xref: /llvm-project/clang/lib/StaticAnalyzer/Core/ExprEngine.cpp (revision db81e8c42e121e62a00587b12d2b972dfcfb98c0)
1 //===- ExprEngine.cpp - Path-Sensitive Expression-Level Dataflow ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines a meta-engine for path-sensitive dataflow analysis that
10 //  is built on CoreEngine, but provides the boilerplate to execute transfer
11 //  functions and build the ExplodedGraph at the expression level.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
16 #include "PrettyStackTraceLocationContext.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/AST/DeclBase.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/ParentMap.h"
26 #include "clang/AST/PrettyPrinter.h"
27 #include "clang/AST/Stmt.h"
28 #include "clang/AST/StmtCXX.h"
29 #include "clang/AST/StmtObjC.h"
30 #include "clang/AST/Type.h"
31 #include "clang/Analysis/AnalysisDeclContext.h"
32 #include "clang/Analysis/CFG.h"
33 #include "clang/Analysis/ConstructionContext.h"
34 #include "clang/Analysis/ProgramPoint.h"
35 #include "clang/Basic/IdentifierTable.h"
36 #include "clang/Basic/JsonSupport.h"
37 #include "clang/Basic/LLVM.h"
38 #include "clang/Basic/LangOptions.h"
39 #include "clang/Basic/PrettyStackTrace.h"
40 #include "clang/Basic/SourceLocation.h"
41 #include "clang/Basic/SourceManager.h"
42 #include "clang/Basic/Specifiers.h"
43 #include "clang/StaticAnalyzer/Core/AnalyzerOptions.h"
44 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
45 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
46 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
47 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
48 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
49 #include "clang/StaticAnalyzer/Core/PathSensitive/ConstraintManager.h"
50 #include "clang/StaticAnalyzer/Core/PathSensitive/CoreEngine.h"
51 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h"
52 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
53 #include "clang/StaticAnalyzer/Core/PathSensitive/LoopUnrolling.h"
54 #include "clang/StaticAnalyzer/Core/PathSensitive/LoopWidening.h"
55 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
56 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
57 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
58 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
59 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
60 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
61 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
62 #include "clang/StaticAnalyzer/Core/PathSensitive/SymExpr.h"
63 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
64 #include "llvm/ADT/APSInt.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/ImmutableMap.h"
67 #include "llvm/ADT/ImmutableSet.h"
68 #include "llvm/ADT/STLExtras.h"
69 #include "llvm/ADT/SmallVector.h"
70 #include "llvm/ADT/Statistic.h"
71 #include "llvm/Support/Casting.h"
72 #include "llvm/Support/Compiler.h"
73 #include "llvm/Support/DOTGraphTraits.h"
74 #include "llvm/Support/ErrorHandling.h"
75 #include "llvm/Support/GraphWriter.h"
76 #include "llvm/Support/SaveAndRestore.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include <cassert>
79 #include <cstdint>
80 #include <memory>
81 #include <optional>
82 #include <string>
83 #include <tuple>
84 #include <utility>
85 #include <vector>
86 
87 using namespace clang;
88 using namespace ento;
89 
90 #define DEBUG_TYPE "ExprEngine"
91 
92 STATISTIC(NumRemoveDeadBindings,
93             "The # of times RemoveDeadBindings is called");
94 STATISTIC(NumMaxBlockCountReached,
95             "The # of aborted paths due to reaching the maximum block count in "
96             "a top level function");
97 STATISTIC(NumMaxBlockCountReachedInInlined,
98             "The # of aborted paths due to reaching the maximum block count in "
99             "an inlined function");
100 STATISTIC(NumTimesRetriedWithoutInlining,
101             "The # of times we re-evaluated a call without inlining");
102 
103 //===----------------------------------------------------------------------===//
104 // Internal program state traits.
105 //===----------------------------------------------------------------------===//
106 
107 namespace {
108 
109 // When modeling a C++ constructor, for a variety of reasons we need to track
110 // the location of the object for the duration of its ConstructionContext.
111 // ObjectsUnderConstruction maps statements within the construction context
112 // to the object's location, so that on every such statement the location
113 // could have been retrieved.
114 
115 /// ConstructedObjectKey is used for being able to find the path-sensitive
116 /// memory region of a freshly constructed object while modeling the AST node
117 /// that syntactically represents the object that is being constructed.
118 /// Semantics of such nodes may sometimes require access to the region that's
119 /// not otherwise present in the program state, or to the very fact that
120 /// the construction context was present and contained references to these
121 /// AST nodes.
122 class ConstructedObjectKey {
123   using ConstructedObjectKeyImpl =
124       std::pair<ConstructionContextItem, const LocationContext *>;
125   const ConstructedObjectKeyImpl Impl;
126 
127 public:
128   explicit ConstructedObjectKey(const ConstructionContextItem &Item,
129                        const LocationContext *LC)
130       : Impl(Item, LC) {}
131 
132   const ConstructionContextItem &getItem() const { return Impl.first; }
133   const LocationContext *getLocationContext() const { return Impl.second; }
134 
135   ASTContext &getASTContext() const {
136     return getLocationContext()->getDecl()->getASTContext();
137   }
138 
139   void printJson(llvm::raw_ostream &Out, PrinterHelper *Helper,
140                  PrintingPolicy &PP) const {
141     const Stmt *S = getItem().getStmtOrNull();
142     const CXXCtorInitializer *I = nullptr;
143     if (!S)
144       I = getItem().getCXXCtorInitializer();
145 
146     if (S)
147       Out << "\"stmt_id\": " << S->getID(getASTContext());
148     else
149       Out << "\"init_id\": " << I->getID(getASTContext());
150 
151     // Kind
152     Out << ", \"kind\": \"" << getItem().getKindAsString()
153         << "\", \"argument_index\": ";
154 
155     if (getItem().getKind() == ConstructionContextItem::ArgumentKind)
156       Out << getItem().getIndex();
157     else
158       Out << "null";
159 
160     // Pretty-print
161     Out << ", \"pretty\": ";
162 
163     if (S) {
164       S->printJson(Out, Helper, PP, /*AddQuotes=*/true);
165     } else {
166       Out << '\"' << I->getAnyMember()->getDeclName() << '\"';
167     }
168   }
169 
170   void Profile(llvm::FoldingSetNodeID &ID) const {
171     ID.Add(Impl.first);
172     ID.AddPointer(Impl.second);
173   }
174 
175   bool operator==(const ConstructedObjectKey &RHS) const {
176     return Impl == RHS.Impl;
177   }
178 
179   bool operator<(const ConstructedObjectKey &RHS) const {
180     return Impl < RHS.Impl;
181   }
182 };
183 } // namespace
184 
185 typedef llvm::ImmutableMap<ConstructedObjectKey, SVal>
186     ObjectsUnderConstructionMap;
187 REGISTER_TRAIT_WITH_PROGRAMSTATE(ObjectsUnderConstruction,
188                                  ObjectsUnderConstructionMap)
189 
190 // This trait is responsible for storing the index of the element that is to be
191 // constructed in the next iteration. As a result a CXXConstructExpr is only
192 // stored if it is array type. Also the index is the index of the continuous
193 // memory region, which is important for multi-dimensional arrays. E.g:: int
194 // arr[2][2]; assume arr[1][1] will be the next element under construction, so
195 // the index is 3.
196 typedef llvm::ImmutableMap<
197     std::pair<const CXXConstructExpr *, const LocationContext *>, unsigned>
198     IndexOfElementToConstructMap;
199 REGISTER_TRAIT_WITH_PROGRAMSTATE(IndexOfElementToConstruct,
200                                  IndexOfElementToConstructMap)
201 
202 // This trait is responsible for holding our pending ArrayInitLoopExprs.
203 // It pairs the LocationContext and the initializer CXXConstructExpr with
204 // the size of the array that's being copy initialized.
205 typedef llvm::ImmutableMap<
206     std::pair<const CXXConstructExpr *, const LocationContext *>, unsigned>
207     PendingInitLoopMap;
208 REGISTER_TRAIT_WITH_PROGRAMSTATE(PendingInitLoop, PendingInitLoopMap)
209 
210 typedef llvm::ImmutableMap<const LocationContext *, unsigned>
211     PendingArrayDestructionMap;
212 REGISTER_TRAIT_WITH_PROGRAMSTATE(PendingArrayDestruction,
213                                  PendingArrayDestructionMap)
214 
215 //===----------------------------------------------------------------------===//
216 // Engine construction and deletion.
217 //===----------------------------------------------------------------------===//
218 
219 static const char* TagProviderName = "ExprEngine";
220 
221 ExprEngine::ExprEngine(cross_tu::CrossTranslationUnitContext &CTU,
222                        AnalysisManager &mgr, SetOfConstDecls *VisitedCalleesIn,
223                        FunctionSummariesTy *FS, InliningModes HowToInlineIn)
224     : CTU(CTU), IsCTUEnabled(mgr.getAnalyzerOptions().IsNaiveCTUEnabled),
225       AMgr(mgr), AnalysisDeclContexts(mgr.getAnalysisDeclContextManager()),
226       Engine(*this, FS, mgr.getAnalyzerOptions()), G(Engine.getGraph()),
227       StateMgr(getContext(), mgr.getStoreManagerCreator(),
228                mgr.getConstraintManagerCreator(), G.getAllocator(), this),
229       SymMgr(StateMgr.getSymbolManager()), MRMgr(StateMgr.getRegionManager()),
230       svalBuilder(StateMgr.getSValBuilder()), ObjCNoRet(mgr.getASTContext()),
231       BR(mgr, *this), VisitedCallees(VisitedCalleesIn),
232       HowToInline(HowToInlineIn) {
233   unsigned TrimInterval = mgr.options.GraphTrimInterval;
234   if (TrimInterval != 0) {
235     // Enable eager node reclamation when constructing the ExplodedGraph.
236     G.enableNodeReclamation(TrimInterval);
237   }
238 }
239 
240 //===----------------------------------------------------------------------===//
241 // Utility methods.
242 //===----------------------------------------------------------------------===//
243 
244 ProgramStateRef ExprEngine::getInitialState(const LocationContext *InitLoc) {
245   ProgramStateRef state = StateMgr.getInitialState(InitLoc);
246   const Decl *D = InitLoc->getDecl();
247 
248   // Preconditions.
249   // FIXME: It would be nice if we had a more general mechanism to add
250   // such preconditions.  Some day.
251   do {
252     if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
253       // Precondition: the first argument of 'main' is an integer guaranteed
254       //  to be > 0.
255       const IdentifierInfo *II = FD->getIdentifier();
256       if (!II || !(II->getName() == "main" && FD->getNumParams() > 0))
257         break;
258 
259       const ParmVarDecl *PD = FD->getParamDecl(0);
260       QualType T = PD->getType();
261       const auto *BT = dyn_cast<BuiltinType>(T);
262       if (!BT || !BT->isInteger())
263         break;
264 
265       const MemRegion *R = state->getRegion(PD, InitLoc);
266       if (!R)
267         break;
268 
269       SVal V = state->getSVal(loc::MemRegionVal(R));
270       SVal Constraint_untested = evalBinOp(state, BO_GT, V,
271                                            svalBuilder.makeZeroVal(T),
272                                            svalBuilder.getConditionType());
273 
274       std::optional<DefinedOrUnknownSVal> Constraint =
275           Constraint_untested.getAs<DefinedOrUnknownSVal>();
276 
277       if (!Constraint)
278         break;
279 
280       if (ProgramStateRef newState = state->assume(*Constraint, true))
281         state = newState;
282     }
283     break;
284   }
285   while (false);
286 
287   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
288     // Precondition: 'self' is always non-null upon entry to an Objective-C
289     // method.
290     const ImplicitParamDecl *SelfD = MD->getSelfDecl();
291     const MemRegion *R = state->getRegion(SelfD, InitLoc);
292     SVal V = state->getSVal(loc::MemRegionVal(R));
293 
294     if (std::optional<Loc> LV = V.getAs<Loc>()) {
295       // Assume that the pointer value in 'self' is non-null.
296       state = state->assume(*LV, true);
297       assert(state && "'self' cannot be null");
298     }
299   }
300 
301   if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
302     if (MD->isImplicitObjectMemberFunction()) {
303       // Precondition: 'this' is always non-null upon entry to the
304       // top-level function.  This is our starting assumption for
305       // analyzing an "open" program.
