1 //===- BuildTree.cpp ------------------------------------------*- C++ -*-=====// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 #include "clang/Tooling/Syntax/BuildTree.h" 9 #include "clang/AST/ASTFwd.h" 10 #include "clang/AST/Decl.h" 11 #include "clang/AST/DeclBase.h" 12 #include "clang/AST/DeclCXX.h" 13 #include "clang/AST/DeclarationName.h" 14 #include "clang/AST/Expr.h" 15 #include "clang/AST/ExprCXX.h" 16 #include "clang/AST/IgnoreExpr.h" 17 #include "clang/AST/OperationKinds.h" 18 #include "clang/AST/RecursiveASTVisitor.h" 19 #include "clang/AST/Stmt.h" 20 #include "clang/AST/TypeLoc.h" 21 #include "clang/AST/TypeLocVisitor.h" 22 #include "clang/Basic/LLVM.h" 23 #include "clang/Basic/SourceLocation.h" 24 #include "clang/Basic/SourceManager.h" 25 #include "clang/Basic/Specifiers.h" 26 #include "clang/Basic/TokenKinds.h" 27 #include "clang/Lex/Lexer.h" 28 #include "clang/Lex/LiteralSupport.h" 29 #include "clang/Tooling/Syntax/Nodes.h" 30 #include "clang/Tooling/Syntax/Tokens.h" 31 #include "clang/Tooling/Syntax/Tree.h" 32 #include "llvm/ADT/ArrayRef.h" 33 #include "llvm/ADT/DenseMap.h" 34 #include "llvm/ADT/PointerUnion.h" 35 #include "llvm/ADT/STLExtras.h" 36 #include "llvm/ADT/ScopeExit.h" 37 #include "llvm/ADT/SmallVector.h" 38 #include "llvm/Support/Allocator.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/FormatVariadic.h" 42 #include "llvm/Support/MemoryBuffer.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include <cstddef> 45 #include <map> 46 47 using namespace clang; 48 49 // Ignores the implicit `CXXConstructExpr` for copy/move constructor calls 50 // generated by the compiler, as well as in implicit conversions like the one 51 // wrapping `1` in `X x = 1;`. 52 static Expr *IgnoreImplicitConstructorSingleStep(Expr *E) { 53 if (auto *C = dyn_cast<CXXConstructExpr>(E)) { 54 auto NumArgs = C->getNumArgs(); 55 if (NumArgs == 1 || (NumArgs > 1 && isa<CXXDefaultArgExpr>(C->getArg(1)))) { 56 Expr *A = C->getArg(0); 57 if (C->getParenOrBraceRange().isInvalid()) 58 return A; 59 } 60 } 61 return E; 62 } 63 64 // In: 65 // struct X { 66 // X(int) 67 // }; 68 // X x = X(1); 69 // Ignores the implicit `CXXFunctionalCastExpr` that wraps 70 // `CXXConstructExpr X(1)`. 71 static Expr *IgnoreCXXFunctionalCastExprWrappingConstructor(Expr *E) { 72 if (auto *F = dyn_cast<CXXFunctionalCastExpr>(E)) { 73 if (F->getCastKind() == CK_ConstructorConversion) 74 return F->getSubExpr(); 75 } 76 return E; 77 } 78 79 static Expr *IgnoreImplicit(Expr *E) { 80 return IgnoreExprNodes(E, IgnoreImplicitSingleStep, 81 IgnoreImplicitConstructorSingleStep, 82 IgnoreCXXFunctionalCastExprWrappingConstructor); 83 } 84 85 LLVM_ATTRIBUTE_UNUSED 86 static bool isImplicitExpr(Expr *E) { return IgnoreImplicit(E) != E; } 87 88 namespace { 89 /// Get start location of the Declarator from the TypeLoc. 90 /// E.g.: 91 /// loc of `(` in `int (a)` 92 /// loc of `*` in `int *(a)` 93 /// loc of the first `(` in `int (*a)(int)` 94 /// loc of the `*` in `int *(a)(int)` 95 /// loc of the first `*` in `const int *const *volatile a;` 96 /// 97 /// It is non-trivial to get the start location because TypeLocs are stored 98 /// inside out. In the example above `*volatile` is the TypeLoc returned 99 /// by `Decl.getTypeSourceInfo()`, and `*const` is what `.getPointeeLoc()` 100 /// returns. 101 struct GetStartLoc : TypeLocVisitor<GetStartLoc, SourceLocation> { 102 SourceLocation VisitParenTypeLoc(ParenTypeLoc T) { 103 auto L = Visit(T.getInnerLoc()); 104 if (L.isValid()) 105 return L; 106 return T.getLParenLoc(); 107 } 108 109 // Types spelled in the prefix part of the declarator. 110 SourceLocation VisitPointerTypeLoc(PointerTypeLoc T) { 111 return HandlePointer(T); 112 } 113 114 SourceLocation VisitMemberPointerTypeLoc(MemberPointerTypeLoc T) { 115 return HandlePointer(T); 116 } 117 118 SourceLocation VisitBlockPointerTypeLoc(BlockPointerTypeLoc T) { 119 return HandlePointer(T); 120 } 121 122 SourceLocation VisitReferenceTypeLoc(ReferenceTypeLoc T) { 123 return HandlePointer(T); 124 } 125 126 SourceLocation VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc T) { 127 return HandlePointer(T); 128 } 129 130 // All other cases are not important, as they are either part of declaration 131 // specifiers (e.g. inheritors of TypeSpecTypeLoc) or introduce modifiers on 132 // existing declarators (e.g. QualifiedTypeLoc). They cannot start the 133 // declarator themselves, but their underlying type can. 134 SourceLocation VisitTypeLoc(TypeLoc T) { 135 auto N = T.getNextTypeLoc(); 136 if (!N) 137 return SourceLocation(); 138 return Visit(N); 139 } 140 141 SourceLocation VisitFunctionProtoTypeLoc(FunctionProtoTypeLoc T) { 142 if (T.getTypePtr()->hasTrailingReturn()) 143 return SourceLocation(); // avoid recursing into the suffix of declarator. 144 return VisitTypeLoc(T); 145 } 146 147 private: 148 template <class PtrLoc> SourceLocation HandlePointer(PtrLoc T) { 149 auto L = Visit(T.getPointeeLoc()); 150 if (L.isValid()) 151 return L; 152 return T.getLocalSourceRange().getBegin(); 153 } 154 }; 155 } // namespace 156 157 static CallExpr::arg_range dropDefaultArgs(CallExpr::arg_range Args) { 158 auto FirstDefaultArg = std::find_if(Args.begin(), Args.end(), [](auto It) { 159 return isa<CXXDefaultArgExpr>(It); 160 }); 161 return llvm::make_range(Args.begin(), FirstDefaultArg); 162 } 163 164 static syntax::NodeKind getOperatorNodeKind(const CXXOperatorCallExpr &E) { 165 switch (E.getOperator()) { 166 // Comparison 167 case OO_EqualEqual: 168 case OO_ExclaimEqual: 169 case OO_Greater: 170 case OO_GreaterEqual: 171 case OO_Less: 172 case OO_LessEqual: 173 case OO_Spaceship: 174 // Assignment 175 case OO_Equal: 176 case OO_SlashEqual: 177 case OO_PercentEqual: 178 case OO_CaretEqual: 179 case OO_PipeEqual: 180 case OO_LessLessEqual: 181 case OO_GreaterGreaterEqual: 182 case OO_PlusEqual: 183 case OO_MinusEqual: 184 case OO_StarEqual: 185 case OO_AmpEqual: 186 // Binary computation 187 case OO_Slash: 188 case OO_Percent: 189 case OO_Caret: 190 case OO_Pipe: 191 case OO_LessLess: 192 case OO_GreaterGreater: 193 case OO_AmpAmp: 194 case OO_PipePipe: 195 case OO_ArrowStar: 196 case OO_Comma: 197 return syntax::NodeKind::BinaryOperatorExpression; 198 case OO_Tilde: 199 case OO_Exclaim: 200 return syntax::NodeKind::PrefixUnaryOperatorExpression; 201 // Prefix/Postfix increment/decrement 202 case OO_PlusPlus: 203 case OO_MinusMinus: 204 switch (E.getNumArgs()) { 205 case 1: 206 return syntax::NodeKind::PrefixUnaryOperatorExpression; 207 case 2: 208 return syntax::NodeKind::PostfixUnaryOperatorExpression; 209 default: 210 llvm_unreachable("Invalid number of arguments for operator"); 211 } 212 // Operators that can be unary or binary 213 case OO_Plus: 214 case OO_Minus: 215 case OO_Star: 216 case OO_Amp: 217 switch (E.getNumArgs()) { 218 case 1: 219 return syntax::NodeKind::PrefixUnaryOperatorExpression; 220 case 2: 221 return syntax::NodeKind::BinaryOperatorExpression; 222 default: 223 llvm_unreachable("Invalid number of arguments for operator"); 224 } 225 return syntax::NodeKind::BinaryOperatorExpression; 226 // Not yet supported by SyntaxTree 227 case OO_New: 228 case OO_Delete: 229 case OO_Array_New: 230 case OO_Array_Delete: 231 case OO_Coawait: 232 case OO_Subscript: 233 case OO_Arrow: 234 return syntax::NodeKind::UnknownExpression; 235 case OO_Call: 236 return syntax::NodeKind::CallExpression; 237 case OO_Conditional: // not overloadable 238 case NUM_OVERLOADED_OPERATORS: 239 case OO_None: 240 llvm_unreachable("Not an overloadable operator"); 241 } 242 llvm_unreachable("Unknown OverloadedOperatorKind enum"); 243 } 244 245 /// Get the start of the qualified name. In the examples below it gives the 246 /// location of the `^`: 247 /// `int ^a;` 248 /// `int *^a;` 249 /// `int ^a::S::f(){}` 250 static SourceLocation getQualifiedNameStart(NamedDecl *D) { 251 assert((isa<DeclaratorDecl, TypedefNameDecl>(D)) && 252 "only DeclaratorDecl and TypedefNameDecl are supported."); 253 254 auto DN = D->getDeclName(); 255 bool IsAnonymous = DN.isIdentifier() && !DN.getAsIdentifierInfo(); 256 if (IsAnonymous) 257 return SourceLocation(); 258 259 if (const auto *DD = dyn_cast<DeclaratorDecl>(D)) { 260 if (DD->getQualifierLoc()) { 261 return DD->getQualifierLoc().getBeginLoc(); 262 } 263 } 264 265 return D->getLocation(); 266 } 267 268 /// Gets the range of the initializer inside an init-declarator C++ [dcl.decl]. 