xref: /llvm-project/clang/lib/StaticAnalyzer/Core/Store.cpp (revision a1580d7b59b65b17f2ce7fdb95f46379e7df4089)
1 //===- Store.cpp - Interface for maps from Locations to Values ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defined the types Store and StoreManager.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/CXXInheritance.h"
16 #include "clang/AST/CharUnits.h"
17 #include "clang/AST/Decl.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/Type.h"
22 #include "clang/Basic/LLVM.h"
23 #include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h"
24 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
25 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
26 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
27 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
28 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
29 #include "clang/StaticAnalyzer/Core/PathSensitive/StoreRef.h"
30 #include "clang/StaticAnalyzer/Core/PathSensitive/SymExpr.h"
31 #include "llvm/ADT/APSInt.h"
32 #include "llvm/ADT/Optional.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include <cassert>
37 #include <cstdint>
38 #include <optional>
39 
40 using namespace clang;
41 using namespace ento;
42 
43 StoreManager::StoreManager(ProgramStateManager &stateMgr)
44     : svalBuilder(stateMgr.getSValBuilder()), StateMgr(stateMgr),
45       MRMgr(svalBuilder.getRegionManager()), Ctx(stateMgr.getContext()) {}
46 
47 StoreRef StoreManager::enterStackFrame(Store OldStore,
48                                        const CallEvent &Call,
49                                        const StackFrameContext *LCtx) {
50   StoreRef Store = StoreRef(OldStore, *this);
51 
52   SmallVector<CallEvent::FrameBindingTy, 16> InitialBindings;
53   Call.getInitialStackFrameContents(LCtx, InitialBindings);
54 
55   for (const auto &I : InitialBindings)
56     Store = Bind(Store.getStore(), I.first.castAs<Loc>(), I.second);
57 
58   return Store;
59 }
60 
61 const ElementRegion *StoreManager::MakeElementRegion(const SubRegion *Base,
62                                                      QualType EleTy,
63                                                      uint64_t index) {
64   NonLoc idx = svalBuilder.makeArrayIndex(index);
65   return MRMgr.getElementRegion(EleTy, idx, Base, svalBuilder.getContext());
66 }
67 
68 const ElementRegion *StoreManager::GetElementZeroRegion(const SubRegion *R,
69                                                         QualType T) {
70   NonLoc idx = svalBuilder.makeZeroArrayIndex();
71   assert(!T.isNull());
72   return MRMgr.getElementRegion(T, idx, R, Ctx);
73 }
74 
75 Optional<const MemRegion *> StoreManager::castRegion(const MemRegion *R,
76                                                      QualType CastToTy) {
77   ASTContext &Ctx = StateMgr.getContext();
78 
79   // Handle casts to Objective-C objects.
80   if (CastToTy->isObjCObjectPointerType())
81     return R->StripCasts();
82 
83   if (CastToTy->isBlockPointerType()) {
84     // FIXME: We may need different solutions, depending on the symbol
85     // involved.  Blocks can be casted to/from 'id', as they can be treated
86     // as Objective-C objects.  This could possibly be handled by enhancing
87     // our reasoning of downcasts of symbolic objects.
88     if (isa<CodeTextRegion, SymbolicRegion>(R))
89       return R;
90 
91     // We don't know what to make of it.  Return a NULL region, which
92     // will be interpreted as UnknownVal.
93     return std::nullopt;
94   }
95 
96   // Now assume we are casting from pointer to pointer. Other cases should
97   // already be handled.
98   QualType PointeeTy = CastToTy->getPointeeType();
99   QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
100   CanonPointeeTy = CanonPointeeTy.getLocalUnqualifiedType();
101 
102   // Handle casts to void*.  We just pass the region through.
