xref: /llvm-project/clang/lib/StaticAnalyzer/Core/ExprEngineC.cpp (revision 7a2d6dea73b594a42b83ed48bd19bd232c29f2b8)
1 //=-- ExprEngineC.cpp - ExprEngine support for C expressions ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines ExprEngine's support for C expressions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ExprCXX.h"
14 #include "clang/AST/DeclCXX.h"
15 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
16 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
17 
18 using namespace clang;
19 using namespace ento;
20 using llvm::APSInt;
21 
22 /// Optionally conjure and return a symbol for offset when processing
23 /// an expression \p Expression.
24 /// If \p Other is a location, conjure a symbol for \p Symbol
25 /// (offset) if it is unknown so that memory arithmetic always
26 /// results in an ElementRegion.
27 /// \p Count The number of times the current basic block was visited.
28 static SVal conjureOffsetSymbolOnLocation(
29     SVal Symbol, SVal Other, Expr* Expression, SValBuilder &svalBuilder,
30     unsigned Count, const LocationContext *LCtx) {
31   QualType Ty = Expression->getType();
32   if (Other.getAs<Loc>() &&
33       Ty->isIntegralOrEnumerationType() &&
34       Symbol.isUnknown()) {
35     return svalBuilder.conjureSymbolVal(Expression, LCtx, Ty, Count);
36   }
37   return Symbol;
38 }
39 
40 void ExprEngine::VisitBinaryOperator(const BinaryOperator* B,
41                                      ExplodedNode *Pred,
42                                      ExplodedNodeSet &Dst) {
43 
44   Expr *LHS = B->getLHS()->IgnoreParens();
45   Expr *RHS = B->getRHS()->IgnoreParens();
46 
47   // FIXME: Prechecks eventually go in ::Visit().
48   ExplodedNodeSet CheckedSet;
49   ExplodedNodeSet Tmp2;
50   getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, B, *this);
51 
52   // With both the LHS and RHS evaluated, process the operation itself.
53   for (ExplodedNodeSet::iterator it=CheckedSet.begin(), ei=CheckedSet.end();
54          it != ei; ++it) {
55 
56     ProgramStateRef state = (*it)->getState();
57     const LocationContext *LCtx = (*it)->getLocationContext();
58     SVal LeftV = state->getSVal(LHS, LCtx);
59     SVal RightV = state->getSVal(RHS, LCtx);
60 
61     BinaryOperator::Opcode Op = B->getOpcode();
62 
63     if (Op == BO_Assign) {
64       // EXPERIMENTAL: "Conjured" symbols.
65       // FIXME: Handle structs.
66       if (RightV.isUnknown()) {
67         unsigned Count = currBldrCtx->blockCount();
68         RightV = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx,
69                                               Count);
70       }
71       // Simulate the effects of a "store":  bind the value of the RHS
72       // to the L-Value represented by the LHS.
73       SVal ExprVal = B->isGLValue() ? LeftV : RightV;
74       evalStore(Tmp2, B, LHS, *it, state->BindExpr(B, LCtx, ExprVal),
75                 LeftV, RightV);
76       continue;
77     }
78 
79     if (!B->isAssignmentOp()) {
80       StmtNodeBuilder Bldr(*it, Tmp2, *currBldrCtx);
81 
82       if (B->isAdditiveOp()) {
83         // TODO: This can be removed after we enable history tracking with
84         // SymSymExpr.
85         unsigned Count = currBldrCtx->blockCount();
86         RightV = conjureOffsetSymbolOnLocation(
87             RightV, LeftV, RHS, svalBuilder, Count, LCtx);
88         LeftV = conjureOffsetSymbolOnLocation(
89             LeftV, RightV, LHS, svalBuilder, Count, LCtx);
90       }
91 
92       // Although we don't yet model pointers-to-members, we do need to make
93       // sure that the members of temporaries have a valid 'this' pointer for
94       // other checks.
95       if (B->getOpcode() == BO_PtrMemD)
96         state = createTemporaryRegionIfNeeded(state, LCtx, LHS);
97 
98       // Process non-assignments except commas or short-circuited
99       // logical expressions (LAnd and LOr).
100       SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType());
101       if (!Result.isUnknown()) {
102         state = state->BindExpr(B, LCtx, Result);
103       } else {
104         // If we cannot evaluate the operation escape the operands.
105         state = escapeValues(state, LeftV, PSK_EscapeOther);
106         state = escapeValues(state, RightV, PSK_EscapeOther);
107       }
108 
109       Bldr.generateNode(B, *it, state);
110       continue;
111     }
112 
113     assert (B->isCompoundAssignmentOp());
114 
115     switch (Op) {
116       default:
117         llvm_unreachable("Invalid opcode for compound assignment.");
118       case BO_MulAssign: Op = BO_Mul; break;
119       case BO_DivAssign: Op = BO_Div; break;
120       case BO_RemAssign: Op = BO_Rem; break;
121       case BO_AddAssign: Op = BO_Add; break;
122       case BO_SubAssign: Op = BO_Sub; break;
123       case BO_ShlAssign: Op = BO_Shl; break;
124       case BO_ShrAssign: Op = BO_Shr; break;
125       case BO_AndAssign: Op = BO_And; break;
126       case BO_XorAssign: Op = BO_Xor; break;
127       case BO_OrAssign:  Op = BO_Or;  break;
128     }
129 
130     // Perform a load (the LHS).  This performs the checks for
131     // null dereferences, and so on.
132     ExplodedNodeSet Tmp;
133     SVal location = LeftV;
134     evalLoad(Tmp, B, LHS, *it, state, location);
135 
136     for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E;
137          ++I) {
138 
139       state = (*I)->getState();
140       const LocationContext *LCtx = (*I)->getLocationContext();
141       SVal V = state->getSVal(LHS, LCtx);
142 
143       // Get the computation type.
