1 //=-- ExprEngineC.cpp - ExprEngine support for C expressions ----*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines ExprEngine's support for C expressions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/DeclCXX.h" 14 #include "clang/AST/ExprCXX.h" 15 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 16 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" 17 #include <optional> 18 19 using namespace clang; 20 using namespace ento; 21 using llvm::APSInt; 22 23 /// Optionally conjure and return a symbol for offset when processing 24 /// an expression \p Expression. 25 /// If \p Other is a location, conjure a symbol for \p Symbol 26 /// (offset) if it is unknown so that memory arithmetic always 27 /// results in an ElementRegion. 28 /// \p Count The number of times the current basic block was visited. 29 static SVal conjureOffsetSymbolOnLocation( 30 SVal Symbol, SVal Other, Expr* Expression, SValBuilder &svalBuilder, 31 unsigned Count, const LocationContext *LCtx) { 32 QualType Ty = Expression->getType(); 33 if (isa<Loc>(Other) && Ty->isIntegralOrEnumerationType() && 34 Symbol.isUnknown()) { 35 return svalBuilder.conjureSymbolVal(Expression, LCtx, Ty, Count); 36 } 37 return Symbol; 38 } 39 40 void ExprEngine::VisitBinaryOperator(const BinaryOperator* B, 41 ExplodedNode *Pred, 42 ExplodedNodeSet &Dst) { 43 44 Expr *LHS = B->getLHS()->IgnoreParens(); 45 Expr *RHS = B->getRHS()->IgnoreParens(); 46 47 // FIXME: Prechecks eventually go in ::Visit(). 48 ExplodedNodeSet CheckedSet; 49 ExplodedNodeSet Tmp2; 50 getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, B, *this); 51 52 // With both the LHS and RHS evaluated, process the operation itself. 53 for (ExplodedNodeSet::iterator it=CheckedSet.begin(), ei=CheckedSet.end(); 54 it != ei; ++it) { 55 56 ProgramStateRef state = (*it)->getState(); 57 const LocationContext *LCtx = (*it)->getLocationContext(); 58 SVal LeftV = state->getSVal(LHS, LCtx); 59 SVal RightV = state->getSVal(RHS, LCtx); 60 61 BinaryOperator::Opcode Op = B->getOpcode(); 62 63 if (Op == BO_Assign) { 64 // EXPERIMENTAL: "Conjured" symbols. 65 // FIXME: Handle structs. 66 if (RightV.isUnknown()) { 67 unsigned Count = currBldrCtx->blockCount(); 68 RightV = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx, 69 Count); 70 } 71 // Simulate the effects of a "store": bind the value of the RHS 72 // to the L-Value represented by the LHS. 73 SVal ExprVal = B->isGLValue() ? LeftV : RightV; 74 evalStore(Tmp2, B, LHS, *it, state->BindExpr(B, LCtx, ExprVal), 75 LeftV, RightV); 76 continue; 77 } 78 79 if (!B->isAssignmentOp()) { 80 StmtNodeBuilder Bldr(*it, Tmp2, *currBldrCtx); 81 82 if (B->isAdditiveOp()) { 83 // TODO: This can be removed after we enable history tracking with 84 // SymSymExpr. 85 unsigned Count = currBldrCtx->blockCount(); 86 RightV = conjureOffsetSymbolOnLocation( 87 RightV, LeftV, RHS, svalBuilder, Count, LCtx); 88 LeftV = conjureOffsetSymbolOnLocation( 89 LeftV, RightV, LHS, svalBuilder, Count, LCtx); 90 } 91 92 // Although we don't yet model pointers-to-members, we do need to make 93 // sure that the members of temporaries have a valid 'this' pointer for 94 // other checks. 95 if (B->getOpcode() == BO_PtrMemD) 96 state = createTemporaryRegionIfNeeded(state, LCtx, LHS); 97 98 // Process non-assignments except commas or short-circuited 99 // logical expressions (LAnd and LOr). 100 SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType()); 101 if (!Result.isUnknown()) { 102 state = state->BindExpr(B, LCtx, Result); 103 } else { 104 // If we cannot evaluate the operation escape the operands. 105 state = escapeValues(state, LeftV, PSK_EscapeOther); 106 state = escapeValues(state, RightV, PSK_EscapeOther); 107 } 108 109 Bldr.generateNode(B, *it, state); 110 continue; 111 } 112 113 assert (B->isCompoundAssignmentOp()); 114 115 switch (Op) { 116 default: 117 llvm_unreachable("Invalid opcode for compound assignment."); 118 case BO_MulAssign: Op = BO_Mul; break; 119 case BO_DivAssign: Op = BO_Div; break; 120 case BO_RemAssign: Op = BO_Rem; break; 121 case BO_AddAssign: Op = BO_Add; break; 122 case BO_SubAssign: Op = BO_Sub; break; 123 case BO_ShlAssign: Op = BO_Shl; break; 124 case BO_ShrAssign: Op = BO_Shr; break; 125 case BO_AndAssign: Op = BO_And; break; 126 case BO_XorAssign: Op = BO_Xor; break; 127 case BO_OrAssign: Op = BO_Or; break; 128 } 129 130 // Perform a load (the LHS). This performs the checks for 131 // null dereferences, and so on. 132 ExplodedNodeSet Tmp; 133 SVal location = LeftV; 134 evalLoad(Tmp, B, LHS, *it, state, location); 135 136 for (ExplodedNode *N : Tmp) { 137 state = N->getState(); 138 const LocationContext *LCtx = N->getLocationContext(); 139 SVal V = state->getSVal(LHS, LCtx); 140 141 // Get the computation type. 142 QualType CTy = 143 cast<CompoundAssignOperator>(B)->getComputationResultType(); 144 CTy = getContext().getCanonicalType(CTy); 145 146 QualType CLHSTy = 147 cast<CompoundAssignOperator>(B)->getComputationLHSType(); 148 CLHSTy = getContext().getCanonicalType(CLHSTy); 149 150 QualType LTy = getContext().getCanonicalType(LHS->getType()); 151 152 // Promote LHS. 153 V = svalBuilder.evalCast(V, CLHSTy, LTy); 154 155 // Compute the result of the operation. 