1 //== RangeConstraintManager.cpp - Manage range constraints.------*- C++ -*--==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines RangeConstraintManager, a class that tracks simple 10 // equality and inequality constraints on symbolic values of ProgramState. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Basic/JsonSupport.h" 15 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h" 16 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 17 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 18 #include "clang/StaticAnalyzer/Core/PathSensitive/RangedConstraintManager.h" 19 #include "clang/StaticAnalyzer/Core/PathSensitive/SValVisitor.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/ImmutableSet.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/Support/Compiler.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include <algorithm> 28 #include <iterator> 29 30 using namespace clang; 31 using namespace ento; 32 33 // This class can be extended with other tables which will help to reason 34 // about ranges more precisely. 35 class OperatorRelationsTable { 36 static_assert(BO_LT < BO_GT && BO_GT < BO_LE && BO_LE < BO_GE && 37 BO_GE < BO_EQ && BO_EQ < BO_NE, 38 "This class relies on operators order. Rework it otherwise."); 39 40 public: 41 enum TriStateKind { 42 False = 0, 43 True, 44 Unknown, 45 }; 46 47 private: 48 // CmpOpTable holds states which represent the corresponding range for 49 // branching an exploded graph. We can reason about the branch if there is 50 // a previously known fact of the existence of a comparison expression with 51 // operands used in the current expression. 52 // E.g. assuming (x < y) is true that means (x != y) is surely true. 53 // if (x previous_operation y) // < | != | > 54 // if (x operation y) // != | > | < 55 // tristate // True | Unknown | False 56 // 57 // CmpOpTable represents next: 58 // __|< |> |<=|>=|==|!=|UnknownX2| 59 // < |1 |0 |* |0 |0 |* |1 | 60 // > |0 |1 |0 |* |0 |* |1 | 61 // <=|1 |0 |1 |* |1 |* |0 | 62 // >=|0 |1 |* |1 |1 |* |0 | 63 // ==|0 |0 |* |* |1 |0 |1 | 64 // !=|1 |1 |* |* |0 |1 |0 | 65 // 66 // Columns stands for a previous operator. 67 // Rows stands for a current operator. 68 // Each row has exactly two `Unknown` cases. 69 // UnknownX2 means that both `Unknown` previous operators are met in code, 70 // and there is a special column for that, for example: 71 // if (x >= y) 72 // if (x != y) 73 // if (x <= y) 74 // False only 75 static constexpr size_t CmpOpCount = BO_NE - BO_LT + 1; 76 const TriStateKind CmpOpTable[CmpOpCount][CmpOpCount + 1] = { 77 // < > <= >= == != UnknownX2 78 {True, False, Unknown, False, False, Unknown, True}, // < 79 {False, True, False, Unknown, False, Unknown, True}, // > 80 {True, False, True, Unknown, True, Unknown, False}, // <= 81 {False, True, Unknown, True, True, Unknown, False}, // >= 82 {False, False, Unknown, Unknown, True, False, True}, // == 83 {True, True, Unknown, Unknown, False, True, False}, // != 84 }; 85 86 static size_t getIndexFromOp(BinaryOperatorKind OP) { 87 return static_cast<size_t>(OP - BO_LT); 88 } 89 90 public: 91 constexpr size_t getCmpOpCount() const { return CmpOpCount; } 92 93 static BinaryOperatorKind getOpFromIndex(size_t Index) { 94 return static_cast<BinaryOperatorKind>(Index + BO_LT); 95 } 96 97 TriStateKind getCmpOpState(BinaryOperatorKind CurrentOP, 98 BinaryOperatorKind QueriedOP) const { 99 return CmpOpTable[getIndexFromOp(CurrentOP)][getIndexFromOp(QueriedOP)]; 100 } 101 102 TriStateKind getCmpOpStateForUnknownX2(BinaryOperatorKind CurrentOP) const { 103 return CmpOpTable[getIndexFromOp(CurrentOP)][CmpOpCount]; 104 } 105 }; 106 107 //===----------------------------------------------------------------------===// 108 // RangeSet implementation 109 //===----------------------------------------------------------------------===// 110 111 RangeSet::ContainerType RangeSet::Factory::EmptySet{}; 112 113 RangeSet RangeSet::Factory::add(RangeSet LHS, RangeSet RHS) { 114 ContainerType Result; 115 Result.reserve(LHS.size() + RHS.size()); 116 std::merge(LHS.begin(), LHS.end(), RHS.begin(), RHS.end(), 117 std::back_inserter(Result)); 118 return makePersistent(std::move(Result)); 119 } 120 121 RangeSet RangeSet::Factory::add(RangeSet Original, Range Element) { 122 ContainerType Result; 123 Result.reserve(Original.size() + 1); 124 125 const_iterator Lower = llvm::lower_bound(Original, Element); 126 Result.insert(Result.end(), Original.begin(), Lower); 127 Result.push_back(Element); 128 Result.insert(Result.end(), Lower, Original.end()); 129 130 return makePersistent(std::move(Result)); 131 } 132 133 RangeSet RangeSet::Factory::add(RangeSet Original, const llvm::APSInt &Point) { 134 return add(Original, Range(Point)); 135 } 136 137 RangeSet RangeSet::Factory::unite(RangeSet LHS, RangeSet RHS) { 138 ContainerType Result = unite(*LHS.Impl, *RHS.Impl); 139 return makePersistent(std::move(Result)); 140 } 141 142 RangeSet RangeSet::Factory::unite(RangeSet Original, Range R) { 143 ContainerType Result; 144 Result.push_back(R); 145 Result = unite(*Original.Impl, Result); 146 return makePersistent(std::move(Result)); 147 } 148 149 RangeSet RangeSet::Factory::unite(RangeSet Original, llvm::APSInt Point) { 150 return unite(Original, Range(ValueFactory.getValue(Point))); 151 } 152 153 RangeSet RangeSet::Factory::unite(RangeSet Original, llvm::APSInt From, 154 llvm::APSInt To) { 155 return unite(Original, 156 Range(ValueFactory.getValue(From), ValueFactory.getValue(To))); 157 } 158 159 template <typename T> 160 void swapIterators(T &First, T &FirstEnd, T &Second, T &SecondEnd) { 161 std::swap(First, Second); 162 std::swap(FirstEnd, SecondEnd); 163 } 164 165 RangeSet::ContainerType RangeSet::Factory::unite(const ContainerType &LHS, 166 const ContainerType &RHS) { 167 if (LHS.empty()) 168 return RHS; 169 if (RHS.empty()) 170 return LHS; 171 172 using llvm::APSInt; 173 using iterator = ContainerType::const_iterator; 174 175 iterator First = LHS.begin(); 176 iterator FirstEnd = LHS.end(); 177 iterator Second = RHS.begin(); 178 iterator SecondEnd = RHS.end(); 179 APSIntType Ty = APSIntType(First->From()); 180 const APSInt Min = Ty.getMinValue(); 181 182 // Handle a corner case first when both range sets start from MIN. 183 // This helps to avoid complicated conditions below. Specifically, this 184 // particular check for `MIN` is not needed in the loop below every time 185 // when we do `Second->From() - One` operation. 186 if (Min == First->From() && Min == Second->From()) { 187 if (First->To() > Second->To()) { 188 // [ First ]---> 189 // [ Second ]-----> 190 // MIN^ 191 // The Second range is entirely inside the First one. 192 193 // Check if Second is the last in its RangeSet. 194 if (++Second == SecondEnd) 195 // [ First ]--[ First + 1 ]---> 196 // [ Second ]---------------------> 197 // MIN^ 198 // The Union is equal to First's RangeSet. 199 return LHS; 200 } else { 201 // case 1: [ First ]-----> 202 // case 2: [ First ]---> 203 // [ Second ]---> 204 // MIN^ 205 // The First range is entirely inside or equal to the Second one. 206 207 // Check if First is the last in its RangeSet. 208 if (++First == FirstEnd) 209 // [ First ]-----------------------> 210 // [ Second ]--[ Second + 1 ]----> 211 // MIN^ 212 // The Union is equal to Second's RangeSet. 213 return RHS; 214 } 215 } 216 217 const APSInt One = Ty.getValue(1); 218 ContainerType Result; 219 220 // This is called when there are no ranges left in one of the ranges. 221 // Append the rest of the ranges from another range set to the Result 222 // and return with that. 223 const auto AppendTheRest = [&Result](iterator I, iterator E) { 224 Result.append(I, E); 225 return Result; 226 }; 227 228 while (true) { 229 // We want to keep the following invariant at all times: 230 // ---[ First ------> 231 // -----[ Second ---> 232 if (First->From() > Second->From()) 233 swapIterators(First, FirstEnd, Second, SecondEnd); 234 235 // The Union definitely starts with First->From(). 236 // ----------[ First ------> 237 // ------------[ Second ---> 238 // ----------[ Union ------> 239 // UnionStart^ 240 const llvm::APSInt &UnionStart = First->From(); 241 242 // Loop where the invariant holds. 243 while (true) { 244 // Skip all enclosed ranges. 245 // ---[ First ]---> 246 // -----[ Second ]--[ Second + 1 ]--[ Second + N ]-----> 247 while (First->To() >= Second->To()) { 248 // Check if Second is the last in its RangeSet. 249 if (++Second == SecondEnd) { 250 // Append the Union. 251 // ---[ Union ]---> 252 // -----[ Second ]-----> 253 // --------[ First ]---> 254 // UnionEnd^ 255 Result.emplace_back(UnionStart, First->To()); 256 // ---[ Union ]-----------------> 257 // --------------[ First + 1]---> 258 // Append all remaining ranges from the First's RangeSet. 259 return AppendTheRest(++First, FirstEnd); 260 } 261 } 262 263 // Check if First and Second are disjoint. It means that we find 264 // the end of the Union. Exit the loop and append the Union. 265 // ---[ First ]=-------------> 266 // ------------=[ Second ]---> 267 // ----MinusOne^ 268 if (First->To() < Second->From() - One) 269 break; 270 271 // First is entirely inside the Union. Go next. 272 // ---[ Union -----------> 273 // ---- [ First ]--------> 274 // -------[ Second ]-----> 275 // Check if First is the last in its RangeSet. 276 if (++First == FirstEnd) { 277 // Append the Union. 278 // ---[ Union ]---> 279 // -----[ First ]-------> 280 // --------[ Second ]---> 281 // UnionEnd^ 282 Result.emplace_back(UnionStart, Second->To()); 283 // ---[ Union ]------------------> 284 // --------------[ Second + 1]---> 285 // Append all remaining ranges from the Second's RangeSet. 286 return AppendTheRest(++Second, SecondEnd); 287 } 288 289 // We know that we are at one of the two cases: 290 // case 1: --[ First ]---------> 291 // case 2: ----[ First ]-------> 292 // --------[ Second ]----------> 293 // In both cases First starts after Second->From(). 294 // Make sure that the loop invariant holds. 295 swapIterators(First, FirstEnd, Second, SecondEnd); 296 } 297 298 // Here First and Second are disjoint. 299 // Append the Union. 300 // ---[ Union ]---------------> 301 // -----------------[ Second ]---> 302 // ------[ First ]---------------> 303 // UnionEnd^ 304 Result.emplace_back(UnionStart, First->To()); 305 306 // Check if First is the last in its RangeSet. 307 if (++First == FirstEnd) 308 // ---[ Union ]---------------> 309 // --------------[ Second ]---> 310 // Append all remaining ranges from the Second's RangeSet. 311 return AppendTheRest(Second, SecondEnd); 312 } 313 314 llvm_unreachable("Normally, we should not reach here"); 315 } 316 317 RangeSet RangeSet::Factory::getRangeSet(Range From) { 318 ContainerType Result; 319 Result.push_back(From); 320 return makePersistent(std::move(Result)); 321 } 322 323 RangeSet RangeSet::Factory::makePersistent(ContainerType &&From) { 324 llvm::FoldingSetNodeID ID; 325 void *InsertPos; 326 327 From.Profile(ID); 328 ContainerType *Result = Cache.FindNodeOrInsertPos(ID, InsertPos); 329 330 if (!Result) { 331 // It is cheaper to fully construct the resulting range on stack 332 // and move it to the freshly allocated buffer if we don't have 333 // a set like this already. 334 Result = construct(std::move(From)); 335 Cache.InsertNode(Result, InsertPos); 336 } 337 338 return Result; 339 } 340 341 RangeSet::ContainerType *RangeSet::Factory::construct(ContainerType &&From) { 342 void *Buffer = Arena.Allocate(); 343 return new (Buffer) ContainerType(std::move(From)); 344 } 345 346 const llvm::APSInt &RangeSet::getMinValue() const { 347 assert(!isEmpty()); 348 return begin()->From(); 349 } 350 351 const llvm::APSInt &RangeSet::getMaxValue() const { 352 assert(!isEmpty()); 353 return std::prev(end())->To(); 354 } 355 356 bool clang::ento::RangeSet::isUnsigned() const { 357 assert(!isEmpty()); 358 return begin()->From().isUnsigned(); 359 } 360 361 uint32_t clang::ento::RangeSet::getBitWidth() const { 362 assert(!isEmpty()); 363 return begin()->From().getBitWidth(); 364 } 365 366 APSIntType clang::ento::RangeSet::getAPSIntType() const { 367 assert(!isEmpty()); 368 return APSIntType(begin()->From()); 369 } 370 371 bool RangeSet::containsImpl(llvm::APSInt &Point) const { 372 if (isEmpty() || !pin(Point)) 373 return false; 374 375 Range Dummy(Point); 376 const_iterator It = llvm::upper_bound(*this, Dummy); 377 if (It == begin()) 378 return false; 379 380 return std::prev(It)->Includes(Point); 381 } 382 383 bool RangeSet::pin(llvm::APSInt &Point) const { 384 APSIntType Type(getMinValue()); 385 if (Type.testInRange(Point, true) != APSIntType::RTR_Within) 386 return false; 387 388 Type.apply(Point); 389 return true; 390 } 391 392 bool RangeSet::pin(llvm::APSInt &Lower, llvm::APSInt &Upper) const { 393 // This function has nine cases, the cartesian product of range-testing 394 // both the upper and lower bounds against the symbol's type. 395 // Each case requires a different pinning operation. 396 // The function returns false if the described range is entirely outside 397 // the range of values for the associated symbol. 398 APSIntType Type(getMinValue()); 399 APSIntType::RangeTestResultKind LowerTest = Type.testInRange(Lower, true); 400 APSIntType::RangeTestResultKind UpperTest = Type.testInRange(Upper, true); 401 402 switch (LowerTest) { 403 case APSIntType::RTR_Below: 404 switch (UpperTest) { 405 case APSIntType::RTR_Below: 406 // The entire range is outside the symbol's set of possible values. 407 // If this is a conventionally-ordered range, the state is infeasible. 408 if (Lower <= Upper) 409 return false; 410 411 // However, if the range wraps around, it spans all possible values. 412 Lower = Type.getMinValue(); 413 Upper = Type.getMaxValue(); 414 break; 415 case APSIntType::RTR_Within: 416 // The range starts below what's possible but ends within it. Pin. 417 Lower = Type.getMinValue(); 418 Type.apply(Upper); 419 break; 420 case APSIntType::RTR_Above: 421 // The range spans all possible values for the symbol. Pin. 422 Lower = Type.getMinValue(); 423 Upper = Type.getMaxValue(); 424 break; 425 } 426 break; 427 case APSIntType::RTR_Within: 428 switch (UpperTest) { 429 case APSIntType::RTR_Below: 430 // The range wraps around, but all lower values are not possible. 431 Type.apply(Lower); 432 Upper = Type.getMaxValue(); 433 break; 434 case APSIntType::RTR_Within: 435 // The range may or may not wrap around, but both limits are valid. 436 Type.apply(Lower); 437 Type.apply(Upper); 438 break; 439 case APSIntType::RTR_Above: 440 // The range starts within what's possible but ends above it. Pin. 441 Type.apply(Lower); 442 Upper = Type.getMaxValue(); 443 break; 444 } 445 break; 446 case APSIntType::RTR_Above: 447 switch (UpperTest) { 448 case APSIntType::RTR_Below: 449 // The range wraps but is outside the symbol's set of possible values. 450 return false; 451 case APSIntType::RTR_Within: 452 // The range starts above what's possible but ends within it (wrap). 453 Lower = Type.getMinValue(); 454 Type.apply(Upper); 455 break; 456 case APSIntType::RTR_Above: 457 // The entire range is outside the symbol's set of possible values. 458 // If this is a conventionally-ordered range, the state is infeasible. 459 if (Lower <= Upper) 460 return false; 461 462 // However, if the range wraps around, it spans all possible values. 463 Lower = Type.getMinValue(); 464 Upper = Type.getMaxValue(); 465 break; 466 } 467 break; 468 } 469 470 return true; 471 } 472 473 RangeSet RangeSet::Factory::intersect(RangeSet What, llvm::APSInt Lower, 474 llvm::APSInt Upper) { 475 if (What.isEmpty() || !What.pin(Lower, Upper)) 476 return getEmptySet(); 477 478 ContainerType DummyContainer; 479 480 if (Lower <= Upper) { 481 // [Lower, Upper] is a regular range. 