306       const StackFrameContext *SFC = InitLoc->getStackFrame();
307       if (SFC->getParent() == nullptr) {
308         loc::MemRegionVal L = svalBuilder.getCXXThis(MD, SFC);
309         SVal V = state->getSVal(L);
310         if (std::optional<Loc> LV = V.getAs<Loc>()) {
311           state = state->assume(*LV, true);
312           assert(state && "'this' cannot be null");
313         }
314       }
315     }
316   }
317 
318   return state;
319 }
320 
321 ProgramStateRef ExprEngine::createTemporaryRegionIfNeeded(
322     ProgramStateRef State, const LocationContext *LC,
323     const Expr *InitWithAdjustments, const Expr *Result,
324     const SubRegion **OutRegionWithAdjustments) {
325   // FIXME: This function is a hack that works around the quirky AST
326   // we're often having with respect to C++ temporaries. If only we modelled
327   // the actual execution order of statements properly in the CFG,
328   // all the hassle with adjustments would not be necessary,
329   // and perhaps the whole function would be removed.
330   SVal InitValWithAdjustments = State->getSVal(InitWithAdjustments, LC);
331   if (!Result) {
332     // If we don't have an explicit result expression, we're in "if needed"
333     // mode. Only create a region if the current value is a NonLoc.
334     if (!isa<NonLoc>(InitValWithAdjustments)) {
335       if (OutRegionWithAdjustments)
336         *OutRegionWithAdjustments = nullptr;
337       return State;
338     }
339     Result = InitWithAdjustments;
340   } else {
341     // We need to create a region no matter what. Make sure we don't try to
342     // stuff a Loc into a non-pointer temporary region.
343     assert(!isa<Loc>(InitValWithAdjustments) ||
344            Loc::isLocType(Result->getType()) ||
345            Result->getType()->isMemberPointerType());
346   }
347 
348   ProgramStateManager &StateMgr = State->getStateManager();
349   MemRegionManager &MRMgr = StateMgr.getRegionManager();
350   StoreManager &StoreMgr = StateMgr.getStoreManager();
351 
352   // MaterializeTemporaryExpr may appear out of place, after a few field and
353   // base-class accesses have been made to the object, even though semantically
354   // it is the whole object that gets materialized and lifetime-extended.
355   //
356   // For example:
357   //
358   //   `-MaterializeTemporaryExpr
359   //     `-MemberExpr
360   //       `-CXXTemporaryObjectExpr
361   //
362   // instead of the more natural
363   //
364   //   `-MemberExpr
365   //     `-MaterializeTemporaryExpr
366   //       `-CXXTemporaryObjectExpr
367   //
368   // Use the usual methods for obtaining the expression of the base object,
369   // and record the adjustments that we need to make to obtain the sub-object
370   // that the whole expression 'Ex' refers to. This trick is usual,
371   // in the sense that CodeGen takes a similar route.
372 
373   SmallVector<const Expr *, 2> CommaLHSs;
374   SmallVector<SubobjectAdjustment, 2> Adjustments;
375 
376   const Expr *Init = InitWithAdjustments->skipRValueSubobjectAdjustments(
377       CommaLHSs, Adjustments);
378 
379   // Take the region for Init, i.e. for the whole object. If we do not remember
380   // the region in which the object originally was constructed, come up with
381   // a new temporary region out of thin air and copy the contents of the object
382   // (which are currently present in the Environment, because Init is an rvalue)
383   // into that region. This is not correct, but it is better than nothing.
384   const TypedValueRegion *TR = nullptr;
385   if (const auto *MT = dyn_cast<MaterializeTemporaryExpr>(Result)) {
386     if (std::optional<SVal> V = getObjectUnderConstruction(State, MT, LC)) {
387       State = finishObjectConstruction(State, MT, LC);
388       State = State->BindExpr(Result, LC, *V);
389       return State;
390     } else if (const ValueDecl *VD = MT->getExtendingDecl()) {
391       StorageDuration SD = MT->getStorageDuration();
392       assert(SD != SD_FullExpression);
393       // If this object is bound to a reference with static storage duration, we
394       // put it in a different region to prevent "address leakage" warnings.
395       if (SD == SD_Static || SD == SD_Thread) {
396         TR = MRMgr.getCXXStaticLifetimeExtendedObjectRegion(Init, VD);
397       } else {
398         TR = MRMgr.getCXXLifetimeExtendedObjectRegion(Init, VD, LC);
399       }
400     } else {
401       assert(MT->getStorageDuration() == SD_FullExpression);
402       TR = MRMgr.getCXXTempObjectRegion(Init, LC);
403     }
404   } else {
405     TR = MRMgr.getCXXTempObjectRegion(Init, LC);
406   }
407 
408   SVal Reg = loc::MemRegionVal(TR);
409   SVal BaseReg = Reg;
410 
411   // Make the necessary adjustments to obtain the sub-object.
412   for (const SubobjectAdjustment &Adj : llvm::reverse(Adjustments)) {
413     switch (Adj.Kind) {
414     case SubobjectAdjustment::DerivedToBaseAdjustment:
415       Reg = StoreMgr.evalDerivedToBase(Reg, Adj.DerivedToBase.BasePath);
416       break;
417     case SubobjectAdjustment::FieldAdjustment:
418       Reg = StoreMgr.getLValueField(Adj.Field, Reg);
419       break;
420     case SubobjectAdjustment::MemberPointerAdjustment:
421       // FIXME: Unimplemented.
422       State = State->invalidateRegions(Reg, InitWithAdjustments,
423                                        currBldrCtx->blockCount(), LC, true,
424                                        nullptr, nullptr, nullptr);
425       return State;
426     }
427   }
428 
429   // What remains is to copy the value of the object to the new region.
430   // FIXME: In other words, what we should always do is copy value of the
431   // Init expression (which corresponds to the bigger object) to the whole
432   // temporary region TR. However, this value is often no longer present
433   // in the Environment. If it has disappeared, we instead invalidate TR.
434   // Still, what we can do is assign the value of expression Ex (which
435   // corresponds to the sub-object) to the TR's sub-region Reg. At least,
436   // values inside Reg would be correct.
437   SVal InitVal = State->getSVal(Init, LC);
438   if (InitVal.isUnknown()) {
439     InitVal = getSValBuilder().conjureSymbolVal(Result, LC, Init->getType(),
440                                                 currBldrCtx->blockCount());
441     State = State->bindLoc(BaseReg.castAs<Loc>(), InitVal, LC, false);
442 
443     // Then we'd need to take the value that certainly exists and bind it
444     // over.
445     if (InitValWithAdjustments.isUnknown()) {
446       // Try to recover some path sensitivity in case we couldn't
447       // compute the value.
448       InitValWithAdjustments = getSValBuilder().conjureSymbolVal(
449           Result, LC, InitWithAdjustments->getType(),
450           currBldrCtx->blockCount());
451     }
452     State =
453         State->bindLoc(Reg.castAs<Loc>(), InitValWithAdjustments, LC, false);
454   } else {
455     State = State->bindLoc(BaseReg.castAs<Loc>(), InitVal, LC, false);
456   }
457 
458   // The result expression would now point to the correct sub-region of the
459   // newly created temporary region. Do this last in order to getSVal of Init
460   // correctly in case (Result == Init).
461   if (Result->isGLValue()) {
462     State = State->BindExpr(Result, LC, Reg);
463   } else {
464     State = State->BindExpr(Result, LC, InitValWithAdjustments);
465   }
466 
467   // Notify checkers once for two bindLoc()s.
468   State = processRegionChange(State, TR, LC);
469 
470   if (OutRegionWithAdjustments)
471     *OutRegionWithAdjustments = cast<SubRegion>(Reg.getAsRegion());
472   return State;
473 }
474 
475 ProgramStateRef ExprEngine::setIndexOfElementToConstruct(
476     ProgramStateRef State, const CXXConstructExpr *E,
477     const LocationContext *LCtx, unsigned Idx) {
478   auto Key = std::make_pair(E, LCtx->getStackFrame());
479 
480   assert(!State->contains<IndexOfElementToConstruct>(Key) || Idx > 0);
481 
482   return State->set<IndexOfElementToConstruct>(Key, Idx);
483 }
484 
485 std::optional<unsigned>
486 ExprEngine::getPendingInitLoop(ProgramStateRef State, const CXXConstructExpr *E,
487                                const LocationContext *LCtx) {
488   const unsigned *V = State->get<PendingInitLoop>({E, LCtx->getStackFrame()});
489   return V ? std::make_optional(*V) : std::nullopt;
490 }
491 
492 ProgramStateRef ExprEngine::removePendingInitLoop(ProgramStateRef State,
493                                                   const CXXConstructExpr *E,
494                                                   const LocationContext *LCtx) {
495   auto Key = std::make_pair(E, LCtx->getStackFrame());
496 
497   assert(E && State->contains<PendingInitLoop>(Key));
498   return State->remove<PendingInitLoop>(Key);
499 }
500 
501 ProgramStateRef ExprEngine::setPendingInitLoop(ProgramStateRef State,
502                                                const CXXConstructExpr *E,
503                                                const LocationContext *LCtx,
504                                                unsigned Size) {
505   auto Key = std::make_pair(E, LCtx->getStackFrame());
506 
507   assert(!State->contains<PendingInitLoop>(Key) && Size > 0);
508 
509   return State->set<PendingInitLoop>(Key, Size);
510 }
511 
512 std::optional<unsigned>
513 ExprEngine::getIndexOfElementToConstruct(ProgramStateRef State,
514                                          const CXXConstructExpr *E,
515                                          const LocationContext *LCtx) {
516   const unsigned *V =
517       State->get<IndexOfElementToConstruct>({E, LCtx->getStackFrame()});
518   return V ? std::make_optional(*V) : std::nullopt;
519 }
520 
521 ProgramStateRef
522 ExprEngine::removeIndexOfElementToConstruct(ProgramStateRef State,
523                                             const CXXConstructExpr *E,
524                                             const LocationContext *LCtx) {
525   auto Key = std::make_pair(E, LCtx->getStackFrame());
526 
527   assert(E && State->contains<IndexOfElementToConstruct>(Key));
528   return State->remove<IndexOfElementToConstruct>(Key);
529 }
530 
531 std::optional<unsigned>
532 ExprEngine::getPendingArrayDestruction(ProgramStateRef State,
533                                        const LocationContext *LCtx) {
534   assert(LCtx && "LocationContext shouldn't be null!");
535 
536   const unsigned *V =
537       State->get<PendingArrayDestruction>(LCtx->getStackFrame());
538   return V ? std::make_optional(*V) : std::nullopt;
539 }
540 
541 ProgramStateRef ExprEngine::setPendingArrayDestruction(
542     ProgramStateRef State, const LocationContext *LCtx, unsigned Idx) {
543   assert(LCtx && "LocationContext shouldn't be null!");
544 
545   auto Key = LCtx->getStackFrame();
546 
547   return State->set<PendingArrayDestruction>(Key, Idx);
548 }
549 
550 ProgramStateRef
551 ExprEngine::removePendingArrayDestruction(ProgramStateRef State,
552                                           const LocationContext *LCtx) {
553   assert(LCtx && "LocationContext shouldn't be null!");
554 
555   auto Key = LCtx->getStackFrame();
556 
557   assert(LCtx && State->contains<PendingArrayDestruction>(Key));
558   return State->remove<PendingArrayDestruction>(Key);
559 }
560 
561 ProgramStateRef
562 ExprEngine::addObjectUnderConstruction(ProgramStateRef State,
563                                        const ConstructionContextItem &Item,
564                                        const LocationContext *LC, SVal V) {
565   ConstructedObjectKey Key(Item, LC->getStackFrame());
566 
567   const Expr *Init = nullptr;
568 
569   if (auto DS = dyn_cast_or_null<DeclStmt>(Item.getStmtOrNull())) {
570     if (auto VD = dyn_cast_or_null<VarDecl>(DS->getSingleDecl()))
571       Init = VD->getInit();
572   }
573 
574   if (auto LE = dyn_cast_or_null<LambdaExpr>(Item.getStmtOrNull()))
575     Init = *(LE->capture_init_begin() + Item.getIndex());
576 
577   if (!Init && !Item.getStmtOrNull())
578     Init = Item.getCXXCtorInitializer()->getInit();
579 
580   // In an ArrayInitLoopExpr the real initializer is returned by
581   // getSubExpr(). Note that AILEs can be nested in case of
582   // multidimesnional arrays.
