xref: /llvm-project/clang/lib/StaticAnalyzer/Core/RegionStore.cpp (revision 37a3e98c841e5d33f7e77e97dfb058965105eb4b)
1 //== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines a basic region store model. In this model, we do have field
10 // sensitivity. But we assume nothing about the heap shape. So recursive data
11 // structures are largely ignored. Basically we do 1-limiting analysis.
12 // Parameter pointers are assumed with no aliasing. Pointee objects of
13 // parameters are created lazily.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/ASTMatchers/ASTMatchFinder.h"
20 #include "clang/Analysis/Analyses/LiveVariables.h"
21 #include "clang/Analysis/AnalysisDeclContext.h"
22 #include "clang/Basic/JsonSupport.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
25 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
26 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
27 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
28 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
29 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
30 #include "llvm/ADT/ImmutableMap.h"
31 #include "llvm/ADT/Optional.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include <utility>
34 
35 using namespace clang;
36 using namespace ento;
37 
38 //===----------------------------------------------------------------------===//
39 // Representation of binding keys.
40 //===----------------------------------------------------------------------===//
41 
42 namespace {
43 class BindingKey {
44 public:
45   enum Kind { Default = 0x0, Direct = 0x1 };
46 private:
47   enum { Symbolic = 0x2 };
48 
49   llvm::PointerIntPair<const MemRegion *, 2> P;
50   uint64_t Data;
51 
52   /// Create a key for a binding to region \p r, which has a symbolic offset
53   /// from region \p Base.
54   explicit BindingKey(const SubRegion *r, const SubRegion *Base, Kind k)
55     : P(r, k | Symbolic), Data(reinterpret_cast<uintptr_t>(Base)) {
56     assert(r && Base && "Must have known regions.");
57     assert(getConcreteOffsetRegion() == Base && "Failed to store base region");
58   }
59 
60   /// Create a key for a binding at \p offset from base region \p r.
61   explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
62     : P(r, k), Data(offset) {
63     assert(r && "Must have known regions.");
64     assert(getOffset() == offset && "Failed to store offset");
65     assert((r == r->getBaseRegion() ||
66             isa<ObjCIvarRegion, CXXDerivedObjectRegion>(r)) &&
67            "Not a base");
68   }
69 public:
70 
71   bool isDirect() const { return P.getInt() & Direct; }
72   bool hasSymbolicOffset() const { return P.getInt() & Symbolic; }
73 
74   const MemRegion *getRegion() const { return P.getPointer(); }
75   uint64_t getOffset() const {
76     assert(!hasSymbolicOffset());
77     return Data;
78   }
79 
80   const SubRegion *getConcreteOffsetRegion() const {
81     assert(hasSymbolicOffset());
82     return reinterpret_cast<const SubRegion *>(static_cast<uintptr_t>(Data));
83   }
84 
85   const MemRegion *getBaseRegion() const {
86     if (hasSymbolicOffset())
87       return getConcreteOffsetRegion()->getBaseRegion();
88     return getRegion()->getBaseRegion();
89   }
90 
91   void Profile(llvm::FoldingSetNodeID& ID) const {
92     ID.AddPointer(P.getOpaqueValue());
93     ID.AddInteger(Data);
94   }
95 
96   static BindingKey Make(const MemRegion *R, Kind k);
97 
98   bool operator<(const BindingKey &X) const {
99     if (P.getOpaqueValue() < X.P.getOpaqueValue())
100       return true;
101     if (P.getOpaqueValue() > X.P.getOpaqueValue())
102       return false;
103     return Data < X.Data;
104   }
105 
106   bool operator==(const BindingKey &X) const {
107     return P.getOpaqueValue() == X.P.getOpaqueValue() &&
108            Data == X.Data;
109   }
110 
111   LLVM_DUMP_METHOD void dump() const;
112 };
113 } // end anonymous namespace
114 
115 BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
116   const RegionOffset &RO = R->getAsOffset();
117   if (RO.hasSymbolicOffset())
118     return BindingKey(cast<SubRegion>(R), cast<SubRegion>(RO.getRegion()), k);
119 
120   return BindingKey(RO.getRegion(), RO.getOffset(), k);
121 }
122 
123 namespace llvm {
124 static inline raw_ostream &operator<<(raw_ostream &Out, BindingKey K) {
125   Out << "\"kind\": \"" << (K.isDirect() ? "Direct" : "Default")
126       << "\", \"offset\": ";
127 
128   if (!K.hasSymbolicOffset())
129     Out << K.getOffset();
130   else
131     Out << "null";
132 
133   return Out;
134 }
135 
136 } // namespace llvm
137 
138 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
139 void BindingKey::dump() const { llvm::errs() << *this; }
140 #endif
141 
142 //===----------------------------------------------------------------------===//
143 // Actual Store type.
144 //===----------------------------------------------------------------------===//
145 
146 typedef llvm::ImmutableMap<BindingKey, SVal>    ClusterBindings;
147 typedef llvm::ImmutableMapRef<BindingKey, SVal> ClusterBindingsRef;
148 typedef std::pair<BindingKey, SVal> BindingPair;
149 
150 typedef llvm::ImmutableMap<const MemRegion *, ClusterBindings>
151         RegionBindings;
152 
153 namespace {
154 class RegionBindingsRef : public llvm::ImmutableMapRef<const MemRegion *,
155                                  ClusterBindings> {
156   ClusterBindings::Factory *CBFactory;
157 
158   // This flag indicates whether the current bindings are within the analysis
159   // that has started from main(). It affects how we perform loads from
160   // global variables that have initializers: if we have observed the
161   // program execution from the start and we know that these variables
162   // have not been overwritten yet, we can be sure that their initializers
163   // are still relevant. This flag never gets changed when the bindings are
164   // updated, so it could potentially be moved into RegionStoreManager
165   // (as if it's the same bindings but a different loading procedure)
166   // however that would have made the manager needlessly stateful.
167   bool IsMainAnalysis;
168 
169 public:
170   typedef llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>
171           ParentTy;
172 
173   RegionBindingsRef(ClusterBindings::Factory &CBFactory,
174                     const RegionBindings::TreeTy *T,
175                     RegionBindings::TreeTy::Factory *F,
176                     bool IsMainAnalysis)
177       : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(T, F),
178         CBFactory(&CBFactory), IsMainAnalysis(IsMainAnalysis) {}
179 
180   RegionBindingsRef(const ParentTy &P,
181                     ClusterBindings::Factory &CBFactory,
182                     bool IsMainAnalysis)
183       : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(P),
184         CBFactory(&CBFactory), IsMainAnalysis(IsMainAnalysis) {}
185 
186   RegionBindingsRef add(key_type_ref K, data_type_ref D) const {
187     return RegionBindingsRef(static_cast<const ParentTy *>(this)->add(K, D),
188                              *CBFactory, IsMainAnalysis);
189   }
190 
191   RegionBindingsRef remove(key_type_ref K) const {
192     return RegionBindingsRef(static_cast<const ParentTy *>(this)->remove(K),
193                              *CBFactory, IsMainAnalysis);
194   }
195 
196   RegionBindingsRef addBinding(BindingKey K, SVal V) const;
197 
198   RegionBindingsRef addBinding(const MemRegion *R,
199                                BindingKey::Kind k, SVal V) const;
200 
201   const SVal *lookup(BindingKey K) const;
202   const SVal *lookup(const MemRegion *R, BindingKey::Kind k) const;
203   using llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>::lookup;
204 
205   RegionBindingsRef removeBinding(BindingKey K);
206 
207   RegionBindingsRef removeBinding(const MemRegion *R,
208                                   BindingKey::Kind k);
209 
210   RegionBindingsRef removeBinding(const MemRegion *R) {
211     return removeBinding(R, BindingKey::Direct).
212            removeBinding(R, BindingKey::Default);
213   }
214 
215   Optional<SVal> getDirectBinding(const MemRegion *R) const;
216 
217   /// getDefaultBinding - Returns an SVal* representing an optional default
218   ///  binding associated with a region and its subregions.
219   Optional<SVal> getDefaultBinding(const MemRegion *R) const;
220 
221   /// Return the internal tree as a Store.
222   Store asStore() const {
223     llvm::PointerIntPair<Store, 1, bool> Ptr = {
224         asImmutableMap().getRootWithoutRetain(), IsMainAnalysis};
225     return reinterpret_cast<Store>(Ptr.getOpaqueValue());
226   }
227 
228   bool isMainAnalysis() const {
229     return IsMainAnalysis;
230   }
231 
232   void printJson(raw_ostream &Out, const char *NL = "\n",
233                  unsigned int Space = 0, bool IsDot = false) const {
234     for (iterator I = begin(); I != end(); ++I) {
235       // TODO: We might need a .printJson for I.getKey() as well.
236       Indent(Out, Space, IsDot)
237           << "{ \"cluster\": \"" << I.getKey() << "\", \"pointer\": \""
238           << (const void *)I.getKey() << "\", \"items\": [" << NL;
239 
240       ++Space;
241       const ClusterBindings &CB = I.getData();
242       for (ClusterBindings::iterator CI = CB.begin(); CI != CB.end(); ++CI) {
243         Indent(Out, Space, IsDot) << "{ " << CI.getKey() << ", \"value\": ";
244         CI.getData().printJson(Out, /*AddQuotes=*/true);
245         Out << " }";
246         if (std::next(CI) != CB.end())
247           Out << ',';
248         Out << NL;
249       }
250 
251       --Space;
252       Indent(Out, Space, IsDot) << "]}";
253       if (std::next(I) != end())
254         Out << ',';
255       Out << NL;
256     }
257   }
258 
259   LLVM_DUMP_METHOD void dump() const { printJson(llvm::errs()); }
260 };
261 } // end anonymous namespace
262 
263 typedef const RegionBindingsRef& RegionBindingsConstRef;
264 
265 Optional<SVal> RegionBindingsRef::getDirectBinding(const MemRegion *R) const {
266   return Optional<SVal>::create(lookup(R, BindingKey::Direct));
267 }
268 
269 Optional<SVal> RegionBindingsRef::getDefaultBinding(const MemRegion *R) const {
270   return Optional<SVal>::create(lookup(R, BindingKey::Default));
271 }
272 
273 RegionBindingsRef RegionBindingsRef::addBinding(BindingKey K, SVal V) const {
274   const MemRegion *Base = K.getBaseRegion();
275 
276   const ClusterBindings *ExistingCluster = lookup(Base);
277   ClusterBindings Cluster =
278       (ExistingCluster ? *ExistingCluster : CBFactory->getEmptyMap());
279 
280   ClusterBindings NewCluster = CBFactory->add(Cluster, K, V);
281   return add(Base, NewCluster);
282 }
283 
284 
285 RegionBindingsRef RegionBindingsRef::addBinding(const MemRegion *R,
286                                                 BindingKey::Kind k,
287                                                 SVal V) const {
288   return addBinding(BindingKey::Make(R, k), V);
289 }
290 
291 const SVal *RegionBindingsRef::lookup(BindingKey K) const {
292   const ClusterBindings *Cluster = lookup(K.getBaseRegion());
293   if (!Cluster)
294     return nullptr;
295   return Cluster->lookup(K);
296 }
297 
298 const SVal *RegionBindingsRef::lookup(const MemRegion *R,
299                                       BindingKey::Kind k) const {
300   return lookup(BindingKey::Make(R, k));
301 }
302 
303 RegionBindingsRef RegionBindingsRef::removeBinding(BindingKey K) {
304   const MemRegion *Base = K.getBaseRegion();
305   const ClusterBindings *Cluster = lookup(Base);
306   if (!Cluster)
307     return *this;
308 
309   ClusterBindings NewCluster = CBFactory->remove(*Cluster, K);
310   if (NewCluster.isEmpty())
311     return remove(Base);
312   return add(Base, NewCluster);
313 }
314 
315 RegionBindingsRef RegionBindingsRef::removeBinding(const MemRegion *R,
316                                                 BindingKey::Kind k){
317   return removeBinding(BindingKey::Make(R, k));
318 }
319 
320 //===----------------------------------------------------------------------===//
321 // Main RegionStore logic.
322 //===----------------------------------------------------------------------===//
323 
324 namespace {
325 class InvalidateRegionsWorker;
326 
327 class RegionStoreManager : public StoreManager {
328 public:
329   RegionBindings::Factory RBFactory;
330   mutable ClusterBindings::Factory CBFactory;
331 
332   typedef std::vector<SVal> SValListTy;
333 private:
334   typedef llvm::DenseMap<const LazyCompoundValData *,
335                          SValListTy> LazyBindingsMapTy;
336   LazyBindingsMapTy LazyBindingsMap;
337 
338   /// The largest number of fields a struct can have and still be
339   /// considered "small".
340   ///
341   /// This is currently used to decide whether or not it is worth "forcing" a
342   /// LazyCompoundVal on bind.
343   ///
344   /// This is controlled by 'region-store-small-struct-limit' option.
345   /// To disable all small-struct-dependent behavior, set the option to "0".
346   unsigned SmallStructLimit;
347 
348   /// The largest number of element an array can have and still be
349   /// considered "small".
350   ///
351   /// This is currently used to decide whether or not it is worth "forcing" a
352   /// LazyCompoundVal on bind.
353   ///
354   /// This is controlled by 'region-store-small-struct-limit' option.
355   /// To disable all small-struct-dependent behavior, set the option to "0".
356   unsigned SmallArrayLimit;
357 
358   /// A helper used to populate the work list with the given set of
359   /// regions.
360   void populateWorkList(InvalidateRegionsWorker &W,
361                         ArrayRef<SVal> Values,
362                         InvalidatedRegions *TopLevelRegions);
363 
364 public:
365   RegionStoreManager(ProgramStateManager &mgr)
366       : StoreManager(mgr), RBFactory(mgr.getAllocator()),
367         CBFactory(mgr.getAllocator()), SmallStructLimit(0), SmallArrayLimit(0) {
368     ExprEngine &Eng = StateMgr.getOwningEngine();
369     AnalyzerOptions &Options = Eng.getAnalysisManager().options;
370     SmallStructLimit = Options.RegionStoreSmallStructLimit;
371     SmallArrayLimit = Options.RegionStoreSmallArrayLimit;
372   }
373 
374   /// setImplicitDefaultValue - Set the default binding for the provided
375   ///  MemRegion to the value implicitly defined for compound literals when
376   ///  the value is not specified.
377   RegionBindingsRef setImplicitDefaultValue(RegionBindingsConstRef B,
378                                             const MemRegion *R, QualType T);
379 
380   /// ArrayToPointer - Emulates the "decay" of an array to a pointer
381   ///  type.  'Array' represents the lvalue of the array being decayed
382   ///  to a pointer, and the returned SVal represents the decayed
383   ///  version of that lvalue (i.e., a pointer to the first element of
384   ///  the array).  This is called by ExprEngine when evaluating
385   ///  casts from arrays to pointers.
386   SVal ArrayToPointer(Loc Array, QualType ElementTy) override;
387 
388   /// Creates the Store that correctly represents memory contents before
389   /// the beginning of the analysis of the given top-level stack frame.