156 SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy), 157 B->getType(), CTy); 158 159 // EXPERIMENTAL: "Conjured" symbols. 160 // FIXME: Handle structs. 161 162 SVal LHSVal; 163 164 if (Result.isUnknown()) { 165 // The symbolic value is actually for the type of the left-hand side 166 // expression, not the computation type, as this is the value the 167 // LValue on the LHS will bind to. 168 LHSVal = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx, LTy, 169 currBldrCtx->blockCount()); 170 // However, we need to convert the symbol to the computation type. 171 Result = svalBuilder.evalCast(LHSVal, CTy, LTy); 172 } else { 173 // The left-hand side may bind to a different value then the 174 // computation type. 175 LHSVal = svalBuilder.evalCast(Result, LTy, CTy); 176 } 177 178 // In C++, assignment and compound assignment operators return an 179 // lvalue. 180 if (B->isGLValue()) 181 state = state->BindExpr(B, LCtx, location); 182 else 183 state = state->BindExpr(B, LCtx, Result); 184 185 evalStore(Tmp2, B, LHS, N, state, location, LHSVal); 186 } 187 } 188 189 // FIXME: postvisits eventually go in ::Visit() 190 getCheckerManager().runCheckersForPostStmt(Dst, Tmp2, B, *this); 191 } 192 193 void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred, 194 ExplodedNodeSet &Dst) { 195 196 CanQualType T = getContext().getCanonicalType(BE->getType()); 197 198 const BlockDecl *BD = BE->getBlockDecl(); 199 // Get the value of the block itself. 200 SVal V = svalBuilder.getBlockPointer(BD, T, 201 Pred->getLocationContext(), 202 currBldrCtx->blockCount()); 203 204 ProgramStateRef State = Pred->getState(); 205 206 // If we created a new MemRegion for the block, we should explicitly bind 207 // the captured variables. 208 if (const BlockDataRegion *BDR = 209 dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) { 210 211 auto ReferencedVars = BDR->referenced_vars(); 212 auto CI = BD->capture_begin(); 213 auto CE = BD->capture_end(); 214 for (auto Var : ReferencedVars) { 215 const VarRegion *capturedR = Var.getCapturedRegion(); 216 const TypedValueRegion *originalR = Var.getOriginalRegion(); 217 218 // If the capture had a copy expression, use the result of evaluating 219 // that expression, otherwise use the original value. 220 // We rely on the invariant that the block declaration's capture variables 221 // are a prefix of the BlockDataRegion's referenced vars (which may include 222 // referenced globals, etc.) to enable fast lookup of the capture for a 223 // given referenced var. 224 const Expr *copyExpr = nullptr; 225 if (CI != CE) { 226 assert(CI->getVariable() == capturedR->getDecl()); 227 copyExpr = CI->getCopyExpr(); 228 CI++; 229 } 230 231 if (capturedR != originalR) { 232 SVal originalV; 233 const LocationContext *LCtx = Pred->getLocationContext(); 234 if (copyExpr) { 235 originalV = State->getSVal(copyExpr, LCtx); 236 } else { 237 originalV = State->getSVal(loc::MemRegionVal(originalR)); 238 } 239 State = State->bindLoc(loc::MemRegionVal(capturedR), originalV, LCtx); 240 } 241 } 242 } 243 244 ExplodedNodeSet Tmp; 245 StmtNodeBuilder Bldr(Pred, Tmp, *currBldrCtx); 246 Bldr.generateNode(BE, Pred, 247 State->BindExpr(BE, Pred->getLocationContext(), V), 248 nullptr, ProgramPoint::PostLValueKind); 249 250 // FIXME: Move all post/pre visits to ::Visit(). 251 getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this); 252 } 253 254 ProgramStateRef ExprEngine::handleLValueBitCast( 255 ProgramStateRef state, const Expr* Ex, const LocationContext* LCtx, 256 QualType T, QualType ExTy, const CastExpr* CastE, StmtNodeBuilder& Bldr, 257 ExplodedNode* Pred) { 258 if (T->isLValueReferenceType()) { 259 assert(!CastE->getType()->isLValueReferenceType()); 260 ExTy = getContext().getLValueReferenceType(ExTy); 261 } else if (T->isRValueReferenceType()) { 262 assert(!CastE->getType()->isRValueReferenceType()); 263 ExTy = getContext().getRValueReferenceType(ExTy); 264 } 265 // Delegate to SValBuilder to process. 266 SVal OrigV = state->getSVal(Ex, LCtx); 267 SVal SimplifiedOrigV = svalBuilder.simplifySVal(state, OrigV); 268 SVal V = svalBuilder.evalCast(SimplifiedOrigV, T, ExTy); 269 // Negate the result if we're treating the boolean as a signed i1 270 if (CastE->getCastKind() == CK_BooleanToSignedIntegral && V.isValid()) 271 V = svalBuilder.evalMinus(V.castAs<NonLoc>()); 272 273 state = state->BindExpr(CastE, LCtx, V); 274 if (V.isUnknown() && !OrigV.isUnknown()) { 275 state = escapeValues(state, OrigV, PSK_EscapeOther); 276 } 277 Bldr.generateNode(CastE, Pred, state); 278 279 return state; 280 } 281 282 void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex, 283 ExplodedNode *Pred, ExplodedNodeSet &Dst) { 284 285 ExplodedNodeSet dstPreStmt; 286 getCheckerManager().runCheckersForPreStmt(dstPreStmt, Pred, CastE, *this); 287 288 if (CastE->getCastKind() == CK_LValueToRValue || 289 CastE->getCastKind() == CK_LValueToRValueBitCast) { 290 for (ExplodedNode *subExprNode : dstPreStmt) { 291 ProgramStateRef state = subExprNode->getState(); 292 const LocationContext *LCtx = subExprNode->getLocationContext(); 293 evalLoad(Dst, CastE, CastE, subExprNode, state, state->getSVal(Ex, LCtx)); 294 } 295 return; 296 } 297 298 // All other casts. 