583   if (const auto *AILE = dyn_cast_or_null<ArrayInitLoopExpr>(Init))
584     Init = extractElementInitializerFromNestedAILE(AILE);
585 
586   // FIXME: Currently the state might already contain the marker due to
587   // incorrect handling of temporaries bound to default parameters.
588   // The state will already contain the marker if we construct elements
589   // in an array, as we visit the same statement multiple times before
590   // the array declaration. The marker is removed when we exit the
591   // constructor call.
592   assert((!State->get<ObjectsUnderConstruction>(Key) ||
593           Key.getItem().getKind() ==
594               ConstructionContextItem::TemporaryDestructorKind ||
595           State->contains<IndexOfElementToConstruct>(
596               {dyn_cast_or_null<CXXConstructExpr>(Init), LC})) &&
597          "The object is already marked as `UnderConstruction`, when it's not "
598          "supposed to!");
599   return State->set<ObjectsUnderConstruction>(Key, V);
600 }
601 
602 std::optional<SVal>
603 ExprEngine::getObjectUnderConstruction(ProgramStateRef State,
604                                        const ConstructionContextItem &Item,
605                                        const LocationContext *LC) {
606   ConstructedObjectKey Key(Item, LC->getStackFrame());
607   const SVal *V = State->get<ObjectsUnderConstruction>(Key);
608   return V ? std::make_optional(*V) : std::nullopt;
609 }
610 
611 ProgramStateRef
612 ExprEngine::finishObjectConstruction(ProgramStateRef State,
613                                      const ConstructionContextItem &Item,
614                                      const LocationContext *LC) {
615   ConstructedObjectKey Key(Item, LC->getStackFrame());
616   assert(State->contains<ObjectsUnderConstruction>(Key));
617   return State->remove<ObjectsUnderConstruction>(Key);
618 }
619 
620 ProgramStateRef ExprEngine::elideDestructor(ProgramStateRef State,
621                                             const CXXBindTemporaryExpr *BTE,
622                                             const LocationContext *LC) {
623   ConstructedObjectKey Key({BTE, /*IsElided=*/true}, LC);
624   // FIXME: Currently the state might already contain the marker due to
625   // incorrect handling of temporaries bound to default parameters.
626   return State->set<ObjectsUnderConstruction>(Key, UnknownVal());
627 }
628 
629 ProgramStateRef
630 ExprEngine::cleanupElidedDestructor(ProgramStateRef State,
631                                     const CXXBindTemporaryExpr *BTE,
632                                     const LocationContext *LC) {
633   ConstructedObjectKey Key({BTE, /*IsElided=*/true}, LC);
634   assert(State->contains<ObjectsUnderConstruction>(Key));
635   return State->remove<ObjectsUnderConstruction>(Key);
636 }
637 
638 bool ExprEngine::isDestructorElided(ProgramStateRef State,
639                                     const CXXBindTemporaryExpr *BTE,
640                                     const LocationContext *LC) {
641   ConstructedObjectKey Key({BTE, /*IsElided=*/true}, LC);
642   return State->contains<ObjectsUnderConstruction>(Key);
643 }
644 
645 bool ExprEngine::areAllObjectsFullyConstructed(ProgramStateRef State,
646                                                const LocationContext *FromLC,
647                                                const LocationContext *ToLC) {
648   const LocationContext *LC = FromLC;
649   while (LC != ToLC) {
650     assert(LC && "ToLC must be a parent of FromLC!");
651     for (auto I : State->get<ObjectsUnderConstruction>())
652       if (I.first.getLocationContext() == LC)
653         return false;
654 
655     LC = LC->getParent();
656   }
657   return true;
658 }
659 
660 
661 //===----------------------------------------------------------------------===//
662 // Top-level transfer function logic (Dispatcher).
663 //===----------------------------------------------------------------------===//
664 
665 /// evalAssume - Called by ConstraintManager. Used to call checker-specific
666 ///  logic for handling assumptions on symbolic values.
667 ProgramStateRef ExprEngine::processAssume(ProgramStateRef state,
668                                               SVal cond, bool assumption) {
669   return getCheckerManager().runCheckersForEvalAssume(state, cond, assumption);
670 }
671 
672 ProgramStateRef
673 ExprEngine::processRegionChanges(ProgramStateRef state,
674                                  const InvalidatedSymbols *invalidated,
675                                  ArrayRef<const MemRegion *> Explicits,
676                                  ArrayRef<const MemRegion *> Regions,
677                                  const LocationContext *LCtx,
678                                  const CallEvent *Call) {
679   return getCheckerManager().runCheckersForRegionChanges(state, invalidated,
680                                                          Explicits, Regions,
681                                                          LCtx, Call);
682 }
683 
684 static void
685 printObjectsUnderConstructionJson(raw_ostream &Out, ProgramStateRef State,
686                                   const char *NL, const LocationContext *LCtx,
687                                   unsigned int Space = 0, bool IsDot = false) {
688   PrintingPolicy PP =
689       LCtx->getAnalysisDeclContext()->getASTContext().getPrintingPolicy();
690 
691   ++Space;
692   bool HasItem = false;
693 
694   // Store the last key.
695   const ConstructedObjectKey *LastKey = nullptr;
696   for (const auto &I : State->get<ObjectsUnderConstruction>()) {
697     const ConstructedObjectKey &Key = I.first;
698     if (Key.getLocationContext() != LCtx)
699       continue;
700 
701     if (!HasItem) {
702       Out << '[' << NL;
703       HasItem = true;
704     }
705 
706     LastKey = &Key;
707   }
708 
709   for (const auto &I : State->get<ObjectsUnderConstruction>()) {
710     const ConstructedObjectKey &Key = I.first;
711     SVal Value = I.second;
712     if (Key.getLocationContext() != LCtx)
713       continue;
714 
715     Indent(Out, Space, IsDot) << "{ ";
716     Key.printJson(Out, nullptr, PP);
717     Out << ", \"value\": \"" << Value << "\" }";
718 
719     if (&Key != LastKey)
720       Out << ',';
721     Out << NL;
722   }
723 
724   if (HasItem)
725     Indent(Out, --Space, IsDot) << ']'; // End of "location_context".
726   else {
727     Out << "null ";
728   }
729 }
730 
731 static void printIndicesOfElementsToConstructJson(
732     raw_ostream &Out, ProgramStateRef State, const char *NL,
733     const LocationContext *LCtx, unsigned int Space = 0, bool IsDot = false) {
734   using KeyT = std::pair<const Expr *, const LocationContext *>;
735 
736   const auto &Context = LCtx->getAnalysisDeclContext()->getASTContext();
737   PrintingPolicy PP = Context.getPrintingPolicy();
738 
739   ++Space;
740   bool HasItem = false;
741 
742   // Store the last key.
743   KeyT LastKey;
744   for (const auto &I : State->get<IndexOfElementToConstruct>()) {
745     const KeyT &Key = I.first;
746     if (Key.second != LCtx)
747       continue;
748 
749     if (!HasItem) {
750       Out << '[' << NL;
751       HasItem = true;
752     }
753 
754     LastKey = Key;
755   }
756 
757   for (const auto &I : State->get<IndexOfElementToConstruct>()) {
758     const KeyT &Key = I.first;
759     unsigned Value = I.second;
760     if (Key.second != LCtx)
761       continue;
762 
763     Indent(Out, Space, IsDot) << "{ ";
764 
765     // Expr
766     const Expr *E = Key.first;
767     Out << "\"stmt_id\": " << E->getID(Context);
768 
769     // Kind
770     Out << ", \"kind\": null";
771 
772     // Pretty-print
773     Out << ", \"pretty\": ";
774     Out << "\"" << E->getStmtClassName() << ' '
775         << E->getSourceRange().printToString(Context.getSourceManager()) << " '"
776         << QualType::getAsString(E->getType().split(), PP);
777     Out << "'\"";
778 
779     Out << ", \"value\": \"Current index: " << Value - 1 << "\" }";
780 
781     if (Key != LastKey)
782       Out << ',';
783     Out << NL;
784   }
785 
786   if (HasItem)
787     Indent(Out, --Space, IsDot) << ']'; // End of "location_context".
788   else {
789     Out << "null ";
790   }
791 }
792 
793 static void printPendingInitLoopJson(raw_ostream &Out, ProgramStateRef State,
794                                      const char *NL,
795                                      const LocationContext *LCtx,
796                                      unsigned int Space = 0,
797                                      bool IsDot = false) {
798   using KeyT = std::pair<const CXXConstructExpr *, const LocationContext *>;
799 
800   const auto &Context = LCtx->getAnalysisDeclContext()->getASTContext();
801   PrintingPolicy PP = Context.getPrintingPolicy();
802 
803   ++Space;
804   bool HasItem = false;
805 
806   // Store the last key.
807   KeyT LastKey;
808   for (const auto &I : State->get<PendingInitLoop>()) {
809     const KeyT &Key = I.first;
810     if (Key.second != LCtx)
811       continue;
812 
813     if (!HasItem) {
814       Out << '[' << NL;
815       HasItem = true;
816     }
817 
818     LastKey = Key;
819   }
820 
821   for (const auto &I : State->get<PendingInitLoop>()) {
822     const KeyT &Key = I.first;
823     unsigned Value = I.second;
824     if (Key.second != LCtx)
825       continue;
826 
827     Indent(Out, Space, IsDot) << "{ ";
828 
829     const CXXConstructExpr *E = Key.first;
830     Out << "\"stmt_id\": " << E->getID(Context);
831 
832     Out << ", \"kind\": null";
833     Out << ", \"pretty\": ";
834     Out << '\"' << E->getStmtClassName() << ' '
835         << E->getSourceRange().printToString(Context.getSourceManager()) << " '"
836         << QualType::getAsString(E->getType().split(), PP);
837     Out << "'\"";
838 
839     Out << ", \"value\": \"Flattened size: " << Value << "\"}";
840 
841     if (Key != LastKey)
842       Out << ',';
843     Out << NL;
844   }
845 
846   if (HasItem)
847     Indent(Out, --Space, IsDot) << ']'; // End of "location_context".
848   else {
849     Out << "null ";
850   }
851 }
852 
853 static void
854 printPendingArrayDestructionsJson(raw_ostream &Out, ProgramStateRef State,
855                                   const char *NL, const LocationContext *LCtx,
856                                   unsigned int Space = 0, bool IsDot = false) {
857   using KeyT = const LocationContext *;
858 
859   ++Space;
860   bool HasItem = false;
861 
862   // Store the last key.
863   KeyT LastKey = nullptr;
864   for (const auto &I : State->get<PendingArrayDestruction>()) {
865     const KeyT &Key = I.first;
866     if (Key != LCtx)
867       continue;
868 
869     if (!HasItem) {
870       Out << '[' << NL;
871       HasItem = true;
872     }
873 
874     LastKey = Key;
875   }
876 
877   for (const auto &I : State->get<PendingArrayDestruction>()) {
878     const KeyT &Key = I.first;
879     if (Key != LCtx)
880       continue;
881 
882     Indent(Out, Space, IsDot) << "{ ";
883 
884     Out << "\"stmt_id\": null";
885     Out << ", \"kind\": null";
886     Out << ", \"pretty\": \"Current index: \"";
887     Out << ", \"value\": \"" << I.second << "\" }";
888 
889     if (Key != LastKey)
890       Out << ',';
891     Out << NL;
892   }
893 
894   if (HasItem)
895     Indent(Out, --Space, IsDot) << ']'; // End of "location_context".
896   else {
897     Out << "null ";
898   }
899 }
900 
901 /// A helper function to generalize program state trait printing.
902 /// The function invokes Printer as 'Printer(Out, State, NL, LC, Space, IsDot,
903 /// std::forward<Args>(args)...)'. \n One possible type for Printer is
904 /// 'void()(raw_ostream &, ProgramStateRef, const char *, const LocationContext
905 /// *, unsigned int, bool, ...)' \n \param Trait The state trait to be printed.
906 /// \param Printer A void function that prints Trait.
907 /// \param Args An additional parameter pack that is passed to Print upon
908 /// invocation.