390   StoreRef getInitialStore(const LocationContext *InitLoc) override {
391     bool IsMainAnalysis = false;
392     if (const auto *FD = dyn_cast<FunctionDecl>(InitLoc->getDecl()))
393       IsMainAnalysis = FD->isMain() && !Ctx.getLangOpts().CPlusPlus;
394     return StoreRef(RegionBindingsRef(
395         RegionBindingsRef::ParentTy(RBFactory.getEmptyMap(), RBFactory),
396         CBFactory, IsMainAnalysis).asStore(), *this);
397   }
398 
399   //===-------------------------------------------------------------------===//
400   // Binding values to regions.
401   //===-------------------------------------------------------------------===//
402   RegionBindingsRef invalidateGlobalRegion(MemRegion::Kind K,
403                                            const Expr *Ex,
404                                            unsigned Count,
405                                            const LocationContext *LCtx,
406                                            RegionBindingsRef B,
407                                            InvalidatedRegions *Invalidated);
408 
409   StoreRef invalidateRegions(Store store,
410                              ArrayRef<SVal> Values,
411                              const Expr *E, unsigned Count,
412                              const LocationContext *LCtx,
413                              const CallEvent *Call,
414                              InvalidatedSymbols &IS,
415                              RegionAndSymbolInvalidationTraits &ITraits,
416                              InvalidatedRegions *Invalidated,
417                              InvalidatedRegions *InvalidatedTopLevel) override;
418 
419   bool scanReachableSymbols(Store S, const MemRegion *R,
420                             ScanReachableSymbols &Callbacks) override;
421 
422   RegionBindingsRef removeSubRegionBindings(RegionBindingsConstRef B,
423                                             const SubRegion *R);
424   Optional<SVal>
425   getConstantValFromConstArrayInitializer(RegionBindingsConstRef B,
426                                           const ElementRegion *R);
427   Optional<SVal>
428   getSValFromInitListExpr(const InitListExpr *ILE,
429                           const SmallVector<uint64_t, 2> &ConcreteOffsets,
430                           QualType ElemT);
431   SVal getSValFromStringLiteral(const StringLiteral *SL, uint64_t Offset,
432                                 QualType ElemT);
433 
434 public: // Part of public interface to class.
435 
436   StoreRef Bind(Store store, Loc LV, SVal V) override {
437     return StoreRef(bind(getRegionBindings(store), LV, V).asStore(), *this);
438   }
439 
440   RegionBindingsRef bind(RegionBindingsConstRef B, Loc LV, SVal V);
441 
442   // BindDefaultInitial is only used to initialize a region with
443   // a default value.
444   StoreRef BindDefaultInitial(Store store, const MemRegion *R,
445                               SVal V) override {
446     RegionBindingsRef B = getRegionBindings(store);
447     // Use other APIs when you have to wipe the region that was initialized
448     // earlier.
449     assert(!(B.getDefaultBinding(R) || B.getDirectBinding(R)) &&
450            "Double initialization!");
451     B = B.addBinding(BindingKey::Make(R, BindingKey::Default), V);
452     return StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this);
453   }
454 
455   // BindDefaultZero is used for zeroing constructors that may accidentally
456   // overwrite existing bindings.
457   StoreRef BindDefaultZero(Store store, const MemRegion *R) override {
458     // FIXME: The offsets of empty bases can be tricky because of
459     // of the so called "empty base class optimization".
460     // If a base class has been optimized out
461     // we should not try to create a binding, otherwise we should.
462     // Unfortunately, at the moment ASTRecordLayout doesn't expose
463     // the actual sizes of the empty bases
464     // and trying to infer them from offsets/alignments
465     // seems to be error-prone and non-trivial because of the trailing padding.
466     // As a temporary mitigation we don't create bindings for empty bases.
467     if (const auto *BR = dyn_cast<CXXBaseObjectRegion>(R))
468       if (BR->getDecl()->isEmpty())
469         return StoreRef(store, *this);
470 
471     RegionBindingsRef B = getRegionBindings(store);
472     SVal V = svalBuilder.makeZeroVal(Ctx.CharTy);
473     B = removeSubRegionBindings(B, cast<SubRegion>(R));
474     B = B.addBinding(BindingKey::Make(R, BindingKey::Default), V);
475     return StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this);
476   }
477 
478   /// Attempt to extract the fields of \p LCV and bind them to the struct region
479   /// \p R.
480   ///
481   /// This path is used when it seems advantageous to "force" loading the values
482   /// within a LazyCompoundVal to bind memberwise to the struct region, rather
483   /// than using a Default binding at the base of the entire region. This is a
484   /// heuristic attempting to avoid building long chains of LazyCompoundVals.
485   ///
486   /// \returns The updated store bindings, or \c std::nullopt if binding
487   ///          non-lazily would be too expensive.
488   Optional<RegionBindingsRef> tryBindSmallStruct(RegionBindingsConstRef B,
489                                                  const TypedValueRegion *R,
490                                                  const RecordDecl *RD,
491                                                  nonloc::LazyCompoundVal LCV);
492 
493   /// BindStruct - Bind a compound value to a structure.
494   RegionBindingsRef bindStruct(RegionBindingsConstRef B,
495                                const TypedValueRegion* R, SVal V);
496 
497   /// BindVector - Bind a compound value to a vector.
498   RegionBindingsRef bindVector(RegionBindingsConstRef B,
499                                const TypedValueRegion* R, SVal V);
500 
501   Optional<RegionBindingsRef> tryBindSmallArray(RegionBindingsConstRef B,
502                                                 const TypedValueRegion *R,
503                                                 const ArrayType *AT,
504                                                 nonloc::LazyCompoundVal LCV);
505 
506   RegionBindingsRef bindArray(RegionBindingsConstRef B,
507                               const TypedValueRegion* R,
508                               SVal V);
509 
510   /// Clears out all bindings in the given region and assigns a new value
511   /// as a Default binding.
512   RegionBindingsRef bindAggregate(RegionBindingsConstRef B,
513                                   const TypedRegion *R,
514                                   SVal DefaultVal);
515 
516   /// Create a new store with the specified binding removed.
517   /// \param ST the original store, that is the basis for the new store.
518   /// \param L the location whose binding should be removed.
519   StoreRef killBinding(Store ST, Loc L) override;
520 
521   void incrementReferenceCount(Store store) override {
522     getRegionBindings(store).manualRetain();
523   }
524 
525   /// If the StoreManager supports it, decrement the reference count of
526   /// the specified Store object.  If the reference count hits 0, the memory
527   /// associated with the object is recycled.
528   void decrementReferenceCount(Store store) override {
529     getRegionBindings(store).manualRelease();
530   }
531 
532   bool includedInBindings(Store store, const MemRegion *region) const override;
533 
534   /// Return the value bound to specified location in a given state.
535   ///
536   /// The high level logic for this method is this:
537   /// getBinding (L)
538   ///   if L has binding
539   ///     return L's binding
540   ///   else if L is in killset
541   ///     return unknown
542   ///   else
543   ///     if L is on stack or heap
544   ///       return undefined
545   ///     else
546   ///       return symbolic
547   SVal getBinding(Store S, Loc L, QualType T) override {
548     return getBinding(getRegionBindings(S), L, T);
549   }
550 
551   Optional<SVal> getDefaultBinding(Store S, const MemRegion *R) override {
552     RegionBindingsRef B = getRegionBindings(S);
553     // Default bindings are always applied over a base region so look up the
554     // base region's default binding, otherwise the lookup will fail when R
555     // is at an offset from R->getBaseRegion().
556     return B.getDefaultBinding(R->getBaseRegion());
557   }
558 
559   SVal getBinding(RegionBindingsConstRef B, Loc L, QualType T = QualType());
560 
561   SVal getBindingForElement(RegionBindingsConstRef B, const ElementRegion *R);
562 
563   SVal getBindingForField(RegionBindingsConstRef B, const FieldRegion *R);
564 
565   SVal getBindingForObjCIvar(RegionBindingsConstRef B, const ObjCIvarRegion *R);
566 
567   SVal getBindingForVar(RegionBindingsConstRef B, const VarRegion *R);
568 
569   SVal getBindingForLazySymbol(const TypedValueRegion *R);
570 
571   SVal getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
572                                          const TypedValueRegion *R,
573                                          QualType Ty);
574 
575   SVal getLazyBinding(const SubRegion *LazyBindingRegion,
576                       RegionBindingsRef LazyBinding);
577 
578   /// Get bindings for the values in a struct and return a CompoundVal, used
579   /// when doing struct copy:
580   /// struct s x, y;
581   /// x = y;
582   /// y's value is retrieved by this method.
583   SVal getBindingForStruct(RegionBindingsConstRef B, const TypedValueRegion *R);
584   SVal getBindingForArray(RegionBindingsConstRef B, const TypedValueRegion *R);
585   NonLoc createLazyBinding(RegionBindingsConstRef B, const TypedValueRegion *R);
586 
587   /// Used to lazily generate derived symbols for bindings that are defined
588   /// implicitly by default bindings in a super region.
589   ///
590   /// Note that callers may need to specially handle LazyCompoundVals, which
591   /// are returned as is in case the caller needs to treat them differently.
592   Optional<SVal> getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
593                                                   const MemRegion *superR,
594                                                   const TypedValueRegion *R,
595                                                   QualType Ty);
596 
597   /// Get the state and region whose binding this region \p R corresponds to.
598   ///
599   /// If there is no lazy binding for \p R, the returned value will have a null
600   /// \c second. Note that a null pointer can represents a valid Store.
601   std::pair<Store, const SubRegion *>
602   findLazyBinding(RegionBindingsConstRef B, const SubRegion *R,
603                   const SubRegion *originalRegion);
604 
605   /// Returns the cached set of interesting SVals contained within a lazy
606   /// binding.
607   ///
608   /// The precise value of "interesting" is determined for the purposes of
609   /// RegionStore's internal analysis. It must always contain all regions and
610   /// symbols, but may omit constants and other kinds of SVal.
611   ///
612   /// In contrast to compound values, LazyCompoundVals are also added
613   /// to the 'interesting values' list in addition to the child interesting
614   /// values.
615   const SValListTy &getInterestingValues(nonloc::LazyCompoundVal LCV);
616 
617   //===------------------------------------------------------------------===//
618   // State pruning.
619   //===------------------------------------------------------------------===//
620 
621   /// removeDeadBindings - Scans the RegionStore of 'state' for dead values.
622   ///  It returns a new Store with these values removed.
623   StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx,
624                               SymbolReaper& SymReaper) override;
625 
626   //===------------------------------------------------------------------===//
627   // Utility methods.
628   //===------------------------------------------------------------------===//
629 
630   RegionBindingsRef getRegionBindings(Store store) const {
631     llvm::PointerIntPair<Store, 1, bool> Ptr;
632     Ptr.setFromOpaqueValue(const_cast<void *>(store));
633     return RegionBindingsRef(
634         CBFactory,
635         static_cast<const RegionBindings::TreeTy *>(Ptr.getPointer()),
636         RBFactory.getTreeFactory(),
637         Ptr.getInt());
638   }
639 
640   void printJson(raw_ostream &Out, Store S, const char *NL = "\n",
641                  unsigned int Space = 0, bool IsDot = false) const override;
642 
643   void iterBindings(Store store, BindingsHandler& f) override {
644     RegionBindingsRef B = getRegionBindings(store);
645     for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
646       const ClusterBindings &Cluster = I.getData();
647       for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
648            CI != CE; ++CI) {
649         const BindingKey &K = CI.getKey();
650         if (!K.isDirect())
651           continue;
652         if (const SubRegion *R = dyn_cast<SubRegion>(K.getRegion())) {
653           // FIXME: Possibly incorporate the offset?
654           if (!f.HandleBinding(*this, store, R, CI.getData()))
655             return;
656         }
657       }
658     }
659   }
660 };
661 
662 } // end anonymous namespace
663 
664 //===----------------------------------------------------------------------===//
665 // RegionStore creation.
666 //===----------------------------------------------------------------------===//
667 
668 std::unique_ptr<StoreManager>
669 ento::CreateRegionStoreManager(ProgramStateManager &StMgr) {
670   return std::make_unique<RegionStoreManager>(StMgr);
671 }
672 
673 //===----------------------------------------------------------------------===//
674 // Region Cluster analysis.
675 //===----------------------------------------------------------------------===//
676 
677 namespace {
678 /// Used to determine which global regions are automatically included in the
679 /// initial worklist of a ClusterAnalysis.
680 enum GlobalsFilterKind {
681   /// Don't include any global regions.
682   GFK_None,
683   /// Only include system globals.
684   GFK_SystemOnly,
685   /// Include all global regions.
686   GFK_All
687 };
688 
689 template <typename DERIVED>
690 class ClusterAnalysis  {
691 protected:
692   typedef llvm::DenseMap<const MemRegion *, const ClusterBindings *> ClusterMap;
693   typedef const MemRegion * WorkListElement;
694   typedef SmallVector<WorkListElement, 10> WorkList;
695 
696   llvm::SmallPtrSet<const ClusterBindings *, 16> Visited;
697 
698   WorkList WL;
699 
700   RegionStoreManager &RM;
701   ASTContext &Ctx;
702   SValBuilder &svalBuilder;
703 
704   RegionBindingsRef B;
705 
706 
707 protected:
708   const ClusterBindings *getCluster(const MemRegion *R) {
709     return B.lookup(R);
710   }
711 
712   /// Returns true if all clusters in the given memspace should be initially
713   /// included in the cluster analysis. Subclasses may provide their
714   /// own implementation.
715   bool includeEntireMemorySpace(const MemRegion *Base) {
716     return false;
717   }
718 
719 public:
720   ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr,
721                   RegionBindingsRef b)
722       : RM(rm), Ctx(StateMgr.getContext()),
723         svalBuilder(StateMgr.getSValBuilder()), B(std::move(b)) {}
724 
725   RegionBindingsRef getRegionBindings() const { return B; }
726 
727   bool isVisited(const MemRegion *R) {
728     return Visited.count(getCluster(R));
729   }
730 
731   void GenerateClusters() {
732     // Scan the entire set of bindings and record the region clusters.
733     for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end();
734          RI != RE; ++RI){
735       const MemRegion *Base = RI.getKey();
736 
737       const ClusterBindings &Cluster = RI.getData();
738       assert(!Cluster.isEmpty() && "Empty clusters should be removed");
739       static_cast<DERIVED*>(this)->VisitAddedToCluster(Base, Cluster);
740 
741       // If the base's memspace should be entirely invalidated, add the cluster
742       // to the workspace up front.
743       if (static_cast<DERIVED*>(this)->includeEntireMemorySpace(Base))
744         AddToWorkList(WorkListElement(Base), &Cluster);
745     }
746   }
747 
748   bool AddToWorkList(WorkListElement E, const ClusterBindings *C) {
749     if (C && !Visited.insert(C).second)
750       return false;
751     WL.push_back(E);
752     return true;
753   }
754 
755   bool AddToWorkList(const MemRegion *R) {
756     return static_cast<DERIVED*>(this)->AddToWorkList(R);
757   }
758 
759   void RunWorkList() {
760     while (!WL.empty()) {
761       WorkListElement E = WL.pop_back_val();
762       const MemRegion *BaseR = E;
763 
764       static_cast<DERIVED*>(this)->VisitCluster(BaseR, getCluster(BaseR));
765     }
766   }
767 
768   void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C) {}
769   void VisitCluster(const MemRegion *baseR, const ClusterBindings *C) {}
770 
771   void VisitCluster(const MemRegion *BaseR, const ClusterBindings *C,
772                     bool Flag) {
773     static_cast<DERIVED*>(this)->VisitCluster(BaseR, C);
774   }
775 };
776 }
777 
778 //===----------------------------------------------------------------------===//
779 // Binding invalidation.