269 /// `int a;` -> range of ``, 270 /// `int *a = nullptr` -> range of `= nullptr`. 271 /// `int a{}` -> range of `{}`. 272 /// `int a()` -> range of `()`. 273 static SourceRange getInitializerRange(Decl *D) { 274 if (auto *V = dyn_cast<VarDecl>(D)) { 275 auto *I = V->getInit(); 276 // Initializers in range-based-for are not part of the declarator 277 if (I && !V->isCXXForRangeDecl()) 278 return I->getSourceRange(); 279 } 280 281 return SourceRange(); 282 } 283 284 /// Gets the range of declarator as defined by the C++ grammar. E.g. 285 /// `int a;` -> range of `a`, 286 /// `int *a;` -> range of `*a`, 287 /// `int a[10];` -> range of `a[10]`, 288 /// `int a[1][2][3];` -> range of `a[1][2][3]`, 289 /// `int *a = nullptr` -> range of `*a = nullptr`. 290 /// `int S::f(){}` -> range of `S::f()`. 291 /// FIXME: \p Name must be a source range. 292 static SourceRange getDeclaratorRange(const SourceManager &SM, TypeLoc T, 293 SourceLocation Name, 294 SourceRange Initializer) { 295 SourceLocation Start = GetStartLoc().Visit(T); 296 SourceLocation End = T.getEndLoc(); 297 assert(End.isValid()); 298 if (Name.isValid()) { 299 if (Start.isInvalid()) 300 Start = Name; 301 if (SM.isBeforeInTranslationUnit(End, Name)) 302 End = Name; 303 } 304 if (Initializer.isValid()) { 305 auto InitializerEnd = Initializer.getEnd(); 306 assert(SM.isBeforeInTranslationUnit(End, InitializerEnd) || 307 End == InitializerEnd); 308 End = InitializerEnd; 309 } 310 return SourceRange(Start, End); 311 } 312 313 namespace { 314 /// All AST hierarchy roots that can be represented as pointers. 315 using ASTPtr = llvm::PointerUnion<Stmt *, Decl *>; 316 /// Maintains a mapping from AST to syntax tree nodes. This class will get more 317 /// complicated as we support more kinds of AST nodes, e.g. TypeLocs. 318 /// FIXME: expose this as public API. 319 class ASTToSyntaxMapping { 320 public: 321 void add(ASTPtr From, syntax::Tree *To) { 322 assert(To != nullptr); 323 assert(!From.isNull()); 324 325 bool Added = Nodes.insert({From, To}).second; 326 (void)Added; 327 assert(Added && "mapping added twice"); 328 } 329 330 void add(NestedNameSpecifierLoc From, syntax::Tree *To) { 331 assert(To != nullptr); 332 assert(From.hasQualifier()); 333 334 bool Added = NNSNodes.insert({From, To}).second; 335 (void)Added; 336 assert(Added && "mapping added twice"); 337 } 338 339 syntax::Tree *find(ASTPtr P) const { return Nodes.lookup(P); } 340 341 syntax::Tree *find(NestedNameSpecifierLoc P) const { 342 return NNSNodes.lookup(P); 343 } 344 345 private: 346 llvm::DenseMap<ASTPtr, syntax::Tree *> Nodes; 347 llvm::DenseMap<NestedNameSpecifierLoc, syntax::Tree *> NNSNodes; 348 }; 349 } // namespace 350 351 /// A helper class for constructing the syntax tree while traversing a clang 352 /// AST. 353 /// 354 /// At each point of the traversal we maintain a list of pending nodes. 355 /// Initially all tokens are added as pending nodes. When processing a clang AST 356 /// node, the clients need to: 357 /// - create a corresponding syntax node, 358 /// - assign roles to all pending child nodes with 'markChild' and 359 /// 'markChildToken', 360 /// - replace the child nodes with the new syntax node in the pending list 361 /// with 'foldNode'. 362 /// 363 /// Note that all children are expected to be processed when building a node. 364 /// 365 /// Call finalize() to finish building the tree and consume the root node. 366 class syntax::TreeBuilder { 367 public: 368 TreeBuilder(syntax::Arena &Arena) : Arena(Arena), Pending(Arena) { 369 for (const auto &T : Arena.getTokenBuffer().expandedTokens()) 370 LocationToToken.insert({T.location(), &T}); 371 } 372 373 llvm::BumpPtrAllocator &allocator() { return Arena.getAllocator(); } 374 const SourceManager &sourceManager() const { 375 return Arena.getSourceManager(); 376 } 377 378 /// Populate children for \p New node, assuming it covers tokens from \p 379 /// Range. 380 void foldNode(ArrayRef<syntax::Token> Range, syntax::Tree *New, ASTPtr From) { 381 assert(New); 382 Pending.foldChildren(Arena, Range, New); 383 if (From) 384 Mapping.add(From, New); 385 } 386 387 void foldNode(ArrayRef<syntax::Token> Range, syntax::Tree *New, TypeLoc L) { 388 // FIXME: add mapping for TypeLocs 389 foldNode(Range, New, nullptr); 390 } 391 392 void foldNode(llvm::ArrayRef<syntax::Token> Range, syntax::Tree *New, 393 NestedNameSpecifierLoc From) { 394 assert(New); 395 Pending.foldChildren(Arena, Range, New); 396 if (From) 397 Mapping.add(From, New); 398 } 399 400 /// Populate children for \p New list, assuming it covers tokens from a 401 /// subrange of \p SuperRange. 402 void foldList(ArrayRef<syntax::Token> SuperRange, syntax::List *New, 403 ASTPtr From) { 404 assert(New); 405 auto ListRange = Pending.shrinkToFitList(SuperRange); 406 Pending.foldChildren(Arena, ListRange, New); 407 if (From) 408 Mapping.add(From, New); 409 } 410 411 /// Notifies that we should not consume trailing semicolon when computing 412 /// token range of \p D. 413 void noticeDeclWithoutSemicolon(Decl *D); 414 415 /// Mark the \p Child node with a corresponding \p Role. All marked children 416 /// should be consumed by foldNode. 417 /// When called on expressions (clang::Expr is derived from clang::Stmt), 418 /// wraps expressions into expression statement. 419 void markStmtChild(Stmt *Child, NodeRole Role); 420 /// Should be called for expressions in non-statement position to avoid 421 /// wrapping into expression statement. 422 void markExprChild(Expr *Child, NodeRole Role); 423 /// Set role for a token starting at \p Loc. 424 void markChildToken(SourceLocation Loc, NodeRole R); 425 /// Set role for \p T. 426 void markChildToken(const syntax::Token *T, NodeRole R); 427 428 /// Set role for \p N. 429 void markChild(syntax::Node *N, NodeRole R); 430 /// Set role for the syntax node matching \p N. 431 void markChild(ASTPtr N, NodeRole R); 432 /// Set role for the syntax node matching \p N. 433 void markChild(NestedNameSpecifierLoc N, NodeRole R); 434 435 /// Finish building the tree and consume the root node. 436 syntax::TranslationUnit *finalize() && { 437 auto Tokens = Arena.getTokenBuffer().expandedTokens(); 438 assert(!Tokens.empty()); 439 assert(Tokens.back().kind() == tok::eof); 440 441 // Build the root of the tree, consuming all the children. 442 Pending.foldChildren(Arena, Tokens.drop_back(), 443 new (Arena.getAllocator()) syntax::TranslationUnit); 444 445 auto *TU = cast<syntax::TranslationUnit>(std::move(Pending).finalize()); 446 TU->assertInvariantsRecursive(); 447 return TU; 448 } 449 450 /// Finds a token starting at \p L. The token must exist if \p L is valid. 451 const syntax::Token *findToken(SourceLocation L) const; 452 453 /// Finds the syntax tokens corresponding to the \p SourceRange. 454 ArrayRef<syntax::Token> getRange(SourceRange Range) const { 455 assert(Range.isValid()); 456 return getRange(Range.getBegin(), Range.getEnd()); 457 } 458 459 /// Finds the syntax tokens corresponding to the passed source locations. 460 /// \p First is the start position of the first token and \p Last is the start 461 /// position of the last token. 462 ArrayRef<syntax::Token> getRange(SourceLocation First, 463 SourceLocation Last) const { 464 assert(First.isValid()); 465 assert(Last.isValid()); 466 assert(First == Last || 467 Arena.getSourceManager().isBeforeInTranslationUnit(First, Last)); 468 return llvm::makeArrayRef(findToken(First), std::next(findToken(Last))); 469 } 470 471 ArrayRef<syntax::Token> 472 getTemplateRange(const ClassTemplateSpecializationDecl *D) const { 473 auto Tokens = getRange(D->getSourceRange()); 474 return maybeAppendSemicolon(Tokens, D); 475 } 476 477 /// Returns true if \p D is the last declarator in a chain and is thus 478 /// reponsible for creating SimpleDeclaration for the whole chain. 479 bool isResponsibleForCreatingDeclaration(const Decl *D) const { 480 assert((isa<DeclaratorDecl, TypedefNameDecl>(D)) && 481 "only DeclaratorDecl and TypedefNameDecl are supported."); 482 483 const Decl *Next = D->getNextDeclInContext(); 484 485 // There's no next sibling, this one is responsible. 