909 template <typename Trait, typename Printer, typename... Args>
910 static void printStateTraitWithLocationContextJson(
911     raw_ostream &Out, ProgramStateRef State, const LocationContext *LCtx,
912     const char *NL, unsigned int Space, bool IsDot,
913     const char *jsonPropertyName, Printer printer, Args &&...args) {
914 
915   using RequiredType =
916       void (*)(raw_ostream &, ProgramStateRef, const char *,
917                const LocationContext *, unsigned int, bool, Args &&...);
918 
919   // Try to do as much compile time checking as possible.
920   // FIXME: check for invocable instead of function?
921   static_assert(std::is_function_v<std::remove_pointer_t<Printer>>,
922                 "Printer is not a function!");
923   static_assert(std::is_convertible_v<Printer, RequiredType>,
924                 "Printer doesn't have the required type!");
925 
926   if (LCtx && !State->get<Trait>().isEmpty()) {
927     Indent(Out, Space, IsDot) << '\"' << jsonPropertyName << "\": ";
928     ++Space;
929     Out << '[' << NL;
930     LCtx->printJson(Out, NL, Space, IsDot, [&](const LocationContext *LC) {
931       printer(Out, State, NL, LC, Space, IsDot, std::forward<Args>(args)...);
932     });
933 
934     --Space;
935     Indent(Out, Space, IsDot) << "]," << NL; // End of "jsonPropertyName".
936   }
937 }
938 
939 void ExprEngine::printJson(raw_ostream &Out, ProgramStateRef State,
940                            const LocationContext *LCtx, const char *NL,
941                            unsigned int Space, bool IsDot) const {
942 
943   printStateTraitWithLocationContextJson<ObjectsUnderConstruction>(
944       Out, State, LCtx, NL, Space, IsDot, "constructing_objects",
945       printObjectsUnderConstructionJson);
946   printStateTraitWithLocationContextJson<IndexOfElementToConstruct>(
947       Out, State, LCtx, NL, Space, IsDot, "index_of_element",
948       printIndicesOfElementsToConstructJson);
949   printStateTraitWithLocationContextJson<PendingInitLoop>(
950       Out, State, LCtx, NL, Space, IsDot, "pending_init_loops",
951       printPendingInitLoopJson);
952   printStateTraitWithLocationContextJson<PendingArrayDestruction>(
953       Out, State, LCtx, NL, Space, IsDot, "pending_destructors",
954       printPendingArrayDestructionsJson);
955 
956   getCheckerManager().runCheckersForPrintStateJson(Out, State, NL, Space,
957                                                    IsDot);
958 }
959 
960 void ExprEngine::processEndWorklist() {
961   // This prints the name of the top-level function if we crash.
962   PrettyStackTraceLocationContext CrashInfo(getRootLocationContext());
963   getCheckerManager().runCheckersForEndAnalysis(G, BR, *this);
964 }
965 
966 void ExprEngine::processCFGElement(const CFGElement E, ExplodedNode *Pred,
967                                    unsigned StmtIdx, NodeBuilderContext *Ctx) {
968   PrettyStackTraceLocationContext CrashInfo(Pred->getLocationContext());
969   currStmtIdx = StmtIdx;
970   currBldrCtx = Ctx;
971 
972   switch (E.getKind()) {
973     case CFGElement::Statement:
974     case CFGElement::Constructor:
975     case CFGElement::CXXRecordTypedCall:
976       ProcessStmt(E.castAs<CFGStmt>().getStmt(), Pred);
977       return;
978     case CFGElement::Initializer:
979       ProcessInitializer(E.castAs<CFGInitializer>(), Pred);
980       return;
981     case CFGElement::NewAllocator:
982       ProcessNewAllocator(E.castAs<CFGNewAllocator>().getAllocatorExpr(),
983                           Pred);
984       return;
985     case CFGElement::AutomaticObjectDtor:
986     case CFGElement::DeleteDtor:
987     case CFGElement::BaseDtor:
988     case CFGElement::MemberDtor:
989     case CFGElement::TemporaryDtor:
990       ProcessImplicitDtor(E.castAs<CFGImplicitDtor>(), Pred);
991       return;
992     case CFGElement::LoopExit:
993       ProcessLoopExit(E.castAs<CFGLoopExit>().getLoopStmt(), Pred);
994       return;
995     case CFGElement::LifetimeEnds:
996     case CFGElement::CleanupFunction:
997     case CFGElement::ScopeBegin:
998     case CFGElement::ScopeEnd:
999       return;
1000   }
1001 }
1002 
1003 static bool shouldRemoveDeadBindings(AnalysisManager &AMgr,
1004                                      const Stmt *S,
1005                                      const ExplodedNode *Pred,
1006                                      const LocationContext *LC) {
1007   // Are we never purging state values?
1008   if (AMgr.options.AnalysisPurgeOpt == PurgeNone)
1009     return false;
1010 
1011   // Is this the beginning of a basic block?
1012   if (Pred->getLocation().getAs<BlockEntrance>())
1013     return true;
1014 
1015   // Is this on a non-expression?
1016   if (!isa<Expr>(S))
1017     return true;
1018 
1019   // Run before processing a call.
1020   if (CallEvent::isCallStmt(S))
1021     return true;
1022 
1023   // Is this an expression that is consumed by another expression?  If so,
1024   // postpone cleaning out the state.
1025   ParentMap &PM = LC->getAnalysisDeclContext()->getParentMap();
1026   return !PM.isConsumedExpr(cast<Expr>(S));
1027 }
1028 
1029 void ExprEngine::removeDead(ExplodedNode *Pred, ExplodedNodeSet &Out,
1030                             const Stmt *ReferenceStmt,
1031                             const LocationContext *LC,
1032                             const Stmt *DiagnosticStmt,
1033                             ProgramPoint::Kind K) {
1034   assert((K == ProgramPoint::PreStmtPurgeDeadSymbolsKind ||
1035           ReferenceStmt == nullptr || isa<ReturnStmt>(ReferenceStmt))
1036           && "PostStmt is not generally supported by the SymbolReaper yet");
1037   assert(LC && "Must pass the current (or expiring) LocationContext");
1038 
1039   if (!DiagnosticStmt) {
1040     DiagnosticStmt = ReferenceStmt;
1041     assert(DiagnosticStmt && "Required for clearing a LocationContext");
1042   }
1043 
1044   NumRemoveDeadBindings++;
1045   ProgramStateRef CleanedState = Pred->getState();
1046 
1047   // LC is the location context being destroyed, but SymbolReaper wants a
1048   // location context that is still live. (If this is the top-level stack
1049   // frame, this will be null.)
1050   if (!ReferenceStmt) {
1051     assert(K == ProgramPoint::PostStmtPurgeDeadSymbolsKind &&
1052            "Use PostStmtPurgeDeadSymbolsKind for clearing a LocationContext");
1053     LC = LC->getParent();
1054   }
1055 
1056   const StackFrameContext *SFC = LC ? LC->getStackFrame() : nullptr;
1057   SymbolReaper SymReaper(SFC, ReferenceStmt, SymMgr, getStoreManager());
1058 
1059   for (auto I : CleanedState->get<ObjectsUnderConstruction>()) {
1060     if (SymbolRef Sym = I.second.getAsSymbol())
1061       SymReaper.markLive(Sym);
1062     if (const MemRegion *MR = I.second.getAsRegion())
1063       SymReaper.markLive(MR);
1064   }
1065 
1066   getCheckerManager().runCheckersForLiveSymbols(CleanedState, SymReaper);
1067 
1068   // Create a state in which dead bindings are removed from the environment
1069   // and the store. TODO: The function should just return new env and store,
1070   // not a new state.
1071   CleanedState = StateMgr.removeDeadBindingsFromEnvironmentAndStore(
1072       CleanedState, SFC, SymReaper);
1073 
1074   // Process any special transfer function for dead symbols.
1075   // Call checkers with the non-cleaned state so that they could query the
1076   // values of the soon to be dead symbols.
1077   ExplodedNodeSet CheckedSet;
1078   getCheckerManager().runCheckersForDeadSymbols(CheckedSet, Pred, SymReaper,
1079                                                 DiagnosticStmt, *this, K);
1080 
1081   // For each node in CheckedSet, generate CleanedNodes that have the
1082   // environment, the store, and the constraints cleaned up but have the
1083   // user-supplied states as the predecessors.
1084   StmtNodeBuilder Bldr(CheckedSet, Out, *currBldrCtx);
1085   for (const auto I : CheckedSet) {
1086     ProgramStateRef CheckerState = I->getState();
1087 
1088     // The constraint manager has not been cleaned up yet, so clean up now.
1089     CheckerState =
1090         getConstraintManager().removeDeadBindings(CheckerState, SymReaper);
1091 
1092     assert(StateMgr.haveEqualEnvironments(CheckerState, Pred->getState()) &&
1093            "Checkers are not allowed to modify the Environment as a part of "
1094            "checkDeadSymbols processing.");
1095     assert(StateMgr.haveEqualStores(CheckerState, Pred->getState()) &&
1096            "Checkers are not allowed to modify the Store as a part of "
1097            "checkDeadSymbols processing.");
1098 
1099     // Create a state based on CleanedState with CheckerState GDM and
1100     // generate a transition to that state.
1101     ProgramStateRef CleanedCheckerSt =
1102         StateMgr.getPersistentStateWithGDM(CleanedState, CheckerState);
1103     Bldr.generateNode(DiagnosticStmt, I, CleanedCheckerSt, cleanupNodeTag(), K);
1104   }
1105 }
1106 
1107 const ProgramPointTag *ExprEngine::cleanupNodeTag() {
1108   static SimpleProgramPointTag cleanupTag(TagProviderName, "Clean Node");
1109   return &cleanupTag;
1110 }
1111 
1112 void ExprEngine::ProcessStmt(const Stmt *currStmt, ExplodedNode *Pred) {
1113   // Reclaim any unnecessary nodes in the ExplodedGraph.
1114   G.reclaimRecentlyAllocatedNodes();
1115 
1116   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
1117                                 currStmt->getBeginLoc(),
1118                                 "Error evaluating statement");
1119 
1120   // Remove dead bindings and symbols.
1121   ExplodedNodeSet CleanedStates;
1122   if (shouldRemoveDeadBindings(AMgr, currStmt, Pred,
1123                                Pred->getLocationContext())) {
1124     removeDead(Pred, CleanedStates, currStmt,
1125                                     Pred->getLocationContext());
1126   } else
1127     CleanedStates.Add(Pred);
1128 
1129   // Visit the statement.
1130   ExplodedNodeSet Dst;
1131   for (const auto I : CleanedStates) {
1132     ExplodedNodeSet DstI;
1133     // Visit the statement.
1134     Visit(currStmt, I, DstI);
1135     Dst.insert(DstI);
1136   }
1137 
1138   // Enqueue the new nodes onto the work list.
1139   Engine.enqueue(Dst, currBldrCtx->getBlock(), currStmtIdx);
1140 }
1141 
1142 void ExprEngine::ProcessLoopExit(const Stmt* S, ExplodedNode *Pred) {
1143   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
1144                                 S->getBeginLoc(),
1145                                 "Error evaluating end of the loop");
1146   ExplodedNodeSet Dst;
1147   Dst.Add(Pred);
1148   NodeBuilder Bldr(Pred, Dst, *currBldrCtx);
1149   ProgramStateRef NewState = Pred->getState();
1150 
1151   if(AMgr.options.ShouldUnrollLoops)
1152     NewState = processLoopEnd(S, NewState);
1153 
1154   LoopExit PP(S, Pred->getLocationContext());
1155   Bldr.generateNode(PP, NewState, Pred);
1156   // Enqueue the new nodes onto the work list.
1157   Engine.enqueue(Dst, currBldrCtx->getBlock(), currStmtIdx);
1158 }
1159 
1160 void ExprEngine::ProcessInitializer(const CFGInitializer CFGInit,
1161                                     ExplodedNode *Pred) {
1162   const CXXCtorInitializer *BMI = CFGInit.getInitializer();
1163   const Expr *Init = BMI->getInit()->IgnoreImplicit();
1164   const LocationContext *LC = Pred->getLocationContext();
1165 
1166   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
1167                                 BMI->getSourceLocation(),
1168                                 "Error evaluating initializer");
1169 
1170   // We don't clean up dead bindings here.