780 //===----------------------------------------------------------------------===//
781 
782 bool RegionStoreManager::scanReachableSymbols(Store S, const MemRegion *R,
783                                               ScanReachableSymbols &Callbacks) {
784   assert(R == R->getBaseRegion() && "Should only be called for base regions");
785   RegionBindingsRef B = getRegionBindings(S);
786   const ClusterBindings *Cluster = B.lookup(R);
787 
788   if (!Cluster)
789     return true;
790 
791   for (ClusterBindings::iterator RI = Cluster->begin(), RE = Cluster->end();
792        RI != RE; ++RI) {
793     if (!Callbacks.scan(RI.getData()))
794       return false;
795   }
796 
797   return true;
798 }
799 
800 static inline bool isUnionField(const FieldRegion *FR) {
801   return FR->getDecl()->getParent()->isUnion();
802 }
803 
804 typedef SmallVector<const FieldDecl *, 8> FieldVector;
805 
806 static void getSymbolicOffsetFields(BindingKey K, FieldVector &Fields) {
807   assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
808 
809   const MemRegion *Base = K.getConcreteOffsetRegion();
810   const MemRegion *R = K.getRegion();
811 
812   while (R != Base) {
813     if (const FieldRegion *FR = dyn_cast<FieldRegion>(R))
814       if (!isUnionField(FR))
815         Fields.push_back(FR->getDecl());
816 
817     R = cast<SubRegion>(R)->getSuperRegion();
818   }
819 }
820 
821 static bool isCompatibleWithFields(BindingKey K, const FieldVector &Fields) {
822   assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
823 
824   if (Fields.empty())
825     return true;
826 
827   FieldVector FieldsInBindingKey;
828   getSymbolicOffsetFields(K, FieldsInBindingKey);
829 
830   ptrdiff_t Delta = FieldsInBindingKey.size() - Fields.size();
831   if (Delta >= 0)
832     return std::equal(FieldsInBindingKey.begin() + Delta,
833                       FieldsInBindingKey.end(),
834                       Fields.begin());
835   else
836     return std::equal(FieldsInBindingKey.begin(), FieldsInBindingKey.end(),
837                       Fields.begin() - Delta);
838 }
839 
840 /// Collects all bindings in \p Cluster that may refer to bindings within
841 /// \p Top.
842 ///
843 /// Each binding is a pair whose \c first is the key (a BindingKey) and whose
844 /// \c second is the value (an SVal).
845 ///
846 /// The \p IncludeAllDefaultBindings parameter specifies whether to include
847 /// default bindings that may extend beyond \p Top itself, e.g. if \p Top is
848 /// an aggregate within a larger aggregate with a default binding.
849 static void
850 collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
851                          SValBuilder &SVB, const ClusterBindings &Cluster,
852                          const SubRegion *Top, BindingKey TopKey,
853                          bool IncludeAllDefaultBindings) {
854   FieldVector FieldsInSymbolicSubregions;
855   if (TopKey.hasSymbolicOffset()) {
856     getSymbolicOffsetFields(TopKey, FieldsInSymbolicSubregions);
857     Top = TopKey.getConcreteOffsetRegion();
858     TopKey = BindingKey::Make(Top, BindingKey::Default);
859   }
860 
861   // Find the length (in bits) of the region being invalidated.
862   uint64_t Length = UINT64_MAX;
863   SVal Extent = Top->getMemRegionManager().getStaticSize(Top, SVB);
864   if (Optional<nonloc::ConcreteInt> ExtentCI =
865           Extent.getAs<nonloc::ConcreteInt>()) {
866     const llvm::APSInt &ExtentInt = ExtentCI->getValue();
867     assert(ExtentInt.isNonNegative() || ExtentInt.isUnsigned());
868     // Extents are in bytes but region offsets are in bits. Be careful!
869     Length = ExtentInt.getLimitedValue() * SVB.getContext().getCharWidth();
870   } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(Top)) {
871     if (FR->getDecl()->isBitField())
872       Length = FR->getDecl()->getBitWidthValue(SVB.getContext());
873   }
874 
875   for (ClusterBindings::iterator I = Cluster.begin(), E = Cluster.end();
876        I != E; ++I) {
877     BindingKey NextKey = I.getKey();
878     if (NextKey.getRegion() == TopKey.getRegion()) {
879       // FIXME: This doesn't catch the case where we're really invalidating a
880       // region with a symbolic offset. Example:
881       //      R: points[i].y
882       //   Next: points[0].x
883 
884       if (NextKey.getOffset() > TopKey.getOffset() &&
885           NextKey.getOffset() - TopKey.getOffset() < Length) {
886         // Case 1: The next binding is inside the region we're invalidating.
887         // Include it.
888         Bindings.push_back(*I);
889 
890       } else if (NextKey.getOffset() == TopKey.getOffset()) {
891         // Case 2: The next binding is at the same offset as the region we're
892         // invalidating. In this case, we need to leave default bindings alone,
893         // since they may be providing a default value for a regions beyond what
894         // we're invalidating.
895         // FIXME: This is probably incorrect; consider invalidating an outer
896         // struct whose first field is bound to a LazyCompoundVal.
897         if (IncludeAllDefaultBindings || NextKey.isDirect())
898           Bindings.push_back(*I);
899       }
900 
901     } else if (NextKey.hasSymbolicOffset()) {
902       const MemRegion *Base = NextKey.getConcreteOffsetRegion();
903       if (Top->isSubRegionOf(Base) && Top != Base) {
904         // Case 3: The next key is symbolic and we just changed something within
905         // its concrete region. We don't know if the binding is still valid, so
906         // we'll be conservative and include it.
907         if (IncludeAllDefaultBindings || NextKey.isDirect())
908           if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
909             Bindings.push_back(*I);
910       } else if (const SubRegion *BaseSR = dyn_cast<SubRegion>(Base)) {
911         // Case 4: The next key is symbolic, but we changed a known
912         // super-region. In this case the binding is certainly included.
913         if (BaseSR->isSubRegionOf(Top))
914           if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
915             Bindings.push_back(*I);
916       }
917     }
918   }
919 }
920 
921 static void
922 collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
923                          SValBuilder &SVB, const ClusterBindings &Cluster,
924                          const SubRegion *Top, bool IncludeAllDefaultBindings) {
925   collectSubRegionBindings(Bindings, SVB, Cluster, Top,
926                            BindingKey::Make(Top, BindingKey::Default),
927                            IncludeAllDefaultBindings);
928 }
929 
930 RegionBindingsRef
931 RegionStoreManager::removeSubRegionBindings(RegionBindingsConstRef B,
932                                             const SubRegion *Top) {
933   BindingKey TopKey = BindingKey::Make(Top, BindingKey::Default);
934   const MemRegion *ClusterHead = TopKey.getBaseRegion();
935 
936   if (Top == ClusterHead) {
937     // We can remove an entire cluster's bindings all in one go.
938     return B.remove(Top);
939   }
940 
941   const ClusterBindings *Cluster = B.lookup(ClusterHead);
942   if (!Cluster) {
943     // If we're invalidating a region with a symbolic offset, we need to make
944     // sure we don't treat the base region as uninitialized anymore.
945     if (TopKey.hasSymbolicOffset()) {
946       const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
947       return B.addBinding(Concrete, BindingKey::Default, UnknownVal());
948     }
949     return B;
950   }
951 
952   SmallVector<BindingPair, 32> Bindings;
953   collectSubRegionBindings(Bindings, svalBuilder, *Cluster, Top, TopKey,
954                            /*IncludeAllDefaultBindings=*/false);
955 
956   ClusterBindingsRef Result(*Cluster, CBFactory);
957   for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
958                                                     E = Bindings.end();
959        I != E; ++I)
960     Result = Result.remove(I->first);
961 
962   // If we're invalidating a region with a symbolic offset, we need to make sure
963   // we don't treat the base region as uninitialized anymore.
964   // FIXME: This isn't very precise; see the example in
965   // collectSubRegionBindings.
966   if (TopKey.hasSymbolicOffset()) {
967     const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
968     Result = Result.add(BindingKey::Make(Concrete, BindingKey::Default),
969                         UnknownVal());
970   }
971 
972   if (Result.isEmpty())
973     return B.remove(ClusterHead);
974   return B.add(ClusterHead, Result.asImmutableMap());
975 }
976 
977 namespace {
978 class InvalidateRegionsWorker : public ClusterAnalysis<InvalidateRegionsWorker>
979 {
980   const Expr *Ex;
981   unsigned Count;
982   const LocationContext *LCtx;
983   InvalidatedSymbols &IS;
984   RegionAndSymbolInvalidationTraits &ITraits;
985   StoreManager::InvalidatedRegions *Regions;
986   GlobalsFilterKind GlobalsFilter;
987 public:
988   InvalidateRegionsWorker(RegionStoreManager &rm,
989                           ProgramStateManager &stateMgr,
990                           RegionBindingsRef b,
991                           const Expr *ex, unsigned count,
992                           const LocationContext *lctx,
993                           InvalidatedSymbols &is,
994                           RegionAndSymbolInvalidationTraits &ITraitsIn,
995                           StoreManager::InvalidatedRegions *r,
996                           GlobalsFilterKind GFK)
997      : ClusterAnalysis<InvalidateRegionsWorker>(rm, stateMgr, b),
998        Ex(ex), Count(count), LCtx(lctx), IS(is), ITraits(ITraitsIn), Regions(r),
999        GlobalsFilter(GFK) {}
1000 
1001   void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
1002   void VisitBinding(SVal V);
1003 
1004   using ClusterAnalysis::AddToWorkList;
1005 
1006   bool AddToWorkList(const MemRegion *R);
1007 
1008   /// Returns true if all clusters in the memory space for \p Base should be
1009   /// be invalidated.
1010   bool includeEntireMemorySpace(const MemRegion *Base);
1011 
1012   /// Returns true if the memory space of the given region is one of the global
1013   /// regions specially included at the start of invalidation.
1014   bool isInitiallyIncludedGlobalRegion(const MemRegion *R);
1015 };
1016 }
1017 
1018 bool InvalidateRegionsWorker::AddToWorkList(const MemRegion *R) {
1019   bool doNotInvalidateSuperRegion = ITraits.hasTrait(
1020       R, RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
1021   const MemRegion *BaseR = doNotInvalidateSuperRegion ? R : R->getBaseRegion();
1022   return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR));
1023 }
1024 
1025 void InvalidateRegionsWorker::VisitBinding(SVal V) {
1026   // A symbol?  Mark it touched by the invalidation.
1027   if (SymbolRef Sym = V.getAsSymbol())
1028     IS.insert(Sym);
1029 
1030   if (const MemRegion *R = V.getAsRegion()) {
1031     AddToWorkList(R);
1032     return;
1033   }
1034 
1035   // Is it a LazyCompoundVal?  All references get invalidated as well.
1036   if (Optional<nonloc::LazyCompoundVal> LCS =
1037           V.getAs<nonloc::LazyCompoundVal>()) {
1038 
1039     // `getInterestingValues()` returns SVals contained within LazyCompoundVals,
1040     // so there is no need to visit them.
1041     for (SVal V : RM.getInterestingValues(*LCS))
1042       if (!isa<nonloc::LazyCompoundVal>(V))
1043         VisitBinding(V);
1044 
1045     return;
1046   }
1047 }
1048 
1049 void InvalidateRegionsWorker::VisitCluster(const MemRegion *baseR,
1050                                            const ClusterBindings *C) {
1051 
1052   bool PreserveRegionsContents =
1053       ITraits.hasTrait(baseR,
1054                        RegionAndSymbolInvalidationTraits::TK_PreserveContents);
1055 
1056   if (C) {
1057     for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I)
1058       VisitBinding(I.getData());
1059 
1060     // Invalidate regions contents.
1061     if (!PreserveRegionsContents)
1062       B = B.remove(baseR);
1063   }
1064 
1065   if (const auto *TO = dyn_cast<TypedValueRegion>(baseR)) {
1066     if (const auto *RD = TO->getValueType()->getAsCXXRecordDecl()) {
1067 
1068       // Lambdas can affect all static local variables without explicitly
1069       // capturing those.
1070       // We invalidate all static locals referenced inside the lambda body.
1071       if (RD->isLambda() && RD->getLambdaCallOperator()->getBody()) {
1072         using namespace ast_matchers;
1073 
1074         const char *DeclBind = "DeclBind";
1075         StatementMatcher RefToStatic = stmt(hasDescendant(declRefExpr(
1076               to(varDecl(hasStaticStorageDuration()).bind(DeclBind)))));
1077         auto Matches =
1078             match(RefToStatic, *RD->getLambdaCallOperator()->getBody(),
1079                   RD->getASTContext());
1080 
1081         for (BoundNodes &Match : Matches) {
1082           auto *VD = Match.getNodeAs<VarDecl>(DeclBind);
1083           const VarRegion *ToInvalidate =
1084               RM.getRegionManager().getVarRegion(VD, LCtx);
1085           AddToWorkList(ToInvalidate);
1086         }
1087       }
1088     }
1089   }
1090 
1091   // BlockDataRegion?  If so, invalidate captured variables that are passed
1092   // by reference.
1093   if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
1094     for (BlockDataRegion::referenced_vars_iterator
1095          BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ;
1096          BI != BE; ++BI) {
1097       const VarRegion *VR = BI.getCapturedRegion();
1098       const VarDecl *VD = VR->getDecl();
1099       if (VD->hasAttr<BlocksAttr>() || !VD->hasLocalStorage()) {
1100         AddToWorkList(VR);
1101       }
1102       else if (Loc::isLocType(VR->getValueType())) {
1103         // Map the current bindings to a Store to retrieve the value
1104         // of the binding.  If that binding itself is a region, we should
1105         // invalidate that region.  This is because a block may capture
1106         // a pointer value, but the thing pointed by that pointer may
1107         // get invalidated.
1108         SVal V = RM.getBinding(B, loc::MemRegionVal(VR));
1109         if (Optional<Loc> L = V.getAs<Loc>()) {
1110           if (const MemRegion *LR = L->getAsRegion())
1111             AddToWorkList(LR);
1112         }
1113       }
1114     }
1115     return;
1116   }
1117 
1118   // Symbolic region?
1119   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR))
1120     IS.insert(SR->getSymbol());
1121 
1122   // Nothing else should be done in the case when we preserve regions context.
1123   if (PreserveRegionsContents)
1124     return;
1125 
1126   // Otherwise, we have a normal data region. Record that we touched the region.
1127   if (Regions)
1128     Regions->push_back(baseR);
1129 
1130   if (isa<AllocaRegion, SymbolicRegion>(baseR)) {
1131     // Invalidate the region by setting its default value to
1132     // conjured symbol. The type of the symbol is irrelevant.
1133     DefinedOrUnknownSVal V =
1134       svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count);
1135     B = B.addBinding(baseR, BindingKey::Default, V);
1136     return;
1137   }
1138 
1139   if (!baseR->isBoundable())
1140     return;
1141 
1142   const TypedValueRegion *TR = cast<TypedValueRegion>(baseR);
1143   QualType T = TR->getValueType();
1144 
1145   if (isInitiallyIncludedGlobalRegion(baseR)) {
1146     // If the region is a global and we are invalidating all globals,
1147     // erasing the entry is good enough.  This causes all globals to be lazily
1148     // symbolicated from the same base symbol.