103   if (CanonPointeeTy == Ctx.VoidTy)
104     return R;
105 
106   const auto IsSameRegionType = [&Ctx](const MemRegion *R, QualType OtherTy) {
107     if (const auto *TR = dyn_cast<TypedValueRegion>(R)) {
108       QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
109       if (OtherTy == ObjTy.getLocalUnqualifiedType())
110         return true;
111     }
112     return false;
113   };
114 
115   // Handle casts from compatible types.
116   if (R->isBoundable() && IsSameRegionType(R, CanonPointeeTy))
117     return R;
118 
119   // Process region cast according to the kind of the region being cast.
120   switch (R->getKind()) {
121     case MemRegion::CXXThisRegionKind:
122     case MemRegion::CodeSpaceRegionKind:
123     case MemRegion::StackLocalsSpaceRegionKind:
124     case MemRegion::StackArgumentsSpaceRegionKind:
125     case MemRegion::HeapSpaceRegionKind:
126     case MemRegion::UnknownSpaceRegionKind:
127     case MemRegion::StaticGlobalSpaceRegionKind:
128     case MemRegion::GlobalInternalSpaceRegionKind:
129     case MemRegion::GlobalSystemSpaceRegionKind:
130     case MemRegion::GlobalImmutableSpaceRegionKind: {
131       llvm_unreachable("Invalid region cast");
132     }
133 
134     case MemRegion::FunctionCodeRegionKind:
135     case MemRegion::BlockCodeRegionKind:
136     case MemRegion::BlockDataRegionKind:
137     case MemRegion::StringRegionKind:
138       // FIXME: Need to handle arbitrary downcasts.
139     case MemRegion::SymbolicRegionKind:
140     case MemRegion::AllocaRegionKind:
141     case MemRegion::CompoundLiteralRegionKind:
142     case MemRegion::FieldRegionKind:
143     case MemRegion::ObjCIvarRegionKind:
144     case MemRegion::ObjCStringRegionKind:
145     case MemRegion::NonParamVarRegionKind:
146     case MemRegion::ParamVarRegionKind:
147     case MemRegion::CXXTempObjectRegionKind:
148     case MemRegion::CXXBaseObjectRegionKind:
149     case MemRegion::CXXDerivedObjectRegionKind:
150       return MakeElementRegion(cast<SubRegion>(R), PointeeTy);
151 
152     case MemRegion::ElementRegionKind: {
153       // If we are casting from an ElementRegion to another type, the
154       // algorithm is as follows:
155       //
156       // (1) Compute the "raw offset" of the ElementRegion from the
157       //     base region.  This is done by calling 'getAsRawOffset()'.
158       //
159       // (2a) If we get a 'RegionRawOffset' after calling
160       //      'getAsRawOffset()', determine if the absolute offset
161       //      can be exactly divided into chunks of the size of the
162       //      casted-pointee type.  If so, create a new ElementRegion with
163       //      the pointee-cast type as the new ElementType and the index
164       //      being the offset divded by the chunk size.  If not, create
165       //      a new ElementRegion at offset 0 off the raw offset region.
166       //
167       // (2b) If we don't a get a 'RegionRawOffset' after calling
168       //      'getAsRawOffset()', it means that we are at offset 0.
169       //
170       // FIXME: Handle symbolic raw offsets.
171 
172       const ElementRegion *elementR = cast<ElementRegion>(R);
173       const RegionRawOffset &rawOff = elementR->getAsArrayOffset();
174       const MemRegion *baseR = rawOff.getRegion();
175 
176       // If we cannot compute a raw offset, throw up our hands and return
177       // a NULL MemRegion*.
178       if (!baseR)
179         return std::nullopt;
180 
181       CharUnits off = rawOff.getOffset();
182 
183       if (off.isZero()) {
184         // Edge case: we are at 0 bytes off the beginning of baseR. We check to
185         // see if the type we are casting to is the same as the type of the base
186         // region. If so, just return the base region.
187         if (IsSameRegionType(baseR, CanonPointeeTy))
188           return baseR;
189         // Otherwise, create a new ElementRegion at offset 0.
