1 //== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines a basic region store model. In this model, we do have field 10 // sensitivity. But we assume nothing about the heap shape. So recursive data 11 // structures are largely ignored. Basically we do 1-limiting analysis. 12 // Parameter pointers are assumed with no aliasing. Pointee objects of 13 // parameters are created lazily. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "clang/AST/Attr.h" 18 #include "clang/AST/CharUnits.h" 19 #include "clang/ASTMatchers/ASTMatchFinder.h" 20 #include "clang/Analysis/Analyses/LiveVariables.h" 21 #include "clang/Analysis/AnalysisDeclContext.h" 22 #include "clang/Basic/JsonSupport.h" 23 #include "clang/Basic/TargetInfo.h" 24 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h" 25 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 26 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" 27 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h" 28 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 29 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 30 #include "llvm/ADT/ImmutableMap.h" 31 #include "llvm/ADT/Optional.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include <optional> 34 #include <utility> 35 36 using namespace clang; 37 using namespace ento; 38 39 //===----------------------------------------------------------------------===// 40 // Representation of binding keys. 41 //===----------------------------------------------------------------------===// 42 43 namespace { 44 class BindingKey { 45 public: 46 enum Kind { Default = 0x0, Direct = 0x1 }; 47 private: 48 enum { Symbolic = 0x2 }; 49 50 llvm::PointerIntPair<const MemRegion *, 2> P; 51 uint64_t Data; 52 53 /// Create a key for a binding to region \p r, which has a symbolic offset 54 /// from region \p Base. 55 explicit BindingKey(const SubRegion *r, const SubRegion *Base, Kind k) 56 : P(r, k | Symbolic), Data(reinterpret_cast<uintptr_t>(Base)) { 57 assert(r && Base && "Must have known regions."); 58 assert(getConcreteOffsetRegion() == Base && "Failed to store base region"); 59 } 60 61 /// Create a key for a binding at \p offset from base region \p r. 62 explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k) 63 : P(r, k), Data(offset) { 64 assert(r && "Must have known regions."); 65 assert(getOffset() == offset && "Failed to store offset"); 66 assert((r == r->getBaseRegion() || 67 isa<ObjCIvarRegion, CXXDerivedObjectRegion>(r)) && 68 "Not a base"); 69 } 70 public: 71 72 bool isDirect() const { return P.getInt() & Direct; } 73 bool hasSymbolicOffset() const { return P.getInt() & Symbolic; } 74 75 const MemRegion *getRegion() const { return P.getPointer(); } 76 uint64_t getOffset() const { 77 assert(!hasSymbolicOffset()); 78 return Data; 79 } 80 81 const SubRegion *getConcreteOffsetRegion() const { 82 assert(hasSymbolicOffset()); 83 return reinterpret_cast<const SubRegion *>(static_cast<uintptr_t>(Data)); 84 } 85 86 const MemRegion *getBaseRegion() const { 87 if (hasSymbolicOffset()) 88 return getConcreteOffsetRegion()->getBaseRegion(); 89 return getRegion()->getBaseRegion(); 90 } 91 92 void Profile(llvm::FoldingSetNodeID& ID) const { 93 ID.AddPointer(P.getOpaqueValue()); 94 ID.AddInteger(Data); 95 } 96 97 static BindingKey Make(const MemRegion *R, Kind k); 98 99 bool operator<(const BindingKey &X) const { 100 if (P.getOpaqueValue() < X.P.getOpaqueValue()) 101 return true; 102 if (P.getOpaqueValue() > X.P.getOpaqueValue()) 103 return false; 104 return Data < X.Data; 105 } 106 107 bool operator==(const BindingKey &X) const { 108 return P.getOpaqueValue() == X.P.getOpaqueValue() && 109 Data == X.Data; 110 } 111 112 LLVM_DUMP_METHOD void dump() const; 113 }; 114 } // end anonymous namespace 115 116 BindingKey BindingKey::Make(const MemRegion *R, Kind k) { 117 const RegionOffset &RO = R->getAsOffset(); 118 if (RO.hasSymbolicOffset()) 119 return BindingKey(cast<SubRegion>(R), cast<SubRegion>(RO.getRegion()), k); 120 121 return BindingKey(RO.getRegion(), RO.getOffset(), k); 122 } 123 124 namespace llvm { 125 static inline raw_ostream &operator<<(raw_ostream &Out, BindingKey K) { 126 Out << "\"kind\": \"" << (K.isDirect() ? "Direct" : "Default") 127 << "\", \"offset\": "; 128 129 if (!K.hasSymbolicOffset()) 130 Out << K.getOffset(); 131 else 132 Out << "null"; 133 134 return Out; 135 } 136 137 } // namespace llvm 138 139 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 140 void BindingKey::dump() const { llvm::errs() << *this; } 141 #endif 142 143 //===----------------------------------------------------------------------===// 144 // Actual Store type. 145 //===----------------------------------------------------------------------===// 146 147 typedef llvm::ImmutableMap<BindingKey, SVal> ClusterBindings; 148 typedef llvm::ImmutableMapRef<BindingKey, SVal> ClusterBindingsRef; 149 typedef std::pair<BindingKey, SVal> BindingPair; 150 151 typedef llvm::ImmutableMap<const MemRegion *, ClusterBindings> 152 RegionBindings; 153 154 namespace { 155 class RegionBindingsRef : public llvm::ImmutableMapRef<const MemRegion *, 156 ClusterBindings> { 157 ClusterBindings::Factory *CBFactory; 158 159 // This flag indicates whether the current bindings are within the analysis 160 // that has started from main(). It affects how we perform loads from 161 // global variables that have initializers: if we have observed the 162 // program execution from the start and we know that these variables 163 // have not been overwritten yet, we can be sure that their initializers 164 // are still relevant. This flag never gets changed when the bindings are 165 // updated, so it could potentially be moved into RegionStoreManager 166 // (as if it's the same bindings but a different loading procedure) 167 // however that would have made the manager needlessly stateful. 168 bool IsMainAnalysis; 169 170 public: 171 typedef llvm::ImmutableMapRef<const MemRegion *, ClusterBindings> 172 ParentTy; 173 174 RegionBindingsRef(ClusterBindings::Factory &CBFactory, 175 const RegionBindings::TreeTy *T, 176 RegionBindings::TreeTy::Factory *F, 177 bool IsMainAnalysis) 178 : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(T, F), 179 CBFactory(&CBFactory), IsMainAnalysis(IsMainAnalysis) {} 180 181 RegionBindingsRef(const ParentTy &P, 182 ClusterBindings::Factory &CBFactory, 183 bool IsMainAnalysis) 184 : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(P), 185 CBFactory(&CBFactory), IsMainAnalysis(IsMainAnalysis) {} 186 187 RegionBindingsRef add(key_type_ref K, data_type_ref D) const { 188 return RegionBindingsRef(static_cast<const ParentTy *>(this)->add(K, D), 189 *CBFactory, IsMainAnalysis); 190 } 191 192 RegionBindingsRef remove(key_type_ref K) const { 193 return RegionBindingsRef(static_cast<const ParentTy *>(this)->remove(K), 194 *CBFactory, IsMainAnalysis); 195 } 196 197 RegionBindingsRef addBinding(BindingKey K, SVal V) const; 198 199 RegionBindingsRef addBinding(const MemRegion *R, 200 BindingKey::Kind k, SVal V) const; 201 202 const SVal *lookup(BindingKey K) const; 203 const SVal *lookup(const MemRegion *R, BindingKey::Kind k) const; 204 using llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>::lookup; 205 206 RegionBindingsRef removeBinding(BindingKey K); 207 208 RegionBindingsRef removeBinding(const MemRegion *R, 209 BindingKey::Kind k); 210 211 RegionBindingsRef removeBinding(const MemRegion *R) { 212 return removeBinding(R, BindingKey::Direct). 213 removeBinding(R, BindingKey::Default); 214 } 215 216 Optional<SVal> getDirectBinding(const MemRegion *R) const; 217 218 /// getDefaultBinding - Returns an SVal* representing an optional default 219 /// binding associated with a region and its subregions. 220 Optional<SVal> getDefaultBinding(const MemRegion *R) const; 221 222 /// Return the internal tree as a Store. 223 Store asStore() const { 224 llvm::PointerIntPair<Store, 1, bool> Ptr = { 225 asImmutableMap().getRootWithoutRetain(), IsMainAnalysis}; 226 return reinterpret_cast<Store>(Ptr.getOpaqueValue()); 227 } 228 229 bool isMainAnalysis() const { 230 return IsMainAnalysis; 231 } 232 233 void printJson(raw_ostream &Out, const char *NL = "\n", 234 unsigned int Space = 0, bool IsDot = false) const { 235 for (iterator I = begin(); I != end(); ++I) { 236 // TODO: We might need a .printJson for I.getKey() as well. 237 Indent(Out, Space, IsDot) 238 << "{ \"cluster\": \"" << I.getKey() << "\", \"pointer\": \"" 239 << (const void *)I.getKey() << "\", \"items\": [" << NL; 240 241 ++Space; 242 const ClusterBindings &CB = I.getData(); 243 for (ClusterBindings::iterator CI = CB.begin(); CI != CB.end(); ++CI) { 244 Indent(Out, Space, IsDot) << "{ " << CI.getKey() << ", \"value\": "; 245 CI.getData().printJson(Out, /*AddQuotes=*/true); 246 Out << " }"; 247 if (std::next(CI) != CB.end()) 248 Out << ','; 249 Out << NL; 250 } 251 252 --Space; 253 Indent(Out, Space, IsDot) << "]}"; 254 if (std::next(I) != end()) 255 Out << ','; 256 Out << NL; 257 } 258 } 259 260 LLVM_DUMP_METHOD void dump() const { printJson(llvm::errs()); } 261 }; 262 } // end anonymous namespace 263 264 typedef const RegionBindingsRef& RegionBindingsConstRef; 265 266 Optional<SVal> RegionBindingsRef::getDirectBinding(const MemRegion *R) const { 267 const SVal *V = lookup(R, BindingKey::Direct); 268 return V ? Optional<SVal>(*V) : std::nullopt; 269 } 270 271 Optional<SVal> RegionBindingsRef::getDefaultBinding(const MemRegion *R) const { 272 const SVal *V = lookup(R, BindingKey::Default); 273 return V ? Optional<SVal>(*V) : std::nullopt; 274 } 275 276 RegionBindingsRef RegionBindingsRef::addBinding(BindingKey K, SVal V) const { 277 const MemRegion *Base = K.getBaseRegion(); 278 279 const ClusterBindings *ExistingCluster = lookup(Base); 280 ClusterBindings Cluster = 281 (ExistingCluster ? *ExistingCluster : CBFactory->getEmptyMap()); 282 283 ClusterBindings NewCluster = CBFactory->add(Cluster, K, V); 284 return add(Base, NewCluster); 285 } 286 287 288 RegionBindingsRef RegionBindingsRef::addBinding(const MemRegion *R, 289 BindingKey::Kind k, 290 SVal V) const { 291 return addBinding(BindingKey::Make(R, k), V); 292 } 293 294 const SVal *RegionBindingsRef::lookup(BindingKey K) const { 295 const ClusterBindings *Cluster = lookup(K.getBaseRegion()); 296 if (!Cluster) 297 return nullptr; 298 return Cluster->lookup(K); 299 } 300 301 const SVal *RegionBindingsRef::lookup(const MemRegion *R, 302 BindingKey::Kind k) const { 303 return lookup(BindingKey::Make(R, k)); 304 } 305 306 RegionBindingsRef RegionBindingsRef::removeBinding(BindingKey K) { 307 const MemRegion *Base = K.getBaseRegion(); 308 const ClusterBindings *Cluster = lookup(Base); 309 if (!Cluster) 310 return *this; 311 312 ClusterBindings NewCluster = CBFactory->remove(*Cluster, K); 313 if (NewCluster.isEmpty()) 314 return remove(Base); 315 return add(Base, NewCluster); 316 } 317 318 RegionBindingsRef RegionBindingsRef::removeBinding(const MemRegion *R, 319 BindingKey::Kind k){ 320 return removeBinding(BindingKey::Make(R, k)); 321 } 322 323 //===----------------------------------------------------------------------===// 324 // Main RegionStore logic. 325 //===----------------------------------------------------------------------===// 326 327 namespace { 328 class InvalidateRegionsWorker; 329 330 class RegionStoreManager : public StoreManager { 331 public: 332 RegionBindings::Factory RBFactory; 333 mutable ClusterBindings::Factory CBFactory; 334 335 typedef std::vector<SVal> SValListTy; 336 private: 337 typedef llvm::DenseMap<const LazyCompoundValData *, 338 SValListTy> LazyBindingsMapTy; 339 LazyBindingsMapTy LazyBindingsMap; 340 341 /// The largest number of fields a struct can have and still be 342 /// considered "small". 343 /// 344 /// This is currently used to decide whether or not it is worth "forcing" a 345 /// LazyCompoundVal on bind. 346 /// 347 /// This is controlled by 'region-store-small-struct-limit' option. 348 /// To disable all small-struct-dependent behavior, set the option to "0". 349 unsigned SmallStructLimit; 350 351 /// The largest number of element an array can have and still be 352 /// considered "small". 353 /// 354 /// This is currently used to decide whether or not it is worth "forcing" a 355 /// LazyCompoundVal on bind. 356 /// 357 /// This is controlled by 'region-store-small-struct-limit' option. 358 /// To disable all small-struct-dependent behavior, set the option to "0". 359 unsigned SmallArrayLimit; 360 361 /// A helper used to populate the work list with the given set of 362 /// regions. 363 void populateWorkList(InvalidateRegionsWorker &W, 364 ArrayRef<SVal> Values, 365 InvalidatedRegions *TopLevelRegions); 366 367 public: 368 RegionStoreManager(ProgramStateManager &mgr) 369 : StoreManager(mgr), RBFactory(mgr.getAllocator()), 370 CBFactory(mgr.getAllocator()), SmallStructLimit(0), SmallArrayLimit(0) { 371 ExprEngine &Eng = StateMgr.getOwningEngine(); 372 AnalyzerOptions &Options = Eng.getAnalysisManager().options; 373 SmallStructLimit = Options.RegionStoreSmallStructLimit; 374 SmallArrayLimit = Options.RegionStoreSmallArrayLimit; 375 } 376 377 /// setImplicitDefaultValue - Set the default binding for the provided 378 /// MemRegion to the value implicitly defined for compound literals when 379 /// the value is not specified. 380 RegionBindingsRef setImplicitDefaultValue(RegionBindingsConstRef B, 381 const MemRegion *R, QualType T); 382 383 /// ArrayToPointer - Emulates the "decay" of an array to a pointer 384 /// type. 'Array' represents the lvalue of the array being decayed 385 /// to a pointer, and the returned SVal represents the decayed 386 /// version of that lvalue (i.e., a pointer to the first element of 387 /// the array). This is called by ExprEngine when evaluating 388 /// casts from arrays to pointers. 