xref: /llvm-project/clang/lib/StaticAnalyzer/Core/ExprEngineC.cpp (revision 21daada95079a37c7ca259fabfc735b6d1b362ad)
1 //=-- ExprEngineC.cpp - ExprEngine support for C expressions ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines ExprEngine's support for C expressions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ExprCXX.h"
14 #include "clang/AST/DeclCXX.h"
15 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
16 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
17 
18 using namespace clang;
19 using namespace ento;
20 using llvm::APSInt;
21 
22 /// Optionally conjure and return a symbol for offset when processing
23 /// an expression \p Expression.
24 /// If \p Other is a location, conjure a symbol for \p Symbol
25 /// (offset) if it is unknown so that memory arithmetic always
26 /// results in an ElementRegion.
27 /// \p Count The number of times the current basic block was visited.
28 static SVal conjureOffsetSymbolOnLocation(
29     SVal Symbol, SVal Other, Expr* Expression, SValBuilder &svalBuilder,
30     unsigned Count, const LocationContext *LCtx) {
31   QualType Ty = Expression->getType();
32   if (Other.getAs<Loc>() &&
33       Ty->isIntegralOrEnumerationType() &&
34       Symbol.isUnknown()) {
35     return svalBuilder.conjureSymbolVal(Expression, LCtx, Ty, Count);
36   }
37   return Symbol;
38 }
39 
40 void ExprEngine::VisitBinaryOperator(const BinaryOperator* B,
41                                      ExplodedNode *Pred,
42                                      ExplodedNodeSet &Dst) {
43 
44   Expr *LHS = B->getLHS()->IgnoreParens();
45   Expr *RHS = B->getRHS()->IgnoreParens();
46 
47   // FIXME: Prechecks eventually go in ::Visit().
48   ExplodedNodeSet CheckedSet;
49   ExplodedNodeSet Tmp2;
50   getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, B, *this);
51 
52   // With both the LHS and RHS evaluated, process the operation itself.
53   for (ExplodedNodeSet::iterator it=CheckedSet.begin(), ei=CheckedSet.end();
54          it != ei; ++it) {
55 
56     ProgramStateRef state = (*it)->getState();
57     const LocationContext *LCtx = (*it)->getLocationContext();
58     SVal LeftV = state->getSVal(LHS, LCtx);
59     SVal RightV = state->getSVal(RHS, LCtx);
60 
61     BinaryOperator::Opcode Op = B->getOpcode();
62 
63     if (Op == BO_Assign) {
64       // EXPERIMENTAL: "Conjured" symbols.
65       // FIXME: Handle structs.
66       if (RightV.isUnknown()) {
67         unsigned Count = currBldrCtx->blockCount();
68         RightV = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx,
69                                               Count);
70       }
71       // Simulate the effects of a "store":  bind the value of the RHS
72       // to the L-Value represented by the LHS.
73       SVal ExprVal = B->isGLValue() ? LeftV : RightV;
74       evalStore(Tmp2, B, LHS, *it, state->BindExpr(B, LCtx, ExprVal),
75                 LeftV, RightV);
76       continue;
77     }
78 
79     if (!B->isAssignmentOp()) {
80       StmtNodeBuilder Bldr(*it, Tmp2, *currBldrCtx);
81 
82       if (B->isAdditiveOp()) {
83         // TODO: This can be removed after we enable history tracking with
84         // SymSymExpr.
85         unsigned Count = currBldrCtx->blockCount();
86         RightV = conjureOffsetSymbolOnLocation(
87             RightV, LeftV, RHS, svalBuilder, Count, LCtx);
88         LeftV = conjureOffsetSymbolOnLocation(
89             LeftV, RightV, LHS, svalBuilder, Count, LCtx);
90       }
91 
92       // Although we don't yet model pointers-to-members, we do need to make
93       // sure that the members of temporaries have a valid 'this' pointer for
94       // other checks.
95       if (B->getOpcode() == BO_PtrMemD)
96         state = createTemporaryRegionIfNeeded(state, LCtx, LHS);
97 
98       // Process non-assignments except commas or short-circuited
99       // logical expressions (LAnd and LOr).
100       SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType());
101       if (!Result.isUnknown()) {
102         state = state->BindExpr(B, LCtx, Result);
103       } else {
104         // If we cannot evaluate the operation escape the operands.
105         state = escapeValues(state, LeftV, PSK_EscapeOther);
106         state = escapeValues(state, RightV, PSK_EscapeOther);
107       }
108 
109       Bldr.generateNode(B, *it, state);
110       continue;
111     }
112 
113     assert (B->isCompoundAssignmentOp());
114 
115     switch (Op) {
116       default:
117         llvm_unreachable("Invalid opcode for compound assignment.");
118       case BO_MulAssign: Op = BO_Mul; break;
119       case BO_DivAssign: Op = BO_Div; break;
120       case BO_RemAssign: Op = BO_Rem; break;
121       case BO_AddAssign: Op = BO_Add; break;
122       case BO_SubAssign: Op = BO_Sub; break;
123       case BO_ShlAssign: Op = BO_Shl; break;
124       case BO_ShrAssign: Op = BO_Shr; break;
125       case BO_AndAssign: Op = BO_And; break;
126       case BO_XorAssign: Op = BO_Xor; break;
127       case BO_OrAssign:  Op = BO_Or;  break;
128     }
129 
130     // Perform a load (the LHS).  This performs the checks for
131     // null dereferences, and so on.
132     ExplodedNodeSet Tmp;
133     SVal location = LeftV;
134     evalLoad(Tmp, B, LHS, *it, state, location);
135 
136     for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E;
137          ++I) {
138 
139       state = (*I)->getState();
140       const LocationContext *LCtx = (*I)->getLocationContext();
141       SVal V = state->getSVal(LHS, LCtx);
142 
143       // Get the computation type.