486 if (Next == nullptr) { 487 return true; 488 } 489 490 // Next sibling is not the same type, this one is responsible. 491 if (D->getKind() != Next->getKind()) { 492 return true; 493 } 494 // Next sibling doesn't begin at the same loc, it must be a different 495 // declaration, so this declarator is responsible. 496 if (Next->getBeginLoc() != D->getBeginLoc()) { 497 return true; 498 } 499 500 // NextT is a member of the same declaration, and we need the last member to 501 // create declaration. This one is not responsible. 502 return false; 503 } 504 505 ArrayRef<syntax::Token> getDeclarationRange(Decl *D) { 506 ArrayRef<syntax::Token> Tokens; 507 // We want to drop the template parameters for specializations. 508 if (const auto *S = dyn_cast<TagDecl>(D)) 509 Tokens = getRange(S->TypeDecl::getBeginLoc(), S->getEndLoc()); 510 else 511 Tokens = getRange(D->getSourceRange()); 512 return maybeAppendSemicolon(Tokens, D); 513 } 514 515 ArrayRef<syntax::Token> getExprRange(const Expr *E) const { 516 return getRange(E->getSourceRange()); 517 } 518 519 /// Find the adjusted range for the statement, consuming the trailing 520 /// semicolon when needed. 521 ArrayRef<syntax::Token> getStmtRange(const Stmt *S) const { 522 auto Tokens = getRange(S->getSourceRange()); 523 if (isa<CompoundStmt>(S)) 524 return Tokens; 525 526 // Some statements miss a trailing semicolon, e.g. 'return', 'continue' and 527 // all statements that end with those. Consume this semicolon here. 528 if (Tokens.back().kind() == tok::semi) 529 return Tokens; 530 return withTrailingSemicolon(Tokens); 531 } 532 533 private: 534 ArrayRef<syntax::Token> maybeAppendSemicolon(ArrayRef<syntax::Token> Tokens, 535 const Decl *D) const { 536 if (isa<NamespaceDecl>(D)) 537 return Tokens; 538 if (DeclsWithoutSemicolons.count(D)) 539 return Tokens; 540 // FIXME: do not consume trailing semicolon on function definitions. 541 // Most declarations own a semicolon in syntax trees, but not in clang AST. 542 return withTrailingSemicolon(Tokens); 543 } 544 545 ArrayRef<syntax::Token> 546 withTrailingSemicolon(ArrayRef<syntax::Token> Tokens) const { 547 assert(!Tokens.empty()); 548 assert(Tokens.back().kind() != tok::eof); 549 // We never consume 'eof', so looking at the next token is ok. 550 if (Tokens.back().kind() != tok::semi && Tokens.end()->kind() == tok::semi) 551 return llvm::makeArrayRef(Tokens.begin(), Tokens.end() + 1); 552 return Tokens; 553 } 554 555 void setRole(syntax::Node *N, NodeRole R) { 556 assert(N->getRole() == NodeRole::Detached); 557 N->setRole(R); 558 } 559 560 /// A collection of trees covering the input tokens. 561 /// When created, each tree corresponds to a single token in the file. 562 /// Clients call 'foldChildren' to attach one or more subtrees to a parent 563 /// node and update the list of trees accordingly. 564 /// 565 /// Ensures that added nodes properly nest and cover the whole token stream. 566 struct Forest { 567 Forest(syntax::Arena &A) { 568 assert(!A.getTokenBuffer().expandedTokens().empty()); 569 assert(A.getTokenBuffer().expandedTokens().back().kind() == tok::eof); 570 // Create all leaf nodes. 571 // Note that we do not have 'eof' in the tree. 572 for (const auto &T : A.getTokenBuffer().expandedTokens().drop_back()) { 573 auto *L = new (A.getAllocator()) syntax::Leaf(&T); 574 L->Original = true; 575 L->CanModify = A.getTokenBuffer().spelledForExpanded(T).hasValue(); 576 Trees.insert(Trees.end(), {&T, L}); 577 } 578 } 579 580 void assignRole(ArrayRef<syntax::Token> Range, syntax::NodeRole Role) { 581 assert(!Range.empty()); 582 auto It = Trees.lower_bound(Range.begin()); 583 assert(It != Trees.end() && "no node found"); 584 assert(It->first == Range.begin() && "no child with the specified range"); 585 assert((std::next(It) == Trees.end() || 586 std::next(It)->first == Range.end()) && 587 "no child with the specified range"); 588 assert(It->second->getRole() == NodeRole::Detached && 589 "re-assigning role for a child"); 590 It->second->setRole(Role); 591 } 592 593 /// Shrink \p Range to a subrange that only contains tokens of a list. 594 /// List elements and delimiters should already have correct roles. 595 ArrayRef<syntax::Token> shrinkToFitList(ArrayRef<syntax::Token> Range) { 596 auto BeginChildren = Trees.lower_bound(Range.begin()); 597 assert((BeginChildren == Trees.end() || 598 BeginChildren->first == Range.begin()) && 599 "Range crosses boundaries of existing subtrees"); 600 601 auto EndChildren = Trees.lower_bound(Range.end()); 602 assert( 603 (EndChildren == Trees.end() || EndChildren->first == Range.end()) && 604 "Range crosses boundaries of existing subtrees"); 605 606 auto BelongsToList = [](decltype(Trees)::value_type KV) { 607 auto Role = KV.second->getRole(); 608 return Role == syntax::NodeRole::ListElement || 609 Role == syntax::NodeRole::ListDelimiter; 610 }; 611 612 auto BeginListChildren = 613 std::find_if(BeginChildren, EndChildren, BelongsToList); 614 615 auto EndListChildren = 616 std::find_if_not(BeginListChildren, EndChildren, BelongsToList); 617 618 return ArrayRef<syntax::Token>(BeginListChildren->first, 619 EndListChildren->first); 620 } 621 622 /// Add \p Node to the forest and attach child nodes based on \p Tokens. 623 void foldChildren(const syntax::Arena &A, ArrayRef<syntax::Token> Tokens, 624 syntax::Tree *Node) { 625 // Attach children to `Node`. 626 assert(Node->getFirstChild() == nullptr && "node already has children"); 627 628 auto *FirstToken = Tokens.begin(); 629 auto BeginChildren = Trees.lower_bound(FirstToken); 630 631 assert((BeginChildren == Trees.end() || 632 BeginChildren->first == FirstToken) && 633 "fold crosses boundaries of existing subtrees"); 634 auto EndChildren = Trees.lower_bound(Tokens.end()); 635 assert( 636 (EndChildren == Trees.end() || EndChildren->first == Tokens.end()) && 637 "fold crosses boundaries of existing subtrees"); 638 639 for (auto It = BeginChildren; It != EndChildren; ++It) { 640 auto *C = It->second; 641 if (C->getRole() == NodeRole::Detached) 642 C->setRole(NodeRole::Unknown); 643 Node->appendChildLowLevel(C); 644 } 645 646 // Mark that this node came from the AST and is backed by the source code. 647 Node->Original = true; 648 Node->CanModify = 649 A.getTokenBuffer().spelledForExpanded(Tokens).hasValue(); 650 651 Trees.erase(BeginChildren, EndChildren); 652 Trees.insert({FirstToken, Node}); 653 } 654 655 // EXPECTS: all tokens were consumed and are owned by a single root node. 656 syntax::Node *finalize() && { 657 assert(Trees.size() == 1); 658 auto *Root = Trees.begin()->second; 659 Trees = {}; 660 return Root; 661 } 662 663 std::string str(const syntax::Arena &A) const { 664 std::string R; 665 for (auto It = Trees.begin(); It != Trees.end(); ++It) { 666 unsigned CoveredTokens = 667 It != Trees.end() 668 ? (std::next(It)->first - It->first) 669 : A.getTokenBuffer().expandedTokens().end() - It->first; 670 671 R += std::string( 672 formatv("- '{0}' covers '{1}'+{2} tokens\n", It->second->getKind(), 673 It->first->text(A.getSourceManager()), CoveredTokens)); 674 R += It->second->dump(A.getSourceManager()); 675 } 676 return R; 677 } 678 679 private: 680 /// Maps from the start token to a subtree starting at that token. 681 /// Keys in the map are pointers into the array of expanded tokens, so 682 /// pointer order corresponds to the order of preprocessor tokens. 683 std::map<const syntax::Token *, syntax::Node *> Trees; 684 }; 685 686 /// For debugging purposes. 687 std::string str() { return Pending.str(Arena); } 688 689 syntax::Arena &Arena; 690 /// To quickly find tokens by their start location. 