1171   const auto *stackFrame = cast<StackFrameContext>(Pred->getLocationContext());
1172   const auto *decl = cast<CXXConstructorDecl>(stackFrame->getDecl());
1173 
1174   ProgramStateRef State = Pred->getState();
1175   SVal thisVal = State->getSVal(svalBuilder.getCXXThis(decl, stackFrame));
1176 
1177   ExplodedNodeSet Tmp;
1178   SVal FieldLoc;
1179 
1180   // Evaluate the initializer, if necessary
1181   if (BMI->isAnyMemberInitializer()) {
1182     // Constructors build the object directly in the field,
1183     // but non-objects must be copied in from the initializer.
1184     if (getObjectUnderConstruction(State, BMI, LC)) {
1185       // The field was directly constructed, so there is no need to bind.
1186       // But we still need to stop tracking the object under construction.
1187       State = finishObjectConstruction(State, BMI, LC);
1188       NodeBuilder Bldr(Pred, Tmp, *currBldrCtx);
1189       PostStore PS(Init, LC, /*Loc*/ nullptr, /*tag*/ nullptr);
1190       Bldr.generateNode(PS, State, Pred);
1191     } else {
1192       const ValueDecl *Field;
1193       if (BMI->isIndirectMemberInitializer()) {
1194         Field = BMI->getIndirectMember();
1195         FieldLoc = State->getLValue(BMI->getIndirectMember(), thisVal);
1196       } else {
1197         Field = BMI->getMember();
1198         FieldLoc = State->getLValue(BMI->getMember(), thisVal);
1199       }
1200 
1201       SVal InitVal;
1202       if (Init->getType()->isArrayType()) {
1203         // Handle arrays of trivial type. We can represent this with a
1204         // primitive load/copy from the base array region.
1205         const ArraySubscriptExpr *ASE;
1206         while ((ASE = dyn_cast<ArraySubscriptExpr>(Init)))
1207           Init = ASE->getBase()->IgnoreImplicit();
1208 
1209         InitVal = State->getSVal(Init, stackFrame);
1210 
1211         // If we fail to get the value for some reason, use a symbolic value.
1212         if (InitVal.isUnknownOrUndef()) {
1213           SValBuilder &SVB = getSValBuilder();
1214           InitVal = SVB.conjureSymbolVal(BMI->getInit(), stackFrame,
1215                                          Field->getType(),
1216                                          currBldrCtx->blockCount());
1217         }
1218       } else {
1219         InitVal = State->getSVal(BMI->getInit(), stackFrame);
1220       }
1221 
1222       PostInitializer PP(BMI, FieldLoc.getAsRegion(), stackFrame);
1223       evalBind(Tmp, Init, Pred, FieldLoc, InitVal, /*isInit=*/true, &PP);
1224     }
1225   } else if (BMI->isBaseInitializer() && isa<InitListExpr>(Init)) {
1226     // When the base class is initialized with an initialization list and the
1227     // base class does not have a ctor, there will not be a CXXConstructExpr to
1228     // initialize the base region. Hence, we need to make the bind for it.
1229     SVal BaseLoc = getStoreManager().evalDerivedToBase(
1230         thisVal, QualType(BMI->getBaseClass(), 0), BMI->isBaseVirtual());
1231     SVal InitVal = State->getSVal(Init, stackFrame);
1232     evalBind(Tmp, Init, Pred, BaseLoc, InitVal, /*isInit=*/true);
1233   } else {
1234     assert(BMI->isBaseInitializer() || BMI->isDelegatingInitializer());
1235     Tmp.insert(Pred);
1236     // We already did all the work when visiting the CXXConstructExpr.
1237   }
1238 
1239   // Construct PostInitializer nodes whether the state changed or not,
1240   // so that the diagnostics don't get confused.
1241   PostInitializer PP(BMI, FieldLoc.getAsRegion(), stackFrame);
1242   ExplodedNodeSet Dst;
1243   NodeBuilder Bldr(Tmp, Dst, *currBldrCtx);
1244   for (const auto I : Tmp) {
1245     ProgramStateRef State = I->getState();
1246     Bldr.generateNode(PP, State, I);
1247   }
1248 
1249   // Enqueue the new nodes onto the work list.
1250   Engine.enqueue(Dst, currBldrCtx->getBlock(), currStmtIdx);
1251 }
1252 
1253 std::pair<ProgramStateRef, uint64_t>
1254 ExprEngine::prepareStateForArrayDestruction(const ProgramStateRef State,
1255                                             const MemRegion *Region,
1256                                             const QualType &ElementTy,
1257                                             const LocationContext *LCtx,
1258                                             SVal *ElementCountVal) {
1259   assert(Region != nullptr && "Not-null region expected");
1260 
1261   QualType Ty = ElementTy.getDesugaredType(getContext());
1262   while (const auto *NTy = dyn_cast<ArrayType>(Ty))
1263     Ty = NTy->getElementType().getDesugaredType(getContext());
1264 
1265   auto ElementCount = getDynamicElementCount(State, Region, svalBuilder, Ty);
1266 
1267   if (ElementCountVal)
1268     *ElementCountVal = ElementCount;
1269 
1270   // Note: the destructors are called in reverse order.
1271   unsigned Idx = 0;
1272   if (auto OptionalIdx = getPendingArrayDestruction(State, LCtx)) {
1273     Idx = *OptionalIdx;
1274   } else {
1275     // The element count is either unknown, or an SVal that's not an integer.
1276     if (!ElementCount.isConstant())
1277       return {State, 0};
1278 
1279     Idx = ElementCount.getAsInteger()->getLimitedValue();
1280   }
1281 
1282   if (Idx == 0)
1283     return {State, 0};
1284 
1285   --Idx;
1286 
1287   return {setPendingArrayDestruction(State, LCtx, Idx), Idx};
1288 }
1289 
1290 void ExprEngine::ProcessImplicitDtor(const CFGImplicitDtor D,
1291                                      ExplodedNode *Pred) {
1292   ExplodedNodeSet Dst;
1293   switch (D.getKind()) {
1294   case CFGElement::AutomaticObjectDtor:
1295     ProcessAutomaticObjDtor(D.castAs<CFGAutomaticObjDtor>(), Pred, Dst);
1296     break;
1297   case CFGElement::BaseDtor:
1298     ProcessBaseDtor(D.castAs<CFGBaseDtor>(), Pred, Dst);
1299     break;
1300   case CFGElement::MemberDtor:
1301     ProcessMemberDtor(D.castAs<CFGMemberDtor>(), Pred, Dst);
1302     break;
1303   case CFGElement::TemporaryDtor:
1304     ProcessTemporaryDtor(D.castAs<CFGTemporaryDtor>(), Pred, Dst);
1305     break;
1306   case CFGElement::DeleteDtor:
1307     ProcessDeleteDtor(D.castAs<CFGDeleteDtor>(), Pred, Dst);
1308     break;
1309   default:
1310     llvm_unreachable("Unexpected dtor kind.");
1311   }
1312 
1313   // Enqueue the new nodes onto the work list.
1314   Engine.enqueue(Dst, currBldrCtx->getBlock(), currStmtIdx);
1315 }
1316 
1317 void ExprEngine::ProcessNewAllocator(const CXXNewExpr *NE,
1318                                      ExplodedNode *Pred) {
1319   ExplodedNodeSet Dst;
1320   AnalysisManager &AMgr = getAnalysisManager();
1321   AnalyzerOptions &Opts = AMgr.options;
1322   // TODO: We're not evaluating allocators for all cases just yet as
1323   // we're not handling the return value correctly, which causes false
1324   // positives when the alpha.cplusplus.NewDeleteLeaks check is on.
1325   if (Opts.MayInlineCXXAllocator)
1326     VisitCXXNewAllocatorCall(NE, Pred, Dst);
1327   else {
1328     NodeBuilder Bldr(Pred, Dst, *currBldrCtx);
1329     const LocationContext *LCtx = Pred->getLocationContext();
1330     PostImplicitCall PP(NE->getOperatorNew(), NE->getBeginLoc(), LCtx,
1331                         getCFGElementRef());
1332     Bldr.generateNode(PP, Pred->getState(), Pred);
1333   }
1334   Engine.enqueue(Dst, currBldrCtx->getBlock(), currStmtIdx);
1335 }
1336 
1337 void ExprEngine::ProcessAutomaticObjDtor(const CFGAutomaticObjDtor Dtor,
1338                                          ExplodedNode *Pred,
1339                                          ExplodedNodeSet &Dst) {
1340   const auto *DtorDecl = Dtor.getDestructorDecl(getContext());
1341   const VarDecl *varDecl = Dtor.getVarDecl();
1342   QualType varType = varDecl->getType();
1343 
1344   ProgramStateRef state = Pred->getState();
1345   const LocationContext *LCtx = Pred->getLocationContext();
1346 
1347   SVal dest = state->getLValue(varDecl, LCtx);
1348   const MemRegion *Region = dest.castAs<loc::MemRegionVal>().getRegion();
1349 
1350   if (varType->isReferenceType()) {
1351     const MemRegion *ValueRegion = state->getSVal(Region).getAsRegion();
1352     if (!ValueRegion) {
1353       // FIXME: This should not happen. The language guarantees a presence
1354       // of a valid initializer here, so the reference shall not be undefined.
1355       // It seems that we're calling destructors over variables that
1356       // were not initialized yet.
1357       return;
1358     }
1359     Region = ValueRegion->getBaseRegion();
1360     varType = cast<TypedValueRegion>(Region)->getValueType();
1361   }
1362 
1363   unsigned Idx = 0;
1364   if (isa<ArrayType>(varType)) {
1365     SVal ElementCount;
1366     std::tie(state, Idx) = prepareStateForArrayDestruction(
1367         state, Region, varType, LCtx, &ElementCount);
1368 
1369     if (ElementCount.isConstant()) {
1370       uint64_t ArrayLength = ElementCount.getAsInteger()->getLimitedValue();
1371       assert(ArrayLength &&
1372              "An automatic dtor for a 0 length array shouldn't be triggered!");
1373 
1374       // Still handle this case if we don't have assertions enabled.
1375       if (!ArrayLength) {
1376         static SimpleProgramPointTag PT(
1377             "ExprEngine", "Skipping automatic 0 length array destruction, "
1378                           "which shouldn't be in the CFG.");
1379         PostImplicitCall PP(DtorDecl, varDecl->getLocation(), LCtx,
1380                             getCFGElementRef(), &PT);
1381         NodeBuilder Bldr(Pred, Dst, *currBldrCtx);
1382         Bldr.generateSink(PP, Pred->getState(), Pred);
1383         return;
1384       }
1385     }
1386   }
1387 
1388   EvalCallOptions CallOpts;
1389   Region = makeElementRegion(state, loc::MemRegionVal(Region), varType,
1390                              CallOpts.IsArrayCtorOrDtor, Idx)
1391                .getAsRegion();
1392 
1393   NodeBuilder Bldr(Pred, Dst, getBuilderContext());
1394 
1395   static SimpleProgramPointTag PT("ExprEngine",
1396                                   "Prepare for object destruction");
1397   PreImplicitCall PP(DtorDecl, varDecl->getLocation(), LCtx, getCFGElementRef(),
1398                      &PT);
1399   Pred = Bldr.generateNode(PP, state, Pred);
1400 
1401   if (!Pred)
1402     return;
1403   Bldr.takeNodes(Pred);
1404 
1405   VisitCXXDestructor(varType, Region, Dtor.getTriggerStmt(),
1406                      /*IsBase=*/false, Pred, Dst, CallOpts);
1407 }
1408 
1409 void ExprEngine::ProcessDeleteDtor(const CFGDeleteDtor Dtor,
1410                                    ExplodedNode *Pred,
1411                                    ExplodedNodeSet &Dst) {
1412   ProgramStateRef State = Pred->getState();
1413   const LocationContext *LCtx = Pred->getLocationContext();
1414   const CXXDeleteExpr *DE = Dtor.getDeleteExpr();
1415   const Stmt *Arg = DE->getArgument();
1416   QualType DTy = DE->getDestroyedType();
1417   SVal ArgVal = State->getSVal(Arg, LCtx);
1418 
1419   // If the argument to delete is known to be a null value,
1420   // don't run destructor.