1149     return;
1150   }
1151 
1152   if (T->isRecordType()) {
1153     // Invalidate the region by setting its default value to
1154     // conjured symbol. The type of the symbol is irrelevant.
1155     DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1156                                                           Ctx.IntTy, Count);
1157     B = B.addBinding(baseR, BindingKey::Default, V);
1158     return;
1159   }
1160 
1161   if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
1162     bool doNotInvalidateSuperRegion = ITraits.hasTrait(
1163         baseR,
1164         RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
1165 
1166     if (doNotInvalidateSuperRegion) {
1167       // We are not doing blank invalidation of the whole array region so we
1168       // have to manually invalidate each elements.
1169       Optional<uint64_t> NumElements;
1170 
1171       // Compute lower and upper offsets for region within array.
1172       if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
1173         NumElements = CAT->getSize().getZExtValue();
1174       if (!NumElements) // We are not dealing with a constant size array
1175         goto conjure_default;
1176       QualType ElementTy = AT->getElementType();
1177       uint64_t ElemSize = Ctx.getTypeSize(ElementTy);
1178       const RegionOffset &RO = baseR->getAsOffset();
1179       const MemRegion *SuperR = baseR->getBaseRegion();
1180       if (RO.hasSymbolicOffset()) {
1181         // If base region has a symbolic offset,
1182         // we revert to invalidating the super region.
1183         if (SuperR)
1184           AddToWorkList(SuperR);
1185         goto conjure_default;
1186       }
1187 
1188       uint64_t LowerOffset = RO.getOffset();
1189       uint64_t UpperOffset = LowerOffset + *NumElements * ElemSize;
1190       bool UpperOverflow = UpperOffset < LowerOffset;
1191 
1192       // Invalidate regions which are within array boundaries,
1193       // or have a symbolic offset.
1194       if (!SuperR)
1195         goto conjure_default;
1196 
1197       const ClusterBindings *C = B.lookup(SuperR);
1198       if (!C)
1199         goto conjure_default;
1200 
1201       for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E;
1202            ++I) {
1203         const BindingKey &BK = I.getKey();
1204         Optional<uint64_t> ROffset =
1205             BK.hasSymbolicOffset() ? Optional<uint64_t>() : BK.getOffset();
1206 
1207         // Check offset is not symbolic and within array's boundaries.
1208         // Handles arrays of 0 elements and of 0-sized elements as well.
1209         if (!ROffset ||
1210             ((*ROffset >= LowerOffset && *ROffset < UpperOffset) ||
1211              (UpperOverflow &&
1212               (*ROffset >= LowerOffset || *ROffset < UpperOffset)) ||
1213              (LowerOffset == UpperOffset && *ROffset == LowerOffset))) {
1214           B = B.removeBinding(I.getKey());
1215           // Bound symbolic regions need to be invalidated for dead symbol
1216           // detection.
1217           SVal V = I.getData();
1218           const MemRegion *R = V.getAsRegion();
1219           if (isa_and_nonnull<SymbolicRegion>(R))
1220             VisitBinding(V);
1221         }
1222       }
1223     }
1224   conjure_default:
1225       // Set the default value of the array to conjured symbol.
1226     DefinedOrUnknownSVal V =
1227     svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1228                                      AT->getElementType(), Count);
1229     B = B.addBinding(baseR, BindingKey::Default, V);
1230     return;
1231   }
1232 
1233   DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1234                                                         T,Count);
1235   assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
1236   B = B.addBinding(baseR, BindingKey::Direct, V);
1237 }
1238 
1239 bool InvalidateRegionsWorker::isInitiallyIncludedGlobalRegion(
1240     const MemRegion *R) {
1241   switch (GlobalsFilter) {
1242   case GFK_None:
1243     return false;
1244   case GFK_SystemOnly:
1245     return isa<GlobalSystemSpaceRegion>(R->getMemorySpace());
1246   case GFK_All:
1247     return isa<NonStaticGlobalSpaceRegion>(R->getMemorySpace());
1248   }
1249 
1250   llvm_unreachable("unknown globals filter");
1251 }
1252 
1253 bool InvalidateRegionsWorker::includeEntireMemorySpace(const MemRegion *Base) {
1254   if (isInitiallyIncludedGlobalRegion(Base))
1255     return true;
1256 
1257   const MemSpaceRegion *MemSpace = Base->getMemorySpace();
1258   return ITraits.hasTrait(MemSpace,
1259                           RegionAndSymbolInvalidationTraits::TK_EntireMemSpace);
1260 }
1261 
1262 RegionBindingsRef
1263 RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K,
1264                                            const Expr *Ex,
1265                                            unsigned Count,
1266                                            const LocationContext *LCtx,
1267                                            RegionBindingsRef B,
1268                                            InvalidatedRegions *Invalidated) {
1269   // Bind the globals memory space to a new symbol that we will use to derive
1270   // the bindings for all globals.
1271   const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K);
1272   SVal V = svalBuilder.conjureSymbolVal(/* symbolTag = */ (const void*) GS, Ex, LCtx,
1273                                         /* type does not matter */ Ctx.IntTy,
1274                                         Count);
1275 
1276   B = B.removeBinding(GS)
1277        .addBinding(BindingKey::Make(GS, BindingKey::Default), V);
1278 
1279   // Even if there are no bindings in the global scope, we still need to
1280   // record that we touched it.
1281   if (Invalidated)
1282     Invalidated->push_back(GS);
1283 
1284   return B;
1285 }
1286 
1287 void RegionStoreManager::populateWorkList(InvalidateRegionsWorker &W,
1288                                           ArrayRef<SVal> Values,
1289                                           InvalidatedRegions *TopLevelRegions) {
1290   for (ArrayRef<SVal>::iterator I = Values.begin(),
1291                                 E = Values.end(); I != E; ++I) {
1292     SVal V = *I;
1293     if (Optional<nonloc::LazyCompoundVal> LCS =
1294         V.getAs<nonloc::LazyCompoundVal>()) {
1295 
1296       for (SVal S : getInterestingValues(*LCS))
1297         if (const MemRegion *R = S.getAsRegion())
1298           W.AddToWorkList(R);
1299 
1300       continue;
1301     }
1302 
1303     if (const MemRegion *R = V.getAsRegion()) {
1304       if (TopLevelRegions)
1305         TopLevelRegions->push_back(R);
1306       W.AddToWorkList(R);
1307       continue;
1308     }
1309   }
1310 }
1311 
1312 StoreRef
1313 RegionStoreManager::invalidateRegions(Store store,
1314                                      ArrayRef<SVal> Values,
1315                                      const Expr *Ex, unsigned Count,
1316                                      const LocationContext *LCtx,
1317                                      const CallEvent *Call,
1318                                      InvalidatedSymbols &IS,
1319                                      RegionAndSymbolInvalidationTraits &ITraits,
1320                                      InvalidatedRegions *TopLevelRegions,
1321                                      InvalidatedRegions *Invalidated) {
1322   GlobalsFilterKind GlobalsFilter;
1323   if (Call) {
1324     if (Call->isInSystemHeader())
1325       GlobalsFilter = GFK_SystemOnly;
1326     else
1327       GlobalsFilter = GFK_All;
1328   } else {
1329     GlobalsFilter = GFK_None;
1330   }
1331 
1332   RegionBindingsRef B = getRegionBindings(store);
1333   InvalidateRegionsWorker W(*this, StateMgr, B, Ex, Count, LCtx, IS, ITraits,
1334                             Invalidated, GlobalsFilter);
1335 
1336   // Scan the bindings and generate the clusters.
1337   W.GenerateClusters();
1338 
1339   // Add the regions to the worklist.
1340   populateWorkList(W, Values, TopLevelRegions);
1341 
1342   W.RunWorkList();
1343 
1344   // Return the new bindings.
1345   B = W.getRegionBindings();
1346 
1347   // For calls, determine which global regions should be invalidated and
1348   // invalidate them. (Note that function-static and immutable globals are never
1349   // invalidated by this.)
1350   // TODO: This could possibly be more precise with modules.
1351   switch (GlobalsFilter) {
1352   case GFK_All:
1353     B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind,
1354                                Ex, Count, LCtx, B, Invalidated);
1355     [[fallthrough]];
1356   case GFK_SystemOnly:
1357     B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
1358                                Ex, Count, LCtx, B, Invalidated);
1359     [[fallthrough]];
1360   case GFK_None:
1361     break;
1362   }
1363 
1364   return StoreRef(B.asStore(), *this);
1365 }
1366 
1367 //===----------------------------------------------------------------------===//
1368 // Location and region casting.
1369 //===----------------------------------------------------------------------===//
1370 
1371 /// ArrayToPointer - Emulates the "decay" of an array to a pointer
1372 ///  type.  'Array' represents the lvalue of the array being decayed
1373 ///  to a pointer, and the returned SVal represents the decayed
1374 ///  version of that lvalue (i.e., a pointer to the first element of
1375 ///  the array).  This is called by ExprEngine when evaluating casts
1376 ///  from arrays to pointers.
1377 SVal RegionStoreManager::ArrayToPointer(Loc Array, QualType T) {
1378   if (isa<loc::ConcreteInt>(Array))
1379     return Array;
1380 
1381   if (!isa<loc::MemRegionVal>(Array))
1382     return UnknownVal();
1383 
1384   const SubRegion *R =
1385       cast<SubRegion>(Array.castAs<loc::MemRegionVal>().getRegion());
1386   NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex();
1387   return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, R, Ctx));
1388 }
1389 
1390 //===----------------------------------------------------------------------===//
1391 // Loading values from regions.
1392 //===----------------------------------------------------------------------===//
1393 
1394 SVal RegionStoreManager::getBinding(RegionBindingsConstRef B, Loc L, QualType T) {
1395   assert(!isa<UnknownVal>(L) && "location unknown");
1396   assert(!isa<UndefinedVal>(L) && "location undefined");
1397 
1398   // For access to concrete addresses, return UnknownVal.  Checks
1399   // for null dereferences (and similar errors) are done by checkers, not
1400   // the Store.
1401   // FIXME: We can consider lazily symbolicating such memory, but we really
1402   // should defer this when we can reason easily about symbolicating arrays
1403   // of bytes.
1404   if (L.getAs<loc::ConcreteInt>()) {
1405     return UnknownVal();
1406   }
1407   if (!L.getAs<loc::MemRegionVal>()) {
1408     return UnknownVal();
1409   }
1410 
1411   const MemRegion *MR = L.castAs<loc::MemRegionVal>().getRegion();
1412 
1413   if (isa<BlockDataRegion>(MR)) {
1414     return UnknownVal();
1415   }
1416 
1417   // Auto-detect the binding type.
1418   if (T.isNull()) {
1419     if (const auto *TVR = dyn_cast<TypedValueRegion>(MR))
1420       T = TVR->getValueType();
1421     else if (const auto *TR = dyn_cast<TypedRegion>(MR))
1422       T = TR->getLocationType()->getPointeeType();
1423     else if (const auto *SR = dyn_cast<SymbolicRegion>(MR))
1424       T = SR->getPointeeStaticType();
1425   }
1426   assert(!T.isNull() && "Unable to auto-detect binding type!");
1427   assert(!T->isVoidType() && "Attempting to dereference a void pointer!");
1428 
1429   if (!isa<TypedValueRegion>(MR))
1430     MR = GetElementZeroRegion(cast<SubRegion>(MR), T);
1431 
1432   // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
1433   //  instead of 'Loc', and have the other Loc cases handled at a higher level.
1434   const TypedValueRegion *R = cast<TypedValueRegion>(MR);
1435   QualType RTy = R->getValueType();
1436 
1437   // FIXME: we do not yet model the parts of a complex type, so treat the
1438   // whole thing as "unknown".
1439   if (RTy->isAnyComplexType())
1440     return UnknownVal();
1441 
1442   // FIXME: We should eventually handle funny addressing.  e.g.:
1443   //
1444   //   int x = ...;
1445   //   int *p = &x;
1446   //   char *q = (char*) p;
1447   //   char c = *q;  // returns the first byte of 'x'.
1448   //
1449   // Such funny addressing will occur due to layering of regions.
1450   if (RTy->isStructureOrClassType())
1451     return getBindingForStruct(B, R);
1452 
1453   // FIXME: Handle unions.
1454   if (RTy->isUnionType())
1455     return createLazyBinding(B, R);
1456 
1457   if (RTy->isArrayType()) {
1458     if (RTy->isConstantArrayType())
1459       return getBindingForArray(B, R);
1460     else
1461       return UnknownVal();
1462   }
1463 
1464   // FIXME: handle Vector types.
1465   if (RTy->isVectorType())
1466     return UnknownVal();
1467 
1468   if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
1469     return svalBuilder.evalCast(getBindingForField(B, FR), T, QualType{});
1470 
1471   if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
1472     // FIXME: Here we actually perform an implicit conversion from the loaded
1473     // value to the element type.  Eventually we want to compose these values
1474     // more intelligently.  For example, an 'element' can encompass multiple
1475     // bound regions (e.g., several bound bytes), or could be a subset of
1476     // a larger value.
1477     return svalBuilder.evalCast(getBindingForElement(B, ER), T, QualType{});
1478   }
1479 
1480   if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
1481     // FIXME: Here we actually perform an implicit conversion from the loaded
1482     // value to the ivar type.  What we should model is stores to ivars
1483     // that blow past the extent of the ivar.  If the address of the ivar is
1484     // reinterpretted, it is possible we stored a different value that could
1485     // fit within the ivar.  Either we need to cast these when storing them
1486     // or reinterpret them lazily (as we do here).
1487     return svalBuilder.evalCast(getBindingForObjCIvar(B, IVR), T, QualType{});
1488   }
1489 
1490   if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
1491     // FIXME: Here we actually perform an implicit conversion from the loaded
1492     // value to the variable type.  What we should model is stores to variables
1493     // that blow past the extent of the variable.  If the address of the
1494     // variable is reinterpretted, it is possible we stored a different value
1495     // that could fit within the variable.  Either we need to cast these when
1496     // storing them or reinterpret them lazily (as we do here).
1497     return svalBuilder.evalCast(getBindingForVar(B, VR), T, QualType{});
1498   }
1499 
1500   const SVal *V = B.lookup(R, BindingKey::Direct);
1501 
1502   // Check if the region has a binding.
1503   if (V)
1504     return *V;
1505 
1506   // The location does not have a bound value.  This means that it has
1507   // the value it had upon its creation and/or entry to the analyzed
1508   // function/method.  These are either symbolic values or 'undefined'.
1509   if (R->hasStackNonParametersStorage()) {
1510     // All stack variables are considered to have undefined values
1511     // upon creation.  All heap allocated blocks are considered to
1512     // have undefined values as well unless they are explicitly bound
1513     // to specific values.
1514     return UndefinedVal();
1515   }
1516 
1517   // All other values are symbolic.
