Range, new (allocator()) syntax::ExplicitTemplateInstantiation, From);
1651   }
1652 
1653   syntax::TemplateDeclaration *foldTemplateDeclaration(
1654       ArrayRef<syntax::Token> Range, const syntax::Token *TemplateKW,
1655       ArrayRef<syntax::Token> TemplatedDeclaration, Decl *From) {
1656     assert(TemplateKW && TemplateKW->kind() == tok::kw_template);
1657     Builder.markChildToken(TemplateKW, syntax::NodeRole::IntroducerKeyword);
1658 
1659     auto *N = new (allocator()) syntax::TemplateDeclaration;
1660     Builder.foldNode(Range, N, From);
1661     Builder.markChild(N, syntax::NodeRole::Declaration);
1662     return N;
1663   }
1664 
1665   /// A small helper to save some typing.
1666   llvm::BumpPtrAllocator &allocator() { return Builder.allocator(); }
1667 
1668   syntax::TreeBuilder &Builder;
1669   const ASTContext &Context;
1670 };
1671 } // namespace
1672 
1673 void syntax::TreeBuilder::noticeDeclWithoutSemicolon(Decl *D) {
1674   DeclsWithoutSemicolons.insert(D);
1675 }
1676 
1677 void syntax::TreeBuilder::markChildToken(SourceLocation Loc, NodeRole Role) {
1678   if (Loc.isInvalid())
1679     return;
1680   Pending.assignRole(*findToken(Loc), Role);
1681 }
1682 
1683 void syntax::TreeBuilder::markChildToken(const syntax::Token *T, NodeRole R) {
1684   if (!T)
1685     return;
1686   Pending.assignRole(*T, R);
1687 }
1688 
1689 void syntax::TreeBuilder::markChild(syntax::Node *N, NodeRole R) {
1690   assert(N);
1691   setRole(N, R);
1692 }
1693 
1694 void syntax::TreeBuilder::markChild(ASTPtr N, NodeRole R) {
1695   auto *SN = Mapping.find(N);
1696   assert(SN != nullptr);
1697   setRole(SN, R);
1698 }
1699 void syntax::TreeBuilder::markChild(NestedNameSpecifierLoc NNSLoc, NodeRole R) {
1700   auto *SN = Mapping.find(NNSLoc);
1701   assert(SN != nullptr);
1702   setRole(SN, R);
1703 }
1704 
1705 void syntax::TreeBuilder::markStmtChild(Stmt *Child, NodeRole Role) {
1706   if (!Child)
1707     return;
1708 
1709   syntax::Tree *ChildNode;
1710   if (Expr *ChildExpr = dyn_cast<Expr>(Child)) {
1711     // This is an expression in a statement position, consume the trailing
1712     // semicolon and form an 'ExpressionStatement' node.
1713     markExprChild(ChildExpr, NodeRole::Expression);
1714     ChildNode = new (allocator()) syntax::ExpressionStatement;
1715     // (!) 'getStmtRange()' ensures this covers a trailing semicolon.
1716     Pending.foldChildren(Arena, getStmtRange(Child), ChildNode);
1717   } else {
1718     ChildNode = Mapping.find(Child);
1719   }
1720   assert(ChildNode != nullptr);
1721   setRole(ChildNode, Role);
1722 }
1723 
1724 void syntax::TreeBuilder::markExprChild(Expr *Child, NodeRole Role) {
1725   if (!Child)
1726     return;
1727   Child = IgnoreImplicit(Child);
1728 
1729   syntax::Tree *ChildNode = Mapping.find(Child);
1730   assert(ChildNode != nullptr);
1731   setRole(ChildNode, Role);
1732 }
1733 
1734 const syntax::Token *syntax::TreeBuilder::findToken(SourceLocation L) const {
1735   if (L.isInvalid())
1736     return nullptr;
1737   auto It = LocationToToken.find(L);
1738   assert(It != LocationToToken.end());
1739   return It->second;
1740 }
1741 
1742 syntax::TranslationUnit *syntax::buildSyntaxTree(Arena &A,
1743                                                  ASTContext &Context) {
1744   TreeBuilder Builder(A);
1745   BuildTreeVisitor(Context, Builder).TraverseAST(Context);
1746   return std::move(Builder).finalize();
1747 }
1748