482 // 483 // Shortcut: check that there is even a possibility of the intersection 484 // by checking the two following situations: 485 // 486 // <---[ What ]---[------]------> 487 // Lower Upper 488 // -or- 489 // <----[------]----[ What ]----> 490 // Lower Upper 491 if (What.getMaxValue() < Lower || Upper < What.getMinValue()) 492 return getEmptySet(); 493 494 DummyContainer.push_back( 495 Range(ValueFactory.getValue(Lower), ValueFactory.getValue(Upper))); 496 } else { 497 // [Lower, Upper] is an inverted range, i.e. [MIN, Upper] U [Lower, MAX] 498 // 499 // Shortcut: check that there is even a possibility of the intersection 500 // by checking the following situation: 501 // 502 // <------]---[ What ]---[------> 503 // Upper Lower 504 if (What.getMaxValue() < Lower && Upper < What.getMinValue()) 505 return getEmptySet(); 506 507 DummyContainer.push_back( 508 Range(ValueFactory.getMinValue(Upper), ValueFactory.getValue(Upper))); 509 DummyContainer.push_back( 510 Range(ValueFactory.getValue(Lower), ValueFactory.getMaxValue(Lower))); 511 } 512 513 return intersect(*What.Impl, DummyContainer); 514 } 515 516 RangeSet RangeSet::Factory::intersect(const RangeSet::ContainerType &LHS, 517 const RangeSet::ContainerType &RHS) { 518 ContainerType Result; 519 Result.reserve(std::max(LHS.size(), RHS.size())); 520 521 const_iterator First = LHS.begin(), Second = RHS.begin(), 522 FirstEnd = LHS.end(), SecondEnd = RHS.end(); 523 524 // If we ran out of ranges in one set, but not in the other, 525 // it means that those elements are definitely not in the 526 // intersection. 527 while (First != FirstEnd && Second != SecondEnd) { 528 // We want to keep the following invariant at all times: 529 // 530 // ----[ First ----------------------> 531 // --------[ Second -----------------> 532 if (Second->From() < First->From()) 533 swapIterators(First, FirstEnd, Second, SecondEnd); 534 535 // Loop where the invariant holds: 536 do { 537 // Check for the following situation: 538 // 539 // ----[ First ]---------------------> 540 // ---------------[ Second ]---------> 541 // 542 // which means that... 543 if (Second->From() > First->To()) { 544 // ...First is not in the intersection. 545 // 546 // We should move on to the next range after First and break out of the 547 // loop because the invariant might not be true. 548 ++First; 549 break; 550 } 551 552 // We have a guaranteed intersection at this point! 553 // And this is the current situation: 554 // 555 // ----[ First ]-----------------> 556 // -------[ Second ------------------> 557 // 558 // Additionally, it definitely starts with Second->From(). 559 const llvm::APSInt &IntersectionStart = Second->From(); 560 561 // It is important to know which of the two ranges' ends 562 // is greater. That "longer" range might have some other 563 // intersections, while the "shorter" range might not. 564 if (Second->To() > First->To()) { 565 // Here we make a decision to keep First as the "longer" 566 // range. 567 swapIterators(First, FirstEnd, Second, SecondEnd); 568 } 569 570 // At this point, we have the following situation: 571 // 572 // ---- First ]--------------------> 573 // ---- Second ]--[ Second+1 ----------> 574 // 575 // We don't know the relationship between First->From and 576 // Second->From and we don't know whether Second+1 intersects 577 // with First. 578 // 579 // However, we know that [IntersectionStart, Second->To] is 580 // a part of the intersection... 581 Result.push_back(Range(IntersectionStart, Second->To())); 582 ++Second; 583 // ...and that the invariant will hold for a valid Second+1 584 // because First->From <= Second->To < (Second+1)->From. 585 } while (Second != SecondEnd); 586 } 587 588 if (Result.empty()) 589 return getEmptySet(); 590 591 return makePersistent(std::move(Result)); 592 } 593 594 RangeSet RangeSet::Factory::intersect(RangeSet LHS, RangeSet RHS) { 595 // Shortcut: let's see if the intersection is even possible. 596 if (LHS.isEmpty() || RHS.isEmpty() || LHS.getMaxValue() < RHS.getMinValue() || 597 RHS.getMaxValue() < LHS.getMinValue()) 598 return getEmptySet(); 599 600 return intersect(*LHS.Impl, *RHS.Impl); 601 } 602 603 RangeSet RangeSet::Factory::intersect(RangeSet LHS, llvm::APSInt Point) { 604 if (LHS.containsImpl(Point)) 605 return getRangeSet(ValueFactory.getValue(Point)); 606 607 return getEmptySet(); 608 } 609 610 RangeSet RangeSet::Factory::negate(RangeSet What) { 611 if (What.isEmpty()) 612 return getEmptySet(); 613 614 const llvm::APSInt SampleValue = What.getMinValue(); 615 const llvm::APSInt &MIN = ValueFactory.getMinValue(SampleValue); 616 const llvm::APSInt &MAX = ValueFactory.getMaxValue(SampleValue); 617 618 ContainerType Result; 619 Result.reserve(What.size() + (SampleValue == MIN)); 620 621 // Handle a special case for MIN value. 622 const_iterator It = What.begin(); 623 const_iterator End = What.end(); 624 625 const llvm::APSInt &From = It->From(); 626 const llvm::APSInt &To = It->To(); 627 628 if (From == MIN) { 629 // If the range [From, To] is [MIN, MAX], then result is also [MIN, MAX]. 630 if (To == MAX) { 631 return What; 632 } 633 634 const_iterator Last = std::prev(End); 635 636 // Try to find and unite the following ranges: 637 // [MIN, MIN] & [MIN + 1, N] => [MIN, N]. 638 if (Last->To() == MAX) { 639 // It means that in the original range we have ranges 640 // [MIN, A], ... , [B, MAX] 641 // And the result should be [MIN, -B], ..., [-A, MAX] 642 Result.emplace_back(MIN, ValueFactory.getValue(-Last->From())); 643 // We already negated Last, so we can skip it. 644 End = Last; 645 } else { 646 // Add a separate range for the lowest value. 647 Result.emplace_back(MIN, MIN); 648 } 649 650 // Skip adding the second range in case when [From, To] are [MIN, MIN]. 651 if (To != MIN) { 652 Result.emplace_back(ValueFactory.getValue(-To), MAX); 653 } 654 655 // Skip the first range in the loop. 656 ++It; 657 } 658 659 // Negate all other ranges. 660 for (; It != End; ++It) { 661 // Negate int values. 662 const llvm::APSInt &NewFrom = ValueFactory.getValue(-It->To()); 663 const llvm::APSInt &NewTo = ValueFactory.getValue(-It->From()); 664 665 // Add a negated range. 666 Result.emplace_back(NewFrom, NewTo); 667 } 668 669 llvm::sort(Result); 670 return makePersistent(std::move(Result)); 671 } 672 673 // Convert range set to the given integral type using truncation and promotion. 674 // This works similar to APSIntType::apply function but for the range set. 675 RangeSet RangeSet::Factory::castTo(RangeSet What, APSIntType Ty) { 676 // Set is empty or NOOP (aka cast to the same type). 677 if (What.isEmpty() || What.getAPSIntType() == Ty) 678 return What; 679 680 const bool IsConversion = What.isUnsigned() != Ty.isUnsigned(); 681 const bool IsTruncation = What.getBitWidth() > Ty.getBitWidth(); 682 const bool IsPromotion = What.getBitWidth() < Ty.getBitWidth(); 683 684 if (IsTruncation) 685 return makePersistent(truncateTo(What, Ty)); 686 687 // Here we handle 2 cases: 688 // - IsConversion && !IsPromotion. 689 // In this case we handle changing a sign with same bitwidth: char -> uchar, 690 // uint -> int. Here we convert negatives to positives and positives which 691 // is out of range to negatives. We use convertTo function for that. 692 // - IsConversion && IsPromotion && !What.isUnsigned(). 693 // In this case we handle changing a sign from signeds to unsigneds with 694 // higher bitwidth: char -> uint, int-> uint64. The point is that we also 695 // need convert negatives to positives and use convertTo function as well. 696 // For example, we don't need such a convertion when converting unsigned to 697 // signed with higher bitwidth, because all the values of unsigned is valid 698 // for the such signed. 699 if (IsConversion && (!IsPromotion || !What.isUnsigned())) 700 return makePersistent(convertTo(What, Ty)); 701 702 assert(IsPromotion && "Only promotion operation from unsigneds left."); 703 return makePersistent(promoteTo(What, Ty)); 704 } 705 706 RangeSet RangeSet::Factory::castTo(RangeSet What, QualType T) { 707 assert(T->isIntegralOrEnumerationType() && "T shall be an integral type."); 708 return castTo(What, ValueFactory.getAPSIntType(T)); 709 } 710 711 RangeSet::ContainerType RangeSet::Factory::truncateTo(RangeSet What, 712 APSIntType Ty) { 713 using llvm::APInt; 714 using llvm::APSInt; 715 ContainerType Result; 716 ContainerType Dummy; 717 // CastRangeSize is an amount of all possible values of cast type. 718 // Example: `char` has 256 values; `short` has 65536 values. 719 // But in fact we use `amount of values` - 1, because 720 // we can't keep `amount of values of UINT64` inside uint64_t. 721 // E.g. 256 is an amount of all possible values of `char` and we can't keep 722 // it inside `char`. 723 // And it's OK, it's enough to do correct calculations. 724 uint64_t CastRangeSize = APInt::getMaxValue(Ty.getBitWidth()).getZExtValue(); 725 for (const Range &R : What) { 726 // Get bounds of the given range. 727 APSInt FromInt = R.From(); 728 APSInt ToInt = R.To(); 729 // CurrentRangeSize is an amount of all possible values of the current 730 // range minus one. 731 uint64_t CurrentRangeSize = (ToInt - FromInt).getZExtValue(); 732 // This is an optimization for a specific case when this Range covers 733 // the whole range of the target type. 734 Dummy.clear(); 735 if (CurrentRangeSize >= CastRangeSize) { 736 Dummy.emplace_back(ValueFactory.getMinValue(Ty), 737 ValueFactory.getMaxValue(Ty)); 738 Result = std::move(Dummy); 739 break; 740 } 741 // Cast the bounds. 742 Ty.apply(FromInt); 743 Ty.apply(ToInt); 744 const APSInt &PersistentFrom = ValueFactory.getValue(FromInt); 745 const APSInt &PersistentTo = ValueFactory.getValue(ToInt); 746 if (FromInt > ToInt) { 747 Dummy.emplace_back(ValueFactory.getMinValue(Ty), PersistentTo); 748 Dummy.emplace_back(PersistentFrom, ValueFactory.getMaxValue(Ty)); 749 } else 750 Dummy.emplace_back(PersistentFrom, PersistentTo); 751 // Every range retrieved after truncation potentialy has garbage values. 752 // So, we have to unite every next range with the previouses. 753 Result = unite(Result, Dummy); 754 } 755 756 return Result; 757 } 758 759 // Divide the convertion into two phases (presented as loops here). 760 // First phase(loop) works when casted values go in ascending order. 761 // E.g. char{1,3,5,127} -> uint{1,3,5,127} 762 // Interrupt the first phase and go to second one when casted values start 763 // go in descending order. That means that we crossed over the middle of 764 // the type value set (aka 0 for signeds and MAX/2+1 for unsigneds). 765 // For instance: 766 // 1: uchar{1,3,5,128,255} -> char{1,3,5,-128,-1} 767 // Here we put {1,3,5} to one array and {-128, -1} to another 768 // 2: char{-128,-127,-1,0,1,2} -> uchar{128,129,255,0,1,3} 769 // Here we put {128,129,255} to one array and {0,1,3} to another. 770 // After that we unite both arrays. 771 // NOTE: We don't just concatenate the arrays, because they may have 772 // adjacent ranges, e.g.: 773 // 1: char(-128, 127) -> uchar -> arr1(128, 255), arr2(0, 127) -> 774 // unite -> uchar(0, 255) 775 // 2: uchar(0, 1)U(254, 255) -> char -> arr1(0, 1), arr2(-2, -1) -> 776 // unite -> uchar(-2, 1) 777 RangeSet::ContainerType RangeSet::Factory::convertTo(RangeSet What, 778 APSIntType Ty) { 779 using llvm::APInt; 780 using llvm::APSInt; 781 using Bounds = std::pair<const APSInt &, const APSInt &>; 782 ContainerType AscendArray; 783 ContainerType DescendArray; 784 auto CastRange = [Ty, &VF = ValueFactory](const Range &R) -> Bounds { 785 // Get bounds of the given range. 786 APSInt FromInt = R.From(); 787 APSInt ToInt = R.To(); 788 // Cast the bounds. 789 Ty.apply(FromInt); 790 Ty.apply(ToInt); 791 return {VF.getValue(FromInt), VF.getValue(ToInt)}; 792 }; 793 // Phase 1. Fill the first array. 794 APSInt LastConvertedInt = Ty.getMinValue(); 795 const auto *It = What.begin(); 796 const auto *E = What.end(); 797 while (It != E) { 798 Bounds NewBounds = CastRange(*(It++)); 799 // If values stop going acsending order, go to the second phase(loop). 800 if (NewBounds.first < LastConvertedInt) { 801 DescendArray.emplace_back(NewBounds.first, NewBounds.second); 802 break; 803 } 804 // If the range contains a midpoint, then split the range. 805 // E.g. char(-5, 5) -> uchar(251, 5) 806 // Here we shall add a range (251, 255) to the first array and (0, 5) to the 807 // second one. 808 if (NewBounds.first > NewBounds.second) { 809 DescendArray.emplace_back(ValueFactory.getMinValue(Ty), NewBounds.second); 810 AscendArray.emplace_back(NewBounds.first, ValueFactory.getMaxValue(Ty)); 811 } else 812 // Values are going acsending order. 813 AscendArray.emplace_back(NewBounds.first, NewBounds.second); 814 LastConvertedInt = NewBounds.first; 815 } 816 // Phase 2. Fill the second array. 817 while (It != E) { 818 Bounds NewBounds = CastRange(*(It++)); 819 DescendArray.emplace_back(NewBounds.first, NewBounds.second); 820 } 821 // Unite both arrays. 822 return unite(AscendArray, DescendArray); 823 } 824 825 /// Promotion from unsigneds to signeds/unsigneds left. 826 RangeSet::ContainerType RangeSet::Factory::promoteTo(RangeSet What, 827 APSIntType Ty) { 828 ContainerType Result; 829 // We definitely know the size of the result set. 830 Result.reserve(What.size()); 831 832 // Each unsigned value fits every larger type without any changes, 833 // whether the larger type is signed or unsigned. So just promote and push 834 // back each range one by one. 835 for (const Range &R : What) { 836 // Get bounds of the given range. 837 llvm::APSInt FromInt = R.From(); 838 llvm::APSInt ToInt = R.To(); 839 // Cast the bounds. 840 Ty.apply(FromInt); 841 Ty.apply(ToInt); 842 Result.emplace_back(ValueFactory.getValue(FromInt), 843 ValueFactory.getValue(ToInt)); 844 } 845 return Result; 846 } 847 848 RangeSet RangeSet::Factory::deletePoint(RangeSet From, 849 const llvm::APSInt &Point) { 850 if (!From.contains(Point)) 851 return From; 852 853 llvm::APSInt Upper = Point; 854 llvm::APSInt Lower = Point; 855 856 ++Upper; 857 --Lower; 858 859 // Notice that the lower bound is greater than the upper bound. 860 return intersect(From, Upper, Lower); 861 } 862 863 LLVM_DUMP_METHOD void Range::dump(raw_ostream &OS) const { 864 OS << '[' << toString(From(), 10) << ", " << toString(To(), 10) << ']'; 865 } 866 LLVM_DUMP_METHOD void Range::dump() const { dump(llvm::errs()); } 867 868 LLVM_DUMP_METHOD void RangeSet::dump(raw_ostream &OS) const { 869 OS << "{ "; 870 llvm::interleaveComma(*this, OS, [&OS](const Range &R) { R.dump(OS); }); 871 OS << " }"; 872 } 873 LLVM_DUMP_METHOD void RangeSet::dump() const { dump(llvm::errs()); } 874 875 REGISTER_SET_FACTORY_WITH_PROGRAMSTATE(SymbolSet, SymbolRef) 876 877 namespace { 878 class EquivalenceClass; 879 } // end anonymous namespace 880 881 REGISTER_MAP_WITH_PROGRAMSTATE(ClassMap, SymbolRef, EquivalenceClass) 882 REGISTER_MAP_WITH_PROGRAMSTATE(ClassMembers, EquivalenceClass, SymbolSet) 883 REGISTER_MAP_WITH_PROGRAMSTATE(ConstraintRange, EquivalenceClass, RangeSet) 884 885 REGISTER_SET_FACTORY_WITH_PROGRAMSTATE(ClassSet, EquivalenceClass) 886 REGISTER_MAP_WITH_PROGRAMSTATE(DisequalityMap, EquivalenceClass, ClassSet) 887 888 namespace { 889 /// This class encapsulates a set of symbols equal to each other. 890 /// 891 /// The main idea of the approach requiring such classes is in narrowing 892 /// and sharing constraints between symbols within the class. Also we can 893 /// conclude that there is no practical need in storing constraints for 894 /// every member of the class separately. 895 /// 896 /// Main terminology: 897 /// 898 /// * "Equivalence class" is an object of this class, which can be efficiently 899 /// compared to other classes. It represents the whole class without 900 /// storing the actual in it. The members of the class however can be 901 /// retrieved from the state. 902 /// 903 /// * "Class members" are the symbols corresponding to the class. This means 904 /// that A == B for every member symbols A and B from the class. Members of 905 /// each class are stored in the state. 