190         return MakeElementRegion(cast<SubRegion>(baseR), PointeeTy);
191       }
192 
193       // We have a non-zero offset from the base region.  We want to determine
194       // if the offset can be evenly divided by sizeof(PointeeTy).  If so,
195       // we create an ElementRegion whose index is that value.  Otherwise, we
196       // create two ElementRegions, one that reflects a raw offset and the other
197       // that reflects the cast.
198 
199       // Compute the index for the new ElementRegion.
200       int64_t newIndex = 0;
201       const MemRegion *newSuperR = nullptr;
202 
203       // We can only compute sizeof(PointeeTy) if it is a complete type.
204       if (!PointeeTy->isIncompleteType()) {
205         // Compute the size in **bytes**.
206         CharUnits pointeeTySize = Ctx.getTypeSizeInChars(PointeeTy);
207         if (!pointeeTySize.isZero()) {
208           // Is the offset a multiple of the size?  If so, we can layer the
209           // ElementRegion (with elementType == PointeeTy) directly on top of
210           // the base region.
211           if (off % pointeeTySize == 0) {
212             newIndex = off / pointeeTySize;
213             newSuperR = baseR;
214           }
215         }
216       }
217 
218       if (!newSuperR) {
219         // Create an intermediate ElementRegion to represent the raw byte.
220         // This will be the super region of the final ElementRegion.
221         newSuperR = MakeElementRegion(cast<SubRegion>(baseR), Ctx.CharTy,
222                                       off.getQuantity());
223       }
224 
225       return MakeElementRegion(cast<SubRegion>(newSuperR), PointeeTy, newIndex);
226     }
227   }
228 
229   llvm_unreachable("unreachable");
230 }
231 
232 static bool regionMatchesCXXRecordType(SVal V, QualType Ty) {
233   const MemRegion *MR = V.getAsRegion();
234   if (!MR)
235     return true;
236 
237   const auto *TVR = dyn_cast<TypedValueRegion>(MR);
238   if (!TVR)
239     return true;
240 
241   const CXXRecordDecl *RD = TVR->getValueType()->getAsCXXRecordDecl();
242   if (!RD)
243     return true;
244 
245   const CXXRecordDecl *Expected = Ty->getPointeeCXXRecordDecl();
246   if (!Expected)
247     Expected = Ty->getAsCXXRecordDecl();
248 
249   return Expected->getCanonicalDecl() == RD->getCanonicalDecl();
250 }
251 
252 SVal StoreManager::evalDerivedToBase(SVal Derived, const CastExpr *Cast) {
253   // Early return to avoid doing the wrong thing in the face of
254   // reinterpret_cast.
255   if (!regionMatchesCXXRecordType(Derived, Cast->getSubExpr()->getType()))
256     return UnknownVal();
257 
258   // Walk through the cast path to create nested CXXBaseRegions.
259   SVal Result = Derived;
260   for (CastExpr::path_const_iterator I = Cast->path_begin(),
261                                      E = Cast->path_end();
262        I != E; ++I) {
263     Result = evalDerivedToBase(Result, (*I)->getType(), (*I)->isVirtual());
264   }
265   return Result;
266 }
267 
268 SVal StoreManager::evalDerivedToBase(SVal Derived, const CXXBasePath &Path) {
269   // Walk through the path to create nested CXXBaseRegions.