144       QualType CTy =
145         cast<CompoundAssignOperator>(B)->getComputationResultType();
146       CTy = getContext().getCanonicalType(CTy);
147 
148       QualType CLHSTy =
149         cast<CompoundAssignOperator>(B)->getComputationLHSType();
150       CLHSTy = getContext().getCanonicalType(CLHSTy);
151 
152       QualType LTy = getContext().getCanonicalType(LHS->getType());
153 
154       // Promote LHS.
155       V = svalBuilder.evalCast(V, CLHSTy, LTy);
156 
157       // Compute the result of the operation.
158       SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy),
159                                          B->getType(), CTy);
160 
161       // EXPERIMENTAL: "Conjured" symbols.
162       // FIXME: Handle structs.
163 
164       SVal LHSVal;
165 
166       if (Result.isUnknown()) {
167         // The symbolic value is actually for the type of the left-hand side
168         // expression, not the computation type, as this is the value the
169         // LValue on the LHS will bind to.
170         LHSVal = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx, LTy,
171                                               currBldrCtx->blockCount());
172         // However, we need to convert the symbol to the computation type.
173         Result = svalBuilder.evalCast(LHSVal, CTy, LTy);
174       }
175       else {
176         // The left-hand side may bind to a different value then the
177         // computation type.
178         LHSVal = svalBuilder.evalCast(Result, LTy, CTy);
179       }
180 
181       // In C++, assignment and compound assignment operators return an
182       // lvalue.
183       if (B->isGLValue())
184         state = state->BindExpr(B, LCtx, location);
185       else
186         state = state->BindExpr(B, LCtx, Result);
187 
188       evalStore(Tmp2, B, LHS, *I, state, location, LHSVal);
189     }
190   }
191 
192   // FIXME: postvisits eventually go in ::Visit()
193   getCheckerManager().runCheckersForPostStmt(Dst, Tmp2, B, *this);
194 }
195 
196 void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred,
197                                 ExplodedNodeSet &Dst) {
198 
199   CanQualType T = getContext().getCanonicalType(BE->getType());
200 
201   const BlockDecl *BD = BE->getBlockDecl();
202   // Get the value of the block itself.
203   SVal V = svalBuilder.getBlockPointer(BD, T,
204                                        Pred->getLocationContext(),
205                                        currBldrCtx->blockCount());
206 
207   ProgramStateRef State = Pred->getState();
208 
209   // If we created a new MemRegion for the block, we should explicitly bind
210   // the captured variables.
211   if (const BlockDataRegion *BDR =
212       dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) {
213 
214     BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(),
215                                               E = BDR->referenced_vars_end();
216 
217     auto CI = BD->capture_begin();
218     auto CE = BD->capture_end();
219     for (; I != E; ++I) {
220       const VarRegion *capturedR = I.getCapturedRegion();
221       const TypedValueRegion *originalR = I.getOriginalRegion();
222 
223       // If the capture had a copy expression, use the result of evaluating
224       // that expression, otherwise use the original value.
225       // We rely on the invariant that the block declaration's capture variables
226       // are a prefix of the BlockDataRegion's referenced vars (which may include
227       // referenced globals, etc.) to enable fast lookup of the capture for a
228       // given referenced var.
229       const Expr *copyExpr = nullptr;
230       if (CI != CE) {
231         assert(CI->getVariable() == capturedR->getDecl());
232         copyExpr = CI->getCopyExpr();
233         CI++;
234       }
235 
236       if (capturedR != originalR) {
237         SVal originalV;
238         const LocationContext *LCtx = Pred->getLocationContext();
239         if (copyExpr) {
240           originalV = State->getSVal(copyExpr, LCtx);
241         } else {
242           originalV = State->getSVal(loc::MemRegionVal(originalR));
243         }
244         State = State->bindLoc(loc::MemRegionVal(capturedR), originalV, LCtx);
245       }
246     }
247   }
248 
249   ExplodedNodeSet Tmp;
250   StmtNodeBuilder Bldr(Pred, Tmp, *currBldrCtx);
251   Bldr.generateNode(BE, Pred,
252                     State->BindExpr(BE, Pred->getLocationContext(), V),
253                     nullptr, ProgramPoint::PostLValueKind);
254 
255   // FIXME: Move all post/pre visits to ::Visit().
256   getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this);
257 }
258 
259 ProgramStateRef ExprEngine::handleLValueBitCast(
260     ProgramStateRef state, const Expr* Ex, const LocationContext* LCtx,
261     QualType T, QualType ExTy, const CastExpr* CastE, StmtNodeBuilder& Bldr,
262     ExplodedNode* Pred) {
263   if (T->isLValueReferenceType()) {
264     assert(!CastE->getType()->isLValueReferenceType());
265     ExTy = getContext().getLValueReferenceType(ExTy);
266   } else if (T->isRValueReferenceType()) {
267     assert(!CastE->getType()->isRValueReferenceType());
268     ExTy = getContext().getRValueReferenceType(ExTy);
269   }
270   // Delegate to SValBuilder to process.
271   SVal OrigV = state->getSVal(Ex, LCtx);
272   SVal V = svalBuilder.evalCast(OrigV, T, ExTy);
273   // Negate the result if we're treating the boolean as a signed i1
274   if (CastE->getCastKind() == CK_BooleanToSignedIntegral)
275     V = evalMinus(V);
276   state = state->BindExpr(CastE, LCtx, V);
277   if (V.isUnknown() && !OrigV.isUnknown()) {
278     state = escapeValues(state, OrigV, PSK_EscapeOther);
279   }
280   Bldr.generateNode(CastE, Pred, state);
281 
282   return state;
283 }
284 
285 void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex,
286                            ExplodedNode *Pred, ExplodedNodeSet &Dst) {
287 
288   ExplodedNodeSet dstPreStmt;
289   getCheckerManager().runCheckersForPreStmt(dstPreStmt, Pred, CastE, *this);
290 
291   if (CastE->getCastKind() == CK_LValueToRValue ||
292       CastE->getCastKind() == CK_LValueToRValueBitCast) {
293     for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
294          I!=E; ++I) {
295       ExplodedNode *subExprNode = *I;
296       ProgramStateRef state = subExprNode->getState();
297       const LocationContext *LCtx = subExprNode->getLocationContext();
298       evalLoad(Dst, CastE, CastE, subExprNode, state, state->getSVal(Ex, LCtx));
299     }
300     return;
301   }
302 
303   // All other casts.