144       QualType CTy =
145         cast<CompoundAssignOperator>(B)->getComputationResultType();
146       CTy = getContext().getCanonicalType(CTy);
147 
148       QualType CLHSTy =
149         cast<CompoundAssignOperator>(B)->getComputationLHSType();
150       CLHSTy = getContext().getCanonicalType(CLHSTy);
151 
152       QualType LTy = getContext().getCanonicalType(LHS->getType());
153 
154       // Promote LHS.
155       V = svalBuilder.evalCast(V, CLHSTy, LTy);
156 
157       // Compute the result of the operation.
158       SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy),
159                                          B->getType(), CTy);
160 
161       // EXPERIMENTAL: "Conjured" symbols.
162       // FIXME: Handle structs.
163 
164       SVal LHSVal;
165 
166       if (Result.isUnknown()) {
167         // The symbolic value is actually for the type of the left-hand side
168         // expression, not the computation type, as this is the value the
169         // LValue on the LHS will bind to.
170         LHSVal = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx, LTy,
171                                               currBldrCtx->blockCount());
172         // However, we need to convert the symbol to the computation type.
173         Result = svalBuilder.evalCast(LHSVal, CTy, LTy);
174       }
175       else {
176         // The left-hand side may bind to a different value then the
177         // computation type.
178         LHSVal = svalBuilder.evalCast(Result, LTy, CTy);
179       }
180 
181       // In C++, assignment and compound assignment operators return an
182       // lvalue.
183       if (B->isGLValue())
184         state = state->BindExpr(B, LCtx, location);
185       else
186         state = state->BindExpr(B, LCtx, Result);
187 
188       evalStore(Tmp2, B, LHS, *I, state, location, LHSVal);
189     }
190   }
191 
192   // FIXME: postvisits eventually go in ::Visit()
193   getCheckerManager().runCheckersForPostStmt(Dst, Tmp2, B, *this);
194 }
195 
196 void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred,
197                                 ExplodedNodeSet &Dst) {
198 
199   CanQualType T = getContext().getCanonicalType(BE->getType());
200 
201   const BlockDecl *BD = BE->getBlockDecl();
202   // Get the value of the block itself.
203   SVal V = svalBuilder.getBlockPointer(BD, T,
204                                        Pred->getLocationContext(),
205                                        currBldrCtx->blockCount());
206 
207   ProgramStateRef State = Pred->getState();
208 
209   // If we created a new MemRegion for the block, we should explicitly bind
210   // the captured variables.
211   if (const BlockDataRegion *BDR =
212       dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) {
213 
214     BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(),
215                                               E = BDR->referenced_vars_end();
216 
217     auto CI = BD->capture_begin();
218     auto CE = BD->capture_end();
219     for (; I != E; ++I) {
220       const VarRegion *capturedR = I.getCapturedRegion();
221       const TypedValueRegion *originalR = I.getOriginalRegion();
222 
223       // If the capture had a copy expression, use the result of evaluating
224       // that expression, otherwise use the original value.
225       // We rely on the invariant that the block declaration's capture variables
226       // are a prefix of the BlockDataRegion's referenced vars (which may include
227       // referenced globals, etc.) to enable fast lookup of the capture for a
228       // given referenced var.
229       const Expr *copyExpr = nullptr;
230       if (CI != CE) {
231         assert(CI->getVariable() == capturedR->getDecl());
232         copyExpr = CI->getCopyExpr();
233         CI++;
234       }
235 
236       if (capturedR != originalR) {
237         SVal originalV;
238         const LocationContext *LCtx = Pred->getLocationContext();
239         if (copyExpr) {
240           originalV = State->getSVal(copyExpr, LCtx);
241         } else {
242           originalV = State->getSVal(loc::MemRegionVal(originalR));
243         }
244         State = State->bindLoc(loc::MemRegionVal(capturedR), originalV, LCtx);
245       }
246     }
247   }
248 
249   ExplodedNodeSet Tmp;
250   StmtNodeBuilder Bldr(Pred, Tmp, *currBldrCtx);
251   Bldr.generateNode(BE, Pred,
252                     State->BindExpr(BE, Pred->getLocationContext(), V),
253                     nullptr, ProgramPoint::PostLValueKind);
254 
255   // FIXME: Move all post/pre visits to ::Visit().
256   getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this);
257 }
258 
259 ProgramStateRef ExprEngine::handleLValueBitCast(
260     ProgramStateRef state, const Expr* Ex, const LocationContext* LCtx,
261     QualType T, QualType ExTy, const CastExpr* CastE, StmtNodeBuilder& Bldr,
262     ExplodedNode* Pred) {
263   if (T->isLValueReferenceType()) {
264     assert(!CastE->getType()->isLValueReferenceType());
265     ExTy = getContext().getLValueReferenceType(ExTy);
266   } else if (T->isRValueReferenceType()) {
267     assert(!CastE->getType()->isRValueReferenceType());
268     ExTy = getContext().getRValueReferenceType(ExTy);
269   }
270   // Delegate to SValBuilder to process.
271   SVal OrigV = state->getSVal(Ex, LCtx);
272   SVal V = svalBuilder.evalCast(OrigV, T, ExTy);
273   // Negate the result if we're treating the boolean as a signed i1
274   if (CastE->getCastKind() == CK_BooleanToSignedIntegral)
275     V = evalMinus(V);
276   state = state->BindExpr(CastE, LCtx, V);
277   if (V.isUnknown() && !OrigV.isUnknown()) {
278     state = escapeValues(state, OrigV, PSK_EscapeOther);
279   }
280   Bldr.generateNode(CastE, Pred, state);
281 
282   return state;
283 }
284 
285 ProgramStateRef ExprEngine::handleLVectorSplat(
286     ProgramStateRef state, const LocationContext* LCtx, const CastExpr* CastE,
287     StmtNodeBuilder &Bldr, ExplodedNode* Pred) {
288   // Recover some path sensitivity by conjuring a new value.