270   SVal Result = Derived;
271   for (const auto &I : Path)
272     Result = evalDerivedToBase(Result, I.Base->getType(),
273                                I.Base->isVirtual());
274   return Result;
275 }
276 
277 SVal StoreManager::evalDerivedToBase(SVal Derived, QualType BaseType,
278                                      bool IsVirtual) {
279   const MemRegion *DerivedReg = Derived.getAsRegion();
280   if (!DerivedReg)
281     return Derived;
282 
283   const CXXRecordDecl *BaseDecl = BaseType->getPointeeCXXRecordDecl();
284   if (!BaseDecl)
285     BaseDecl = BaseType->getAsCXXRecordDecl();
286   assert(BaseDecl && "not a C++ object?");
287 
288   if (const auto *AlreadyDerivedReg =
289           dyn_cast<CXXDerivedObjectRegion>(DerivedReg)) {
290     if (const auto *SR =
291             dyn_cast<SymbolicRegion>(AlreadyDerivedReg->getSuperRegion()))
292       if (SR->getSymbol()->getType()->getPointeeCXXRecordDecl() == BaseDecl)
293         return loc::MemRegionVal(SR);
294 
295     DerivedReg = AlreadyDerivedReg->getSuperRegion();
296   }
297 
298   const MemRegion *BaseReg = MRMgr.getCXXBaseObjectRegion(
299       BaseDecl, cast<SubRegion>(DerivedReg), IsVirtual);
300 
301   return loc::MemRegionVal(BaseReg);
302 }
303 
304 /// Returns the static type of the given region, if it represents a C++ class
305 /// object.
306 ///
307 /// This handles both fully-typed regions, where the dynamic type is known, and
308 /// symbolic regions, where the dynamic type is merely bounded (and even then,
309 /// only ostensibly!), but does not take advantage of any dynamic type info.
310 static const CXXRecordDecl *getCXXRecordType(const MemRegion *MR) {
311   if (const auto *TVR = dyn_cast<TypedValueRegion>(MR))
312     return TVR->getValueType()->getAsCXXRecordDecl();
313   if (const auto *SR = dyn_cast<SymbolicRegion>(MR))
314     return SR->getSymbol()->getType()->getPointeeCXXRecordDecl();
315   return nullptr;
316 }
317 
318 Optional<SVal> StoreManager::evalBaseToDerived(SVal Base, QualType TargetType) {
319   const MemRegion *MR = Base.getAsRegion();
320   if (!MR)
321     return UnknownVal();
322 
323   // Assume the derived class is a pointer or a reference to a CXX record.
324   TargetType = TargetType->getPointeeType();
325   assert(!TargetType.isNull());
326   const CXXRecordDecl *TargetClass = TargetType->getAsCXXRecordDecl();
327   if (!TargetClass && !TargetType->isVoidType())
328     return UnknownVal();
329 
330   // Drill down the CXXBaseObject chains, which represent upcasts (casts from
331   // derived to base).
332   while (const CXXRecordDecl *MRClass = getCXXRecordType(MR)) {
333     // If found the derived class, the cast succeeds.
334     if (MRClass == TargetClass)
335       return loc::MemRegionVal(MR);
336 
337     // We skip over incomplete types. They must be the result of an earlier
338     // reinterpret_cast, as one can only dynamic_cast between types in the same
339     // class hierarchy.
340     if (!TargetType->isVoidType() && MRClass->hasDefinition()) {
341       // Static upcasts are marked as DerivedToBase casts by Sema, so this will
342       // only happen when multiple or virtual inheritance is involved.
343       CXXBasePaths Paths(/*FindAmbiguities=*/false, /*RecordPaths=*/true,
344                          /*DetectVirtual=*/false);
345       if (MRClass->isDerivedFrom(TargetClass, Paths))
346         return evalDerivedToBase(loc::MemRegionVal(MR), Paths.front());
347     }
348 
349     if (const auto *BaseR = dyn_cast<CXXBaseObjectRegion>(MR)) {
350       // Drill down the chain to get the derived classes.
351       MR = BaseR->getSuperRegion();
352       continue;
353     }
354 
355     // If this is a cast to void*, return the region.