299 QualType T = CastE->getType(); 300 QualType ExTy = Ex->getType(); 301 302 if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE)) 303 T = ExCast->getTypeAsWritten(); 304 305 StmtNodeBuilder Bldr(dstPreStmt, Dst, *currBldrCtx); 306 for (ExplodedNode *Pred : dstPreStmt) { 307 ProgramStateRef state = Pred->getState(); 308 const LocationContext *LCtx = Pred->getLocationContext(); 309 310 switch (CastE->getCastKind()) { 311 case CK_LValueToRValue: 312 case CK_LValueToRValueBitCast: 313 llvm_unreachable("LValueToRValue casts handled earlier."); 314 case CK_ToVoid: 315 continue; 316 // The analyzer doesn't do anything special with these casts, 317 // since it understands retain/release semantics already. 318 case CK_ARCProduceObject: 319 case CK_ARCConsumeObject: 320 case CK_ARCReclaimReturnedObject: 321 case CK_ARCExtendBlockObject: // Fall-through. 322 case CK_CopyAndAutoreleaseBlockObject: 323 // The analyser can ignore atomic casts for now, although some future 324 // checkers may want to make certain that you're not modifying the same 325 // value through atomic and nonatomic pointers. 326 case CK_AtomicToNonAtomic: 327 case CK_NonAtomicToAtomic: 328 // True no-ops. 329 case CK_NoOp: 330 case CK_ConstructorConversion: 331 case CK_UserDefinedConversion: 332 case CK_FunctionToPointerDecay: 333 case CK_BuiltinFnToFnPtr: { 334 // Copy the SVal of Ex to CastE. 335 ProgramStateRef state = Pred->getState(); 336 const LocationContext *LCtx = Pred->getLocationContext(); 337 SVal V = state->getSVal(Ex, LCtx); 338 state = state->BindExpr(CastE, LCtx, V); 339 Bldr.generateNode(CastE, Pred, state); 340 continue; 341 } 342 case CK_MemberPointerToBoolean: 343 case CK_PointerToBoolean: { 344 SVal V = state->getSVal(Ex, LCtx); 345 auto PTMSV = V.getAs<nonloc::PointerToMember>(); 346 if (PTMSV) 347 V = svalBuilder.makeTruthVal(!PTMSV->isNullMemberPointer(), ExTy); 348 if (V.isUndef() || PTMSV) { 349 state = state->BindExpr(CastE, LCtx, V); 350 Bldr.generateNode(CastE, Pred, state); 351 continue; 352 } 353 // Explicitly proceed with default handler for this case cascade. 354 state = 355 handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred); 356 continue; 357 } 358 case CK_Dependent: 359 case CK_ArrayToPointerDecay: 360 case CK_BitCast: 361 case CK_AddressSpaceConversion: 362 case CK_BooleanToSignedIntegral: 363 case CK_IntegralToPointer: 364 case CK_PointerToIntegral: { 365 SVal V = state->getSVal(Ex, LCtx); 366 if (isa<nonloc::PointerToMember>(V)) { 367 state = state->BindExpr(CastE, LCtx, UnknownVal()); 368 Bldr.generateNode(CastE, Pred, state); 369 continue; 370 } 371 // Explicitly proceed with default handler for this case cascade. 372 state = 373 handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred); 374 continue; 375 } 376 case CK_IntegralToBoolean: 377 case CK_IntegralToFloating: 378 case CK_FloatingToIntegral: 379 case CK_FloatingToBoolean: 380 case CK_FloatingCast: 381 case CK_FloatingRealToComplex: 382 case CK_FloatingComplexToReal: 383 case CK_FloatingComplexToBoolean: 384 case CK_FloatingComplexCast: 385 case CK_FloatingComplexToIntegralComplex: 386 case CK_IntegralRealToComplex: 387 case CK_IntegralComplexToReal: 388 case CK_IntegralComplexToBoolean: 389 case CK_IntegralComplexCast: 390 case CK_IntegralComplexToFloatingComplex: 391 case CK_CPointerToObjCPointerCast: 392 case CK_BlockPointerToObjCPointerCast: 393 case CK_AnyPointerToBlockPointerCast: 394 case CK_ObjCObjectLValueCast: 395 case CK_ZeroToOCLOpaqueType: 396 case CK_IntToOCLSampler: 397 case CK_LValueBitCast: 398 case CK_FloatingToFixedPoint: 399 case CK_FixedPointToFloating: 400 case CK_FixedPointCast: 401 case CK_FixedPointToBoolean: 402 case CK_FixedPointToIntegral: 403 case CK_IntegralToFixedPoint: { 404 state = 405 handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred); 406 continue; 407 } 408 case CK_IntegralCast: { 409 // Delegate to SValBuilder to process. 410 SVal V = state->getSVal(Ex, LCtx); 411 if (AMgr.options.ShouldSupportSymbolicIntegerCasts) 412 V = svalBuilder.evalCast(V, T, ExTy); 413 else 414 V = svalBuilder.evalIntegralCast(state, V, T, ExTy); 415 state = state->BindExpr(CastE, LCtx, V); 416 Bldr.generateNode(CastE, Pred, state); 417 continue; 418 } 419 case CK_DerivedToBase: 420 case CK_UncheckedDerivedToBase: { 421 // For DerivedToBase cast, delegate to the store manager. 422 SVal val = state->getSVal(Ex, LCtx); 423 val = getStoreManager().evalDerivedToBase(val, CastE); 424 state = state->BindExpr(CastE, LCtx, val); 425 Bldr.generateNode(CastE, Pred, state); 426 continue; 427 } 428 // Handle C++ dyn_cast. 429 case CK_Dynamic: { 430 SVal val = state->getSVal(Ex, LCtx); 431 432 // Compute the type of the result. 433 QualType resultType = CastE->getType(); 434 if (CastE->isGLValue()) 435 resultType = getContext().getPointerType(resultType); 436 437 bool Failed = true; 438 439 // Check if the value being cast does not evaluates to 0. 