1 //===- BuildTree.cpp ------------------------------------------*- C++ -*-=====// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 #include "clang/Tooling/Syntax/BuildTree.h" 9 #include "clang/AST/ASTFwd.h" 10 #include "clang/AST/Decl.h" 11 #include "clang/AST/DeclBase.h" 12 #include "clang/AST/DeclCXX.h" 13 #include "clang/AST/DeclarationName.h" 14 #include "clang/AST/Expr.h" 15 #include "clang/AST/ExprCXX.h" 16 #include "clang/AST/IgnoreExpr.h" 17 #include "clang/AST/OperationKinds.h" 18 #include "clang/AST/RecursiveASTVisitor.h" 19 #include "clang/AST/Stmt.h" 20 #include "clang/AST/TypeLoc.h" 21 #include "clang/AST/TypeLocVisitor.h" 22 #include "clang/Basic/LLVM.h" 23 #include "clang/Basic/SourceLocation.h" 24 #include "clang/Basic/SourceManager.h" 25 #include "clang/Basic/Specifiers.h" 26 #include "clang/Basic/TokenKinds.h" 27 #include "clang/Lex/Lexer.h" 28 #include "clang/Lex/LiteralSupport.h" 29 #include "clang/Tooling/Syntax/Nodes.h" 30 #include "clang/Tooling/Syntax/Tokens.h" 31 #include "clang/Tooling/Syntax/Tree.h" 32 #include "llvm/ADT/ArrayRef.h" 33 #include "llvm/ADT/DenseMap.h" 34 #include "llvm/ADT/PointerUnion.h" 35 #include "llvm/ADT/STLExtras.h" 36 #include "llvm/ADT/ScopeExit.h" 37 #include "llvm/ADT/SmallVector.h" 38 #include "llvm/Support/Allocator.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/FormatVariadic.h" 42 #include "llvm/Support/MemoryBuffer.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include <cstddef> 45 #include <map> 46 47 using namespace clang; 48 49 // Ignores the implicit `CXXConstructExpr` for copy/move constructor calls 50 // generated by the compiler, as well as in implicit conversions like the one 51 // wrapping `1` in `X x = 1;`. 52 static Expr *IgnoreImplicitConstructorSingleStep(Expr *E) { 53 if (auto *C = dyn_cast<CXXConstructExpr>(E)) { 54 auto NumArgs = C->getNumArgs(); 55 if (NumArgs == 1 || (NumArgs > 1 && isa<CXXDefaultArgExpr>(C->getArg(1)))) { 56 Expr *A = C->getArg(0); 57 if (C->getParenOrBraceRange().isInvalid()) 58 return A; 59 } 60 } 61 return E; 62 } 63 64 // In: 65 // struct X { 66 // X(int) 67 // }; 68 // X x = X(1); 69 // Ignores the implicit `CXXFunctionalCastExpr` that wraps 70 // `CXXConstructExpr X(1)`. 71 static Expr *IgnoreCXXFunctionalCastExprWrappingConstructor(Expr *E) { 72 if (auto *F = dyn_cast<CXXFunctionalCastExpr>(E)) { 73 if (F->getCastKind() == CK_ConstructorConversion) 74 return F->getSubExpr(); 75 } 76 return E; 77 } 78 79 static Expr *IgnoreImplicit(Expr *E) { 80 return IgnoreExprNodes(E, IgnoreImplicitSingleStep, 81 IgnoreImplicitConstructorSingleStep, 82 IgnoreCXXFunctionalCastExprWrappingConstructor); 83 } 84 85 LLVM_ATTRIBUTE_UNUSED 86 static bool isImplicitExpr(Expr *E) { return IgnoreImplicit(E) != E; } 87 88 namespace { 89 /// Get start location of the Declarator from the TypeLoc. 90 /// E.g.: 91 /// loc of `(` in `int (a)` 92 /// loc of `*` in `int *(a)` 93 /// loc of the first `(` in `int (*a)(int)` 94 /// loc of the `*` in `int *(a)(int)` 95 /// loc of the first `*` in `const int *const *volatile a;` 96 /// 97 /// It is non-trivial to get the start location because TypeLocs are stored 98 /// inside out. In the example above `*volatile` is the TypeLoc returned 99 /// by `Decl.getTypeSourceInfo()`, and `*const` is what `.getPointeeLoc()` 100 /// returns. 101 struct GetStartLoc : TypeLocVisitor<GetStartLoc, SourceLocation> { 102 SourceLocation VisitParenTypeLoc(ParenTypeLoc T) { 103 auto L = Visit(T.getInnerLoc()); 104 if (L.isValid()) 105 return L; 106 return T.getLParenLoc(); 107 } 108 109 // Types spelled in the prefix part of the declarator. 110 SourceLocation VisitPointerTypeLoc(PointerTypeLoc T) { 111 return HandlePointer(T); 112 } 113 114 SourceLocation VisitMemberPointerTypeLoc(MemberPointerTypeLoc T) { 115 return HandlePointer(T); 116 } 117 118 SourceLocation VisitBlockPointerTypeLoc(BlockPointerTypeLoc T) { 119 return HandlePointer(T); 120 } 121 122 SourceLocation VisitReferenceTypeLoc(ReferenceTypeLoc T) { 123 return HandlePointer(T); 124 } 125 126 SourceLocation VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc T) { 127 return HandlePointer(T); 128 } 129 130 // All other cases are not important, as they are either part of declaration 131 // specifiers (e.g. inheritors of TypeSpecTypeLoc) or introduce modifiers on 132 // existing declarators (e.g. QualifiedTypeLoc). They cannot start the 133 // declarator themselves, but their underlying type can. 134 SourceLocation VisitTypeLoc(TypeLoc T) { 135 auto N = T.getNextTypeLoc(); 136 if (!N) 137 return SourceLocation(); 138 return Visit(N); 139 } 140 141 SourceLocation VisitFunctionProtoTypeLoc(FunctionProtoTypeLoc T) { 142 if (T.getTypePtr()->hasTrailingReturn()) 143 return SourceLocation(); // avoid recursing into the suffix of declarator. 144 return VisitTypeLoc(T); 145 } 146 147 private: 148 template <class PtrLoc> SourceLocation HandlePointer(PtrLoc T) { 149 auto L = Visit(T.getPointeeLoc()); 150 if (L.isValid()) 151 return L; 152 return T.getLocalSourceRange().getBegin(); 153 } 154 }; 155 } // namespace 156 157 static CallExpr::arg_range dropDefaultArgs(CallExpr::arg_range Args) { 158 auto FirstDefaultArg = std::find_if(Args.begin(), Args.end(), [](auto It) { 159 return isa<CXXDefaultArgExpr>(It); 160 }); 161 return llvm::make_range(Args.begin(), FirstDefaultArg); 162 } 163 164 static syntax::NodeKind getOperatorNodeKind(const CXXOperatorCallExpr &E) { 165 switch (E.getOperator()) { 166 // Comparison 167 case OO_EqualEqual: 168 case OO_ExclaimEqual: 169 case OO_Greater: 170 case OO_GreaterEqual: 171 case OO_Less: 172 case OO_LessEqual: 173 case OO_Spaceship: 174 // Assignment 175 case OO_Equal: 176 case OO_SlashEqual: 177 case OO_PercentEqual: 178 case OO_CaretEqual: 179 case OO_PipeEqual: 180 case OO_LessLessEqual: 181 case OO_GreaterGreaterEqual: 182 case OO_PlusEqual: 183 case OO_MinusEqual: 184 case OO_StarEqual: 185 case OO_AmpEqual: 186 // Binary computation 187 case OO_Slash: 188 case OO_Percent: 189 case OO_Caret: 190 case OO_Pipe: 191 case OO_LessLess: 192 case OO_GreaterGreater: 193 case OO_AmpAmp: 194 case OO_PipePipe: 195 case OO_ArrowStar: 196 case OO_Comma: 197 return syntax::NodeKind::BinaryOperatorExpression; 198 case OO_Tilde: 199 case OO_Exclaim: 200 return syntax::NodeKind::PrefixUnaryOperatorExpression; 201 // Prefix/Postfix increment/decrement 202 case OO_PlusPlus: 203 case OO_MinusMinus: 204 switch (E.getNumArgs()) { 205 case 1: 206 return syntax::NodeKind::PrefixUnaryOperatorExpression; 207 case 2: 208 return syntax::NodeKind::PostfixUnaryOperatorExpression; 209 default: 210 llvm_unreachable("Invalid number of arguments for operator"); 211 } 212 // Operators that can be unary or binary 213 case OO_Plus: 214 case OO_Minus: 215 case OO_Star: 216 case OO_Amp: 217 switch (E.getNumArgs()) { 218 case 1: 219 return syntax::NodeKind::PrefixUnaryOperatorExpression; 220 case 2: 221 return syntax::NodeKind::BinaryOperatorExpression; 222 default: 223 llvm_unreachable("Invalid number of arguments for operator"); 224 } 225 return syntax::NodeKind::BinaryOperatorExpression; 226 // Not yet supported by SyntaxTree 227 case OO_New: 228 case OO_Delete: 229 case OO_Array_New: 230 case OO_Array_Delete: 231 case OO_Coawait: 232 case OO_Subscript: 233 case OO_Arrow: 234 return syntax::NodeKind::UnknownExpression; 235 case OO_Call: 236 return syntax::NodeKind::CallExpression; 237 case OO_Conditional: // not overloadable 238 case NUM_OVERLOADED_OPERATORS: 239 case OO_None: 240 llvm_unreachable("Not an overloadable operator"); 241 } 242 llvm_unreachable("Unknown OverloadedOperatorKind enum"); 243 } 244 245 /// Get the start of the qualified name. In the examples below it gives the 246 /// location of the `^`: 247 /// `int ^a;` 248 /// `int *^a;` 249 /// `int ^a::S::f(){}` 250 static SourceLocation getQualifiedNameStart(NamedDecl *D) { 251 assert((isa<DeclaratorDecl, TypedefNameDecl>(D)) && 252 "only DeclaratorDecl and TypedefNameDecl are supported."); 253 254 auto DN = D->getDeclName(); 255 bool IsAnonymous = DN.isIdentifier() && !DN.getAsIdentifierInfo(); 256 if (IsAnonymous) 257 return SourceLocation(); 258 259 if (const auto *DD = dyn_cast<DeclaratorDecl>(D)) { 260 if (DD->getQualifierLoc()) { 261 return DD->getQualifierLoc().getBeginLoc(); 262 } 263 } 264 265 return D->getLocation(); 266 } 267 268 /// Gets the range of the initializer inside an init-declarator C++ [dcl.decl]. 