389 SVal ArrayToPointer(Loc Array, QualType ElementTy) override; 390 391 /// Creates the Store that correctly represents memory contents before 392 /// the beginning of the analysis of the given top-level stack frame. 393 StoreRef getInitialStore(const LocationContext *InitLoc) override { 394 bool IsMainAnalysis = false; 395 if (const auto *FD = dyn_cast<FunctionDecl>(InitLoc->getDecl())) 396 IsMainAnalysis = FD->isMain() && !Ctx.getLangOpts().CPlusPlus; 397 return StoreRef(RegionBindingsRef( 398 RegionBindingsRef::ParentTy(RBFactory.getEmptyMap(), RBFactory), 399 CBFactory, IsMainAnalysis).asStore(), *this); 400 } 401 402 //===-------------------------------------------------------------------===// 403 // Binding values to regions. 404 //===-------------------------------------------------------------------===// 405 RegionBindingsRef invalidateGlobalRegion(MemRegion::Kind K, 406 const Expr *Ex, 407 unsigned Count, 408 const LocationContext *LCtx, 409 RegionBindingsRef B, 410 InvalidatedRegions *Invalidated); 411 412 StoreRef invalidateRegions(Store store, 413 ArrayRef<SVal> Values, 414 const Expr *E, unsigned Count, 415 const LocationContext *LCtx, 416 const CallEvent *Call, 417 InvalidatedSymbols &IS, 418 RegionAndSymbolInvalidationTraits &ITraits, 419 InvalidatedRegions *Invalidated, 420 InvalidatedRegions *InvalidatedTopLevel) override; 421 422 bool scanReachableSymbols(Store S, const MemRegion *R, 423 ScanReachableSymbols &Callbacks) override; 424 425 RegionBindingsRef removeSubRegionBindings(RegionBindingsConstRef B, 426 const SubRegion *R); 427 Optional<SVal> 428 getConstantValFromConstArrayInitializer(RegionBindingsConstRef B, 429 const ElementRegion *R); 430 Optional<SVal> 431 getSValFromInitListExpr(const InitListExpr *ILE, 432 const SmallVector<uint64_t, 2> &ConcreteOffsets, 433 QualType ElemT); 434 SVal getSValFromStringLiteral(const StringLiteral *SL, uint64_t Offset, 435 QualType ElemT); 436 437 public: // Part of public interface to class. 438 439 StoreRef Bind(Store store, Loc LV, SVal V) override { 440 return StoreRef(bind(getRegionBindings(store), LV, V).asStore(), *this); 441 } 442 443 RegionBindingsRef bind(RegionBindingsConstRef B, Loc LV, SVal V); 444 445 // BindDefaultInitial is only used to initialize a region with 446 // a default value. 447 StoreRef BindDefaultInitial(Store store, const MemRegion *R, 448 SVal V) override { 449 RegionBindingsRef B = getRegionBindings(store); 450 // Use other APIs when you have to wipe the region that was initialized 451 // earlier. 452 assert(!(B.getDefaultBinding(R) || B.getDirectBinding(R)) && 453 "Double initialization!"); 454 B = B.addBinding(BindingKey::Make(R, BindingKey::Default), V); 455 return StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this); 456 } 457 458 // BindDefaultZero is used for zeroing constructors that may accidentally 459 // overwrite existing bindings. 460 StoreRef BindDefaultZero(Store store, const MemRegion *R) override { 461 // FIXME: The offsets of empty bases can be tricky because of 462 // of the so called "empty base class optimization". 463 // If a base class has been optimized out 464 // we should not try to create a binding, otherwise we should. 465 // Unfortunately, at the moment ASTRecordLayout doesn't expose 466 // the actual sizes of the empty bases 467 // and trying to infer them from offsets/alignments 468 // seems to be error-prone and non-trivial because of the trailing padding. 469 // As a temporary mitigation we don't create bindings for empty bases. 470 if (const auto *BR = dyn_cast<CXXBaseObjectRegion>(R)) 471 if (BR->getDecl()->isEmpty()) 472 return StoreRef(store, *this); 473 474 RegionBindingsRef B = getRegionBindings(store); 475 SVal V = svalBuilder.makeZeroVal(Ctx.CharTy); 476 B = removeSubRegionBindings(B, cast<SubRegion>(R)); 477 B = B.addBinding(BindingKey::Make(R, BindingKey::Default), V); 478 return StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this); 479 } 480 481 /// Attempt to extract the fields of \p LCV and bind them to the struct region 482 /// \p R. 483 /// 484 /// This path is used when it seems advantageous to "force" loading the values 485 /// within a LazyCompoundVal to bind memberwise to the struct region, rather 486 /// than using a Default binding at the base of the entire region. This is a 487 /// heuristic attempting to avoid building long chains of LazyCompoundVals. 488 /// 489 /// \returns The updated store bindings, or \c std::nullopt if binding 490 /// non-lazily would be too expensive. 491 Optional<RegionBindingsRef> tryBindSmallStruct(RegionBindingsConstRef B, 492 const TypedValueRegion *R, 493 const RecordDecl *RD, 494 nonloc::LazyCompoundVal LCV); 495 496 /// BindStruct - Bind a compound value to a structure. 497 RegionBindingsRef bindStruct(RegionBindingsConstRef B, 498 const TypedValueRegion* R, SVal V); 499 500 /// BindVector - Bind a compound value to a vector. 501 RegionBindingsRef bindVector(RegionBindingsConstRef B, 502 const TypedValueRegion* R, SVal V); 503 504 Optional<RegionBindingsRef> tryBindSmallArray(RegionBindingsConstRef B, 505 const TypedValueRegion *R, 506 const ArrayType *AT, 507 nonloc::LazyCompoundVal LCV); 508 509 RegionBindingsRef bindArray(RegionBindingsConstRef B, 510 const TypedValueRegion* R, 511 SVal V); 512 513 /// Clears out all bindings in the given region and assigns a new value 514 /// as a Default binding. 515 RegionBindingsRef bindAggregate(RegionBindingsConstRef B, 516 const TypedRegion *R, 517 SVal DefaultVal); 518 519 /// Create a new store with the specified binding removed. 520 /// \param ST the original store, that is the basis for the new store. 521 /// \param L the location whose binding should be removed. 522 StoreRef killBinding(Store ST, Loc L) override; 523 524 void incrementReferenceCount(Store store) override { 525 getRegionBindings(store).manualRetain(); 526 } 527 528 /// If the StoreManager supports it, decrement the reference count of 529 /// the specified Store object. If the reference count hits 0, the memory 530 /// associated with the object is recycled. 531 void decrementReferenceCount(Store store) override { 532 getRegionBindings(store).manualRelease(); 533 } 534 535 bool includedInBindings(Store store, const MemRegion *region) const override; 536 537 /// Return the value bound to specified location in a given state. 538 /// 539 /// The high level logic for this method is this: 540 /// getBinding (L) 541 /// if L has binding 542 /// return L's binding 543 /// else if L is in killset 544 /// return unknown 545 /// else 546 /// if L is on stack or heap 547 /// return undefined 548 /// else 549 /// return symbolic 550 SVal getBinding(Store S, Loc L, QualType T) override { 551 return getBinding(getRegionBindings(S), L, T); 552 } 553 554 Optional<SVal> getDefaultBinding(Store S, const MemRegion *R) override { 555 RegionBindingsRef B = getRegionBindings(S); 556 // Default bindings are always applied over a base region so look up the 557 // base region's default binding, otherwise the lookup will fail when R 558 // is at an offset from R->getBaseRegion(). 559 return B.getDefaultBinding(R->getBaseRegion()); 560 } 561 562 SVal getBinding(RegionBindingsConstRef B, Loc L, QualType T = QualType()); 563 564 SVal getBindingForElement(RegionBindingsConstRef B, const ElementRegion *R); 565 566 SVal getBindingForField(RegionBindingsConstRef B, const FieldRegion *R); 567 568 SVal getBindingForObjCIvar(RegionBindingsConstRef B, const ObjCIvarRegion *R); 569 570 SVal getBindingForVar(RegionBindingsConstRef B, const VarRegion *R); 571 572 SVal getBindingForLazySymbol(const TypedValueRegion *R); 573 574 SVal getBindingForFieldOrElementCommon(RegionBindingsConstRef B, 575 const TypedValueRegion *R, 576 QualType Ty); 577 578 SVal getLazyBinding(const SubRegion *LazyBindingRegion, 579 RegionBindingsRef LazyBinding); 580 581 /// Get bindings for the values in a struct and return a CompoundVal, used 582 /// when doing struct copy: 583 /// struct s x, y; 584 /// x = y; 585 /// y's value is retrieved by this method. 586 SVal getBindingForStruct(RegionBindingsConstRef B, const TypedValueRegion *R); 587 SVal getBindingForArray(RegionBindingsConstRef B, const TypedValueRegion *R); 588 NonLoc createLazyBinding(RegionBindingsConstRef B, const TypedValueRegion *R); 589 590 /// Used to lazily generate derived symbols for bindings that are defined 591 /// implicitly by default bindings in a super region. 592 /// 593 /// Note that callers may need to specially handle LazyCompoundVals, which 594 /// are returned as is in case the caller needs to treat them differently. 595 Optional<SVal> getBindingForDerivedDefaultValue(RegionBindingsConstRef B, 596 const MemRegion *superR, 597 const TypedValueRegion *R, 598 QualType Ty); 599 600 /// Get the state and region whose binding this region \p R corresponds to. 601 /// 602 /// If there is no lazy binding for \p R, the returned value will have a null 603 /// \c second. Note that a null pointer can represents a valid Store. 604 std::pair<Store, const SubRegion *> 605 findLazyBinding(RegionBindingsConstRef B, const SubRegion *R, 606 const SubRegion *originalRegion); 607 608 /// Returns the cached set of interesting SVals contained within a lazy 609 /// binding. 610 /// 611 /// The precise value of "interesting" is determined for the purposes of 612 /// RegionStore's internal analysis. It must always contain all regions and 613 /// symbols, but may omit constants and other kinds of SVal. 614 /// 615 /// In contrast to compound values, LazyCompoundVals are also added 616 /// to the 'interesting values' list in addition to the child interesting 617 /// values. 618 const SValListTy &getInterestingValues(nonloc::LazyCompoundVal LCV); 619 620 //===------------------------------------------------------------------===// 621 // State pruning. 622 //===------------------------------------------------------------------===// 623 624 /// removeDeadBindings - Scans the RegionStore of 'state' for dead values. 625 /// It returns a new Store with these values removed. 626 StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx, 627 SymbolReaper& SymReaper) override; 628 629 //===------------------------------------------------------------------===// 630 // Utility methods. 631 //===------------------------------------------------------------------===// 632 633 RegionBindingsRef getRegionBindings(Store store) const { 634 llvm::PointerIntPair<Store, 1, bool> Ptr; 635 Ptr.setFromOpaqueValue(const_cast<void *>(store)); 636 return RegionBindingsRef( 637 CBFactory, 638 static_cast<const RegionBindings::TreeTy *>(Ptr.getPointer()), 639 RBFactory.getTreeFactory(), 640 Ptr.getInt()); 641 } 642 643 void printJson(raw_ostream &Out, Store S, const char *NL = "\n", 644 unsigned int Space = 0, bool IsDot = false) const override; 645 646 void iterBindings(Store store, BindingsHandler& f) override { 647 RegionBindingsRef B = getRegionBindings(store); 648 for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) { 649 const ClusterBindings &Cluster = I.getData(); 650 for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end(); 651 CI != CE; ++CI) { 652 const BindingKey &K = CI.getKey(); 653 if (!K.isDirect()) 654 continue; 655 if (const SubRegion *R = dyn_cast<SubRegion>(K.getRegion())) { 656 // FIXME: Possibly incorporate the offset? 657 if (!f.HandleBinding(*this, store, R, CI.getData())) 658 return; 659 } 660 } 661 } 662 } 663 }; 664 665 } // end anonymous namespace 666 667 //===----------------------------------------------------------------------===// 668 // RegionStore creation. 669 //===----------------------------------------------------------------------===// 670 671 std::unique_ptr<StoreManager> 672 ento::CreateRegionStoreManager(ProgramStateManager &StMgr) { 673 return std::make_unique<RegionStoreManager>(StMgr); 674 } 675 676 //===----------------------------------------------------------------------===// 677 // Region Cluster analysis. 678 //===----------------------------------------------------------------------===// 679 680 namespace { 681 /// Used to determine which global regions are automatically included in the 682 /// initial worklist of a ClusterAnalysis. 683 enum GlobalsFilterKind { 684 /// Don't include any global regions. 685 GFK_None, 686 /// Only include system globals. 687 GFK_SystemOnly, 688 /// Include all global regions. 689 GFK_All 690 }; 691 692 template <typename DERIVED> 693 class ClusterAnalysis { 694 protected: 695 typedef llvm::DenseMap<const MemRegion *, const ClusterBindings *> ClusterMap; 696 typedef const MemRegion * WorkListElement; 697 typedef SmallVector<WorkListElement, 10> WorkList; 698 699 llvm::SmallPtrSet<const ClusterBindings *, 16> Visited; 700 701 WorkList WL; 702 703 RegionStoreManager &RM; 704 ASTContext &Ctx; 705 SValBuilder &svalBuilder; 706 707 RegionBindingsRef B; 708 709 710 protected: 711 const ClusterBindings *getCluster(const MemRegion *R) { 712 return B.lookup(R); 713 } 714 715 /// Returns true if all clusters in the given memspace should be initially 716 /// included in the cluster analysis. Subclasses may provide their 717 /// own implementation. 718 bool includeEntireMemorySpace(const MemRegion *Base) { 719 return false; 720 } 721 722 public: 723 ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr, 724 RegionBindingsRef b) 725 : RM(rm), Ctx(StateMgr.getContext()), 726 svalBuilder(StateMgr.getSValBuilder()), B(std::move(b)) {} 727 728 RegionBindingsRef getRegionBindings() const { return B; } 729 730 bool isVisited(const MemRegion *R) { 731 return Visited.count(getCluster(R)); 732 } 733 734 void GenerateClusters() { 735 // Scan the entire set of bindings and record the region clusters. 