440 if (!val.isZeroConstant()) 441 if (std::optional<SVal> V = 442 StateMgr.getStoreManager().evalBaseToDerived(val, T)) { 443 val = *V; 444 Failed = false; 445 } 446 447 if (Failed) { 448 if (T->isReferenceType()) { 449 // A bad_cast exception is thrown if input value is a reference. 450 // Currently, we model this, by generating a sink. 451 Bldr.generateSink(CastE, Pred, state); 452 continue; 453 } else { 454 // If the cast fails on a pointer, bind to 0. 455 state = state->BindExpr(CastE, LCtx, 456 svalBuilder.makeNullWithType(resultType)); 457 } 458 } else { 459 // If we don't know if the cast succeeded, conjure a new symbol. 460 if (val.isUnknown()) { 461 DefinedOrUnknownSVal NewSym = 462 svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, resultType, 463 currBldrCtx->blockCount()); 464 state = state->BindExpr(CastE, LCtx, NewSym); 465 } else 466 // Else, bind to the derived region value. 467 state = state->BindExpr(CastE, LCtx, val); 468 } 469 Bldr.generateNode(CastE, Pred, state); 470 continue; 471 } 472 case CK_BaseToDerived: { 473 SVal val = state->getSVal(Ex, LCtx); 474 QualType resultType = CastE->getType(); 475 if (CastE->isGLValue()) 476 resultType = getContext().getPointerType(resultType); 477 478 if (!val.isConstant()) { 479 std::optional<SVal> V = getStoreManager().evalBaseToDerived(val, T); 480 val = V ? *V : UnknownVal(); 481 } 482 483 // Failed to cast or the result is unknown, fall back to conservative. 484 if (val.isUnknown()) { 485 val = 486 svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, resultType, 487 currBldrCtx->blockCount()); 488 } 489 state = state->BindExpr(CastE, LCtx, val); 490 Bldr.generateNode(CastE, Pred, state); 491 continue; 492 } 493 case CK_NullToPointer: { 494 SVal V = svalBuilder.makeNullWithType(CastE->getType()); 495 state = state->BindExpr(CastE, LCtx, V); 496 Bldr.generateNode(CastE, Pred, state); 497 continue; 498 } 499 case CK_NullToMemberPointer: { 500 SVal V = svalBuilder.getMemberPointer(nullptr); 501 state = state->BindExpr(CastE, LCtx, V); 502 Bldr.generateNode(CastE, Pred, state); 503 continue; 504 } 505 case CK_DerivedToBaseMemberPointer: 506 case CK_BaseToDerivedMemberPointer: 507 case CK_ReinterpretMemberPointer: { 508 SVal V = state->getSVal(Ex, LCtx); 509 if (auto PTMSV = V.getAs<nonloc::PointerToMember>()) { 510 SVal CastedPTMSV = 511 svalBuilder.makePointerToMember(getBasicVals().accumCXXBase( 512 CastE->path(), *PTMSV, CastE->getCastKind())); 513 state = state->BindExpr(CastE, LCtx, CastedPTMSV); 514 Bldr.generateNode(CastE, Pred, state); 515 continue; 516 } 517 // Explicitly proceed with default handler for this case cascade. 518 } 519 [[fallthrough]]; 520 // Various C++ casts that are not handled yet. 521 case CK_ToUnion: 522 case CK_MatrixCast: 523 case CK_VectorSplat: 524 case CK_HLSLVectorTruncation: { 525 QualType resultType = CastE->getType(); 526 if (CastE->isGLValue()) 527 resultType = getContext().getPointerType(resultType); 528 SVal result = svalBuilder.conjureSymbolVal( 529 /*symbolTag=*/nullptr, CastE, LCtx, resultType, 530 currBldrCtx->blockCount()); 531 state = state->BindExpr(CastE, LCtx, result); 532 Bldr.generateNode(CastE, Pred, state); 533 continue; 534 } 535 } 536 } 537 } 538 539 void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr *CL, 540 ExplodedNode *Pred, 541 ExplodedNodeSet &Dst) { 542 StmtNodeBuilder B(Pred, Dst, *currBldrCtx); 543 544 ProgramStateRef State = Pred->getState(); 545 const LocationContext *LCtx = Pred->getLocationContext(); 546 547 const Expr *Init = CL->getInitializer(); 548 SVal V = State->getSVal(CL->getInitializer(), LCtx); 549 550 if (isa<CXXConstructExpr, CXXStdInitializerListExpr>(Init)) { 551 // No work needed. Just pass the value up to this expression. 552 } else { 553 assert(isa<InitListExpr>(Init)); 554 Loc CLLoc = State->getLValue(CL, LCtx); 555 State = State->bindLoc(CLLoc, V, LCtx); 556 557 if (CL->isGLValue()) 558 V = CLLoc; 559 } 560 561 B.generateNode(CL, Pred, State->BindExpr(CL, LCtx, V)); 562 } 563 564 void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred, 565 ExplodedNodeSet &Dst) { 566 if (isa<TypedefNameDecl>(*DS->decl_begin())) { 567 // C99 6.7.7 "Any array size expressions associated with variable length 568 // array declarators are evaluated each time the declaration of the typedef 569 // name is reached in the order of execution." 570 // The checkers should know about typedef to be able to handle VLA size 571 // expressions. 572 ExplodedNodeSet DstPre; 573 getCheckerManager().runCheckersForPreStmt(DstPre, Pred, DS, *this); 574 getCheckerManager().runCheckersForPostStmt(Dst, DstPre, DS, *this); 575 return; 576 } 577 578 // Assumption: The CFG has one DeclStmt per Decl. 579 const VarDecl *VD = dyn_cast_or_null<VarDecl>(*DS->decl_begin()); 580 581 if (!VD) { 582 //TODO:AZ: remove explicit insertion after refactoring is done. 583 Dst.insert(Pred); 584 return; 585 } 586 587 // FIXME: all pre/post visits should eventually be handled by ::Visit(). 