906 /// 907 /// * "Trivial class" is a class that has and ever had only one same symbol. 908 /// 909 /// * "Merge operation" merges two classes into one. It is the main operation 910 /// to produce non-trivial classes. 911 /// If, at some point, we can assume that two symbols from two distinct 912 /// classes are equal, we can merge these classes. 913 class EquivalenceClass : public llvm::FoldingSetNode { 914 public: 915 /// Find equivalence class for the given symbol in the given state. 916 [[nodiscard]] static inline EquivalenceClass find(ProgramStateRef State, 917 SymbolRef Sym); 918 919 /// Merge classes for the given symbols and return a new state. 920 [[nodiscard]] static inline ProgramStateRef merge(RangeSet::Factory &F, 921 ProgramStateRef State, 922 SymbolRef First, 923 SymbolRef Second); 924 // Merge this class with the given class and return a new state. 925 [[nodiscard]] inline ProgramStateRef 926 merge(RangeSet::Factory &F, ProgramStateRef State, EquivalenceClass Other); 927 928 /// Return a set of class members for the given state. 929 [[nodiscard]] inline SymbolSet getClassMembers(ProgramStateRef State) const; 930 931 /// Return true if the current class is trivial in the given state. 932 /// A class is trivial if and only if there is not any member relations stored 933 /// to it in State/ClassMembers. 934 /// An equivalence class with one member might seem as it does not hold any 935 /// meaningful information, i.e. that is a tautology. However, during the 936 /// removal of dead symbols we do not remove classes with one member for 937 /// resource and performance reasons. Consequently, a class with one member is 938 /// not necessarily trivial. It could happen that we have a class with two 939 /// members and then during the removal of dead symbols we remove one of its 940 /// members. In this case, the class is still non-trivial (it still has the 941 /// mappings in ClassMembers), even though it has only one member. 942 [[nodiscard]] inline bool isTrivial(ProgramStateRef State) const; 943 944 /// Return true if the current class is trivial and its only member is dead. 945 [[nodiscard]] inline bool isTriviallyDead(ProgramStateRef State, 946 SymbolReaper &Reaper) const; 947 948 [[nodiscard]] static inline ProgramStateRef 949 markDisequal(RangeSet::Factory &F, ProgramStateRef State, SymbolRef First, 950 SymbolRef Second); 951 [[nodiscard]] static inline ProgramStateRef 952 markDisequal(RangeSet::Factory &F, ProgramStateRef State, 953 EquivalenceClass First, EquivalenceClass Second); 954 [[nodiscard]] inline ProgramStateRef 955 markDisequal(RangeSet::Factory &F, ProgramStateRef State, 956 EquivalenceClass Other) const; 957 [[nodiscard]] static inline ClassSet getDisequalClasses(ProgramStateRef State, 958 SymbolRef Sym); 959 [[nodiscard]] inline ClassSet getDisequalClasses(ProgramStateRef State) const; 960 [[nodiscard]] inline ClassSet 961 getDisequalClasses(DisequalityMapTy Map, ClassSet::Factory &Factory) const; 962 963 [[nodiscard]] static inline Optional<bool> areEqual(ProgramStateRef State, 964 EquivalenceClass First, 965 EquivalenceClass Second); 966 [[nodiscard]] static inline Optional<bool> 967 areEqual(ProgramStateRef State, SymbolRef First, SymbolRef Second); 968 969 /// Remove one member from the class. 970 [[nodiscard]] ProgramStateRef removeMember(ProgramStateRef State, 971 const SymbolRef Old); 972 973 /// Iterate over all symbols and try to simplify them. 974 [[nodiscard]] static inline ProgramStateRef simplify(SValBuilder &SVB, 975 RangeSet::Factory &F, 976 ProgramStateRef State, 977 EquivalenceClass Class); 978 979 void dumpToStream(ProgramStateRef State, raw_ostream &os) const; 980 LLVM_DUMP_METHOD void dump(ProgramStateRef State) const { 981 dumpToStream(State, llvm::errs()); 982 } 983 984 /// Check equivalence data for consistency. 985 [[nodiscard]] LLVM_ATTRIBUTE_UNUSED static bool 986 isClassDataConsistent(ProgramStateRef State); 987 988 [[nodiscard]] QualType getType() const { 989 return getRepresentativeSymbol()->getType(); 990 } 991 992 EquivalenceClass() = delete; 993 EquivalenceClass(const EquivalenceClass &) = default; 994 EquivalenceClass &operator=(const EquivalenceClass &) = delete; 995 EquivalenceClass(EquivalenceClass &&) = default; 996 EquivalenceClass &operator=(EquivalenceClass &&) = delete; 997 998 bool operator==(const EquivalenceClass &Other) const { 999 return ID == Other.ID; 1000 } 1001 bool operator<(const EquivalenceClass &Other) const { return ID < Other.ID; } 1002 bool operator!=(const EquivalenceClass &Other) const { 1003 return !operator==(Other); 1004 } 1005 1006 static void Profile(llvm::FoldingSetNodeID &ID, uintptr_t CID) { 1007 ID.AddInteger(CID); 1008 } 1009 1010 void Profile(llvm::FoldingSetNodeID &ID) const { Profile(ID, this->ID); } 1011 1012 private: 1013 /* implicit */ EquivalenceClass(SymbolRef Sym) 1014 : ID(reinterpret_cast<uintptr_t>(Sym)) {} 1015 1016 /// This function is intended to be used ONLY within the class. 1017 /// The fact that ID is a pointer to a symbol is an implementation detail 1018 /// and should stay that way. 1019 /// In the current implementation, we use it to retrieve the only member 1020 /// of the trivial class. 1021 SymbolRef getRepresentativeSymbol() const { 1022 return reinterpret_cast<SymbolRef>(ID); 1023 } 1024 static inline SymbolSet::Factory &getMembersFactory(ProgramStateRef State); 1025 1026 inline ProgramStateRef mergeImpl(RangeSet::Factory &F, ProgramStateRef State, 1027 SymbolSet Members, EquivalenceClass Other, 1028 SymbolSet OtherMembers); 1029 1030 static inline bool 1031 addToDisequalityInfo(DisequalityMapTy &Info, ConstraintRangeTy &Constraints, 1032 RangeSet::Factory &F, ProgramStateRef State, 1033 EquivalenceClass First, EquivalenceClass Second); 1034 1035 /// This is a unique identifier of the class. 1036 uintptr_t ID; 1037 }; 1038 1039 //===----------------------------------------------------------------------===// 1040 // Constraint functions 1041 //===----------------------------------------------------------------------===// 1042 1043 [[nodiscard]] LLVM_ATTRIBUTE_UNUSED bool 1044 areFeasible(ConstraintRangeTy Constraints) { 1045 return llvm::none_of( 1046 Constraints, 1047 [](const std::pair<EquivalenceClass, RangeSet> &ClassConstraint) { 1048 return ClassConstraint.second.isEmpty(); 1049 }); 1050 } 1051 1052 [[nodiscard]] inline const RangeSet *getConstraint(ProgramStateRef State, 1053 EquivalenceClass Class) { 1054 return State->get<ConstraintRange>(Class); 1055 } 1056 1057 [[nodiscard]] inline const RangeSet *getConstraint(ProgramStateRef State, 1058 SymbolRef Sym) { 1059 return getConstraint(State, EquivalenceClass::find(State, Sym)); 1060 } 1061 1062 [[nodiscard]] ProgramStateRef setConstraint(ProgramStateRef State, 1063 EquivalenceClass Class, 1064 RangeSet Constraint) { 1065 return State->set<ConstraintRange>(Class, Constraint); 1066 } 1067 1068 [[nodiscard]] ProgramStateRef setConstraints(ProgramStateRef State, 1069 ConstraintRangeTy Constraints) { 1070 return State->set<ConstraintRange>(Constraints); 1071 } 1072 1073 //===----------------------------------------------------------------------===// 1074 // Equality/diseqiality abstraction 1075 //===----------------------------------------------------------------------===// 1076 1077 /// A small helper function for detecting symbolic (dis)equality. 1078 /// 1079 /// Equality check can have different forms (like a == b or a - b) and this 1080 /// class encapsulates those away if the only thing the user wants to check - 1081 /// whether it's equality/diseqiality or not. 1082 /// 1083 /// \returns true if assuming this Sym to be true means equality of operands 1084 /// false if it means disequality of operands 1085 /// None otherwise 1086 Optional<bool> meansEquality(const SymSymExpr *Sym) { 1087 switch (Sym->getOpcode()) { 1088 case BO_Sub: 1089 // This case is: A - B != 0 -> disequality check. 1090 return false; 1091 case BO_EQ: 1092 // This case is: A == B != 0 -> equality check. 1093 return true; 1094 case BO_NE: 1095 // This case is: A != B != 0 -> diseqiality check. 1096 return false; 1097 default: 1098 return std::nullopt; 1099 } 1100 } 1101 1102 //===----------------------------------------------------------------------===// 1103 // Intersection functions 1104 //===----------------------------------------------------------------------===// 1105 1106 template <class SecondTy, class... RestTy> 1107 [[nodiscard]] inline RangeSet intersect(RangeSet::Factory &F, RangeSet Head, 1108 SecondTy Second, RestTy... Tail); 1109 1110 template <class... RangeTy> struct IntersectionTraits; 1111 1112 template <class... TailTy> struct IntersectionTraits<RangeSet, TailTy...> { 1113 // Found RangeSet, no need to check any further 1114 using Type = RangeSet; 1115 }; 1116 1117 template <> struct IntersectionTraits<> { 1118 // We ran out of types, and we didn't find any RangeSet, so the result should 1119 // be optional. 1120 using Type = Optional<RangeSet>; 1121 }; 1122 1123 template <class OptionalOrPointer, class... TailTy> 1124 struct IntersectionTraits<OptionalOrPointer, TailTy...> { 1125 // If current type is Optional or a raw pointer, we should keep looking. 1126 using Type = typename IntersectionTraits<TailTy...>::Type; 1127 }; 1128 1129 template <class EndTy> 1130 [[nodiscard]] inline EndTy intersect(RangeSet::Factory &F, EndTy End) { 1131 // If the list contains only RangeSet or Optional<RangeSet>, simply return 1132 // that range set. 1133 return End; 1134 } 1135 1136 [[nodiscard]] LLVM_ATTRIBUTE_UNUSED inline Optional<RangeSet> 1137 intersect(RangeSet::Factory &F, const RangeSet *End) { 1138 // This is an extraneous conversion from a raw pointer into Optional<RangeSet> 1139 if (End) { 1140 return *End; 1141 } 1142 return std::nullopt; 1143 } 1144 1145 template <class... RestTy> 1146 [[nodiscard]] inline RangeSet intersect(RangeSet::Factory &F, RangeSet Head, 1147 RangeSet Second, RestTy... Tail) { 1148 // Here we call either the <RangeSet,RangeSet,...> or <RangeSet,...> version 1149 // of the function and can be sure that the result is RangeSet. 1150 return intersect(F, F.intersect(Head, Second), Tail...); 1151 } 1152 1153 template <class SecondTy, class... RestTy> 1154 [[nodiscard]] inline RangeSet intersect(RangeSet::Factory &F, RangeSet Head, 1155 SecondTy Second, RestTy... Tail) { 1156 if (Second) { 1157 // Here we call the <RangeSet,RangeSet,...> version of the function... 1158 return intersect(F, Head, *Second, Tail...); 1159 } 1160 // ...and here it is either <RangeSet,RangeSet,...> or <RangeSet,...>, which 1161 // means that the result is definitely RangeSet. 1162 return intersect(F, Head, Tail...); 1163 } 1164 1165 /// Main generic intersect function. 1166 /// It intersects all of the given range sets. If some of the given arguments 1167 /// don't hold a range set (nullptr or llvm::None), the function will skip them. 1168 /// 1169 /// Available representations for the arguments are: 1170 /// * RangeSet 1171 /// * Optional<RangeSet> 1172 /// * RangeSet * 1173 /// Pointer to a RangeSet is automatically assumed to be nullable and will get 1174 /// checked as well as the optional version. If this behaviour is undesired, 1175 /// please dereference the pointer in the call. 1176 /// 1177 /// Return type depends on the arguments' types. If we can be sure in compile 1178 /// time that there will be a range set as a result, the returning type is 1179 /// simply RangeSet, in other cases we have to back off to Optional<RangeSet>. 1180 /// 1181 /// Please, prefer optional range sets to raw pointers. If the last argument is 1182 /// a raw pointer and all previous arguments are None, it will cost one 1183 /// additional check to convert RangeSet * into Optional<RangeSet>. 1184 template <class HeadTy, class SecondTy, class... RestTy> 1185 [[nodiscard]] inline 1186 typename IntersectionTraits<HeadTy, SecondTy, RestTy...>::Type 1187 intersect(RangeSet::Factory &F, HeadTy Head, SecondTy Second, 1188 RestTy... Tail) { 1189 if (Head) { 1190 return intersect(F, *Head, Second, Tail...); 1191 } 1192 return intersect(F, Second, Tail...); 1193 } 1194 1195 //===----------------------------------------------------------------------===// 1196 // Symbolic reasoning logic 1197 //===----------------------------------------------------------------------===// 1198 1199 /// A little component aggregating all of the reasoning we have about 1200 /// the ranges of symbolic expressions. 1201 /// 1202 /// Even when we don't know the exact values of the operands, we still 1203 /// can get a pretty good estimate of the result's range. 1204 class SymbolicRangeInferrer 1205 : public SymExprVisitor<SymbolicRangeInferrer, RangeSet> { 1206 public: 1207 template <class SourceType> 1208 static RangeSet inferRange(RangeSet::Factory &F, ProgramStateRef State, 1209 SourceType Origin) { 1210 SymbolicRangeInferrer Inferrer(F, State); 1211 return Inferrer.infer(Origin); 1212 } 1213 1214 RangeSet VisitSymExpr(SymbolRef Sym) { 1215 if (Optional<RangeSet> RS = getRangeForNegatedSym(Sym)) 1216 return *RS; 1217 // If we've reached this line, the actual type of the symbolic 1218 // expression is not supported for advanced inference. 1219 // In this case, we simply backoff to the default "let's simply 1220 // infer the range from the expression's type". 1221 return infer(Sym->getType()); 1222 } 1223 1224 RangeSet VisitUnarySymExpr(const UnarySymExpr *USE) { 1225 if (Optional<RangeSet> RS = getRangeForNegatedUnarySym(USE)) 1226 return *RS; 1227 return infer(USE->getType()); 1228 } 1229 1230 RangeSet VisitSymIntExpr(const SymIntExpr *Sym) { 1231 return VisitBinaryOperator(Sym); 1232 } 1233 1234 RangeSet VisitIntSymExpr(const IntSymExpr *Sym) { 1235 return VisitBinaryOperator(Sym); 1236 } 1237 1238 RangeSet VisitSymSymExpr(const SymSymExpr *SSE) { 1239 return intersect( 1240 RangeFactory, 1241 // If Sym is a difference of symbols A - B, then maybe we have range 1242 // set stored for B - A. 1243 // 1244 // If we have range set stored for both A - B and B - A then 1245 // calculate the effective range set by intersecting the range set 1246 // for A - B and the negated range set of B - A. 1247 getRangeForNegatedSymSym(SSE), 1248 // If Sym is a comparison expression (except <=>), 1249 // find any other comparisons with the same operands. 1250 // See function description. 1251 getRangeForComparisonSymbol(SSE), 1252 // If Sym is (dis)equality, we might have some information 1253 // on that in our equality classes data structure. 1254 getRangeForEqualities(SSE), 1255 // And we should always check what we can get from the operands. 1256 VisitBinaryOperator(SSE)); 1257 } 1258 1259 private: 1260 SymbolicRangeInferrer(RangeSet::Factory &F, ProgramStateRef S) 1261 : ValueFactory(F.getValueFactory()), RangeFactory(F), State(S) {} 1262 1263 /// Infer range information from the given integer constant. 1264 /// 1265 /// It's not a real "inference", but is here for operating with 1266 /// sub-expressions in a more polymorphic manner. 1267 RangeSet inferAs(const llvm::APSInt &Val, QualType) { 1268 return {RangeFactory, Val}; 1269 } 1270 1271 /// Infer range information from symbol in the context of the given type. 1272 RangeSet inferAs(SymbolRef Sym, QualType DestType) { 1273 QualType ActualType = Sym->getType(); 1274 // Check that we can reason about the symbol at all. 1275 if (ActualType->isIntegralOrEnumerationType() || 1276 Loc::isLocType(ActualType)) { 1277 return infer(Sym); 1278 } 1279 // Otherwise, let's simply infer from the destination type. 1280 // We couldn't figure out nothing else about that expression. 1281 return infer(DestType); 1282 } 1283 1284 RangeSet infer(SymbolRef Sym) { 1285 return intersect(RangeFactory, 1286 // Of course, we should take the constraint directly 1287 // associated with this symbol into consideration. 