1421   if (State->isNull(ArgVal).isConstrainedTrue()) {
1422     QualType BTy = getContext().getBaseElementType(DTy);
1423     const CXXRecordDecl *RD = BTy->getAsCXXRecordDecl();
1424     const CXXDestructorDecl *Dtor = RD->getDestructor();
1425 
1426     PostImplicitCall PP(Dtor, DE->getBeginLoc(), LCtx, getCFGElementRef());
1427     NodeBuilder Bldr(Pred, Dst, *currBldrCtx);
1428     Bldr.generateNode(PP, Pred->getState(), Pred);
1429     return;
1430   }
1431 
1432   auto getDtorDecl = [](const QualType &DTy) {
1433     const CXXRecordDecl *RD = DTy->getAsCXXRecordDecl();
1434     return RD->getDestructor();
1435   };
1436 
1437   unsigned Idx = 0;
1438   EvalCallOptions CallOpts;
1439   const MemRegion *ArgR = ArgVal.getAsRegion();
1440 
1441   if (DE->isArrayForm()) {
1442     CallOpts.IsArrayCtorOrDtor = true;
1443     // Yes, it may even be a multi-dimensional array.
1444     while (const auto *AT = getContext().getAsArrayType(DTy))
1445       DTy = AT->getElementType();
1446 
1447     if (ArgR) {
1448       SVal ElementCount;
1449       std::tie(State, Idx) = prepareStateForArrayDestruction(
1450           State, ArgR, DTy, LCtx, &ElementCount);
1451 
1452       // If we're about to destruct a 0 length array, don't run any of the
1453       // destructors.
1454       if (ElementCount.isConstant() &&
1455           ElementCount.getAsInteger()->getLimitedValue() == 0) {
1456 
1457         static SimpleProgramPointTag PT(
1458             "ExprEngine", "Skipping 0 length array delete destruction");
1459         PostImplicitCall PP(getDtorDecl(DTy), DE->getBeginLoc(), LCtx,
1460                             getCFGElementRef(), &PT);
1461         NodeBuilder Bldr(Pred, Dst, *currBldrCtx);
1462         Bldr.generateNode(PP, Pred->getState(), Pred);
1463         return;
1464       }
1465 
1466       ArgR = State->getLValue(DTy, svalBuilder.makeArrayIndex(Idx), ArgVal)
1467                  .getAsRegion();
1468     }
1469   }
1470 
1471   NodeBuilder Bldr(Pred, Dst, getBuilderContext());
1472   static SimpleProgramPointTag PT("ExprEngine",
1473                                   "Prepare for object destruction");
1474   PreImplicitCall PP(getDtorDecl(DTy), DE->getBeginLoc(), LCtx,
1475                      getCFGElementRef(), &PT);
1476   Pred = Bldr.generateNode(PP, State, Pred);
1477 
1478   if (!Pred)
1479     return;
1480   Bldr.takeNodes(Pred);
1481 
1482   VisitCXXDestructor(DTy, ArgR, DE, /*IsBase=*/false, Pred, Dst, CallOpts);
1483 }
1484 
1485 void ExprEngine::ProcessBaseDtor(const CFGBaseDtor D,
1486                                  ExplodedNode *Pred, ExplodedNodeSet &Dst) {
1487   const LocationContext *LCtx = Pred->getLocationContext();
1488 
1489   const auto *CurDtor = cast<CXXDestructorDecl>(LCtx->getDecl());
1490   Loc ThisPtr = getSValBuilder().getCXXThis(CurDtor,
1491                                             LCtx->getStackFrame());
1492   SVal ThisVal = Pred->getState()->getSVal(ThisPtr);
1493 
1494   // Create the base object region.
1495   const CXXBaseSpecifier *Base = D.getBaseSpecifier();
1496   QualType BaseTy = Base->getType();
1497   SVal BaseVal = getStoreManager().evalDerivedToBase(ThisVal, BaseTy,
1498                                                      Base->isVirtual());
1499 
1500   EvalCallOptions CallOpts;
1501   VisitCXXDestructor(BaseTy, BaseVal.getAsRegion(), CurDtor->getBody(),
1502                      /*IsBase=*/true, Pred, Dst, CallOpts);
1503 }
1504 
1505 void ExprEngine::ProcessMemberDtor(const CFGMemberDtor D,
1506                                    ExplodedNode *Pred, ExplodedNodeSet &Dst) {
1507   const auto *DtorDecl = D.getDestructorDecl(getContext());
1508   const FieldDecl *Member = D.getFieldDecl();
1509   QualType T = Member->getType();
1510   ProgramStateRef State = Pred->getState();
1511   const LocationContext *LCtx = Pred->getLocationContext();
1512 
1513   const auto *CurDtor = cast<CXXDestructorDecl>(LCtx->getDecl());
1514   Loc ThisStorageLoc =
1515       getSValBuilder().getCXXThis(CurDtor, LCtx->getStackFrame());
1516   Loc ThisLoc = State->getSVal(ThisStorageLoc).castAs<Loc>();
1517   SVal FieldVal = State->getLValue(Member, ThisLoc);
1518 
1519   unsigned Idx = 0;
1520   if (isa<ArrayType>(T)) {
1521     SVal ElementCount;
1522     std::tie(State, Idx) = prepareStateForArrayDestruction(
1523         State, FieldVal.getAsRegion(), T, LCtx, &ElementCount);
1524 
1525     if (ElementCount.isConstant()) {
1526       uint64_t ArrayLength = ElementCount.getAsInteger()->getLimitedValue();
1527       assert(ArrayLength &&
1528              "A member dtor for a 0 length array shouldn't be triggered!");
1529 
1530       // Still handle this case if we don't have assertions enabled.
1531       if (!ArrayLength) {
1532         static SimpleProgramPointTag PT(
1533             "ExprEngine", "Skipping member 0 length array destruction, which "
1534                           "shouldn't be in the CFG.");
1535         PostImplicitCall PP(DtorDecl, Member->getLocation(), LCtx,
1536                             getCFGElementRef(), &PT);
1537         NodeBuilder Bldr(Pred, Dst, *currBldrCtx);
1538         Bldr.generateSink(PP, Pred->getState(), Pred);
1539         return;
1540       }
1541     }
1542   }
1543 
1544   EvalCallOptions CallOpts;
1545   FieldVal =
1546       makeElementRegion(State, FieldVal, T, CallOpts.IsArrayCtorOrDtor, Idx);
1547 
1548   NodeBuilder Bldr(Pred, Dst, getBuilderContext());
1549 
1550   static SimpleProgramPointTag PT("ExprEngine",
1551                                   "Prepare for object destruction");
1552   PreImplicitCall PP(DtorDecl, Member->getLocation(), LCtx, getCFGElementRef(),
1553                      &PT);
1554   Pred = Bldr.generateNode(PP, State, Pred);
1555 
1556   if (!Pred)
1557     return;
1558   Bldr.takeNodes(Pred);
1559 
1560   VisitCXXDestructor(T, FieldVal.getAsRegion(), CurDtor->getBody(),
1561                      /*IsBase=*/false, Pred, Dst, CallOpts);
1562 }
1563 
1564 void ExprEngine::ProcessTemporaryDtor(const CFGTemporaryDtor D,
1565                                       ExplodedNode *Pred,
1566                                       ExplodedNodeSet &Dst) {
1567   const CXXBindTemporaryExpr *BTE = D.getBindTemporaryExpr();
1568   ProgramStateRef State = Pred->getState();
1569   const LocationContext *LC = Pred->getLocationContext();
1570   const MemRegion *MR = nullptr;
1571 
1572   if (std::optional<SVal> V = getObjectUnderConstruction(
1573           State, D.getBindTemporaryExpr(), Pred->getLocationContext())) {
1574     // FIXME: Currently we insert temporary destructors for default parameters,
1575     // but we don't insert the constructors, so the entry in
1576     // ObjectsUnderConstruction may be missing.
1577     State = finishObjectConstruction(State, D.getBindTemporaryExpr(),
1578                                      Pred->getLocationContext());
1579     MR = V->getAsRegion();
1580   }
1581 
1582   // If copy elision has occurred, and the constructor corresponding to the
1583   // destructor was elided, we need to skip the destructor as well.
1584   if (isDestructorElided(State, BTE, LC)) {
1585     State = cleanupElidedDestructor(State, BTE, LC);
1586     NodeBuilder Bldr(Pred, Dst, *currBldrCtx);
1587     PostImplicitCall PP(D.getDestructorDecl(getContext()),
1588                         D.getBindTemporaryExpr()->getBeginLoc(),
1589                         Pred->getLocationContext(), getCFGElementRef());
1590     Bldr.generateNode(PP, State, Pred);
1591     return;
1592   }
1593 
1594   ExplodedNodeSet CleanDtorState;
1595   StmtNodeBuilder StmtBldr(Pred, CleanDtorState, *currBldrCtx);
1596   StmtBldr.generateNode(D.getBindTemporaryExpr(), Pred, State);
1597 
1598   QualType T = D.getBindTemporaryExpr()->getSubExpr()->getType();
1599   // FIXME: Currently CleanDtorState can be empty here due to temporaries being
1600   // bound to default parameters.
1601   assert(CleanDtorState.size() <= 1);
1602   ExplodedNode *CleanPred =
1603       CleanDtorState.empty() ? Pred : *CleanDtorState.begin();
1604 
1605   EvalCallOptions CallOpts;
1606   CallOpts.IsTemporaryCtorOrDtor = true;
1607   if (!MR) {
1608     // FIXME: If we have no MR, we still need to unwrap the array to avoid
1609     // destroying the whole array at once.
1610     //
1611     // For this case there is no universal solution as there is no way to
1612     // directly create an array of temporary objects. There are some expressions
1613     // however which can create temporary objects and have an array type.
1614     //
1615     // E.g.: std::initializer_list<S>{S(), S()};
1616     //
1617     // The expression above has a type of 'const struct S[2]' but it's a single
1618     // 'std::initializer_list<>'. The destructors of the 2 temporary 'S()'
1619     // objects will be called anyway, because they are 2 separate objects in 2
1620     // separate clusters, i.e.: not an array.
1621     //
1622     // Now the 'std::initializer_list<>' is not an array either even though it
1623     // has the type of an array. The point is, we only want to invoke the
1624     // destructor for the initializer list once not twice or so.
1625     while (const ArrayType *AT = getContext().getAsArrayType(T)) {
1626       T = AT->getElementType();
1627 
1628       // FIXME: Enable this flag once we handle this case properly.
1629       // CallOpts.IsArrayCtorOrDtor = true;
1630     }
1631   } else {
1632     // FIXME: We'd eventually need to makeElementRegion() trick here,
1633     // but for now we don't have the respective construction contexts,
1634     // so MR would always be null in this case. Do nothing for now.
1635   }
1636   VisitCXXDestructor(T, MR, D.getBindTemporaryExpr(),
1637                      /*IsBase=*/false, CleanPred, Dst, CallOpts);
1638 }
1639 
1640 void ExprEngine::processCleanupTemporaryBranch(const CXXBindTemporaryExpr *BTE,
1641                                                NodeBuilderContext &BldCtx,
1642                                                ExplodedNode *Pred,
1643                                                ExplodedNodeSet &Dst,
1644                                                const CFGBlock *DstT,
1645                                                const CFGBlock *DstF) {
1646   BranchNodeBuilder TempDtorBuilder(Pred, Dst, BldCtx, DstT, DstF);
1647   ProgramStateRef State = Pred->getState();
1648   const LocationContext *LC = Pred->getLocationContext();
1649   if (getObjectUnderConstruction(State, BTE, LC)) {
1650     TempDtorBuilder.generateNode(State, true, Pred);
1651   } else {
1652     TempDtorBuilder.generateNode(State, false, Pred);
1653   }
1654 }
1655 
1656 void ExprEngine::VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *BTE,
1657                                            ExplodedNodeSet &PreVisit,
1658                                            ExplodedNodeSet &Dst) {
1659   // This is a fallback solution in case we didn't have a construction
1660   // context when we were constructing the temporary. Otherwise the map should
1661   // have been populated there.
1662   if (!getAnalysisManager().options.ShouldIncludeTemporaryDtorsInCFG) {
1663     // In case we don't have temporary destructors in the CFG, do not mark
1664     // the initialization - we would otherwise never clean it up.