588 ExplodedNodeSet dstPreVisit; 589 getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, DS, *this); 590 591 ExplodedNodeSet dstEvaluated; 592 StmtNodeBuilder B(dstPreVisit, dstEvaluated, *currBldrCtx); 593 for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end(); 594 I!=E; ++I) { 595 ExplodedNode *N = *I; 596 ProgramStateRef state = N->getState(); 597 const LocationContext *LC = N->getLocationContext(); 598 599 // Decls without InitExpr are not initialized explicitly. 600 if (const Expr *InitEx = VD->getInit()) { 601 602 // Note in the state that the initialization has occurred. 603 ExplodedNode *UpdatedN = N; 604 SVal InitVal = state->getSVal(InitEx, LC); 605 606 assert(DS->isSingleDecl()); 607 if (getObjectUnderConstruction(state, DS, LC)) { 608 state = finishObjectConstruction(state, DS, LC); 609 // We constructed the object directly in the variable. 610 // No need to bind anything. 611 B.generateNode(DS, UpdatedN, state); 612 } else { 613 // Recover some path-sensitivity if a scalar value evaluated to 614 // UnknownVal. 615 if (InitVal.isUnknown()) { 616 QualType Ty = InitEx->getType(); 617 if (InitEx->isGLValue()) { 618 Ty = getContext().getPointerType(Ty); 619 } 620 621 InitVal = svalBuilder.conjureSymbolVal(nullptr, InitEx, LC, Ty, 622 currBldrCtx->blockCount()); 623 } 624 625 626 B.takeNodes(UpdatedN); 627 ExplodedNodeSet Dst2; 628 evalBind(Dst2, DS, UpdatedN, state->getLValue(VD, LC), InitVal, true); 629 B.addNodes(Dst2); 630 } 631 } 632 else { 633 B.generateNode(DS, N, state); 634 } 635 } 636 637 getCheckerManager().runCheckersForPostStmt(Dst, B.getResults(), DS, *this); 638 } 639 640 void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred, 641 ExplodedNodeSet &Dst) { 642 // This method acts upon CFG elements for logical operators && and || 643 // and attaches the value (true or false) to them as expressions. 644 // It doesn't produce any state splits. 645 // If we made it that far, we're past the point when we modeled the short 646 // circuit. It means that we should have precise knowledge about whether 647 // we've short-circuited. If we did, we already know the value we need to 648 // bind. If we didn't, the value of the RHS (casted to the boolean type) 649 // is the answer. 650 // Currently this method tries to figure out whether we've short-circuited 651 // by looking at the ExplodedGraph. This method is imperfect because there 652 // could inevitably have been merges that would have resulted in multiple 653 // potential path traversal histories. We bail out when we fail. 654 // Due to this ambiguity, a more reliable solution would have been to 655 // track the short circuit operation history path-sensitively until 656 // we evaluate the respective logical operator. 657 assert(B->getOpcode() == BO_LAnd || 658 B->getOpcode() == BO_LOr); 659 660 StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx); 661 ProgramStateRef state = Pred->getState(); 662 663 if (B->getType()->isVectorType()) { 664 // FIXME: We do not model vector arithmetic yet. When adding support for 665 // that, note that the CFG-based reasoning below does not apply, because 666 // logical operators on vectors are not short-circuit. Currently they are 667 // modeled as short-circuit in Clang CFG but this is incorrect. 668 // Do not set the value for the expression. It'd be UnknownVal by default. 669 Bldr.generateNode(B, Pred, state); 670 return; 671 } 672 673 ExplodedNode *N = Pred; 674 while (!N->getLocation().getAs<BlockEntrance>()) { 675 ProgramPoint P = N->getLocation(); 676 assert(P.getAs<PreStmt>()|| P.getAs<PreStmtPurgeDeadSymbols>()); 677 (void) P; 678 if (N->pred_size() != 1) { 679 // We failed to track back where we came from. 680 Bldr.generateNode(B, Pred, state); 681 return; 682 } 683 N = *N->pred_begin(); 684 } 685 686 if (N->pred_size() != 1) { 687 // We failed to track back where we came from. 688 Bldr.generateNode(B, Pred, state); 689 return; 690 } 691 692 N = *N->pred_begin(); 693 BlockEdge BE = N->getLocation().castAs<BlockEdge>(); 694 SVal X; 695 696 // Determine the value of the expression by introspecting how we 697 // got this location in the CFG. This requires looking at the previous 698 // block we were in and what kind of control-flow transfer was involved. 699 const CFGBlock *SrcBlock = BE.getSrc(); 700 // The only terminator (if there is one) that makes sense is a logical op. 701 CFGTerminator T = SrcBlock->getTerminator(); 702 if (const BinaryOperator *Term = cast_or_null<BinaryOperator>(T.getStmt())) { 703 (void) Term; 704 assert(Term->isLogicalOp()); 705 assert(SrcBlock->succ_size() == 2); 706 // Did we take the true or false branch? 707 unsigned constant = (*SrcBlock->succ_begin() == BE.getDst()) ? 1 : 0; 708 X = svalBuilder.makeIntVal(constant, B->getType()); 709 } 710 else { 711 // If there is no terminator, by construction the last statement 712 // in SrcBlock is the value of the enclosing expression. 713 // However, we still need to constrain that value to be 0 or 1. 714 assert(!SrcBlock->empty()); 715 CFGStmt Elem = SrcBlock->rbegin()->castAs<CFGStmt>(); 716 const Expr *RHS = cast<Expr>(Elem.getStmt()); 717 SVal RHSVal = N->getState()->getSVal(RHS, Pred->getLocationContext()); 718 719 if (RHSVal.isUndef()) { 720 X = RHSVal; 721 } else { 722 // We evaluate "RHSVal != 0" expression which result in 0 if the value is 723 // known to be false, 1 if the value is known to be true and a new symbol 724 // when the assumption is unknown. 