289   QualType resultType = CastE->getType();
290   if (CastE->isGLValue())
291     resultType = getContext().getPointerType(resultType);
292   SVal result = svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx,
293                                              resultType,
294                                              currBldrCtx->blockCount());
295   state = state->BindExpr(CastE, LCtx, result);
296   Bldr.generateNode(CastE, Pred, state);
297 
298   return state;
299 }
300 
301 void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex,
302                            ExplodedNode *Pred, ExplodedNodeSet &Dst) {
303 
304   ExplodedNodeSet dstPreStmt;
305   getCheckerManager().runCheckersForPreStmt(dstPreStmt, Pred, CastE, *this);
306 
307   if (CastE->getCastKind() == CK_LValueToRValue) {
308     for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
309          I!=E; ++I) {
310       ExplodedNode *subExprNode = *I;
311       ProgramStateRef state = subExprNode->getState();
312       const LocationContext *LCtx = subExprNode->getLocationContext();
313       evalLoad(Dst, CastE, CastE, subExprNode, state, state->getSVal(Ex, LCtx));
314     }
315     return;
316   }
317 
318   // All other casts.
319   QualType T = CastE->getType();
320   QualType ExTy = Ex->getType();
321 
322   if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE))
323     T = ExCast->getTypeAsWritten();
324 
325   StmtNodeBuilder Bldr(dstPreStmt, Dst, *currBldrCtx);
326   for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
327        I != E; ++I) {
328 
329     Pred = *I;
330     ProgramStateRef state = Pred->getState();
331     const LocationContext *LCtx = Pred->getLocationContext();
332 
333     switch (CastE->getCastKind()) {
334       case CK_LValueToRValue:
335         llvm_unreachable("LValueToRValue casts handled earlier.");
336       case CK_ToVoid:
337         continue;
338         // The analyzer doesn't do anything special with these casts,
339         // since it understands retain/release semantics already.
340       case CK_ARCProduceObject:
341       case CK_ARCConsumeObject:
342       case CK_ARCReclaimReturnedObject:
343       case CK_ARCExtendBlockObject: // Fall-through.
344       case CK_CopyAndAutoreleaseBlockObject:
345         // The analyser can ignore atomic casts for now, although some future
346         // checkers may want to make certain that you're not modifying the same
347         // value through atomic and nonatomic pointers.
348       case CK_AtomicToNonAtomic:
349       case CK_NonAtomicToAtomic:
350         // True no-ops.
351       case CK_NoOp:
352       case CK_ConstructorConversion:
353       case CK_UserDefinedConversion:
354       case CK_FunctionToPointerDecay:
355       case CK_BuiltinFnToFnPtr: {
356         // Copy the SVal of Ex to CastE.
357         ProgramStateRef state = Pred->getState();
358         const LocationContext *LCtx = Pred->getLocationContext();
359         SVal V = state->getSVal(Ex, LCtx);
360         state = state->BindExpr(CastE, LCtx, V);
361         Bldr.generateNode(CastE, Pred, state);
362         continue;
363       }
364       case CK_MemberPointerToBoolean:
365       case CK_PointerToBoolean: {
366         SVal V = state->getSVal(Ex, LCtx);
367         auto PTMSV = V.getAs<nonloc::PointerToMember>();
368         if (PTMSV)
369           V = svalBuilder.makeTruthVal(!PTMSV->isNullMemberPointer(), ExTy);
370         if (V.isUndef() || PTMSV) {
371           state = state->BindExpr(CastE, LCtx, V);
372           Bldr.generateNode(CastE, Pred, state);
373           continue;
374         }
375         // Explicitly proceed with default handler for this case cascade.
376         state =
377             handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred);
378         continue;
379       }
380       case CK_Dependent:
381       case CK_ArrayToPointerDecay:
382       case CK_BitCast:
383       case CK_LValueToRValueBitCast:
384       case CK_AddressSpaceConversion:
385       case CK_BooleanToSignedIntegral:
386       case CK_IntegralToPointer:
387       case CK_PointerToIntegral: {
388         SVal V = state->getSVal(Ex, LCtx);
389         if (V.getAs<nonloc::PointerToMember>()) {
390           state = state->BindExpr(CastE, LCtx, UnknownVal());
391           Bldr.generateNode(CastE, Pred, state);
392           continue;
393         }
394         // Explicitly proceed with default handler for this case cascade.
395         state =
396             handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred);
397         continue;
398       }
399       case CK_IntegralToBoolean:
400       case CK_IntegralToFloating:
401       case CK_FloatingToIntegral:
402       case CK_FloatingToBoolean:
403       case CK_FloatingCast:
404       case CK_FloatingRealToComplex:
405       case CK_FloatingComplexToReal:
406       case CK_FloatingComplexToBoolean:
407       case CK_FloatingComplexCast:
408       case CK_FloatingComplexToIntegralComplex:
409       case CK_IntegralRealToComplex:
410       case CK_IntegralComplexToReal:
411       case CK_IntegralComplexToBoolean:
412       case CK_IntegralComplexCast:
413       case CK_IntegralComplexToFloatingComplex:
414       case CK_CPointerToObjCPointerCast:
415       case CK_BlockPointerToObjCPointerCast:
416       case CK_AnyPointerToBlockPointerCast:
417       case CK_ObjCObjectLValueCast:
418       case CK_ZeroToOCLOpaqueType:
419       case CK_IntToOCLSampler:
420       case CK_LValueBitCast:
421       case CK_FloatingToFixedPoint:
422       case CK_FixedPointToFloating:
423       case CK_FixedPointCast:
424       case CK_FixedPointToBoolean:
425       case CK_FixedPointToIntegral:
426       case CK_IntegralToFixedPoint: {
427         state =
428             handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred);
429         continue;
430       }
431       case CK_IntegralCast: {
432         // Delegate to SValBuilder to process.
433         SVal V = state->getSVal(Ex, LCtx);
434         V = svalBuilder.evalIntegralCast(state, V, T, ExTy);
435         state = state->BindExpr(CastE, LCtx, V);
436         Bldr.generateNode(CastE, Pred, state);
437         continue;
438       }
439       case CK_DerivedToBase:
440       case CK_UncheckedDerivedToBase: {
441         // For DerivedToBase cast, delegate to the store manager.