736 for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); 737 RI != RE; ++RI){ 738 const MemRegion *Base = RI.getKey(); 739 740 const ClusterBindings &Cluster = RI.getData(); 741 assert(!Cluster.isEmpty() && "Empty clusters should be removed"); 742 static_cast<DERIVED*>(this)->VisitAddedToCluster(Base, Cluster); 743 744 // If the base's memspace should be entirely invalidated, add the cluster 745 // to the workspace up front. 746 if (static_cast<DERIVED*>(this)->includeEntireMemorySpace(Base)) 747 AddToWorkList(WorkListElement(Base), &Cluster); 748 } 749 } 750 751 bool AddToWorkList(WorkListElement E, const ClusterBindings *C) { 752 if (C && !Visited.insert(C).second) 753 return false; 754 WL.push_back(E); 755 return true; 756 } 757 758 bool AddToWorkList(const MemRegion *R) { 759 return static_cast<DERIVED*>(this)->AddToWorkList(R); 760 } 761 762 void RunWorkList() { 763 while (!WL.empty()) { 764 WorkListElement E = WL.pop_back_val(); 765 const MemRegion *BaseR = E; 766 767 static_cast<DERIVED*>(this)->VisitCluster(BaseR, getCluster(BaseR)); 768 } 769 } 770 771 void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C) {} 772 void VisitCluster(const MemRegion *baseR, const ClusterBindings *C) {} 773 774 void VisitCluster(const MemRegion *BaseR, const ClusterBindings *C, 775 bool Flag) { 776 static_cast<DERIVED*>(this)->VisitCluster(BaseR, C); 777 } 778 }; 779 } 780 781 //===----------------------------------------------------------------------===// 782 // Binding invalidation. 783 //===----------------------------------------------------------------------===// 784 785 bool RegionStoreManager::scanReachableSymbols(Store S, const MemRegion *R, 786 ScanReachableSymbols &Callbacks) { 787 assert(R == R->getBaseRegion() && "Should only be called for base regions"); 788 RegionBindingsRef B = getRegionBindings(S); 789 const ClusterBindings *Cluster = B.lookup(R); 790 791 if (!Cluster) 792 return true; 793 794 for (ClusterBindings::iterator RI = Cluster->begin(), RE = Cluster->end(); 795 RI != RE; ++RI) { 796 if (!Callbacks.scan(RI.getData())) 797 return false; 798 } 799 800 return true; 801 } 802 803 static inline bool isUnionField(const FieldRegion *FR) { 804 return FR->getDecl()->getParent()->isUnion(); 805 } 806 807 typedef SmallVector<const FieldDecl *, 8> FieldVector; 808 809 static void getSymbolicOffsetFields(BindingKey K, FieldVector &Fields) { 810 assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys"); 811 812 const MemRegion *Base = K.getConcreteOffsetRegion(); 813 const MemRegion *R = K.getRegion(); 814 815 while (R != Base) { 816 if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) 817 if (!isUnionField(FR)) 818 Fields.push_back(FR->getDecl()); 819 820 R = cast<SubRegion>(R)->getSuperRegion(); 821 } 822 } 823 824 static bool isCompatibleWithFields(BindingKey K, const FieldVector &Fields) { 825 assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys"); 826 827 if (Fields.empty()) 828 return true; 829 830 FieldVector FieldsInBindingKey; 831 getSymbolicOffsetFields(K, FieldsInBindingKey); 832 833 ptrdiff_t Delta = FieldsInBindingKey.size() - Fields.size(); 834 if (Delta >= 0) 835 return std::equal(FieldsInBindingKey.begin() + Delta, 836 FieldsInBindingKey.end(), 837 Fields.begin()); 838 else 839 return std::equal(FieldsInBindingKey.begin(), FieldsInBindingKey.end(), 840 Fields.begin() - Delta); 841 } 842 843 /// Collects all bindings in \p Cluster that may refer to bindings within 844 /// \p Top. 845 /// 846 /// Each binding is a pair whose \c first is the key (a BindingKey) and whose 847 /// \c second is the value (an SVal). 848 /// 849 /// The \p IncludeAllDefaultBindings parameter specifies whether to include 850 /// default bindings that may extend beyond \p Top itself, e.g. if \p Top is 851 /// an aggregate within a larger aggregate with a default binding. 852 static void 853 collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings, 854 SValBuilder &SVB, const ClusterBindings &Cluster, 855 const SubRegion *Top, BindingKey TopKey, 856 bool IncludeAllDefaultBindings) { 857 FieldVector FieldsInSymbolicSubregions; 858 if (TopKey.hasSymbolicOffset()) { 859 getSymbolicOffsetFields(TopKey, FieldsInSymbolicSubregions); 860 Top = TopKey.getConcreteOffsetRegion(); 861 TopKey = BindingKey::Make(Top, BindingKey::Default); 862 } 863 864 // Find the length (in bits) of the region being invalidated. 865 uint64_t Length = UINT64_MAX; 866 SVal Extent = Top->getMemRegionManager().getStaticSize(Top, SVB); 867 if (Optional<nonloc::ConcreteInt> ExtentCI = 868 Extent.getAs<nonloc::ConcreteInt>()) { 869 const llvm::APSInt &ExtentInt = ExtentCI->getValue(); 870 assert(ExtentInt.isNonNegative() || ExtentInt.isUnsigned()); 871 // Extents are in bytes but region offsets are in bits. Be careful! 872 Length = ExtentInt.getLimitedValue() * SVB.getContext().getCharWidth(); 873 } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(Top)) { 874 if (FR->getDecl()->isBitField()) 875 Length = FR->getDecl()->getBitWidthValue(SVB.getContext()); 876 } 877 878 for (ClusterBindings::iterator I = Cluster.begin(), E = Cluster.end(); 879 I != E; ++I) { 880 BindingKey NextKey = I.getKey(); 881 if (NextKey.getRegion() == TopKey.getRegion()) { 882 // FIXME: This doesn't catch the case where we're really invalidating a 883 // region with a symbolic offset. Example: 884 // R: points[i].y 885 // Next: points[0].x 886 887 if (NextKey.getOffset() > TopKey.getOffset() && 888 NextKey.getOffset() - TopKey.getOffset() < Length) { 889 // Case 1: The next binding is inside the region we're invalidating. 890 // Include it. 891 Bindings.push_back(*I); 892 893 } else if (NextKey.getOffset() == TopKey.getOffset()) { 894 // Case 2: The next binding is at the same offset as the region we're 895 // invalidating. In this case, we need to leave default bindings alone, 896 // since they may be providing a default value for a regions beyond what 897 // we're invalidating. 898 // FIXME: This is probably incorrect; consider invalidating an outer 899 // struct whose first field is bound to a LazyCompoundVal. 900 if (IncludeAllDefaultBindings || NextKey.isDirect()) 901 Bindings.push_back(*I); 902 } 903 904 } else if (NextKey.hasSymbolicOffset()) { 905 const MemRegion *Base = NextKey.getConcreteOffsetRegion(); 906 if (Top->isSubRegionOf(Base) && Top != Base) { 907 // Case 3: The next key is symbolic and we just changed something within 908 // its concrete region. We don't know if the binding is still valid, so 909 // we'll be conservative and include it. 910 if (IncludeAllDefaultBindings || NextKey.isDirect()) 911 if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions)) 912 Bindings.push_back(*I); 913 } else if (const SubRegion *BaseSR = dyn_cast<SubRegion>(Base)) { 914 // Case 4: The next key is symbolic, but we changed a known 915 // super-region. In this case the binding is certainly included. 916 if (BaseSR->isSubRegionOf(Top)) 917 if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions)) 918 Bindings.push_back(*I); 919 } 920 } 921 } 922 } 923 924 static void 925 collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings, 926 SValBuilder &SVB, const ClusterBindings &Cluster, 927 const SubRegion *Top, bool IncludeAllDefaultBindings) { 928 collectSubRegionBindings(Bindings, SVB, Cluster, Top, 929 BindingKey::Make(Top, BindingKey::Default), 930 IncludeAllDefaultBindings); 931 } 932 933 RegionBindingsRef 934 RegionStoreManager::removeSubRegionBindings(RegionBindingsConstRef B, 935 const SubRegion *Top) { 936 BindingKey TopKey = BindingKey::Make(Top, BindingKey::Default); 937 const MemRegion *ClusterHead = TopKey.getBaseRegion(); 938 939 if (Top == ClusterHead) { 940 // We can remove an entire cluster's bindings all in one go. 941 return B.remove(Top); 942 } 943 944 const ClusterBindings *Cluster = B.lookup(ClusterHead); 945 if (!Cluster) { 946 // If we're invalidating a region with a symbolic offset, we need to make 947 // sure we don't treat the base region as uninitialized anymore. 948 if (TopKey.hasSymbolicOffset()) { 949 const SubRegion *Concrete = TopKey.getConcreteOffsetRegion(); 950 return B.addBinding(Concrete, BindingKey::Default, UnknownVal()); 951 } 952 return B; 953 } 954 955 SmallVector<BindingPair, 32> Bindings; 956 collectSubRegionBindings(Bindings, svalBuilder, *Cluster, Top, TopKey, 957 /*IncludeAllDefaultBindings=*/false); 958 959 ClusterBindingsRef Result(*Cluster, CBFactory); 960 for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(), 961 E = Bindings.end(); 962 I != E; ++I) 963 Result = Result.remove(I->first); 964 965 // If we're invalidating a region with a symbolic offset, we need to make sure 966 // we don't treat the base region as uninitialized anymore. 967 // FIXME: This isn't very precise; see the example in 968 // collectSubRegionBindings. 969 if (TopKey.hasSymbolicOffset()) { 970 const SubRegion *Concrete = TopKey.getConcreteOffsetRegion(); 971 Result = Result.add(BindingKey::Make(Concrete, BindingKey::Default), 972 UnknownVal()); 973 } 974 975 if (Result.isEmpty()) 976 return B.remove(ClusterHead); 977 return B.add(ClusterHead, Result.asImmutableMap()); 978 } 979 980 namespace { 981 class InvalidateRegionsWorker : public ClusterAnalysis<InvalidateRegionsWorker> 982 { 983 const Expr *Ex; 984 unsigned Count; 985 const LocationContext *LCtx; 986 InvalidatedSymbols &IS; 987 RegionAndSymbolInvalidationTraits &ITraits; 988 StoreManager::InvalidatedRegions *Regions; 989 GlobalsFilterKind GlobalsFilter; 990 public: 991 InvalidateRegionsWorker(RegionStoreManager &rm, 992 ProgramStateManager &stateMgr, 993 RegionBindingsRef b, 994 const Expr *ex, unsigned count, 995 const LocationContext *lctx, 996 InvalidatedSymbols &is, 997 RegionAndSymbolInvalidationTraits &ITraitsIn, 998 StoreManager::InvalidatedRegions *r, 999 GlobalsFilterKind GFK) 1000 : ClusterAnalysis<InvalidateRegionsWorker>(rm, stateMgr, b), 1001 Ex(ex), Count(count), LCtx(lctx), IS(is), ITraits(ITraitsIn), Regions(r), 1002 GlobalsFilter(GFK) {} 1003 1004 void VisitCluster(const MemRegion *baseR, const ClusterBindings *C); 1005 void VisitBinding(SVal V); 1006 1007 using ClusterAnalysis::AddToWorkList; 1008 1009 bool AddToWorkList(const MemRegion *R); 1010 1011 /// Returns true if all clusters in the memory space for \p Base should be 1012 /// be invalidated. 1013 bool includeEntireMemorySpace(const MemRegion *Base); 1014 1015 /// Returns true if the memory space of the given region is one of the global 1016 /// regions specially included at the start of invalidation. 1017 bool isInitiallyIncludedGlobalRegion(const MemRegion *R); 1018 }; 1019 } 1020 1021 bool InvalidateRegionsWorker::AddToWorkList(const MemRegion *R) { 1022 bool doNotInvalidateSuperRegion = ITraits.hasTrait( 1023 R, RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion); 1024 const MemRegion *BaseR = doNotInvalidateSuperRegion ? R : R->getBaseRegion(); 1025 return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR)); 1026 } 1027 1028 void InvalidateRegionsWorker::VisitBinding(SVal V) { 1029 // A symbol? Mark it touched by the invalidation. 1030 if (SymbolRef Sym = V.getAsSymbol()) 1031 IS.insert(Sym); 1032 1033 if (const MemRegion *R = V.getAsRegion()) { 1034 AddToWorkList(R); 1035 return; 1036 } 1037 1038 // Is it a LazyCompoundVal? All references get invalidated as well. 1039 if (Optional<nonloc::LazyCompoundVal> LCS = 1040 V.getAs<nonloc::LazyCompoundVal>()) { 1041 1042 // `getInterestingValues()` returns SVals contained within LazyCompoundVals, 1043 // so there is no need to visit them. 1044 for (SVal V : RM.getInterestingValues(*LCS)) 1045 if (!isa<nonloc::LazyCompoundVal>(V)) 1046 VisitBinding(V); 1047 1048 return; 1049 } 1050 } 1051 1052 void InvalidateRegionsWorker::VisitCluster(const MemRegion *baseR, 1053 const ClusterBindings *C) { 1054 1055 bool PreserveRegionsContents = 1056 ITraits.hasTrait(baseR, 1057 RegionAndSymbolInvalidationTraits::TK_PreserveContents); 1058 1059 if (C) { 1060 for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I) 1061 VisitBinding(I.getData()); 1062 1063 // Invalidate regions contents. 1064 if (!PreserveRegionsContents) 1065 B = B.remove(baseR); 1066 } 1067 1068 if (const auto *TO = dyn_cast<TypedValueRegion>(baseR)) { 1069 if (const auto *RD = TO->getValueType()->getAsCXXRecordDecl()) { 1070 1071 // Lambdas can affect all static local variables without explicitly 1072 // capturing those. 1073 // We invalidate all static locals referenced inside the lambda body. 1074 if (RD->isLambda() && RD->getLambdaCallOperator()->getBody()) { 1075 using namespace ast_matchers; 1076 1077 const char *DeclBind = "DeclBind"; 1078 StatementMatcher RefToStatic = stmt(hasDescendant(declRefExpr( 1079 to(varDecl(hasStaticStorageDuration()).bind(DeclBind))))); 1080 auto Matches = 1081 match(RefToStatic, *RD->getLambdaCallOperator()->getBody(), 1082 RD->getASTContext()); 1083 1084 for (BoundNodes &Match : Matches) { 1085 auto *VD = Match.getNodeAs<VarDecl>(DeclBind); 1086 const VarRegion *ToInvalidate = 1087 RM.getRegionManager().getVarRegion(VD, LCtx); 1088 AddToWorkList(ToInvalidate); 1089 } 1090 } 1091 } 1092 } 1093 1094 // BlockDataRegion? If so, invalidate captured variables that are passed 1095 // by reference. 1096 if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) { 1097 for (BlockDataRegion::referenced_vars_iterator 1098 BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ; 1099 BI != BE; ++BI) { 1100 const VarRegion *VR = BI.getCapturedRegion(); 1101 const VarDecl *VD = VR->getDecl(); 1102 if (VD->hasAttr<BlocksAttr>() || !VD->hasLocalStorage()) { 1103 AddToWorkList(VR); 1104 } 1105 else if (Loc::isLocType(VR->getValueType())) { 1106 // Map the current bindings to a Store to retrieve the value 1107 // of the binding. If that binding itself is a region, we should 1108 // invalidate that region. This is because a block may capture 1109 // a pointer value, but the thing pointed by that pointer may 1110 // get invalidated. 