1518   return svalBuilder.getRegionValueSymbolVal(R);
1519 }
1520 
1521 static QualType getUnderlyingType(const SubRegion *R) {
1522   QualType RegionTy;
1523   if (const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(R))
1524     RegionTy = TVR->getValueType();
1525 
1526   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
1527     RegionTy = SR->getSymbol()->getType();
1528 
1529   return RegionTy;
1530 }
1531 
1532 /// Checks to see if store \p B has a lazy binding for region \p R.
1533 ///
1534 /// If \p AllowSubregionBindings is \c false, a lazy binding will be rejected
1535 /// if there are additional bindings within \p R.
1536 ///
1537 /// Note that unlike RegionStoreManager::findLazyBinding, this will not search
1538 /// for lazy bindings for super-regions of \p R.
1539 static Optional<nonloc::LazyCompoundVal>
1540 getExistingLazyBinding(SValBuilder &SVB, RegionBindingsConstRef B,
1541                        const SubRegion *R, bool AllowSubregionBindings) {
1542   Optional<SVal> V = B.getDefaultBinding(R);
1543   if (!V)
1544     return std::nullopt;
1545 
1546   Optional<nonloc::LazyCompoundVal> LCV = V->getAs<nonloc::LazyCompoundVal>();
1547   if (!LCV)
1548     return std::nullopt;
1549 
1550   // If the LCV is for a subregion, the types might not match, and we shouldn't
1551   // reuse the binding.
1552   QualType RegionTy = getUnderlyingType(R);
1553   if (!RegionTy.isNull() &&
1554       !RegionTy->isVoidPointerType()) {
1555     QualType SourceRegionTy = LCV->getRegion()->getValueType();
1556     if (!SVB.getContext().hasSameUnqualifiedType(RegionTy, SourceRegionTy))
1557       return std::nullopt;
1558   }
1559 
1560   if (!AllowSubregionBindings) {
1561     // If there are any other bindings within this region, we shouldn't reuse
1562     // the top-level binding.
1563     SmallVector<BindingPair, 16> Bindings;
1564     collectSubRegionBindings(Bindings, SVB, *B.lookup(R->getBaseRegion()), R,
1565                              /*IncludeAllDefaultBindings=*/true);
1566     if (Bindings.size() > 1)
1567       return std::nullopt;
1568   }
1569 
1570   return *LCV;
1571 }
1572 
1573 
1574 std::pair<Store, const SubRegion *>
1575 RegionStoreManager::findLazyBinding(RegionBindingsConstRef B,
1576                                    const SubRegion *R,
1577                                    const SubRegion *originalRegion) {
1578   if (originalRegion != R) {
1579     if (Optional<nonloc::LazyCompoundVal> V =
1580           getExistingLazyBinding(svalBuilder, B, R, true))
1581       return std::make_pair(V->getStore(), V->getRegion());
1582   }
1583 
1584   typedef std::pair<Store, const SubRegion *> StoreRegionPair;
1585   StoreRegionPair Result = StoreRegionPair();
1586 
1587   if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1588     Result = findLazyBinding(B, cast<SubRegion>(ER->getSuperRegion()),
1589                              originalRegion);
1590 
1591     if (Result.second)
1592       Result.second = MRMgr.getElementRegionWithSuper(ER, Result.second);
1593 
1594   } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
1595     Result = findLazyBinding(B, cast<SubRegion>(FR->getSuperRegion()),
1596                                        originalRegion);
1597 
1598     if (Result.second)
1599       Result.second = MRMgr.getFieldRegionWithSuper(FR, Result.second);
1600 
1601   } else if (const CXXBaseObjectRegion *BaseReg =
1602                dyn_cast<CXXBaseObjectRegion>(R)) {
1603     // C++ base object region is another kind of region that we should blast
1604     // through to look for lazy compound value. It is like a field region.
1605     Result = findLazyBinding(B, cast<SubRegion>(BaseReg->getSuperRegion()),
1606                              originalRegion);
1607 
1608     if (Result.second)
1609       Result.second = MRMgr.getCXXBaseObjectRegionWithSuper(BaseReg,
1610                                                             Result.second);
1611   }
1612 
1613   return Result;
1614 }
1615 
1616 /// This is a helper function for `getConstantValFromConstArrayInitializer`.
1617 ///
1618 /// Return an array of extents of the declared array type.
1619 ///
1620 /// E.g. for `int x[1][2][3];` returns { 1, 2, 3 }.
1621 static SmallVector<uint64_t, 2>
1622 getConstantArrayExtents(const ConstantArrayType *CAT) {
1623   assert(CAT && "ConstantArrayType should not be null");
1624   CAT = cast<ConstantArrayType>(CAT->getCanonicalTypeInternal());
1625   SmallVector<uint64_t, 2> Extents;
1626   do {
1627     Extents.push_back(CAT->getSize().getZExtValue());
1628   } while ((CAT = dyn_cast<ConstantArrayType>(CAT->getElementType())));
1629   return Extents;
1630 }
1631 
1632 /// This is a helper function for `getConstantValFromConstArrayInitializer`.
1633 ///
1634 /// Return an array of offsets from nested ElementRegions and a root base
1635 /// region. The array is never empty and a base region is never null.
1636 ///
1637 /// E.g. for `Element{Element{Element{VarRegion},1},2},3}` returns { 3, 2, 1 }.
1638 /// This represents an access through indirection: `arr[1][2][3];`
1639 ///
1640 /// \param ER The given (possibly nested) ElementRegion.
1641 ///
1642 /// \note The result array is in the reverse order of indirection expression:
1643 /// arr[1][2][3] -> { 3, 2, 1 }. This helps to provide complexity O(n), where n
1644 /// is a number of indirections. It may not affect performance in real-life
1645 /// code, though.
1646 static std::pair<SmallVector<SVal, 2>, const MemRegion *>
1647 getElementRegionOffsetsWithBase(const ElementRegion *ER) {
1648   assert(ER && "ConstantArrayType should not be null");
1649   const MemRegion *Base;
1650   SmallVector<SVal, 2> SValOffsets;
1651   do {
1652     SValOffsets.push_back(ER->getIndex());
1653     Base = ER->getSuperRegion();
1654     ER = dyn_cast<ElementRegion>(Base);
1655   } while (ER);
1656   return {SValOffsets, Base};
1657 }
1658 
1659 /// This is a helper function for `getConstantValFromConstArrayInitializer`.
1660 ///
1661 /// Convert array of offsets from `SVal` to `uint64_t` in consideration of
1662 /// respective array extents.
1663 /// \param SrcOffsets [in]   The array of offsets of type `SVal` in reversed
1664 ///   order (expectedly received from `getElementRegionOffsetsWithBase`).
1665 /// \param ArrayExtents [in] The array of extents.
1666 /// \param DstOffsets [out]  The array of offsets of type `uint64_t`.
1667 /// \returns:
1668 /// - `std::nullopt` for successful convertion.
1669 /// - `UndefinedVal` or `UnknownVal` otherwise. It's expected that this SVal
1670 ///   will be returned as a suitable value of the access operation.
1671 ///   which should be returned as a correct
1672 ///
1673 /// \example:
1674 ///   const int arr[10][20][30] = {}; // ArrayExtents { 10, 20, 30 }
1675 ///   int x1 = arr[4][5][6]; // SrcOffsets { NonLoc(6), NonLoc(5), NonLoc(4) }
1676 ///                          // DstOffsets { 4, 5, 6 }
1677 ///                          // returns std::nullopt
1678 ///   int x2 = arr[42][5][-6]; // returns UndefinedVal
1679 ///   int x3 = arr[4][5][x2];  // returns UnknownVal
1680 static Optional<SVal>
1681 convertOffsetsFromSvalToUnsigneds(const SmallVector<SVal, 2> &SrcOffsets,
1682                                   const SmallVector<uint64_t, 2> ArrayExtents,
1683                                   SmallVector<uint64_t, 2> &DstOffsets) {
1684   // Check offsets for being out of bounds.
1685   // C++20 [expr.add] 7.6.6.4 (excerpt):
1686   //   If P points to an array element i of an array object x with n
1687   //   elements, where i < 0 or i > n, the behavior is undefined.
1688   //   Dereferencing is not allowed on the "one past the last
1689   //   element", when i == n.
1690   // Example:
1691   //  const int arr[3][2] = {{1, 2}, {3, 4}};
1692   //  arr[0][0];  // 1
1693   //  arr[0][1];  // 2
1694   //  arr[0][2];  // UB
1695   //  arr[1][0];  // 3
1696   //  arr[1][1];  // 4
1697   //  arr[1][-1]; // UB
1698   //  arr[2][0];  // 0
1699   //  arr[2][1];  // 0
1700   //  arr[-2][0]; // UB
1701   DstOffsets.resize(SrcOffsets.size());
1702   auto ExtentIt = ArrayExtents.begin();
1703   auto OffsetIt = DstOffsets.begin();
1704   // Reverse `SValOffsets` to make it consistent with `ArrayExtents`.
1705   for (SVal V : llvm::reverse(SrcOffsets)) {
1706     if (auto CI = V.getAs<nonloc::ConcreteInt>()) {
1707       // When offset is out of array's bounds, result is UB.
1708       const llvm::APSInt &Offset = CI->getValue();
1709       if (Offset.isNegative() || Offset.uge(*(ExtentIt++)))
1710         return UndefinedVal();
1711       // Store index in a reversive order.
1712       *(OffsetIt++) = Offset.getZExtValue();
1713       continue;
1714     }
1715     // Symbolic index presented. Return Unknown value.
1716     // FIXME: We also need to take ElementRegions with symbolic indexes into
1717     // account.
1718     return UnknownVal();
1719   }
1720   return std::nullopt;
1721 }
1722 
1723 Optional<SVal> RegionStoreManager::getConstantValFromConstArrayInitializer(
1724     RegionBindingsConstRef B, const ElementRegion *R) {
1725   assert(R && "ElementRegion should not be null");
1726 
1727   // Treat an n-dimensional array.
1728   SmallVector<SVal, 2> SValOffsets;
1729   const MemRegion *Base;
1730   std::tie(SValOffsets, Base) = getElementRegionOffsetsWithBase(R);
1731   const VarRegion *VR = dyn_cast<VarRegion>(Base);
1732   if (!VR)
1733     return std::nullopt;
1734 
1735   assert(!SValOffsets.empty() && "getElementRegionOffsets guarantees the "
1736                                  "offsets vector is not empty.");
1737 
1738   // Check if the containing array has an initialized value that we can trust.
1739   // We can trust a const value or a value of a global initializer in main().
1740   const VarDecl *VD = VR->getDecl();
1741   if (!VD->getType().isConstQualified() &&
1742       !R->getElementType().isConstQualified() &&
1743       (!B.isMainAnalysis() || !VD->hasGlobalStorage()))
1744     return std::nullopt;
1745 
1746   // Array's declaration should have `ConstantArrayType` type, because only this
1747   // type contains an array extent. It may happen that array type can be of
1748   // `IncompleteArrayType` type. To get the declaration of `ConstantArrayType`
1749   // type, we should find the declaration in the redeclarations chain that has
1750   // the initialization expression.
1751   // NOTE: `getAnyInitializer` has an out-parameter, which returns a new `VD`
1752   // from which an initializer is obtained. We replace current `VD` with the new
1753   // `VD`. If the return value of the function is null than `VD` won't be
1754   // replaced.
1755   const Expr *Init = VD->getAnyInitializer(VD);
1756   // NOTE: If `Init` is non-null, then a new `VD` is non-null for sure. So check
1757   // `Init` for null only and don't worry about the replaced `VD`.
1758   if (!Init)
1759     return std::nullopt;
1760 
1761   // Array's declaration should have ConstantArrayType type, because only this
1762   // type contains an array extent.
1763   const ConstantArrayType *CAT = Ctx.getAsConstantArrayType(VD->getType());
1764   if (!CAT)
1765     return std::nullopt;
1766 
1767   // Get array extents.
1768   SmallVector<uint64_t, 2> Extents = getConstantArrayExtents(CAT);
1769 
1770   // The number of offsets should equal to the numbers of extents,
1771   // otherwise wrong type punning occurred. For instance:
1772   //  int arr[1][2][3];
1773   //  auto ptr = (int(*)[42])arr;
1774   //  auto x = ptr[4][2]; // UB
1775   // FIXME: Should return UndefinedVal.
1776   if (SValOffsets.size() != Extents.size())
1777     return std::nullopt;
1778 
1779   SmallVector<uint64_t, 2> ConcreteOffsets;
1780   if (Optional<SVal> V = convertOffsetsFromSvalToUnsigneds(SValOffsets, Extents,
1781                                                            ConcreteOffsets))
1782     return *V;
1783 
1784   // Handle InitListExpr.
1785   // Example:
1786   //   const char arr[4][2] = { { 1, 2 }, { 3 }, 4, 5 };
1787   if (const auto *ILE = dyn_cast<InitListExpr>(Init))
1788     return getSValFromInitListExpr(ILE, ConcreteOffsets, R->getElementType());
1789 
1790   // Handle StringLiteral.
1791   // Example:
1792   //   const char arr[] = "abc";
1793   if (const auto *SL = dyn_cast<StringLiteral>(Init))
1794     return getSValFromStringLiteral(SL, ConcreteOffsets.front(),
1795                                     R->getElementType());
1796 
1797   // FIXME: Handle CompoundLiteralExpr.
1798 
1799   return std::nullopt;
1800 }
1801 
1802 /// Returns an SVal, if possible, for the specified position of an
1803 /// initialization list.
1804 ///
1805 /// \param ILE The given initialization list.
1806 /// \param Offsets The array of unsigned offsets. E.g. for the expression
1807 ///  `int x = arr[1][2][3];` an array should be { 1, 2, 3 }.
1808 /// \param ElemT The type of the result SVal expression.
1809 /// \return Optional SVal for the particular position in the initialization
1810 ///   list. E.g. for the list `{{1, 2},[3, 4],{5, 6}, {}}` offsets:
1811 ///   - {1, 1} returns SVal{4}, because it's the second position in the second
1812 ///     sublist;
1813 ///   - {3, 0} returns SVal{0}, because there's no explicit value at this
1814 ///     position in the sublist.
1815 ///
1816 /// NOTE: Inorder to get a valid SVal, a caller shall guarantee valid offsets
1817 /// for the given initialization list. Otherwise SVal can be an equivalent to 0
1818 /// or lead to assertion.
1819 Optional<SVal> RegionStoreManager::getSValFromInitListExpr(
1820     const InitListExpr *ILE, const SmallVector<uint64_t, 2> &Offsets,
1821     QualType ElemT) {
1822   assert(ILE && "InitListExpr should not be null");
1823 
1824   for (uint64_t Offset : Offsets) {
1825     // C++20 [dcl.init.string] 9.4.2.1:
1826     //   An array of ordinary character type [...] can be initialized by [...]
1827     //   an appropriately-typed string-literal enclosed in braces.
1828     // Example:
1829     //   const char arr[] = { "abc" };
1830     if (ILE->isStringLiteralInit())
1831       if (const auto *SL = dyn_cast<StringLiteral>(ILE->getInit(0)))
1832         return getSValFromStringLiteral(SL, Offset, ElemT);
1833 
1834     // C++20 [expr.add] 9.4.17.5 (excerpt):
1835     //   i-th array element is value-initialized for each k < i ≤ n,
1836     //   where k is an expression-list size and n is an array extent.