725 nonloc::ConcreteInt Zero(getBasicVals().getValue(0, B->getType())); 726 X = evalBinOp(N->getState(), BO_NE, 727 svalBuilder.evalCast(RHSVal, B->getType(), RHS->getType()), 728 Zero, B->getType()); 729 } 730 } 731 Bldr.generateNode(B, Pred, state->BindExpr(B, Pred->getLocationContext(), X)); 732 } 733 734 void ExprEngine::VisitInitListExpr(const InitListExpr *IE, 735 ExplodedNode *Pred, 736 ExplodedNodeSet &Dst) { 737 StmtNodeBuilder B(Pred, Dst, *currBldrCtx); 738 739 ProgramStateRef state = Pred->getState(); 740 const LocationContext *LCtx = Pred->getLocationContext(); 741 QualType T = getContext().getCanonicalType(IE->getType()); 742 unsigned NumInitElements = IE->getNumInits(); 743 744 if (!IE->isGLValue() && !IE->isTransparent() && 745 (T->isArrayType() || T->isRecordType() || T->isVectorType() || 746 T->isAnyComplexType())) { 747 llvm::ImmutableList<SVal> vals = getBasicVals().getEmptySValList(); 748 749 // Handle base case where the initializer has no elements. 750 // e.g: static int* myArray[] = {}; 751 if (NumInitElements == 0) { 752 SVal V = svalBuilder.makeCompoundVal(T, vals); 753 B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V)); 754 return; 755 } 756 757 for (const Stmt *S : llvm::reverse(*IE)) { 758 SVal V = state->getSVal(cast<Expr>(S), LCtx); 759 vals = getBasicVals().prependSVal(V, vals); 760 } 761 762 B.generateNode(IE, Pred, 763 state->BindExpr(IE, LCtx, 764 svalBuilder.makeCompoundVal(T, vals))); 765 return; 766 } 767 768 // Handle scalars: int{5} and int{} and GLvalues. 769 // Note, if the InitListExpr is a GLvalue, it means that there is an address 770 // representing it, so it must have a single init element. 771 assert(NumInitElements <= 1); 772 773 SVal V; 774 if (NumInitElements == 0) 775 V = getSValBuilder().makeZeroVal(T); 776 else 777 V = state->getSVal(IE->getInit(0), LCtx); 778 779 B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V)); 780 } 781 782 void ExprEngine::VisitGuardedExpr(const Expr *Ex, 783 const Expr *L, 784 const Expr *R, 785 ExplodedNode *Pred, 786 ExplodedNodeSet &Dst) { 787 assert(L && R); 788 789 StmtNodeBuilder B(Pred, Dst, *currBldrCtx); 790 ProgramStateRef state = Pred->getState(); 791 const LocationContext *LCtx = Pred->getLocationContext(); 792 const CFGBlock *SrcBlock = nullptr; 793 794 // Find the predecessor block. 795 ProgramStateRef SrcState = state; 796 for (const ExplodedNode *N = Pred ; N ; N = *N->pred_begin()) { 797 ProgramPoint PP = N->getLocation(); 798 if (PP.getAs<PreStmtPurgeDeadSymbols>() || PP.getAs<BlockEntrance>()) { 799 // If the state N has multiple predecessors P, it means that successors 800 // of P are all equivalent. 801 // In turn, that means that all nodes at P are equivalent in terms 802 // of observable behavior at N, and we can follow any of them. 803 // FIXME: a more robust solution which does not walk up the tree. 804 continue; 805 } 806 SrcBlock = PP.castAs<BlockEdge>().getSrc(); 807 SrcState = N->getState(); 808 break; 809 } 810 811 assert(SrcBlock && "missing function entry"); 812 813 // Find the last expression in the predecessor block. That is the 814 // expression that is used for the value of the ternary expression. 815 bool hasValue = false; 816 SVal V; 817 818 for (CFGElement CE : llvm::reverse(*SrcBlock)) { 819 if (std::optional<CFGStmt> CS = CE.getAs<CFGStmt>()) { 820 const Expr *ValEx = cast<Expr>(CS->getStmt()); 821 ValEx = ValEx->IgnoreParens(); 822 823 // For GNU extension '?:' operator, the left hand side will be an 824 // OpaqueValueExpr, so get the underlying expression. 825 if (const OpaqueValueExpr *OpaqueEx = dyn_cast<OpaqueValueExpr>(L)) 826 L = OpaqueEx->getSourceExpr(); 827 828 // If the last expression in the predecessor block matches true or false 829 // subexpression, get its the value. 830 if (ValEx == L->IgnoreParens() || ValEx == R->IgnoreParens()) { 831 hasValue = true; 832 V = SrcState->getSVal(ValEx, LCtx); 833 } 834 break; 835 } 836 } 837 838 if (!hasValue) 839 V = svalBuilder.conjureSymbolVal(nullptr, Ex, LCtx, 840 currBldrCtx->blockCount()); 841 842 // Generate a new node with the binding from the appropriate path. 843 B.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V, true)); 844 } 845 846 void ExprEngine:: 847 VisitOffsetOfExpr(const OffsetOfExpr *OOE, 848 ExplodedNode *Pred, ExplodedNodeSet &Dst) { 849 StmtNodeBuilder B(Pred, Dst, *currBldrCtx); 850 Expr::EvalResult Result; 851 if (OOE->EvaluateAsInt(Result, getContext())) { 852 APSInt IV = Result.Val.getInt(); 853 assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType())); 854 assert(OOE->getType()->castAs<BuiltinType>()->isInteger()); 855 assert(IV.isSigned() == OOE->getType()->isSignedIntegerType()); 856 SVal X = svalBuilder.makeIntVal(IV); 857 B.generateNode(OOE, Pred, 858 Pred->getState()->BindExpr(OOE, Pred->getLocationContext(), 859 X)); 860 } 861 // FIXME: Handle the case where __builtin_offsetof is not a constant. 