691 llvm::DenseMap<SourceLocation, const syntax::Token *> LocationToToken; 692 Forest Pending; 693 llvm::DenseSet<Decl *> DeclsWithoutSemicolons; 694 ASTToSyntaxMapping Mapping; 695 }; 696 697 namespace { 698 class BuildTreeVisitor : public RecursiveASTVisitor<BuildTreeVisitor> { 699 public: 700 explicit BuildTreeVisitor(ASTContext &Context, syntax::TreeBuilder &Builder) 701 : Builder(Builder), Context(Context) {} 702 703 bool shouldTraversePostOrder() const { return true; } 704 705 bool WalkUpFromDeclaratorDecl(DeclaratorDecl *DD) { 706 return processDeclaratorAndDeclaration(DD); 707 } 708 709 bool WalkUpFromTypedefNameDecl(TypedefNameDecl *TD) { 710 return processDeclaratorAndDeclaration(TD); 711 } 712 713 bool VisitDecl(Decl *D) { 714 assert(!D->isImplicit()); 715 Builder.foldNode(Builder.getDeclarationRange(D), 716 new (allocator()) syntax::UnknownDeclaration(), D); 717 return true; 718 } 719 720 // RAV does not call WalkUpFrom* on explicit instantiations, so we have to 721 // override Traverse. 722 // FIXME: make RAV call WalkUpFrom* instead. 723 bool 724 TraverseClassTemplateSpecializationDecl(ClassTemplateSpecializationDecl *C) { 725 if (!RecursiveASTVisitor::TraverseClassTemplateSpecializationDecl(C)) 726 return false; 727 if (C->isExplicitSpecialization()) 728 return true; // we are only interested in explicit instantiations. 729 auto *Declaration = 730 cast<syntax::SimpleDeclaration>(handleFreeStandingTagDecl(C)); 731 foldExplicitTemplateInstantiation( 732 Builder.getTemplateRange(C), Builder.findToken(C->getExternLoc()), 733 Builder.findToken(C->getTemplateKeywordLoc()), Declaration, C); 734 return true; 735 } 736 737 bool WalkUpFromTemplateDecl(TemplateDecl *S) { 738 foldTemplateDeclaration( 739 Builder.getDeclarationRange(S), 740 Builder.findToken(S->getTemplateParameters()->getTemplateLoc()), 741 Builder.getDeclarationRange(S->getTemplatedDecl()), S); 742 return true; 743 } 744 745 bool WalkUpFromTagDecl(TagDecl *C) { 746 // FIXME: build the ClassSpecifier node. 747 if (!C->isFreeStanding()) { 748 assert(C->getNumTemplateParameterLists() == 0); 749 return true; 750 } 751 handleFreeStandingTagDecl(C); 752 return true; 753 } 754 755 syntax::Declaration *handleFreeStandingTagDecl(TagDecl *C) { 756 assert(C->isFreeStanding()); 757 // Class is a declaration specifier and needs a spanning declaration node. 758 auto DeclarationRange = Builder.getDeclarationRange(C); 759 syntax::Declaration *Result = new (allocator()) syntax::SimpleDeclaration; 760 Builder.foldNode(DeclarationRange, Result, nullptr); 761 762 // Build TemplateDeclaration nodes if we had template parameters. 763 auto ConsumeTemplateParameters = [&](const TemplateParameterList &L) { 764 const auto *TemplateKW = Builder.findToken(L.getTemplateLoc()); 765 auto R = llvm::makeArrayRef(TemplateKW, DeclarationRange.end()); 766 Result = 767 foldTemplateDeclaration(R, TemplateKW, DeclarationRange, nullptr); 768 DeclarationRange = R; 769 }; 770 if (auto *S = dyn_cast<ClassTemplatePartialSpecializationDecl>(C)) 771 ConsumeTemplateParameters(*S->getTemplateParameters()); 772 for (unsigned I = C->getNumTemplateParameterLists(); 0 < I; --I) 773 ConsumeTemplateParameters(*C->getTemplateParameterList(I - 1)); 774 return Result; 775 } 776 777 bool WalkUpFromTranslationUnitDecl(TranslationUnitDecl *TU) { 778 // We do not want to call VisitDecl(), the declaration for translation 779 // unit is built by finalize(). 780 return true; 781 } 782 783 bool WalkUpFromCompoundStmt(CompoundStmt *S) { 784 using NodeRole = syntax::NodeRole; 785 786 Builder.markChildToken(S->getLBracLoc(), NodeRole::OpenParen); 787 for (auto *Child : S->body()) 788 Builder.markStmtChild(Child, NodeRole::Statement); 789 Builder.markChildToken(S->getRBracLoc(), NodeRole::CloseParen); 790 791 Builder.foldNode(Builder.getStmtRange(S), 792 new (allocator()) syntax::CompoundStatement, S); 793 return true; 794 } 795 796 // Some statements are not yet handled by syntax trees. 797 bool WalkUpFromStmt(Stmt *S) { 798 Builder.foldNode(Builder.getStmtRange(S), 799 new (allocator()) syntax::UnknownStatement, S); 800 return true; 801 } 802 803 bool TraverseIfStmt(IfStmt *S) { 804 bool Result = [&, this]() { 805 if (S->getInit() && !TraverseStmt(S->getInit())) { 806 return false; 807 } 808 // In cases where the condition is an initialized declaration in a 809 // statement, we want to preserve the declaration and ignore the 810 // implicit condition expression in the syntax tree. 811 if (S->hasVarStorage()) { 812 if (!TraverseStmt(S->getConditionVariableDeclStmt())) 813 return false; 814 } else if (S->getCond() && !TraverseStmt(S->getCond())) 815 return false; 816 817 if (S->getThen() && !TraverseStmt(S->getThen())) 818 return false; 819 if (S->getElse() && !TraverseStmt(S->getElse())) 820 return false; 821 return true; 822 }(); 823 WalkUpFromIfStmt(S); 824 return Result; 825 } 826 827 bool TraverseCXXForRangeStmt(CXXForRangeStmt *S) { 828 // We override to traverse range initializer as VarDecl. 829 // RAV traverses it as a statement, we produce invalid node kinds in that 830 // case. 831 // FIXME: should do this in RAV instead? 832 bool Result = [&, this]() { 833 if (S->getInit() && !TraverseStmt(S->getInit())) 834 return false; 835 if (S->getLoopVariable() && !TraverseDecl(S->getLoopVariable())) 836 return false; 837 if (S->getRangeInit() && !TraverseStmt(S->getRangeInit())) 838 return false; 839 if (S->getBody() && !TraverseStmt(S->getBody())) 840 return false; 841 return true; 842 }(); 843 WalkUpFromCXXForRangeStmt(S); 844 return Result; 845 } 846 847 bool TraverseStmt(Stmt *S) { 848 if (auto *DS = dyn_cast_or_null<DeclStmt>(S)) { 849 // We want to consume the semicolon, make sure SimpleDeclaration does not. 850 for (auto *D : DS->decls()) 851 Builder.noticeDeclWithoutSemicolon(D); 852 } else if (auto *E = dyn_cast_or_null<Expr>(S)) { 853 return RecursiveASTVisitor::TraverseStmt(IgnoreImplicit(E)); 854 } 855 return RecursiveASTVisitor::TraverseStmt(S); 856 } 857 858 // Some expressions are not yet handled by syntax trees. 859 bool WalkUpFromExpr(Expr *E) { 860 assert(!isImplicitExpr(E) && "should be handled by TraverseStmt"); 861 Builder.foldNode(Builder.getExprRange(E), 862 new (allocator()) syntax::UnknownExpression, E); 863 return true; 864 } 865 866 bool TraverseUserDefinedLiteral(UserDefinedLiteral *S) { 867 // The semantic AST node `UserDefinedLiteral` (UDL) may have one child node 868 // referencing the location of the UDL suffix (`_w` in `1.2_w`). The 869 // UDL suffix location does not point to the beginning of a token, so we 870 // can't represent the UDL suffix as a separate syntax tree node. 871 872 return WalkUpFromUserDefinedLiteral(S); 873 } 874 875 syntax::UserDefinedLiteralExpression * 876 buildUserDefinedLiteral(UserDefinedLiteral *S) { 877 switch (S->getLiteralOperatorKind()) { 878 case UserDefinedLiteral::LOK_Integer: 879 return new (allocator()) syntax::IntegerUserDefinedLiteralExpression; 880 case UserDefinedLiteral::LOK_Floating: 881 return new (allocator()) syntax::FloatUserDefinedLiteralExpression; 882 case UserDefinedLiteral::LOK_Character: 883 return new (allocator()) syntax::CharUserDefinedLiteralExpression; 884 case UserDefinedLiteral::LOK_String: 885 return new (allocator()) syntax::StringUserDefinedLiteralExpression; 886 case UserDefinedLiteral::LOK_Raw: 887 case UserDefinedLiteral::LOK_Template: 888 // For raw literal operator and numeric literal operator template we 889 // cannot get the type of the operand in the semantic AST. We get this 890 // information from the token. As integer and floating point have the same 891 // token kind, we run `NumericLiteralParser` again to distinguish them. 892 auto TokLoc = S->getBeginLoc(); 893 auto TokSpelling = 894 Builder.findToken(TokLoc)->text(Context.getSourceManager()); 895 auto Literal = 896 NumericLiteralParser(TokSpelling, TokLoc, Context.getSourceManager(), 897 Context.getLangOpts(), Context.getTargetInfo(), 898 Context.getDiagnostics()); 899 if (Literal.isIntegerLiteral()) 900 return new (allocator()) syntax::IntegerUserDefinedLiteralExpression; 901 else { 902 assert(Literal.isFloatingLiteral()); 903 return new (allocator()) syntax::FloatUserDefinedLiteralExpression; 904 } 905 } 906 llvm_unreachable("Unknown literal operator kind."); 907 } 908 909 bool WalkUpFromUserDefinedLiteral(UserDefinedLiteral *S) { 910 Builder.markChildToken(S->getBeginLoc(), syntax::NodeRole::LiteralToken); 911 Builder.foldNode(Builder.getExprRange(S), buildUserDefinedLiteral(S), S); 912 return true; 913 } 914 915 // FIXME: Fix `NestedNameSpecifierLoc::getLocalSourceRange` for the 916 // `DependentTemplateSpecializationType` case. 917 /// Given a nested-name-specifier return the range for the last name 918 /// specifier. 