269 /// `int a;` -> range of ``, 270 /// `int *a = nullptr` -> range of `= nullptr`. 271 /// `int a{}` -> range of `{}`. 272 /// `int a()` -> range of `()`. 273 static SourceRange getInitializerRange(Decl *D) { 274 if (auto *V = dyn_cast<VarDecl>(D)) { 275 auto *I = V->getInit(); 276 // Initializers in range-based-for are not part of the declarator 277 if (I && !V->isCXXForRangeDecl()) 278 return I->getSourceRange(); 279 } 280 281 return SourceRange(); 282 } 283 284 /// Gets the range of declarator as defined by the C++ grammar. E.g. 285 /// `int a;` -> range of `a`, 286 /// `int *a;` -> range of `*a`, 287 /// `int a[10];` -> range of `a[10]`, 288 /// `int a[1][2][3];` -> range of `a[1][2][3]`, 289 /// `int *a = nullptr` -> range of `*a = nullptr`. 290 /// `int S::f(){}` -> range of `S::f()`. 291 /// FIXME: \p Name must be a source range. 292 static SourceRange getDeclaratorRange(const SourceManager &SM, TypeLoc T, 293 SourceLocation Name, 294 SourceRange Initializer) { 295 SourceLocation Start = GetStartLoc().Visit(T); 296 SourceLocation End = T.getEndLoc(); 297 assert(End.isValid()); 298 if (Name.isValid()) { 299 if (Start.isInvalid()) 300 Start = Name; 301 if (SM.isBeforeInTranslationUnit(End, Name)) 302 End = Name; 303 } 304 if (Initializer.isValid()) { 305 auto InitializerEnd = Initializer.getEnd(); 306 assert(SM.isBeforeInTranslationUnit(End, InitializerEnd) || 307 End == InitializerEnd); 308 End = InitializerEnd; 309 } 310 return SourceRange(Start, End); 311 } 312 313 namespace { 314 /// All AST hierarchy roots that can be represented as pointers. 315 using ASTPtr = llvm::PointerUnion<Stmt *, Decl *>; 316 /// Maintains a mapping from AST to syntax tree nodes. This class will get more 317 /// complicated as we support more kinds of AST nodes, e.g. TypeLocs. 318 /// FIXME: expose this as public API. 319 class ASTToSyntaxMapping { 320 public: 321 void add(ASTPtr From, syntax::Tree *To) { 322 assert(To != nullptr); 323 assert(!From.isNull()); 324 325 bool Added = Nodes.insert({From, To}).second; 326 (void)Added; 327 assert(Added && "mapping added twice"); 328 } 329 330 void add(NestedNameSpecifierLoc From, syntax::Tree *To) { 331 assert(To != nullptr); 332 assert(From.hasQualifier()); 333 334 bool Added = NNSNodes.insert({From, To}).second; 335 (void)Added; 336 assert(Added && "mapping added twice"); 337 } 338 339 syntax::Tree *find(ASTPtr P) const { return Nodes.lookup(P); } 340 341 syntax::Tree *find(NestedNameSpecifierLoc P) const { 342 return NNSNodes.lookup(P); 343 } 344 345 private: 346 llvm::DenseMap<ASTPtr, syntax::Tree *> Nodes; 347 llvm::DenseMap<NestedNameSpecifierLoc, syntax::Tree *> NNSNodes; 348 }; 349 } // namespace 350 351 /// A helper class for constructing the syntax tree while traversing a clang 352 /// AST. 353 /// 354 /// At each point of the traversal we maintain a list of pending nodes. 355 /// Initially all tokens are added as pending nodes. When processing a clang AST 356 /// node, the clients need to: 357 /// - create a corresponding syntax node, 358 /// - assign roles to all pending child nodes with 'markChild' and 359 /// 'markChildToken', 360 /// - replace the child nodes with the new syntax node in the pending list 361 /// with 'foldNode'. 362 /// 363 /// Note that all children are expected to be processed when building a node. 364 /// 365 /// Call finalize() to finish building the tree and consume the root node. 366 class syntax::TreeBuilder { 367 public: 368 TreeBuilder(syntax::Arena &Arena) : Arena(Arena), Pending(Arena) { 369 for (const auto &T : Arena.getTokenBuffer().expandedTokens()) 370 LocationToToken.insert({T.location().getRawEncoding(), &T}); 371 } 372 373 llvm::BumpPtrAllocator &allocator() { return Arena.getAllocator(); } 374 const SourceManager &sourceManager() const { 375 return Arena.getSourceManager(); 376 } 377 378 /// Populate children for \p New node, assuming it covers tokens from \p 379 /// Range. 380 void foldNode(ArrayRef<syntax::Token> Range, syntax::Tree *New, ASTPtr From) { 381 assert(New); 382 Pending.foldChildren(Arena, Range, New); 383 if (From) 384 Mapping.add(From, New); 385 } 386 387 void foldNode(ArrayRef<syntax::Token> Range, syntax::Tree *New, TypeLoc L) { 388 // FIXME: add mapping for TypeLocs 389 foldNode(Range, New, nullptr); 390 } 391 392 void foldNode(llvm::ArrayRef<syntax::Token> Range, syntax::Tree *New, 393 NestedNameSpecifierLoc From) { 394 assert(New); 395 Pending.foldChildren(Arena, Range, New); 396 if (From) 397 Mapping.add(From, New); 398 } 399 400 /// Populate children for \p New list, assuming it covers tokens from a 401 /// subrange of \p SuperRange. 402 void foldList(ArrayRef<syntax::Token> SuperRange, syntax::List *New, 403 ASTPtr From) { 404 assert(New); 405 auto ListRange = Pending.shrinkToFitList(SuperRange); 406 Pending.foldChildren(Arena, ListRange, New); 407 if (From) 408 Mapping.add(From, New); 409 } 410 411 /// Notifies that we should not consume trailing semicolon when computing 412 /// token range of \p D. 413 void noticeDeclWithoutSemicolon(Decl *D); 414 415 /// Mark the \p Child node with a corresponding \p Role. All marked children 416 /// should be consumed by foldNode. 417 /// When called on expressions (clang::Expr is derived from clang::Stmt), 418 /// wraps expressions into expression statement. 419 void markStmtChild(Stmt *Child, NodeRole Role); 420 /// Should be called for expressions in non-statement position to avoid 421 /// wrapping into expression statement. 422 void markExprChild(Expr *Child, NodeRole Role); 423 /// Set role for a token starting at \p Loc. 424 void markChildToken(SourceLocation Loc, NodeRole R); 425 /// Set role for \p T. 426 void markChildToken(const syntax::Token *T, NodeRole R); 427 428 /// Set role for \p N. 429 void markChild(syntax::Node *N, NodeRole R); 430 /// Set role for the syntax node matching \p N. 431 void markChild(ASTPtr N, NodeRole R); 432 /// Set role for the syntax node matching \p N. 433 void markChild(NestedNameSpecifierLoc N, NodeRole R); 434 435 /// Finish building the tree and consume the root node. 436 syntax::TranslationUnit *finalize() && { 437 auto Tokens = Arena.getTokenBuffer().expandedTokens(); 438 assert(!Tokens.empty()); 439 assert(Tokens.back().kind() == tok::eof); 440 441 // Build the root of the tree, consuming all the children. 442 Pending.foldChildren(Arena, Tokens.drop_back(), 443 new (Arena.getAllocator()) syntax::TranslationUnit); 444 445 auto *TU = cast<syntax::TranslationUnit>(std::move(Pending).finalize()); 446 TU->assertInvariantsRecursive(); 447 return TU; 448 } 449 450 /// Finds a token starting at \p L. The token must exist if \p L is valid. 451 const syntax::Token *findToken(SourceLocation L) const; 452 453 /// Finds the syntax tokens corresponding to the \p SourceRange. 454 ArrayRef<syntax::Token> getRange(SourceRange Range) const { 455 assert(Range.isValid()); 456 return getRange(Range.getBegin(), Range.getEnd()); 457 } 458 459 /// Finds the syntax tokens corresponding to the passed source locations. 460 /// \p First is the start position of the first token and \p Last is the start 461 /// position of the last token. 462 ArrayRef<syntax::Token> getRange(SourceLocation First, 463 SourceLocation Last) const { 464 assert(First.isValid()); 465 assert(Last.isValid()); 466 assert(First == Last || 467 Arena.getSourceManager().isBeforeInTranslationUnit(First, Last)); 468 return llvm::makeArrayRef(findToken(First), std::next(findToken(Last))); 469 } 470 471 ArrayRef<syntax::Token> 472 getTemplateRange(const ClassTemplateSpecializationDecl *D) const { 473 auto Tokens = getRange(D->getSourceRange()); 474 return maybeAppendSemicolon(Tokens, D); 475 } 476 477 /// Returns true if \p D is the last declarator in a chain and is thus 478 /// reponsible for creating SimpleDeclaration for the whole chain. 