304   QualType T = CastE->getType();
305   QualType ExTy = Ex->getType();
306 
307   if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE))
308     T = ExCast->getTypeAsWritten();
309 
310   StmtNodeBuilder Bldr(dstPreStmt, Dst, *currBldrCtx);
311   for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
312        I != E; ++I) {
313 
314     Pred = *I;
315     ProgramStateRef state = Pred->getState();
316     const LocationContext *LCtx = Pred->getLocationContext();
317 
318     switch (CastE->getCastKind()) {
319       case CK_LValueToRValue:
320       case CK_LValueToRValueBitCast:
321         llvm_unreachable("LValueToRValue casts handled earlier.");
322       case CK_ToVoid:
323         continue;
324         // The analyzer doesn't do anything special with these casts,
325         // since it understands retain/release semantics already.
326       case CK_ARCProduceObject:
327       case CK_ARCConsumeObject:
328       case CK_ARCReclaimReturnedObject:
329       case CK_ARCExtendBlockObject: // Fall-through.
330       case CK_CopyAndAutoreleaseBlockObject:
331         // The analyser can ignore atomic casts for now, although some future
332         // checkers may want to make certain that you're not modifying the same
333         // value through atomic and nonatomic pointers.
334       case CK_AtomicToNonAtomic:
335       case CK_NonAtomicToAtomic:
336         // True no-ops.
337       case CK_NoOp:
338       case CK_ConstructorConversion:
339       case CK_UserDefinedConversion:
340       case CK_FunctionToPointerDecay:
341       case CK_BuiltinFnToFnPtr: {
342         // Copy the SVal of Ex to CastE.
343         ProgramStateRef state = Pred->getState();
344         const LocationContext *LCtx = Pred->getLocationContext();
345         SVal V = state->getSVal(Ex, LCtx);
346         state = state->BindExpr(CastE, LCtx, V);
347         Bldr.generateNode(CastE, Pred, state);
348         continue;
349       }
350       case CK_MemberPointerToBoolean:
351       case CK_PointerToBoolean: {
352         SVal V = state->getSVal(Ex, LCtx);
353         auto PTMSV = V.getAs<nonloc::PointerToMember>();
354         if (PTMSV)
355           V = svalBuilder.makeTruthVal(!PTMSV->isNullMemberPointer(), ExTy);
356         if (V.isUndef() || PTMSV) {
357           state = state->BindExpr(CastE, LCtx, V);
358           Bldr.generateNode(CastE, Pred, state);
359           continue;
360         }
361         // Explicitly proceed with default handler for this case cascade.
362         state =
363             handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred);
364         continue;
365       }
366       case CK_Dependent:
367       case CK_ArrayToPointerDecay:
368       case CK_BitCast:
369       case CK_AddressSpaceConversion:
370       case CK_BooleanToSignedIntegral:
371       case CK_IntegralToPointer:
372       case CK_PointerToIntegral: {
373         SVal V = state->getSVal(Ex, LCtx);
374         if (V.getAs<nonloc::PointerToMember>()) {
375           state = state->BindExpr(CastE, LCtx, UnknownVal());
376           Bldr.generateNode(CastE, Pred, state);
377           continue;
378         }
379         // Explicitly proceed with default handler for this case cascade.
380         state =
381             handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred);
382         continue;
383       }
384       case CK_IntegralToBoolean:
385       case CK_IntegralToFloating:
386       case CK_FloatingToIntegral:
387       case CK_FloatingToBoolean:
388       case CK_FloatingCast:
389       case CK_FloatingRealToComplex:
390       case CK_FloatingComplexToReal:
391       case CK_FloatingComplexToBoolean:
392       case CK_FloatingComplexCast:
393       case CK_FloatingComplexToIntegralComplex:
394       case CK_IntegralRealToComplex:
395       case CK_IntegralComplexToReal:
396       case CK_IntegralComplexToBoolean:
397       case CK_IntegralComplexCast:
398       case CK_IntegralComplexToFloatingComplex:
399       case CK_CPointerToObjCPointerCast:
400       case CK_BlockPointerToObjCPointerCast:
401       case CK_AnyPointerToBlockPointerCast:
402       case CK_ObjCObjectLValueCast:
403       case CK_ZeroToOCLOpaqueType:
404       case CK_IntToOCLSampler:
405       case CK_LValueBitCast:
406       case CK_FloatingToFixedPoint:
407       case CK_FixedPointToFloating:
408       case CK_FixedPointCast:
409       case CK_FixedPointToBoolean:
410       case CK_FixedPointToIntegral:
411       case CK_IntegralToFixedPoint: {
412         state =
413             handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred);
414         continue;
415       }
416       case CK_IntegralCast: {
417         // Delegate to SValBuilder to process.
418         SVal V = state->getSVal(Ex, LCtx);
419         if (AMgr.options.ShouldSupportSymbolicIntegerCasts)
420           V = svalBuilder.evalCast(V, T, ExTy);
421         else
422           V = svalBuilder.evalIntegralCast(state, V, T, ExTy);
423         state = state->BindExpr(CastE, LCtx, V);
424         Bldr.generateNode(CastE, Pred, state);
425         continue;
426       }
427       case CK_DerivedToBase:
428       case CK_UncheckedDerivedToBase: {
429         // For DerivedToBase cast, delegate to the store manager.
430         SVal val = state->getSVal(Ex, LCtx);
431         val = getStoreManager().evalDerivedToBase(val, CastE);
432         state = state->BindExpr(CastE, LCtx, val);
433         Bldr.generateNode(CastE, Pred, state);
434         continue;
435       }
436       // Handle C++ dyn_cast.
437       case CK_Dynamic: {
438         SVal val = state->getSVal(Ex, LCtx);
439 
440         // Compute the type of the result.