862 } 863 864 865 void ExprEngine:: 866 VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *Ex, 867 ExplodedNode *Pred, 868 ExplodedNodeSet &Dst) { 869 // FIXME: Prechecks eventually go in ::Visit(). 870 ExplodedNodeSet CheckedSet; 871 getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, Ex, *this); 872 873 ExplodedNodeSet EvalSet; 874 StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx); 875 876 QualType T = Ex->getTypeOfArgument(); 877 878 for (ExplodedNode *N : CheckedSet) { 879 if (Ex->getKind() == UETT_SizeOf) { 880 if (!T->isIncompleteType() && !T->isConstantSizeType()) { 881 assert(T->isVariableArrayType() && "Unknown non-constant-sized type."); 882 883 // FIXME: Add support for VLA type arguments and VLA expressions. 884 // When that happens, we should probably refactor VLASizeChecker's code. 885 continue; 886 } else if (T->getAs<ObjCObjectType>()) { 887 // Some code tries to take the sizeof an ObjCObjectType, relying that 888 // the compiler has laid out its representation. Just report Unknown 889 // for these. 890 continue; 891 } 892 } 893 894 APSInt Value = Ex->EvaluateKnownConstInt(getContext()); 895 CharUnits amt = CharUnits::fromQuantity(Value.getZExtValue()); 896 897 ProgramStateRef state = N->getState(); 898 state = state->BindExpr( 899 Ex, N->getLocationContext(), 900 svalBuilder.makeIntVal(amt.getQuantity(), Ex->getType())); 901 Bldr.generateNode(Ex, N, state); 902 } 903 904 getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, Ex, *this); 905 } 906 907 void ExprEngine::handleUOExtension(ExplodedNode *N, const UnaryOperator *U, 908 StmtNodeBuilder &Bldr) { 909 // FIXME: We can probably just have some magic in Environment::getSVal() 910 // that propagates values, instead of creating a new node here. 911 // 912 // Unary "+" is a no-op, similar to a parentheses. We still have places 913 // where it may be a block-level expression, so we need to 914 // generate an extra node that just propagates the value of the 915 // subexpression. 916 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 917 ProgramStateRef state = N->getState(); 918 const LocationContext *LCtx = N->getLocationContext(); 919 Bldr.generateNode(U, N, state->BindExpr(U, LCtx, state->getSVal(Ex, LCtx))); 920 } 921 922 void ExprEngine::VisitUnaryOperator(const UnaryOperator* U, ExplodedNode *Pred, 923 ExplodedNodeSet &Dst) { 924 // FIXME: Prechecks eventually go in ::Visit(). 925 ExplodedNodeSet CheckedSet; 926 getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, U, *this); 927 928 ExplodedNodeSet EvalSet; 929 StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx); 930 931 for (ExplodedNode *N : CheckedSet) { 932 switch (U->getOpcode()) { 933 default: { 934 Bldr.takeNodes(N); 935 ExplodedNodeSet Tmp; 936 VisitIncrementDecrementOperator(U, N, Tmp); 937 Bldr.addNodes(Tmp); 938 break; 939 } 940 case UO_Real: { 941 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 942 943 // FIXME: We don't have complex SValues yet. 944 if (Ex->getType()->isAnyComplexType()) { 945 // Just report "Unknown." 946 break; 947 } 948 949 // For all other types, UO_Real is an identity operation. 950 assert (U->getType() == Ex->getType()); 951 ProgramStateRef state = N->getState(); 952 const LocationContext *LCtx = N->getLocationContext(); 953 Bldr.generateNode(U, N, 954 state->BindExpr(U, LCtx, state->getSVal(Ex, LCtx))); 955 break; 956 } 957 958 case UO_Imag: { 959 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 960 // FIXME: We don't have complex SValues yet. 961 if (Ex->getType()->isAnyComplexType()) { 962 // Just report "Unknown." 963 break; 964 } 965 // For all other types, UO_Imag returns 0. 966 ProgramStateRef state = N->getState(); 967 const LocationContext *LCtx = N->getLocationContext(); 968 SVal X = svalBuilder.makeZeroVal(Ex->getType()); 969 Bldr.generateNode(U, N, state->BindExpr(U, LCtx, X)); 970 break; 971 } 972 973 case UO_AddrOf: { 974 // Process pointer-to-member address operation. 975 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 976 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex)) { 977 const ValueDecl *VD = DRE->getDecl(); 978 979 if (isa<CXXMethodDecl, FieldDecl, IndirectFieldDecl>(VD)) { 980 ProgramStateRef State = N->getState(); 981 const LocationContext *LCtx = N->getLocationContext(); 982 SVal SV = svalBuilder.getMemberPointer(cast<NamedDecl>(VD)); 983 Bldr.generateNode(U, N, State->BindExpr(U, LCtx, SV)); 984 break; 985 } 986 } 987 // Explicitly proceed with default handler for this case cascade. 988 handleUOExtension(N, U, Bldr); 989 break; 990 } 991 case UO_Plus: 992 assert(!U->isGLValue()); 993 [[fallthrough]]; 994 case UO_Deref: 995 case UO_Extension: { 996 handleUOExtension(N, U, Bldr); 997 break; 998 } 999 1000 case UO_LNot: 1001 case UO_Minus: 1002 case UO_Not: { 1003 assert (!U->isGLValue()); 1004 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 1005 ProgramStateRef state = N->getState(); 1006 const LocationContext *LCtx = N->getLocationContext(); 1007 1008 // Get the value of the subexpression. 