356     if (TargetType->isVoidType())
357       return loc::MemRegionVal(MR);
358 
359     // Strange use of reinterpret_cast can give us paths we don't reason
360     // about well, by putting in ElementRegions where we'd expect
361     // CXXBaseObjectRegions. If it's a valid reinterpret_cast (i.e. if the
362     // derived class has a zero offset from the base class), then it's safe
363     // to strip the cast; if it's invalid, -Wreinterpret-base-class should
364     // catch it. In the interest of performance, the analyzer will silently
365     // do the wrong thing in the invalid case (because offsets for subregions
366     // will be wrong).
367     const MemRegion *Uncasted = MR->StripCasts(/*IncludeBaseCasts=*/false);
368     if (Uncasted == MR) {
369       // We reached the bottom of the hierarchy and did not find the derived
370       // class. We must be casting the base to derived, so the cast should
371       // fail.
372       break;
373     }
374 
375     MR = Uncasted;
376   }
377 
378   // If we're casting a symbolic base pointer to a derived class, use
379   // CXXDerivedObjectRegion to represent the cast. If it's a pointer to an
380   // unrelated type, it must be a weird reinterpret_cast and we have to
381   // be fine with ElementRegion. TODO: Should we instead make
382   // Derived{TargetClass, Element{SourceClass, SR}}?
383   if (const auto *SR = dyn_cast<SymbolicRegion>(MR)) {
384     QualType T = SR->getSymbol()->getType();
385     const CXXRecordDecl *SourceClass = T->getPointeeCXXRecordDecl();
386     if (TargetClass && SourceClass && TargetClass->isDerivedFrom(SourceClass))
387       return loc::MemRegionVal(
388           MRMgr.getCXXDerivedObjectRegion(TargetClass, SR));
389     return loc::MemRegionVal(GetElementZeroRegion(SR, TargetType));
390   }
391 
392   // We failed if the region we ended up with has perfect type info.
393   if (isa<TypedValueRegion>(MR))
394     return std::nullopt;
395 
396   return UnknownVal();
397 }
398 
399 SVal StoreManager::getLValueFieldOrIvar(const Decl *D, SVal Base) {
400   if (Base.isUnknownOrUndef())
401     return Base;
402 
403   Loc BaseL = Base.castAs<Loc>();
404   const SubRegion* BaseR = nullptr;
405 
406   switch (BaseL.getSubKind()) {
407   case loc::MemRegionValKind:
408     BaseR = cast<SubRegion>(BaseL.castAs<loc::MemRegionVal>().getRegion());
409     break;
410 
411   case loc::GotoLabelKind:
412     // These are anormal cases. Flag an undefined value.
413     return UndefinedVal();
414 
415   case loc::ConcreteIntKind:
416     // While these seem funny, this can happen through casts.
417     // FIXME: What we should return is the field offset, not base. For example,
418     //  add the field offset to the integer value.  That way things
419     //  like this work properly:  &(((struct foo *) 0xa)->f)
420     //  However, that's not easy to fix without reducing our abilities
421     //  to catch null pointer dereference. Eg., ((struct foo *)0x0)->f = 7
422     //  is a null dereference even though we're dereferencing offset of f
423     //  rather than null. Coming up with an approach that computes offsets
424     //  over null pointers properly while still being able to catch null
425     //  dereferences might be worth it.
426     return Base;
427 
428   default:
429     llvm_unreachable("Unhandled Base.");
430   }
431 
432   // NOTE: We must have this check first because ObjCIvarDecl is a subclass
433   // of FieldDecl.
434   if (const auto *ID = dyn_cast<ObjCIvarDecl>(D))
435     return loc::MemRegionVal(MRMgr.getObjCIvarRegion(ID, BaseR));
436 
437   return loc::MemRegionVal(MRMgr.getFieldRegion(cast<FieldDecl>(D), BaseR));
438 }
439 
440 SVal StoreManager::getLValueIvar(const ObjCIvarDecl *decl, SVal base) {
441   return getLValueFieldOrIvar(decl, base);
442 }
443 
444 SVal StoreManager::getLValueElement(QualType elementType, NonLoc Offset,
445                                     SVal Base) {
446 
447   // Special case, if index is 0, return the same type as if
448   // this was not an array dereference.