1111 SVal V = RM.getBinding(B, loc::MemRegionVal(VR)); 1112 if (Optional<Loc> L = V.getAs<Loc>()) { 1113 if (const MemRegion *LR = L->getAsRegion()) 1114 AddToWorkList(LR); 1115 } 1116 } 1117 } 1118 return; 1119 } 1120 1121 // Symbolic region? 1122 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) 1123 IS.insert(SR->getSymbol()); 1124 1125 // Nothing else should be done in the case when we preserve regions context. 1126 if (PreserveRegionsContents) 1127 return; 1128 1129 // Otherwise, we have a normal data region. Record that we touched the region. 1130 if (Regions) 1131 Regions->push_back(baseR); 1132 1133 if (isa<AllocaRegion, SymbolicRegion>(baseR)) { 1134 // Invalidate the region by setting its default value to 1135 // conjured symbol. The type of the symbol is irrelevant. 1136 DefinedOrUnknownSVal V = 1137 svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count); 1138 B = B.addBinding(baseR, BindingKey::Default, V); 1139 return; 1140 } 1141 1142 if (!baseR->isBoundable()) 1143 return; 1144 1145 const TypedValueRegion *TR = cast<TypedValueRegion>(baseR); 1146 QualType T = TR->getValueType(); 1147 1148 if (isInitiallyIncludedGlobalRegion(baseR)) { 1149 // If the region is a global and we are invalidating all globals, 1150 // erasing the entry is good enough. This causes all globals to be lazily 1151 // symbolicated from the same base symbol. 1152 return; 1153 } 1154 1155 if (T->isRecordType()) { 1156 // Invalidate the region by setting its default value to 1157 // conjured symbol. The type of the symbol is irrelevant. 1158 DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, 1159 Ctx.IntTy, Count); 1160 B = B.addBinding(baseR, BindingKey::Default, V); 1161 return; 1162 } 1163 1164 if (const ArrayType *AT = Ctx.getAsArrayType(T)) { 1165 bool doNotInvalidateSuperRegion = ITraits.hasTrait( 1166 baseR, 1167 RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion); 1168 1169 if (doNotInvalidateSuperRegion) { 1170 // We are not doing blank invalidation of the whole array region so we 1171 // have to manually invalidate each elements. 1172 Optional<uint64_t> NumElements; 1173 1174 // Compute lower and upper offsets for region within array. 1175 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 1176 NumElements = CAT->getSize().getZExtValue(); 1177 if (!NumElements) // We are not dealing with a constant size array 1178 goto conjure_default; 1179 QualType ElementTy = AT->getElementType(); 1180 uint64_t ElemSize = Ctx.getTypeSize(ElementTy); 1181 const RegionOffset &RO = baseR->getAsOffset(); 1182 const MemRegion *SuperR = baseR->getBaseRegion(); 1183 if (RO.hasSymbolicOffset()) { 1184 // If base region has a symbolic offset, 1185 // we revert to invalidating the super region. 1186 if (SuperR) 1187 AddToWorkList(SuperR); 1188 goto conjure_default; 1189 } 1190 1191 uint64_t LowerOffset = RO.getOffset(); 1192 uint64_t UpperOffset = LowerOffset + *NumElements * ElemSize; 1193 bool UpperOverflow = UpperOffset < LowerOffset; 1194 1195 // Invalidate regions which are within array boundaries, 1196 // or have a symbolic offset. 1197 if (!SuperR) 1198 goto conjure_default; 1199 1200 const ClusterBindings *C = B.lookup(SuperR); 1201 if (!C) 1202 goto conjure_default; 1203 1204 for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; 1205 ++I) { 1206 const BindingKey &BK = I.getKey(); 1207 Optional<uint64_t> ROffset = 1208 BK.hasSymbolicOffset() ? Optional<uint64_t>() : BK.getOffset(); 1209 1210 // Check offset is not symbolic and within array's boundaries. 1211 // Handles arrays of 0 elements and of 0-sized elements as well. 1212 if (!ROffset || 1213 ((*ROffset >= LowerOffset && *ROffset < UpperOffset) || 1214 (UpperOverflow && 1215 (*ROffset >= LowerOffset || *ROffset < UpperOffset)) || 1216 (LowerOffset == UpperOffset && *ROffset == LowerOffset))) { 1217 B = B.removeBinding(I.getKey()); 1218 // Bound symbolic regions need to be invalidated for dead symbol 1219 // detection. 1220 SVal V = I.getData(); 1221 const MemRegion *R = V.getAsRegion(); 1222 if (isa_and_nonnull<SymbolicRegion>(R)) 1223 VisitBinding(V); 1224 } 1225 } 1226 } 1227 conjure_default: 1228 // Set the default value of the array to conjured symbol. 1229 DefinedOrUnknownSVal V = 1230 svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, 1231 AT->getElementType(), Count); 1232 B = B.addBinding(baseR, BindingKey::Default, V); 1233 return; 1234 } 1235 1236 DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, 1237 T,Count); 1238 assert(SymbolManager::canSymbolicate(T) || V.isUnknown()); 1239 B = B.addBinding(baseR, BindingKey::Direct, V); 1240 } 1241 1242 bool InvalidateRegionsWorker::isInitiallyIncludedGlobalRegion( 1243 const MemRegion *R) { 1244 switch (GlobalsFilter) { 1245 case GFK_None: 1246 return false; 1247 case GFK_SystemOnly: 1248 return isa<GlobalSystemSpaceRegion>(R->getMemorySpace()); 1249 case GFK_All: 1250 return isa<NonStaticGlobalSpaceRegion>(R->getMemorySpace()); 1251 } 1252 1253 llvm_unreachable("unknown globals filter"); 1254 } 1255 1256 bool InvalidateRegionsWorker::includeEntireMemorySpace(const MemRegion *Base) { 1257 if (isInitiallyIncludedGlobalRegion(Base)) 1258 return true; 1259 1260 const MemSpaceRegion *MemSpace = Base->getMemorySpace(); 1261 return ITraits.hasTrait(MemSpace, 1262 RegionAndSymbolInvalidationTraits::TK_EntireMemSpace); 1263 } 1264 1265 RegionBindingsRef 1266 RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K, 1267 const Expr *Ex, 1268 unsigned Count, 1269 const LocationContext *LCtx, 1270 RegionBindingsRef B, 1271 InvalidatedRegions *Invalidated) { 1272 // Bind the globals memory space to a new symbol that we will use to derive 1273 // the bindings for all globals. 1274 const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K); 1275 SVal V = svalBuilder.conjureSymbolVal(/* symbolTag = */ (const void*) GS, Ex, LCtx, 1276 /* type does not matter */ Ctx.IntTy, 1277 Count); 1278 1279 B = B.removeBinding(GS) 1280 .addBinding(BindingKey::Make(GS, BindingKey::Default), V); 1281 1282 // Even if there are no bindings in the global scope, we still need to 1283 // record that we touched it. 1284 if (Invalidated) 1285 Invalidated->push_back(GS); 1286 1287 return B; 1288 } 1289 1290 void RegionStoreManager::populateWorkList(InvalidateRegionsWorker &W, 1291 ArrayRef<SVal> Values, 1292 InvalidatedRegions *TopLevelRegions) { 1293 for (ArrayRef<SVal>::iterator I = Values.begin(), 1294 E = Values.end(); I != E; ++I) { 1295 SVal V = *I; 1296 if (Optional<nonloc::LazyCompoundVal> LCS = 1297 V.getAs<nonloc::LazyCompoundVal>()) { 1298 1299 for (SVal S : getInterestingValues(*LCS)) 1300 if (const MemRegion *R = S.getAsRegion()) 1301 W.AddToWorkList(R); 1302 1303 continue; 1304 } 1305 1306 if (const MemRegion *R = V.getAsRegion()) { 1307 if (TopLevelRegions) 1308 TopLevelRegions->push_back(R); 1309 W.AddToWorkList(R); 1310 continue; 1311 } 1312 } 1313 } 1314 1315 StoreRef 1316 RegionStoreManager::invalidateRegions(Store store, 1317 ArrayRef<SVal> Values, 1318 const Expr *Ex, unsigned Count, 1319 const LocationContext *LCtx, 1320 const CallEvent *Call, 1321 InvalidatedSymbols &IS, 1322 RegionAndSymbolInvalidationTraits &ITraits, 1323 InvalidatedRegions *TopLevelRegions, 1324 InvalidatedRegions *Invalidated) { 1325 GlobalsFilterKind GlobalsFilter; 1326 if (Call) { 1327 if (Call->isInSystemHeader()) 1328 GlobalsFilter = GFK_SystemOnly; 1329 else 1330 GlobalsFilter = GFK_All; 1331 } else { 1332 GlobalsFilter = GFK_None; 1333 } 1334 1335 RegionBindingsRef B = getRegionBindings(store); 1336 InvalidateRegionsWorker W(*this, StateMgr, B, Ex, Count, LCtx, IS, ITraits, 1337 Invalidated, GlobalsFilter); 1338 1339 // Scan the bindings and generate the clusters. 1340 W.GenerateClusters(); 1341 1342 // Add the regions to the worklist. 1343 populateWorkList(W, Values, TopLevelRegions); 1344 1345 W.RunWorkList(); 1346 1347 // Return the new bindings. 1348 B = W.getRegionBindings(); 1349 1350 // For calls, determine which global regions should be invalidated and 1351 // invalidate them. (Note that function-static and immutable globals are never 1352 // invalidated by this.) 1353 // TODO: This could possibly be more precise with modules. 1354 switch (GlobalsFilter) { 1355 case GFK_All: 1356 B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind, 1357 Ex, Count, LCtx, B, Invalidated); 1358 [[fallthrough]]; 1359 case GFK_SystemOnly: 1360 B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind, 1361 Ex, Count, LCtx, B, Invalidated); 1362 [[fallthrough]]; 1363 case GFK_None: 1364 break; 1365 } 1366 1367 return StoreRef(B.asStore(), *this); 1368 } 1369 1370 //===----------------------------------------------------------------------===// 1371 // Location and region casting. 1372 //===----------------------------------------------------------------------===// 1373 1374 /// ArrayToPointer - Emulates the "decay" of an array to a pointer 1375 /// type. 'Array' represents the lvalue of the array being decayed 1376 /// to a pointer, and the returned SVal represents the decayed 1377 /// version of that lvalue (i.e., a pointer to the first element of 1378 /// the array). This is called by ExprEngine when evaluating casts 1379 /// from arrays to pointers. 1380 SVal RegionStoreManager::ArrayToPointer(Loc Array, QualType T) { 1381 if (isa<loc::ConcreteInt>(Array)) 1382 return Array; 1383 1384 if (!isa<loc::MemRegionVal>(Array)) 1385 return UnknownVal(); 1386 1387 const SubRegion *R = 1388 cast<SubRegion>(Array.castAs<loc::MemRegionVal>().getRegion()); 1389 NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex(); 1390 return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, R, Ctx)); 1391 } 1392 1393 //===----------------------------------------------------------------------===// 1394 // Loading values from regions. 1395 //===----------------------------------------------------------------------===// 1396 1397 SVal RegionStoreManager::getBinding(RegionBindingsConstRef B, Loc L, QualType T) { 1398 assert(!isa<UnknownVal>(L) && "location unknown"); 1399 assert(!isa<UndefinedVal>(L) && "location undefined"); 1400 1401 // For access to concrete addresses, return UnknownVal. Checks 1402 // for null dereferences (and similar errors) are done by checkers, not 1403 // the Store. 1404 // FIXME: We can consider lazily symbolicating such memory, but we really 1405 // should defer this when we can reason easily about symbolicating arrays 1406 // of bytes. 1407 if (L.getAs<loc::ConcreteInt>()) { 1408 return UnknownVal(); 1409 } 1410 if (!L.getAs<loc::MemRegionVal>()) { 1411 return UnknownVal(); 1412 } 1413 1414 const MemRegion *MR = L.castAs<loc::MemRegionVal>().getRegion(); 1415 1416 if (isa<BlockDataRegion>(MR)) { 1417 return UnknownVal(); 1418 } 1419 1420 // Auto-detect the binding type. 1421 if (T.isNull()) { 1422 if (const auto *TVR = dyn_cast<TypedValueRegion>(MR)) 1423 T = TVR->getValueType(); 1424 else if (const auto *TR = dyn_cast<TypedRegion>(MR)) 1425 T = TR->getLocationType()->getPointeeType(); 1426 else if (const auto *SR = dyn_cast<SymbolicRegion>(MR)) 1427 T = SR->getPointeeStaticType(); 1428 } 1429 assert(!T.isNull() && "Unable to auto-detect binding type!"); 1430 assert(!T->isVoidType() && "Attempting to dereference a void pointer!"); 1431 1432 if (!isa<TypedValueRegion>(MR)) 1433 MR = GetElementZeroRegion(cast<SubRegion>(MR), T); 1434 1435 // FIXME: Perhaps this method should just take a 'const MemRegion*' argument 1436 // instead of 'Loc', and have the other Loc cases handled at a higher level. 1437 const TypedValueRegion *R = cast<TypedValueRegion>(MR); 1438 QualType RTy = R->getValueType(); 1439 1440 // FIXME: we do not yet model the parts of a complex type, so treat the 1441 // whole thing as "unknown". 1442 if (RTy->isAnyComplexType()) 1443 return UnknownVal(); 1444 1445 // FIXME: We should eventually handle funny addressing. e.g.: 1446 // 1447 // int x = ...; 1448 // int *p = &x; 1449 // char *q = (char*) p; 1450 // char c = *q; // returns the first byte of 'x'. 1451 // 1452 // Such funny addressing will occur due to layering of regions. 1453 if (RTy->isStructureOrClassType()) 1454 return getBindingForStruct(B, R); 1455 1456 // FIXME: Handle unions. 1457 if (RTy->isUnionType()) 1458 return createLazyBinding(B, R); 1459 1460 if (RTy->isArrayType()) { 1461 if (RTy->isConstantArrayType()) 1462 return getBindingForArray(B, R); 1463 else 1464 return UnknownVal(); 1465 } 1466 1467 // FIXME: handle Vector types. 1468 if (RTy->isVectorType()) 1469 return UnknownVal(); 1470 1471 if (const FieldRegion* FR = dyn_cast<FieldRegion>(R)) 1472 return svalBuilder.evalCast(getBindingForField(B, FR), T, QualType{}); 1473 1474 if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) { 1475 // FIXME: Here we actually perform an implicit conversion from the loaded 1476 // value to the element type. Eventually we want to compose these values 1477 // more intelligently. For example, an 'element' can encompass multiple 1478 // bound regions (e.g., several bound bytes), or could be a subset of 1479 // a larger value. 1480 return svalBuilder.evalCast(getBindingForElement(B, ER), T, QualType{}); 1481 } 1482 1483 if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) { 1484 // FIXME: Here we actually perform an implicit conversion from the loaded 1485 // value to the ivar type. What we should model is stores to ivars 1486 // that blow past the extent of the ivar. If the address of the ivar is 1487 // reinterpretted, it is possible we stored a different value that could 1488 // fit within the ivar. Either we need to cast these when storing them 1489 // or reinterpret them lazily (as we do here). 