1288 getConstraint(State, Sym), 1289 // Apart from the Sym itself, we can infer quite a lot if 1290 // we look into subexpressions of Sym. 1291 Visit(Sym)); 1292 } 1293 1294 RangeSet infer(EquivalenceClass Class) { 1295 if (const RangeSet *AssociatedConstraint = getConstraint(State, Class)) 1296 return *AssociatedConstraint; 1297 1298 return infer(Class.getType()); 1299 } 1300 1301 /// Infer range information solely from the type. 1302 RangeSet infer(QualType T) { 1303 // Lazily generate a new RangeSet representing all possible values for the 1304 // given symbol type. 1305 RangeSet Result(RangeFactory, ValueFactory.getMinValue(T), 1306 ValueFactory.getMaxValue(T)); 1307 1308 // References are known to be non-zero. 1309 if (T->isReferenceType()) 1310 return assumeNonZero(Result, T); 1311 1312 return Result; 1313 } 1314 1315 template <class BinarySymExprTy> 1316 RangeSet VisitBinaryOperator(const BinarySymExprTy *Sym) { 1317 // TODO #1: VisitBinaryOperator implementation might not make a good 1318 // use of the inferred ranges. In this case, we might be calculating 1319 // everything for nothing. This being said, we should introduce some 1320 // sort of laziness mechanism here. 1321 // 1322 // TODO #2: We didn't go into the nested expressions before, so it 1323 // might cause us spending much more time doing the inference. 1324 // This can be a problem for deeply nested expressions that are 1325 // involved in conditions and get tested continuously. We definitely 1326 // need to address this issue and introduce some sort of caching 1327 // in here. 1328 QualType ResultType = Sym->getType(); 1329 return VisitBinaryOperator(inferAs(Sym->getLHS(), ResultType), 1330 Sym->getOpcode(), 1331 inferAs(Sym->getRHS(), ResultType), ResultType); 1332 } 1333 1334 RangeSet VisitBinaryOperator(RangeSet LHS, BinaryOperator::Opcode Op, 1335 RangeSet RHS, QualType T) { 1336 switch (Op) { 1337 case BO_Or: 1338 return VisitBinaryOperator<BO_Or>(LHS, RHS, T); 1339 case BO_And: 1340 return VisitBinaryOperator<BO_And>(LHS, RHS, T); 1341 case BO_Rem: 1342 return VisitBinaryOperator<BO_Rem>(LHS, RHS, T); 1343 default: 1344 return infer(T); 1345 } 1346 } 1347 1348 //===----------------------------------------------------------------------===// 1349 // Ranges and operators 1350 //===----------------------------------------------------------------------===// 1351 1352 /// Return a rough approximation of the given range set. 1353 /// 1354 /// For the range set: 1355 /// { [x_0, y_0], [x_1, y_1], ... , [x_N, y_N] } 1356 /// it will return the range [x_0, y_N]. 1357 static Range fillGaps(RangeSet Origin) { 1358 assert(!Origin.isEmpty()); 1359 return {Origin.getMinValue(), Origin.getMaxValue()}; 1360 } 1361 1362 /// Try to convert given range into the given type. 1363 /// 1364 /// It will return llvm::None only when the trivial conversion is possible. 1365 llvm::Optional<Range> convert(const Range &Origin, APSIntType To) { 1366 if (To.testInRange(Origin.From(), false) != APSIntType::RTR_Within || 1367 To.testInRange(Origin.To(), false) != APSIntType::RTR_Within) { 1368 return std::nullopt; 1369 } 1370 return Range(ValueFactory.Convert(To, Origin.From()), 1371 ValueFactory.Convert(To, Origin.To())); 1372 } 1373 1374 template <BinaryOperator::Opcode Op> 1375 RangeSet VisitBinaryOperator(RangeSet LHS, RangeSet RHS, QualType T) { 1376 // We should propagate information about unfeasbility of one of the 1377 // operands to the resulting range. 1378 if (LHS.isEmpty() || RHS.isEmpty()) { 1379 return RangeFactory.getEmptySet(); 1380 } 1381 1382 Range CoarseLHS = fillGaps(LHS); 1383 Range CoarseRHS = fillGaps(RHS); 1384 1385 APSIntType ResultType = ValueFactory.getAPSIntType(T); 1386 1387 // We need to convert ranges to the resulting type, so we can compare values 1388 // and combine them in a meaningful (in terms of the given operation) way. 1389 auto ConvertedCoarseLHS = convert(CoarseLHS, ResultType); 1390 auto ConvertedCoarseRHS = convert(CoarseRHS, ResultType); 1391 1392 // It is hard to reason about ranges when conversion changes 1393 // borders of the ranges. 1394 if (!ConvertedCoarseLHS || !ConvertedCoarseRHS) { 1395 return infer(T); 1396 } 1397 1398 return VisitBinaryOperator<Op>(*ConvertedCoarseLHS, *ConvertedCoarseRHS, T); 1399 } 1400 1401 template <BinaryOperator::Opcode Op> 1402 RangeSet VisitBinaryOperator(Range LHS, Range RHS, QualType T) { 1403 return infer(T); 1404 } 1405 1406 /// Return a symmetrical range for the given range and type. 1407 /// 1408 /// If T is signed, return the smallest range [-x..x] that covers the original 1409 /// range, or [-min(T), max(T)] if the aforementioned symmetric range doesn't 1410 /// exist due to original range covering min(T)). 1411 /// 1412 /// If T is unsigned, return the smallest range [0..x] that covers the 1413 /// original range. 1414 Range getSymmetricalRange(Range Origin, QualType T) { 1415 APSIntType RangeType = ValueFactory.getAPSIntType(T); 1416 1417 if (RangeType.isUnsigned()) { 1418 return Range(ValueFactory.getMinValue(RangeType), Origin.To()); 1419 } 1420 1421 if (Origin.From().isMinSignedValue()) { 1422 // If mini is a minimal signed value, absolute value of it is greater 1423 // than the maximal signed value. In order to avoid these 1424 // complications, we simply return the whole range. 1425 return {ValueFactory.getMinValue(RangeType), 1426 ValueFactory.getMaxValue(RangeType)}; 1427 } 1428 1429 // At this point, we are sure that the type is signed and we can safely 1430 // use unary - operator. 1431 // 1432 // While calculating absolute maximum, we can use the following formula 1433 // because of these reasons: 1434 // * If From >= 0 then To >= From and To >= -From. 1435 // AbsMax == To == max(To, -From) 1436 // * If To <= 0 then -From >= -To and -From >= From. 1437 // AbsMax == -From == max(-From, To) 1438 // * Otherwise, From <= 0, To >= 0, and 1439 // AbsMax == max(abs(From), abs(To)) 1440 llvm::APSInt AbsMax = std::max(-Origin.From(), Origin.To()); 1441 1442 // Intersection is guaranteed to be non-empty. 1443 return {ValueFactory.getValue(-AbsMax), ValueFactory.getValue(AbsMax)}; 1444 } 1445 1446 /// Return a range set subtracting zero from \p Domain. 1447 RangeSet assumeNonZero(RangeSet Domain, QualType T) { 1448 APSIntType IntType = ValueFactory.getAPSIntType(T); 1449 return RangeFactory.deletePoint(Domain, IntType.getZeroValue()); 1450 } 1451 1452 template <typename ProduceNegatedSymFunc> 1453 Optional<RangeSet> getRangeForNegatedExpr(ProduceNegatedSymFunc F, 1454 QualType T) { 1455 // Do not negate if the type cannot be meaningfully negated. 1456 if (!T->isUnsignedIntegerOrEnumerationType() && 1457 !T->isSignedIntegerOrEnumerationType()) 1458 return std::nullopt; 1459 1460 if (SymbolRef NegatedSym = F()) 1461 if (const RangeSet *NegatedRange = getConstraint(State, NegatedSym)) 1462 return RangeFactory.negate(*NegatedRange); 1463 1464 return std::nullopt; 1465 } 1466 1467 Optional<RangeSet> getRangeForNegatedUnarySym(const UnarySymExpr *USE) { 1468 // Just get the operand when we negate a symbol that is already negated. 1469 // -(-a) == a 1470 return getRangeForNegatedExpr( 1471 [USE]() -> SymbolRef { 1472 if (USE->getOpcode() == UO_Minus) 1473 return USE->getOperand(); 1474 return nullptr; 1475 }, 1476 USE->getType()); 1477 } 1478 1479 Optional<RangeSet> getRangeForNegatedSymSym(const SymSymExpr *SSE) { 1480 return getRangeForNegatedExpr( 1481 [SSE, State = this->State]() -> SymbolRef { 1482 if (SSE->getOpcode() == BO_Sub) 1483 return State->getSymbolManager().getSymSymExpr( 1484 SSE->getRHS(), BO_Sub, SSE->getLHS(), SSE->getType()); 1485 return nullptr; 1486 }, 1487 SSE->getType()); 1488 } 1489 1490 Optional<RangeSet> getRangeForNegatedSym(SymbolRef Sym) { 1491 return getRangeForNegatedExpr( 1492 [Sym, State = this->State]() { 1493 return State->getSymbolManager().getUnarySymExpr(Sym, UO_Minus, 1494 Sym->getType()); 1495 }, 1496 Sym->getType()); 1497 } 1498 1499 // Returns ranges only for binary comparison operators (except <=>) 1500 // when left and right operands are symbolic values. 1501 // Finds any other comparisons with the same operands. 1502 // Then do logical calculations and refuse impossible branches. 1503 // E.g. (x < y) and (x > y) at the same time are impossible. 1504 // E.g. (x >= y) and (x != y) at the same time makes (x > y) true only. 1505 // E.g. (x == y) and (y == x) are just reversed but the same. 1506 // It covers all possible combinations (see CmpOpTable description). 1507 // Note that `x` and `y` can also stand for subexpressions, 1508 // not only for actual symbols. 1509 Optional<RangeSet> getRangeForComparisonSymbol(const SymSymExpr *SSE) { 1510 const BinaryOperatorKind CurrentOP = SSE->getOpcode(); 1511 1512 // We currently do not support <=> (C++20). 1513 if (!BinaryOperator::isComparisonOp(CurrentOP) || (CurrentOP == BO_Cmp)) 1514 return std::nullopt; 1515 1516 static const OperatorRelationsTable CmpOpTable{}; 1517 1518 const SymExpr *LHS = SSE->getLHS(); 1519 const SymExpr *RHS = SSE->getRHS(); 1520 QualType T = SSE->getType(); 1521 1522 SymbolManager &SymMgr = State->getSymbolManager(); 1523 1524 // We use this variable to store the last queried operator (`QueriedOP`) 1525 // for which the `getCmpOpState` returned with `Unknown`. If there are two 1526 // different OPs that returned `Unknown` then we have to query the special 1527 // `UnknownX2` column. We assume that `getCmpOpState(CurrentOP, CurrentOP)` 1528 // never returns `Unknown`, so `CurrentOP` is a good initial value. 1529 BinaryOperatorKind LastQueriedOpToUnknown = CurrentOP; 1530 1531 // Loop goes through all of the columns exept the last one ('UnknownX2'). 1532 // We treat `UnknownX2` column separately at the end of the loop body. 1533 for (size_t i = 0; i < CmpOpTable.getCmpOpCount(); ++i) { 1534 1535 // Let's find an expression e.g. (x < y). 1536 BinaryOperatorKind QueriedOP = OperatorRelationsTable::getOpFromIndex(i); 1537 const SymSymExpr *SymSym = SymMgr.getSymSymExpr(LHS, QueriedOP, RHS, T); 1538 const RangeSet *QueriedRangeSet = getConstraint(State, SymSym); 1539 1540 // If ranges were not previously found, 1541 // try to find a reversed expression (y > x). 1542 if (!QueriedRangeSet) { 1543 const BinaryOperatorKind ROP = 1544 BinaryOperator::reverseComparisonOp(QueriedOP); 1545 SymSym = SymMgr.getSymSymExpr(RHS, ROP, LHS, T); 1546 QueriedRangeSet = getConstraint(State, SymSym); 1547 } 1548 1549 if (!QueriedRangeSet || QueriedRangeSet->isEmpty()) 1550 continue; 1551 1552 const llvm::APSInt *ConcreteValue = QueriedRangeSet->getConcreteValue(); 1553 const bool isInFalseBranch = 1554 ConcreteValue ? (*ConcreteValue == 0) : false; 1555 1556 // If it is a false branch, we shall be guided by opposite operator, 1557 // because the table is made assuming we are in the true branch. 1558 // E.g. when (x <= y) is false, then (x > y) is true. 1559 if (isInFalseBranch) 1560 QueriedOP = BinaryOperator::negateComparisonOp(QueriedOP); 1561 1562 OperatorRelationsTable::TriStateKind BranchState = 1563 CmpOpTable.getCmpOpState(CurrentOP, QueriedOP); 1564 1565 if (BranchState == OperatorRelationsTable::Unknown) { 1566 if (LastQueriedOpToUnknown != CurrentOP && 1567 LastQueriedOpToUnknown != QueriedOP) { 1568 // If we got the Unknown state for both different operators. 1569 // if (x <= y) // assume true 1570 // if (x != y) // assume true 1571 // if (x < y) // would be also true 1572 // Get a state from `UnknownX2` column. 1573 BranchState = CmpOpTable.getCmpOpStateForUnknownX2(CurrentOP); 1574 } else { 1575 LastQueriedOpToUnknown = QueriedOP; 1576 continue; 1577 } 1578 } 1579 1580 return (BranchState == OperatorRelationsTable::True) ? getTrueRange(T) 1581 : getFalseRange(T); 1582 } 1583 1584 return std::nullopt; 1585 } 1586 1587 Optional<RangeSet> getRangeForEqualities(const SymSymExpr *Sym) { 1588 Optional<bool> Equality = meansEquality(Sym); 1589 1590 if (!Equality) 1591 return std::nullopt; 1592 1593 if (Optional<bool> AreEqual = 1594 EquivalenceClass::areEqual(State, Sym->getLHS(), Sym->getRHS())) { 1595 // Here we cover two cases at once: 1596 // * if Sym is equality and its operands are known to be equal -> true 1597 // * if Sym is disequality and its operands are disequal -> true 1598 if (*AreEqual == *Equality) { 1599 return getTrueRange(Sym->getType()); 1600 } 1601 // Opposite combinations result in false. 1602 return getFalseRange(Sym->getType()); 1603 } 1604 1605 return std::nullopt; 1606 } 1607 1608 RangeSet getTrueRange(QualType T) { 1609 RangeSet TypeRange = infer(T); 1610 return assumeNonZero(TypeRange, T); 1611 } 1612 1613 RangeSet getFalseRange(QualType T) { 1614 const llvm::APSInt &Zero = ValueFactory.getValue(0, T); 1615 return RangeSet(RangeFactory, Zero); 1616 } 1617 1618 BasicValueFactory &ValueFactory; 1619 RangeSet::Factory &RangeFactory; 1620 ProgramStateRef State; 1621 }; 1622 1623 //===----------------------------------------------------------------------===// 1624 // Range-based reasoning about symbolic operations 1625 //===----------------------------------------------------------------------===// 1626 1627 template <> 1628 RangeSet SymbolicRangeInferrer::VisitBinaryOperator<BO_Or>(Range LHS, Range RHS, 1629 QualType T) { 1630 APSIntType ResultType = ValueFactory.getAPSIntType(T); 1631 llvm::APSInt Zero = ResultType.getZeroValue(); 1632 1633 bool IsLHSPositiveOrZero = LHS.From() >= Zero; 1634 bool IsRHSPositiveOrZero = RHS.From() >= Zero; 1635 1636 bool IsLHSNegative = LHS.To() < Zero; 1637 bool IsRHSNegative = RHS.To() < Zero; 1638 1639 // Check if both ranges have the same sign. 1640 if ((IsLHSPositiveOrZero && IsRHSPositiveOrZero) || 1641 (IsLHSNegative && IsRHSNegative)) { 1642 // The result is definitely greater or equal than any of the operands. 1643 const llvm::APSInt &Min = std::max(LHS.From(), RHS.From()); 1644 1645 // We estimate maximal value for positives as the maximal value for the 1646 // given type. For negatives, we estimate it with -1 (e.g. 0x11111111). 1647 // 1648 // TODO: We basically, limit the resulting range from below, but don't do 1649 // anything with the upper bound. 1650 // 1651 // For positive operands, it can be done as follows: for the upper 1652 // bound of LHS and RHS we calculate the most significant bit set. 1653 // Let's call it the N-th bit. Then we can estimate the maximal 1654 // number to be 2^(N+1)-1, i.e. the number with all the bits up to 1655 // the N-th bit set. 1656 const llvm::APSInt &Max = IsLHSNegative 1657 ? ValueFactory.getValue(--Zero) 1658 : ValueFactory.getMaxValue(ResultType); 1659 1660 return {RangeFactory, ValueFactory.getValue(Min), Max}; 1661 } 1662 1663 // Otherwise, let's check if at least one of the operands is negative. 1664 if (IsLHSNegative || IsRHSNegative) { 1665 // This means that the result is definitely negative as well. 1666 return {RangeFactory, ValueFactory.getMinValue(ResultType), 1667 ValueFactory.getValue(--Zero)}; 1668 } 1669 1670 RangeSet DefaultRange = infer(T); 1671 1672 // It is pretty hard to reason about operands with different signs 1673 // (and especially with possibly different signs). We simply check if it 1674 // can be zero. In order to conclude that the result could not be zero, 1675 // at least one of the operands should be definitely not zero itself. 1676 if (!LHS.Includes(Zero) || !RHS.Includes(Zero)) { 1677 return assumeNonZero(DefaultRange, T); 1678 } 1679 1680 // Nothing much else to do here. 1681 return DefaultRange; 1682 } 1683 1684 template <> 1685 RangeSet SymbolicRangeInferrer::VisitBinaryOperator<BO_And>(Range LHS, 1686 Range RHS, 1687 QualType T) { 1688 APSIntType ResultType = ValueFactory.getAPSIntType(T); 1689 llvm::APSInt Zero = ResultType.getZeroValue(); 1690 1691 bool IsLHSPositiveOrZero = LHS.From() >= Zero; 1692 bool IsRHSPositiveOrZero = RHS.From() >= Zero; 1693 1694 bool IsLHSNegative = LHS.To() < Zero; 1695 bool IsRHSNegative = RHS.To() < Zero; 1696 1697 // Check if both ranges have the same sign. 1698 if ((IsLHSPositiveOrZero && IsRHSPositiveOrZero) || 1699 (IsLHSNegative && IsRHSNegative)) { 1700 // The result is definitely less or equal than any of the operands. 