442         SVal val = state->getSVal(Ex, LCtx);
443         val = getStoreManager().evalDerivedToBase(val, CastE);
444         state = state->BindExpr(CastE, LCtx, val);
445         Bldr.generateNode(CastE, Pred, state);
446         continue;
447       }
448       // Handle C++ dyn_cast.
449       case CK_Dynamic: {
450         SVal val = state->getSVal(Ex, LCtx);
451 
452         // Compute the type of the result.
453         QualType resultType = CastE->getType();
454         if (CastE->isGLValue())
455           resultType = getContext().getPointerType(resultType);
456 
457         bool Failed = false;
458 
459         // Check if the value being cast evaluates to 0.
460         if (val.isZeroConstant())
461           Failed = true;
462         // Else, evaluate the cast.
463         else
464           val = getStoreManager().attemptDownCast(val, T, Failed);
465 
466         if (Failed) {
467           if (T->isReferenceType()) {
468             // A bad_cast exception is thrown if input value is a reference.
469             // Currently, we model this, by generating a sink.
470             Bldr.generateSink(CastE, Pred, state);
471             continue;
472           } else {
473             // If the cast fails on a pointer, bind to 0.
474             state = state->BindExpr(CastE, LCtx, svalBuilder.makeNull());
475           }
476         } else {
477           // If we don't know if the cast succeeded, conjure a new symbol.
478           if (val.isUnknown()) {
479             DefinedOrUnknownSVal NewSym =
480               svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, resultType,
481                                            currBldrCtx->blockCount());
482             state = state->BindExpr(CastE, LCtx, NewSym);
483           } else
484             // Else, bind to the derived region value.
485             state = state->BindExpr(CastE, LCtx, val);
486         }
487         Bldr.generateNode(CastE, Pred, state);
488         continue;
489       }
490       case CK_BaseToDerived: {
491         SVal val = state->getSVal(Ex, LCtx);
492         QualType resultType = CastE->getType();
493         if (CastE->isGLValue())
494           resultType = getContext().getPointerType(resultType);
495 
496         bool Failed = false;
497 
498         if (!val.isConstant()) {
499           val = getStoreManager().attemptDownCast(val, T, Failed);
500         }
501 
502         // Failed to cast or the result is unknown, fall back to conservative.
503         if (Failed || val.isUnknown()) {
504           val =
505             svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, resultType,
506                                          currBldrCtx->blockCount());
507         }
508         state = state->BindExpr(CastE, LCtx, val);
509         Bldr.generateNode(CastE, Pred, state);
510         continue;
511       }
512       case CK_NullToPointer: {
513         SVal V = svalBuilder.makeNull();
514         state = state->BindExpr(CastE, LCtx, V);
515         Bldr.generateNode(CastE, Pred, state);
516         continue;
517       }
518       case CK_NullToMemberPointer: {
519         SVal V = svalBuilder.getMemberPointer(nullptr);
520         state = state->BindExpr(CastE, LCtx, V);
521         Bldr.generateNode(CastE, Pred, state);
522         continue;
523       }
524       case CK_DerivedToBaseMemberPointer:
525       case CK_BaseToDerivedMemberPointer:
526       case CK_ReinterpretMemberPointer: {
527         SVal V = state->getSVal(Ex, LCtx);
528         if (auto PTMSV = V.getAs<nonloc::PointerToMember>()) {
529           SVal CastedPTMSV =
530               svalBuilder.makePointerToMember(getBasicVals().accumCXXBase(
531                   CastE->path(), *PTMSV, CastE->getCastKind()));
532           state = state->BindExpr(CastE, LCtx, CastedPTMSV);
533           Bldr.generateNode(CastE, Pred, state);
534           continue;
535         }
536         // Explicitly proceed with default handler for this case cascade.
537         state = handleLVectorSplat(state, LCtx, CastE, Bldr, Pred);
538         continue;
539       }
540       // Various C++ casts that are not handled yet.
541       case CK_ToUnion:
542       case CK_VectorSplat: {
543         state = handleLVectorSplat(state, LCtx, CastE, Bldr, Pred);
544         continue;
545       }
546     }
547   }
548 }
549 
550 void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr *CL,
551                                           ExplodedNode *Pred,
552                                           ExplodedNodeSet &Dst) {
553   StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
554 
555   ProgramStateRef State = Pred->getState();
556   const LocationContext *LCtx = Pred->getLocationContext();
557 
558   const Expr *Init = CL->getInitializer();
559   SVal V = State->getSVal(CL->getInitializer(), LCtx);
560 
561   if (isa<CXXConstructExpr>(Init) || isa<CXXStdInitializerListExpr>(Init)) {
562     // No work needed. Just pass the value up to this expression.
563   } else {
564     assert(isa<InitListExpr>(Init));
565     Loc CLLoc = State->getLValue(CL, LCtx);
566     State = State->bindLoc(CLLoc, V, LCtx);
567 
568     if (CL->isGLValue())
569       V = CLLoc;
570   }
571 
572   B.generateNode(CL, Pred, State->BindExpr(CL, LCtx, V));
573 }
574 
575 void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred,
576                                ExplodedNodeSet &Dst) {
577   if (isa<TypedefNameDecl>(*DS->decl_begin())) {
578     // C99 6.7.7 "Any array size expressions associated with variable length
579     // array declarators are evaluated each time the declaration of the typedef
580     // name is reached in the order of execution."
581     // The checkers should know about typedef to be able to handle VLA size
582     // expressions.
583     ExplodedNodeSet DstPre;
584     getCheckerManager().runCheckersForPreStmt(DstPre, Pred, DS, *this);
585     getCheckerManager().runCheckersForPostStmt(Dst, DstPre, DS, *this);
586     return;
587   }
588 
589   // Assumption: The CFG has one DeclStmt per Decl.
590   const VarDecl *VD = dyn_cast_or_null<VarDecl>(*DS->decl_begin());
591 
592   if (!VD) {
593     //TODO:AZ: remove explicit insertion after refactoring is done.