1490 return svalBuilder.evalCast(getBindingForObjCIvar(B, IVR), T, QualType{}); 1491 } 1492 1493 if (const VarRegion *VR = dyn_cast<VarRegion>(R)) { 1494 // FIXME: Here we actually perform an implicit conversion from the loaded 1495 // value to the variable type. What we should model is stores to variables 1496 // that blow past the extent of the variable. If the address of the 1497 // variable is reinterpretted, it is possible we stored a different value 1498 // that could fit within the variable. Either we need to cast these when 1499 // storing them or reinterpret them lazily (as we do here). 1500 return svalBuilder.evalCast(getBindingForVar(B, VR), T, QualType{}); 1501 } 1502 1503 const SVal *V = B.lookup(R, BindingKey::Direct); 1504 1505 // Check if the region has a binding. 1506 if (V) 1507 return *V; 1508 1509 // The location does not have a bound value. This means that it has 1510 // the value it had upon its creation and/or entry to the analyzed 1511 // function/method. These are either symbolic values or 'undefined'. 1512 if (R->hasStackNonParametersStorage()) { 1513 // All stack variables are considered to have undefined values 1514 // upon creation. All heap allocated blocks are considered to 1515 // have undefined values as well unless they are explicitly bound 1516 // to specific values. 1517 return UndefinedVal(); 1518 } 1519 1520 // All other values are symbolic. 1521 return svalBuilder.getRegionValueSymbolVal(R); 1522 } 1523 1524 static QualType getUnderlyingType(const SubRegion *R) { 1525 QualType RegionTy; 1526 if (const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(R)) 1527 RegionTy = TVR->getValueType(); 1528 1529 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) 1530 RegionTy = SR->getSymbol()->getType(); 1531 1532 return RegionTy; 1533 } 1534 1535 /// Checks to see if store \p B has a lazy binding for region \p R. 1536 /// 1537 /// If \p AllowSubregionBindings is \c false, a lazy binding will be rejected 1538 /// if there are additional bindings within \p R. 1539 /// 1540 /// Note that unlike RegionStoreManager::findLazyBinding, this will not search 1541 /// for lazy bindings for super-regions of \p R. 1542 static Optional<nonloc::LazyCompoundVal> 1543 getExistingLazyBinding(SValBuilder &SVB, RegionBindingsConstRef B, 1544 const SubRegion *R, bool AllowSubregionBindings) { 1545 Optional<SVal> V = B.getDefaultBinding(R); 1546 if (!V) 1547 return std::nullopt; 1548 1549 Optional<nonloc::LazyCompoundVal> LCV = V->getAs<nonloc::LazyCompoundVal>(); 1550 if (!LCV) 1551 return std::nullopt; 1552 1553 // If the LCV is for a subregion, the types might not match, and we shouldn't 1554 // reuse the binding. 1555 QualType RegionTy = getUnderlyingType(R); 1556 if (!RegionTy.isNull() && 1557 !RegionTy->isVoidPointerType()) { 1558 QualType SourceRegionTy = LCV->getRegion()->getValueType(); 1559 if (!SVB.getContext().hasSameUnqualifiedType(RegionTy, SourceRegionTy)) 1560 return std::nullopt; 1561 } 1562 1563 if (!AllowSubregionBindings) { 1564 // If there are any other bindings within this region, we shouldn't reuse 1565 // the top-level binding. 1566 SmallVector<BindingPair, 16> Bindings; 1567 collectSubRegionBindings(Bindings, SVB, *B.lookup(R->getBaseRegion()), R, 1568 /*IncludeAllDefaultBindings=*/true); 1569 if (Bindings.size() > 1) 1570 return std::nullopt; 1571 } 1572 1573 return *LCV; 1574 } 1575 1576 1577 std::pair<Store, const SubRegion *> 1578 RegionStoreManager::findLazyBinding(RegionBindingsConstRef B, 1579 const SubRegion *R, 1580 const SubRegion *originalRegion) { 1581 if (originalRegion != R) { 1582 if (Optional<nonloc::LazyCompoundVal> V = 1583 getExistingLazyBinding(svalBuilder, B, R, true)) 1584 return std::make_pair(V->getStore(), V->getRegion()); 1585 } 1586 1587 typedef std::pair<Store, const SubRegion *> StoreRegionPair; 1588 StoreRegionPair Result = StoreRegionPair(); 1589 1590 if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) { 1591 Result = findLazyBinding(B, cast<SubRegion>(ER->getSuperRegion()), 1592 originalRegion); 1593 1594 if (Result.second) 1595 Result.second = MRMgr.getElementRegionWithSuper(ER, Result.second); 1596 1597 } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) { 1598 Result = findLazyBinding(B, cast<SubRegion>(FR->getSuperRegion()), 1599 originalRegion); 1600 1601 if (Result.second) 1602 Result.second = MRMgr.getFieldRegionWithSuper(FR, Result.second); 1603 1604 } else if (const CXXBaseObjectRegion *BaseReg = 1605 dyn_cast<CXXBaseObjectRegion>(R)) { 1606 // C++ base object region is another kind of region that we should blast 1607 // through to look for lazy compound value. It is like a field region. 1608 Result = findLazyBinding(B, cast<SubRegion>(BaseReg->getSuperRegion()), 1609 originalRegion); 1610 1611 if (Result.second) 1612 Result.second = MRMgr.getCXXBaseObjectRegionWithSuper(BaseReg, 1613 Result.second); 1614 } 1615 1616 return Result; 1617 } 1618 1619 /// This is a helper function for `getConstantValFromConstArrayInitializer`. 1620 /// 1621 /// Return an array of extents of the declared array type. 1622 /// 1623 /// E.g. for `int x[1][2][3];` returns { 1, 2, 3 }. 1624 static SmallVector<uint64_t, 2> 1625 getConstantArrayExtents(const ConstantArrayType *CAT) { 1626 assert(CAT && "ConstantArrayType should not be null"); 1627 CAT = cast<ConstantArrayType>(CAT->getCanonicalTypeInternal()); 1628 SmallVector<uint64_t, 2> Extents; 1629 do { 1630 Extents.push_back(CAT->getSize().getZExtValue()); 1631 } while ((CAT = dyn_cast<ConstantArrayType>(CAT->getElementType()))); 1632 return Extents; 1633 } 1634 1635 /// This is a helper function for `getConstantValFromConstArrayInitializer`. 1636 /// 1637 /// Return an array of offsets from nested ElementRegions and a root base 1638 /// region. The array is never empty and a base region is never null. 1639 /// 1640 /// E.g. for `Element{Element{Element{VarRegion},1},2},3}` returns { 3, 2, 1 }. 1641 /// This represents an access through indirection: `arr[1][2][3];` 1642 /// 1643 /// \param ER The given (possibly nested) ElementRegion. 1644 /// 1645 /// \note The result array is in the reverse order of indirection expression: 1646 /// arr[1][2][3] -> { 3, 2, 1 }. This helps to provide complexity O(n), where n 1647 /// is a number of indirections. It may not affect performance in real-life 1648 /// code, though. 1649 static std::pair<SmallVector<SVal, 2>, const MemRegion *> 1650 getElementRegionOffsetsWithBase(const ElementRegion *ER) { 1651 assert(ER && "ConstantArrayType should not be null"); 1652 const MemRegion *Base; 1653 SmallVector<SVal, 2> SValOffsets; 1654 do { 1655 SValOffsets.push_back(ER->getIndex()); 1656 Base = ER->getSuperRegion(); 1657 ER = dyn_cast<ElementRegion>(Base); 1658 } while (ER); 1659 return {SValOffsets, Base}; 1660 } 1661 1662 /// This is a helper function for `getConstantValFromConstArrayInitializer`. 1663 /// 1664 /// Convert array of offsets from `SVal` to `uint64_t` in consideration of 1665 /// respective array extents. 1666 /// \param SrcOffsets [in] The array of offsets of type `SVal` in reversed 1667 /// order (expectedly received from `getElementRegionOffsetsWithBase`). 1668 /// \param ArrayExtents [in] The array of extents. 1669 /// \param DstOffsets [out] The array of offsets of type `uint64_t`. 1670 /// \returns: 1671 /// - `std::nullopt` for successful convertion. 1672 /// - `UndefinedVal` or `UnknownVal` otherwise. It's expected that this SVal 1673 /// will be returned as a suitable value of the access operation. 1674 /// which should be returned as a correct 1675 /// 1676 /// \example: 1677 /// const int arr[10][20][30] = {}; // ArrayExtents { 10, 20, 30 } 1678 /// int x1 = arr[4][5][6]; // SrcOffsets { NonLoc(6), NonLoc(5), NonLoc(4) } 1679 /// // DstOffsets { 4, 5, 6 } 1680 /// // returns std::nullopt 1681 /// int x2 = arr[42][5][-6]; // returns UndefinedVal 1682 /// int x3 = arr[4][5][x2]; // returns UnknownVal 1683 static Optional<SVal> 1684 convertOffsetsFromSvalToUnsigneds(const SmallVector<SVal, 2> &SrcOffsets, 1685 const SmallVector<uint64_t, 2> ArrayExtents, 1686 SmallVector<uint64_t, 2> &DstOffsets) { 1687 // Check offsets for being out of bounds. 1688 // C++20 [expr.add] 7.6.6.4 (excerpt): 1689 // If P points to an array element i of an array object x with n 1690 // elements, where i < 0 or i > n, the behavior is undefined. 1691 // Dereferencing is not allowed on the "one past the last 1692 // element", when i == n. 1693 // Example: 1694 // const int arr[3][2] = {{1, 2}, {3, 4}}; 1695 // arr[0][0]; // 1 1696 // arr[0][1]; // 2 1697 // arr[0][2]; // UB 1698 // arr[1][0]; // 3 1699 // arr[1][1]; // 4 1700 // arr[1][-1]; // UB 1701 // arr[2][0]; // 0 1702 // arr[2][1]; // 0 1703 // arr[-2][0]; // UB 1704 DstOffsets.resize(SrcOffsets.size()); 1705 auto ExtentIt = ArrayExtents.begin(); 1706 auto OffsetIt = DstOffsets.begin(); 1707 // Reverse `SValOffsets` to make it consistent with `ArrayExtents`. 1708 for (SVal V : llvm::reverse(SrcOffsets)) { 1709 if (auto CI = V.getAs<nonloc::ConcreteInt>()) { 1710 // When offset is out of array's bounds, result is UB. 1711 const llvm::APSInt &Offset = CI->getValue(); 1712 if (Offset.isNegative() || Offset.uge(*(ExtentIt++))) 1713 return UndefinedVal(); 1714 // Store index in a reversive order. 1715 *(OffsetIt++) = Offset.getZExtValue(); 1716 continue; 1717 } 1718 // Symbolic index presented. Return Unknown value. 1719 // FIXME: We also need to take ElementRegions with symbolic indexes into 1720 // account. 1721 return UnknownVal(); 1722 } 1723 return std::nullopt; 1724 } 1725 1726 Optional<SVal> RegionStoreManager::getConstantValFromConstArrayInitializer( 1727 RegionBindingsConstRef B, const ElementRegion *R) { 1728 assert(R && "ElementRegion should not be null"); 1729 1730 // Treat an n-dimensional array. 1731 SmallVector<SVal, 2> SValOffsets; 1732 const MemRegion *Base; 1733 std::tie(SValOffsets, Base) = getElementRegionOffsetsWithBase(R); 1734 const VarRegion *VR = dyn_cast<VarRegion>(Base); 1735 if (!VR) 1736 return std::nullopt; 1737 1738 assert(!SValOffsets.empty() && "getElementRegionOffsets guarantees the " 1739 "offsets vector is not empty."); 1740 1741 // Check if the containing array has an initialized value that we can trust. 1742 // We can trust a const value or a value of a global initializer in main(). 1743 const VarDecl *VD = VR->getDecl(); 1744 if (!VD->getType().isConstQualified() && 1745 !R->getElementType().isConstQualified() && 1746 (!B.isMainAnalysis() || !VD->hasGlobalStorage())) 1747 return std::nullopt; 1748 1749 // Array's declaration should have `ConstantArrayType` type, because only this 1750 // type contains an array extent. It may happen that array type can be of 1751 // `IncompleteArrayType` type. To get the declaration of `ConstantArrayType` 1752 // type, we should find the declaration in the redeclarations chain that has 1753 // the initialization expression. 1754 // NOTE: `getAnyInitializer` has an out-parameter, which returns a new `VD` 1755 // from which an initializer is obtained. We replace current `VD` with the new 1756 // `VD`. If the return value of the function is null than `VD` won't be 1757 // replaced. 1758 const Expr *Init = VD->getAnyInitializer(VD); 1759 // NOTE: If `Init` is non-null, then a new `VD` is non-null for sure. So check 1760 // `Init` for null only and don't worry about the replaced `VD`. 1761 if (!Init) 1762 return std::nullopt; 1763 1764 // Array's declaration should have ConstantArrayType type, because only this 1765 // type contains an array extent. 1766 const ConstantArrayType *CAT = Ctx.getAsConstantArrayType(VD->getType()); 1767 if (!CAT) 1768 return std::nullopt; 1769 1770 // Get array extents. 1771 SmallVector<uint64_t, 2> Extents = getConstantArrayExtents(CAT); 1772 1773 // The number of offsets should equal to the numbers of extents, 1774 // otherwise wrong type punning occurred. For instance: 1775 // int arr[1][2][3]; 1776 // auto ptr = (int(*)[42])arr; 1777 // auto x = ptr[4][2]; // UB 1778 // FIXME: Should return UndefinedVal. 1779 if (SValOffsets.size() != Extents.size()) 1780 return std::nullopt; 1781 1782 SmallVector<uint64_t, 2> ConcreteOffsets; 1783 if (Optional<SVal> V = convertOffsetsFromSvalToUnsigneds(SValOffsets, Extents, 1784 ConcreteOffsets)) 1785 return *V; 1786 1787 // Handle InitListExpr. 1788 // Example: 1789 // const char arr[4][2] = { { 1, 2 }, { 3 }, 4, 5 }; 1790 if (const auto *ILE = dyn_cast<InitListExpr>(Init)) 1791 return getSValFromInitListExpr(ILE, ConcreteOffsets, R->getElementType()); 1792 1793 // Handle StringLiteral. 1794 // Example: 1795 // const char arr[] = "abc"; 1796 if (const auto *SL = dyn_cast<StringLiteral>(Init)) 1797 return getSValFromStringLiteral(SL, ConcreteOffsets.front(), 1798 R->getElementType()); 1799 1800 // FIXME: Handle CompoundLiteralExpr. 1801 1802 return std::nullopt; 1803 } 1804 1805 /// Returns an SVal, if possible, for the specified position of an 1806 /// initialization list. 1807 /// 1808 /// \param ILE The given initialization list. 1809 /// \param Offsets The array of unsigned offsets. E.g. for the expression 1810 /// `int x = arr[1][2][3];` an array should be { 1, 2, 3 }. 1811 /// \param ElemT The type of the result SVal expression. 1812 /// \return Optional SVal for the particular position in the initialization 1813 /// list. E.g. for the list `{{1, 2},[3, 4],{5, 6}, {}}` offsets: 1814 /// - {1, 1} returns SVal{4}, because it's the second position in the second 1815 /// sublist; 1816 /// - {3, 0} returns SVal{0}, because there's no explicit value at this 1817 /// position in the sublist. 1818 /// 1819 /// NOTE: Inorder to get a valid SVal, a caller shall guarantee valid offsets 1820 /// for the given initialization list. Otherwise SVal can be an equivalent to 0 1821 /// or lead to assertion. 1822 Optional<SVal> RegionStoreManager::getSValFromInitListExpr( 1823 const InitListExpr *ILE, const SmallVector<uint64_t, 2> &Offsets, 1824 QualType ElemT) { 1825 assert(ILE && "InitListExpr should not be null"); 1826 1827 for (uint64_t Offset : Offsets) { 1828 // C++20 [dcl.init.string] 9.4.2.1: 1829 // An array of ordinary character type [...] can be initialized by [...] 