1701 const llvm::APSInt &Max = std::min(LHS.To(), RHS.To()); 1702 1703 // We conservatively estimate lower bound to be the smallest positive 1704 // or negative value corresponding to the sign of the operands. 1705 const llvm::APSInt &Min = IsLHSNegative 1706 ? ValueFactory.getMinValue(ResultType) 1707 : ValueFactory.getValue(Zero); 1708 1709 return {RangeFactory, Min, Max}; 1710 } 1711 1712 // Otherwise, let's check if at least one of the operands is positive. 1713 if (IsLHSPositiveOrZero || IsRHSPositiveOrZero) { 1714 // This makes result definitely positive. 1715 // 1716 // We can also reason about a maximal value by finding the maximal 1717 // value of the positive operand. 1718 const llvm::APSInt &Max = IsLHSPositiveOrZero ? LHS.To() : RHS.To(); 1719 1720 // The minimal value on the other hand is much harder to reason about. 1721 // The only thing we know for sure is that the result is positive. 1722 return {RangeFactory, ValueFactory.getValue(Zero), 1723 ValueFactory.getValue(Max)}; 1724 } 1725 1726 // Nothing much else to do here. 1727 return infer(T); 1728 } 1729 1730 template <> 1731 RangeSet SymbolicRangeInferrer::VisitBinaryOperator<BO_Rem>(Range LHS, 1732 Range RHS, 1733 QualType T) { 1734 llvm::APSInt Zero = ValueFactory.getAPSIntType(T).getZeroValue(); 1735 1736 Range ConservativeRange = getSymmetricalRange(RHS, T); 1737 1738 llvm::APSInt Max = ConservativeRange.To(); 1739 llvm::APSInt Min = ConservativeRange.From(); 1740 1741 if (Max == Zero) { 1742 // It's an undefined behaviour to divide by 0 and it seems like we know 1743 // for sure that RHS is 0. Let's say that the resulting range is 1744 // simply infeasible for that matter. 1745 return RangeFactory.getEmptySet(); 1746 } 1747 1748 // At this point, our conservative range is closed. The result, however, 1749 // couldn't be greater than the RHS' maximal absolute value. Because of 1750 // this reason, we turn the range into open (or half-open in case of 1751 // unsigned integers). 1752 // 1753 // While we operate on integer values, an open interval (a, b) can be easily 1754 // represented by the closed interval [a + 1, b - 1]. And this is exactly 1755 // what we do next. 1756 // 1757 // If we are dealing with unsigned case, we shouldn't move the lower bound. 1758 if (Min.isSigned()) { 1759 ++Min; 1760 } 1761 --Max; 1762 1763 bool IsLHSPositiveOrZero = LHS.From() >= Zero; 1764 bool IsRHSPositiveOrZero = RHS.From() >= Zero; 1765 1766 // Remainder operator results with negative operands is implementation 1767 // defined. Positive cases are much easier to reason about though. 1768 if (IsLHSPositiveOrZero && IsRHSPositiveOrZero) { 1769 // If maximal value of LHS is less than maximal value of RHS, 1770 // the result won't get greater than LHS.To(). 1771 Max = std::min(LHS.To(), Max); 1772 // We want to check if it is a situation similar to the following: 1773 // 1774 // <------------|---[ LHS ]--------[ RHS ]-----> 1775 // -INF 0 +INF 1776 // 1777 // In this situation, we can conclude that (LHS / RHS) == 0 and 1778 // (LHS % RHS) == LHS. 1779 Min = LHS.To() < RHS.From() ? LHS.From() : Zero; 1780 } 1781 1782 // Nevertheless, the symmetrical range for RHS is a conservative estimate 1783 // for any sign of either LHS, or RHS. 1784 return {RangeFactory, ValueFactory.getValue(Min), ValueFactory.getValue(Max)}; 1785 } 1786 1787 //===----------------------------------------------------------------------===// 1788 // Constraint manager implementation details 1789 //===----------------------------------------------------------------------===// 1790 1791 class RangeConstraintManager : public RangedConstraintManager { 1792 public: 1793 RangeConstraintManager(ExprEngine *EE, SValBuilder &SVB) 1794 : RangedConstraintManager(EE, SVB), F(getBasicVals()) {} 1795 1796 //===------------------------------------------------------------------===// 1797 // Implementation for interface from ConstraintManager. 1798 //===------------------------------------------------------------------===// 1799 1800 bool haveEqualConstraints(ProgramStateRef S1, 1801 ProgramStateRef S2) const override { 1802 // NOTE: ClassMembers are as simple as back pointers for ClassMap, 1803 // so comparing constraint ranges and class maps should be 1804 // sufficient. 1805 return S1->get<ConstraintRange>() == S2->get<ConstraintRange>() && 1806 S1->get<ClassMap>() == S2->get<ClassMap>(); 1807 } 1808 1809 bool canReasonAbout(SVal X) const override; 1810 1811 ConditionTruthVal checkNull(ProgramStateRef State, SymbolRef Sym) override; 1812 1813 const llvm::APSInt *getSymVal(ProgramStateRef State, 1814 SymbolRef Sym) const override; 1815 1816 ProgramStateRef removeDeadBindings(ProgramStateRef State, 1817 SymbolReaper &SymReaper) override; 1818 1819 void printJson(raw_ostream &Out, ProgramStateRef State, const char *NL = "\n", 1820 unsigned int Space = 0, bool IsDot = false) const override; 1821 void printValue(raw_ostream &Out, ProgramStateRef State, 1822 SymbolRef Sym) override; 1823 void printConstraints(raw_ostream &Out, ProgramStateRef State, 1824 const char *NL = "\n", unsigned int Space = 0, 1825 bool IsDot = false) const; 1826 void printEquivalenceClasses(raw_ostream &Out, ProgramStateRef State, 1827 const char *NL = "\n", unsigned int Space = 0, 1828 bool IsDot = false) const; 1829 void printDisequalities(raw_ostream &Out, ProgramStateRef State, 1830 const char *NL = "\n", unsigned int Space = 0, 1831 bool IsDot = false) const; 1832 1833 //===------------------------------------------------------------------===// 1834 // Implementation for interface from RangedConstraintManager. 1835 //===------------------------------------------------------------------===// 1836 1837 ProgramStateRef assumeSymNE(ProgramStateRef State, SymbolRef Sym, 1838 const llvm::APSInt &V, 1839 const llvm::APSInt &Adjustment) override; 1840 1841 ProgramStateRef assumeSymEQ(ProgramStateRef State, SymbolRef Sym, 1842 const llvm::APSInt &V, 1843 const llvm::APSInt &Adjustment) override; 1844 1845 ProgramStateRef assumeSymLT(ProgramStateRef State, SymbolRef Sym, 1846 const llvm::APSInt &V, 1847 const llvm::APSInt &Adjustment) override; 1848 1849 ProgramStateRef assumeSymGT(ProgramStateRef State, SymbolRef Sym, 1850 const llvm::APSInt &V, 1851 const llvm::APSInt &Adjustment) override; 1852 1853 ProgramStateRef assumeSymLE(ProgramStateRef State, SymbolRef Sym, 1854 const llvm::APSInt &V, 1855 const llvm::APSInt &Adjustment) override; 1856 1857 ProgramStateRef assumeSymGE(ProgramStateRef State, SymbolRef Sym, 1858 const llvm::APSInt &V, 1859 const llvm::APSInt &Adjustment) override; 1860 1861 ProgramStateRef assumeSymWithinInclusiveRange( 1862 ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From, 1863 const llvm::APSInt &To, const llvm::APSInt &Adjustment) override; 1864 1865 ProgramStateRef assumeSymOutsideInclusiveRange( 1866 ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From, 1867 const llvm::APSInt &To, const llvm::APSInt &Adjustment) override; 1868 1869 private: 1870 RangeSet::Factory F; 1871 1872 RangeSet getRange(ProgramStateRef State, SymbolRef Sym); 1873 RangeSet getRange(ProgramStateRef State, EquivalenceClass Class); 1874 ProgramStateRef setRange(ProgramStateRef State, SymbolRef Sym, 1875 RangeSet Range); 1876 ProgramStateRef setRange(ProgramStateRef State, EquivalenceClass Class, 1877 RangeSet Range); 1878 1879 RangeSet getSymLTRange(ProgramStateRef St, SymbolRef Sym, 1880 const llvm::APSInt &Int, 1881 const llvm::APSInt &Adjustment); 1882 RangeSet getSymGTRange(ProgramStateRef St, SymbolRef Sym, 1883 const llvm::APSInt &Int, 1884 const llvm::APSInt &Adjustment); 1885 RangeSet getSymLERange(ProgramStateRef St, SymbolRef Sym, 1886 const llvm::APSInt &Int, 1887 const llvm::APSInt &Adjustment); 1888 RangeSet getSymLERange(llvm::function_ref<RangeSet()> RS, 1889 const llvm::APSInt &Int, 1890 const llvm::APSInt &Adjustment); 1891 RangeSet getSymGERange(ProgramStateRef St, SymbolRef Sym, 1892 const llvm::APSInt &Int, 1893 const llvm::APSInt &Adjustment); 1894 }; 1895 1896 //===----------------------------------------------------------------------===// 1897 // Constraint assignment logic 1898 //===----------------------------------------------------------------------===// 1899 1900 /// ConstraintAssignorBase is a small utility class that unifies visitor 1901 /// for ranges with a visitor for constraints (rangeset/range/constant). 1902 /// 1903 /// It is designed to have one derived class, but generally it can have more. 1904 /// Derived class can control which types we handle by defining methods of the 1905 /// following form: 1906 /// 1907 /// bool handle${SYMBOL}To${CONSTRAINT}(const SYMBOL *Sym, 1908 /// CONSTRAINT Constraint); 1909 /// 1910 /// where SYMBOL is the type of the symbol (e.g. SymSymExpr, SymbolCast, etc.) 1911 /// CONSTRAINT is the type of constraint (RangeSet/Range/Const) 1912 /// return value signifies whether we should try other handle methods 1913 /// (i.e. false would mean to stop right after calling this method) 1914 template <class Derived> class ConstraintAssignorBase { 1915 public: 1916 using Const = const llvm::APSInt &; 1917 1918 #define DISPATCH(CLASS) return assign##CLASS##Impl(cast<CLASS>(Sym), Constraint) 1919 1920 #define ASSIGN(CLASS, TO, SYM, CONSTRAINT) \ 1921 if (!static_cast<Derived *>(this)->assign##CLASS##To##TO(SYM, CONSTRAINT)) \ 1922 return false 1923 1924 void assign(SymbolRef Sym, RangeSet Constraint) { 1925 assignImpl(Sym, Constraint); 1926 } 1927 1928 bool assignImpl(SymbolRef Sym, RangeSet Constraint) { 1929 switch (Sym->getKind()) { 1930 #define SYMBOL(Id, Parent) \ 1931 case SymExpr::Id##Kind: \ 1932 DISPATCH(Id); 1933 #include "clang/StaticAnalyzer/Core/PathSensitive/Symbols.def" 1934 } 1935 llvm_unreachable("Unknown SymExpr kind!"); 1936 } 1937 1938 #define DEFAULT_ASSIGN(Id) \ 1939 bool assign##Id##To##RangeSet(const Id *Sym, RangeSet Constraint) { \ 1940 return true; \ 1941 } \ 1942 bool assign##Id##To##Range(const Id *Sym, Range Constraint) { return true; } \ 1943 bool assign##Id##To##Const(const Id *Sym, Const Constraint) { return true; } 1944 1945 // When we dispatch for constraint types, we first try to check 1946 // if the new constraint is the constant and try the corresponding 1947 // assignor methods. If it didn't interrupt, we can proceed to the 1948 // range, and finally to the range set. 1949 #define CONSTRAINT_DISPATCH(Id) \ 1950 if (const llvm::APSInt *Const = Constraint.getConcreteValue()) { \ 1951 ASSIGN(Id, Const, Sym, *Const); \ 1952 } \ 1953 if (Constraint.size() == 1) { \ 1954 ASSIGN(Id, Range, Sym, *Constraint.begin()); \ 1955 } \ 1956 ASSIGN(Id, RangeSet, Sym, Constraint) 1957 1958 // Our internal assign method first tries to call assignor methods for all 1959 // constraint types that apply. And if not interrupted, continues with its 1960 // parent class. 1961 #define SYMBOL(Id, Parent) \ 1962 bool assign##Id##Impl(const Id *Sym, RangeSet Constraint) { \ 1963 CONSTRAINT_DISPATCH(Id); \ 1964 DISPATCH(Parent); \ 1965 } \ 1966 DEFAULT_ASSIGN(Id) 1967 #define ABSTRACT_SYMBOL(Id, Parent) SYMBOL(Id, Parent) 1968 #include "clang/StaticAnalyzer/Core/PathSensitive/Symbols.def" 1969 1970 // Default implementations for the top class that doesn't have parents. 1971 bool assignSymExprImpl(const SymExpr *Sym, RangeSet Constraint) { 1972 CONSTRAINT_DISPATCH(SymExpr); 1973 return true; 1974 } 1975 DEFAULT_ASSIGN(SymExpr); 1976 1977 #undef DISPATCH 1978 #undef CONSTRAINT_DISPATCH 1979 #undef DEFAULT_ASSIGN 1980 #undef ASSIGN 1981 }; 1982 1983 /// A little component aggregating all of the reasoning we have about 1984 /// assigning new constraints to symbols. 1985 /// 1986 /// The main purpose of this class is to associate constraints to symbols, 1987 /// and impose additional constraints on other symbols, when we can imply 1988 /// them. 1989 /// 1990 /// It has a nice symmetry with SymbolicRangeInferrer. When the latter 1991 /// can provide more precise ranges by looking into the operands of the 1992 /// expression in question, ConstraintAssignor looks into the operands 1993 /// to see if we can imply more from the new constraint. 1994 class ConstraintAssignor : public ConstraintAssignorBase<ConstraintAssignor> { 1995 public: 1996 template <class ClassOrSymbol> 1997 [[nodiscard]] static ProgramStateRef 1998 assign(ProgramStateRef State, SValBuilder &Builder, RangeSet::Factory &F, 1999 ClassOrSymbol CoS, RangeSet NewConstraint) { 2000 if (!State || NewConstraint.isEmpty()) 2001 return nullptr; 2002 2003 ConstraintAssignor Assignor{State, Builder, F}; 2004 return Assignor.assign(CoS, NewConstraint); 2005 } 2006 2007 /// Handle expressions like: a % b != 0. 2008 template <typename SymT> 2009 bool handleRemainderOp(const SymT *Sym, RangeSet Constraint) { 2010 if (Sym->getOpcode() != BO_Rem) 2011 return true; 2012 // a % b != 0 implies that a != 0. 2013 if (!Constraint.containsZero()) { 2014 SVal SymSVal = Builder.makeSymbolVal(Sym->getLHS()); 2015 if (auto NonLocSymSVal = SymSVal.getAs<nonloc::SymbolVal>()) { 2016 State = State->assume(*NonLocSymSVal, true); 2017 if (!State) 2018 return false; 2019 } 2020 } 2021 return true; 2022 } 2023 2024 inline bool assignSymExprToConst(const SymExpr *Sym, Const Constraint); 2025 inline bool assignSymIntExprToRangeSet(const SymIntExpr *Sym, 2026 RangeSet Constraint) { 2027 return handleRemainderOp(Sym, Constraint); 2028 } 2029 inline bool assignSymSymExprToRangeSet(const SymSymExpr *Sym, 2030 RangeSet Constraint); 2031 2032 private: 2033 ConstraintAssignor(ProgramStateRef State, SValBuilder &Builder, 2034 RangeSet::Factory &F) 2035 : State(State), Builder(Builder), RangeFactory(F) {} 2036 using Base = ConstraintAssignorBase<ConstraintAssignor>; 2037 2038 /// Base method for handling new constraints for symbols. 2039 [[nodiscard]] ProgramStateRef assign(SymbolRef Sym, RangeSet NewConstraint) { 2040 // All constraints are actually associated with equivalence classes, and 2041 // that's what we are going to do first. 2042 State = assign(EquivalenceClass::find(State, Sym), NewConstraint); 2043 if (!State) 2044 return nullptr; 2045 2046 // And after that we can check what other things we can get from this 2047 // constraint. 2048 Base::assign(Sym, NewConstraint); 2049 return State; 2050 } 2051 2052 /// Base method for handling new constraints for classes. 2053 [[nodiscard]] ProgramStateRef assign(EquivalenceClass Class, 2054 RangeSet NewConstraint) { 2055 // There is a chance that we might need to update constraints for the 2056 // classes that are known to be disequal to Class. 2057 // 2058 // In order for this to be even possible, the new constraint should 2059 // be simply a constant because we can't reason about range disequalities. 2060 if (const llvm::APSInt *Point = NewConstraint.getConcreteValue()) { 2061 2062 ConstraintRangeTy Constraints = State->get<ConstraintRange>(); 2063 ConstraintRangeTy::Factory &CF = State->get_context<ConstraintRange>(); 2064 2065 // Add new constraint. 2066 Constraints = CF.add(Constraints, Class, NewConstraint); 2067 2068 for (EquivalenceClass DisequalClass : Class.getDisequalClasses(State)) { 2069 RangeSet UpdatedConstraint = SymbolicRangeInferrer::inferRange( 2070 RangeFactory, State, DisequalClass); 2071 2072 UpdatedConstraint = RangeFactory.deletePoint(UpdatedConstraint, *Point); 2073 2074 // If we end up with at least one of the disequal classes to be 2075 // constrained with an empty range-set, the state is infeasible. 