479 bool isResponsibleForCreatingDeclaration(const Decl *D) const { 480 assert((isa<DeclaratorDecl, TypedefNameDecl>(D)) && 481 "only DeclaratorDecl and TypedefNameDecl are supported."); 482 483 const Decl *Next = D->getNextDeclInContext(); 484 485 // There's no next sibling, this one is responsible. 486 if (Next == nullptr) { 487 return true; 488 } 489 490 // Next sibling is not the same type, this one is responsible. 491 if (D->getKind() != Next->getKind()) { 492 return true; 493 } 494 // Next sibling doesn't begin at the same loc, it must be a different 495 // declaration, so this declarator is responsible. 496 if (Next->getBeginLoc() != D->getBeginLoc()) { 497 return true; 498 } 499 500 // NextT is a member of the same declaration, and we need the last member to 501 // create declaration. This one is not responsible. 502 return false; 503 } 504 505 ArrayRef<syntax::Token> getDeclarationRange(Decl *D) { 506 ArrayRef<syntax::Token> Tokens; 507 // We want to drop the template parameters for specializations. 508 if (const auto *S = dyn_cast<TagDecl>(D)) 509 Tokens = getRange(S->TypeDecl::getBeginLoc(), S->getEndLoc()); 510 else 511 Tokens = getRange(D->getSourceRange()); 512 return maybeAppendSemicolon(Tokens, D); 513 } 514 515 ArrayRef<syntax::Token> getExprRange(const Expr *E) const { 516 return getRange(E->getSourceRange()); 517 } 518 519 /// Find the adjusted range for the statement, consuming the trailing 520 /// semicolon when needed. 521 ArrayRef<syntax::Token> getStmtRange(const Stmt *S) const { 522 auto Tokens = getRange(S->getSourceRange()); 523 if (isa<CompoundStmt>(S)) 524 return Tokens; 525 526 // Some statements miss a trailing semicolon, e.g. 'return', 'continue' and 527 // all statements that end with those. Consume this semicolon here. 528 if (Tokens.back().kind() == tok::semi) 529 return Tokens; 530 return withTrailingSemicolon(Tokens); 531 } 532 533 private: 534 ArrayRef<syntax::Token> maybeAppendSemicolon(ArrayRef<syntax::Token> Tokens, 535 const Decl *D) const { 536 if (isa<NamespaceDecl>(D)) 537 return Tokens; 538 if (DeclsWithoutSemicolons.count(D)) 539 return Tokens; 540 // FIXME: do not consume trailing semicolon on function definitions. 541 // Most declarations own a semicolon in syntax trees, but not in clang AST. 542 return withTrailingSemicolon(Tokens); 543 } 544 545 ArrayRef<syntax::Token> 546 withTrailingSemicolon(ArrayRef<syntax::Token> Tokens) const { 547 assert(!Tokens.empty()); 548 assert(Tokens.back().kind() != tok::eof); 549 // We never consume 'eof', so looking at the next token is ok. 550 if (Tokens.back().kind() != tok::semi && Tokens.end()->kind() == tok::semi) 551 return llvm::makeArrayRef(Tokens.begin(), Tokens.end() + 1); 552 return Tokens; 553 } 554 555 void setRole(syntax::Node *N, NodeRole R) { 556 assert(N->getRole() == NodeRole::Detached); 557 N->setRole(R); 558 } 559 560 /// A collection of trees covering the input tokens. 561 /// When created, each tree corresponds to a single token in the file. 562 /// Clients call 'foldChildren' to attach one or more subtrees to a parent 563 /// node and update the list of trees accordingly. 564 /// 565 /// Ensures that added nodes properly nest and cover the whole token stream. 566 struct Forest { 567 Forest(syntax::Arena &A) { 568 assert(!A.getTokenBuffer().expandedTokens().empty()); 569 assert(A.getTokenBuffer().expandedTokens().back().kind() == tok::eof); 570 // Create all leaf nodes. 571 // Note that we do not have 'eof' in the tree. 572 for (const auto &T : A.getTokenBuffer().expandedTokens().drop_back()) { 573 auto *L = new (A.getAllocator()) syntax::Leaf(&T); 574 L->Original = true; 575 L->CanModify = A.getTokenBuffer().spelledForExpanded(T).hasValue(); 576 Trees.insert(Trees.end(), {&T, L}); 577 } 578 } 579 580 void assignRole(ArrayRef<syntax::Token> Range, syntax::NodeRole Role) { 581 assert(!Range.empty()); 582 auto It = Trees.lower_bound(Range.begin()); 583 assert(It != Trees.end() && "no node found"); 584 assert(It->first == Range.begin() && "no child with the specified range"); 585 assert((std::next(It) == Trees.end() || 586 std::next(It)->first == Range.end()) && 587 "no child with the specified range"); 588 assert(It->second->getRole() == NodeRole::Detached && 589 "re-assigning role for a child"); 590 It->second->setRole(Role); 591 } 592 593 /// Shrink \p Range to a subrange that only contains tokens of a list. 594 /// List elements and delimiters should already have correct roles. 595 ArrayRef<syntax::Token> shrinkToFitList(ArrayRef<syntax::Token> Range) { 596 auto BeginChildren = Trees.lower_bound(Range.begin()); 597 assert((BeginChildren == Trees.end() || 598 BeginChildren->first == Range.begin()) && 599 "Range crosses boundaries of existing subtrees"); 600 601 auto EndChildren = Trees.lower_bound(Range.end()); 602 assert( 603 (EndChildren == Trees.end() || EndChildren->first == Range.end()) && 604 "Range crosses boundaries of existing subtrees"); 605 606 auto BelongsToList = [](decltype(Trees)::value_type KV) { 607 auto Role = KV.second->getRole(); 608 return Role == syntax::NodeRole::ListElement || 609 Role == syntax::NodeRole::ListDelimiter; 610 }; 611 612 auto BeginListChildren = 613 std::find_if(BeginChildren, EndChildren, BelongsToList); 614 615 auto EndListChildren = 616 std::find_if_not(BeginListChildren, EndChildren, BelongsToList); 617 618 return ArrayRef<syntax::Token>(BeginListChildren->first, 619 EndListChildren->first); 620 } 621 622 /// Add \p Node to the forest and attach child nodes based on \p Tokens. 623 void foldChildren(const syntax::Arena &A, ArrayRef<syntax::Token> Tokens, 624 syntax::Tree *Node) { 625 // Attach children to `Node`. 626 assert(Node->getFirstChild() == nullptr && "node already has children"); 627 628 auto *FirstToken = Tokens.begin(); 629 auto BeginChildren = Trees.lower_bound(FirstToken); 630 631 assert((BeginChildren == Trees.end() || 632 BeginChildren->first == FirstToken) && 633 "fold crosses boundaries of existing subtrees"); 634 auto EndChildren = Trees.lower_bound(Tokens.end()); 635 assert( 636 (EndChildren == Trees.end() || EndChildren->first == Tokens.end()) && 637 "fold crosses boundaries of existing subtrees"); 638 639 // We need to go in reverse order, because we can only prepend. 640 for (auto It = EndChildren; It != BeginChildren; --It) { 641 auto *C = std::prev(It)->second; 642 if (C->getRole() == NodeRole::Detached) 643 C->setRole(NodeRole::Unknown); 644 Node->prependChildLowLevel(C); 645 } 646 647 // Mark that this node came from the AST and is backed by the source code. 648 Node->Original = true; 649 Node->CanModify = 650 A.getTokenBuffer().spelledForExpanded(Tokens).hasValue(); 651 652 Trees.erase(BeginChildren, EndChildren); 653 Trees.insert({FirstToken, Node}); 654 } 655 656 // EXPECTS: all tokens were consumed and are owned by a single root node. 657 syntax::Node *finalize() && { 658 assert(Trees.size() == 1); 659 auto *Root = Trees.begin()->second; 660 Trees = {}; 661 return Root; 662 } 663 664 std::string str(const syntax::Arena &A) const { 665 std::string R; 666 for (auto It = Trees.begin(); It != Trees.end(); ++It) { 667 unsigned CoveredTokens = 668 It != Trees.end() 669 ? (std::next(It)->first - It->first) 670 : A.getTokenBuffer().expandedTokens().end() - It->first; 671 672 R += std::string( 673 formatv("- '{0}' covers '{1}'+{2} tokens\n", It->second->getKind(), 674 It->first->text(A.getSourceManager()), CoveredTokens)); 675 R += It->second->dump(A.getSourceManager()); 676 } 677 return R; 678 } 679 680 private: 681 /// Maps from the start token to a subtree starting at that token. 682 /// Keys in the map are pointers into the array of expanded tokens, so 683 /// pointer order corresponds to the order of preprocessor tokens. 684 std::map<const syntax::Token *, syntax::Node *> Trees; 685 }; 686 687 /// For debugging purposes. 688 std::string str() { return Pending.str(Arena); } 689 690 syntax::Arena &Arena; 691 /// To quickly find tokens by their start location. 