1009 SVal V = state->getSVal(Ex, LCtx); 1010 1011 if (V.isUnknownOrUndef()) { 1012 Bldr.generateNode(U, N, state->BindExpr(U, LCtx, V)); 1013 break; 1014 } 1015 1016 switch (U->getOpcode()) { 1017 default: 1018 llvm_unreachable("Invalid Opcode."); 1019 case UO_Not: 1020 // FIXME: Do we need to handle promotions? 1021 state = state->BindExpr( 1022 U, LCtx, svalBuilder.evalComplement(V.castAs<NonLoc>())); 1023 break; 1024 case UO_Minus: 1025 // FIXME: Do we need to handle promotions? 1026 state = state->BindExpr(U, LCtx, 1027 svalBuilder.evalMinus(V.castAs<NonLoc>())); 1028 break; 1029 case UO_LNot: 1030 // C99 6.5.3.3: "The expression !E is equivalent to (0==E)." 1031 // 1032 // Note: technically we do "E == 0", but this is the same in the 1033 // transfer functions as "0 == E". 1034 SVal Result; 1035 if (std::optional<Loc> LV = V.getAs<Loc>()) { 1036 Loc X = svalBuilder.makeNullWithType(Ex->getType()); 1037 Result = evalBinOp(state, BO_EQ, *LV, X, U->getType()); 1038 } else if (Ex->getType()->isFloatingType()) { 1039 // FIXME: handle floating point types. 1040 Result = UnknownVal(); 1041 } else { 1042 nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType())); 1043 Result = evalBinOp(state, BO_EQ, V.castAs<NonLoc>(), X, U->getType()); 1044 } 1045 1046 state = state->BindExpr(U, LCtx, Result); 1047 break; 1048 } 1049 Bldr.generateNode(U, N, state); 1050 break; 1051 } 1052 } 1053 } 1054 1055 getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, U, *this); 1056 } 1057 1058 void ExprEngine::VisitIncrementDecrementOperator(const UnaryOperator* U, 1059 ExplodedNode *Pred, 1060 ExplodedNodeSet &Dst) { 1061 // Handle ++ and -- (both pre- and post-increment). 1062 assert (U->isIncrementDecrementOp()); 1063 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 1064 1065 const LocationContext *LCtx = Pred->getLocationContext(); 1066 ProgramStateRef state = Pred->getState(); 1067 SVal loc = state->getSVal(Ex, LCtx); 1068 1069 // Perform a load. 1070 ExplodedNodeSet Tmp; 1071 evalLoad(Tmp, U, Ex, Pred, state, loc); 1072 1073 ExplodedNodeSet Dst2; 1074 StmtNodeBuilder Bldr(Tmp, Dst2, *currBldrCtx); 1075 for (ExplodedNode *N : Tmp) { 1076 state = N->getState(); 1077 assert(LCtx == N->getLocationContext()); 1078 SVal V2_untested = state->getSVal(Ex, LCtx); 1079 1080 // Propagate unknown and undefined values. 1081 if (V2_untested.isUnknownOrUndef()) { 1082 state = state->BindExpr(U, LCtx, V2_untested); 1083 1084 // Perform the store, so that the uninitialized value detection happens. 1085 Bldr.takeNodes(N); 1086 ExplodedNodeSet Dst3; 1087 evalStore(Dst3, U, Ex, N, state, loc, V2_untested); 1088 Bldr.addNodes(Dst3); 1089 1090 continue; 1091 } 1092 DefinedSVal V2 = V2_untested.castAs<DefinedSVal>(); 1093 1094 // Handle all other values. 1095 BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add : BO_Sub; 1096 1097 // If the UnaryOperator has non-location type, use its type to create the 1098 // constant value. If the UnaryOperator has location type, create the 1099 // constant with int type and pointer width. 1100 SVal RHS; 1101 SVal Result; 1102 1103 if (U->getType()->isAnyPointerType()) 1104 RHS = svalBuilder.makeArrayIndex(1); 1105 else if (U->getType()->isIntegralOrEnumerationType()) 1106 RHS = svalBuilder.makeIntVal(1, U->getType()); 1107 else 1108 RHS = UnknownVal(); 1109 1110 // The use of an operand of type bool with the ++ operators is deprecated 1111 // but valid until C++17. And if the operand of the ++ operator is of type 1112 // bool, it is set to true until C++17. Note that for '_Bool', it is also 1113 // set to true when it encounters ++ operator. 1114 if (U->getType()->isBooleanType() && U->isIncrementOp()) 1115 Result = svalBuilder.makeTruthVal(true, U->getType()); 1116 else 1117 Result = evalBinOp(state, Op, V2, RHS, U->getType()); 1118 1119 // Conjure a new symbol if necessary to recover precision. 1120 if (Result.isUnknown()){ 1121 DefinedOrUnknownSVal SymVal = 1122 svalBuilder.conjureSymbolVal(nullptr, U, LCtx, 1123 currBldrCtx->blockCount()); 1124 Result = SymVal; 1125 1126 // If the value is a location, ++/-- should always preserve 1127 // non-nullness. Check if the original value was non-null, and if so 1128 // propagate that constraint. 1129 if (Loc::isLocType(U->getType())) { 1130 DefinedOrUnknownSVal Constraint = 1131 svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType())); 1132 1133 if (!state->assume(Constraint, true)) { 1134 // It isn't feasible for the original value to be null. 1135 // Propagate this constraint. 1136 Constraint = svalBuilder.evalEQ(state, SymVal, 1137 svalBuilder.makeZeroVal(U->getType())); 1138 1139 state = state->assume(Constraint, false); 1140 assert(state); 1141 } 1142 } 1143 } 1144 1145 // Since the lvalue-to-rvalue conversion is explicit in the AST, 1146 // we bind an l-value if the operator is prefix and an lvalue (in C++). 1147 if (U->isGLValue()) 1148 state = state->BindExpr(U, LCtx, loc); 1149 else 1150 state = state->BindExpr(U, LCtx, U->isPostfix() ? V2 : Result); 1151 1152 // Perform the store. 1153 Bldr.takeNodes(N); 1154 ExplodedNodeSet Dst3; 1155 evalStore(Dst3, U, Ex, N, state, loc, Result); 1156 Bldr.addNodes(Dst3); 1157 } 1158 Dst.insert(Dst2); 1159 } 1160