449   if (Offset.isZeroConstant()) {
450     QualType BT = Base.getType(this->Ctx);
451     if (!BT.isNull() && !elementType.isNull()) {
452       QualType PointeeTy = BT->getPointeeType();
453       if (!PointeeTy.isNull() &&
454           PointeeTy.getCanonicalType() == elementType.getCanonicalType())
455         return Base;
456     }
457   }
458 
459   // If the base is an unknown or undefined value, just return it back.
460   // FIXME: For absolute pointer addresses, we just return that value back as
461   //  well, although in reality we should return the offset added to that
462   //  value. See also the similar FIXME in getLValueFieldOrIvar().
463   if (Base.isUnknownOrUndef() || isa<loc::ConcreteInt>(Base))
464     return Base;
465 
466   if (isa<loc::GotoLabel>(Base))
467     return UnknownVal();
468 
469   const SubRegion *BaseRegion =
470       Base.castAs<loc::MemRegionVal>().getRegionAs<SubRegion>();
471 
472   // Pointer of any type can be cast and used as array base.
473   const auto *ElemR = dyn_cast<ElementRegion>(BaseRegion);
474 
475   // Convert the offset to the appropriate size and signedness.
476   Offset = svalBuilder.convertToArrayIndex(Offset).castAs<NonLoc>();
477 
478   if (!ElemR) {
479     // If the base region is not an ElementRegion, create one.
480     // This can happen in the following example:
481     //
482     //   char *p = __builtin_alloc(10);
483     //   p[1] = 8;
484     //
485     //  Observe that 'p' binds to an AllocaRegion.
486     return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset,
487                                                     BaseRegion, Ctx));
488   }
489 
490   SVal BaseIdx = ElemR->getIndex();
491 
492   if (!isa<nonloc::ConcreteInt>(BaseIdx))
493     return UnknownVal();
494 
495   const llvm::APSInt &BaseIdxI =
496       BaseIdx.castAs<nonloc::ConcreteInt>().getValue();
497 
498   // Only allow non-integer offsets if the base region has no offset itself.
499   // FIXME: This is a somewhat arbitrary restriction. We should be using
500   // SValBuilder here to add the two offsets without checking their types.
501   if (!isa<nonloc::ConcreteInt>(Offset)) {
502     if (isa<ElementRegion>(BaseRegion->StripCasts()))
503       return UnknownVal();
504 
505     return loc::MemRegionVal(MRMgr.getElementRegion(
506         elementType, Offset, cast<SubRegion>(ElemR->getSuperRegion()), Ctx));
507   }
508 
509   const llvm::APSInt& OffI = Offset.castAs<nonloc::ConcreteInt>().getValue();
510   assert(BaseIdxI.isSigned());
511 
512   // Compute the new index.
513   nonloc::ConcreteInt NewIdx(svalBuilder.getBasicValueFactory().getValue(BaseIdxI +
514                                                                     OffI));
515 
516   // Construct the new ElementRegion.
517   const SubRegion *ArrayR = cast<SubRegion>(ElemR->getSuperRegion());
518   return loc::MemRegionVal(MRMgr.getElementRegion(elementType, NewIdx, ArrayR,
519                                                   Ctx));
520 }
521 
522 StoreManager::BindingsHandler::~BindingsHandler() = default;
523 
524 bool StoreManager::FindUniqueBinding::HandleBinding(StoreManager& SMgr,
525                                                     Store store,
526                                                     const MemRegion* R,
527                                                     SVal val) {
528   SymbolRef SymV = val.getAsLocSymbol();
529   if (!SymV || SymV != Sym)
530     return true;
531 
532   if (Binding) {
533     First = false;
534     return false;
535   }
536   else
537     Binding = R;
538 
539   return true;
540 }
541