692 llvm::DenseMap</*SourceLocation*/ unsigned, const syntax::Token *> 693 LocationToToken; 694 Forest Pending; 695 llvm::DenseSet<Decl *> DeclsWithoutSemicolons; 696 ASTToSyntaxMapping Mapping; 697 }; 698 699 namespace { 700 class BuildTreeVisitor : public RecursiveASTVisitor<BuildTreeVisitor> { 701 public: 702 explicit BuildTreeVisitor(ASTContext &Context, syntax::TreeBuilder &Builder) 703 : Builder(Builder), Context(Context) {} 704 705 bool shouldTraversePostOrder() const { return true; } 706 707 bool WalkUpFromDeclaratorDecl(DeclaratorDecl *DD) { 708 return processDeclaratorAndDeclaration(DD); 709 } 710 711 bool WalkUpFromTypedefNameDecl(TypedefNameDecl *TD) { 712 return processDeclaratorAndDeclaration(TD); 713 } 714 715 bool VisitDecl(Decl *D) { 716 assert(!D->isImplicit()); 717 Builder.foldNode(Builder.getDeclarationRange(D), 718 new (allocator()) syntax::UnknownDeclaration(), D); 719 return true; 720 } 721 722 // RAV does not call WalkUpFrom* on explicit instantiations, so we have to 723 // override Traverse. 724 // FIXME: make RAV call WalkUpFrom* instead. 725 bool 726 TraverseClassTemplateSpecializationDecl(ClassTemplateSpecializationDecl *C) { 727 if (!RecursiveASTVisitor::TraverseClassTemplateSpecializationDecl(C)) 728 return false; 729 if (C->isExplicitSpecialization()) 730 return true; // we are only interested in explicit instantiations. 731 auto *Declaration = 732 cast<syntax::SimpleDeclaration>(handleFreeStandingTagDecl(C)); 733 foldExplicitTemplateInstantiation( 734 Builder.getTemplateRange(C), Builder.findToken(C->getExternLoc()), 735 Builder.findToken(C->getTemplateKeywordLoc()), Declaration, C); 736 return true; 737 } 738 739 bool WalkUpFromTemplateDecl(TemplateDecl *S) { 740 foldTemplateDeclaration( 741 Builder.getDeclarationRange(S), 742 Builder.findToken(S->getTemplateParameters()->getTemplateLoc()), 743 Builder.getDeclarationRange(S->getTemplatedDecl()), S); 744 return true; 745 } 746 747 bool WalkUpFromTagDecl(TagDecl *C) { 748 // FIXME: build the ClassSpecifier node. 749 if (!C->isFreeStanding()) { 750 assert(C->getNumTemplateParameterLists() == 0); 751 return true; 752 } 753 handleFreeStandingTagDecl(C); 754 return true; 755 } 756 757 syntax::Declaration *handleFreeStandingTagDecl(TagDecl *C) { 758 assert(C->isFreeStanding()); 759 // Class is a declaration specifier and needs a spanning declaration node. 760 auto DeclarationRange = Builder.getDeclarationRange(C); 761 syntax::Declaration *Result = new (allocator()) syntax::SimpleDeclaration; 762 Builder.foldNode(DeclarationRange, Result, nullptr); 763 764 // Build TemplateDeclaration nodes if we had template parameters. 765 auto ConsumeTemplateParameters = [&](const TemplateParameterList &L) { 766 const auto *TemplateKW = Builder.findToken(L.getTemplateLoc()); 767 auto R = llvm::makeArrayRef(TemplateKW, DeclarationRange.end()); 768 Result = 769 foldTemplateDeclaration(R, TemplateKW, DeclarationRange, nullptr); 770 DeclarationRange = R; 771 }; 772 if (auto *S = dyn_cast<ClassTemplatePartialSpecializationDecl>(C)) 773 ConsumeTemplateParameters(*S->getTemplateParameters()); 774 for (unsigned I = C->getNumTemplateParameterLists(); 0 < I; --I) 775 ConsumeTemplateParameters(*C->getTemplateParameterList(I - 1)); 776 return Result; 777 } 778 779 bool WalkUpFromTranslationUnitDecl(TranslationUnitDecl *TU) { 780 // We do not want to call VisitDecl(), the declaration for translation 781 // unit is built by finalize(). 782 return true; 783 } 784 785 bool WalkUpFromCompoundStmt(CompoundStmt *S) { 786 using NodeRole = syntax::NodeRole; 787 788 Builder.markChildToken(S->getLBracLoc(), NodeRole::OpenParen); 789 for (auto *Child : S->body()) 790 Builder.markStmtChild(Child, NodeRole::Statement); 791 Builder.markChildToken(S->getRBracLoc(), NodeRole::CloseParen); 792 793 Builder.foldNode(Builder.getStmtRange(S), 794 new (allocator()) syntax::CompoundStatement, S); 795 return true; 796 } 797 798 // Some statements are not yet handled by syntax trees. 799 bool WalkUpFromStmt(Stmt *S) { 800 Builder.foldNode(Builder.getStmtRange(S), 801 new (allocator()) syntax::UnknownStatement, S); 802 return true; 803 } 804 805 bool TraverseCXXForRangeStmt(CXXForRangeStmt *S) { 806 // We override to traverse range initializer as VarDecl. 807 // RAV traverses it as a statement, we produce invalid node kinds in that 808 // case. 809 // FIXME: should do this in RAV instead? 810 bool Result = [&, this]() { 811 if (S->getInit() && !TraverseStmt(S->getInit())) 812 return false; 813 if (S->getLoopVariable() && !TraverseDecl(S->getLoopVariable())) 814 return false; 815 if (S->getRangeInit() && !TraverseStmt(S->getRangeInit())) 816 return false; 817 if (S->getBody() && !TraverseStmt(S->getBody())) 818 return false; 819 return true; 820 }(); 821 WalkUpFromCXXForRangeStmt(S); 822 return Result; 823 } 824 825 bool TraverseStmt(Stmt *S) { 826 if (auto *DS = dyn_cast_or_null<DeclStmt>(S)) { 827 // We want to consume the semicolon, make sure SimpleDeclaration does not. 828 for (auto *D : DS->decls()) 829 Builder.noticeDeclWithoutSemicolon(D); 830 } else if (auto *E = dyn_cast_or_null<Expr>(S)) { 831 return RecursiveASTVisitor::TraverseStmt(IgnoreImplicit(E)); 832 } 833 return RecursiveASTVisitor::TraverseStmt(S); 834 } 835 836 // Some expressions are not yet handled by syntax trees. 837 bool WalkUpFromExpr(Expr *E) { 838 assert(!isImplicitExpr(E) && "should be handled by TraverseStmt"); 839 Builder.foldNode(Builder.getExprRange(E), 840 new (allocator()) syntax::UnknownExpression, E); 841 return true; 842 } 843 844 bool TraverseUserDefinedLiteral(UserDefinedLiteral *S) { 845 // The semantic AST node `UserDefinedLiteral` (UDL) may have one child node 846 // referencing the location of the UDL suffix (`_w` in `1.2_w`). The 847 // UDL suffix location does not point to the beginning of a token, so we 848 // can't represent the UDL suffix as a separate syntax tree node. 849 850 return WalkUpFromUserDefinedLiteral(S); 851 } 852 853 syntax::UserDefinedLiteralExpression * 854 buildUserDefinedLiteral(UserDefinedLiteral *S) { 855 switch (S->getLiteralOperatorKind()) { 856 case UserDefinedLiteral::LOK_Integer: 857 return new (allocator()) syntax::IntegerUserDefinedLiteralExpression; 858 case UserDefinedLiteral::LOK_Floating: 859 return new (allocator()) syntax::FloatUserDefinedLiteralExpression; 860 case UserDefinedLiteral::LOK_Character: 861 return new (allocator()) syntax::CharUserDefinedLiteralExpression; 862 case UserDefinedLiteral::LOK_String: 863 return new (allocator()) syntax::StringUserDefinedLiteralExpression; 864 case UserDefinedLiteral::LOK_Raw: 865 case UserDefinedLiteral::LOK_Template: 866 // For raw literal operator and numeric literal operator template we 867 // cannot get the type of the operand in the semantic AST. We get this 868 // information from the token. As integer and floating point have the same 869 // token kind, we run `NumericLiteralParser` again to distinguish them. 870 auto TokLoc = S->getBeginLoc(); 871 auto TokSpelling = 872 Builder.findToken(TokLoc)->text(Context.getSourceManager()); 873 auto Literal = 874 NumericLiteralParser(TokSpelling, TokLoc, Context.getSourceManager(), 875 Context.getLangOpts(), Context.getTargetInfo(), 876 Context.getDiagnostics()); 877 if (Literal.isIntegerLiteral()) 878 return new (allocator()) syntax::IntegerUserDefinedLiteralExpression; 879 else { 880 assert(Literal.isFloatingLiteral()); 881 return new (allocator()) syntax::FloatUserDefinedLiteralExpression; 882 } 883 } 884 llvm_unreachable("Unknown literal operator kind."); 885 } 886 887 bool WalkUpFromUserDefinedLiteral(UserDefinedLiteral *S) { 888 Builder.markChildToken(S->getBeginLoc(), syntax::NodeRole::LiteralToken); 889 Builder.foldNode(Builder.getExprRange(S), buildUserDefinedLiteral(S), S); 890 return true; 891 } 892 893 // FIXME: Fix `NestedNameSpecifierLoc::getLocalSourceRange` for the 894 // `DependentTemplateSpecializationType` case. 895 /// Given a nested-name-specifier return the range for the last name 896 /// specifier. 