441         QualType resultType = CastE->getType();
442         if (CastE->isGLValue())
443           resultType = getContext().getPointerType(resultType);
444 
445         bool Failed = true;
446 
447         // Check if the value being cast does not evaluates to 0.
448         if (!val.isZeroConstant())
449           if (Optional<SVal> V =
450                   StateMgr.getStoreManager().evalBaseToDerived(val, T)) {
451             val = *V;
452             Failed = false;
453           }
454 
455         if (Failed) {
456           if (T->isReferenceType()) {
457             // A bad_cast exception is thrown if input value is a reference.
458             // Currently, we model this, by generating a sink.
459             Bldr.generateSink(CastE, Pred, state);
460             continue;
461           } else {
462             // If the cast fails on a pointer, bind to 0.
463             state = state->BindExpr(CastE, LCtx,
464                                     svalBuilder.makeNullWithType(resultType));
465           }
466         } else {
467           // If we don't know if the cast succeeded, conjure a new symbol.
468           if (val.isUnknown()) {
469             DefinedOrUnknownSVal NewSym =
470               svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, resultType,
471                                            currBldrCtx->blockCount());
472             state = state->BindExpr(CastE, LCtx, NewSym);
473           } else
474             // Else, bind to the derived region value.
475             state = state->BindExpr(CastE, LCtx, val);
476         }
477         Bldr.generateNode(CastE, Pred, state);
478         continue;
479       }
480       case CK_BaseToDerived: {
481         SVal val = state->getSVal(Ex, LCtx);
482         QualType resultType = CastE->getType();
483         if (CastE->isGLValue())
484           resultType = getContext().getPointerType(resultType);
485 
486         if (!val.isConstant()) {
487           Optional<SVal> V = getStoreManager().evalBaseToDerived(val, T);
488           val = V ? *V : UnknownVal();
489         }
490 
491         // Failed to cast or the result is unknown, fall back to conservative.
492         if (val.isUnknown()) {
493           val =
494             svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, resultType,
495                                          currBldrCtx->blockCount());
496         }
497         state = state->BindExpr(CastE, LCtx, val);
498         Bldr.generateNode(CastE, Pred, state);
499         continue;
500       }
501       case CK_NullToPointer: {
502         SVal V = svalBuilder.makeNullWithType(CastE->getType());
503         state = state->BindExpr(CastE, LCtx, V);
504         Bldr.generateNode(CastE, Pred, state);
505         continue;
506       }
507       case CK_NullToMemberPointer: {
508         SVal V = svalBuilder.getMemberPointer(nullptr);
509         state = state->BindExpr(CastE, LCtx, V);
510         Bldr.generateNode(CastE, Pred, state);
511         continue;
512       }
513       case CK_DerivedToBaseMemberPointer:
514       case CK_BaseToDerivedMemberPointer:
515       case CK_ReinterpretMemberPointer: {
516         SVal V = state->getSVal(Ex, LCtx);
517         if (auto PTMSV = V.getAs<nonloc::PointerToMember>()) {
518           SVal CastedPTMSV =
519               svalBuilder.makePointerToMember(getBasicVals().accumCXXBase(
520                   CastE->path(), *PTMSV, CastE->getCastKind()));
521           state = state->BindExpr(CastE, LCtx, CastedPTMSV);
522           Bldr.generateNode(CastE, Pred, state);
523           continue;
524         }
525         // Explicitly proceed with default handler for this case cascade.
526       }
527         LLVM_FALLTHROUGH;
528       // Various C++ casts that are not handled yet.
529       case CK_ToUnion:
530       case CK_MatrixCast:
531       case CK_VectorSplat: {
532         QualType resultType = CastE->getType();
533         if (CastE->isGLValue())
534           resultType = getContext().getPointerType(resultType);
535         SVal result = svalBuilder.conjureSymbolVal(
536             /*symbolTag=*/nullptr, CastE, LCtx, resultType,
537             currBldrCtx->blockCount());
538         state = state->BindExpr(CastE, LCtx, result);
539         Bldr.generateNode(CastE, Pred, state);
540         continue;
541       }
542     }
543   }
544 }
545 
546 void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr *CL,
547                                           ExplodedNode *Pred,
548                                           ExplodedNodeSet &Dst) {
549   StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
550 
551   ProgramStateRef State = Pred->getState();
552   const LocationContext *LCtx = Pred->getLocationContext();
553 
554   const Expr *Init = CL->getInitializer();
555   SVal V = State->getSVal(CL->getInitializer(), LCtx);
556 
557   if (isa<CXXConstructExpr, CXXStdInitializerListExpr>(Init)) {
558     // No work needed. Just pass the value up to this expression.
559   } else {
560     assert(isa<InitListExpr>(Init));
561     Loc CLLoc = State->getLValue(CL, LCtx);
562     State = State->bindLoc(CLLoc, V, LCtx);
563 
564     if (CL->isGLValue())
565       V = CLLoc;
566   }
567 
568   B.generateNode(CL, Pred, State->BindExpr(CL, LCtx, V));
569 }
570 
571 void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred,
572                                ExplodedNodeSet &Dst) {
573   if (isa<TypedefNameDecl>(*DS->decl_begin())) {
574     // C99 6.7.7 "Any array size expressions associated with variable length
575     // array declarators are evaluated each time the declaration of the typedef
576     // name is reached in the order of execution."
577     // The checkers should know about typedef to be able to handle VLA size
578     // expressions.
579     ExplodedNodeSet DstPre;
580     getCheckerManager().runCheckersForPreStmt(DstPre, Pred, DS, *this);
581     getCheckerManager().runCheckersForPostStmt(Dst, DstPre, DS, *this);
582     return;
583   }
584 
585   // Assumption: The CFG has one DeclStmt per Decl.
586   const VarDecl *VD = dyn_cast_or_null<VarDecl>(*DS->decl_begin());
587 
588   if (!VD) {
589     //TODO:AZ: remove explicit insertion after refactoring is done.