919 /// 920 /// e.g. `std::T::template X<U>::` => `template X<U>::` 921 SourceRange getLocalSourceRange(const NestedNameSpecifierLoc &NNSLoc) { 922 auto SR = NNSLoc.getLocalSourceRange(); 923 924 // The method `NestedNameSpecifierLoc::getLocalSourceRange` *should* 925 // return the desired `SourceRange`, but there is a corner case. For a 926 // `DependentTemplateSpecializationType` this method returns its 927 // qualifiers as well, in other words in the example above this method 928 // returns `T::template X<U>::` instead of only `template X<U>::` 929 if (auto TL = NNSLoc.getTypeLoc()) { 930 if (auto DependentTL = 931 TL.getAs<DependentTemplateSpecializationTypeLoc>()) { 932 // The 'template' keyword is always present in dependent template 933 // specializations. Except in the case of incorrect code 934 // TODO: Treat the case of incorrect code. 935 SR.setBegin(DependentTL.getTemplateKeywordLoc()); 936 } 937 } 938 939 return SR; 940 } 941 942 syntax::NodeKind getNameSpecifierKind(const NestedNameSpecifier &NNS) { 943 switch (NNS.getKind()) { 944 case NestedNameSpecifier::Global: 945 return syntax::NodeKind::GlobalNameSpecifier; 946 case NestedNameSpecifier::Namespace: 947 case NestedNameSpecifier::NamespaceAlias: 948 case NestedNameSpecifier::Identifier: 949 return syntax::NodeKind::IdentifierNameSpecifier; 950 case NestedNameSpecifier::TypeSpecWithTemplate: 951 return syntax::NodeKind::SimpleTemplateNameSpecifier; 952 case NestedNameSpecifier::TypeSpec: { 953 const auto *NNSType = NNS.getAsType(); 954 assert(NNSType); 955 if (isa<DecltypeType>(NNSType)) 956 return syntax::NodeKind::DecltypeNameSpecifier; 957 if (isa<TemplateSpecializationType, DependentTemplateSpecializationType>( 958 NNSType)) 959 return syntax::NodeKind::SimpleTemplateNameSpecifier; 960 return syntax::NodeKind::IdentifierNameSpecifier; 961 } 962 default: 963 // FIXME: Support Microsoft's __super 964 llvm::report_fatal_error("We don't yet support the __super specifier", 965 true); 966 } 967 } 968 969 syntax::NameSpecifier * 970 buildNameSpecifier(const NestedNameSpecifierLoc &NNSLoc) { 971 assert(NNSLoc.hasQualifier()); 972 auto NameSpecifierTokens = 973 Builder.getRange(getLocalSourceRange(NNSLoc)).drop_back(); 974 switch (getNameSpecifierKind(*NNSLoc.getNestedNameSpecifier())) { 975 case syntax::NodeKind::GlobalNameSpecifier: 976 return new (allocator()) syntax::GlobalNameSpecifier; 977 case syntax::NodeKind::IdentifierNameSpecifier: { 978 assert(NameSpecifierTokens.size() == 1); 979 Builder.markChildToken(NameSpecifierTokens.begin(), 980 syntax::NodeRole::Unknown); 981 auto *NS = new (allocator()) syntax::IdentifierNameSpecifier; 982 Builder.foldNode(NameSpecifierTokens, NS, nullptr); 983 return NS; 984 } 985 case syntax::NodeKind::SimpleTemplateNameSpecifier: { 986 // TODO: Build `SimpleTemplateNameSpecifier` children and implement 987 // accessors to them. 988 // Be aware, we cannot do that simply by calling `TraverseTypeLoc`, 989 // some `TypeLoc`s have inside them the previous name specifier and 990 // we want to treat them independently. 991 auto *NS = new (allocator()) syntax::SimpleTemplateNameSpecifier; 992 Builder.foldNode(NameSpecifierTokens, NS, nullptr); 993 return NS; 994 } 995 case syntax::NodeKind::DecltypeNameSpecifier: { 996 const auto TL = NNSLoc.getTypeLoc().castAs<DecltypeTypeLoc>(); 997 if (!RecursiveASTVisitor::TraverseDecltypeTypeLoc(TL)) 998 return nullptr; 999 auto *NS = new (allocator()) syntax::DecltypeNameSpecifier; 1000 // TODO: Implement accessor to `DecltypeNameSpecifier` inner 1001 // `DecltypeTypeLoc`. 1002 // For that add mapping from `TypeLoc` to `syntax::Node*` then: 1003 // Builder.markChild(TypeLoc, syntax::NodeRole); 1004 Builder.foldNode(NameSpecifierTokens, NS, nullptr); 1005 return NS; 1006 } 1007 default: 1008 llvm_unreachable("getChildKind() does not return this value"); 1009 } 1010 } 1011 1012 // To build syntax tree nodes for NestedNameSpecifierLoc we override 1013 // Traverse instead of WalkUpFrom because we want to traverse the children 1014 // ourselves and build a list instead of a nested tree of name specifier 1015 // prefixes. 1016 bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc QualifierLoc) { 1017 if (!QualifierLoc) 1018 return true; 1019 for (auto It = QualifierLoc; It; It = It.getPrefix()) { 1020 auto *NS = buildNameSpecifier(It); 1021 if (!NS) 1022 return false; 1023 Builder.markChild(NS, syntax::NodeRole::ListElement); 1024 Builder.markChildToken(It.getEndLoc(), syntax::NodeRole::ListDelimiter); 1025 } 1026 Builder.foldNode(Builder.getRange(QualifierLoc.getSourceRange()), 1027 new (allocator()) syntax::NestedNameSpecifier, 1028 QualifierLoc); 1029 return true; 1030 } 1031 1032 syntax::IdExpression *buildIdExpression(NestedNameSpecifierLoc QualifierLoc, 1033 SourceLocation TemplateKeywordLoc, 1034 SourceRange UnqualifiedIdLoc, 1035 ASTPtr From) { 1036 if (QualifierLoc) { 1037 Builder.markChild(QualifierLoc, syntax::NodeRole::Qualifier); 1038 if (TemplateKeywordLoc.isValid()) 1039 Builder.markChildToken(TemplateKeywordLoc, 1040 syntax::NodeRole::TemplateKeyword); 1041 } 1042 1043 auto *TheUnqualifiedId = new (allocator()) syntax::UnqualifiedId; 1044 Builder.foldNode(Builder.getRange(UnqualifiedIdLoc), TheUnqualifiedId, 1045 nullptr); 1046 Builder.markChild(TheUnqualifiedId, syntax::NodeRole::UnqualifiedId); 1047 1048 auto IdExpressionBeginLoc = 1049 QualifierLoc ? QualifierLoc.getBeginLoc() : UnqualifiedIdLoc.getBegin(); 1050 1051 auto *TheIdExpression = new (allocator()) syntax::IdExpression; 1052 Builder.foldNode( 1053 Builder.getRange(IdExpressionBeginLoc, UnqualifiedIdLoc.getEnd()), 1054 TheIdExpression, From); 1055 1056 return TheIdExpression; 1057 } 1058 1059 bool WalkUpFromMemberExpr(MemberExpr *S) { 1060 // For `MemberExpr` with implicit `this->` we generate a simple 1061 // `id-expression` syntax node, beacuse an implicit `member-expression` is 1062 // syntactically undistinguishable from an `id-expression` 1063 if (S->isImplicitAccess()) { 1064 buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(), 1065 SourceRange(S->getMemberLoc(), S->getEndLoc()), S); 1066 return true; 1067 } 1068 1069 auto *TheIdExpression = buildIdExpression( 1070 S->getQualifierLoc(), S->getTemplateKeywordLoc(), 1071 SourceRange(S->getMemberLoc(), S->getEndLoc()), nullptr); 1072 1073 Builder.markChild(TheIdExpression, syntax::NodeRole::Member); 1074 1075 Builder.markExprChild(S->getBase(), syntax::NodeRole::Object); 1076 Builder.markChildToken(S->getOperatorLoc(), syntax::NodeRole::AccessToken); 1077 1078 Builder.foldNode(Builder.getExprRange(S), 1079 new (allocator()) syntax::MemberExpression, S); 1080 return true; 1081 } 1082 1083 bool WalkUpFromDeclRefExpr(DeclRefExpr *S) { 1084 buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(), 1085 SourceRange(S->getLocation(), S->getEndLoc()), S); 1086 1087 return true; 1088 } 1089 1090 // Same logic as DeclRefExpr. 