897 /// 898 /// e.g. `std::T::template X<U>::` => `template X<U>::` 899 SourceRange getLocalSourceRange(const NestedNameSpecifierLoc &NNSLoc) { 900 auto SR = NNSLoc.getLocalSourceRange(); 901 902 // The method `NestedNameSpecifierLoc::getLocalSourceRange` *should* 903 // return the desired `SourceRange`, but there is a corner case. For a 904 // `DependentTemplateSpecializationType` this method returns its 905 // qualifiers as well, in other words in the example above this method 906 // returns `T::template X<U>::` instead of only `template X<U>::` 907 if (auto TL = NNSLoc.getTypeLoc()) { 908 if (auto DependentTL = 909 TL.getAs<DependentTemplateSpecializationTypeLoc>()) { 910 // The 'template' keyword is always present in dependent template 911 // specializations. Except in the case of incorrect code 912 // TODO: Treat the case of incorrect code. 913 SR.setBegin(DependentTL.getTemplateKeywordLoc()); 914 } 915 } 916 917 return SR; 918 } 919 920 syntax::NodeKind getNameSpecifierKind(const NestedNameSpecifier &NNS) { 921 switch (NNS.getKind()) { 922 case NestedNameSpecifier::Global: 923 return syntax::NodeKind::GlobalNameSpecifier; 924 case NestedNameSpecifier::Namespace: 925 case NestedNameSpecifier::NamespaceAlias: 926 case NestedNameSpecifier::Identifier: 927 return syntax::NodeKind::IdentifierNameSpecifier; 928 case NestedNameSpecifier::TypeSpecWithTemplate: 929 return syntax::NodeKind::SimpleTemplateNameSpecifier; 930 case NestedNameSpecifier::TypeSpec: { 931 const auto *NNSType = NNS.getAsType(); 932 assert(NNSType); 933 if (isa<DecltypeType>(NNSType)) 934 return syntax::NodeKind::DecltypeNameSpecifier; 935 if (isa<TemplateSpecializationType, DependentTemplateSpecializationType>( 936 NNSType)) 937 return syntax::NodeKind::SimpleTemplateNameSpecifier; 938 return syntax::NodeKind::IdentifierNameSpecifier; 939 } 940 default: 941 // FIXME: Support Microsoft's __super 942 llvm::report_fatal_error("We don't yet support the __super specifier", 943 true); 944 } 945 } 946 947 syntax::NameSpecifier * 948 buildNameSpecifier(const NestedNameSpecifierLoc &NNSLoc) { 949 assert(NNSLoc.hasQualifier()); 950 auto NameSpecifierTokens = 951 Builder.getRange(getLocalSourceRange(NNSLoc)).drop_back(); 952 switch (getNameSpecifierKind(*NNSLoc.getNestedNameSpecifier())) { 953 case syntax::NodeKind::GlobalNameSpecifier: 954 return new (allocator()) syntax::GlobalNameSpecifier; 955 case syntax::NodeKind::IdentifierNameSpecifier: { 956 assert(NameSpecifierTokens.size() == 1); 957 Builder.markChildToken(NameSpecifierTokens.begin(), 958 syntax::NodeRole::Unknown); 959 auto *NS = new (allocator()) syntax::IdentifierNameSpecifier; 960 Builder.foldNode(NameSpecifierTokens, NS, nullptr); 961 return NS; 962 } 963 case syntax::NodeKind::SimpleTemplateNameSpecifier: { 964 // TODO: Build `SimpleTemplateNameSpecifier` children and implement 965 // accessors to them. 966 // Be aware, we cannot do that simply by calling `TraverseTypeLoc`, 967 // some `TypeLoc`s have inside them the previous name specifier and 968 // we want to treat them independently. 969 auto *NS = new (allocator()) syntax::SimpleTemplateNameSpecifier; 970 Builder.foldNode(NameSpecifierTokens, NS, nullptr); 971 return NS; 972 } 973 case syntax::NodeKind::DecltypeNameSpecifier: { 974 const auto TL = NNSLoc.getTypeLoc().castAs<DecltypeTypeLoc>(); 975 if (!RecursiveASTVisitor::TraverseDecltypeTypeLoc(TL)) 976 return nullptr; 977 auto *NS = new (allocator()) syntax::DecltypeNameSpecifier; 978 // TODO: Implement accessor to `DecltypeNameSpecifier` inner 979 // `DecltypeTypeLoc`. 980 // For that add mapping from `TypeLoc` to `syntax::Node*` then: 981 // Builder.markChild(TypeLoc, syntax::NodeRole); 982 Builder.foldNode(NameSpecifierTokens, NS, nullptr); 983 return NS; 984 } 985 default: 986 llvm_unreachable("getChildKind() does not return this value"); 987 } 988 } 989 990 // To build syntax tree nodes for NestedNameSpecifierLoc we override 991 // Traverse instead of WalkUpFrom because we want to traverse the children 992 // ourselves and build a list instead of a nested tree of name specifier 993 // prefixes. 994 bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc QualifierLoc) { 995 if (!QualifierLoc) 996 return true; 997 for (auto It = QualifierLoc; It; It = It.getPrefix()) { 998 auto *NS = buildNameSpecifier(It); 999 if (!NS) 1000 return false; 1001 Builder.markChild(NS, syntax::NodeRole::ListElement); 1002 Builder.markChildToken(It.getEndLoc(), syntax::NodeRole::ListDelimiter); 1003 } 1004 Builder.foldNode(Builder.getRange(QualifierLoc.getSourceRange()), 1005 new (allocator()) syntax::NestedNameSpecifier, 1006 QualifierLoc); 1007 return true; 1008 } 1009 1010 syntax::IdExpression *buildIdExpression(NestedNameSpecifierLoc QualifierLoc, 1011 SourceLocation TemplateKeywordLoc, 1012 SourceRange UnqualifiedIdLoc, 1013 ASTPtr From) { 1014 if (QualifierLoc) { 1015 Builder.markChild(QualifierLoc, syntax::NodeRole::Qualifier); 1016 if (TemplateKeywordLoc.isValid()) 1017 Builder.markChildToken(TemplateKeywordLoc, 1018 syntax::NodeRole::TemplateKeyword); 1019 } 1020 1021 auto *TheUnqualifiedId = new (allocator()) syntax::UnqualifiedId; 1022 Builder.foldNode(Builder.getRange(UnqualifiedIdLoc), TheUnqualifiedId, 1023 nullptr); 1024 Builder.markChild(TheUnqualifiedId, syntax::NodeRole::UnqualifiedId); 1025 1026 auto IdExpressionBeginLoc = 1027 QualifierLoc ? QualifierLoc.getBeginLoc() : UnqualifiedIdLoc.getBegin(); 1028 1029 auto *TheIdExpression = new (allocator()) syntax::IdExpression; 1030 Builder.foldNode( 1031 Builder.getRange(IdExpressionBeginLoc, UnqualifiedIdLoc.getEnd()), 1032 TheIdExpression, From); 1033 1034 return TheIdExpression; 1035 } 1036 1037 bool WalkUpFromMemberExpr(MemberExpr *S) { 1038 // For `MemberExpr` with implicit `this->` we generate a simple 1039 // `id-expression` syntax node, beacuse an implicit `member-expression` is 1040 // syntactically undistinguishable from an `id-expression` 1041 if (S->isImplicitAccess()) { 1042 buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(), 1043 SourceRange(S->getMemberLoc(), S->getEndLoc()), S); 1044 return true; 1045 } 1046 1047 auto *TheIdExpression = buildIdExpression( 1048 S->getQualifierLoc(), S->getTemplateKeywordLoc(), 1049 SourceRange(S->getMemberLoc(), S->getEndLoc()), nullptr); 1050 1051 Builder.markChild(TheIdExpression, syntax::NodeRole::Member); 1052 1053 Builder.markExprChild(S->getBase(), syntax::NodeRole::Object); 1054 Builder.markChildToken(S->getOperatorLoc(), syntax::NodeRole::AccessToken); 1055 1056 Builder.foldNode(Builder.getExprRange(S), 1057 new (allocator()) syntax::MemberExpression, S); 1058 return true; 1059 } 1060 1061 bool WalkUpFromDeclRefExpr(DeclRefExpr *S) { 1062 buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(), 1063 SourceRange(S->getLocation(), S->getEndLoc()), S); 1064 1065 return true; 1066 } 1067 1068 // Same logic as DeclRefExpr. 1069 bool WalkUpFromDependentScopeDeclRefExpr(DependentScopeDeclRefExpr *S) { 1070 buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(), 1071 SourceRange(S->getLocation(), S->getEndLoc()), S); 1072 1073 return true; 1074 } 1075 1076 bool WalkUpFromCXXThisExpr(CXXThisExpr *S) { 1077 if (!S->isImplicit()) { 1078 Builder.markChildToken(S->getLocation(), 1079 syntax::NodeRole::IntroducerKeyword); 1080 Builder.foldNode(Builder.getExprRange(S), 1081 new (allocator()) syntax::ThisExpression, S); 1082 } 1083 return true; 1084 } 1085 1086 bool WalkUpFromParenExpr(ParenExpr *S) { 1087 Builder.markChildToken(S->getLParen(), syntax::NodeRole::OpenParen); 1088 Builder.markExprChild(S->getSubExpr(), syntax::NodeRole::SubExpression); 1089 Builder.markChildToken(S->getRParen(), syntax::NodeRole::CloseParen); 1090 Builder.foldNode(Builder.getExprRange(S), 1091 new (allocator()) syntax::ParenExpression, S); 1092 return true; 1093 } 1094 1095 bool WalkUpFromIntegerLiteral(IntegerLiteral *S) { 1096 Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken); 1097 Builder.foldNode(Builder.getExprRange(S), 1098 new (allocator()) syntax::IntegerLiteralExpression, S); 1099 return true; 1100 } 1101 1102 bool WalkUpFromCharacterLiteral(CharacterLiteral *S) { 1103 Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken); 