1837     if (Offset >= ILE->getNumInits())
1838       return svalBuilder.makeZeroVal(ElemT);
1839 
1840     const Expr *E = ILE->getInit(Offset);
1841     const auto *IL = dyn_cast<InitListExpr>(E);
1842     if (!IL)
1843       // Return a constant value, if it is presented.
1844       // FIXME: Support other SVals.
1845       return svalBuilder.getConstantVal(E);
1846 
1847     // Go to the nested initializer list.
1848     ILE = IL;
1849   }
1850   llvm_unreachable(
1851       "Unhandled InitListExpr sub-expressions or invalid offsets.");
1852 }
1853 
1854 /// Returns an SVal, if possible, for the specified position in a string
1855 /// literal.
1856 ///
1857 /// \param SL The given string literal.
1858 /// \param Offset The unsigned offset. E.g. for the expression
1859 ///   `char x = str[42];` an offset should be 42.
1860 ///   E.g. for the string "abc" offset:
1861 ///   - 1 returns SVal{b}, because it's the second position in the string.
1862 ///   - 42 returns SVal{0}, because there's no explicit value at this
1863 ///     position in the string.
1864 /// \param ElemT The type of the result SVal expression.
1865 ///
1866 /// NOTE: We return `0` for every offset >= the literal length for array
1867 /// declarations, like:
1868 ///   const char str[42] = "123"; // Literal length is 4.
1869 ///   char c = str[41];           // Offset is 41.
1870 /// FIXME: Nevertheless, we can't do the same for pointer declaraions, like:
1871 ///   const char * const str = "123"; // Literal length is 4.
1872 ///   char c = str[41];               // Offset is 41. Returns `0`, but Undef
1873 ///                                   // expected.
1874 /// It should be properly handled before reaching this point.
1875 /// The main problem is that we can't distinguish between these declarations,
1876 /// because in case of array we can get the Decl from VarRegion, but in case
1877 /// of pointer the region is a StringRegion, which doesn't contain a Decl.
1878 /// Possible solution could be passing an array extent along with the offset.
1879 SVal RegionStoreManager::getSValFromStringLiteral(const StringLiteral *SL,
1880                                                   uint64_t Offset,
1881                                                   QualType ElemT) {
1882   assert(SL && "StringLiteral should not be null");
1883   // C++20 [dcl.init.string] 9.4.2.3:
1884   //   If there are fewer initializers than there are array elements, each
1885   //   element not explicitly initialized shall be zero-initialized [dcl.init].
1886   uint32_t Code = (Offset >= SL->getLength()) ? 0 : SL->getCodeUnit(Offset);
1887   return svalBuilder.makeIntVal(Code, ElemT);
1888 }
1889 
1890 static Optional<SVal> getDerivedSymbolForBinding(
1891     RegionBindingsConstRef B, const TypedValueRegion *BaseRegion,
1892     const TypedValueRegion *SubReg, const ASTContext &Ctx, SValBuilder &SVB) {
1893   assert(BaseRegion);
1894   QualType BaseTy = BaseRegion->getValueType();
1895   QualType Ty = SubReg->getValueType();
1896   if (BaseTy->isScalarType() && Ty->isScalarType()) {
1897     if (Ctx.getTypeSizeInChars(BaseTy) >= Ctx.getTypeSizeInChars(Ty)) {
1898       if (const Optional<SVal> &ParentValue = B.getDirectBinding(BaseRegion)) {
1899         if (SymbolRef ParentValueAsSym = ParentValue->getAsSymbol())
1900           return SVB.getDerivedRegionValueSymbolVal(ParentValueAsSym, SubReg);
1901 
1902         if (ParentValue->isUndef())
1903           return UndefinedVal();
1904 
1905         // Other cases: give up.  We are indexing into a larger object
1906         // that has some value, but we don't know how to handle that yet.
1907         return UnknownVal();
1908       }
1909     }
1910   }
1911   return std::nullopt;
1912 }
1913 
1914 SVal RegionStoreManager::getBindingForElement(RegionBindingsConstRef B,
1915                                               const ElementRegion* R) {
1916   // Check if the region has a binding.
1917   if (const Optional<SVal> &V = B.getDirectBinding(R))
1918     return *V;
1919 
1920   const MemRegion* superR = R->getSuperRegion();
1921 
1922   // Check if the region is an element region of a string literal.
1923   if (const StringRegion *StrR = dyn_cast<StringRegion>(superR)) {
1924     // FIXME: Handle loads from strings where the literal is treated as
1925     // an integer, e.g., *((unsigned int*)"hello"). Such loads are UB according
1926     // to C++20 7.2.1.11 [basic.lval].
1927     QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType();
1928     if (!Ctx.hasSameUnqualifiedType(T, R->getElementType()))
1929       return UnknownVal();
1930     if (const auto CI = R->getIndex().getAs<nonloc::ConcreteInt>()) {
1931       const llvm::APSInt &Idx = CI->getValue();
1932       if (Idx < 0)
1933         return UndefinedVal();
1934       const StringLiteral *SL = StrR->getStringLiteral();
1935       return getSValFromStringLiteral(SL, Idx.getZExtValue(), T);
1936     }
1937   } else if (isa<ElementRegion, VarRegion>(superR)) {
1938     if (Optional<SVal> V = getConstantValFromConstArrayInitializer(B, R))
1939       return *V;
1940   }
1941 
1942   // Check for loads from a code text region.  For such loads, just give up.
1943   if (isa<CodeTextRegion>(superR))
1944     return UnknownVal();
1945 
1946   // Handle the case where we are indexing into a larger scalar object.
1947   // For example, this handles:
1948   //   int x = ...
1949   //   char *y = &x;
1950   //   return *y;
1951   // FIXME: This is a hack, and doesn't do anything really intelligent yet.
1952   const RegionRawOffset &O = R->getAsArrayOffset();
1953 
1954   // If we cannot reason about the offset, return an unknown value.
1955   if (!O.getRegion())
1956     return UnknownVal();
1957 
1958   if (const TypedValueRegion *baseR = dyn_cast<TypedValueRegion>(O.getRegion()))
1959     if (auto V = getDerivedSymbolForBinding(B, baseR, R, Ctx, svalBuilder))
1960       return *V;
1961 
1962   return getBindingForFieldOrElementCommon(B, R, R->getElementType());
1963 }
1964 
1965 SVal RegionStoreManager::getBindingForField(RegionBindingsConstRef B,
1966                                             const FieldRegion* R) {
1967 
1968   // Check if the region has a binding.
1969   if (const Optional<SVal> &V = B.getDirectBinding(R))
1970     return *V;
1971 
1972   // If the containing record was initialized, try to get its constant value.
1973   const FieldDecl *FD = R->getDecl();
1974   QualType Ty = FD->getType();
1975   const MemRegion* superR = R->getSuperRegion();
1976   if (const auto *VR = dyn_cast<VarRegion>(superR)) {
1977     const VarDecl *VD = VR->getDecl();
1978     QualType RecordVarTy = VD->getType();
1979     unsigned Index = FD->getFieldIndex();
1980     // Either the record variable or the field has an initializer that we can
1981     // trust. We trust initializers of constants and, additionally, respect
1982     // initializers of globals when analyzing main().
1983     if (RecordVarTy.isConstQualified() || Ty.isConstQualified() ||
1984         (B.isMainAnalysis() && VD->hasGlobalStorage()))
1985       if (const Expr *Init = VD->getAnyInitializer())
1986         if (const auto *InitList = dyn_cast<InitListExpr>(Init)) {
1987           if (Index < InitList->getNumInits()) {
1988             if (const Expr *FieldInit = InitList->getInit(Index))
1989               if (Optional<SVal> V = svalBuilder.getConstantVal(FieldInit))
1990                 return *V;
1991           } else {
1992             return svalBuilder.makeZeroVal(Ty);
1993           }
1994         }
1995   }
1996 
1997   // Handle the case where we are accessing into a larger scalar object.
1998   // For example, this handles:
1999   //   struct header {
2000   //     unsigned a : 1;
2001   //     unsigned b : 1;
2002   //   };
2003   //   struct parse_t {
2004   //     unsigned bits0 : 1;
2005   //     unsigned bits2 : 2; // <-- header
2006   //     unsigned bits4 : 4;
2007   //   };
2008   //   int parse(parse_t *p) {
2009   //     unsigned copy = p->bits2;
2010   //     header *bits = (header *)&copy;
2011   //     return bits->b;  <-- here
2012   //   }
2013   if (const auto *Base = dyn_cast<TypedValueRegion>(R->getBaseRegion()))
2014     if (auto V = getDerivedSymbolForBinding(B, Base, R, Ctx, svalBuilder))
2015       return *V;
2016 
2017   return getBindingForFieldOrElementCommon(B, R, Ty);
2018 }
2019 
2020 Optional<SVal>
2021 RegionStoreManager::getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
2022                                                      const MemRegion *superR,
2023                                                      const TypedValueRegion *R,
2024                                                      QualType Ty) {
2025 
2026   if (const Optional<SVal> &D = B.getDefaultBinding(superR)) {
2027     const SVal &val = *D;
2028     if (SymbolRef parentSym = val.getAsSymbol())
2029       return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
2030 
2031     if (val.isZeroConstant())
2032       return svalBuilder.makeZeroVal(Ty);
2033 
2034     if (val.isUnknownOrUndef())
2035       return val;
2036 
2037     // Lazy bindings are usually handled through getExistingLazyBinding().
2038     // We should unify these two code paths at some point.
2039     if (isa<nonloc::LazyCompoundVal, nonloc::CompoundVal>(val))
2040       return val;
2041 
2042     llvm_unreachable("Unknown default value");
2043   }
2044 
2045   return std::nullopt;
2046 }
2047 
2048 SVal RegionStoreManager::getLazyBinding(const SubRegion *LazyBindingRegion,
2049                                         RegionBindingsRef LazyBinding) {
2050   SVal Result;
2051   if (const ElementRegion *ER = dyn_cast<ElementRegion>(LazyBindingRegion))
2052     Result = getBindingForElement(LazyBinding, ER);
2053   else
2054     Result = getBindingForField(LazyBinding,
2055                                 cast<FieldRegion>(LazyBindingRegion));
2056 
2057   // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
2058   // default value for /part/ of an aggregate from a default value for the
2059   // /entire/ aggregate. The most common case of this is when struct Outer
2060   // has as its first member a struct Inner, which is copied in from a stack
2061   // variable. In this case, even if the Outer's default value is symbolic, 0,
2062   // or unknown, it gets overridden by the Inner's default value of undefined.
2063   //
2064   // This is a general problem -- if the Inner is zero-initialized, the Outer
2065   // will now look zero-initialized. The proper way to solve this is with a
2066   // new version of RegionStore that tracks the extent of a binding as well
2067   // as the offset.
2068   //
2069   // This hack only takes care of the undefined case because that can very
2070   // quickly result in a warning.
2071   if (Result.isUndef())
2072     Result = UnknownVal();
2073 
2074   return Result;
2075 }
2076 
2077 SVal
2078 RegionStoreManager::getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
2079                                                       const TypedValueRegion *R,
2080                                                       QualType Ty) {
2081 
2082   // At this point we have already checked in either getBindingForElement or
2083   // getBindingForField if 'R' has a direct binding.
2084 
2085   // Lazy binding?
2086   Store lazyBindingStore = nullptr;
2087   const SubRegion *lazyBindingRegion = nullptr;
2088   std::tie(lazyBindingStore, lazyBindingRegion) = findLazyBinding(B, R, R);
2089   if (lazyBindingRegion)
2090     return getLazyBinding(lazyBindingRegion,
2091                           getRegionBindings(lazyBindingStore));
2092 
2093   // Record whether or not we see a symbolic index.  That can completely
2094   // be out of scope of our lookup.
2095   bool hasSymbolicIndex = false;
2096 
2097   // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
2098   // default value for /part/ of an aggregate from a default value for the
2099   // /entire/ aggregate. The most common case of this is when struct Outer
2100   // has as its first member a struct Inner, which is copied in from a stack
2101   // variable. In this case, even if the Outer's default value is symbolic, 0,
2102   // or unknown, it gets overridden by the Inner's default value of undefined.
2103   //
2104   // This is a general problem -- if the Inner is zero-initialized, the Outer
2105   // will now look zero-initialized. The proper way to solve this is with a
2106   // new version of RegionStore that tracks the extent of a binding as well
2107   // as the offset.
2108   //
2109   // This hack only takes care of the undefined case because that can very
2110   // quickly result in a warning.
2111   bool hasPartialLazyBinding = false;
2112 
2113   const SubRegion *SR = R;
2114   while (SR) {
2115     const MemRegion *Base = SR->getSuperRegion();
2116     if (Optional<SVal> D = getBindingForDerivedDefaultValue(B, Base, R, Ty)) {
2117       if (D->getAs<nonloc::LazyCompoundVal>()) {
2118         hasPartialLazyBinding = true;
2119         break;
2120       }
2121 
2122       return *D;
2123     }
2124 
2125     if (const ElementRegion *ER = dyn_cast<ElementRegion>(Base)) {
2126       NonLoc index = ER->getIndex();
2127       if (!index.isConstant())
2128         hasSymbolicIndex = true;
2129     }
2130 
2131     // If our super region is a field or element itself, walk up the region
2132     // hierarchy to see if there is a default value installed in an ancestor.
2133     SR = dyn_cast<SubRegion>(Base);
2134   }
2135 
2136   if (R->hasStackNonParametersStorage()) {
2137     if (isa<ElementRegion>(R)) {
2138       // Currently we don't reason specially about Clang-style vectors.  Check
2139       // if superR is a vector and if so return Unknown.
2140       if (const TypedValueRegion *typedSuperR =
2141             dyn_cast<TypedValueRegion>(R->getSuperRegion())) {
2142         if (typedSuperR->getValueType()->isVectorType())
2143           return UnknownVal();
2144       }
2145     }
2146 
2147     // FIXME: We also need to take ElementRegions with symbolic indexes into
2148     // account.  This case handles both directly accessing an ElementRegion
2149     // with a symbolic offset, but also fields within an element with
2150     // a symbolic offset.
2151     if (hasSymbolicIndex)
2152       return UnknownVal();
2153 
2154     // Additionally allow introspection of a block's internal layout.
2155     // Try to get direct binding if all other attempts failed thus far.
2156     // Else, return UndefinedVal()
2157     if (!hasPartialLazyBinding && !isa<BlockDataRegion>(R->getBaseRegion())) {
2158       if (const Optional<SVal> &V = B.getDefaultBinding(R))
2159         return *V;
2160       return UndefinedVal();
2161     }
2162   }
2163 
2164   // All other values are symbolic.
2165   return svalBuilder.getRegionValueSymbolVal(R);
2166 }
2167 
2168 SVal RegionStoreManager::getBindingForObjCIvar(RegionBindingsConstRef B,
2169                                                const ObjCIvarRegion* R) {
2170   // Check if the region has a binding.
2171   if (const Optional<SVal> &V = B.getDirectBinding(R))
2172     return *V;
2173 
2174   const MemRegion *superR = R->getSuperRegion();
2175 
2176   // Check if the super region has a default binding.
2177   if (const Optional<SVal> &V = B.getDefaultBinding(superR)) {
2178     if (SymbolRef parentSym = V->getAsSymbol())
2179       return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
2180 
2181     // Other cases: give up.