594     Dst.insert(Pred);
595     return;
596   }
597 
598   // FIXME: all pre/post visits should eventually be handled by ::Visit().
599   ExplodedNodeSet dstPreVisit;
600   getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, DS, *this);
601 
602   ExplodedNodeSet dstEvaluated;
603   StmtNodeBuilder B(dstPreVisit, dstEvaluated, *currBldrCtx);
604   for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
605        I!=E; ++I) {
606     ExplodedNode *N = *I;
607     ProgramStateRef state = N->getState();
608     const LocationContext *LC = N->getLocationContext();
609 
610     // Decls without InitExpr are not initialized explicitly.
611     if (const Expr *InitEx = VD->getInit()) {
612 
613       // Note in the state that the initialization has occurred.
614       ExplodedNode *UpdatedN = N;
615       SVal InitVal = state->getSVal(InitEx, LC);
616 
617       assert(DS->isSingleDecl());
618       if (getObjectUnderConstruction(state, DS, LC)) {
619         state = finishObjectConstruction(state, DS, LC);
620         // We constructed the object directly in the variable.
621         // No need to bind anything.
622         B.generateNode(DS, UpdatedN, state);
623       } else {
624         // Recover some path-sensitivity if a scalar value evaluated to
625         // UnknownVal.
626         if (InitVal.isUnknown()) {
627           QualType Ty = InitEx->getType();
628           if (InitEx->isGLValue()) {
629             Ty = getContext().getPointerType(Ty);
630           }
631 
632           InitVal = svalBuilder.conjureSymbolVal(nullptr, InitEx, LC, Ty,
633                                                  currBldrCtx->blockCount());
634         }
635 
636 
637         B.takeNodes(UpdatedN);
638         ExplodedNodeSet Dst2;
639         evalBind(Dst2, DS, UpdatedN, state->getLValue(VD, LC), InitVal, true);
640         B.addNodes(Dst2);
641       }
642     }
643     else {
644       B.generateNode(DS, N, state);
645     }
646   }
647 
648   getCheckerManager().runCheckersForPostStmt(Dst, B.getResults(), DS, *this);
649 }
650 
651 void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred,
652                                   ExplodedNodeSet &Dst) {
653   // This method acts upon CFG elements for logical operators && and ||
654   // and attaches the value (true or false) to them as expressions.
655   // It doesn't produce any state splits.
656   // If we made it that far, we're past the point when we modeled the short
657   // circuit. It means that we should have precise knowledge about whether
658   // we've short-circuited. If we did, we already know the value we need to
659   // bind. If we didn't, the value of the RHS (casted to the boolean type)
660   // is the answer.
661   // Currently this method tries to figure out whether we've short-circuited
662   // by looking at the ExplodedGraph. This method is imperfect because there
663   // could inevitably have been merges that would have resulted in multiple
664   // potential path traversal histories. We bail out when we fail.
665   // Due to this ambiguity, a more reliable solution would have been to
666   // track the short circuit operation history path-sensitively until
667   // we evaluate the respective logical operator.
668   assert(B->getOpcode() == BO_LAnd ||
669          B->getOpcode() == BO_LOr);
670 
671   StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
672   ProgramStateRef state = Pred->getState();
673 
674   if (B->getType()->isVectorType()) {
675     // FIXME: We do not model vector arithmetic yet. When adding support for
676     // that, note that the CFG-based reasoning below does not apply, because
677     // logical operators on vectors are not short-circuit. Currently they are
678     // modeled as short-circuit in Clang CFG but this is incorrect.
679     // Do not set the value for the expression. It'd be UnknownVal by default.
680     Bldr.generateNode(B, Pred, state);
681     return;
682   }
683 
684   ExplodedNode *N = Pred;
685   while (!N->getLocation().getAs<BlockEntrance>()) {
686     ProgramPoint P = N->getLocation();
687     assert(P.getAs<PreStmt>()|| P.getAs<PreStmtPurgeDeadSymbols>());
688     (void) P;
689     if (N->pred_size() != 1) {
690       // We failed to track back where we came from.
691       Bldr.generateNode(B, Pred, state);
692       return;
693     }
694     N = *N->pred_begin();
695   }
696 
697   if (N->pred_size() != 1) {
698     // We failed to track back where we came from.
699     Bldr.generateNode(B, Pred, state);
700     return;
701   }
702 
703   N = *N->pred_begin();
704   BlockEdge BE = N->getLocation().castAs<BlockEdge>();
705   SVal X;
706 
707   // Determine the value of the expression by introspecting how we
708   // got this location in the CFG.  This requires looking at the previous
709   // block we were in and what kind of control-flow transfer was involved.
710   const CFGBlock *SrcBlock = BE.getSrc();
711   // The only terminator (if there is one) that makes sense is a logical op.
712   CFGTerminator T = SrcBlock->getTerminator();
713   if (const BinaryOperator *Term = cast_or_null<BinaryOperator>(T.getStmt())) {
714     (void) Term;
715     assert(Term->isLogicalOp());
716     assert(SrcBlock->succ_size() == 2);
717     // Did we take the true or false branch?
718     unsigned constant = (*SrcBlock->succ_begin() == BE.getDst()) ? 1 : 0;
719     X = svalBuilder.makeIntVal(constant, B->getType());
720   }
721   else {
722     // If there is no terminator, by construction the last statement
723     // in SrcBlock is the value of the enclosing expression.
724     // However, we still need to constrain that value to be 0 or 1.
725     assert(!SrcBlock->empty());
726     CFGStmt Elem = SrcBlock->rbegin()->castAs<CFGStmt>();
727     const Expr *RHS = cast<Expr>(Elem.getStmt());
728     SVal RHSVal = N->getState()->getSVal(RHS, Pred->getLocationContext());
729 
730     if (RHSVal.isUndef()) {
731       X = RHSVal;
732     } else {
733       // We evaluate "RHSVal != 0" expression which result in 0 if the value is
734       // known to be false, 1 if the value is known to be true and a new symbol
735       // when the assumption is unknown.