590     Dst.insert(Pred);
591     return;
592   }
593 
594   // FIXME: all pre/post visits should eventually be handled by ::Visit().
595   ExplodedNodeSet dstPreVisit;
596   getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, DS, *this);
597 
598   ExplodedNodeSet dstEvaluated;
599   StmtNodeBuilder B(dstPreVisit, dstEvaluated, *currBldrCtx);
600   for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
601        I!=E; ++I) {
602     ExplodedNode *N = *I;
603     ProgramStateRef state = N->getState();
604     const LocationContext *LC = N->getLocationContext();
605 
606     // Decls without InitExpr are not initialized explicitly.
607     if (const Expr *InitEx = VD->getInit()) {
608 
609       // Note in the state that the initialization has occurred.
610       ExplodedNode *UpdatedN = N;
611       SVal InitVal = state->getSVal(InitEx, LC);
612 
613       assert(DS->isSingleDecl());
614       if (getObjectUnderConstruction(state, DS, LC)) {
615         state = finishObjectConstruction(state, DS, LC);
616         // We constructed the object directly in the variable.
617         // No need to bind anything.
618         B.generateNode(DS, UpdatedN, state);
619       } else {
620         // Recover some path-sensitivity if a scalar value evaluated to
621         // UnknownVal.
622         if (InitVal.isUnknown()) {
623           QualType Ty = InitEx->getType();
624           if (InitEx->isGLValue()) {
625             Ty = getContext().getPointerType(Ty);
626           }
627 
628           InitVal = svalBuilder.conjureSymbolVal(nullptr, InitEx, LC, Ty,
629                                                  currBldrCtx->blockCount());
630         }
631 
632 
633         B.takeNodes(UpdatedN);
634         ExplodedNodeSet Dst2;
635         evalBind(Dst2, DS, UpdatedN, state->getLValue(VD, LC), InitVal, true);
636         B.addNodes(Dst2);
637       }
638     }
639     else {
640       B.generateNode(DS, N, state);
641     }
642   }
643 
644   getCheckerManager().runCheckersForPostStmt(Dst, B.getResults(), DS, *this);
645 }
646 
647 void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred,
648                                   ExplodedNodeSet &Dst) {
649   // This method acts upon CFG elements for logical operators && and ||
650   // and attaches the value (true or false) to them as expressions.
651   // It doesn't produce any state splits.
652   // If we made it that far, we're past the point when we modeled the short
653   // circuit. It means that we should have precise knowledge about whether
654   // we've short-circuited. If we did, we already know the value we need to
655   // bind. If we didn't, the value of the RHS (casted to the boolean type)
656   // is the answer.
657   // Currently this method tries to figure out whether we've short-circuited
658   // by looking at the ExplodedGraph. This method is imperfect because there
659   // could inevitably have been merges that would have resulted in multiple
660   // potential path traversal histories. We bail out when we fail.
661   // Due to this ambiguity, a more reliable solution would have been to
662   // track the short circuit operation history path-sensitively until
663   // we evaluate the respective logical operator.
664   assert(B->getOpcode() == BO_LAnd ||
665          B->getOpcode() == BO_LOr);
666 
667   StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
668   ProgramStateRef state = Pred->getState();
669 
670   if (B->getType()->isVectorType()) {
671     // FIXME: We do not model vector arithmetic yet. When adding support for
672     // that, note that the CFG-based reasoning below does not apply, because
673     // logical operators on vectors are not short-circuit. Currently they are
674     // modeled as short-circuit in Clang CFG but this is incorrect.
675     // Do not set the value for the expression. It'd be UnknownVal by default.
676     Bldr.generateNode(B, Pred, state);
677     return;
678   }
679 
680   ExplodedNode *N = Pred;
681   while (!N->getLocation().getAs<BlockEntrance>()) {
682     ProgramPoint P = N->getLocation();
683     assert(P.getAs<PreStmt>()|| P.getAs<PreStmtPurgeDeadSymbols>());
684     (void) P;
685     if (N->pred_size() != 1) {
686       // We failed to track back where we came from.
687       Bldr.generateNode(B, Pred, state);
688       return;
689     }
690     N = *N->pred_begin();
691   }
692 
693   if (N->pred_size() != 1) {
694     // We failed to track back where we came from.
695     Bldr.generateNode(B, Pred, state);
696     return;
697   }
698 
699   N = *N->pred_begin();
700   BlockEdge BE = N->getLocation().castAs<BlockEdge>();
701   SVal X;
702 
703   // Determine the value of the expression by introspecting how we
704   // got this location in the CFG.  This requires looking at the previous
705   // block we were in and what kind of control-flow transfer was involved.
706   const CFGBlock *SrcBlock = BE.getSrc();
707   // The only terminator (if there is one) that makes sense is a logical op.
708   CFGTerminator T = SrcBlock->getTerminator();
709   if (const BinaryOperator *Term = cast_or_null<BinaryOperator>(T.getStmt())) {
710     (void) Term;
711     assert(Term->isLogicalOp());
712     assert(SrcBlock->succ_size() == 2);
713     // Did we take the true or false branch?
714     unsigned constant = (*SrcBlock->succ_begin() == BE.getDst()) ? 1 : 0;
715     X = svalBuilder.makeIntVal(constant, B->getType());
716   }
717   else {
718     // If there is no terminator, by construction the last statement
719     // in SrcBlock is the value of the enclosing expression.
720     // However, we still need to constrain that value to be 0 or 1.
721     assert(!SrcBlock->empty());
722     CFGStmt Elem = SrcBlock->rbegin()->castAs<CFGStmt>();
723     const Expr *RHS = cast<Expr>(Elem.getStmt());
724     SVal RHSVal = N->getState()->getSVal(RHS, Pred->getLocationContext());
725 
726     if (RHSVal.isUndef()) {
727       X = RHSVal;
728     } else {
729       // We evaluate "RHSVal != 0" expression which result in 0 if the value is
730       // known to be false, 1 if the value is known to be true and a new symbol
731       // when the assumption is unknown.