2182     return UnknownVal();
2183   }
2184 
2185   return getBindingForLazySymbol(R);
2186 }
2187 
2188 SVal RegionStoreManager::getBindingForVar(RegionBindingsConstRef B,
2189                                           const VarRegion *R) {
2190 
2191   // Check if the region has a binding.
2192   if (Optional<SVal> V = B.getDirectBinding(R))
2193     return *V;
2194 
2195   if (Optional<SVal> V = B.getDefaultBinding(R))
2196     return *V;
2197 
2198   // Lazily derive a value for the VarRegion.
2199   const VarDecl *VD = R->getDecl();
2200   const MemSpaceRegion *MS = R->getMemorySpace();
2201 
2202   // Arguments are always symbolic.
2203   if (isa<StackArgumentsSpaceRegion>(MS))
2204     return svalBuilder.getRegionValueSymbolVal(R);
2205 
2206   // Is 'VD' declared constant?  If so, retrieve the constant value.
2207   if (VD->getType().isConstQualified()) {
2208     if (const Expr *Init = VD->getAnyInitializer()) {
2209       if (Optional<SVal> V = svalBuilder.getConstantVal(Init))
2210         return *V;
2211 
2212       // If the variable is const qualified and has an initializer but
2213       // we couldn't evaluate initializer to a value, treat the value as
2214       // unknown.
2215       return UnknownVal();
2216     }
2217   }
2218 
2219   // This must come after the check for constants because closure-captured
2220   // constant variables may appear in UnknownSpaceRegion.
2221   if (isa<UnknownSpaceRegion>(MS))
2222     return svalBuilder.getRegionValueSymbolVal(R);
2223 
2224   if (isa<GlobalsSpaceRegion>(MS)) {
2225     QualType T = VD->getType();
2226 
2227     // If we're in main(), then global initializers have not become stale yet.
2228     if (B.isMainAnalysis())
2229       if (const Expr *Init = VD->getAnyInitializer())
2230         if (Optional<SVal> V = svalBuilder.getConstantVal(Init))
2231           return *V;
2232 
2233     // Function-scoped static variables are default-initialized to 0; if they
2234     // have an initializer, it would have been processed by now.
2235     // FIXME: This is only true when we're starting analysis from main().
2236     // We're losing a lot of coverage here.
2237     if (isa<StaticGlobalSpaceRegion>(MS))
2238       return svalBuilder.makeZeroVal(T);
2239 
2240     if (Optional<SVal> V = getBindingForDerivedDefaultValue(B, MS, R, T)) {
2241       assert(!V->getAs<nonloc::LazyCompoundVal>());
2242       return *V;
2243     }
2244 
2245     return svalBuilder.getRegionValueSymbolVal(R);
2246   }
2247 
2248   return UndefinedVal();
2249 }
2250 
2251 SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) {
2252   // All other values are symbolic.
2253   return svalBuilder.getRegionValueSymbolVal(R);
2254 }
2255 
2256 const RegionStoreManager::SValListTy &
2257 RegionStoreManager::getInterestingValues(nonloc::LazyCompoundVal LCV) {
2258   // First, check the cache.
2259   LazyBindingsMapTy::iterator I = LazyBindingsMap.find(LCV.getCVData());
2260   if (I != LazyBindingsMap.end())
2261     return I->second;
2262 
2263   // If we don't have a list of values cached, start constructing it.
2264   SValListTy List;
2265 
2266   const SubRegion *LazyR = LCV.getRegion();
2267   RegionBindingsRef B = getRegionBindings(LCV.getStore());
2268 
2269   // If this region had /no/ bindings at the time, there are no interesting
2270   // values to return.
2271   const ClusterBindings *Cluster = B.lookup(LazyR->getBaseRegion());
2272   if (!Cluster)
2273     return (LazyBindingsMap[LCV.getCVData()] = std::move(List));
2274 
2275   SmallVector<BindingPair, 32> Bindings;
2276   collectSubRegionBindings(Bindings, svalBuilder, *Cluster, LazyR,
2277                            /*IncludeAllDefaultBindings=*/true);
2278   for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
2279                                                     E = Bindings.end();
2280        I != E; ++I) {
2281     SVal V = I->second;
2282     if (V.isUnknownOrUndef() || V.isConstant())
2283       continue;
2284 
2285     if (auto InnerLCV = V.getAs<nonloc::LazyCompoundVal>()) {
2286       const SValListTy &InnerList = getInterestingValues(*InnerLCV);
2287       List.insert(List.end(), InnerList.begin(), InnerList.end());
2288     }
2289 
2290     List.push_back(V);
2291   }
2292 
2293   return (LazyBindingsMap[LCV.getCVData()] = std::move(List));
2294 }
2295 
2296 NonLoc RegionStoreManager::createLazyBinding(RegionBindingsConstRef B,
2297                                              const TypedValueRegion *R) {
2298   if (Optional<nonloc::LazyCompoundVal> V =
2299         getExistingLazyBinding(svalBuilder, B, R, false))
2300     return *V;
2301 
2302   return svalBuilder.makeLazyCompoundVal(StoreRef(B.asStore(), *this), R);
2303 }
2304 
2305 static bool isRecordEmpty(const RecordDecl *RD) {
2306   if (!RD->field_empty())
2307     return false;
2308   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD))
2309     return CRD->getNumBases() == 0;
2310   return true;
2311 }
2312 
2313 SVal RegionStoreManager::getBindingForStruct(RegionBindingsConstRef B,
2314                                              const TypedValueRegion *R) {
2315   const RecordDecl *RD = R->getValueType()->castAs<RecordType>()->getDecl();
2316   if (!RD->getDefinition() || isRecordEmpty(RD))
2317     return UnknownVal();
2318 
2319   return createLazyBinding(B, R);
2320 }
2321 
2322 SVal RegionStoreManager::getBindingForArray(RegionBindingsConstRef B,
2323                                             const TypedValueRegion *R) {
2324   assert(Ctx.getAsConstantArrayType(R->getValueType()) &&
2325          "Only constant array types can have compound bindings.");
2326 
2327   return createLazyBinding(B, R);
2328 }
2329 
2330 bool RegionStoreManager::includedInBindings(Store store,
2331                                             const MemRegion *region) const {
2332   RegionBindingsRef B = getRegionBindings(store);
2333   region = region->getBaseRegion();
2334 
2335   // Quick path: if the base is the head of a cluster, the region is live.
2336   if (B.lookup(region))
2337     return true;
2338 
2339   // Slow path: if the region is the VALUE of any binding, it is live.
2340   for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI) {
2341     const ClusterBindings &Cluster = RI.getData();
2342     for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
2343          CI != CE; ++CI) {
2344       const SVal &D = CI.getData();
2345       if (const MemRegion *R = D.getAsRegion())
2346         if (R->getBaseRegion() == region)
2347           return true;
2348     }
2349   }
2350 
2351   return false;
2352 }
2353 
2354 //===----------------------------------------------------------------------===//
2355 // Binding values to regions.
2356 //===----------------------------------------------------------------------===//
2357 
2358 StoreRef RegionStoreManager::killBinding(Store ST, Loc L) {
2359   if (Optional<loc::MemRegionVal> LV = L.getAs<loc::MemRegionVal>())
2360     if (const MemRegion* R = LV->getRegion())
2361       return StoreRef(getRegionBindings(ST).removeBinding(R)
2362                                            .asImmutableMap()
2363                                            .getRootWithoutRetain(),
2364                       *this);
2365 
2366   return StoreRef(ST, *this);
2367 }
2368 
2369 RegionBindingsRef
2370 RegionStoreManager::bind(RegionBindingsConstRef B, Loc L, SVal V) {
2371   if (L.getAs<loc::ConcreteInt>())
2372     return B;
2373 
2374   // If we get here, the location should be a region.
2375   const MemRegion *R = L.castAs<loc::MemRegionVal>().getRegion();
2376 
2377   // Check if the region is a struct region.
2378   if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R)) {
2379     QualType Ty = TR->getValueType();
2380     if (Ty->isArrayType())
2381       return bindArray(B, TR, V);
2382     if (Ty->isStructureOrClassType())
2383       return bindStruct(B, TR, V);
2384     if (Ty->isVectorType())
2385       return bindVector(B, TR, V);
2386     if (Ty->isUnionType())
2387       return bindAggregate(B, TR, V);
2388   }
2389 
2390   // Binding directly to a symbolic region should be treated as binding
2391   // to element 0.
2392   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
2393     R = GetElementZeroRegion(SR, SR->getPointeeStaticType());
2394 
2395   assert((!isa<CXXThisRegion>(R) || !B.lookup(R)) &&
2396          "'this' pointer is not an l-value and is not assignable");
2397 
2398   // Clear out bindings that may overlap with this binding.
2399   RegionBindingsRef NewB = removeSubRegionBindings(B, cast<SubRegion>(R));
2400 
2401   // LazyCompoundVals should be always bound as 'default' bindings.
2402   auto KeyKind = isa<nonloc::LazyCompoundVal>(V) ? BindingKey::Default
2403                                                  : BindingKey::Direct;
2404   return NewB.addBinding(BindingKey::Make(R, KeyKind), V);
2405 }
2406 
2407 RegionBindingsRef
2408 RegionStoreManager::setImplicitDefaultValue(RegionBindingsConstRef B,
2409                                             const MemRegion *R,
2410                                             QualType T) {
2411   SVal V;
2412 
2413   if (Loc::isLocType(T))
2414     V = svalBuilder.makeNullWithType(T);
2415   else if (T->isIntegralOrEnumerationType())
2416     V = svalBuilder.makeZeroVal(T);
2417   else if (T->isStructureOrClassType() || T->isArrayType()) {
2418     // Set the default value to a zero constant when it is a structure
2419     // or array.  The type doesn't really matter.
2420     V = svalBuilder.makeZeroVal(Ctx.IntTy);
2421   }
2422   else {
2423     // We can't represent values of this type, but we still need to set a value
2424     // to record that the region has been initialized.
2425     // If this assertion ever fires, a new case should be added above -- we
2426     // should know how to default-initialize any value we can symbolicate.
2427     assert(!SymbolManager::canSymbolicate(T) && "This type is representable");
2428     V = UnknownVal();
2429   }
2430 
2431   return B.addBinding(R, BindingKey::Default, V);
2432 }
2433 
2434 Optional<RegionBindingsRef> RegionStoreManager::tryBindSmallArray(
2435     RegionBindingsConstRef B, const TypedValueRegion *R, const ArrayType *AT,
2436     nonloc::LazyCompoundVal LCV) {
2437 
2438   auto CAT = dyn_cast<ConstantArrayType>(AT);
2439 
2440   // If we don't know the size, create a lazyCompoundVal instead.
2441   if (!CAT)
2442     return std::nullopt;
2443 
2444   QualType Ty = CAT->getElementType();
2445   if (!(Ty->isScalarType() || Ty->isReferenceType()))
2446     return std::nullopt;
2447 
2448   // If the array is too big, create a LCV instead.
2449   uint64_t ArrSize = CAT->getSize().getLimitedValue();
2450   if (ArrSize > SmallArrayLimit)
2451     return std::nullopt;
2452 
2453   RegionBindingsRef NewB = B;
2454 
2455   for (uint64_t i = 0; i < ArrSize; ++i) {
2456     auto Idx = svalBuilder.makeArrayIndex(i);
2457     const ElementRegion *SrcER =
2458         MRMgr.getElementRegion(Ty, Idx, LCV.getRegion(), Ctx);
2459     SVal V = getBindingForElement(getRegionBindings(LCV.getStore()), SrcER);
2460 
2461     const ElementRegion *DstER = MRMgr.getElementRegion(Ty, Idx, R, Ctx);
2462     NewB = bind(NewB, loc::MemRegionVal(DstER), V);
2463   }
2464 
2465   return NewB;
2466 }
2467 
2468 RegionBindingsRef
2469 RegionStoreManager::bindArray(RegionBindingsConstRef B,
2470                               const TypedValueRegion* R,
2471                               SVal Init) {
2472 
2473   const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType()));
2474   QualType ElementTy = AT->getElementType();
2475   Optional<uint64_t> Size;
2476 
2477   if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
2478     Size = CAT->getSize().getZExtValue();
2479 
2480   // Check if the init expr is a literal. If so, bind the rvalue instead.
2481   // FIXME: It's not responsibility of the Store to transform this lvalue
2482   // to rvalue. ExprEngine or maybe even CFG should do this before binding.
2483   if (Optional<loc::MemRegionVal> MRV = Init.getAs<loc::MemRegionVal>()) {
2484     SVal V = getBinding(B.asStore(), *MRV, R->getValueType());
2485     return bindAggregate(B, R, V);
2486   }
2487 
2488   // Handle lazy compound values.
2489   if (Optional<nonloc::LazyCompoundVal> LCV =
2490           Init.getAs<nonloc::LazyCompoundVal>()) {
2491     if (Optional<RegionBindingsRef> NewB = tryBindSmallArray(B, R, AT, *LCV))
2492       return *NewB;
2493 
2494     return bindAggregate(B, R, Init);
2495   }
2496 
2497   if (Init.isUnknown())
2498     return bindAggregate(B, R, UnknownVal());
2499 
2500   // Remaining case: explicit compound values.
2501   const nonloc::CompoundVal& CV = Init.castAs<nonloc::CompoundVal>();
2502   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2503   uint64_t i = 0;
2504 
2505   RegionBindingsRef NewB(B);
2506 
2507   for (; Size ? i < *Size : true; ++i, ++VI) {
2508     // The init list might be shorter than the array length.
2509     if (VI == VE)
2510       break;
2511 
2512     const NonLoc &Idx = svalBuilder.makeArrayIndex(i);
2513     const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx);
2514 
2515     if (ElementTy->isStructureOrClassType())
2516       NewB = bindStruct(NewB, ER, *VI);
2517     else if (ElementTy->isArrayType())
2518       NewB = bindArray(NewB, ER, *VI);
2519     else
2520       NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
2521   }
2522 
2523   // If the init list is shorter than the array length (or the array has
2524   // variable length), set the array default value. Values that are already set
2525   // are not overwritten.
2526   if (!Size || i < *Size)
2527     NewB = setImplicitDefaultValue(NewB, R, ElementTy);
2528 
2529   return NewB;
2530 }
2531 
2532 RegionBindingsRef RegionStoreManager::bindVector(RegionBindingsConstRef B,
2533                                                  const TypedValueRegion* R,
2534                                                  SVal V) {
2535   QualType T = R->getValueType();
2536   const VectorType *VT = T->castAs<VectorType>(); // Use castAs for typedefs.
2537 
2538   // Handle lazy compound values and symbolic values.
2539   if (isa<nonloc::LazyCompoundVal, nonloc::SymbolVal>(V))
2540     return bindAggregate(B, R, V);
2541 
2542   // We may get non-CompoundVal accidentally due to imprecise cast logic or
2543   // that we are binding symbolic struct value. Kill the field values, and if
2544   // the value is symbolic go and bind it as a "default" binding.