736       nonloc::ConcreteInt Zero(getBasicVals().getValue(0, B->getType()));
737       X = evalBinOp(N->getState(), BO_NE,
738                     svalBuilder.evalCast(RHSVal, B->getType(), RHS->getType()),
739                     Zero, B->getType());
740     }
741   }
742   Bldr.generateNode(B, Pred, state->BindExpr(B, Pred->getLocationContext(), X));
743 }
744 
745 void ExprEngine::VisitInitListExpr(const InitListExpr *IE,
746                                    ExplodedNode *Pred,
747                                    ExplodedNodeSet &Dst) {
748   StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
749 
750   ProgramStateRef state = Pred->getState();
751   const LocationContext *LCtx = Pred->getLocationContext();
752   QualType T = getContext().getCanonicalType(IE->getType());
753   unsigned NumInitElements = IE->getNumInits();
754 
755   if (!IE->isGLValue() && !IE->isTransparent() &&
756       (T->isArrayType() || T->isRecordType() || T->isVectorType() ||
757        T->isAnyComplexType())) {
758     llvm::ImmutableList<SVal> vals = getBasicVals().getEmptySValList();
759 
760     // Handle base case where the initializer has no elements.
761     // e.g: static int* myArray[] = {};
762     if (NumInitElements == 0) {
763       SVal V = svalBuilder.makeCompoundVal(T, vals);
764       B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
765       return;
766     }
767 
768     for (InitListExpr::const_reverse_iterator it = IE->rbegin(),
769          ei = IE->rend(); it != ei; ++it) {
770       SVal V = state->getSVal(cast<Expr>(*it), LCtx);
771       vals = getBasicVals().prependSVal(V, vals);
772     }
773 
774     B.generateNode(IE, Pred,
775                    state->BindExpr(IE, LCtx,
776                                    svalBuilder.makeCompoundVal(T, vals)));
777     return;
778   }
779 
780   // Handle scalars: int{5} and int{} and GLvalues.
781   // Note, if the InitListExpr is a GLvalue, it means that there is an address
782   // representing it, so it must have a single init element.
783   assert(NumInitElements <= 1);
784 
785   SVal V;
786   if (NumInitElements == 0)
787     V = getSValBuilder().makeZeroVal(T);
788   else
789     V = state->getSVal(IE->getInit(0), LCtx);
790 
791   B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
792 }
793 
794 void ExprEngine::VisitGuardedExpr(const Expr *Ex,
795                                   const Expr *L,
796                                   const Expr *R,
797                                   ExplodedNode *Pred,
798                                   ExplodedNodeSet &Dst) {
799   assert(L && R);
800 
801   StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
802   ProgramStateRef state = Pred->getState();
803   const LocationContext *LCtx = Pred->getLocationContext();
804   const CFGBlock *SrcBlock = nullptr;
805 
806   // Find the predecessor block.
807   ProgramStateRef SrcState = state;
808   for (const ExplodedNode *N = Pred ; N ; N = *N->pred_begin()) {
809     ProgramPoint PP = N->getLocation();
810     if (PP.getAs<PreStmtPurgeDeadSymbols>() || PP.getAs<BlockEntrance>()) {
811       // If the state N has multiple predecessors P, it means that successors
812       // of P are all equivalent.
813       // In turn, that means that all nodes at P are equivalent in terms
814       // of observable behavior at N, and we can follow any of them.
815       // FIXME: a more robust solution which does not walk up the tree.
816       continue;
817     }
818     SrcBlock = PP.castAs<BlockEdge>().getSrc();
819     SrcState = N->getState();
820     break;
821   }
822 
823   assert(SrcBlock && "missing function entry");
824 
825   // Find the last expression in the predecessor block.  That is the
826   // expression that is used for the value of the ternary expression.
827   bool hasValue = false;
828   SVal V;
829 
830   for (CFGElement CE : llvm::reverse(*SrcBlock)) {
831     if (Optional<CFGStmt> CS = CE.getAs<CFGStmt>()) {
832       const Expr *ValEx = cast<Expr>(CS->getStmt());
833       ValEx = ValEx->IgnoreParens();
834 
835       // For GNU extension '?:' operator, the left hand side will be an
836       // OpaqueValueExpr, so get the underlying expression.
837       if (const OpaqueValueExpr *OpaqueEx = dyn_cast<OpaqueValueExpr>(L))
838         L = OpaqueEx->getSourceExpr();
839 
840       // If the last expression in the predecessor block matches true or false
841       // subexpression, get its the value.
842       if (ValEx == L->IgnoreParens() || ValEx == R->IgnoreParens()) {
843         hasValue = true;
844         V = SrcState->getSVal(ValEx, LCtx);
845       }
846       break;
847     }
848   }
849 
850   if (!hasValue)
851     V = svalBuilder.conjureSymbolVal(nullptr, Ex, LCtx,
852                                      currBldrCtx->blockCount());
853 
854   // Generate a new node with the binding from the appropriate path.
855   B.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V, true));
856 }
857 
858 void ExprEngine::
859 VisitOffsetOfExpr(const OffsetOfExpr *OOE,
860                   ExplodedNode *Pred, ExplodedNodeSet &Dst) {
861   StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
862   Expr::EvalResult Result;
863   if (OOE->EvaluateAsInt(Result, getContext())) {
864     APSInt IV = Result.Val.getInt();
865     assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType()));
866     assert(OOE->getType()->castAs<BuiltinType>()->isInteger());
867     assert(IV.isSigned() == OOE->getType()->isSignedIntegerType());
868     SVal X = svalBuilder.makeIntVal(IV);
869     B.generateNode(OOE, Pred,
870                    Pred->getState()->BindExpr(OOE, Pred->getLocationContext(),
871                                               X));
872   }
873   // FIXME: Handle the case where __builtin_offsetof is not a constant.
874 }
875 
876 
877 void ExprEngine::
878 VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *Ex,
879                               ExplodedNode *Pred,
880                               ExplodedNodeSet &Dst) {
881   // FIXME: Prechecks eventually go in ::Visit().