1665     Dst = PreVisit;
1666     return;
1667   }
1668   StmtNodeBuilder StmtBldr(PreVisit, Dst, *currBldrCtx);
1669   for (ExplodedNode *Node : PreVisit) {
1670     ProgramStateRef State = Node->getState();
1671     const LocationContext *LC = Node->getLocationContext();
1672     if (!getObjectUnderConstruction(State, BTE, LC)) {
1673       // FIXME: Currently the state might also already contain the marker due to
1674       // incorrect handling of temporaries bound to default parameters; for
1675       // those, we currently skip the CXXBindTemporaryExpr but rely on adding
1676       // temporary destructor nodes.
1677       State = addObjectUnderConstruction(State, BTE, LC, UnknownVal());
1678     }
1679     StmtBldr.generateNode(BTE, Node, State);
1680   }
1681 }
1682 
1683 ProgramStateRef ExprEngine::escapeValues(ProgramStateRef State,
1684                                          ArrayRef<SVal> Vs,
1685                                          PointerEscapeKind K,
1686                                          const CallEvent *Call) const {
1687   class CollectReachableSymbolsCallback final : public SymbolVisitor {
1688     InvalidatedSymbols &Symbols;
1689 
1690   public:
1691     explicit CollectReachableSymbolsCallback(InvalidatedSymbols &Symbols)
1692         : Symbols(Symbols) {}
1693 
1694     const InvalidatedSymbols &getSymbols() const { return Symbols; }
1695 
1696     bool VisitSymbol(SymbolRef Sym) override {
1697       Symbols.insert(Sym);
1698       return true;
1699     }
1700   };
1701   InvalidatedSymbols Symbols;
1702   CollectReachableSymbolsCallback CallBack(Symbols);
1703   for (SVal V : Vs)
1704     State->scanReachableSymbols(V, CallBack);
1705 
1706   return getCheckerManager().runCheckersForPointerEscape(
1707       State, CallBack.getSymbols(), Call, K, nullptr);
1708 }
1709 
1710 void ExprEngine::Visit(const Stmt *S, ExplodedNode *Pred,
1711                        ExplodedNodeSet &DstTop) {
1712   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
1713                                 S->getBeginLoc(), "Error evaluating statement");
1714   ExplodedNodeSet Dst;
1715   StmtNodeBuilder Bldr(Pred, DstTop, *currBldrCtx);
1716 
1717   assert(!isa<Expr>(S) || S == cast<Expr>(S)->IgnoreParens());
1718 
1719   switch (S->getStmtClass()) {
1720     // C++, OpenMP and ARC stuff we don't support yet.
1721     case Stmt::CXXDependentScopeMemberExprClass:
1722     case Stmt::CXXTryStmtClass:
1723     case Stmt::CXXTypeidExprClass:
1724     case Stmt::CXXUuidofExprClass:
1725     case Stmt::CXXFoldExprClass:
1726     case Stmt::MSPropertyRefExprClass:
1727     case Stmt::MSPropertySubscriptExprClass:
1728     case Stmt::CXXUnresolvedConstructExprClass:
1729     case Stmt::DependentScopeDeclRefExprClass:
1730     case Stmt::ArrayTypeTraitExprClass:
1731     case Stmt::ExpressionTraitExprClass:
1732     case Stmt::UnresolvedLookupExprClass:
1733     case Stmt::UnresolvedMemberExprClass:
1734     case Stmt::TypoExprClass:
1735     case Stmt::RecoveryExprClass:
1736     case Stmt::CXXNoexceptExprClass:
1737     case Stmt::PackExpansionExprClass:
1738     case Stmt::PackIndexingExprClass:
1739     case Stmt::SubstNonTypeTemplateParmPackExprClass:
1740     case Stmt::FunctionParmPackExprClass:
1741     case Stmt::CoroutineBodyStmtClass:
1742     case Stmt::CoawaitExprClass:
1743     case Stmt::DependentCoawaitExprClass:
1744     case Stmt::CoreturnStmtClass:
1745     case Stmt::CoyieldExprClass:
1746     case Stmt::SEHTryStmtClass:
1747     case Stmt::SEHExceptStmtClass:
1748     case Stmt::SEHLeaveStmtClass:
1749     case Stmt::SEHFinallyStmtClass:
1750     case Stmt::OMPCanonicalLoopClass:
1751     case Stmt::OMPParallelDirectiveClass:
1752     case Stmt::OMPSimdDirectiveClass:
1753     case Stmt::OMPForDirectiveClass:
1754     case Stmt::OMPForSimdDirectiveClass:
1755     case Stmt::OMPSectionsDirectiveClass:
1756     case Stmt::OMPSectionDirectiveClass:
1757     case Stmt::OMPScopeDirectiveClass:
1758     case Stmt::OMPSingleDirectiveClass:
1759     case Stmt::OMPMasterDirectiveClass:
1760     case Stmt::OMPCriticalDirectiveClass:
1761     case Stmt::OMPParallelForDirectiveClass:
1762     case Stmt::OMPParallelForSimdDirectiveClass:
1763     case Stmt::OMPParallelSectionsDirectiveClass:
1764     case Stmt::OMPParallelMasterDirectiveClass:
1765     case Stmt::OMPParallelMaskedDirectiveClass:
1766     case Stmt::OMPTaskDirectiveClass:
1767     case Stmt::OMPTaskyieldDirectiveClass:
1768     case Stmt::OMPBarrierDirectiveClass:
1769     case Stmt::OMPTaskwaitDirectiveClass:
1770     case Stmt::OMPErrorDirectiveClass:
1771     case Stmt::OMPTaskgroupDirectiveClass:
1772     case Stmt::OMPFlushDirectiveClass:
1773     case Stmt::OMPDepobjDirectiveClass:
1774     case Stmt::OMPScanDirectiveClass:
1775     case Stmt::OMPOrderedDirectiveClass:
1776     case Stmt::OMPAtomicDirectiveClass:
1777     case Stmt::OMPAssumeDirectiveClass:
1778     case Stmt::OMPTargetDirectiveClass:
1779     case Stmt::OMPTargetDataDirectiveClass:
1780     case Stmt::OMPTargetEnterDataDirectiveClass:
1781     case Stmt::OMPTargetExitDataDirectiveClass:
1782     case Stmt::OMPTargetParallelDirectiveClass:
1783     case Stmt::OMPTargetParallelForDirectiveClass:
1784     case Stmt::OMPTargetUpdateDirectiveClass:
1785     case Stmt::OMPTeamsDirectiveClass:
1786     case Stmt::OMPCancellationPointDirectiveClass:
1787     case Stmt::OMPCancelDirectiveClass:
1788     case Stmt::OMPTaskLoopDirectiveClass:
1789     case Stmt::OMPTaskLoopSimdDirectiveClass:
1790     case Stmt::OMPMasterTaskLoopDirectiveClass:
1791     case Stmt::OMPMaskedTaskLoopDirectiveClass:
1792     case Stmt::OMPMasterTaskLoopSimdDirectiveClass:
1793     case Stmt::OMPMaskedTaskLoopSimdDirectiveClass:
1794     case Stmt::OMPParallelMasterTaskLoopDirectiveClass:
1795     case Stmt::OMPParallelMaskedTaskLoopDirectiveClass:
1796     case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass:
1797     case Stmt::OMPParallelMaskedTaskLoopSimdDirectiveClass:
1798     case Stmt::OMPDistributeDirectiveClass:
1799     case Stmt::OMPDistributeParallelForDirectiveClass:
1800     case Stmt::OMPDistributeParallelForSimdDirectiveClass:
1801     case Stmt::OMPDistributeSimdDirectiveClass:
1802     case Stmt::OMPTargetParallelForSimdDirectiveClass:
1803     case Stmt::OMPTargetSimdDirectiveClass:
1804     case Stmt::OMPTeamsDistributeDirectiveClass:
1805     case Stmt::OMPTeamsDistributeSimdDirectiveClass:
1806     case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass:
1807     case Stmt::OMPTeamsDistributeParallelForDirectiveClass:
1808     case Stmt::OMPTargetTeamsDirectiveClass:
1809     case Stmt::OMPTargetTeamsDistributeDirectiveClass:
1810     case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass:
1811     case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass:
1812     case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass:
1813     case Stmt::OMPReverseDirectiveClass:
1814     case Stmt::OMPTileDirectiveClass:
1815     case Stmt::OMPInterchangeDirectiveClass:
1816     case Stmt::OMPInteropDirectiveClass:
1817     case Stmt::OMPDispatchDirectiveClass:
1818     case Stmt::OMPMaskedDirectiveClass:
1819     case Stmt::OMPGenericLoopDirectiveClass:
1820     case Stmt::OMPTeamsGenericLoopDirectiveClass:
1821     case Stmt::OMPTargetTeamsGenericLoopDirectiveClass:
1822     case Stmt::OMPParallelGenericLoopDirectiveClass:
1823     case Stmt::OMPTargetParallelGenericLoopDirectiveClass:
1824     case Stmt::CapturedStmtClass:
1825     case Stmt::OpenACCComputeConstructClass:
1826     case Stmt::OpenACCLoopConstructClass:
1827     case Stmt::OpenACCCombinedConstructClass:
1828     case Stmt::OpenACCDataConstructClass:
1829     case Stmt::OpenACCEnterDataConstructClass:
1830     case Stmt::OpenACCExitDataConstructClass:
1831     case Stmt::OpenACCHostDataConstructClass:
1832     case Stmt::OpenACCWaitConstructClass:
1833     case Stmt::OpenACCInitConstructClass:
1834     case Stmt::OpenACCShutdownConstructClass:
1835     case Stmt::OpenACCSetConstructClass:
1836     case Stmt::OpenACCUpdateConstructClass:
1837     case Stmt::OMPUnrollDirectiveClass:
1838     case Stmt::OMPMetaDirectiveClass:
1839     case Stmt::HLSLOutArgExprClass: {
1840       const ExplodedNode *node = Bldr.generateSink(S, Pred, Pred->getState());
1841       Engine.addAbortedBlock(node, currBldrCtx->getBlock());
1842       break;
1843     }
1844 
1845     case Stmt::ParenExprClass:
1846       llvm_unreachable("ParenExprs already handled.");
1847     case Stmt::GenericSelectionExprClass:
1848       llvm_unreachable("GenericSelectionExprs already handled.");
1849     // Cases that should never be evaluated simply because they shouldn't
1850     // appear in the CFG.
1851     case Stmt::BreakStmtClass:
1852     case Stmt::CaseStmtClass:
1853     case Stmt::CompoundStmtClass:
1854     case Stmt::ContinueStmtClass:
1855     case Stmt::CXXForRangeStmtClass:
1856     case Stmt::DefaultStmtClass:
1857     case Stmt::DoStmtClass:
1858     case Stmt::ForStmtClass:
1859     case Stmt::GotoStmtClass:
1860     case Stmt::IfStmtClass:
1861     case Stmt::IndirectGotoStmtClass:
1862     case Stmt::LabelStmtClass:
1863     case Stmt::NoStmtClass:
1864     case Stmt::NullStmtClass:
1865     case Stmt::SwitchStmtClass:
1866     case Stmt::WhileStmtClass:
1867     case Expr::MSDependentExistsStmtClass:
1868       llvm_unreachable("Stmt should not be in analyzer evaluation loop");
1869     case Stmt::ImplicitValueInitExprClass:
1870       // These nodes are shared in the CFG and would case caching out.
1871       // Moreover, no additional evaluation required for them, the
1872       // analyzer can reconstruct these values from the AST.
1873       llvm_unreachable("Should be pruned from CFG");
1874 
1875     case Stmt::ObjCSubscriptRefExprClass:
1876     case Stmt::ObjCPropertyRefExprClass:
1877       llvm_unreachable("These are handled by PseudoObjectExpr");
1878 
1879     case Stmt::GNUNullExprClass: {
1880       // GNU __null is a pointer-width integer, not an actual pointer.
1881       ProgramStateRef state = Pred->getState();
1882       state = state->BindExpr(
1883           S, Pred->getLocationContext(),
1884           svalBuilder.makeIntValWithWidth(getContext().VoidPtrTy, 0));
1885       Bldr.generateNode(S, Pred, state);
1886       break;
1887     }
1888 
1889     case Stmt::ObjCAtSynchronizedStmtClass:
1890       Bldr.takeNodes(Pred);
1891       VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S), Pred, Dst);
1892       Bldr.addNodes(Dst);
1893       break;
1894 
1895     case Expr::ConstantExprClass:
1896     case Stmt::ExprWithCleanupsClass:
1897       // Handled due to fully linearised CFG.