2545   if (!isa<nonloc::CompoundVal>(V)) {
2546     return bindAggregate(B, R, UnknownVal());
2547   }
2548 
2549   QualType ElemType = VT->getElementType();
2550   nonloc::CompoundVal CV = V.castAs<nonloc::CompoundVal>();
2551   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2552   unsigned index = 0, numElements = VT->getNumElements();
2553   RegionBindingsRef NewB(B);
2554 
2555   for ( ; index != numElements ; ++index) {
2556     if (VI == VE)
2557       break;
2558 
2559     NonLoc Idx = svalBuilder.makeArrayIndex(index);
2560     const ElementRegion *ER = MRMgr.getElementRegion(ElemType, Idx, R, Ctx);
2561 
2562     if (ElemType->isArrayType())
2563       NewB = bindArray(NewB, ER, *VI);
2564     else if (ElemType->isStructureOrClassType())
2565       NewB = bindStruct(NewB, ER, *VI);
2566     else
2567       NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
2568   }
2569   return NewB;
2570 }
2571 
2572 Optional<RegionBindingsRef>
2573 RegionStoreManager::tryBindSmallStruct(RegionBindingsConstRef B,
2574                                        const TypedValueRegion *R,
2575                                        const RecordDecl *RD,
2576                                        nonloc::LazyCompoundVal LCV) {
2577   FieldVector Fields;
2578 
2579   if (const CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(RD))
2580     if (Class->getNumBases() != 0 || Class->getNumVBases() != 0)
2581       return std::nullopt;
2582 
2583   for (const auto *FD : RD->fields()) {
2584     if (FD->isUnnamedBitfield())
2585       continue;
2586 
2587     // If there are too many fields, or if any of the fields are aggregates,
2588     // just use the LCV as a default binding.
2589     if (Fields.size() == SmallStructLimit)
2590       return std::nullopt;
2591 
2592     QualType Ty = FD->getType();
2593 
2594     // Zero length arrays are basically no-ops, so we also ignore them here.
2595     if (Ty->isConstantArrayType() &&
2596         Ctx.getConstantArrayElementCount(Ctx.getAsConstantArrayType(Ty)) == 0)
2597       continue;
2598 
2599     if (!(Ty->isScalarType() || Ty->isReferenceType()))
2600       return std::nullopt;
2601 
2602     Fields.push_back(FD);
2603   }
2604 
2605   RegionBindingsRef NewB = B;
2606 
2607   for (FieldVector::iterator I = Fields.begin(), E = Fields.end(); I != E; ++I){
2608     const FieldRegion *SourceFR = MRMgr.getFieldRegion(*I, LCV.getRegion());
2609     SVal V = getBindingForField(getRegionBindings(LCV.getStore()), SourceFR);
2610 
2611     const FieldRegion *DestFR = MRMgr.getFieldRegion(*I, R);
2612     NewB = bind(NewB, loc::MemRegionVal(DestFR), V);
2613   }
2614 
2615   return NewB;
2616 }
2617 
2618 RegionBindingsRef RegionStoreManager::bindStruct(RegionBindingsConstRef B,
2619                                                  const TypedValueRegion *R,
2620                                                  SVal V) {
2621   QualType T = R->getValueType();
2622   assert(T->isStructureOrClassType());
2623 
2624   const RecordType* RT = T->castAs<RecordType>();
2625   const RecordDecl *RD = RT->getDecl();
2626 
2627   if (!RD->isCompleteDefinition())
2628     return B;
2629 
2630   // Handle lazy compound values and symbolic values.
2631   if (Optional<nonloc::LazyCompoundVal> LCV =
2632         V.getAs<nonloc::LazyCompoundVal>()) {
2633     if (Optional<RegionBindingsRef> NewB = tryBindSmallStruct(B, R, RD, *LCV))
2634       return *NewB;
2635     return bindAggregate(B, R, V);
2636   }
2637   if (isa<nonloc::SymbolVal>(V))
2638     return bindAggregate(B, R, V);
2639 
2640   // We may get non-CompoundVal accidentally due to imprecise cast logic or
2641   // that we are binding symbolic struct value. Kill the field values, and if
2642   // the value is symbolic go and bind it as a "default" binding.
2643   if (V.isUnknown() || !isa<nonloc::CompoundVal>(V))
2644     return bindAggregate(B, R, UnknownVal());
2645 
2646   // The raw CompoundVal is essentially a symbolic InitListExpr: an (immutable)
2647   // list of other values. It appears pretty much only when there's an actual
2648   // initializer list expression in the program, and the analyzer tries to
2649   // unwrap it as soon as possible.
2650   // This code is where such unwrap happens: when the compound value is put into
2651   // the object that it was supposed to initialize (it's an *initializer* list,
2652   // after all), instead of binding the whole value to the whole object, we bind
2653   // sub-values to sub-objects. Sub-values may themselves be compound values,
2654   // and in this case the procedure becomes recursive.
2655   // FIXME: The annoying part about compound values is that they don't carry
2656   // any sort of information about which value corresponds to which sub-object.
2657   // It's simply a list of values in the middle of nowhere; we expect to match
2658   // them to sub-objects, essentially, "by index": first value binds to
2659   // the first field, second value binds to the second field, etc.
2660   // It would have been much safer to organize non-lazy compound values as
2661   // a mapping from fields/bases to values.
2662   const nonloc::CompoundVal& CV = V.castAs<nonloc::CompoundVal>();
2663   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2664 
2665   RegionBindingsRef NewB(B);
2666 
2667   // In C++17 aggregates may have base classes, handle those as well.
2668   // They appear before fields in the initializer list / compound value.
2669   if (const auto *CRD = dyn_cast<CXXRecordDecl>(RD)) {
2670     // If the object was constructed with a constructor, its value is a
2671     // LazyCompoundVal. If it's a raw CompoundVal, it means that we're
2672     // performing aggregate initialization. The only exception from this
2673     // rule is sending an Objective-C++ message that returns a C++ object
2674     // to a nil receiver; in this case the semantics is to return a
2675     // zero-initialized object even if it's a C++ object that doesn't have
2676     // this sort of constructor; the CompoundVal is empty in this case.
2677     assert((CRD->isAggregate() || (Ctx.getLangOpts().ObjC && VI == VE)) &&
2678            "Non-aggregates are constructed with a constructor!");
2679 
2680     for (const auto &B : CRD->bases()) {
2681       // (Multiple inheritance is fine though.)
2682       assert(!B.isVirtual() && "Aggregates cannot have virtual base classes!");
2683 
2684       if (VI == VE)
2685         break;
2686 
2687       QualType BTy = B.getType();
2688       assert(BTy->isStructureOrClassType() && "Base classes must be classes!");
2689 
2690       const CXXRecordDecl *BRD = BTy->getAsCXXRecordDecl();
2691       assert(BRD && "Base classes must be C++ classes!");
2692 
2693       const CXXBaseObjectRegion *BR =
2694           MRMgr.getCXXBaseObjectRegion(BRD, R, /*IsVirtual=*/false);
2695 
2696       NewB = bindStruct(NewB, BR, *VI);
2697 
2698       ++VI;
2699     }
2700   }
2701 
2702   RecordDecl::field_iterator FI, FE;
2703 
2704   for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) {
2705 
2706     if (VI == VE)
2707       break;
2708 
2709     // Skip any unnamed bitfields to stay in sync with the initializers.
2710     if (FI->isUnnamedBitfield())
2711       continue;
2712 
2713     QualType FTy = FI->getType();
2714     const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
2715 
2716     if (FTy->isArrayType())
2717       NewB = bindArray(NewB, FR, *VI);
2718     else if (FTy->isStructureOrClassType())
2719       NewB = bindStruct(NewB, FR, *VI);
2720     else
2721       NewB = bind(NewB, loc::MemRegionVal(FR), *VI);
2722     ++VI;
2723   }
2724 
2725   // There may be fewer values in the initialize list than the fields of struct.
2726   if (FI != FE) {
2727     NewB = NewB.addBinding(R, BindingKey::Default,
2728                            svalBuilder.makeIntVal(0, false));
2729   }
2730 
2731   return NewB;
2732 }
2733 
2734 RegionBindingsRef
2735 RegionStoreManager::bindAggregate(RegionBindingsConstRef B,
2736                                   const TypedRegion *R,
2737                                   SVal Val) {
2738   // Remove the old bindings, using 'R' as the root of all regions
2739   // we will invalidate. Then add the new binding.
2740   return removeSubRegionBindings(B, R).addBinding(R, BindingKey::Default, Val);
2741 }
2742 
2743 //===----------------------------------------------------------------------===//
2744 // State pruning.
2745 //===----------------------------------------------------------------------===//
2746 
2747 namespace {
2748 class RemoveDeadBindingsWorker
2749     : public ClusterAnalysis<RemoveDeadBindingsWorker> {
2750   SmallVector<const SymbolicRegion *, 12> Postponed;
2751   SymbolReaper &SymReaper;
2752   const StackFrameContext *CurrentLCtx;
2753 
2754 public:
2755   RemoveDeadBindingsWorker(RegionStoreManager &rm,
2756                            ProgramStateManager &stateMgr,
2757                            RegionBindingsRef b, SymbolReaper &symReaper,
2758                            const StackFrameContext *LCtx)
2759     : ClusterAnalysis<RemoveDeadBindingsWorker>(rm, stateMgr, b),
2760       SymReaper(symReaper), CurrentLCtx(LCtx) {}
2761 
2762   // Called by ClusterAnalysis.
2763   void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C);
2764   void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
2765   using ClusterAnalysis<RemoveDeadBindingsWorker>::VisitCluster;
2766 
2767   using ClusterAnalysis::AddToWorkList;
2768 
2769   bool AddToWorkList(const MemRegion *R);
2770 
2771   bool UpdatePostponed();
2772   void VisitBinding(SVal V);
2773 };
2774 }
2775 
2776 bool RemoveDeadBindingsWorker::AddToWorkList(const MemRegion *R) {
2777   const MemRegion *BaseR = R->getBaseRegion();
2778   return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR));
2779 }
2780 
2781 void RemoveDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
2782                                                    const ClusterBindings &C) {
2783 
2784   if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
2785     if (SymReaper.isLive(VR))
2786       AddToWorkList(baseR, &C);
2787 
2788     return;
2789   }
2790 
2791   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
2792     if (SymReaper.isLive(SR->getSymbol()))
2793       AddToWorkList(SR, &C);
2794     else
2795       Postponed.push_back(SR);
2796 
2797     return;
2798   }
2799 
2800   if (isa<NonStaticGlobalSpaceRegion>(baseR)) {
2801     AddToWorkList(baseR, &C);
2802     return;
2803   }
2804 
2805   // CXXThisRegion in the current or parent location context is live.
2806   if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) {
2807     const auto *StackReg =
2808         cast<StackArgumentsSpaceRegion>(TR->getSuperRegion());
2809     const StackFrameContext *RegCtx = StackReg->getStackFrame();
2810     if (CurrentLCtx &&
2811         (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx)))
2812       AddToWorkList(TR, &C);
2813   }
2814 }
2815 
2816 void RemoveDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
2817                                             const ClusterBindings *C) {
2818   if (!C)
2819     return;
2820 
2821   // Mark the symbol for any SymbolicRegion with live bindings as live itself.
2822   // This means we should continue to track that symbol.
2823   if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(baseR))
2824     SymReaper.markLive(SymR->getSymbol());
2825 
2826   for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I) {
2827     // Element index of a binding key is live.
2828     SymReaper.markElementIndicesLive(I.getKey().getRegion());
2829 
2830     VisitBinding(I.getData());
2831   }
2832 }
2833 
2834 void RemoveDeadBindingsWorker::VisitBinding(SVal V) {
2835   // Is it a LazyCompoundVal? All referenced regions are live as well.
2836   // The LazyCompoundVal itself is not live but should be readable.
2837   if (auto LCS = V.getAs<nonloc::LazyCompoundVal>()) {
2838     SymReaper.markLazilyCopied(LCS->getRegion());
2839 
2840     for (SVal V : RM.getInterestingValues(*LCS)) {
2841       if (auto DepLCS = V.getAs<nonloc::LazyCompoundVal>())
2842         SymReaper.markLazilyCopied(DepLCS->getRegion());
2843       else
2844         VisitBinding(V);
2845     }
2846 
2847     return;
2848   }
2849 
2850   // If V is a region, then add it to the worklist.
2851   if (const MemRegion *R = V.getAsRegion()) {
2852     AddToWorkList(R);
2853     SymReaper.markLive(R);
2854 
2855     // All regions captured by a block are also live.
2856     if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(R)) {
2857       BlockDataRegion::referenced_vars_iterator I = BR->referenced_vars_begin(),
2858                                                 E = BR->referenced_vars_end();
2859       for ( ; I != E; ++I)
2860         AddToWorkList(I.getCapturedRegion());
2861     }
2862   }
2863 
2864 
2865   // Update the set of live symbols.
2866   for (auto SI = V.symbol_begin(), SE = V.symbol_end(); SI!=SE; ++SI)
2867     SymReaper.markLive(*SI);
2868 }
2869 
2870 bool RemoveDeadBindingsWorker::UpdatePostponed() {
2871   // See if any postponed SymbolicRegions are actually live now, after
2872   // having done a scan.
2873   bool Changed = false;
2874 
2875   for (auto I = Postponed.begin(), E = Postponed.end(); I != E; ++I) {
2876     if (const SymbolicRegion *SR = *I) {
2877       if (SymReaper.isLive(SR->getSymbol())) {
2878         Changed |= AddToWorkList(SR);
2879         *I = nullptr;
2880       }
2881     }
2882   }
2883 
2884   return Changed;
2885 }
2886 
2887 StoreRef RegionStoreManager::removeDeadBindings(Store store,
2888                                                 const StackFrameContext *LCtx,
2889                                                 SymbolReaper& SymReaper) {
2890   RegionBindingsRef B = getRegionBindings(store);
2891   RemoveDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx);
2892   W.GenerateClusters();
2893 
2894   // Enqueue the region roots onto the worklist.
2895   for (SymbolReaper::region_iterator I = SymReaper.region_begin(),
2896        E = SymReaper.region_end(); I != E; ++I) {
2897     W.AddToWorkList(*I);
2898   }
2899 
2900   do W.RunWorkList(); while (W.UpdatePostponed());
2901 
2902   // We have now scanned the store, marking reachable regions and symbols
2903   // as live.  We now remove all the regions that are dead from the store
2904   // as well as update DSymbols with the set symbols that are now dead.
2905   for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
2906     const MemRegion *Base = I.getKey();
2907 
2908     // If the cluster has been visited, we know the region has been marked.
2909     // Otherwise, remove the dead entry.
2910     if (!W.isVisited(Base))
2911       B = B.remove(Base);
2912   }
2913 
2914   return StoreRef(B.asStore(), *this);
2915 }
2916 
2917 //===----------------------------------------------------------------------===//
2918 // Utility methods.
2919 //===----------------------------------------------------------------------===//
2920 
2921 void RegionStoreManager::printJson(raw_ostream &Out, Store S, const char *NL,
2922                                    unsigned int Space, bool IsDot) const {
2923   RegionBindingsRef Bindings = getRegionBindings(S);
2924 
2925   Indent(Out, Space, IsDot) << "\"store\": ";
2926 
2927   if (Bindings.isEmpty()) {
2928     Out << "null," << NL;
2929     return;
2930   }
2931 
2932   Out << "{ \"pointer\": \"" << Bindings.asStore() << "\", \"items\": [" << NL;
2933   Bindings.printJson(Out, NL, Space + 1, IsDot);
2934   Indent(Out, Space, IsDot) << "]}," << NL;
2935 }
2936