732       nonloc::ConcreteInt Zero(getBasicVals().getValue(0, B->getType()));
733       X = evalBinOp(N->getState(), BO_NE,
734                     svalBuilder.evalCast(RHSVal, B->getType(), RHS->getType()),
735                     Zero, B->getType());
736     }
737   }
738   Bldr.generateNode(B, Pred, state->BindExpr(B, Pred->getLocationContext(), X));
739 }
740 
741 void ExprEngine::VisitInitListExpr(const InitListExpr *IE,
742                                    ExplodedNode *Pred,
743                                    ExplodedNodeSet &Dst) {
744   StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
745 
746   ProgramStateRef state = Pred->getState();
747   const LocationContext *LCtx = Pred->getLocationContext();
748   QualType T = getContext().getCanonicalType(IE->getType());
749   unsigned NumInitElements = IE->getNumInits();
750 
751   if (!IE->isGLValue() && !IE->isTransparent() &&
752       (T->isArrayType() || T->isRecordType() || T->isVectorType() ||
753        T->isAnyComplexType())) {
754     llvm::ImmutableList<SVal> vals = getBasicVals().getEmptySValList();
755 
756     // Handle base case where the initializer has no elements.
757     // e.g: static int* myArray[] = {};
758     if (NumInitElements == 0) {
759       SVal V = svalBuilder.makeCompoundVal(T, vals);
760       B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
761       return;
762     }
763 
764     for (const Stmt *S : llvm::reverse(*IE)) {
765       SVal V = state->getSVal(cast<Expr>(S), LCtx);
766       vals = getBasicVals().prependSVal(V, vals);
767     }
768 
769     B.generateNode(IE, Pred,
770                    state->BindExpr(IE, LCtx,
771                                    svalBuilder.makeCompoundVal(T, vals)));
772     return;
773   }
774 
775   // Handle scalars: int{5} and int{} and GLvalues.
776   // Note, if the InitListExpr is a GLvalue, it means that there is an address
777   // representing it, so it must have a single init element.
778   assert(NumInitElements <= 1);
779 
780   SVal V;
781   if (NumInitElements == 0)
782     V = getSValBuilder().makeZeroVal(T);
783   else
784     V = state->getSVal(IE->getInit(0), LCtx);
785 
786   B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
787 }
788 
789 void ExprEngine::VisitGuardedExpr(const Expr *Ex,
790                                   const Expr *L,
791                                   const Expr *R,
792                                   ExplodedNode *Pred,
793                                   ExplodedNodeSet &Dst) {
794   assert(L && R);
795 
796   StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
797   ProgramStateRef state = Pred->getState();
798   const LocationContext *LCtx = Pred->getLocationContext();
799   const CFGBlock *SrcBlock = nullptr;
800 
801   // Find the predecessor block.
802   ProgramStateRef SrcState = state;
803   for (const ExplodedNode *N = Pred ; N ; N = *N->pred_begin()) {
804     ProgramPoint PP = N->getLocation();
805     if (PP.getAs<PreStmtPurgeDeadSymbols>() || PP.getAs<BlockEntrance>()) {
806       // If the state N has multiple predecessors P, it means that successors
807       // of P are all equivalent.
808       // In turn, that means that all nodes at P are equivalent in terms
809       // of observable behavior at N, and we can follow any of them.
810       // FIXME: a more robust solution which does not walk up the tree.
811       continue;
812     }
813     SrcBlock = PP.castAs<BlockEdge>().getSrc();
814     SrcState = N->getState();
815     break;
816   }
817 
818   assert(SrcBlock && "missing function entry");
819 
820   // Find the last expression in the predecessor block.  That is the
821   // expression that is used for the value of the ternary expression.
822   bool hasValue = false;
823   SVal V;
824 
825   for (CFGElement CE : llvm::reverse(*SrcBlock)) {
826     if (Optional<CFGStmt> CS = CE.getAs<CFGStmt>()) {
827       const Expr *ValEx = cast<Expr>(CS->getStmt());
828       ValEx = ValEx->IgnoreParens();
829 
830       // For GNU extension '?:' operator, the left hand side will be an
831       // OpaqueValueExpr, so get the underlying expression.
832       if (const OpaqueValueExpr *OpaqueEx = dyn_cast<OpaqueValueExpr>(L))
833         L = OpaqueEx->getSourceExpr();
834 
835       // If the last expression in the predecessor block matches true or false
836       // subexpression, get its the value.
837       if (ValEx == L->IgnoreParens() || ValEx == R->IgnoreParens()) {
838         hasValue = true;
839         V = SrcState->getSVal(ValEx, LCtx);
840       }
841       break;
842     }
843   }
844 
845   if (!hasValue)
846     V = svalBuilder.conjureSymbolVal(nullptr, Ex, LCtx,
847                                      currBldrCtx->blockCount());
848 
849   // Generate a new node with the binding from the appropriate path.
850   B.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V, true));
851 }
852 
853 void ExprEngine::
854 VisitOffsetOfExpr(const OffsetOfExpr *OOE,
855                   ExplodedNode *Pred, ExplodedNodeSet &Dst) {
856   StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
857   Expr::EvalResult Result;
858   if (OOE->EvaluateAsInt(Result, getContext())) {
859     APSInt IV = Result.Val.getInt();
860     assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType()));
861     assert(OOE->getType()->castAs<BuiltinType>()->isInteger());
862     assert(IV.isSigned() == OOE->getType()->isSignedIntegerType());
863     SVal X = svalBuilder.makeIntVal(IV);
864     B.generateNode(OOE, Pred,
865                    Pred->getState()->BindExpr(OOE, Pred->getLocationContext(),
866                                               X));
867   }
868   // FIXME: Handle the case where __builtin_offsetof is not a constant.
869 }
870 
871 
872 void ExprEngine::
873 VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *Ex,
874                               ExplodedNode *Pred,
875                               ExplodedNodeSet &Dst) {
876   // FIXME: Prechecks eventually go in ::Visit().