1830 // an appropriately-typed string-literal enclosed in braces. 1831 // Example: 1832 // const char arr[] = { "abc" }; 1833 if (ILE->isStringLiteralInit()) 1834 if (const auto *SL = dyn_cast<StringLiteral>(ILE->getInit(0))) 1835 return getSValFromStringLiteral(SL, Offset, ElemT); 1836 1837 // C++20 [expr.add] 9.4.17.5 (excerpt): 1838 // i-th array element is value-initialized for each k < i ≤ n, 1839 // where k is an expression-list size and n is an array extent. 1840 if (Offset >= ILE->getNumInits()) 1841 return svalBuilder.makeZeroVal(ElemT); 1842 1843 const Expr *E = ILE->getInit(Offset); 1844 const auto *IL = dyn_cast<InitListExpr>(E); 1845 if (!IL) 1846 // Return a constant value, if it is presented. 1847 // FIXME: Support other SVals. 1848 return svalBuilder.getConstantVal(E); 1849 1850 // Go to the nested initializer list. 1851 ILE = IL; 1852 } 1853 llvm_unreachable( 1854 "Unhandled InitListExpr sub-expressions or invalid offsets."); 1855 } 1856 1857 /// Returns an SVal, if possible, for the specified position in a string 1858 /// literal. 1859 /// 1860 /// \param SL The given string literal. 1861 /// \param Offset The unsigned offset. E.g. for the expression 1862 /// `char x = str[42];` an offset should be 42. 1863 /// E.g. for the string "abc" offset: 1864 /// - 1 returns SVal{b}, because it's the second position in the string. 1865 /// - 42 returns SVal{0}, because there's no explicit value at this 1866 /// position in the string. 1867 /// \param ElemT The type of the result SVal expression. 1868 /// 1869 /// NOTE: We return `0` for every offset >= the literal length for array 1870 /// declarations, like: 1871 /// const char str[42] = "123"; // Literal length is 4. 1872 /// char c = str[41]; // Offset is 41. 1873 /// FIXME: Nevertheless, we can't do the same for pointer declaraions, like: 1874 /// const char * const str = "123"; // Literal length is 4. 1875 /// char c = str[41]; // Offset is 41. Returns `0`, but Undef 1876 /// // expected. 1877 /// It should be properly handled before reaching this point. 1878 /// The main problem is that we can't distinguish between these declarations, 1879 /// because in case of array we can get the Decl from VarRegion, but in case 1880 /// of pointer the region is a StringRegion, which doesn't contain a Decl. 1881 /// Possible solution could be passing an array extent along with the offset. 1882 SVal RegionStoreManager::getSValFromStringLiteral(const StringLiteral *SL, 1883 uint64_t Offset, 1884 QualType ElemT) { 1885 assert(SL && "StringLiteral should not be null"); 1886 // C++20 [dcl.init.string] 9.4.2.3: 1887 // If there are fewer initializers than there are array elements, each 1888 // element not explicitly initialized shall be zero-initialized [dcl.init]. 1889 uint32_t Code = (Offset >= SL->getLength()) ? 0 : SL->getCodeUnit(Offset); 1890 return svalBuilder.makeIntVal(Code, ElemT); 1891 } 1892 1893 static Optional<SVal> getDerivedSymbolForBinding( 1894 RegionBindingsConstRef B, const TypedValueRegion *BaseRegion, 1895 const TypedValueRegion *SubReg, const ASTContext &Ctx, SValBuilder &SVB) { 1896 assert(BaseRegion); 1897 QualType BaseTy = BaseRegion->getValueType(); 1898 QualType Ty = SubReg->getValueType(); 1899 if (BaseTy->isScalarType() && Ty->isScalarType()) { 1900 if (Ctx.getTypeSizeInChars(BaseTy) >= Ctx.getTypeSizeInChars(Ty)) { 1901 if (const Optional<SVal> &ParentValue = B.getDirectBinding(BaseRegion)) { 1902 if (SymbolRef ParentValueAsSym = ParentValue->getAsSymbol()) 1903 return SVB.getDerivedRegionValueSymbolVal(ParentValueAsSym, SubReg); 1904 1905 if (ParentValue->isUndef()) 1906 return UndefinedVal(); 1907 1908 // Other cases: give up. We are indexing into a larger object 1909 // that has some value, but we don't know how to handle that yet. 1910 return UnknownVal(); 1911 } 1912 } 1913 } 1914 return std::nullopt; 1915 } 1916 1917 SVal RegionStoreManager::getBindingForElement(RegionBindingsConstRef B, 1918 const ElementRegion* R) { 1919 // Check if the region has a binding. 1920 if (const Optional<SVal> &V = B.getDirectBinding(R)) 1921 return *V; 1922 1923 const MemRegion* superR = R->getSuperRegion(); 1924 1925 // Check if the region is an element region of a string literal. 1926 if (const StringRegion *StrR = dyn_cast<StringRegion>(superR)) { 1927 // FIXME: Handle loads from strings where the literal is treated as 1928 // an integer, e.g., *((unsigned int*)"hello"). Such loads are UB according 1929 // to C++20 7.2.1.11 [basic.lval]. 1930 QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType(); 1931 if (!Ctx.hasSameUnqualifiedType(T, R->getElementType())) 1932 return UnknownVal(); 1933 if (const auto CI = R->getIndex().getAs<nonloc::ConcreteInt>()) { 1934 const llvm::APSInt &Idx = CI->getValue(); 1935 if (Idx < 0) 1936 return UndefinedVal(); 1937 const StringLiteral *SL = StrR->getStringLiteral(); 1938 return getSValFromStringLiteral(SL, Idx.getZExtValue(), T); 1939 } 1940 } else if (isa<ElementRegion, VarRegion>(superR)) { 1941 if (Optional<SVal> V = getConstantValFromConstArrayInitializer(B, R)) 1942 return *V; 1943 } 1944 1945 // Check for loads from a code text region. For such loads, just give up. 1946 if (isa<CodeTextRegion>(superR)) 1947 return UnknownVal(); 1948 1949 // Handle the case where we are indexing into a larger scalar object. 1950 // For example, this handles: 1951 // int x = ... 1952 // char *y = &x; 1953 // return *y; 1954 // FIXME: This is a hack, and doesn't do anything really intelligent yet. 1955 const RegionRawOffset &O = R->getAsArrayOffset(); 1956 1957 // If we cannot reason about the offset, return an unknown value. 1958 if (!O.getRegion()) 1959 return UnknownVal(); 1960 1961 if (const TypedValueRegion *baseR = dyn_cast<TypedValueRegion>(O.getRegion())) 1962 if (auto V = getDerivedSymbolForBinding(B, baseR, R, Ctx, svalBuilder)) 1963 return *V; 1964 1965 return getBindingForFieldOrElementCommon(B, R, R->getElementType()); 1966 } 1967 1968 SVal RegionStoreManager::getBindingForField(RegionBindingsConstRef B, 1969 const FieldRegion* R) { 1970 1971 // Check if the region has a binding. 1972 if (const Optional<SVal> &V = B.getDirectBinding(R)) 1973 return *V; 1974 1975 // If the containing record was initialized, try to get its constant value. 1976 const FieldDecl *FD = R->getDecl(); 1977 QualType Ty = FD->getType(); 1978 const MemRegion* superR = R->getSuperRegion(); 1979 if (const auto *VR = dyn_cast<VarRegion>(superR)) { 1980 const VarDecl *VD = VR->getDecl(); 1981 QualType RecordVarTy = VD->getType(); 1982 unsigned Index = FD->getFieldIndex(); 1983 // Either the record variable or the field has an initializer that we can 1984 // trust. We trust initializers of constants and, additionally, respect 1985 // initializers of globals when analyzing main(). 1986 if (RecordVarTy.isConstQualified() || Ty.isConstQualified() || 1987 (B.isMainAnalysis() && VD->hasGlobalStorage())) 1988 if (const Expr *Init = VD->getAnyInitializer()) 1989 if (const auto *InitList = dyn_cast<InitListExpr>(Init)) { 1990 if (Index < InitList->getNumInits()) { 1991 if (const Expr *FieldInit = InitList->getInit(Index)) 1992 if (Optional<SVal> V = svalBuilder.getConstantVal(FieldInit)) 1993 return *V; 1994 } else { 1995 return svalBuilder.makeZeroVal(Ty); 1996 } 1997 } 1998 } 1999 2000 // Handle the case where we are accessing into a larger scalar object. 2001 // For example, this handles: 2002 // struct header { 2003 // unsigned a : 1; 2004 // unsigned b : 1; 2005 // }; 2006 // struct parse_t { 2007 // unsigned bits0 : 1; 2008 // unsigned bits2 : 2; // <-- header 2009 // unsigned bits4 : 4; 2010 // }; 2011 // int parse(parse_t *p) { 2012 // unsigned copy = p->bits2; 2013 // header *bits = (header *)© 2014 // return bits->b; <-- here 2015 // } 2016 if (const auto *Base = dyn_cast<TypedValueRegion>(R->getBaseRegion())) 2017 if (auto V = getDerivedSymbolForBinding(B, Base, R, Ctx, svalBuilder)) 2018 return *V; 2019 2020 return getBindingForFieldOrElementCommon(B, R, Ty); 2021 } 2022 2023 Optional<SVal> 2024 RegionStoreManager::getBindingForDerivedDefaultValue(RegionBindingsConstRef B, 2025 const MemRegion *superR, 2026 const TypedValueRegion *R, 2027 QualType Ty) { 2028 2029 if (const Optional<SVal> &D = B.getDefaultBinding(superR)) { 2030 const SVal &val = *D; 2031 if (SymbolRef parentSym = val.getAsSymbol()) 2032 return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R); 2033 2034 if (val.isZeroConstant()) 2035 return svalBuilder.makeZeroVal(Ty); 2036 2037 if (val.isUnknownOrUndef()) 2038 return val; 2039 2040 // Lazy bindings are usually handled through getExistingLazyBinding(). 2041 // We should unify these two code paths at some point. 2042 if (isa<nonloc::LazyCompoundVal, nonloc::CompoundVal>(val)) 2043 return val; 2044 2045 llvm_unreachable("Unknown default value"); 2046 } 2047 2048 return std::nullopt; 2049 } 2050 2051 SVal RegionStoreManager::getLazyBinding(const SubRegion *LazyBindingRegion, 2052 RegionBindingsRef LazyBinding) { 2053 SVal Result; 2054 if (const ElementRegion *ER = dyn_cast<ElementRegion>(LazyBindingRegion)) 2055 Result = getBindingForElement(LazyBinding, ER); 2056 else 2057 Result = getBindingForField(LazyBinding, 2058 cast<FieldRegion>(LazyBindingRegion)); 2059 2060 // FIXME: This is a hack to deal with RegionStore's inability to distinguish a 2061 // default value for /part/ of an aggregate from a default value for the 2062 // /entire/ aggregate. The most common case of this is when struct Outer 2063 // has as its first member a struct Inner, which is copied in from a stack 2064 // variable. In this case, even if the Outer's default value is symbolic, 0, 2065 // or unknown, it gets overridden by the Inner's default value of undefined. 2066 // 2067 // This is a general problem -- if the Inner is zero-initialized, the Outer 2068 // will now look zero-initialized. The proper way to solve this is with a 2069 // new version of RegionStore that tracks the extent of a binding as well 2070 // as the offset. 2071 // 2072 // This hack only takes care of the undefined case because that can very 2073 // quickly result in a warning. 2074 if (Result.isUndef()) 2075 Result = UnknownVal(); 2076 2077 return Result; 2078 } 2079 2080 SVal 2081 RegionStoreManager::getBindingForFieldOrElementCommon(RegionBindingsConstRef B, 2082 const TypedValueRegion *R, 2083 QualType Ty) { 2084 2085 // At this point we have already checked in either getBindingForElement or 2086 // getBindingForField if 'R' has a direct binding. 2087 2088 // Lazy binding? 2089 Store lazyBindingStore = nullptr; 2090 const SubRegion *lazyBindingRegion = nullptr; 2091 std::tie(lazyBindingStore, lazyBindingRegion) = findLazyBinding(B, R, R); 2092 if (lazyBindingRegion) 2093 return getLazyBinding(lazyBindingRegion, 2094 getRegionBindings(lazyBindingStore)); 2095 2096 // Record whether or not we see a symbolic index. That can completely 2097 // be out of scope of our lookup. 2098 bool hasSymbolicIndex = false; 2099 2100 // FIXME: This is a hack to deal with RegionStore's inability to distinguish a 2101 // default value for /part/ of an aggregate from a default value for the 2102 // /entire/ aggregate. The most common case of this is when struct Outer 2103 // has as its first member a struct Inner, which is copied in from a stack 2104 // variable. In this case, even if the Outer's default value is symbolic, 0, 2105 // or unknown, it gets overridden by the Inner's default value of undefined. 2106 // 2107 // This is a general problem -- if the Inner is zero-initialized, the Outer 2108 // will now look zero-initialized. The proper way to solve this is with a 2109 // new version of RegionStore that tracks the extent of a binding as well 2110 // as the offset. 2111 // 2112 // This hack only takes care of the undefined case because that can very 2113 // quickly result in a warning. 2114 bool hasPartialLazyBinding = false; 2115 2116 const SubRegion *SR = R; 2117 while (SR) { 2118 const MemRegion *Base = SR->getSuperRegion(); 2119 if (Optional<SVal> D = getBindingForDerivedDefaultValue(B, Base, R, Ty)) { 2120 if (D->getAs<nonloc::LazyCompoundVal>()) { 2121 hasPartialLazyBinding = true; 2122 break; 2123 } 2124 2125 return *D; 2126 } 2127 2128 if (const ElementRegion *ER = dyn_cast<ElementRegion>(Base)) { 2129 NonLoc index = ER->getIndex(); 2130 if (!index.isConstant()) 2131 hasSymbolicIndex = true; 2132 } 2133 2134 // If our super region is a field or element itself, walk up the region 2135 // hierarchy to see if there is a default value installed in an ancestor. 2136 SR = dyn_cast<SubRegion>(Base); 2137 } 2138 2139 if (R->hasStackNonParametersStorage()) { 2140 if (isa<ElementRegion>(R)) { 2141 // Currently we don't reason specially about Clang-style vectors. Check 2142 // if superR is a vector and if so return Unknown. 2143 if (const TypedValueRegion *typedSuperR = 2144 dyn_cast<TypedValueRegion>(R->getSuperRegion())) { 2145 if (typedSuperR->getValueType()->isVectorType()) 2146 return UnknownVal(); 2147 } 2148 } 2149 2150 // FIXME: We also need to take ElementRegions with symbolic indexes into 2151 // account. This case handles both directly accessing an ElementRegion 2152 // with a symbolic offset, but also fields within an element with 2153 // a symbolic offset. 2154 if (hasSymbolicIndex) 2155 return UnknownVal(); 2156 2157 // Additionally allow introspection of a block's internal layout. 2158 // Try to get direct binding if all other attempts failed thus far. 2159 // Else, return UndefinedVal() 2160 if (!hasPartialLazyBinding && !isa<BlockDataRegion>(R->getBaseRegion())) { 2161 if (const Optional<SVal> &V = B.getDefaultBinding(R)) 2162 return *V; 2163 return UndefinedVal(); 2164 } 2165 } 2166 2167 // All other values are symbolic. 