1104 Builder.foldNode(Builder.getExprRange(S), 1105 new (allocator()) syntax::CharacterLiteralExpression, S); 1106 return true; 1107 } 1108 1109 bool WalkUpFromFloatingLiteral(FloatingLiteral *S) { 1110 Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken); 1111 Builder.foldNode(Builder.getExprRange(S), 1112 new (allocator()) syntax::FloatingLiteralExpression, S); 1113 return true; 1114 } 1115 1116 bool WalkUpFromStringLiteral(StringLiteral *S) { 1117 Builder.markChildToken(S->getBeginLoc(), syntax::NodeRole::LiteralToken); 1118 Builder.foldNode(Builder.getExprRange(S), 1119 new (allocator()) syntax::StringLiteralExpression, S); 1120 return true; 1121 } 1122 1123 bool WalkUpFromCXXBoolLiteralExpr(CXXBoolLiteralExpr *S) { 1124 Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken); 1125 Builder.foldNode(Builder.getExprRange(S), 1126 new (allocator()) syntax::BoolLiteralExpression, S); 1127 return true; 1128 } 1129 1130 bool WalkUpFromCXXNullPtrLiteralExpr(CXXNullPtrLiteralExpr *S) { 1131 Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken); 1132 Builder.foldNode(Builder.getExprRange(S), 1133 new (allocator()) syntax::CxxNullPtrExpression, S); 1134 return true; 1135 } 1136 1137 bool WalkUpFromUnaryOperator(UnaryOperator *S) { 1138 Builder.markChildToken(S->getOperatorLoc(), 1139 syntax::NodeRole::OperatorToken); 1140 Builder.markExprChild(S->getSubExpr(), syntax::NodeRole::Operand); 1141 1142 if (S->isPostfix()) 1143 Builder.foldNode(Builder.getExprRange(S), 1144 new (allocator()) syntax::PostfixUnaryOperatorExpression, 1145 S); 1146 else 1147 Builder.foldNode(Builder.getExprRange(S), 1148 new (allocator()) syntax::PrefixUnaryOperatorExpression, 1149 S); 1150 1151 return true; 1152 } 1153 1154 bool WalkUpFromBinaryOperator(BinaryOperator *S) { 1155 Builder.markExprChild(S->getLHS(), syntax::NodeRole::LeftHandSide); 1156 Builder.markChildToken(S->getOperatorLoc(), 1157 syntax::NodeRole::OperatorToken); 1158 Builder.markExprChild(S->getRHS(), syntax::NodeRole::RightHandSide); 1159 Builder.foldNode(Builder.getExprRange(S), 1160 new (allocator()) syntax::BinaryOperatorExpression, S); 1161 return true; 1162 } 1163 1164 /// Builds `CallArguments` syntax node from arguments that appear in source 1165 /// code, i.e. not default arguments. 1166 syntax::CallArguments * 1167 buildCallArguments(CallExpr::arg_range ArgsAndDefaultArgs) { 1168 auto Args = dropDefaultArgs(ArgsAndDefaultArgs); 1169 for (auto *Arg : Args) { 1170 Builder.markExprChild(Arg, syntax::NodeRole::ListElement); 1171 const auto *DelimiterToken = 1172 std::next(Builder.findToken(Arg->getEndLoc())); 1173 if (DelimiterToken->kind() == clang::tok::TokenKind::comma) 1174 Builder.markChildToken(DelimiterToken, syntax::NodeRole::ListDelimiter); 1175 } 1176 1177 auto *Arguments = new (allocator()) syntax::CallArguments; 1178 if (!Args.empty()) 1179 Builder.foldNode(Builder.getRange((*Args.begin())->getBeginLoc(), 1180 (*(Args.end() - 1))->getEndLoc()), 1181 Arguments, nullptr); 1182 1183 return Arguments; 1184 } 1185 1186 bool WalkUpFromCallExpr(CallExpr *S) { 1187 Builder.markExprChild(S->getCallee(), syntax::NodeRole::Callee); 1188 1189 const auto *LParenToken = 1190 std::next(Builder.findToken(S->getCallee()->getEndLoc())); 1191 // FIXME: Assert that `LParenToken` is indeed a `l_paren` once we have fixed 1192 // the test on decltype desctructors. 1193 if (LParenToken->kind() == clang::tok::l_paren) 1194 Builder.markChildToken(LParenToken, syntax::NodeRole::OpenParen); 1195 1196 Builder.markChild(buildCallArguments(S->arguments()), 1197 syntax::NodeRole::Arguments); 1198 1199 Builder.markChildToken(S->getRParenLoc(), syntax::NodeRole::CloseParen); 1200 1201 Builder.foldNode(Builder.getRange(S->getSourceRange()), 1202 new (allocator()) syntax::CallExpression, S); 1203 return true; 1204 } 1205 1206 bool WalkUpFromCXXConstructExpr(CXXConstructExpr *S) { 1207 // Ignore the implicit calls to default constructors. 1208 if ((S->getNumArgs() == 0 || isa<CXXDefaultArgExpr>(S->getArg(0))) && 1209 S->getParenOrBraceRange().isInvalid()) 1210 return true; 1211 return RecursiveASTVisitor::WalkUpFromCXXConstructExpr(S); 1212 } 1213 1214 bool TraverseCXXOperatorCallExpr(CXXOperatorCallExpr *S) { 1215 // To construct a syntax tree of the same shape for calls to built-in and 1216 // user-defined operators, ignore the `DeclRefExpr` that refers to the 1217 // operator and treat it as a simple token. Do that by traversing 1218 // arguments instead of children. 1219 for (auto *child : S->arguments()) { 1220 // A postfix unary operator is declared as taking two operands. The 1221 // second operand is used to distinguish from its prefix counterpart. In 1222 // the semantic AST this "phantom" operand is represented as a 1223 // `IntegerLiteral` with invalid `SourceLocation`. We skip visiting this 1224 // operand because it does not correspond to anything written in source 1225 // code. 1226 if (child->getSourceRange().isInvalid()) { 1227 assert(getOperatorNodeKind(*S) == 1228 syntax::NodeKind::PostfixUnaryOperatorExpression); 1229 continue; 1230 } 1231 if (!TraverseStmt(child)) 1232 return false; 1233 } 1234 return WalkUpFromCXXOperatorCallExpr(S); 1235 } 1236 1237 bool WalkUpFromCXXOperatorCallExpr(CXXOperatorCallExpr *S) { 1238 switch (getOperatorNodeKind(*S)) { 1239 case syntax::NodeKind::BinaryOperatorExpression: 1240 Builder.markExprChild(S->getArg(0), syntax::NodeRole::LeftHandSide); 1241 Builder.markChildToken(S->getOperatorLoc(), 1242 syntax::NodeRole::OperatorToken); 1243 Builder.markExprChild(S->getArg(1), syntax::NodeRole::RightHandSide); 1244 Builder.foldNode(Builder.getExprRange(S), 1245 new (allocator()) syntax::BinaryOperatorExpression, S); 1246 return true; 1247 case syntax::NodeKind::PrefixUnaryOperatorExpression: 1248 Builder.markChildToken(S->getOperatorLoc(), 1249 syntax::NodeRole::OperatorToken); 1250 Builder.markExprChild(S->getArg(0), syntax::NodeRole::Operand); 1251 Builder.foldNode(Builder.getExprRange(S), 1252 new (allocator()) syntax::PrefixUnaryOperatorExpression, 1253 S); 1254 return true; 1255 case syntax::NodeKind::PostfixUnaryOperatorExpression: 1256 Builder.markChildToken(S->getOperatorLoc(), 1257 syntax::NodeRole::OperatorToken); 1258 Builder.markExprChild(S->getArg(0), syntax::NodeRole::Operand); 1259 Builder.foldNode(Builder.getExprRange(S), 1260 new (allocator()) syntax::PostfixUnaryOperatorExpression, 1261 S); 1262 return true; 1263 case syntax::NodeKind::CallExpression: { 1264 Builder.markExprChild(S->getArg(0), syntax::NodeRole::Callee); 1265 1266 const auto *LParenToken = 1267 std::next(Builder.findToken(S->getArg(0)->getEndLoc())); 1268 // FIXME: Assert that `LParenToken` is indeed a `l_paren` once we have 1269 // fixed the test on decltype desctructors. 1270 if (LParenToken->kind() == clang::tok::l_paren) 1271 Builder.markChildToken(LParenToken, syntax::NodeRole::OpenParen); 1272 1273 Builder.markChild(buildCallArguments(CallExpr::arg_range( 1274 S->arg_begin() + 1, S->arg_end())), 1275 syntax::NodeRole::Arguments); 1276 1277 Builder.markChildToken(S->getRParenLoc(), syntax::NodeRole::CloseParen); 1278 1279 Builder.foldNode(Builder.getRange(S->getSourceRange()), 1280 new (allocator()) syntax::CallExpression, S); 1281 return true; 1282 } 1283 case syntax::NodeKind::UnknownExpression: 1284 return WalkUpFromExpr(S); 1285 default: 1286 llvm_unreachable("getOperatorNodeKind() does not return this value"); 1287 } 1288 } 1289 1290 bool WalkUpFromCXXDefaultArgExpr(CXXDefaultArgExpr *S) { return true; } 1291 1292 bool WalkUpFromNamespaceDecl(NamespaceDecl *S) { 1293 auto Tokens = Builder.getDeclarationRange(S); 1294 if (Tokens.front().kind() == tok::coloncolon) { 1295 // Handle nested namespace definitions. Those start at '::' token, e.g. 1296 // namespace a^::b {} 1297 // FIXME: build corresponding nodes for the name of this namespace. 1298 return true; 1299 } 1300 Builder.foldNode(Tokens, new (allocator()) syntax::NamespaceDefinition, S); 1301 return true; 1302 } 1303 1304 // FIXME: Deleting the `TraverseParenTypeLoc` override doesn't change test 1305 // results. Find test coverage or remove it. 1306 bool TraverseParenTypeLoc(ParenTypeLoc L) { 1307 // We reverse order of traversal to get the proper syntax structure. 