877   ExplodedNodeSet CheckedSet;
878   getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, Ex, *this);
879 
880   ExplodedNodeSet EvalSet;
881   StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx);
882 
883   QualType T = Ex->getTypeOfArgument();
884 
885   for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end();
886        I != E; ++I) {
887     if (Ex->getKind() == UETT_SizeOf) {
888       if (!T->isIncompleteType() && !T->isConstantSizeType()) {
889         assert(T->isVariableArrayType() && "Unknown non-constant-sized type.");
890 
891         // FIXME: Add support for VLA type arguments and VLA expressions.
892         // When that happens, we should probably refactor VLASizeChecker's code.
893         continue;
894       } else if (T->getAs<ObjCObjectType>()) {
895         // Some code tries to take the sizeof an ObjCObjectType, relying that
896         // the compiler has laid out its representation.  Just report Unknown
897         // for these.
898         continue;
899       }
900     }
901 
902     APSInt Value = Ex->EvaluateKnownConstInt(getContext());
903     CharUnits amt = CharUnits::fromQuantity(Value.getZExtValue());
904 
905     ProgramStateRef state = (*I)->getState();
906     state = state->BindExpr(Ex, (*I)->getLocationContext(),
907                             svalBuilder.makeIntVal(amt.getQuantity(),
908                                                    Ex->getType()));
909     Bldr.generateNode(Ex, *I, state);
910   }
911 
912   getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, Ex, *this);
913 }
914 
915 void ExprEngine::handleUOExtension(ExplodedNodeSet::iterator I,
916                                    const UnaryOperator *U,
917                                    StmtNodeBuilder &Bldr) {
918   // FIXME: We can probably just have some magic in Environment::getSVal()
919   // that propagates values, instead of creating a new node here.
920   //
921   // Unary "+" is a no-op, similar to a parentheses.  We still have places
922   // where it may be a block-level expression, so we need to
923   // generate an extra node that just propagates the value of the
924   // subexpression.
925   const Expr *Ex = U->getSubExpr()->IgnoreParens();
926   ProgramStateRef state = (*I)->getState();
927   const LocationContext *LCtx = (*I)->getLocationContext();
928   Bldr.generateNode(U, *I, state->BindExpr(U, LCtx,
929                                            state->getSVal(Ex, LCtx)));
930 }
931 
932 void ExprEngine::VisitUnaryOperator(const UnaryOperator* U, ExplodedNode *Pred,
933                                     ExplodedNodeSet &Dst) {
934   // FIXME: Prechecks eventually go in ::Visit().
935   ExplodedNodeSet CheckedSet;
936   getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, U, *this);
937 
938   ExplodedNodeSet EvalSet;
939   StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx);
940 
941   for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end();
942        I != E; ++I) {
943     switch (U->getOpcode()) {
944     default: {
945       Bldr.takeNodes(*I);
946       ExplodedNodeSet Tmp;
947       VisitIncrementDecrementOperator(U, *I, Tmp);
948       Bldr.addNodes(Tmp);
949       break;
950     }
951     case UO_Real: {
952       const Expr *Ex = U->getSubExpr()->IgnoreParens();
953 
954       // FIXME: We don't have complex SValues yet.
955       if (Ex->getType()->isAnyComplexType()) {
956         // Just report "Unknown."
957         break;
958       }
959 
960       // For all other types, UO_Real is an identity operation.
961       assert (U->getType() == Ex->getType());
962       ProgramStateRef state = (*I)->getState();
963       const LocationContext *LCtx = (*I)->getLocationContext();
964       Bldr.generateNode(U, *I, state->BindExpr(U, LCtx,
965                                                state->getSVal(Ex, LCtx)));
966       break;
967     }
968 
969     case UO_Imag: {
970       const Expr *Ex = U->getSubExpr()->IgnoreParens();
971       // FIXME: We don't have complex SValues yet.
972       if (Ex->getType()->isAnyComplexType()) {
973         // Just report "Unknown."
974         break;
975       }
976       // For all other types, UO_Imag returns 0.
977       ProgramStateRef state = (*I)->getState();
978       const LocationContext *LCtx = (*I)->getLocationContext();
979       SVal X = svalBuilder.makeZeroVal(Ex->getType());
980       Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, X));
981       break;
982     }
983 
984     case UO_AddrOf: {
985       // Process pointer-to-member address operation.
986       const Expr *Ex = U->getSubExpr()->IgnoreParens();
987       if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex)) {
988         const ValueDecl *VD = DRE->getDecl();
989 
990         if (isa<CXXMethodDecl, FieldDecl, IndirectFieldDecl>(VD)) {
991           ProgramStateRef State = (*I)->getState();
992           const LocationContext *LCtx = (*I)->getLocationContext();
993           SVal SV = svalBuilder.getMemberPointer(cast<NamedDecl>(VD));
994           Bldr.generateNode(U, *I, State->BindExpr(U, LCtx, SV));
995           break;
996         }
997       }
998       // Explicitly proceed with default handler for this case cascade.
999       handleUOExtension(I, U, Bldr);
1000       break;
1001     }
1002     case UO_Plus:
1003       assert(!U->isGLValue());
1004       LLVM_FALLTHROUGH;
1005     case UO_Deref:
1006     case UO_Extension: {
1007       handleUOExtension(I, U, Bldr);
1008       break;
1009     }
1010 
1011     case UO_LNot:
1012     case UO_Minus:
1013     case UO_Not: {
1014       assert (!U->isGLValue());
1015       const Expr *Ex = U->getSubExpr()->IgnoreParens();
1016       ProgramStateRef state = (*I)->getState();
1017       const LocationContext *LCtx = (*I)->getLocationContext();
1018 
1019       // Get the value of the subexpression.
1020       SVal V = state->getSVal(Ex, LCtx);
1021 
1022       if (V.isUnknownOrUndef()) {
1023         Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V));
1024         break;
1025       }
1026 
1027       switch (U->getOpcode()) {
1028         default:
1029           llvm_unreachable("Invalid Opcode.");
1030         case UO_Not:
1031           // FIXME: Do we need to handle promotions?