2168 return svalBuilder.getRegionValueSymbolVal(R); 2169 } 2170 2171 SVal RegionStoreManager::getBindingForObjCIvar(RegionBindingsConstRef B, 2172 const ObjCIvarRegion* R) { 2173 // Check if the region has a binding. 2174 if (const Optional<SVal> &V = B.getDirectBinding(R)) 2175 return *V; 2176 2177 const MemRegion *superR = R->getSuperRegion(); 2178 2179 // Check if the super region has a default binding. 2180 if (const Optional<SVal> &V = B.getDefaultBinding(superR)) { 2181 if (SymbolRef parentSym = V->getAsSymbol()) 2182 return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R); 2183 2184 // Other cases: give up. 2185 return UnknownVal(); 2186 } 2187 2188 return getBindingForLazySymbol(R); 2189 } 2190 2191 SVal RegionStoreManager::getBindingForVar(RegionBindingsConstRef B, 2192 const VarRegion *R) { 2193 2194 // Check if the region has a binding. 2195 if (Optional<SVal> V = B.getDirectBinding(R)) 2196 return *V; 2197 2198 if (Optional<SVal> V = B.getDefaultBinding(R)) 2199 return *V; 2200 2201 // Lazily derive a value for the VarRegion. 2202 const VarDecl *VD = R->getDecl(); 2203 const MemSpaceRegion *MS = R->getMemorySpace(); 2204 2205 // Arguments are always symbolic. 2206 if (isa<StackArgumentsSpaceRegion>(MS)) 2207 return svalBuilder.getRegionValueSymbolVal(R); 2208 2209 // Is 'VD' declared constant? If so, retrieve the constant value. 2210 if (VD->getType().isConstQualified()) { 2211 if (const Expr *Init = VD->getAnyInitializer()) { 2212 if (Optional<SVal> V = svalBuilder.getConstantVal(Init)) 2213 return *V; 2214 2215 // If the variable is const qualified and has an initializer but 2216 // we couldn't evaluate initializer to a value, treat the value as 2217 // unknown. 2218 return UnknownVal(); 2219 } 2220 } 2221 2222 // This must come after the check for constants because closure-captured 2223 // constant variables may appear in UnknownSpaceRegion. 2224 if (isa<UnknownSpaceRegion>(MS)) 2225 return svalBuilder.getRegionValueSymbolVal(R); 2226 2227 if (isa<GlobalsSpaceRegion>(MS)) { 2228 QualType T = VD->getType(); 2229 2230 // If we're in main(), then global initializers have not become stale yet. 2231 if (B.isMainAnalysis()) 2232 if (const Expr *Init = VD->getAnyInitializer()) 2233 if (Optional<SVal> V = svalBuilder.getConstantVal(Init)) 2234 return *V; 2235 2236 // Function-scoped static variables are default-initialized to 0; if they 2237 // have an initializer, it would have been processed by now. 2238 // FIXME: This is only true when we're starting analysis from main(). 2239 // We're losing a lot of coverage here. 2240 if (isa<StaticGlobalSpaceRegion>(MS)) 2241 return svalBuilder.makeZeroVal(T); 2242 2243 if (Optional<SVal> V = getBindingForDerivedDefaultValue(B, MS, R, T)) { 2244 assert(!V->getAs<nonloc::LazyCompoundVal>()); 2245 return *V; 2246 } 2247 2248 return svalBuilder.getRegionValueSymbolVal(R); 2249 } 2250 2251 return UndefinedVal(); 2252 } 2253 2254 SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) { 2255 // All other values are symbolic. 2256 return svalBuilder.getRegionValueSymbolVal(R); 2257 } 2258 2259 const RegionStoreManager::SValListTy & 2260 RegionStoreManager::getInterestingValues(nonloc::LazyCompoundVal LCV) { 2261 // First, check the cache. 2262 LazyBindingsMapTy::iterator I = LazyBindingsMap.find(LCV.getCVData()); 2263 if (I != LazyBindingsMap.end()) 2264 return I->second; 2265 2266 // If we don't have a list of values cached, start constructing it. 2267 SValListTy List; 2268 2269 const SubRegion *LazyR = LCV.getRegion(); 2270 RegionBindingsRef B = getRegionBindings(LCV.getStore()); 2271 2272 // If this region had /no/ bindings at the time, there are no interesting 2273 // values to return. 2274 const ClusterBindings *Cluster = B.lookup(LazyR->getBaseRegion()); 2275 if (!Cluster) 2276 return (LazyBindingsMap[LCV.getCVData()] = std::move(List)); 2277 2278 SmallVector<BindingPair, 32> Bindings; 2279 collectSubRegionBindings(Bindings, svalBuilder, *Cluster, LazyR, 2280 /*IncludeAllDefaultBindings=*/true); 2281 for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(), 2282 E = Bindings.end(); 2283 I != E; ++I) { 2284 SVal V = I->second; 2285 if (V.isUnknownOrUndef() || V.isConstant()) 2286 continue; 2287 2288 if (auto InnerLCV = V.getAs<nonloc::LazyCompoundVal>()) { 2289 const SValListTy &InnerList = getInterestingValues(*InnerLCV); 2290 List.insert(List.end(), InnerList.begin(), InnerList.end()); 2291 } 2292 2293 List.push_back(V); 2294 } 2295 2296 return (LazyBindingsMap[LCV.getCVData()] = std::move(List)); 2297 } 2298 2299 NonLoc RegionStoreManager::createLazyBinding(RegionBindingsConstRef B, 2300 const TypedValueRegion *R) { 2301 if (Optional<nonloc::LazyCompoundVal> V = 2302 getExistingLazyBinding(svalBuilder, B, R, false)) 2303 return *V; 2304 2305 return svalBuilder.makeLazyCompoundVal(StoreRef(B.asStore(), *this), R); 2306 } 2307 2308 static bool isRecordEmpty(const RecordDecl *RD) { 2309 if (!RD->field_empty()) 2310 return false; 2311 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) 2312 return CRD->getNumBases() == 0; 2313 return true; 2314 } 2315 2316 SVal RegionStoreManager::getBindingForStruct(RegionBindingsConstRef B, 2317 const TypedValueRegion *R) { 2318 const RecordDecl *RD = R->getValueType()->castAs<RecordType>()->getDecl(); 2319 if (!RD->getDefinition() || isRecordEmpty(RD)) 2320 return UnknownVal(); 2321 2322 return createLazyBinding(B, R); 2323 } 2324 2325 SVal RegionStoreManager::getBindingForArray(RegionBindingsConstRef B, 2326 const TypedValueRegion *R) { 2327 assert(Ctx.getAsConstantArrayType(R->getValueType()) && 2328 "Only constant array types can have compound bindings."); 2329 2330 return createLazyBinding(B, R); 2331 } 2332 2333 bool RegionStoreManager::includedInBindings(Store store, 2334 const MemRegion *region) const { 2335 RegionBindingsRef B = getRegionBindings(store); 2336 region = region->getBaseRegion(); 2337 2338 // Quick path: if the base is the head of a cluster, the region is live. 2339 if (B.lookup(region)) 2340 return true; 2341 2342 // Slow path: if the region is the VALUE of any binding, it is live. 2343 for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI) { 2344 const ClusterBindings &Cluster = RI.getData(); 2345 for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end(); 2346 CI != CE; ++CI) { 2347 const SVal &D = CI.getData(); 2348 if (const MemRegion *R = D.getAsRegion()) 2349 if (R->getBaseRegion() == region) 2350 return true; 2351 } 2352 } 2353 2354 return false; 2355 } 2356 2357 //===----------------------------------------------------------------------===// 2358 // Binding values to regions. 2359 //===----------------------------------------------------------------------===// 2360 2361 StoreRef RegionStoreManager::killBinding(Store ST, Loc L) { 2362 if (Optional<loc::MemRegionVal> LV = L.getAs<loc::MemRegionVal>()) 2363 if (const MemRegion* R = LV->getRegion()) 2364 return StoreRef(getRegionBindings(ST).removeBinding(R) 2365 .asImmutableMap() 2366 .getRootWithoutRetain(), 2367 *this); 2368 2369 return StoreRef(ST, *this); 2370 } 2371 2372 RegionBindingsRef 2373 RegionStoreManager::bind(RegionBindingsConstRef B, Loc L, SVal V) { 2374 if (L.getAs<loc::ConcreteInt>()) 2375 return B; 2376 2377 // If we get here, the location should be a region. 2378 const MemRegion *R = L.castAs<loc::MemRegionVal>().getRegion(); 2379 2380 // Check if the region is a struct region. 2381 if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R)) { 2382 QualType Ty = TR->getValueType(); 2383 if (Ty->isArrayType()) 2384 return bindArray(B, TR, V); 2385 if (Ty->isStructureOrClassType()) 2386 return bindStruct(B, TR, V); 2387 if (Ty->isVectorType()) 2388 return bindVector(B, TR, V); 2389 if (Ty->isUnionType()) 2390 return bindAggregate(B, TR, V); 2391 } 2392 2393 // Binding directly to a symbolic region should be treated as binding 2394 // to element 0. 2395 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) 2396 R = GetElementZeroRegion(SR, SR->getPointeeStaticType()); 2397 2398 assert((!isa<CXXThisRegion>(R) || !B.lookup(R)) && 2399 "'this' pointer is not an l-value and is not assignable"); 2400 2401 // Clear out bindings that may overlap with this binding. 2402 RegionBindingsRef NewB = removeSubRegionBindings(B, cast<SubRegion>(R)); 2403 2404 // LazyCompoundVals should be always bound as 'default' bindings. 2405 auto KeyKind = isa<nonloc::LazyCompoundVal>(V) ? BindingKey::Default 2406 : BindingKey::Direct; 2407 return NewB.addBinding(BindingKey::Make(R, KeyKind), V); 2408 } 2409 2410 RegionBindingsRef 2411 RegionStoreManager::setImplicitDefaultValue(RegionBindingsConstRef B, 2412 const MemRegion *R, 2413 QualType T) { 2414 SVal V; 2415 2416 if (Loc::isLocType(T)) 2417 V = svalBuilder.makeNullWithType(T); 2418 else if (T->isIntegralOrEnumerationType()) 2419 V = svalBuilder.makeZeroVal(T); 2420 else if (T->isStructureOrClassType() || T->isArrayType()) { 2421 // Set the default value to a zero constant when it is a structure 2422 // or array. The type doesn't really matter. 2423 V = svalBuilder.makeZeroVal(Ctx.IntTy); 2424 } 2425 else { 2426 // We can't represent values of this type, but we still need to set a value 2427 // to record that the region has been initialized. 2428 // If this assertion ever fires, a new case should be added above -- we 2429 // should know how to default-initialize any value we can symbolicate. 2430 assert(!SymbolManager::canSymbolicate(T) && "This type is representable"); 2431 V = UnknownVal(); 2432 } 2433 2434 return B.addBinding(R, BindingKey::Default, V); 2435 } 2436 2437 Optional<RegionBindingsRef> RegionStoreManager::tryBindSmallArray( 2438 RegionBindingsConstRef B, const TypedValueRegion *R, const ArrayType *AT, 2439 nonloc::LazyCompoundVal LCV) { 2440 2441 auto CAT = dyn_cast<ConstantArrayType>(AT); 2442 2443 // If we don't know the size, create a lazyCompoundVal instead. 2444 if (!CAT) 2445 return std::nullopt; 2446 2447 QualType Ty = CAT->getElementType(); 2448 if (!(Ty->isScalarType() || Ty->isReferenceType())) 2449 return std::nullopt; 2450 2451 // If the array is too big, create a LCV instead. 2452 uint64_t ArrSize = CAT->getSize().getLimitedValue(); 2453 if (ArrSize > SmallArrayLimit) 2454 return std::nullopt; 2455 2456 RegionBindingsRef NewB = B; 2457 2458 for (uint64_t i = 0; i < ArrSize; ++i) { 2459 auto Idx = svalBuilder.makeArrayIndex(i); 2460 const ElementRegion *SrcER = 2461 MRMgr.getElementRegion(Ty, Idx, LCV.getRegion(), Ctx); 2462 SVal V = getBindingForElement(getRegionBindings(LCV.getStore()), SrcER); 2463 2464 const ElementRegion *DstER = MRMgr.getElementRegion(Ty, Idx, R, Ctx); 2465 NewB = bind(NewB, loc::MemRegionVal(DstER), V); 2466 } 2467 2468 return NewB; 2469 } 2470 2471 RegionBindingsRef 2472 RegionStoreManager::bindArray(RegionBindingsConstRef B, 2473 const TypedValueRegion* R, 2474 SVal Init) { 2475 2476 const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType())); 2477 QualType ElementTy = AT->getElementType(); 2478 Optional<uint64_t> Size; 2479 2480 if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT)) 2481 Size = CAT->getSize().getZExtValue(); 2482 2483 // Check if the init expr is a literal. If so, bind the rvalue instead. 2484 // FIXME: It's not responsibility of the Store to transform this lvalue 2485 // to rvalue. ExprEngine or maybe even CFG should do this before binding. 2486 if (Optional<loc::MemRegionVal> MRV = Init.getAs<loc::MemRegionVal>()) { 2487 SVal V = getBinding(B.asStore(), *MRV, R->getValueType()); 2488 return bindAggregate(B, R, V); 2489 } 2490 2491 // Handle lazy compound values. 2492 if (Optional<nonloc::LazyCompoundVal> LCV = 2493 Init.getAs<nonloc::LazyCompoundVal>()) { 2494 if (Optional<RegionBindingsRef> NewB = tryBindSmallArray(B, R, AT, *LCV)) 2495 return *NewB; 2496 2497 return bindAggregate(B, R, Init); 2498 } 2499 2500 if (Init.isUnknown()) 2501 return bindAggregate(B, R, UnknownVal()); 2502 2503 // Remaining case: explicit compound values. 2504 const nonloc::CompoundVal& CV = Init.castAs<nonloc::CompoundVal>(); 2505 nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end(); 2506 uint64_t i = 0; 2507 2508 RegionBindingsRef NewB(B); 2509 2510 for (; Size ? i < *Size : true; ++i, ++VI) { 2511 // The init list might be shorter than the array length. 2512 if (VI == VE) 2513 break; 2514 2515 const NonLoc &Idx = svalBuilder.makeArrayIndex(i); 2516 const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx); 2517 2518 if (ElementTy->isStructureOrClassType()) 2519 NewB = bindStruct(NewB, ER, *VI); 2520 else if (ElementTy->isArrayType()) 2521 NewB = bindArray(NewB, ER, *VI); 2522 else 2523 NewB = bind(NewB, loc::MemRegionVal(ER), *VI); 2524 } 2525 2526 // If the init list is shorter than the array length (or the array has 2527 // variable length), set the array default value. Values that are already set 2528 // are not overwritten. 2529 if (!Size || i < *Size) 2530 NewB = setImplicitDefaultValue(NewB, R, ElementTy); 2531 2532 return NewB; 2533 } 2534 2535 RegionBindingsRef RegionStoreManager::bindVector(RegionBindingsConstRef B, 2536 const TypedValueRegion* R, 2537 SVal V) { 2538 QualType T = R->getValueType(); 2539 const VectorType *VT = T->castAs<VectorType>(); // Use castAs for typedefs. 2540 2541 // Handle lazy compound values and symbolic values. 2542 if (isa<nonloc::LazyCompoundVal, nonloc::SymbolVal>(V)) 2543 return bindAggregate(B, R, V); 2544 2545 // We may get non-CompoundVal accidentally due to imprecise cast logic or 2546 // that we are binding symbolic struct value. Kill the field values, and if 2547 // the value is symbolic go and bind it as a "default" binding. 