882   ExplodedNodeSet CheckedSet;
883   getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, Ex, *this);
884 
885   ExplodedNodeSet EvalSet;
886   StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx);
887 
888   QualType T = Ex->getTypeOfArgument();
889 
890   for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end();
891        I != E; ++I) {
892     if (Ex->getKind() == UETT_SizeOf) {
893       if (!T->isIncompleteType() && !T->isConstantSizeType()) {
894         assert(T->isVariableArrayType() && "Unknown non-constant-sized type.");
895 
896         // FIXME: Add support for VLA type arguments and VLA expressions.
897         // When that happens, we should probably refactor VLASizeChecker's code.
898         continue;
899       } else if (T->getAs<ObjCObjectType>()) {
900         // Some code tries to take the sizeof an ObjCObjectType, relying that
901         // the compiler has laid out its representation.  Just report Unknown
902         // for these.
903         continue;
904       }
905     }
906 
907     APSInt Value = Ex->EvaluateKnownConstInt(getContext());
908     CharUnits amt = CharUnits::fromQuantity(Value.getZExtValue());
909 
910     ProgramStateRef state = (*I)->getState();
911     state = state->BindExpr(Ex, (*I)->getLocationContext(),
912                             svalBuilder.makeIntVal(amt.getQuantity(),
913                                                    Ex->getType()));
914     Bldr.generateNode(Ex, *I, state);
915   }
916 
917   getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, Ex, *this);
918 }
919 
920 void ExprEngine::handleUOExtension(ExplodedNodeSet::iterator I,
921                                    const UnaryOperator *U,
922                                    StmtNodeBuilder &Bldr) {
923   // FIXME: We can probably just have some magic in Environment::getSVal()
924   // that propagates values, instead of creating a new node here.
925   //
926   // Unary "+" is a no-op, similar to a parentheses.  We still have places
927   // where it may be a block-level expression, so we need to
928   // generate an extra node that just propagates the value of the
929   // subexpression.
930   const Expr *Ex = U->getSubExpr()->IgnoreParens();
931   ProgramStateRef state = (*I)->getState();
932   const LocationContext *LCtx = (*I)->getLocationContext();
933   Bldr.generateNode(U, *I, state->BindExpr(U, LCtx,
934                                            state->getSVal(Ex, LCtx)));
935 }
936 
937 void ExprEngine::VisitUnaryOperator(const UnaryOperator* U, ExplodedNode *Pred,
938                                     ExplodedNodeSet &Dst) {
939   // FIXME: Prechecks eventually go in ::Visit().
940   ExplodedNodeSet CheckedSet;
941   getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, U, *this);
942 
943   ExplodedNodeSet EvalSet;
944   StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx);
945 
946   for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end();
947        I != E; ++I) {
948     switch (U->getOpcode()) {
949     default: {
950       Bldr.takeNodes(*I);
951       ExplodedNodeSet Tmp;
952       VisitIncrementDecrementOperator(U, *I, Tmp);
953       Bldr.addNodes(Tmp);
954       break;
955     }
956     case UO_Real: {
957       const Expr *Ex = U->getSubExpr()->IgnoreParens();
958 
959       // FIXME: We don't have complex SValues yet.
960       if (Ex->getType()->isAnyComplexType()) {
961         // Just report "Unknown."
962         break;
963       }
964 
965       // For all other types, UO_Real is an identity operation.
966       assert (U->getType() == Ex->getType());
967       ProgramStateRef state = (*I)->getState();
968       const LocationContext *LCtx = (*I)->getLocationContext();
969       Bldr.generateNode(U, *I, state->BindExpr(U, LCtx,
970                                                state->getSVal(Ex, LCtx)));
971       break;
972     }
973 
974     case UO_Imag: {
975       const Expr *Ex = U->getSubExpr()->IgnoreParens();
976       // FIXME: We don't have complex SValues yet.
977       if (Ex->getType()->isAnyComplexType()) {
978         // Just report "Unknown."
979         break;
980       }
981       // For all other types, UO_Imag returns 0.
982       ProgramStateRef state = (*I)->getState();
983       const LocationContext *LCtx = (*I)->getLocationContext();
984       SVal X = svalBuilder.makeZeroVal(Ex->getType());
985       Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, X));
986       break;
987     }
988 
989     case UO_AddrOf: {
990       // Process pointer-to-member address operation.
991       const Expr *Ex = U->getSubExpr()->IgnoreParens();
992       if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex)) {
993         const ValueDecl *VD = DRE->getDecl();
994 
995         if (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) ||
996             isa<IndirectFieldDecl>(VD)) {
997           ProgramStateRef State = (*I)->getState();
998           const LocationContext *LCtx = (*I)->getLocationContext();
999           SVal SV = svalBuilder.getMemberPointer(cast<NamedDecl>(VD));
1000           Bldr.generateNode(U, *I, State->BindExpr(U, LCtx, SV));
1001           break;
1002         }
1003       }
1004       // Explicitly proceed with default handler for this case cascade.
1005       handleUOExtension(I, U, Bldr);
1006       break;
1007     }
1008     case UO_Plus:
1009       assert(!U->isGLValue());
1010       LLVM_FALLTHROUGH;
1011     case UO_Deref:
1012     case UO_Extension: {
1013       handleUOExtension(I, U, Bldr);
1014       break;
1015     }
1016 
1017     case UO_LNot:
1018     case UO_Minus:
1019     case UO_Not: {
1020       assert (!U->isGLValue());
1021       const Expr *Ex = U->getSubExpr()->IgnoreParens();
1022       ProgramStateRef state = (*I)->getState();
1023       const LocationContext *LCtx = (*I)->getLocationContext();
1024 
1025       // Get the value of the subexpression.
1026       SVal V = state->getSVal(Ex, LCtx);
1027 
1028       if (V.isUnknownOrUndef()) {
1029         Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V));
1030         break;
1031       }
1032 
1033       switch (U->getOpcode()) {
1034         default:
1035           llvm_unreachable("Invalid Opcode.");
1036         case UO_Not:
1037           // FIXME: Do we need to handle promotions?