1032           state = state->BindExpr(
1033               U, LCtx, svalBuilder.evalComplement(V.castAs<NonLoc>()));
1034           break;
1035         case UO_Minus:
1036           // FIXME: Do we need to handle promotions?
1037           state = state->BindExpr(U, LCtx, evalMinus(V.castAs<NonLoc>()));
1038           break;
1039         case UO_LNot:
1040           // C99 6.5.3.3: "The expression !E is equivalent to (0==E)."
1041           //
1042           //  Note: technically we do "E == 0", but this is the same in the
1043           //    transfer functions as "0 == E".
1044           SVal Result;
1045           if (Optional<Loc> LV = V.getAs<Loc>()) {
1046             Loc X = svalBuilder.makeNullWithType(Ex->getType());
1047             Result = evalBinOp(state, BO_EQ, *LV, X, U->getType());
1048           } else if (Ex->getType()->isFloatingType()) {
1049             // FIXME: handle floating point types.
1050             Result = UnknownVal();
1051           } else {
1052             nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType()));
1053             Result = evalBinOp(state, BO_EQ, V.castAs<NonLoc>(), X,
1054                                U->getType());
1055           }
1056 
1057           state = state->BindExpr(U, LCtx, Result);
1058           break;
1059       }
1060       Bldr.generateNode(U, *I, state);
1061       break;
1062     }
1063     }
1064   }
1065 
1066   getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, U, *this);
1067 }
1068 
1069 void ExprEngine::VisitIncrementDecrementOperator(const UnaryOperator* U,
1070                                                  ExplodedNode *Pred,
1071                                                  ExplodedNodeSet &Dst) {
1072   // Handle ++ and -- (both pre- and post-increment).
1073   assert (U->isIncrementDecrementOp());
1074   const Expr *Ex = U->getSubExpr()->IgnoreParens();
1075 
1076   const LocationContext *LCtx = Pred->getLocationContext();
1077   ProgramStateRef state = Pred->getState();
1078   SVal loc = state->getSVal(Ex, LCtx);
1079 
1080   // Perform a load.
1081   ExplodedNodeSet Tmp;
1082   evalLoad(Tmp, U, Ex, Pred, state, loc);
1083 
1084   ExplodedNodeSet Dst2;
1085   StmtNodeBuilder Bldr(Tmp, Dst2, *currBldrCtx);
1086   for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end();I!=E;++I) {
1087 
1088     state = (*I)->getState();
1089     assert(LCtx == (*I)->getLocationContext());
1090     SVal V2_untested = state->getSVal(Ex, LCtx);
1091 
1092     // Propagate unknown and undefined values.
1093     if (V2_untested.isUnknownOrUndef()) {
1094       state = state->BindExpr(U, LCtx, V2_untested);
1095 
1096       // Perform the store, so that the uninitialized value detection happens.
1097       Bldr.takeNodes(*I);
1098       ExplodedNodeSet Dst3;
1099       evalStore(Dst3, U, Ex, *I, state, loc, V2_untested);
1100       Bldr.addNodes(Dst3);
1101 
1102       continue;
1103     }
1104     DefinedSVal V2 = V2_untested.castAs<DefinedSVal>();
1105 
1106     // Handle all other values.
1107     BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add : BO_Sub;
1108 
1109     // If the UnaryOperator has non-location type, use its type to create the
1110     // constant value. If the UnaryOperator has location type, create the
1111     // constant with int type and pointer width.
1112     SVal RHS;
1113     SVal Result;
1114 
1115     if (U->getType()->isAnyPointerType())
1116       RHS = svalBuilder.makeArrayIndex(1);
1117     else if (U->getType()->isIntegralOrEnumerationType())
1118       RHS = svalBuilder.makeIntVal(1, U->getType());
1119     else
1120       RHS = UnknownVal();
1121 
1122     // The use of an operand of type bool with the ++ operators is deprecated
1123     // but valid until C++17. And if the operand of the ++ operator is of type
1124     // bool, it is set to true until C++17. Note that for '_Bool', it is also
1125     // set to true when it encounters ++ operator.
1126     if (U->getType()->isBooleanType() && U->isIncrementOp())
1127       Result = svalBuilder.makeTruthVal(true, U->getType());
1128     else
1129       Result = evalBinOp(state, Op, V2, RHS, U->getType());
1130 
1131     // Conjure a new symbol if necessary to recover precision.
1132     if (Result.isUnknown()){
1133       DefinedOrUnknownSVal SymVal =
1134         svalBuilder.conjureSymbolVal(nullptr, U, LCtx,
1135                                      currBldrCtx->blockCount());
1136       Result = SymVal;
1137 
1138       // If the value is a location, ++/-- should always preserve
1139       // non-nullness.  Check if the original value was non-null, and if so
1140       // propagate that constraint.
1141       if (Loc::isLocType(U->getType())) {
1142         DefinedOrUnknownSVal Constraint =
1143         svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType()));
1144 
1145         if (!state->assume(Constraint, true)) {
1146           // It isn't feasible for the original value to be null.
1147           // Propagate this constraint.
1148           Constraint = svalBuilder.evalEQ(state, SymVal,
1149                                        svalBuilder.makeZeroVal(U->getType()));
1150 
1151           state = state->assume(Constraint, false);
1152           assert(state);
1153         }
1154       }
1155     }
1156 
1157     // Since the lvalue-to-rvalue conversion is explicit in the AST,
1158     // we bind an l-value if the operator is prefix and an lvalue (in C++).
1159     if (U->isGLValue())
1160       state = state->BindExpr(U, LCtx, loc);
1161     else
1162       state = state->BindExpr(U, LCtx, U->isPostfix() ? V2 : Result);
1163 
1164     // Perform the store.
1165     Bldr.takeNodes(*I);
1166     ExplodedNodeSet Dst3;
1167     evalStore(Dst3, U, Ex, *I, state, loc, Result);
1168     Bldr.addNodes(Dst3);
1169   }
1170   Dst.insert(Dst2);
1171 }
1172