2548 if (!isa<nonloc::CompoundVal>(V)) { 2549 return bindAggregate(B, R, UnknownVal()); 2550 } 2551 2552 QualType ElemType = VT->getElementType(); 2553 nonloc::CompoundVal CV = V.castAs<nonloc::CompoundVal>(); 2554 nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end(); 2555 unsigned index = 0, numElements = VT->getNumElements(); 2556 RegionBindingsRef NewB(B); 2557 2558 for ( ; index != numElements ; ++index) { 2559 if (VI == VE) 2560 break; 2561 2562 NonLoc Idx = svalBuilder.makeArrayIndex(index); 2563 const ElementRegion *ER = MRMgr.getElementRegion(ElemType, Idx, R, Ctx); 2564 2565 if (ElemType->isArrayType()) 2566 NewB = bindArray(NewB, ER, *VI); 2567 else if (ElemType->isStructureOrClassType()) 2568 NewB = bindStruct(NewB, ER, *VI); 2569 else 2570 NewB = bind(NewB, loc::MemRegionVal(ER), *VI); 2571 } 2572 return NewB; 2573 } 2574 2575 Optional<RegionBindingsRef> 2576 RegionStoreManager::tryBindSmallStruct(RegionBindingsConstRef B, 2577 const TypedValueRegion *R, 2578 const RecordDecl *RD, 2579 nonloc::LazyCompoundVal LCV) { 2580 FieldVector Fields; 2581 2582 if (const CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(RD)) 2583 if (Class->getNumBases() != 0 || Class->getNumVBases() != 0) 2584 return std::nullopt; 2585 2586 for (const auto *FD : RD->fields()) { 2587 if (FD->isUnnamedBitfield()) 2588 continue; 2589 2590 // If there are too many fields, or if any of the fields are aggregates, 2591 // just use the LCV as a default binding. 2592 if (Fields.size() == SmallStructLimit) 2593 return std::nullopt; 2594 2595 QualType Ty = FD->getType(); 2596 2597 // Zero length arrays are basically no-ops, so we also ignore them here. 2598 if (Ty->isConstantArrayType() && 2599 Ctx.getConstantArrayElementCount(Ctx.getAsConstantArrayType(Ty)) == 0) 2600 continue; 2601 2602 if (!(Ty->isScalarType() || Ty->isReferenceType())) 2603 return std::nullopt; 2604 2605 Fields.push_back(FD); 2606 } 2607 2608 RegionBindingsRef NewB = B; 2609 2610 for (FieldVector::iterator I = Fields.begin(), E = Fields.end(); I != E; ++I){ 2611 const FieldRegion *SourceFR = MRMgr.getFieldRegion(*I, LCV.getRegion()); 2612 SVal V = getBindingForField(getRegionBindings(LCV.getStore()), SourceFR); 2613 2614 const FieldRegion *DestFR = MRMgr.getFieldRegion(*I, R); 2615 NewB = bind(NewB, loc::MemRegionVal(DestFR), V); 2616 } 2617 2618 return NewB; 2619 } 2620 2621 RegionBindingsRef RegionStoreManager::bindStruct(RegionBindingsConstRef B, 2622 const TypedValueRegion *R, 2623 SVal V) { 2624 QualType T = R->getValueType(); 2625 assert(T->isStructureOrClassType()); 2626 2627 const RecordType* RT = T->castAs<RecordType>(); 2628 const RecordDecl *RD = RT->getDecl(); 2629 2630 if (!RD->isCompleteDefinition()) 2631 return B; 2632 2633 // Handle lazy compound values and symbolic values. 2634 if (Optional<nonloc::LazyCompoundVal> LCV = 2635 V.getAs<nonloc::LazyCompoundVal>()) { 2636 if (Optional<RegionBindingsRef> NewB = tryBindSmallStruct(B, R, RD, *LCV)) 2637 return *NewB; 2638 return bindAggregate(B, R, V); 2639 } 2640 if (isa<nonloc::SymbolVal>(V)) 2641 return bindAggregate(B, R, V); 2642 2643 // We may get non-CompoundVal accidentally due to imprecise cast logic or 2644 // that we are binding symbolic struct value. Kill the field values, and if 2645 // the value is symbolic go and bind it as a "default" binding. 2646 if (V.isUnknown() || !isa<nonloc::CompoundVal>(V)) 2647 return bindAggregate(B, R, UnknownVal()); 2648 2649 // The raw CompoundVal is essentially a symbolic InitListExpr: an (immutable) 2650 // list of other values. It appears pretty much only when there's an actual 2651 // initializer list expression in the program, and the analyzer tries to 2652 // unwrap it as soon as possible. 2653 // This code is where such unwrap happens: when the compound value is put into 2654 // the object that it was supposed to initialize (it's an *initializer* list, 2655 // after all), instead of binding the whole value to the whole object, we bind 2656 // sub-values to sub-objects. Sub-values may themselves be compound values, 2657 // and in this case the procedure becomes recursive. 2658 // FIXME: The annoying part about compound values is that they don't carry 2659 // any sort of information about which value corresponds to which sub-object. 2660 // It's simply a list of values in the middle of nowhere; we expect to match 2661 // them to sub-objects, essentially, "by index": first value binds to 2662 // the first field, second value binds to the second field, etc. 2663 // It would have been much safer to organize non-lazy compound values as 2664 // a mapping from fields/bases to values. 2665 const nonloc::CompoundVal& CV = V.castAs<nonloc::CompoundVal>(); 2666 nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end(); 2667 2668 RegionBindingsRef NewB(B); 2669 2670 // In C++17 aggregates may have base classes, handle those as well. 2671 // They appear before fields in the initializer list / compound value. 2672 if (const auto *CRD = dyn_cast<CXXRecordDecl>(RD)) { 2673 // If the object was constructed with a constructor, its value is a 2674 // LazyCompoundVal. If it's a raw CompoundVal, it means that we're 2675 // performing aggregate initialization. The only exception from this 2676 // rule is sending an Objective-C++ message that returns a C++ object 2677 // to a nil receiver; in this case the semantics is to return a 2678 // zero-initialized object even if it's a C++ object that doesn't have 2679 // this sort of constructor; the CompoundVal is empty in this case. 2680 assert((CRD->isAggregate() || (Ctx.getLangOpts().ObjC && VI == VE)) && 2681 "Non-aggregates are constructed with a constructor!"); 2682 2683 for (const auto &B : CRD->bases()) { 2684 // (Multiple inheritance is fine though.) 2685 assert(!B.isVirtual() && "Aggregates cannot have virtual base classes!"); 2686 2687 if (VI == VE) 2688 break; 2689 2690 QualType BTy = B.getType(); 2691 assert(BTy->isStructureOrClassType() && "Base classes must be classes!"); 2692 2693 const CXXRecordDecl *BRD = BTy->getAsCXXRecordDecl(); 2694 assert(BRD && "Base classes must be C++ classes!"); 2695 2696 const CXXBaseObjectRegion *BR = 2697 MRMgr.getCXXBaseObjectRegion(BRD, R, /*IsVirtual=*/false); 2698 2699 NewB = bindStruct(NewB, BR, *VI); 2700 2701 ++VI; 2702 } 2703 } 2704 2705 RecordDecl::field_iterator FI, FE; 2706 2707 for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) { 2708 2709 if (VI == VE) 2710 break; 2711 2712 // Skip any unnamed bitfields to stay in sync with the initializers. 2713 if (FI->isUnnamedBitfield()) 2714 continue; 2715 2716 QualType FTy = FI->getType(); 2717 const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R); 2718 2719 if (FTy->isArrayType()) 2720 NewB = bindArray(NewB, FR, *VI); 2721 else if (FTy->isStructureOrClassType()) 2722 NewB = bindStruct(NewB, FR, *VI); 2723 else 2724 NewB = bind(NewB, loc::MemRegionVal(FR), *VI); 2725 ++VI; 2726 } 2727 2728 // There may be fewer values in the initialize list than the fields of struct. 2729 if (FI != FE) { 2730 NewB = NewB.addBinding(R, BindingKey::Default, 2731 svalBuilder.makeIntVal(0, false)); 2732 } 2733 2734 return NewB; 2735 } 2736 2737 RegionBindingsRef 2738 RegionStoreManager::bindAggregate(RegionBindingsConstRef B, 2739 const TypedRegion *R, 2740 SVal Val) { 2741 // Remove the old bindings, using 'R' as the root of all regions 2742 // we will invalidate. Then add the new binding. 2743 return removeSubRegionBindings(B, R).addBinding(R, BindingKey::Default, Val); 2744 } 2745 2746 //===----------------------------------------------------------------------===// 2747 // State pruning. 2748 //===----------------------------------------------------------------------===// 2749 2750 namespace { 2751 class RemoveDeadBindingsWorker 2752 : public ClusterAnalysis<RemoveDeadBindingsWorker> { 2753 SmallVector<const SymbolicRegion *, 12> Postponed; 2754 SymbolReaper &SymReaper; 2755 const StackFrameContext *CurrentLCtx; 2756 2757 public: 2758 RemoveDeadBindingsWorker(RegionStoreManager &rm, 2759 ProgramStateManager &stateMgr, 2760 RegionBindingsRef b, SymbolReaper &symReaper, 2761 const StackFrameContext *LCtx) 2762 : ClusterAnalysis<RemoveDeadBindingsWorker>(rm, stateMgr, b), 2763 SymReaper(symReaper), CurrentLCtx(LCtx) {} 2764 2765 // Called by ClusterAnalysis. 2766 void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C); 2767 void VisitCluster(const MemRegion *baseR, const ClusterBindings *C); 2768 using ClusterAnalysis<RemoveDeadBindingsWorker>::VisitCluster; 2769 2770 using ClusterAnalysis::AddToWorkList; 2771 2772 bool AddToWorkList(const MemRegion *R); 2773 2774 bool UpdatePostponed(); 2775 void VisitBinding(SVal V); 2776 }; 2777 } 2778 2779 bool RemoveDeadBindingsWorker::AddToWorkList(const MemRegion *R) { 2780 const MemRegion *BaseR = R->getBaseRegion(); 2781 return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR)); 2782 } 2783 2784 void RemoveDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR, 2785 const ClusterBindings &C) { 2786 2787 if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) { 2788 if (SymReaper.isLive(VR)) 2789 AddToWorkList(baseR, &C); 2790 2791 return; 2792 } 2793 2794 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) { 2795 if (SymReaper.isLive(SR->getSymbol())) 2796 AddToWorkList(SR, &C); 2797 else 2798 Postponed.push_back(SR); 2799 2800 return; 2801 } 2802 2803 if (isa<NonStaticGlobalSpaceRegion>(baseR)) { 2804 AddToWorkList(baseR, &C); 2805 return; 2806 } 2807 2808 // CXXThisRegion in the current or parent location context is live. 2809 if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) { 2810 const auto *StackReg = 2811 cast<StackArgumentsSpaceRegion>(TR->getSuperRegion()); 2812 const StackFrameContext *RegCtx = StackReg->getStackFrame(); 2813 if (CurrentLCtx && 2814 (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx))) 2815 AddToWorkList(TR, &C); 2816 } 2817 } 2818 2819 void RemoveDeadBindingsWorker::VisitCluster(const MemRegion *baseR, 2820 const ClusterBindings *C) { 2821 if (!C) 2822 return; 2823 2824 // Mark the symbol for any SymbolicRegion with live bindings as live itself. 2825 // This means we should continue to track that symbol. 2826 if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(baseR)) 2827 SymReaper.markLive(SymR->getSymbol()); 2828 2829 for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I) { 2830 // Element index of a binding key is live. 2831 SymReaper.markElementIndicesLive(I.getKey().getRegion()); 2832 2833 VisitBinding(I.getData()); 2834 } 2835 } 2836 2837 void RemoveDeadBindingsWorker::VisitBinding(SVal V) { 2838 // Is it a LazyCompoundVal? All referenced regions are live as well. 2839 // The LazyCompoundVal itself is not live but should be readable. 2840 if (auto LCS = V.getAs<nonloc::LazyCompoundVal>()) { 2841 SymReaper.markLazilyCopied(LCS->getRegion()); 2842 2843 for (SVal V : RM.getInterestingValues(*LCS)) { 2844 if (auto DepLCS = V.getAs<nonloc::LazyCompoundVal>()) 2845 SymReaper.markLazilyCopied(DepLCS->getRegion()); 2846 else 2847 VisitBinding(V); 2848 } 2849 2850 return; 2851 } 2852 2853 // If V is a region, then add it to the worklist. 2854 if (const MemRegion *R = V.getAsRegion()) { 2855 AddToWorkList(R); 2856 SymReaper.markLive(R); 2857 2858 // All regions captured by a block are also live. 2859 if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(R)) { 2860 BlockDataRegion::referenced_vars_iterator I = BR->referenced_vars_begin(), 2861 E = BR->referenced_vars_end(); 2862 for ( ; I != E; ++I) 2863 AddToWorkList(I.getCapturedRegion()); 2864 } 2865 } 2866 2867 2868 // Update the set of live symbols. 2869 for (auto SI = V.symbol_begin(), SE = V.symbol_end(); SI!=SE; ++SI) 2870 SymReaper.markLive(*SI); 2871 } 2872 2873 bool RemoveDeadBindingsWorker::UpdatePostponed() { 2874 // See if any postponed SymbolicRegions are actually live now, after 2875 // having done a scan. 2876 bool Changed = false; 2877 2878 for (auto I = Postponed.begin(), E = Postponed.end(); I != E; ++I) { 2879 if (const SymbolicRegion *SR = *I) { 2880 if (SymReaper.isLive(SR->getSymbol())) { 2881 Changed |= AddToWorkList(SR); 2882 *I = nullptr; 2883 } 2884 } 2885 } 2886 2887 return Changed; 2888 } 2889 2890 StoreRef RegionStoreManager::removeDeadBindings(Store store, 2891 const StackFrameContext *LCtx, 2892 SymbolReaper& SymReaper) { 2893 RegionBindingsRef B = getRegionBindings(store); 2894 RemoveDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx); 2895 W.GenerateClusters(); 2896 2897 // Enqueue the region roots onto the worklist. 2898 for (SymbolReaper::region_iterator I = SymReaper.region_begin(), 2899 E = SymReaper.region_end(); I != E; ++I) { 2900 W.AddToWorkList(*I); 2901 } 2902 2903 do W.RunWorkList(); while (W.UpdatePostponed()); 2904 2905 // We have now scanned the store, marking reachable regions and symbols 2906 // as live. We now remove all the regions that are dead from the store 2907 // as well as update DSymbols with the set symbols that are now dead. 2908 for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) { 2909 const MemRegion *Base = I.getKey(); 2910 2911 // If the cluster has been visited, we know the region has been marked. 2912 // Otherwise, remove the dead entry. 2913 if (!W.isVisited(Base)) 2914 B = B.remove(Base); 2915 } 2916 2917 return StoreRef(B.asStore(), *this); 2918 } 2919 2920 //===----------------------------------------------------------------------===// 2921 // Utility methods. 2922 //===----------------------------------------------------------------------===// 2923 2924 void RegionStoreManager::printJson(raw_ostream &Out, Store S, const char *NL, 2925 unsigned int Space, bool IsDot) const { 2926 RegionBindingsRef Bindings = getRegionBindings(S); 2927 2928 Indent(Out, Space, IsDot) << "\"store\": "; 2929 2930 if (Bindings.isEmpty()) { 2931 Out << "null," << NL; 2932 return; 2933 } 2934 2935 Out << "{ \"pointer\": \"" << Bindings.asStore() << "\", \"items\": [" << NL; 2936 Bindings.printJson(Out, NL, Space + 1, IsDot); 2937 Indent(Out, Space, IsDot) << "]}," << NL; 2938 } 2939