2076 if (UpdatedConstraint.isEmpty()) 2077 return nullptr; 2078 2079 Constraints = CF.add(Constraints, DisequalClass, UpdatedConstraint); 2080 } 2081 assert(areFeasible(Constraints) && "Constraint manager shouldn't produce " 2082 "a state with infeasible constraints"); 2083 2084 return setConstraints(State, Constraints); 2085 } 2086 2087 return setConstraint(State, Class, NewConstraint); 2088 } 2089 2090 ProgramStateRef trackDisequality(ProgramStateRef State, SymbolRef LHS, 2091 SymbolRef RHS) { 2092 return EquivalenceClass::markDisequal(RangeFactory, State, LHS, RHS); 2093 } 2094 2095 ProgramStateRef trackEquality(ProgramStateRef State, SymbolRef LHS, 2096 SymbolRef RHS) { 2097 return EquivalenceClass::merge(RangeFactory, State, LHS, RHS); 2098 } 2099 2100 [[nodiscard]] Optional<bool> interpreteAsBool(RangeSet Constraint) { 2101 assert(!Constraint.isEmpty() && "Empty ranges shouldn't get here"); 2102 2103 if (Constraint.getConcreteValue()) 2104 return !Constraint.getConcreteValue()->isZero(); 2105 2106 if (!Constraint.containsZero()) 2107 return true; 2108 2109 return std::nullopt; 2110 } 2111 2112 ProgramStateRef State; 2113 SValBuilder &Builder; 2114 RangeSet::Factory &RangeFactory; 2115 }; 2116 2117 2118 bool ConstraintAssignor::assignSymExprToConst(const SymExpr *Sym, 2119 const llvm::APSInt &Constraint) { 2120 llvm::SmallSet<EquivalenceClass, 4> SimplifiedClasses; 2121 // Iterate over all equivalence classes and try to simplify them. 2122 ClassMembersTy Members = State->get<ClassMembers>(); 2123 for (std::pair<EquivalenceClass, SymbolSet> ClassToSymbolSet : Members) { 2124 EquivalenceClass Class = ClassToSymbolSet.first; 2125 State = EquivalenceClass::simplify(Builder, RangeFactory, State, Class); 2126 if (!State) 2127 return false; 2128 SimplifiedClasses.insert(Class); 2129 } 2130 2131 // Trivial equivalence classes (those that have only one symbol member) are 2132 // not stored in the State. Thus, we must skim through the constraints as 2133 // well. And we try to simplify symbols in the constraints. 2134 ConstraintRangeTy Constraints = State->get<ConstraintRange>(); 2135 for (std::pair<EquivalenceClass, RangeSet> ClassConstraint : Constraints) { 2136 EquivalenceClass Class = ClassConstraint.first; 2137 if (SimplifiedClasses.count(Class)) // Already simplified. 2138 continue; 2139 State = EquivalenceClass::simplify(Builder, RangeFactory, State, Class); 2140 if (!State) 2141 return false; 2142 } 2143 2144 // We may have trivial equivalence classes in the disequality info as 2145 // well, and we need to simplify them. 2146 DisequalityMapTy DisequalityInfo = State->get<DisequalityMap>(); 2147 for (std::pair<EquivalenceClass, ClassSet> DisequalityEntry : 2148 DisequalityInfo) { 2149 EquivalenceClass Class = DisequalityEntry.first; 2150 ClassSet DisequalClasses = DisequalityEntry.second; 2151 State = EquivalenceClass::simplify(Builder, RangeFactory, State, Class); 2152 if (!State) 2153 return false; 2154 } 2155 2156 return true; 2157 } 2158 2159 bool ConstraintAssignor::assignSymSymExprToRangeSet(const SymSymExpr *Sym, 2160 RangeSet Constraint) { 2161 if (!handleRemainderOp(Sym, Constraint)) 2162 return false; 2163 2164 Optional<bool> ConstraintAsBool = interpreteAsBool(Constraint); 2165 2166 if (!ConstraintAsBool) 2167 return true; 2168 2169 if (Optional<bool> Equality = meansEquality(Sym)) { 2170 // Here we cover two cases: 2171 // * if Sym is equality and the new constraint is true -> Sym's operands 2172 // should be marked as equal 2173 // * if Sym is disequality and the new constraint is false -> Sym's 2174 // operands should be also marked as equal 2175 if (*Equality == *ConstraintAsBool) { 2176 State = trackEquality(State, Sym->getLHS(), Sym->getRHS()); 2177 } else { 2178 // Other combinations leave as with disequal operands. 2179 State = trackDisequality(State, Sym->getLHS(), Sym->getRHS()); 2180 } 2181 2182 if (!State) 2183 return false; 2184 } 2185 2186 return true; 2187 } 2188 2189 } // end anonymous namespace 2190 2191 std::unique_ptr<ConstraintManager> 2192 ento::CreateRangeConstraintManager(ProgramStateManager &StMgr, 2193 ExprEngine *Eng) { 2194 return std::make_unique<RangeConstraintManager>(Eng, StMgr.getSValBuilder()); 2195 } 2196 2197 ConstraintMap ento::getConstraintMap(ProgramStateRef State) { 2198 ConstraintMap::Factory &F = State->get_context<ConstraintMap>(); 2199 ConstraintMap Result = F.getEmptyMap(); 2200 2201 ConstraintRangeTy Constraints = State->get<ConstraintRange>(); 2202 for (std::pair<EquivalenceClass, RangeSet> ClassConstraint : Constraints) { 2203 EquivalenceClass Class = ClassConstraint.first; 2204 SymbolSet ClassMembers = Class.getClassMembers(State); 2205 assert(!ClassMembers.isEmpty() && 2206 "Class must always have at least one member!"); 2207 2208 SymbolRef Representative = *ClassMembers.begin(); 2209 Result = F.add(Result, Representative, ClassConstraint.second); 2210 } 2211 2212 return Result; 2213 } 2214 2215 //===----------------------------------------------------------------------===// 2216 // EqualityClass implementation details 2217 //===----------------------------------------------------------------------===// 2218 2219 LLVM_DUMP_METHOD void EquivalenceClass::dumpToStream(ProgramStateRef State, 2220 raw_ostream &os) const { 2221 SymbolSet ClassMembers = getClassMembers(State); 2222 for (const SymbolRef &MemberSym : ClassMembers) { 2223 MemberSym->dump(); 2224 os << "\n"; 2225 } 2226 } 2227 2228 inline EquivalenceClass EquivalenceClass::find(ProgramStateRef State, 2229 SymbolRef Sym) { 2230 assert(State && "State should not be null"); 2231 assert(Sym && "Symbol should not be null"); 2232 // We store far from all Symbol -> Class mappings 2233 if (const EquivalenceClass *NontrivialClass = State->get<ClassMap>(Sym)) 2234 return *NontrivialClass; 2235 2236 // This is a trivial class of Sym. 2237 return Sym; 2238 } 2239 2240 inline ProgramStateRef EquivalenceClass::merge(RangeSet::Factory &F, 2241 ProgramStateRef State, 2242 SymbolRef First, 2243 SymbolRef Second) { 2244 EquivalenceClass FirstClass = find(State, First); 2245 EquivalenceClass SecondClass = find(State, Second); 2246 2247 return FirstClass.merge(F, State, SecondClass); 2248 } 2249 2250 inline ProgramStateRef EquivalenceClass::merge(RangeSet::Factory &F, 2251 ProgramStateRef State, 2252 EquivalenceClass Other) { 2253 // It is already the same class. 2254 if (*this == Other) 2255 return State; 2256 2257 // FIXME: As of now, we support only equivalence classes of the same type. 2258 // This limitation is connected to the lack of explicit casts in 2259 // our symbolic expression model. 2260 // 2261 // That means that for `int x` and `char y` we don't distinguish 2262 // between these two very different cases: 2263 // * `x == y` 2264 // * `(char)x == y` 2265 // 2266 // The moment we introduce symbolic casts, this restriction can be 2267 // lifted. 2268 if (getType() != Other.getType()) 2269 return State; 2270 2271 SymbolSet Members = getClassMembers(State); 2272 SymbolSet OtherMembers = Other.getClassMembers(State); 2273 2274 // We estimate the size of the class by the height of tree containing 2275 // its members. Merging is not a trivial operation, so it's easier to 2276 // merge the smaller class into the bigger one. 2277 if (Members.getHeight() >= OtherMembers.getHeight()) { 2278 return mergeImpl(F, State, Members, Other, OtherMembers); 2279 } else { 2280 return Other.mergeImpl(F, State, OtherMembers, *this, Members); 2281 } 2282 } 2283 2284 inline ProgramStateRef 2285 EquivalenceClass::mergeImpl(RangeSet::Factory &RangeFactory, 2286 ProgramStateRef State, SymbolSet MyMembers, 2287 EquivalenceClass Other, SymbolSet OtherMembers) { 2288 // Essentially what we try to recreate here is some kind of union-find 2289 // data structure. It does have certain limitations due to persistence 2290 // and the need to remove elements from classes. 2291 // 2292 // In this setting, EquialityClass object is the representative of the class 2293 // or the parent element. ClassMap is a mapping of class members to their 2294 // parent. Unlike the union-find structure, they all point directly to the 2295 // class representative because we don't have an opportunity to actually do 2296 // path compression when dealing with immutability. This means that we 2297 // compress paths every time we do merges. It also means that we lose 2298 // the main amortized complexity benefit from the original data structure. 2299 ConstraintRangeTy Constraints = State->get<ConstraintRange>(); 2300 ConstraintRangeTy::Factory &CRF = State->get_context<ConstraintRange>(); 2301 2302 // 1. If the merged classes have any constraints associated with them, we 2303 // need to transfer them to the class we have left. 2304 // 2305 // Intersection here makes perfect sense because both of these constraints 2306 // must hold for the whole new class. 2307 if (Optional<RangeSet> NewClassConstraint = 2308 intersect(RangeFactory, getConstraint(State, *this), 2309 getConstraint(State, Other))) { 2310 // NOTE: Essentially, NewClassConstraint should NEVER be infeasible because 2311 // range inferrer shouldn't generate ranges incompatible with 2312 // equivalence classes. However, at the moment, due to imperfections 2313 // in the solver, it is possible and the merge function can also 2314 // return infeasible states aka null states. 2315 if (NewClassConstraint->isEmpty()) 2316 // Infeasible state 2317 return nullptr; 2318 2319 // No need in tracking constraints of a now-dissolved class. 2320 Constraints = CRF.remove(Constraints, Other); 2321 // Assign new constraints for this class. 2322 Constraints = CRF.add(Constraints, *this, *NewClassConstraint); 2323 2324 assert(areFeasible(Constraints) && "Constraint manager shouldn't produce " 2325 "a state with infeasible constraints"); 2326 2327 State = State->set<ConstraintRange>(Constraints); 2328 } 2329 2330 // 2. Get ALL equivalence-related maps 2331 ClassMapTy Classes = State->get<ClassMap>(); 2332 ClassMapTy::Factory &CMF = State->get_context<ClassMap>(); 2333 2334 ClassMembersTy Members = State->get<ClassMembers>(); 2335 ClassMembersTy::Factory &MF = State->get_context<ClassMembers>(); 2336 2337 DisequalityMapTy DisequalityInfo = State->get<DisequalityMap>(); 2338 DisequalityMapTy::Factory &DF = State->get_context<DisequalityMap>(); 2339 2340 ClassSet::Factory &CF = State->get_context<ClassSet>(); 2341 SymbolSet::Factory &F = getMembersFactory(State); 2342 2343 // 2. Merge members of the Other class into the current class. 2344 SymbolSet NewClassMembers = MyMembers; 2345 for (SymbolRef Sym : OtherMembers) { 2346 NewClassMembers = F.add(NewClassMembers, Sym); 2347 // *this is now the class for all these new symbols. 2348 Classes = CMF.add(Classes, Sym, *this); 2349 } 2350 2351 // 3. Adjust member mapping. 2352 // 2353 // No need in tracking members of a now-dissolved class. 2354 Members = MF.remove(Members, Other); 2355 // Now only the current class is mapped to all the symbols. 2356 Members = MF.add(Members, *this, NewClassMembers); 2357 2358 // 4. Update disequality relations 2359 ClassSet DisequalToOther = Other.getDisequalClasses(DisequalityInfo, CF); 2360 // We are about to merge two classes but they are already known to be 2361 // non-equal. This is a contradiction. 2362 if (DisequalToOther.contains(*this)) 2363 return nullptr; 2364 2365 if (!DisequalToOther.isEmpty()) { 2366 ClassSet DisequalToThis = getDisequalClasses(DisequalityInfo, CF); 2367 DisequalityInfo = DF.remove(DisequalityInfo, Other); 2368 2369 for (EquivalenceClass DisequalClass : DisequalToOther) { 2370 DisequalToThis = CF.add(DisequalToThis, DisequalClass); 2371 2372 // Disequality is a symmetric relation meaning that if 2373 // DisequalToOther not null then the set for DisequalClass is not 2374 // empty and has at least Other. 2375 ClassSet OriginalSetLinkedToOther = 2376 *DisequalityInfo.lookup(DisequalClass); 2377 2378 // Other will be eliminated and we should replace it with the bigger 2379 // united class. 2380 ClassSet NewSet = CF.remove(OriginalSetLinkedToOther, Other); 2381 NewSet = CF.add(NewSet, *this); 2382 2383 DisequalityInfo = DF.add(DisequalityInfo, DisequalClass, NewSet); 2384 } 2385 2386 DisequalityInfo = DF.add(DisequalityInfo, *this, DisequalToThis); 2387 State = State->set<DisequalityMap>(DisequalityInfo); 2388 } 2389 2390 // 5. Update the state 2391 State = State->set<ClassMap>(Classes); 2392 State = State->set<ClassMembers>(Members); 2393 2394 return State; 2395 } 2396 2397 inline SymbolSet::Factory & 2398 EquivalenceClass::getMembersFactory(ProgramStateRef State) { 2399 return State->get_context<SymbolSet>(); 2400 } 2401 2402 SymbolSet EquivalenceClass::getClassMembers(ProgramStateRef State) const { 2403 if (const SymbolSet *Members = State->get<ClassMembers>(*this)) 2404 return *Members; 2405 2406 // This class is trivial, so we need to construct a set 2407 // with just that one symbol from the class. 2408 SymbolSet::Factory &F = getMembersFactory(State); 2409 return F.add(F.getEmptySet(), getRepresentativeSymbol()); 2410 } 2411 2412 bool EquivalenceClass::isTrivial(ProgramStateRef State) const { 2413 return State->get<ClassMembers>(*this) == nullptr; 2414 } 2415 2416 bool EquivalenceClass::isTriviallyDead(ProgramStateRef State, 2417 SymbolReaper &Reaper) const { 2418 return isTrivial(State) && Reaper.isDead(getRepresentativeSymbol()); 2419 } 2420 2421 inline ProgramStateRef EquivalenceClass::markDisequal(RangeSet::Factory &RF, 2422 ProgramStateRef State, 2423 SymbolRef First, 2424 SymbolRef Second) { 2425 return markDisequal(RF, State, find(State, First), find(State, Second)); 2426 } 2427 2428 inline ProgramStateRef EquivalenceClass::markDisequal(RangeSet::Factory &RF, 2429 ProgramStateRef State, 2430 EquivalenceClass First, 2431 EquivalenceClass Second) { 2432 return First.markDisequal(RF, State, Second); 2433 } 2434 2435 inline ProgramStateRef 2436 EquivalenceClass::markDisequal(RangeSet::Factory &RF, ProgramStateRef State, 2437 EquivalenceClass Other) const { 2438 // If we know that two classes are equal, we can only produce an infeasible 2439 // state. 2440 if (*this == Other) { 2441 return nullptr; 2442 } 2443 2444 DisequalityMapTy DisequalityInfo = State->get<DisequalityMap>(); 2445 ConstraintRangeTy Constraints = State->get<ConstraintRange>(); 2446 2447 // Disequality is a symmetric relation, so if we mark A as disequal to B, 2448 // we should also mark B as disequalt to A. 2449 if (!addToDisequalityInfo(DisequalityInfo, Constraints, RF, State, *this, 2450 Other) || 2451 !addToDisequalityInfo(DisequalityInfo, Constraints, RF, State, Other, 2452 *this)) 2453 return nullptr; 2454 2455 assert(areFeasible(Constraints) && "Constraint manager shouldn't produce " 2456 "a state with infeasible constraints"); 2457 2458 State = State->set<DisequalityMap>(DisequalityInfo); 2459 State = State->set<ConstraintRange>(Constraints); 2460 2461 return State; 2462 } 2463 2464 inline bool EquivalenceClass::addToDisequalityInfo( 2465 DisequalityMapTy &Info, ConstraintRangeTy &Constraints, 2466 RangeSet::Factory &RF, ProgramStateRef State, EquivalenceClass First, 2467 EquivalenceClass Second) { 2468 2469 // 1. Get all of the required factories. 2470 DisequalityMapTy::Factory &F = State->get_context<DisequalityMap>(); 2471 ClassSet::Factory &CF = State->get_context<ClassSet>(); 2472 ConstraintRangeTy::Factory &CRF = State->get_context<ConstraintRange>(); 2473 2474 // 2. Add Second to the set of classes disequal to First. 2475 const ClassSet *CurrentSet = Info.lookup(First); 2476 ClassSet NewSet = CurrentSet ? *CurrentSet : CF.getEmptySet(); 2477 NewSet = CF.add(NewSet, Second); 2478 2479 Info = F.add(Info, First, NewSet); 2480 2481 // 3. If Second is known to be a constant, we can delete this point 2482 // from the constraint asociated with First. 2483 // 2484 // So, if Second == 10, it means that First != 10. 2485 // At the same time, the same logic does not apply to ranges. 