1308 if (!WalkUpFromParenTypeLoc(L)) 1309 return false; 1310 return TraverseTypeLoc(L.getInnerLoc()); 1311 } 1312 1313 bool WalkUpFromParenTypeLoc(ParenTypeLoc L) { 1314 Builder.markChildToken(L.getLParenLoc(), syntax::NodeRole::OpenParen); 1315 Builder.markChildToken(L.getRParenLoc(), syntax::NodeRole::CloseParen); 1316 Builder.foldNode(Builder.getRange(L.getLParenLoc(), L.getRParenLoc()), 1317 new (allocator()) syntax::ParenDeclarator, L); 1318 return true; 1319 } 1320 1321 // Declarator chunks, they are produced by type locs and some clang::Decls. 1322 bool WalkUpFromArrayTypeLoc(ArrayTypeLoc L) { 1323 Builder.markChildToken(L.getLBracketLoc(), syntax::NodeRole::OpenParen); 1324 Builder.markExprChild(L.getSizeExpr(), syntax::NodeRole::Size); 1325 Builder.markChildToken(L.getRBracketLoc(), syntax::NodeRole::CloseParen); 1326 Builder.foldNode(Builder.getRange(L.getLBracketLoc(), L.getRBracketLoc()), 1327 new (allocator()) syntax::ArraySubscript, L); 1328 return true; 1329 } 1330 1331 syntax::ParameterDeclarationList * 1332 buildParameterDeclarationList(ArrayRef<ParmVarDecl *> Params) { 1333 for (auto *P : Params) { 1334 Builder.markChild(P, syntax::NodeRole::ListElement); 1335 const auto *DelimiterToken = std::next(Builder.findToken(P->getEndLoc())); 1336 if (DelimiterToken->kind() == clang::tok::TokenKind::comma) 1337 Builder.markChildToken(DelimiterToken, syntax::NodeRole::ListDelimiter); 1338 } 1339 auto *Parameters = new (allocator()) syntax::ParameterDeclarationList; 1340 if (!Params.empty()) 1341 Builder.foldNode(Builder.getRange(Params.front()->getBeginLoc(), 1342 Params.back()->getEndLoc()), 1343 Parameters, nullptr); 1344 return Parameters; 1345 } 1346 1347 bool WalkUpFromFunctionTypeLoc(FunctionTypeLoc L) { 1348 Builder.markChildToken(L.getLParenLoc(), syntax::NodeRole::OpenParen); 1349 1350 Builder.markChild(buildParameterDeclarationList(L.getParams()), 1351 syntax::NodeRole::Parameters); 1352 1353 Builder.markChildToken(L.getRParenLoc(), syntax::NodeRole::CloseParen); 1354 Builder.foldNode(Builder.getRange(L.getLParenLoc(), L.getEndLoc()), 1355 new (allocator()) syntax::ParametersAndQualifiers, L); 1356 return true; 1357 } 1358 1359 bool WalkUpFromFunctionProtoTypeLoc(FunctionProtoTypeLoc L) { 1360 if (!L.getTypePtr()->hasTrailingReturn()) 1361 return WalkUpFromFunctionTypeLoc(L); 1362 1363 auto *TrailingReturnTokens = buildTrailingReturn(L); 1364 // Finish building the node for parameters. 1365 Builder.markChild(TrailingReturnTokens, syntax::NodeRole::TrailingReturn); 1366 return WalkUpFromFunctionTypeLoc(L); 1367 } 1368 1369 bool TraverseMemberPointerTypeLoc(MemberPointerTypeLoc L) { 1370 // In the source code "void (Y::*mp)()" `MemberPointerTypeLoc` corresponds 1371 // to "Y::*" but it points to a `ParenTypeLoc` that corresponds to 1372 // "(Y::*mp)" We thus reverse the order of traversal to get the proper 1373 // syntax structure. 1374 if (!WalkUpFromMemberPointerTypeLoc(L)) 1375 return false; 1376 return TraverseTypeLoc(L.getPointeeLoc()); 1377 } 1378 1379 bool WalkUpFromMemberPointerTypeLoc(MemberPointerTypeLoc L) { 1380 auto SR = L.getLocalSourceRange(); 1381 Builder.foldNode(Builder.getRange(SR), 1382 new (allocator()) syntax::MemberPointer, L); 1383 return true; 1384 } 1385 1386 // The code below is very regular, it could even be generated with some 1387 // preprocessor magic. We merely assign roles to the corresponding children 1388 // and fold resulting nodes. 1389 bool WalkUpFromDeclStmt(DeclStmt *S) { 1390 Builder.foldNode(Builder.getStmtRange(S), 1391 new (allocator()) syntax::DeclarationStatement, S); 1392 return true; 1393 } 1394 1395 bool WalkUpFromNullStmt(NullStmt *S) { 1396 Builder.foldNode(Builder.getStmtRange(S), 1397 new (allocator()) syntax::EmptyStatement, S); 1398 return true; 1399 } 1400 1401 bool WalkUpFromSwitchStmt(SwitchStmt *S) { 1402 Builder.markChildToken(S->getSwitchLoc(), 1403 syntax::NodeRole::IntroducerKeyword); 1404 Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement); 1405 Builder.foldNode(Builder.getStmtRange(S), 1406 new (allocator()) syntax::SwitchStatement, S); 1407 return true; 1408 } 1409 1410 bool WalkUpFromCaseStmt(CaseStmt *S) { 1411 Builder.markChildToken(S->getKeywordLoc(), 1412 syntax::NodeRole::IntroducerKeyword); 1413 Builder.markExprChild(S->getLHS(), syntax::NodeRole::CaseValue); 1414 Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement); 1415 Builder.foldNode(Builder.getStmtRange(S), 1416 new (allocator()) syntax::CaseStatement, S); 1417 return true; 1418 } 1419 1420 bool WalkUpFromDefaultStmt(DefaultStmt *S) { 1421 Builder.markChildToken(S->getKeywordLoc(), 1422 syntax::NodeRole::IntroducerKeyword); 1423 Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement); 1424 Builder.foldNode(Builder.getStmtRange(S), 1425 new (allocator()) syntax::DefaultStatement, S); 1426 return true; 1427 } 1428 1429 bool WalkUpFromIfStmt(IfStmt *S) { 1430 Builder.markChildToken(S->getIfLoc(), syntax::NodeRole::IntroducerKeyword); 1431 Builder.markStmtChild(S->getThen(), syntax::NodeRole::ThenStatement); 1432 Builder.markChildToken(S->getElseLoc(), syntax::NodeRole::ElseKeyword); 1433 Builder.markStmtChild(S->getElse(), syntax::NodeRole::ElseStatement); 1434 Builder.foldNode(Builder.getStmtRange(S), 1435 new (allocator()) syntax::IfStatement, S); 1436 return true; 1437 } 1438 1439 bool WalkUpFromForStmt(ForStmt *S) { 1440 Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword); 1441 Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement); 1442 Builder.foldNode(Builder.getStmtRange(S), 1443 new (allocator()) syntax::ForStatement, S); 1444 return true; 1445 } 1446 1447 bool WalkUpFromWhileStmt(WhileStmt *S) { 1448 Builder.markChildToken(S->getWhileLoc(), 1449 syntax::NodeRole::IntroducerKeyword); 1450 Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement); 1451 Builder.foldNode(Builder.getStmtRange(S), 1452 new (allocator()) syntax::WhileStatement, S); 1453 return true; 1454 } 1455 1456 bool WalkUpFromContinueStmt(ContinueStmt *S) { 1457 Builder.markChildToken(S->getContinueLoc(), 1458 syntax::NodeRole::IntroducerKeyword); 1459 Builder.foldNode(Builder.getStmtRange(S), 1460 new (allocator()) syntax::ContinueStatement, S); 1461 return true; 1462 } 1463 1464 bool WalkUpFromBreakStmt(BreakStmt *S) { 1465 Builder.markChildToken(S->getBreakLoc(), 1466 syntax::NodeRole::IntroducerKeyword); 1467 Builder.foldNode(Builder.getStmtRange(S), 1468 new (allocator()) syntax::BreakStatement, S); 1469 return true; 1470 } 1471 1472 bool WalkUpFromReturnStmt(ReturnStmt *S) { 1473 Builder.markChildToken(S->getReturnLoc(), 1474 syntax::NodeRole::IntroducerKeyword); 1475 Builder.markExprChild(S->getRetValue(), syntax::NodeRole::ReturnValue); 1476 Builder.foldNode(Builder.getStmtRange(S), 1477 new (allocator()) syntax::ReturnStatement, S); 1478 return true; 1479 } 1480 1481 bool WalkUpFromCXXForRangeStmt(CXXForRangeStmt *S) { 1482 Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword); 1483 Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement); 1484 Builder.foldNode(Builder.getStmtRange(S), 1485 new (allocator()) syntax::RangeBasedForStatement, S); 1486 return true; 1487 } 1488 1489 bool WalkUpFromEmptyDecl(EmptyDecl *S) { 1490 Builder.foldNode(Builder.getDeclarationRange(S), 1491 new (allocator()) syntax::EmptyDeclaration, S); 1492 return true; 1493 } 1494 1495 bool WalkUpFromStaticAssertDecl(StaticAssertDecl *S) { 1496 Builder.markExprChild(S->getAssertExpr(), syntax::NodeRole::Condition); 1497 Builder.markExprChild(S->getMessage(), syntax::NodeRole::Message); 1498 Builder.foldNode(Builder.getDeclarationRange(S), 1499 new (allocator()) syntax::StaticAssertDeclaration, S); 1500 return true; 1501 } 1502 1503 bool WalkUpFromLinkageSpecDecl(LinkageSpecDecl *S) { 1504 Builder.foldNode(Builder.getDeclarationRange(S), 1505 new (allocator()) syntax::LinkageSpecificationDeclaration, 1506 S); 1507 