1091 bool WalkUpFromDependentScopeDeclRefExpr(DependentScopeDeclRefExpr *S) { 1092 buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(), 1093 SourceRange(S->getLocation(), S->getEndLoc()), S); 1094 1095 return true; 1096 } 1097 1098 bool WalkUpFromCXXThisExpr(CXXThisExpr *S) { 1099 if (!S->isImplicit()) { 1100 Builder.markChildToken(S->getLocation(), 1101 syntax::NodeRole::IntroducerKeyword); 1102 Builder.foldNode(Builder.getExprRange(S), 1103 new (allocator()) syntax::ThisExpression, S); 1104 } 1105 return true; 1106 } 1107 1108 bool WalkUpFromParenExpr(ParenExpr *S) { 1109 Builder.markChildToken(S->getLParen(), syntax::NodeRole::OpenParen); 1110 Builder.markExprChild(S->getSubExpr(), syntax::NodeRole::SubExpression); 1111 Builder.markChildToken(S->getRParen(), syntax::NodeRole::CloseParen); 1112 Builder.foldNode(Builder.getExprRange(S), 1113 new (allocator()) syntax::ParenExpression, S); 1114 return true; 1115 } 1116 1117 bool WalkUpFromIntegerLiteral(IntegerLiteral *S) { 1118 Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken); 1119 Builder.foldNode(Builder.getExprRange(S), 1120 new (allocator()) syntax::IntegerLiteralExpression, S); 1121 return true; 1122 } 1123 1124 bool WalkUpFromCharacterLiteral(CharacterLiteral *S) { 1125 Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken); 1126 Builder.foldNode(Builder.getExprRange(S), 1127 new (allocator()) syntax::CharacterLiteralExpression, S); 1128 return true; 1129 } 1130 1131 bool WalkUpFromFloatingLiteral(FloatingLiteral *S) { 1132 Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken); 1133 Builder.foldNode(Builder.getExprRange(S), 1134 new (allocator()) syntax::FloatingLiteralExpression, S); 1135 return true; 1136 } 1137 1138 bool WalkUpFromStringLiteral(StringLiteral *S) { 1139 Builder.markChildToken(S->getBeginLoc(), syntax::NodeRole::LiteralToken); 1140 Builder.foldNode(Builder.getExprRange(S), 1141 new (allocator()) syntax::StringLiteralExpression, S); 1142 return true; 1143 } 1144 1145 bool WalkUpFromCXXBoolLiteralExpr(CXXBoolLiteralExpr *S) { 1146 Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken); 1147 Builder.foldNode(Builder.getExprRange(S), 1148 new (allocator()) syntax::BoolLiteralExpression, S); 1149 return true; 1150 } 1151 1152 bool WalkUpFromCXXNullPtrLiteralExpr(CXXNullPtrLiteralExpr *S) { 1153 Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken); 1154 Builder.foldNode(Builder.getExprRange(S), 1155 new (allocator()) syntax::CxxNullPtrExpression, S); 1156 return true; 1157 } 1158 1159 bool WalkUpFromUnaryOperator(UnaryOperator *S) { 1160 Builder.markChildToken(S->getOperatorLoc(), 1161 syntax::NodeRole::OperatorToken); 1162 Builder.markExprChild(S->getSubExpr(), syntax::NodeRole::Operand); 1163 1164 if (S->isPostfix()) 1165 Builder.foldNode(Builder.getExprRange(S), 1166 new (allocator()) syntax::PostfixUnaryOperatorExpression, 1167 S); 1168 else 1169 Builder.foldNode(Builder.getExprRange(S), 1170 new (allocator()) syntax::PrefixUnaryOperatorExpression, 1171 S); 1172 1173 return true; 1174 } 1175 1176 bool WalkUpFromBinaryOperator(BinaryOperator *S) { 1177 Builder.markExprChild(S->getLHS(), syntax::NodeRole::LeftHandSide); 1178 Builder.markChildToken(S->getOperatorLoc(), 1179 syntax::NodeRole::OperatorToken); 1180 Builder.markExprChild(S->getRHS(), syntax::NodeRole::RightHandSide); 1181 Builder.foldNode(Builder.getExprRange(S), 1182 new (allocator()) syntax::BinaryOperatorExpression, S); 1183 return true; 1184 } 1185 1186 /// Builds `CallArguments` syntax node from arguments that appear in source 1187 /// code, i.e. not default arguments. 1188 syntax::CallArguments * 1189 buildCallArguments(CallExpr::arg_range ArgsAndDefaultArgs) { 1190 auto Args = dropDefaultArgs(ArgsAndDefaultArgs); 1191 for (auto *Arg : Args) { 1192 Builder.markExprChild(Arg, syntax::NodeRole::ListElement); 1193 const auto *DelimiterToken = 1194 std::next(Builder.findToken(Arg->getEndLoc())); 1195 if (DelimiterToken->kind() == clang::tok::TokenKind::comma) 1196 Builder.markChildToken(DelimiterToken, syntax::NodeRole::ListDelimiter); 1197 } 1198 1199 auto *Arguments = new (allocator()) syntax::CallArguments; 1200 if (!Args.empty()) 1201 Builder.foldNode(Builder.getRange((*Args.begin())->getBeginLoc(), 1202 (*(Args.end() - 1))->getEndLoc()), 1203 Arguments, nullptr); 1204 1205 return Arguments; 1206 } 1207 1208 bool WalkUpFromCallExpr(CallExpr *S) { 1209 Builder.markExprChild(S->getCallee(), syntax::NodeRole::Callee); 1210 1211 const auto *LParenToken = 1212 std::next(Builder.findToken(S->getCallee()->getEndLoc())); 1213 // FIXME: Assert that `LParenToken` is indeed a `l_paren` once we have fixed 1214 // the test on decltype desctructors. 1215 if (LParenToken->kind() == clang::tok::l_paren) 1216 Builder.markChildToken(LParenToken, syntax::NodeRole::OpenParen); 1217 1218 Builder.markChild(buildCallArguments(S->arguments()), 1219 syntax::NodeRole::Arguments); 1220 1221 Builder.markChildToken(S->getRParenLoc(), syntax::NodeRole::CloseParen); 1222 1223 Builder.foldNode(Builder.getRange(S->getSourceRange()), 1224 new (allocator()) syntax::CallExpression, S); 1225 return true; 1226 } 1227 1228 bool WalkUpFromCXXConstructExpr(CXXConstructExpr *S) { 1229 // Ignore the implicit calls to default constructors. 1230 if ((S->getNumArgs() == 0 || isa<CXXDefaultArgExpr>(S->getArg(0))) && 1231 S->getParenOrBraceRange().isInvalid()) 1232 return true; 1233 return RecursiveASTVisitor::WalkUpFromCXXConstructExpr(S); 1234 } 1235 1236 bool TraverseCXXOperatorCallExpr(CXXOperatorCallExpr *S) { 1237 // To construct a syntax tree of the same shape for calls to built-in and 1238 // user-defined operators, ignore the `DeclRefExpr` that refers to the 1239 // operator and treat it as a simple token. Do that by traversing 1240 // arguments instead of children. 1241 for (auto *child : S->arguments()) { 1242 // A postfix unary operator is declared as taking two operands. The 1243 // second operand is used to distinguish from its prefix counterpart. In 1244 // the semantic AST this "phantom" operand is represented as a 1245 // `IntegerLiteral` with invalid `SourceLocation`. We skip visiting this 1246 // operand because it does not correspond to anything written in source 1247 // code. 1248 if (child->getSourceRange().isInvalid()) { 1249 assert(getOperatorNodeKind(*S) == 1250 syntax::NodeKind::PostfixUnaryOperatorExpression); 1251 continue; 1252 } 1253 if (!TraverseStmt(child)) 1254 return false; 1255 } 1256 return WalkUpFromCXXOperatorCallExpr(S); 1257 } 1258 1259 bool WalkUpFromCXXOperatorCallExpr(CXXOperatorCallExpr *S) { 1260 switch (getOperatorNodeKind(*S)) { 1261 case syntax::NodeKind::BinaryOperatorExpression: 1262 Builder.markExprChild(S->getArg(0), syntax::NodeRole::LeftHandSide); 1263 Builder.markChildToken(S->getOperatorLoc(), 1264 syntax::NodeRole::OperatorToken); 1265 Builder.markExprChild(S->getArg(1), syntax::NodeRole::RightHandSide); 1266 Builder.foldNode(Builder.getExprRange(S), 1267 new (allocator()) syntax::BinaryOperatorExpression, S); 1268 return true; 1269 case syntax::NodeKind::PrefixUnaryOperatorExpression: 1270 Builder.markChildToken(S->getOperatorLoc(), 1271 syntax::NodeRole::OperatorToken); 1272 Builder.markExprChild(S->getArg(0), syntax::NodeRole::Operand); 1273 Builder.foldNode(Builder.getExprRange(S), 1274 new (allocator()) syntax::PrefixUnaryOperatorExpression, 1275 S); 1276 return true; 1277 case syntax::NodeKind::PostfixUnaryOperatorExpression: 1278 Builder.markChildToken(S->getOperatorLoc(), 1279 syntax::NodeRole::OperatorToken); 1280 Builder.markExprChild(S->getArg(0), syntax::NodeRole::Operand); 1281 Builder.foldNode(Builder.getExprRange(S), 1282 new (allocator()) syntax::PostfixUnaryOperatorExpression, 1283 S); 1284 return true; 1285 case syntax::NodeKind::CallExpression: { 1286 Builder.markExprChild(S->getArg(0), syntax::NodeRole::Callee); 1287 1288 const auto *LParenToken = 1289 std::next(Builder.findToken(S->getArg(0)->getEndLoc())); 1290 // FIXME: Assert that `LParenToken` is indeed a `l_paren` once we have 1291 // fixed the test on decltype desctructors. 1292 if (LParenToken->kind() == clang::tok::l_paren) 1293 Builder.markChildToken(LParenToken, syntax::NodeRole::OpenParen); 1294 1295 Builder.markChild(buildCallArguments(CallExpr::arg_range( 1296 S->arg_begin() + 1, S->arg_end())), 1297 syntax::NodeRole::Arguments); 1298 1299 Builder.markChildToken(S->getRParenLoc(), syntax::NodeRole::CloseParen); 1300 1301 Builder.foldNode(Builder.getRange(S->getSourceRange()), 1302 new (allocator()) syntax::CallExpression, S); 1303 return true; 1304 } 1305 case syntax::NodeKind::UnknownExpression: 1306 return WalkUpFromExpr(S); 1307 default: 1308 llvm_unreachable("getOperatorNodeKind() does not return this value"); 1309 } 1310 } 1311 1312 bool WalkUpFromCXXDefaultArgExpr(CXXDefaultArgExpr *S) { return true; } 1313 1314 bool WalkUpFromNamespaceDecl(NamespaceDecl *S) { 1315 auto Tokens = Builder.getDeclarationRange(S); 1316 if (Tokens.front().kind() == tok::coloncolon) { 1317 // Handle nested namespace definitions. Those start at '::' token, e.g. 1318 // namespace a^::b {} 1319 // FIXME: build corresponding nodes for the name of this namespace. 