2486 if (const RangeSet *SecondConstraint = Constraints.lookup(Second)) 2487 if (const llvm::APSInt *Point = SecondConstraint->getConcreteValue()) { 2488 2489 RangeSet FirstConstraint = SymbolicRangeInferrer::inferRange( 2490 RF, State, First.getRepresentativeSymbol()); 2491 2492 FirstConstraint = RF.deletePoint(FirstConstraint, *Point); 2493 2494 // If the First class is about to be constrained with an empty 2495 // range-set, the state is infeasible. 2496 if (FirstConstraint.isEmpty()) 2497 return false; 2498 2499 Constraints = CRF.add(Constraints, First, FirstConstraint); 2500 } 2501 2502 return true; 2503 } 2504 2505 inline Optional<bool> EquivalenceClass::areEqual(ProgramStateRef State, 2506 SymbolRef FirstSym, 2507 SymbolRef SecondSym) { 2508 return EquivalenceClass::areEqual(State, find(State, FirstSym), 2509 find(State, SecondSym)); 2510 } 2511 2512 inline Optional<bool> EquivalenceClass::areEqual(ProgramStateRef State, 2513 EquivalenceClass First, 2514 EquivalenceClass Second) { 2515 // The same equivalence class => symbols are equal. 2516 if (First == Second) 2517 return true; 2518 2519 // Let's check if we know anything about these two classes being not equal to 2520 // each other. 2521 ClassSet DisequalToFirst = First.getDisequalClasses(State); 2522 if (DisequalToFirst.contains(Second)) 2523 return false; 2524 2525 // It is not clear. 2526 return std::nullopt; 2527 } 2528 2529 [[nodiscard]] ProgramStateRef 2530 EquivalenceClass::removeMember(ProgramStateRef State, const SymbolRef Old) { 2531 2532 SymbolSet ClsMembers = getClassMembers(State); 2533 assert(ClsMembers.contains(Old)); 2534 2535 // Remove `Old`'s Class->Sym relation. 2536 SymbolSet::Factory &F = getMembersFactory(State); 2537 ClassMembersTy::Factory &EMFactory = State->get_context<ClassMembers>(); 2538 ClsMembers = F.remove(ClsMembers, Old); 2539 // Ensure another precondition of the removeMember function (we can check 2540 // this only with isEmpty, thus we have to do the remove first). 2541 assert(!ClsMembers.isEmpty() && 2542 "Class should have had at least two members before member removal"); 2543 // Overwrite the existing members assigned to this class. 2544 ClassMembersTy ClassMembersMap = State->get<ClassMembers>(); 2545 ClassMembersMap = EMFactory.add(ClassMembersMap, *this, ClsMembers); 2546 State = State->set<ClassMembers>(ClassMembersMap); 2547 2548 // Remove `Old`'s Sym->Class relation. 2549 ClassMapTy Classes = State->get<ClassMap>(); 2550 ClassMapTy::Factory &CMF = State->get_context<ClassMap>(); 2551 Classes = CMF.remove(Classes, Old); 2552 State = State->set<ClassMap>(Classes); 2553 2554 return State; 2555 } 2556 2557 // Re-evaluate an SVal with top-level `State->assume` logic. 2558 [[nodiscard]] ProgramStateRef 2559 reAssume(ProgramStateRef State, const RangeSet *Constraint, SVal TheValue) { 2560 if (!Constraint) 2561 return State; 2562 2563 const auto DefinedVal = TheValue.castAs<DefinedSVal>(); 2564 2565 // If the SVal is 0, we can simply interpret that as `false`. 2566 if (Constraint->encodesFalseRange()) 2567 return State->assume(DefinedVal, false); 2568 2569 // If the constraint does not encode 0 then we can interpret that as `true` 2570 // AND as a Range(Set). 2571 if (Constraint->encodesTrueRange()) { 2572 State = State->assume(DefinedVal, true); 2573 if (!State) 2574 return nullptr; 2575 // Fall through, re-assume based on the range values as well. 2576 } 2577 // Overestimate the individual Ranges with the RangeSet' lowest and 2578 // highest values. 2579 return State->assumeInclusiveRange(DefinedVal, Constraint->getMinValue(), 2580 Constraint->getMaxValue(), true); 2581 } 2582 2583 // Iterate over all symbols and try to simplify them. Once a symbol is 2584 // simplified then we check if we can merge the simplified symbol's equivalence 2585 // class to this class. This way, we simplify not just the symbols but the 2586 // classes as well: we strive to keep the number of the classes to be the 2587 // absolute minimum. 2588 [[nodiscard]] ProgramStateRef 2589 EquivalenceClass::simplify(SValBuilder &SVB, RangeSet::Factory &F, 2590 ProgramStateRef State, EquivalenceClass Class) { 2591 SymbolSet ClassMembers = Class.getClassMembers(State); 2592 for (const SymbolRef &MemberSym : ClassMembers) { 2593 2594 const SVal SimplifiedMemberVal = simplifyToSVal(State, MemberSym); 2595 const SymbolRef SimplifiedMemberSym = SimplifiedMemberVal.getAsSymbol(); 2596 2597 // The symbol is collapsed to a constant, check if the current State is 2598 // still feasible. 2599 if (const auto CI = SimplifiedMemberVal.getAs<nonloc::ConcreteInt>()) { 2600 const llvm::APSInt &SV = CI->getValue(); 2601 const RangeSet *ClassConstraint = getConstraint(State, Class); 2602 // We have found a contradiction. 2603 if (ClassConstraint && !ClassConstraint->contains(SV)) 2604 return nullptr; 2605 } 2606 2607 if (SimplifiedMemberSym && MemberSym != SimplifiedMemberSym) { 2608 // The simplified symbol should be the member of the original Class, 2609 // however, it might be in another existing class at the moment. We 2610 // have to merge these classes. 2611 ProgramStateRef OldState = State; 2612 State = merge(F, State, MemberSym, SimplifiedMemberSym); 2613 if (!State) 2614 return nullptr; 2615 // No state change, no merge happened actually. 2616 if (OldState == State) 2617 continue; 2618 2619 assert(find(State, MemberSym) == find(State, SimplifiedMemberSym)); 2620 // Remove the old and more complex symbol. 2621 State = find(State, MemberSym).removeMember(State, MemberSym); 2622 2623 // Query the class constraint again b/c that may have changed during the 2624 // merge above. 2625 const RangeSet *ClassConstraint = getConstraint(State, Class); 2626 2627 // Re-evaluate an SVal with top-level `State->assume`, this ignites 2628 // a RECURSIVE algorithm that will reach a FIXPOINT. 2629 // 2630 // About performance and complexity: Let us assume that in a State we 2631 // have N non-trivial equivalence classes and that all constraints and 2632 // disequality info is related to non-trivial classes. In the worst case, 2633 // we can simplify only one symbol of one class in each iteration. The 2634 // number of symbols in one class cannot grow b/c we replace the old 2635 // symbol with the simplified one. Also, the number of the equivalence 2636 // classes can decrease only, b/c the algorithm does a merge operation 2637 // optionally. We need N iterations in this case to reach the fixpoint. 2638 // Thus, the steps needed to be done in the worst case is proportional to 2639 // N*N. 2640 // 2641 // This worst case scenario can be extended to that case when we have 2642 // trivial classes in the constraints and in the disequality map. This 2643 // case can be reduced to the case with a State where there are only 2644 // non-trivial classes. This is because a merge operation on two trivial 2645 // classes results in one non-trivial class. 2646 State = reAssume(State, ClassConstraint, SimplifiedMemberVal); 2647 if (!State) 2648 return nullptr; 2649 } 2650 } 2651 return State; 2652 } 2653 2654 inline ClassSet EquivalenceClass::getDisequalClasses(ProgramStateRef State, 2655 SymbolRef Sym) { 2656 return find(State, Sym).getDisequalClasses(State); 2657 } 2658 2659 inline ClassSet 2660 EquivalenceClass::getDisequalClasses(ProgramStateRef State) const { 2661 return getDisequalClasses(State->get<DisequalityMap>(), 2662 State->get_context<ClassSet>()); 2663 } 2664 2665 inline ClassSet 2666 EquivalenceClass::getDisequalClasses(DisequalityMapTy Map, 2667 ClassSet::Factory &Factory) const { 2668 if (const ClassSet *DisequalClasses = Map.lookup(*this)) 2669 return *DisequalClasses; 2670 2671 return Factory.getEmptySet(); 2672 } 2673 2674 bool EquivalenceClass::isClassDataConsistent(ProgramStateRef State) { 2675 ClassMembersTy Members = State->get<ClassMembers>(); 2676 2677 for (std::pair<EquivalenceClass, SymbolSet> ClassMembersPair : Members) { 2678 for (SymbolRef Member : ClassMembersPair.second) { 2679 // Every member of the class should have a mapping back to the class. 2680 if (find(State, Member) == ClassMembersPair.first) { 2681 continue; 2682 } 2683 2684 return false; 2685 } 2686 } 2687 2688 DisequalityMapTy Disequalities = State->get<DisequalityMap>(); 2689 for (std::pair<EquivalenceClass, ClassSet> DisequalityInfo : Disequalities) { 2690 EquivalenceClass Class = DisequalityInfo.first; 2691 ClassSet DisequalClasses = DisequalityInfo.second; 2692 2693 // There is no use in keeping empty sets in the map. 2694 if (DisequalClasses.isEmpty()) 2695 return false; 2696 2697 // Disequality is symmetrical, i.e. for every Class A and B that A != B, 2698 // B != A should also be true. 2699 for (EquivalenceClass DisequalClass : DisequalClasses) { 2700 const ClassSet *DisequalToDisequalClasses = 2701 Disequalities.lookup(DisequalClass); 2702 2703 // It should be a set of at least one element: Class 2704 if (!DisequalToDisequalClasses || 2705 !DisequalToDisequalClasses->contains(Class)) 2706 return false; 2707 } 2708 } 2709 2710 return true; 2711 } 2712 2713 //===----------------------------------------------------------------------===// 2714 // RangeConstraintManager implementation 2715 //===----------------------------------------------------------------------===// 2716 2717 bool RangeConstraintManager::canReasonAbout(SVal X) const { 2718 Optional<nonloc::SymbolVal> SymVal = X.getAs<nonloc::SymbolVal>(); 2719 if (SymVal && SymVal->isExpression()) { 2720 const SymExpr *SE = SymVal->getSymbol(); 2721 2722 if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SE)) { 2723 switch (SIE->getOpcode()) { 2724 // We don't reason yet about bitwise-constraints on symbolic values. 2725 case BO_And: 2726 case BO_Or: 2727 case BO_Xor: 2728 return false; 2729 // We don't reason yet about these arithmetic constraints on 2730 // symbolic values. 2731 case BO_Mul: 2732 case BO_Div: 2733 case BO_Rem: 2734 case BO_Shl: 2735 case BO_Shr: 2736 return false; 2737 // All other cases. 2738 default: 2739 return true; 2740 } 2741 } 2742 2743 if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(SE)) { 2744 // FIXME: Handle <=> here. 2745 if (BinaryOperator::isEqualityOp(SSE->getOpcode()) || 2746 BinaryOperator::isRelationalOp(SSE->getOpcode())) { 2747 // We handle Loc <> Loc comparisons, but not (yet) NonLoc <> NonLoc. 2748 // We've recently started producing Loc <> NonLoc comparisons (that 2749 // result from casts of one of the operands between eg. intptr_t and 2750 // void *), but we can't reason about them yet. 2751 if (Loc::isLocType(SSE->getLHS()->getType())) { 2752 return Loc::isLocType(SSE->getRHS()->getType()); 2753 } 2754 } 2755 } 2756 2757 return false; 2758 } 2759 2760 return true; 2761 } 2762 2763 ConditionTruthVal RangeConstraintManager::checkNull(ProgramStateRef State, 2764 SymbolRef Sym) { 2765 const RangeSet *Ranges = getConstraint(State, Sym); 2766 2767 // If we don't have any information about this symbol, it's underconstrained. 2768 if (!Ranges) 2769 return ConditionTruthVal(); 2770 2771 // If we have a concrete value, see if it's zero. 2772 if (const llvm::APSInt *Value = Ranges->getConcreteValue()) 2773 return *Value == 0; 2774 2775 BasicValueFactory &BV = getBasicVals(); 2776 APSIntType IntType = BV.getAPSIntType(Sym->getType()); 2777 llvm::APSInt Zero = IntType.getZeroValue(); 2778 2779 // Check if zero is in the set of possible values. 2780 if (!Ranges->contains(Zero)) 2781 return false; 2782 2783 // Zero is a possible value, but it is not the /only/ possible value. 2784 return ConditionTruthVal(); 2785 } 2786 2787 const llvm::APSInt *RangeConstraintManager::getSymVal(ProgramStateRef St, 2788 SymbolRef Sym) const { 2789 const RangeSet *T = getConstraint(St, Sym); 2790 return T ? T->getConcreteValue() : nullptr; 2791 } 2792 2793 //===----------------------------------------------------------------------===// 2794 // Remove dead symbols from existing constraints 2795 //===----------------------------------------------------------------------===// 2796 2797 /// Scan all symbols referenced by the constraints. If the symbol is not alive 2798 /// as marked in LSymbols, mark it as dead in DSymbols. 2799 ProgramStateRef 2800 RangeConstraintManager::removeDeadBindings(ProgramStateRef State, 2801 SymbolReaper &SymReaper) { 2802 ClassMembersTy ClassMembersMap = State->get<ClassMembers>(); 2803 ClassMembersTy NewClassMembersMap = ClassMembersMap; 2804 ClassMembersTy::Factory &EMFactory = State->get_context<ClassMembers>(); 2805 SymbolSet::Factory &SetFactory = State->get_context<SymbolSet>(); 2806 2807 ConstraintRangeTy Constraints = State->get<ConstraintRange>(); 2808 ConstraintRangeTy NewConstraints = Constraints; 2809 ConstraintRangeTy::Factory &ConstraintFactory = 2810 State->get_context<ConstraintRange>(); 2811 2812 ClassMapTy Map = State->get<ClassMap>(); 2813 ClassMapTy NewMap = Map; 2814 ClassMapTy::Factory &ClassFactory = State->get_context<ClassMap>(); 2815 2816 DisequalityMapTy Disequalities = State->get<DisequalityMap>(); 2817 DisequalityMapTy::Factory &DisequalityFactory = 2818 State->get_context<DisequalityMap>(); 2819 ClassSet::Factory &ClassSetFactory = State->get_context<ClassSet>(); 2820 2821 bool ClassMapChanged = false; 2822 bool MembersMapChanged = false; 2823 bool ConstraintMapChanged = false; 2824 bool DisequalitiesChanged = false; 2825 2826 auto removeDeadClass = [&](EquivalenceClass Class) { 2827 // Remove associated constraint ranges. 2828 Constraints = ConstraintFactory.remove(Constraints, Class); 2829 ConstraintMapChanged = true; 2830 2831 // Update disequality information to not hold any information on the 2832 // removed class. 2833 ClassSet DisequalClasses = 2834 Class.getDisequalClasses(Disequalities, ClassSetFactory); 2835 if (!DisequalClasses.isEmpty()) { 2836 for (EquivalenceClass DisequalClass : DisequalClasses) { 2837 ClassSet DisequalToDisequalSet = 2838 DisequalClass.getDisequalClasses(Disequalities, ClassSetFactory); 2839 // DisequalToDisequalSet is guaranteed to be non-empty for consistent 2840 // disequality info. 2841 assert(!DisequalToDisequalSet.isEmpty()); 2842 ClassSet NewSet = ClassSetFactory.remove(DisequalToDisequalSet, Class); 2843 2844 // No need in keeping an empty set. 2845 if (NewSet.isEmpty()) { 2846 Disequalities = 2847 DisequalityFactory.remove(Disequalities, DisequalClass); 2848 } else { 2849 Disequalities = 2850 DisequalityFactory.add(Disequalities, DisequalClass, NewSet); 2851 } 2852 } 2853 // Remove the data for the class 2854 Disequalities = DisequalityFactory.remove(Disequalities, Class); 2855 DisequalitiesChanged = true; 2856 } 2857 }; 2858 2859 // 1. Let's see if dead symbols are trivial and have associated constraints. 2860 for (std::pair<EquivalenceClass, RangeSet> ClassConstraintPair : 2861 Constraints) { 2862 EquivalenceClass Class = ClassConstraintPair.first; 2863 if (Class.isTriviallyDead(State, SymReaper)) { 2864 // If this class is trivial, we can remove its constraints right away. 2865 removeDeadClass(Class); 2866 } 2867 } 2868 2869 // 2. We don't need to track classes for dead symbols. 2870 for (std::pair<SymbolRef, EquivalenceClass> SymbolClassPair : Map) { 2871 SymbolRef Sym = SymbolClassPair.first; 2872 2873 if (SymReaper.isDead(Sym)) { 2874 ClassMapChanged = true; 2875 NewMap = ClassFactory.remove(NewMap, Sym); 2876 } 2877 } 2878 2879 // 3. Remove dead members from classes and remove dead non-trivial classes 2880 // and their constraints. 2881 for (std::pair<EquivalenceClass, SymbolSet> ClassMembersPair : 2882 ClassMembersMap) { 2883 EquivalenceClass Class = ClassMembersPair.first; 2884 SymbolSet LiveMembers = ClassMembersPair.second; 2885 bool MembersChanged = false; 2886 2887 for (SymbolRef Member : ClassMembersPair.second) { 2888 if (SymReaper.isDead(Member)) { 2889 MembersChanged = true; 2890 LiveMembers = SetFactory.remove(LiveMembers, Member); 2891 } 2892 } 2893 2894 // Check if the class changed. 