return true; 1508 } 1509 1510 bool WalkUpFromNamespaceAliasDecl(NamespaceAliasDecl *S) { 1511 Builder.foldNode(Builder.getDeclarationRange(S), 1512 new (allocator()) syntax::NamespaceAliasDefinition, S); 1513 return true; 1514 } 1515 1516 bool WalkUpFromUsingDirectiveDecl(UsingDirectiveDecl *S) { 1517 Builder.foldNode(Builder.getDeclarationRange(S), 1518 new (allocator()) syntax::UsingNamespaceDirective, S); 1519 return true; 1520 } 1521 1522 bool WalkUpFromUsingDecl(UsingDecl *S) { 1523 Builder.foldNode(Builder.getDeclarationRange(S), 1524 new (allocator()) syntax::UsingDeclaration, S); 1525 return true; 1526 } 1527 1528 bool WalkUpFromUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *S) { 1529 Builder.foldNode(Builder.getDeclarationRange(S), 1530 new (allocator()) syntax::UsingDeclaration, S); 1531 return true; 1532 } 1533 1534 bool WalkUpFromUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *S) { 1535 Builder.foldNode(Builder.getDeclarationRange(S), 1536 new (allocator()) syntax::UsingDeclaration, S); 1537 return true; 1538 } 1539 1540 bool WalkUpFromTypeAliasDecl(TypeAliasDecl *S) { 1541 Builder.foldNode(Builder.getDeclarationRange(S), 1542 new (allocator()) syntax::TypeAliasDeclaration, S); 1543 return true; 1544 } 1545 1546 private: 1547 /// Folds SimpleDeclarator node (if present) and in case this is the last 1548 /// declarator in the chain it also folds SimpleDeclaration node. 1549 template <class T> bool processDeclaratorAndDeclaration(T *D) { 1550 auto Range = getDeclaratorRange( 1551 Builder.sourceManager(), D->getTypeSourceInfo()->getTypeLoc(), 1552 getQualifiedNameStart(D), getInitializerRange(D)); 1553 1554 // There doesn't have to be a declarator (e.g. `void foo(int)` only has 1555 // declaration, but no declarator). 1556 if (!Range.getBegin().isValid()) { 1557 Builder.markChild(new (allocator()) syntax::DeclaratorList, 1558 syntax::NodeRole::Declarators); 1559 Builder.foldNode(Builder.getDeclarationRange(D), 1560 new (allocator()) syntax::SimpleDeclaration, D); 1561 return true; 1562 } 1563 1564 auto *N = new (allocator()) syntax::SimpleDeclarator; 1565 Builder.foldNode(Builder.getRange(Range), N, nullptr); 1566 Builder.markChild(N, syntax::NodeRole::ListElement); 1567 1568 if (!Builder.isResponsibleForCreatingDeclaration(D)) { 1569 // If this is not the last declarator in the declaration we expect a 1570 // delimiter after it. 1571 const auto *DelimiterToken = std::next(Builder.findToken(Range.getEnd())); 1572 if (DelimiterToken->kind() == clang::tok::TokenKind::comma) 1573 Builder.markChildToken(DelimiterToken, syntax::NodeRole::ListDelimiter); 1574 } else { 1575 auto *DL = new (allocator()) syntax::DeclaratorList; 1576 auto DeclarationRange = Builder.getDeclarationRange(D); 1577 Builder.foldList(DeclarationRange, DL, nullptr); 1578 1579 Builder.markChild(DL, syntax::NodeRole::Declarators); 1580 Builder.foldNode(DeclarationRange, 1581 new (allocator()) syntax::SimpleDeclaration, D); 1582 } 1583 return true; 1584 } 1585 1586 /// Returns the range of the built node. 1587 syntax::TrailingReturnType *buildTrailingReturn(FunctionProtoTypeLoc L) { 1588 assert(L.getTypePtr()->hasTrailingReturn()); 1589 1590 auto ReturnedType = L.getReturnLoc(); 1591 // Build node for the declarator, if any. 1592 auto ReturnDeclaratorRange = SourceRange(GetStartLoc().Visit(ReturnedType), 1593 ReturnedType.getEndLoc()); 1594 syntax::SimpleDeclarator *ReturnDeclarator = nullptr; 1595 if (ReturnDeclaratorRange.isValid()) { 1596 ReturnDeclarator = new (allocator()) syntax::SimpleDeclarator; 1597 Builder.foldNode(Builder.getRange(ReturnDeclaratorRange), 1598 ReturnDeclarator, nullptr); 1599 } 1600 1601 // Build node for trailing return type. 1602 auto Return = Builder.getRange(ReturnedType.getSourceRange()); 1603 const auto *Arrow = Return.begin() - 1; 1604 assert(Arrow->kind() == tok::arrow); 1605 auto Tokens = llvm::makeArrayRef(Arrow, Return.end()); 1606 Builder.markChildToken(Arrow, syntax::NodeRole::ArrowToken); 1607 if (ReturnDeclarator) 1608 Builder.markChild(ReturnDeclarator, syntax::NodeRole::Declarator); 1609 auto *R = new (allocator()) syntax::TrailingReturnType; 1610 Builder.foldNode(Tokens, R, L); 1611 return R; 1612 } 1613 1614 void foldExplicitTemplateInstantiation( 1615 ArrayRef<syntax::Token> Range, const syntax::Token *ExternKW, 1616 const syntax::Token *TemplateKW, 1617 syntax::SimpleDeclaration *InnerDeclaration, Decl *From) { 1618 assert(!ExternKW || ExternKW->kind() == tok::kw_extern); 1619 assert(TemplateKW && TemplateKW->kind() == tok::kw_template); 1620 Builder.markChildToken(ExternKW, syntax::NodeRole::ExternKeyword); 1621 Builder.markChildToken(TemplateKW, syntax::NodeRole::IntroducerKeyword); 1622 Builder.markChild(InnerDeclaration, syntax::NodeRole::Declaration); 1623 Builder.foldNode( 1624 Range, new (allocator()) syntax::ExplicitTemplateInstantiation, From); 1625 } 1626 1627 syntax::TemplateDeclaration *foldTemplateDeclaration( 1628 ArrayRef<syntax::Token> Range, const syntax::Token *TemplateKW, 1629 ArrayRef<syntax::Token> TemplatedDeclaration, Decl *From) { 1630 assert(TemplateKW && TemplateKW->kind() == tok::kw_template); 1631 Builder.markChildToken(TemplateKW, syntax::NodeRole::IntroducerKeyword); 1632 1633 auto *N = new (allocator()) syntax::TemplateDeclaration; 1634 Builder.foldNode(Range, N, From); 1635 Builder.markChild(N, syntax::NodeRole::Declaration); 1636 return N; 1637 } 1638 1639 /// A small helper to save some typing. 1640 llvm::BumpPtrAllocator &allocator() { return Builder.allocator(); } 1641 1642 syntax::TreeBuilder &Builder; 1643 const ASTContext &Context; 1644 }; 1645 } // namespace 1646 1647 void syntax::TreeBuilder::noticeDeclWithoutSemicolon(Decl *D) { 1648 DeclsWithoutSemicolons.insert(D); 1649 } 1650 1651 void syntax::TreeBuilder::markChildToken(SourceLocation Loc, NodeRole Role) { 1652 if (Loc.isInvalid()) 1653 return; 1654 Pending.assignRole(*findToken(Loc), Role); 1655 } 1656 1657 void syntax::TreeBuilder::markChildToken(const syntax::Token *T, NodeRole R) { 1658 if (!T) 1659 return; 1660 Pending.assignRole(*T, R); 1661 } 1662 1663 void syntax::TreeBuilder::markChild(syntax::Node *N, NodeRole R) { 1664 assert(N); 1665 setRole(N, R); 1666 } 1667 1668 void syntax::TreeBuilder::markChild(ASTPtr N, NodeRole R) { 1669 auto *SN = Mapping.find(N); 1670 assert(SN != nullptr); 1671 setRole(SN, R); 1672 } 1673 void syntax::TreeBuilder::markChild(NestedNameSpecifierLoc NNSLoc, NodeRole R) { 1674 auto *SN = Mapping.find(NNSLoc); 1675 assert(SN != nullptr); 1676 setRole(SN, R); 1677 } 1678 1679 void syntax::TreeBuilder::markStmtChild(Stmt *Child, NodeRole Role) { 1680 if (!Child) 1681 return; 1682 1683 syntax::Tree *ChildNode; 1684 if (Expr *ChildExpr = dyn_cast<Expr>(Child)) { 1685 // This is an expression in a statement position, consume the trailing 1686 // semicolon and form an 'ExpressionStatement' node. 1687 markExprChild(ChildExpr, NodeRole::Expression); 1688 ChildNode = new (allocator()) syntax::ExpressionStatement; 1689 // (!) 'getStmtRange()' ensures this covers a trailing semicolon. 1690 Pending.foldChildren(Arena, getStmtRange(Child), ChildNode); 1691 } else { 1692 ChildNode = Mapping.find(Child); 1693 } 1694 assert(ChildNode != nullptr); 1695 setRole(ChildNode, Role); 1696 } 1697 1698 void syntax::TreeBuilder::markExprChild(Expr *Child, NodeRole Role) { 1699 if (!Child) 1700 return; 1701 Child = IgnoreImplicit(Child); 1702 1703 syntax::Tree *ChildNode = Mapping.find(Child); 1704 assert(ChildNode != nullptr); 1705 setRole(ChildNode, Role); 1706 } 1707 1708 const syntax::Token *syntax::TreeBuilder::findToken(SourceLocation L) const { 1709 if (L.isInvalid()) 1710 return nullptr; 1711 auto It = LocationToToken.find(L.getRawEncoding()); 1712 assert(It != LocationToToken.end()); 1713 return It->second; 1714 } 1715 1716 syntax::TranslationUnit * 1717 syntax::buildSyntaxTree(Arena &A, const TranslationUnitDecl &TU) { 1718 TreeBuilder Builder(A); 1719 BuildTreeVisitor(TU.getASTContext(), Builder).TraverseAST(TU.getASTContext()); 1720 return std::move(Builder).finalize(); 1721 } 1722