1320 return true; 1321 } 1322 Builder.foldNode(Tokens, new (allocator()) syntax::NamespaceDefinition, S); 1323 return true; 1324 } 1325 1326 // FIXME: Deleting the `TraverseParenTypeLoc` override doesn't change test 1327 // results. Find test coverage or remove it. 1328 bool TraverseParenTypeLoc(ParenTypeLoc L) { 1329 // We reverse order of traversal to get the proper syntax structure. 1330 if (!WalkUpFromParenTypeLoc(L)) 1331 return false; 1332 return TraverseTypeLoc(L.getInnerLoc()); 1333 } 1334 1335 bool WalkUpFromParenTypeLoc(ParenTypeLoc L) { 1336 Builder.markChildToken(L.getLParenLoc(), syntax::NodeRole::OpenParen); 1337 Builder.markChildToken(L.getRParenLoc(), syntax::NodeRole::CloseParen); 1338 Builder.foldNode(Builder.getRange(L.getLParenLoc(), L.getRParenLoc()), 1339 new (allocator()) syntax::ParenDeclarator, L); 1340 return true; 1341 } 1342 1343 // Declarator chunks, they are produced by type locs and some clang::Decls. 1344 bool WalkUpFromArrayTypeLoc(ArrayTypeLoc L) { 1345 Builder.markChildToken(L.getLBracketLoc(), syntax::NodeRole::OpenParen); 1346 Builder.markExprChild(L.getSizeExpr(), syntax::NodeRole::Size); 1347 Builder.markChildToken(L.getRBracketLoc(), syntax::NodeRole::CloseParen); 1348 Builder.foldNode(Builder.getRange(L.getLBracketLoc(), L.getRBracketLoc()), 1349 new (allocator()) syntax::ArraySubscript, L); 1350 return true; 1351 } 1352 1353 syntax::ParameterDeclarationList * 1354 buildParameterDeclarationList(ArrayRef<ParmVarDecl *> Params) { 1355 for (auto *P : Params) { 1356 Builder.markChild(P, syntax::NodeRole::ListElement); 1357 const auto *DelimiterToken = std::next(Builder.findToken(P->getEndLoc())); 1358 if (DelimiterToken->kind() == clang::tok::TokenKind::comma) 1359 Builder.markChildToken(DelimiterToken, syntax::NodeRole::ListDelimiter); 1360 } 1361 auto *Parameters = new (allocator()) syntax::ParameterDeclarationList; 1362 if (!Params.empty()) 1363 Builder.foldNode(Builder.getRange(Params.front()->getBeginLoc(), 1364 Params.back()->getEndLoc()), 1365 Parameters, nullptr); 1366 return Parameters; 1367 } 1368 1369 bool WalkUpFromFunctionTypeLoc(FunctionTypeLoc L) { 1370 Builder.markChildToken(L.getLParenLoc(), syntax::NodeRole::OpenParen); 1371 1372 Builder.markChild(buildParameterDeclarationList(L.getParams()), 1373 syntax::NodeRole::Parameters); 1374 1375 Builder.markChildToken(L.getRParenLoc(), syntax::NodeRole::CloseParen); 1376 Builder.foldNode(Builder.getRange(L.getLParenLoc(), L.getEndLoc()), 1377 new (allocator()) syntax::ParametersAndQualifiers, L); 1378 return true; 1379 } 1380 1381 bool WalkUpFromFunctionProtoTypeLoc(FunctionProtoTypeLoc L) { 1382 if (!L.getTypePtr()->hasTrailingReturn()) 1383 return WalkUpFromFunctionTypeLoc(L); 1384 1385 auto *TrailingReturnTokens = buildTrailingReturn(L); 1386 // Finish building the node for parameters. 1387 Builder.markChild(TrailingReturnTokens, syntax::NodeRole::TrailingReturn); 1388 return WalkUpFromFunctionTypeLoc(L); 1389 } 1390 1391 bool TraverseMemberPointerTypeLoc(MemberPointerTypeLoc L) { 1392 // In the source code "void (Y::*mp)()" `MemberPointerTypeLoc` corresponds 1393 // to "Y::*" but it points to a `ParenTypeLoc` that corresponds to 1394 // "(Y::*mp)" We thus reverse the order of traversal to get the proper 1395 // syntax structure. 1396 if (!WalkUpFromMemberPointerTypeLoc(L)) 1397 return false; 1398 return TraverseTypeLoc(L.getPointeeLoc()); 1399 } 1400 1401 bool WalkUpFromMemberPointerTypeLoc(MemberPointerTypeLoc L) { 1402 auto SR = L.getLocalSourceRange(); 1403 Builder.foldNode(Builder.getRange(SR), 1404 new (allocator()) syntax::MemberPointer, L); 1405 return true; 1406 } 1407 1408 // The code below is very regular, it could even be generated with some 1409 // preprocessor magic. We merely assign roles to the corresponding children 1410 // and fold resulting nodes. 1411 bool WalkUpFromDeclStmt(DeclStmt *S) { 1412 Builder.foldNode(Builder.getStmtRange(S), 1413 new (allocator()) syntax::DeclarationStatement, S); 1414 return true; 1415 } 1416 1417 bool WalkUpFromNullStmt(NullStmt *S) { 1418 Builder.foldNode(Builder.getStmtRange(S), 1419 new (allocator()) syntax::EmptyStatement, S); 1420 return true; 1421 } 1422 1423 bool WalkUpFromSwitchStmt(SwitchStmt *S) { 1424 Builder.markChildToken(S->getSwitchLoc(), 1425 syntax::NodeRole::IntroducerKeyword); 1426 Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement); 1427 Builder.foldNode(Builder.getStmtRange(S), 1428 new (allocator()) syntax::SwitchStatement, S); 1429 return true; 1430 } 1431 1432 bool WalkUpFromCaseStmt(CaseStmt *S) { 1433 Builder.markChildToken(S->getKeywordLoc(), 1434 syntax::NodeRole::IntroducerKeyword); 1435 Builder.markExprChild(S->getLHS(), syntax::NodeRole::CaseValue); 1436 Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement); 1437 Builder.foldNode(Builder.getStmtRange(S), 1438 new (allocator()) syntax::CaseStatement, S); 1439 return true; 1440 } 1441 1442 bool WalkUpFromDefaultStmt(DefaultStmt *S) { 1443 Builder.markChildToken(S->getKeywordLoc(), 1444 syntax::NodeRole::IntroducerKeyword); 1445 Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement); 1446 Builder.foldNode(Builder.getStmtRange(S), 1447 new (allocator()) syntax::DefaultStatement, S); 1448 return true; 1449 } 1450 1451 bool WalkUpFromIfStmt(IfStmt *S) { 1452 Builder.markChildToken(S->getIfLoc(), syntax::NodeRole::IntroducerKeyword); 1453 Stmt *ConditionStatement = S->getCond(); 1454 if (S->hasVarStorage()) 1455 ConditionStatement = S->getConditionVariableDeclStmt(); 1456 Builder.markStmtChild(ConditionStatement, syntax::NodeRole::Condition); 1457 Builder.markStmtChild(S->getThen(), syntax::NodeRole::ThenStatement); 1458 Builder.markChildToken(S->getElseLoc(), syntax::NodeRole::ElseKeyword); 1459 Builder.markStmtChild(S->getElse(), syntax::NodeRole::ElseStatement); 1460 Builder.foldNode(Builder.getStmtRange(S), 1461 new (allocator()) syntax::IfStatement, S); 1462 return true; 1463 } 1464 1465 bool WalkUpFromForStmt(ForStmt *S) { 1466 Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword); 1467 Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement); 1468 Builder.foldNode(Builder.getStmtRange(S), 1469 new (allocator()) syntax::ForStatement, S); 1470 return true; 1471 } 1472 1473 bool WalkUpFromWhileStmt(WhileStmt *S) { 1474 Builder.markChildToken(S->getWhileLoc(), 1475 syntax::NodeRole::IntroducerKeyword); 1476 Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement); 1477 Builder.foldNode(Builder.getStmtRange(S), 1478 new (allocator()) syntax::WhileStatement, S); 1479 return true; 1480 } 1481 1482 bool WalkUpFromContinueStmt(ContinueStmt *S) { 1483 Builder.markChildToken(S->getContinueLoc(), 1484 syntax::NodeRole::IntroducerKeyword); 1485 Builder.foldNode(Builder.getStmtRange(S), 1486 new (allocator()) syntax::ContinueStatement, S); 1487 return true; 1488 } 1489 1490 bool WalkUpFromBreakStmt(BreakStmt *S) { 1491 Builder.markChildToken(S->getBreakLoc(), 1492 syntax::NodeRole::IntroducerKeyword); 1493 Builder.foldNode(Builder.getStmtRange(S), 1494 new (allocator()) syntax::BreakStatement, S); 1495 return true; 1496 } 1497 1498 bool WalkUpFromReturnStmt(ReturnStmt *S) { 1499 Builder.markChildToken(S->getReturnLoc(), 1500 syntax::NodeRole::IntroducerKeyword); 1501 Builder.markExprChild(S->getRetValue(), syntax::NodeRole::ReturnValue); 1502 Builder.foldNode(Builder.getStmtRange(S), 1503 new (allocator()) syntax::ReturnStatement, S); 1504 return true; 1505 } 1506 1507 bool WalkUpFromCXXForRangeStmt(CXXForRangeStmt *S) { 1508 Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword); 1509 Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement); 1510 Builder.foldNode(Builder.getStmtRange(S), 1511 new (allocator()) syntax::RangeBasedForStatement, S); 1512 return true; 1513 } 1514 1515 bool WalkUpFromEmptyDecl(EmptyDecl *S) { 1516 Builder.foldNode(Builder.getDeclarationRange(S), 1517 new (allocator()) syntax::EmptyDeclaration, S); 1518 return true; 1519 } 1520 1521 bool WalkUpFromStaticAssertDecl(StaticAssertDecl *S) { 1522 Builder.markExprChild(S->getAssertExpr(), syntax::NodeRole::Condition); 1523 Builder.markExprChild(S->getMessage(), syntax::NodeRole::Message); 1524 Builder.foldNode(Builder.getDeclarationRange(S), 1525 new (allocator()) syntax::StaticAssertDeclaration, S); 1526 return true; 1527 } 1528 1529 bool WalkUpFromLinkageSpecDecl(LinkageSpecDecl *S) { 1530 Builder.foldNode(Builder.getDeclarationRange(S), 1531 new (allocator()) syntax::LinkageSpecificationDeclaration, 1532 S); 1533 return true; 1534 } 1535 1536 bool WalkUpFromNamespaceAliasDecl(NamespaceAliasDecl *S) { 1537 Builder.foldNode(Builder.getDeclarationRange(S), 1538 new (allocator()) syntax::NamespaceAliasDefinition, S); 1539 return true; 1540 } 1541 1542 bool WalkUpFromUsingDirectiveDecl(UsingDirectiveDecl *S) { 1543 Builder.foldNode(Builder.getDeclarationRange(S), 1544 new (allocator()) syntax::UsingNamespaceDirective, S); 1545 return true; 1546 } 1547 1548 bool WalkUpFromUsingDecl(UsingDecl *S) { 1549 Builder.foldNode(Builder.getDeclarationRange(S), 1550 new (allocator()) syntax::UsingDeclaration, S); 1551 return true; 1552 } 1553 1554 bool WalkUpFromUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *S) { 1555 Builder.foldNode(Builder.getDeclarationRange(S), 1556 new (allocator()) syntax::UsingDeclaration, S); 1557 return true; 1558 } 1559 1560 bool WalkUpFromUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *S) { 1561 Builder.foldNode(Builder.getDeclarationRange(S), 1562 new (allocator()) syntax::UsingDeclaration, S); 1563 return true; 1564 } 1565 1566 bool WalkUpFromTypeAliasDecl(TypeAliasDecl *S) { 1567 Builder.foldNode(Builder.getDeclarationRange(S), 1568 new (allocator()) syntax::TypeAliasDeclaration, S); 1569 return true; 1570 } 1571 1572 private: 1573 /// Folds SimpleDeclarator node (if present) and in case this is the last 1574 /// declarator in the chain it also folds SimpleDeclaration node. 1575 template <class T> bool processDeclaratorAndDeclaration(T *D) { 1576 auto Range = getDeclaratorRange( 1577 Builder.sourceManager(), D->getTypeSourceInfo()->getTypeLoc(), 1578 getQualifiedNameStart(D), getInitializerRange(D)); 1579 1580 // There doesn't have to be a declarator (e.g. `void foo(int)` only has 1581 // declaration, but no declarator). 1582 if (!Range.getBegin().isValid()) { 1583 Builder.markChild(new (allocator()) syntax::DeclaratorList, 1584 syntax::NodeRole::Declarators); 1585 Builder.foldNode(Builder.getDeclarationRange(D), 1586 new (allocator()) syntax::SimpleDeclaration, D); 1587 return true; 1588 } 1589 1590 auto *N = new (allocator()) syntax::SimpleDeclarator; 1591 Builder.foldNode(Builder.getRange(Range), N, nullptr); 1592 Builder.markChild(N, syntax::NodeRole::ListElement); 1593 1594 if (!Builder.isResponsibleForCreatingDeclaration(D)) { 1595 // If this is not the last declarator in the declaration we expect a 1596 // delimiter after it. 1597 const auto *DelimiterToken = std::next(Builder.findToken(Range.getEnd())); 1598 if (DelimiterToken->kind() == clang::tok::TokenKind::comma) 1599 Builder.markChildToken(DelimiterToken, syntax::NodeRole::ListDelimiter); 1600 } else { 1601 auto *DL = new (allocator()) syntax::DeclaratorList; 1602 auto DeclarationRange = Builder.getDeclarationRange(D); 1603 Builder.foldList(DeclarationRange, DL, nullptr); 1604 1605 Builder.markChild(DL, syntax::NodeRole::Declarators); 1606 Builder.foldNode(DeclarationRange, 1607 new (allocator()) syntax::SimpleDeclaration, D); 1608 } 1609 return true; 1610 } 1611 1612 /// Returns the range of the built node. 1613 syntax::TrailingReturnType *buildTrailingReturn(FunctionProtoTypeLoc L) { 1614 assert(L.getTypePtr()->hasTrailingReturn()); 1615 1616 auto ReturnedType = L.getReturnLoc(); 1617 // Build node for the declarator, if any. 1618 auto ReturnDeclaratorRange = SourceRange(GetStartLoc().Visit(ReturnedType), 1619 ReturnedType.getEndLoc()); 1620 syntax::SimpleDeclarator *ReturnDeclarator = nullptr; 1621 if (ReturnDeclaratorRange.isValid()) { 1622 ReturnDeclarator = new (allocator()) syntax::SimpleDeclarator; 1623 Builder.foldNode(Builder.getRange(ReturnDeclaratorRange), 1624 ReturnDeclarator, nullptr); 1625 } 1626 1627 // Build node for trailing return type. 1628 auto Return = Builder.getRange(ReturnedType.getSourceRange()); 1629 const auto *Arrow = Return.begin() - 1; 1630 assert(Arrow->kind() == tok::arrow); 1631 auto Tokens = llvm::makeArrayRef(Arrow, Return.end()); 1632 Builder.markChildToken(Arrow, syntax::NodeRole::ArrowToken); 1633 if (ReturnDeclarator) 1634 Builder.markChild(ReturnDeclarator, syntax::NodeRole::Declarator); 1635 auto *R = new (allocator()) syntax::TrailingReturnType; 1636 Builder.foldNode(Tokens, R, L); 1637 return R; 1638 } 1639 1640 void foldExplicitTemplateInstantiation( 1641 ArrayRef<syntax::Token> Range, const syntax::Token *ExternKW, 1642 const syntax::Token *TemplateKW, 1643 syntax::SimpleDeclaration *InnerDeclaration, Decl *From) { 1644 assert(!ExternKW || ExternKW->kind() == tok::kw_extern); 1645 assert(TemplateKW && TemplateKW->kind() == tok::kw_template); 1646 Builder.markChildToken(ExternKW, syntax::NodeRole::ExternKeyword); 1647 Builder.markChildToken(TemplateKW, syntax::NodeRole::IntroducerKeyword); 1648 Builder.markChild(InnerDeclaration, syntax::NodeRole::Declaration); 1649 Builder.foldNode( 1650 Range, new (allocator()) syntax::ExplicitTemplateInstantiation, From); 1651 } 1652 1653 syntax::TemplateDeclaration *foldTemplateDeclaration( 1654 ArrayRef<syntax::Token> Range, const syntax::Token *TemplateKW, 1655 ArrayRef<syntax::Token> TemplatedDeclaration, Decl *From) { 1656 assert(TemplateKW && TemplateKW->kind() == tok::kw_template); 1657 Builder.markChildToken(TemplateKW, syntax::NodeRole::IntroducerKeyword); 1658 1659 auto *N = new (allocator()) syntax::TemplateDeclaration; 1660 Builder.foldNode(Range, N, From); 1661 Builder.markChild(N, syntax::NodeRole::Declaration); 1662 return N; 1663 } 1664 1665 /// A small helper to save some typing. 1666 llvm::BumpPtrAllocator &allocator() { return Builder.allocator(); } 1667 1668 syntax::TreeBuilder &Builder; 1669 const ASTContext &Context; 1670 }; 1671 } // namespace 1672 1673 void syntax::TreeBuilder::noticeDeclWithoutSemicolon(Decl *D) { 1674 DeclsWithoutSemicolons.insert(D); 1675 } 1676 1677 void syntax::TreeBuilder::markChildToken(SourceLocation Loc, NodeRole Role) { 1678 if (Loc.isInvalid()) 1679 return; 1680 Pending.assignRole(*findToken(Loc), Role); 1681 } 1682 1683 void syntax::TreeBuilder::markChildToken(const syntax::Token *T, NodeRole R) { 1684 if (!T) 1685 return; 1686 Pending.assignRole(*T, R); 1687 } 1688 1689 void syntax::TreeBuilder::markChild(syntax::Node *N, NodeRole R) { 1690 assert(N); 1691 setRole(N, R); 1692 } 1693 1694 void syntax::TreeBuilder::markChild(ASTPtr N, NodeRole R) { 1695 auto *SN = Mapping.find(N); 1696 assert(SN != nullptr); 1697 setRole(SN, R); 1698 } 1699 void syntax::TreeBuilder::markChild(NestedNameSpecifierLoc NNSLoc, NodeRole R) { 1700 auto *SN = Mapping.find(NNSLoc); 1701 assert(SN != nullptr); 1702 setRole(SN, R); 1703 } 1704 1705 void syntax::TreeBuilder::markStmtChild(Stmt *Child, NodeRole Role) { 1706 if (!Child) 1707 return; 1708 1709 syntax::Tree *ChildNode; 1710 if (Expr *ChildExpr = dyn_cast<Expr>(Child)) { 1711 // This is an expression in a statement position, consume the trailing 1712 // semicolon and form an 'ExpressionStatement' node. 1713 markExprChild(ChildExpr, NodeRole::Expression); 1714 ChildNode = new (allocator()) syntax::ExpressionStatement; 1715 // (!) 'getStmtRange()' ensures this covers a trailing semicolon. 1716 Pending.foldChildren(Arena, getStmtRange(Child), ChildNode); 1717 } else { 1718 ChildNode = Mapping.find(Child); 1719 } 1720 assert(ChildNode != nullptr); 1721 setRole(ChildNode, Role); 1722 } 1723 1724 void syntax::TreeBuilder::markExprChild(Expr *Child, NodeRole Role) { 1725 if (!Child) 1726 return; 1727 Child = IgnoreImplicit(Child); 1728 1729 syntax::Tree *ChildNode = Mapping.find(Child); 1730 assert(ChildNode != nullptr); 1731 setRole(ChildNode, Role); 1732 } 1733 1734 const syntax::Token *syntax::TreeBuilder::findToken(SourceLocation L) const { 1735 if (L.isInvalid()) 1736 return nullptr; 1737 auto It = LocationToToken.find(L); 1738 assert(It != LocationToToken.end()); 1739 return It->second; 1740 } 1741 1742 syntax::TranslationUnit *syntax::buildSyntaxTree(Arena &A, 1743 ASTContext &Context) { 1744 TreeBuilder Builder(A); 1745 BuildTreeVisitor(Context, Builder).TraverseAST(Context); 1746 return std::move(Builder).finalize(); 1747 } 1748