2895 if (!MembersChanged) 2896 continue; 2897 2898 MembersMapChanged = true; 2899 2900 if (LiveMembers.isEmpty()) { 2901 // The class is dead now, we need to wipe it out of the members map... 2902 NewClassMembersMap = EMFactory.remove(NewClassMembersMap, Class); 2903 2904 // ...and remove all of its constraints. 2905 removeDeadClass(Class); 2906 } else { 2907 // We need to change the members associated with the class. 2908 NewClassMembersMap = 2909 EMFactory.add(NewClassMembersMap, Class, LiveMembers); 2910 } 2911 } 2912 2913 // 4. Update the state with new maps. 2914 // 2915 // Here we try to be humble and update a map only if it really changed. 2916 if (ClassMapChanged) 2917 State = State->set<ClassMap>(NewMap); 2918 2919 if (MembersMapChanged) 2920 State = State->set<ClassMembers>(NewClassMembersMap); 2921 2922 if (ConstraintMapChanged) 2923 State = State->set<ConstraintRange>(Constraints); 2924 2925 if (DisequalitiesChanged) 2926 State = State->set<DisequalityMap>(Disequalities); 2927 2928 assert(EquivalenceClass::isClassDataConsistent(State)); 2929 2930 return State; 2931 } 2932 2933 RangeSet RangeConstraintManager::getRange(ProgramStateRef State, 2934 SymbolRef Sym) { 2935 return SymbolicRangeInferrer::inferRange(F, State, Sym); 2936 } 2937 2938 ProgramStateRef RangeConstraintManager::setRange(ProgramStateRef State, 2939 SymbolRef Sym, 2940 RangeSet Range) { 2941 return ConstraintAssignor::assign(State, getSValBuilder(), F, Sym, Range); 2942 } 2943 2944 //===------------------------------------------------------------------------=== 2945 // assumeSymX methods: protected interface for RangeConstraintManager. 2946 //===------------------------------------------------------------------------===/ 2947 2948 // The syntax for ranges below is mathematical, using [x, y] for closed ranges 2949 // and (x, y) for open ranges. These ranges are modular, corresponding with 2950 // a common treatment of C integer overflow. This means that these methods 2951 // do not have to worry about overflow; RangeSet::Intersect can handle such a 2952 // "wraparound" range. 2953 // As an example, the range [UINT_MAX-1, 3) contains five values: UINT_MAX-1, 2954 // UINT_MAX, 0, 1, and 2. 2955 2956 ProgramStateRef 2957 RangeConstraintManager::assumeSymNE(ProgramStateRef St, SymbolRef Sym, 2958 const llvm::APSInt &Int, 2959 const llvm::APSInt &Adjustment) { 2960 // Before we do any real work, see if the value can even show up. 2961 APSIntType AdjustmentType(Adjustment); 2962 if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within) 2963 return St; 2964 2965 llvm::APSInt Point = AdjustmentType.convert(Int) - Adjustment; 2966 RangeSet New = getRange(St, Sym); 2967 New = F.deletePoint(New, Point); 2968 2969 return setRange(St, Sym, New); 2970 } 2971 2972 ProgramStateRef 2973 RangeConstraintManager::assumeSymEQ(ProgramStateRef St, SymbolRef Sym, 2974 const llvm::APSInt &Int, 2975 const llvm::APSInt &Adjustment) { 2976 // Before we do any real work, see if the value can even show up. 2977 APSIntType AdjustmentType(Adjustment); 2978 if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within) 2979 return nullptr; 2980 2981 // [Int-Adjustment, Int-Adjustment] 2982 llvm::APSInt AdjInt = AdjustmentType.convert(Int) - Adjustment; 2983 RangeSet New = getRange(St, Sym); 2984 New = F.intersect(New, AdjInt); 2985 2986 return setRange(St, Sym, New); 2987 } 2988 2989 RangeSet RangeConstraintManager::getSymLTRange(ProgramStateRef St, 2990 SymbolRef Sym, 2991 const llvm::APSInt &Int, 2992 const llvm::APSInt &Adjustment) { 2993 // Before we do any real work, see if the value can even show up. 2994 APSIntType AdjustmentType(Adjustment); 2995 switch (AdjustmentType.testInRange(Int, true)) { 2996 case APSIntType::RTR_Below: 2997 return F.getEmptySet(); 2998 case APSIntType::RTR_Within: 2999 break; 3000 case APSIntType::RTR_Above: 3001 return getRange(St, Sym); 3002 } 3003 3004 // Special case for Int == Min. This is always false. 3005 llvm::APSInt ComparisonVal = AdjustmentType.convert(Int); 3006 llvm::APSInt Min = AdjustmentType.getMinValue(); 3007 if (ComparisonVal == Min) 3008 return F.getEmptySet(); 3009 3010 llvm::APSInt Lower = Min - Adjustment; 3011 llvm::APSInt Upper = ComparisonVal - Adjustment; 3012 --Upper; 3013 3014 RangeSet Result = getRange(St, Sym); 3015 return F.intersect(Result, Lower, Upper); 3016 } 3017 3018 ProgramStateRef 3019 RangeConstraintManager::assumeSymLT(ProgramStateRef St, SymbolRef Sym, 3020 const llvm::APSInt &Int, 3021 const llvm::APSInt &Adjustment) { 3022 RangeSet New = getSymLTRange(St, Sym, Int, Adjustment); 3023 return setRange(St, Sym, New); 3024 } 3025 3026 RangeSet RangeConstraintManager::getSymGTRange(ProgramStateRef St, 3027 SymbolRef Sym, 3028 const llvm::APSInt &Int, 3029 const llvm::APSInt &Adjustment) { 3030 // Before we do any real work, see if the value can even show up. 3031 APSIntType AdjustmentType(Adjustment); 3032 switch (AdjustmentType.testInRange(Int, true)) { 3033 case APSIntType::RTR_Below: 3034 return getRange(St, Sym); 3035 case APSIntType::RTR_Within: 3036 break; 3037 case APSIntType::RTR_Above: 3038 return F.getEmptySet(); 3039 } 3040 3041 // Special case for Int == Max. This is always false. 3042 llvm::APSInt ComparisonVal = AdjustmentType.convert(Int); 3043 llvm::APSInt Max = AdjustmentType.getMaxValue(); 3044 if (ComparisonVal == Max) 3045 return F.getEmptySet(); 3046 3047 llvm::APSInt Lower = ComparisonVal - Adjustment; 3048 llvm::APSInt Upper = Max - Adjustment; 3049 ++Lower; 3050 3051 RangeSet SymRange = getRange(St, Sym); 3052 return F.intersect(SymRange, Lower, Upper); 3053 } 3054 3055 ProgramStateRef 3056 RangeConstraintManager::assumeSymGT(ProgramStateRef St, SymbolRef Sym, 3057 const llvm::APSInt &Int, 3058 const llvm::APSInt &Adjustment) { 3059 RangeSet New = getSymGTRange(St, Sym, Int, Adjustment); 3060 return setRange(St, Sym, New); 3061 } 3062 3063 RangeSet RangeConstraintManager::getSymGERange(ProgramStateRef St, 3064 SymbolRef Sym, 3065 const llvm::APSInt &Int, 3066 const llvm::APSInt &Adjustment) { 3067 // Before we do any real work, see if the value can even show up. 3068 APSIntType AdjustmentType(Adjustment); 3069 switch (AdjustmentType.testInRange(Int, true)) { 3070 case APSIntType::RTR_Below: 3071 return getRange(St, Sym); 3072 case APSIntType::RTR_Within: 3073 break; 3074 case APSIntType::RTR_Above: 3075 return F.getEmptySet(); 3076 } 3077 3078 // Special case for Int == Min. This is always feasible. 3079 llvm::APSInt ComparisonVal = AdjustmentType.convert(Int); 3080 llvm::APSInt Min = AdjustmentType.getMinValue(); 3081 if (ComparisonVal == Min) 3082 return getRange(St, Sym); 3083 3084 llvm::APSInt Max = AdjustmentType.getMaxValue(); 3085 llvm::APSInt Lower = ComparisonVal - Adjustment; 3086 llvm::APSInt Upper = Max - Adjustment; 3087 3088 RangeSet SymRange = getRange(St, Sym); 3089 return F.intersect(SymRange, Lower, Upper); 3090 } 3091 3092 ProgramStateRef 3093 RangeConstraintManager::assumeSymGE(ProgramStateRef St, SymbolRef Sym, 3094 const llvm::APSInt &Int, 3095 const llvm::APSInt &Adjustment) { 3096 RangeSet New = getSymGERange(St, Sym, Int, Adjustment); 3097 return setRange(St, Sym, New); 3098 } 3099 3100 RangeSet 3101 RangeConstraintManager::getSymLERange(llvm::function_ref<RangeSet()> RS, 3102 const llvm::APSInt &Int, 3103 const llvm::APSInt &Adjustment) { 3104 // Before we do any real work, see if the value can even show up. 3105 APSIntType AdjustmentType(Adjustment); 3106 switch (AdjustmentType.testInRange(Int, true)) { 3107 case APSIntType::RTR_Below: 3108 return F.getEmptySet(); 3109 case APSIntType::RTR_Within: 3110 break; 3111 case APSIntType::RTR_Above: 3112 return RS(); 3113 } 3114 3115 // Special case for Int == Max. This is always feasible. 3116 llvm::APSInt ComparisonVal = AdjustmentType.convert(Int); 3117 llvm::APSInt Max = AdjustmentType.getMaxValue(); 3118 if (ComparisonVal == Max) 3119 return RS(); 3120 3121 llvm::APSInt Min = AdjustmentType.getMinValue(); 3122 llvm::APSInt Lower = Min - Adjustment; 3123 llvm::APSInt Upper = ComparisonVal - Adjustment; 3124 3125 RangeSet Default = RS(); 3126 return F.intersect(Default, Lower, Upper); 3127 } 3128 3129 RangeSet RangeConstraintManager::getSymLERange(ProgramStateRef St, 3130 SymbolRef Sym, 3131 const llvm::APSInt &Int, 3132 const llvm::APSInt &Adjustment) { 3133 return getSymLERange([&] { return getRange(St, Sym); }, Int, Adjustment); 3134 } 3135 3136 ProgramStateRef 3137 RangeConstraintManager::assumeSymLE(ProgramStateRef St, SymbolRef Sym, 3138 const llvm::APSInt &Int, 3139 const llvm::APSInt &Adjustment) { 3140 RangeSet New = getSymLERange(St, Sym, Int, Adjustment); 3141 return setRange(St, Sym, New); 3142 } 3143 3144 ProgramStateRef RangeConstraintManager::assumeSymWithinInclusiveRange( 3145 ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From, 3146 const llvm::APSInt &To, const llvm::APSInt &Adjustment) { 3147 RangeSet New = getSymGERange(State, Sym, From, Adjustment); 3148 if (New.isEmpty()) 3149 return nullptr; 3150 RangeSet Out = getSymLERange([&] { return New; }, To, Adjustment); 3151 return setRange(State, Sym, Out); 3152 } 3153 3154 ProgramStateRef RangeConstraintManager::assumeSymOutsideInclusiveRange( 3155 ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From, 3156 const llvm::APSInt &To, const llvm::APSInt &Adjustment) { 3157 RangeSet RangeLT = getSymLTRange(State, Sym, From, Adjustment); 3158 RangeSet RangeGT = getSymGTRange(State, Sym, To, Adjustment); 3159 RangeSet New(F.add(RangeLT, RangeGT)); 3160 return setRange(State, Sym, New); 3161 } 3162 3163 //===----------------------------------------------------------------------===// 3164 // Pretty-printing. 3165 //===----------------------------------------------------------------------===// 3166 3167 void RangeConstraintManager::printJson(raw_ostream &Out, ProgramStateRef State, 3168 const char *NL, unsigned int Space, 3169 bool IsDot) const { 3170 printConstraints(Out, State, NL, Space, IsDot); 3171 printEquivalenceClasses(Out, State, NL, Space, IsDot); 3172 printDisequalities(Out, State, NL, Space, IsDot); 3173 } 3174 3175 void RangeConstraintManager::printValue(raw_ostream &Out, ProgramStateRef State, 3176 SymbolRef Sym) { 3177 const RangeSet RS = getRange(State, Sym); 3178 Out << RS.getBitWidth() << (RS.isUnsigned() ? "u:" : "s:"); 3179 RS.dump(Out); 3180 } 3181 3182 static std::string toString(const SymbolRef &Sym) { 3183 std::string S; 3184 llvm::raw_string_ostream O(S); 3185 Sym->dumpToStream(O); 3186 return O.str(); 3187 } 3188 3189 void RangeConstraintManager::printConstraints(raw_ostream &Out, 3190 ProgramStateRef State, 3191 const char *NL, 3192 unsigned int Space, 3193 bool IsDot) const { 3194 ConstraintRangeTy Constraints = State->get<ConstraintRange>(); 3195 3196 Indent(Out, Space, IsDot) << "\"constraints\": "; 3197 if (Constraints.isEmpty()) { 3198 Out << "null," << NL; 3199 return; 3200 } 3201 3202 std::map<std::string, RangeSet> OrderedConstraints; 3203 for (std::pair<EquivalenceClass, RangeSet> P : Constraints) { 3204 SymbolSet ClassMembers = P.first.getClassMembers(State); 3205 for (const SymbolRef &ClassMember : ClassMembers) { 3206 bool insertion_took_place; 3207 std::tie(std::ignore, insertion_took_place) = 3208 OrderedConstraints.insert({toString(ClassMember), P.second}); 3209 assert(insertion_took_place && 3210 "two symbols should not have the same dump"); 3211 } 3212 } 3213 3214 ++Space; 3215 Out << '[' << NL; 3216 bool First = true; 3217 for (std::pair<std::string, RangeSet> P : OrderedConstraints) { 3218 if (First) { 3219 First = false; 3220 } else { 3221 Out << ','; 3222 Out << NL; 3223 } 3224 Indent(Out, Space, IsDot) 3225 << "{ \"symbol\": \"" << P.first << "\", \"range\": \""; 3226 P.second.dump(Out); 3227 Out << "\" }"; 3228 } 3229 Out << NL; 3230 3231 --Space; 3232 Indent(Out, Space, IsDot) << "]," << NL; 3233 } 3234 3235 static std::string toString(ProgramStateRef State, EquivalenceClass Class) { 3236 SymbolSet ClassMembers = Class.getClassMembers(State); 3237 llvm::SmallVector<SymbolRef, 8> ClassMembersSorted(ClassMembers.begin(), 3238 ClassMembers.end()); 3239 llvm::sort(ClassMembersSorted, 3240 [](const SymbolRef &LHS, const SymbolRef &RHS) { 3241 return toString(LHS) < toString(RHS); 3242 }); 3243 3244 bool FirstMember = true; 3245 3246 std::string Str; 3247 llvm::raw_string_ostream Out(Str); 3248 Out << "[ "; 3249 for (SymbolRef ClassMember : ClassMembersSorted) { 3250 if (FirstMember) 3251 FirstMember = false; 3252 else 3253 Out << ", "; 3254 Out << "\"" << ClassMember << "\""; 3255 } 3256 Out << " ]"; 3257 return Out.str(); 3258 } 3259 3260 void RangeConstraintManager::printEquivalenceClasses(raw_ostream &Out, 3261 ProgramStateRef State, 3262 const char *NL, 3263 unsigned int Space, 3264 bool IsDot) const { 3265 ClassMembersTy Members = State->get<ClassMembers>(); 3266 3267 Indent(Out, Space, IsDot) << "\"equivalence_classes\": "; 3268 if (Members.isEmpty()) { 3269 Out << "null," << NL; 3270 return; 3271 } 3272 3273 std::set<std::string> MembersStr; 3274 for (std::pair<EquivalenceClass, SymbolSet> ClassToSymbolSet : Members) 3275 MembersStr.insert(toString(State, ClassToSymbolSet.first)); 3276 3277 ++Space; 3278 Out << '[' << NL; 3279 bool FirstClass = true; 3280 for (const std::string &Str : MembersStr) { 3281 if (FirstClass) { 3282 FirstClass = false; 3283 } else { 3284 Out << ','; 3285 Out << NL; 3286 } 3287 Indent(Out, Space, IsDot); 3288 Out << Str; 3289 } 3290 Out << NL; 3291 3292 --Space; 3293 Indent(Out, Space, IsDot) << "]," << NL; 3294 } 3295 3296 void RangeConstraintManager::printDisequalities(raw_ostream &Out, 3297 ProgramStateRef State, 3298 const char *NL, 3299 unsigned int Space, 3300 bool IsDot) const { 3301 DisequalityMapTy Disequalities = State->get<DisequalityMap>(); 3302 3303 Indent(Out, Space, IsDot) << "\"disequality_info\": "; 3304 if (Disequalities.isEmpty()) { 3305 Out << "null," << NL; 3306 return; 3307 } 3308 3309 // Transform the disequality info to an ordered map of 3310 // [string -> (ordered set of strings)] 3311 using EqClassesStrTy = std::set<std::string>; 3312 using DisequalityInfoStrTy = std::map<std::string, EqClassesStrTy>; 3313 DisequalityInfoStrTy DisequalityInfoStr; 3314 for (std::pair<EquivalenceClass, ClassSet> ClassToDisEqSet : Disequalities) { 3315 EquivalenceClass Class = ClassToDisEqSet.first; 3316 ClassSet DisequalClasses = ClassToDisEqSet.second; 3317 EqClassesStrTy MembersStr; 3318 for (EquivalenceClass DisEqClass : DisequalClasses) 3319 MembersStr.insert(toString(State, DisEqClass)); 3320 DisequalityInfoStr.insert({toString(State, Class), MembersStr}); 3321 } 3322 3323 ++Space; 3324 Out << '[' << NL; 3325 bool FirstClass = true; 3326 for (std::pair<std::string, EqClassesStrTy> ClassToDisEqSet : 3327 DisequalityInfoStr) { 3328 const std::string &Class = ClassToDisEqSet.first; 3329 if (FirstClass) { 3330 FirstClass = false; 3331 } else { 3332 Out << ','; 3333 Out << NL; 3334 } 3335 Indent(Out, Space, IsDot) << "{" << NL; 3336 unsigned int DisEqSpace = Space + 1; 3337 Indent(Out, DisEqSpace, IsDot) << "\"class\": "; 3338 Out << Class; 3339 const EqClassesStrTy &DisequalClasses = ClassToDisEqSet.second; 3340 if (!DisequalClasses.empty()) { 3341 Out << "," << NL; 3342 Indent(Out, DisEqSpace, IsDot) << "\"disequal_to\": [" << NL; 3343 unsigned int DisEqClassSpace = DisEqSpace + 1; 3344 Indent(Out, DisEqClassSpace, IsDot); 3345 bool FirstDisEqClass = true; 3346 for (const std::string &DisEqClass : DisequalClasses) { 3347 if (FirstDisEqClass) { 3348 FirstDisEqClass = false; 3349 } else { 3350 Out << ',' << NL; 3351 Indent(Out, DisEqClassSpace, IsDot); 3352 } 3353 Out << DisEqClass; 3354 } 3355 Out << "]" << NL; 3356 } 3357 Indent(Out, Space, IsDot) << "}"; 3358 } 3359 Out << NL; 3360 3361 --Space; 3362 Indent(Out, Space, IsDot) << "]," << NL; 3363 } 3364