1038           state = state->BindExpr(U, LCtx, evalComplement(V.castAs<NonLoc>()));
1039           break;
1040         case UO_Minus:
1041           // FIXME: Do we need to handle promotions?
1042           state = state->BindExpr(U, LCtx, evalMinus(V.castAs<NonLoc>()));
1043           break;
1044         case UO_LNot:
1045           // C99 6.5.3.3: "The expression !E is equivalent to (0==E)."
1046           //
1047           //  Note: technically we do "E == 0", but this is the same in the
1048           //    transfer functions as "0 == E".
1049           SVal Result;
1050           if (Optional<Loc> LV = V.getAs<Loc>()) {
1051             Loc X = svalBuilder.makeNullWithType(Ex->getType());
1052             Result = evalBinOp(state, BO_EQ, *LV, X, U->getType());
1053           } else if (Ex->getType()->isFloatingType()) {
1054             // FIXME: handle floating point types.
1055             Result = UnknownVal();
1056           } else {
1057             nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType()));
1058             Result = evalBinOp(state, BO_EQ, V.castAs<NonLoc>(), X,
1059                                U->getType());
1060           }
1061 
1062           state = state->BindExpr(U, LCtx, Result);
1063           break;
1064       }
1065       Bldr.generateNode(U, *I, state);
1066       break;
1067     }
1068     }
1069   }
1070 
1071   getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, U, *this);
1072 }
1073 
1074 void ExprEngine::VisitIncrementDecrementOperator(const UnaryOperator* U,
1075                                                  ExplodedNode *Pred,
1076                                                  ExplodedNodeSet &Dst) {
1077   // Handle ++ and -- (both pre- and post-increment).
1078   assert (U->isIncrementDecrementOp());
1079   const Expr *Ex = U->getSubExpr()->IgnoreParens();
1080 
1081   const LocationContext *LCtx = Pred->getLocationContext();
1082   ProgramStateRef state = Pred->getState();
1083   SVal loc = state->getSVal(Ex, LCtx);
1084 
1085   // Perform a load.
1086   ExplodedNodeSet Tmp;
1087   evalLoad(Tmp, U, Ex, Pred, state, loc);
1088 
1089   ExplodedNodeSet Dst2;
1090   StmtNodeBuilder Bldr(Tmp, Dst2, *currBldrCtx);
1091   for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end();I!=E;++I) {
1092 
1093     state = (*I)->getState();
1094     assert(LCtx == (*I)->getLocationContext());
1095     SVal V2_untested = state->getSVal(Ex, LCtx);
1096 
1097     // Propagate unknown and undefined values.
1098     if (V2_untested.isUnknownOrUndef()) {
1099       state = state->BindExpr(U, LCtx, V2_untested);
1100 
1101       // Perform the store, so that the uninitialized value detection happens.
1102       Bldr.takeNodes(*I);
1103       ExplodedNodeSet Dst3;
1104       evalStore(Dst3, U, Ex, *I, state, loc, V2_untested);
1105       Bldr.addNodes(Dst3);
1106 
1107       continue;
1108     }
1109     DefinedSVal V2 = V2_untested.castAs<DefinedSVal>();
1110 
1111     // Handle all other values.
1112     BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add : BO_Sub;
1113 
1114     // If the UnaryOperator has non-location type, use its type to create the
1115     // constant value. If the UnaryOperator has location type, create the
1116     // constant with int type and pointer width.
1117     SVal RHS;
1118     SVal Result;
1119 
1120     if (U->getType()->isAnyPointerType())
1121       RHS = svalBuilder.makeArrayIndex(1);
1122     else if (U->getType()->isIntegralOrEnumerationType())
1123       RHS = svalBuilder.makeIntVal(1, U->getType());
1124     else
1125       RHS = UnknownVal();
1126 
1127     // The use of an operand of type bool with the ++ operators is deprecated
1128     // but valid until C++17. And if the operand of the ++ operator is of type
1129     // bool, it is set to true until C++17. Note that for '_Bool', it is also
1130     // set to true when it encounters ++ operator.
1131     if (U->getType()->isBooleanType() && U->isIncrementOp())
1132       Result = svalBuilder.makeTruthVal(true, U->getType());
1133     else
1134       Result = evalBinOp(state, Op, V2, RHS, U->getType());
1135 
1136     // Conjure a new symbol if necessary to recover precision.
1137     if (Result.isUnknown()){
1138       DefinedOrUnknownSVal SymVal =
1139         svalBuilder.conjureSymbolVal(nullptr, U, LCtx,
1140                                      currBldrCtx->blockCount());
1141       Result = SymVal;
1142 
1143       // If the value is a location, ++/-- should always preserve
1144       // non-nullness.  Check if the original value was non-null, and if so
1145       // propagate that constraint.
1146       if (Loc::isLocType(U->getType())) {
1147         DefinedOrUnknownSVal Constraint =
1148         svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType()));
1149 
1150         if (!state->assume(Constraint, true)) {
1151           // It isn't feasible for the original value to be null.
1152           // Propagate this constraint.
1153           Constraint = svalBuilder.evalEQ(state, SymVal,
1154                                        svalBuilder.makeZeroVal(U->getType()));
1155 
1156           state = state->assume(Constraint, false);
1157           assert(state);
1158         }
1159       }
1160     }
1161 
1162     // Since the lvalue-to-rvalue conversion is explicit in the AST,
1163     // we bind an l-value if the operator is prefix and an lvalue (in C++).
1164     if (U->isGLValue())
1165       state = state->BindExpr(U, LCtx, loc);
1166     else
1167       state = state->BindExpr(U, LCtx, U->isPostfix() ? V2 : Result);
1168 
1169     // Perform the store.
1170     Bldr.takeNodes(*I);
1171     ExplodedNodeSet Dst3;
1172     evalStore(Dst3, U, Ex, *I, state, loc, Result);
1173     Bldr.addNodes(Dst3);
1174   }
1175   Dst.insert(Dst2);
1176 }
1177