1898       break;
1899 
1900     case Stmt::CXXBindTemporaryExprClass: {
1901       Bldr.takeNodes(Pred);
1902       ExplodedNodeSet PreVisit;
1903       getCheckerManager().runCheckersForPreStmt(PreVisit, Pred, S, *this);
1904       ExplodedNodeSet Next;
1905       VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), PreVisit, Next);
1906       getCheckerManager().runCheckersForPostStmt(Dst, Next, S, *this);
1907       Bldr.addNodes(Dst);
1908       break;
1909     }
1910 
1911     case Stmt::ArrayInitLoopExprClass:
1912       Bldr.takeNodes(Pred);
1913       VisitArrayInitLoopExpr(cast<ArrayInitLoopExpr>(S), Pred, Dst);
1914       Bldr.addNodes(Dst);
1915       break;
1916     // Cases not handled yet; but will handle some day.
1917     case Stmt::DesignatedInitExprClass:
1918     case Stmt::DesignatedInitUpdateExprClass:
1919     case Stmt::ArrayInitIndexExprClass:
1920     case Stmt::ExtVectorElementExprClass:
1921     case Stmt::ImaginaryLiteralClass:
1922     case Stmt::ObjCAtCatchStmtClass:
1923     case Stmt::ObjCAtFinallyStmtClass:
1924     case Stmt::ObjCAtTryStmtClass:
1925     case Stmt::ObjCAutoreleasePoolStmtClass:
1926     case Stmt::ObjCEncodeExprClass:
1927     case Stmt::ObjCIsaExprClass:
1928     case Stmt::ObjCProtocolExprClass:
1929     case Stmt::ObjCSelectorExprClass:
1930     case Stmt::ParenListExprClass:
1931     case Stmt::ShuffleVectorExprClass:
1932     case Stmt::ConvertVectorExprClass:
1933     case Stmt::VAArgExprClass:
1934     case Stmt::CUDAKernelCallExprClass:
1935     case Stmt::OpaqueValueExprClass:
1936     case Stmt::AsTypeExprClass:
1937     case Stmt::ConceptSpecializationExprClass:
1938     case Stmt::CXXRewrittenBinaryOperatorClass:
1939     case Stmt::RequiresExprClass:
1940     case Expr::CXXParenListInitExprClass:
1941     case Stmt::EmbedExprClass:
1942       // Fall through.
1943 
1944     // Cases we intentionally don't evaluate, since they don't need
1945     // to be explicitly evaluated.
1946     case Stmt::PredefinedExprClass:
1947     case Stmt::AddrLabelExprClass:
1948     case Stmt::AttributedStmtClass:
1949     case Stmt::IntegerLiteralClass:
1950     case Stmt::FixedPointLiteralClass:
1951     case Stmt::CharacterLiteralClass:
1952     case Stmt::CXXScalarValueInitExprClass:
1953     case Stmt::CXXBoolLiteralExprClass:
1954     case Stmt::ObjCBoolLiteralExprClass:
1955     case Stmt::ObjCAvailabilityCheckExprClass:
1956     case Stmt::FloatingLiteralClass:
1957     case Stmt::NoInitExprClass:
1958     case Stmt::SizeOfPackExprClass:
1959     case Stmt::StringLiteralClass:
1960     case Stmt::SourceLocExprClass:
1961     case Stmt::ObjCStringLiteralClass:
1962     case Stmt::CXXPseudoDestructorExprClass:
1963     case Stmt::SubstNonTypeTemplateParmExprClass:
1964     case Stmt::CXXNullPtrLiteralExprClass:
1965     case Stmt::ArraySectionExprClass:
1966     case Stmt::OMPArrayShapingExprClass:
1967     case Stmt::OMPIteratorExprClass:
1968     case Stmt::SYCLUniqueStableNameExprClass:
1969     case Stmt::OpenACCAsteriskSizeExprClass:
1970     case Stmt::TypeTraitExprClass: {
1971       Bldr.takeNodes(Pred);
1972       ExplodedNodeSet preVisit;
1973       getCheckerManager().runCheckersForPreStmt(preVisit, Pred, S, *this);
1974       getCheckerManager().runCheckersForPostStmt(Dst, preVisit, S, *this);
1975       Bldr.addNodes(Dst);
1976       break;
1977     }
1978 
1979     case Stmt::CXXDefaultArgExprClass:
1980     case Stmt::CXXDefaultInitExprClass: {
1981       Bldr.takeNodes(Pred);
1982       ExplodedNodeSet PreVisit;
1983       getCheckerManager().runCheckersForPreStmt(PreVisit, Pred, S, *this);
1984 
1985       ExplodedNodeSet Tmp;
1986       StmtNodeBuilder Bldr2(PreVisit, Tmp, *currBldrCtx);
1987 
1988       const Expr *ArgE;
1989       if (const auto *DefE = dyn_cast<CXXDefaultArgExpr>(S))
1990         ArgE = DefE->getExpr();
1991       else if (const auto *DefE = dyn_cast<CXXDefaultInitExpr>(S))
1992         ArgE = DefE->getExpr();
1993       else
1994         llvm_unreachable("unknown constant wrapper kind");
1995 
1996       bool IsTemporary = false;
1997       if (const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(ArgE)) {
1998         ArgE = MTE->getSubExpr();
1999         IsTemporary = true;
2000       }
2001 
2002       std::optional<SVal> ConstantVal = svalBuilder.getConstantVal(ArgE);
2003       if (!ConstantVal)
2004         ConstantVal = UnknownVal();
2005 
2006       const LocationContext *LCtx = Pred->getLocationContext();
2007       for (const auto I : PreVisit) {
2008         ProgramStateRef State = I->getState();
2009         State = State->BindExpr(S, LCtx, *ConstantVal);
2010         if (IsTemporary)
2011           State = createTemporaryRegionIfNeeded(State, LCtx,
2012                                                 cast<Expr>(S),
2013                                                 cast<Expr>(S));
2014         Bldr2.generateNode(S, I, State);
2015       }
2016 
2017       getCheckerManager().runCheckersForPostStmt(Dst, Tmp, S, *this);
2018       Bldr.addNodes(Dst);
2019       break;
2020     }
2021 
2022     // Cases we evaluate as opaque expressions, conjuring a symbol.
2023     case Stmt::CXXStdInitializerListExprClass:
2024     case Expr::ObjCArrayLiteralClass:
2025     case Expr::ObjCDictionaryLiteralClass:
2026     case Expr::ObjCBoxedExprClass: {
2027       Bldr.takeNodes(Pred);
2028 
2029       ExplodedNodeSet preVisit;
2030       getCheckerManager().runCheckersForPreStmt(preVisit, Pred, S, *this);
2031 
2032       ExplodedNodeSet Tmp;
2033       StmtNodeBuilder Bldr2(preVisit, Tmp, *currBldrCtx);
2034 
2035       const auto *Ex = cast<Expr>(S);
2036       QualType resultType = Ex->getType();
2037 
2038       for (const auto N : preVisit) {
2039         const LocationContext *LCtx = N->getLocationContext();
2040         SVal result = svalBuilder.conjureSymbolVal(nullptr, Ex, LCtx,
2041                                                    resultType,
2042                                                    currBldrCtx->blockCount());
2043         ProgramStateRef State = N->getState()->BindExpr(Ex, LCtx, result);
2044 
2045         // Escape pointers passed into the list, unless it's an ObjC boxed
2046         // expression which is not a boxable C structure.
2047         if (!(isa<ObjCBoxedExpr>(Ex) &&
2048               !cast<ObjCBoxedExpr>(Ex)->getSubExpr()
2049                                       ->getType()->isRecordType()))
2050           for (auto Child : Ex->children()) {
2051             assert(Child);
2052             SVal Val = State->getSVal(Child, LCtx);
2053             State = escapeValues(State, Val, PSK_EscapeOther);
2054           }
2055 
2056         Bldr2.generateNode(S, N, State);
2057       }
2058 
2059       getCheckerManager().runCheckersForPostStmt(Dst, Tmp, S, *this);
2060       Bldr.addNodes(Dst);
2061       break;
2062     }
2063 
2064     case Stmt::ArraySubscriptExprClass:
2065       Bldr.takeNodes(Pred);
2066       VisitArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Pred, Dst);
2067       Bldr.addNodes(Dst);
2068       break;
2069 
2070     case Stmt::MatrixSubscriptExprClass:
2071       llvm_unreachable("Support for MatrixSubscriptExpr is not implemented.");
2072       break;
2073 
2074     case Stmt::GCCAsmStmtClass: {
2075       Bldr.takeNodes(Pred);
2076       ExplodedNodeSet PreVisit;
2077       getCheckerManager().runCheckersForPreStmt(PreVisit, Pred, S, *this);
2078       ExplodedNodeSet PostVisit;
2079       for (ExplodedNode *const N : PreVisit)
2080         VisitGCCAsmStmt(cast<GCCAsmStmt>(S), N, PostVisit);
2081       getCheckerManager().runCheckersForPostStmt(Dst, PostVisit, S, *this);
2082       Bldr.addNodes(Dst);
2083       break;
2084     }
2085 
2086     case Stmt::MSAsmStmtClass:
2087       Bldr.takeNodes(Pred);
2088       VisitMSAsmStmt(cast<MSAsmStmt>(S), Pred, Dst);
2089       Bldr.addNodes(Dst);
2090       break;
2091 
2092     case Stmt::BlockExprClass:
2093       Bldr.takeNodes(Pred);
2094       VisitBlockExpr(cast<BlockExpr>(S), Pred, Dst);
2095       Bldr.addNodes(Dst);
2096       break;
2097 
2098     case Stmt::LambdaExprClass:
2099       if (AMgr.options.ShouldInlineLambdas) {
2100         Bldr.takeNodes(Pred);
2101         VisitLambdaExpr(cast<LambdaExpr>(S), Pred, Dst);
2102         Bldr.addNodes(Dst);
2103       } else {
2104         const ExplodedNode *node = Bldr.generateSink(S, Pred, Pred->getState());
2105         Engine.addAbortedBlock(node, currBldrCtx->getBlock());
2106       }
2107       break;
2108 
2109     case Stmt::BinaryOperatorClass: {
2110       const auto *B = cast<BinaryOperator>(S);
2111       if (B->isLogicalOp()) {
2112         Bldr.takeNodes(Pred);
2113         VisitLogicalExpr(B, Pred, Dst);
2114         Bldr.addNodes(Dst);
2115         break;
2116       }
2117       else if (B->getOpcode() == BO_Comma) {
2118         ProgramStateRef state = Pred->getState();
2119         Bldr.generateNode(B, Pred,
2120                           state->BindExpr(B, Pred->getLocationContext(),
2121                                           state->getSVal(B->getRHS(),
2122                                                   Pred->getLocationContext())));
2123         break;
2124       }
2125 
2126       Bldr.takeNodes(Pred);
2127 
2128       if (AMgr.options.ShouldEagerlyAssume &&
2129           (B->isRelationalOp() || B->isEqualityOp())) {
2130         ExplodedNodeSet Tmp;
2131         VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Tmp);
2132         evalEagerlyAssumeBifurcation(Dst, Tmp, cast<Expr>(S));
2133       }
2134       else
2135         VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst);
2136 
2137       Bldr.addNodes(Dst);
2138       break;
2139     }
2140 
2141     case Stmt::CXXOperatorCallExprClass: {
2142       const auto *OCE = cast<CXXOperatorCallExpr>(S);
2143 
2144       // For instance method operators, make sure the 'this' argument has a
2145       // valid region.
2146       const Decl *Callee = OCE->getCalleeDecl();
2147       if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(Callee)) {
2148         if (MD->isImplicitObjectMemberFunction()) {
2149           ProgramStateRef State = Pred->getState();
2150           const LocationContext *LCtx = Pred->getLocationContext();
2151           ProgramStateRef NewState =
2152             createTemporaryRegionIfNeeded(State, LCtx, OCE->getArg(0));
2153           if (NewState != State) {
2154             Pred = Bldr.generateNode(OCE, Pred, NewState, /*tag=*/nullptr,
2155                                      ProgramPoint::PreStmtKind);
2156             // Did we cache out?
2157             if (!Pred)
2158               break;
2159           }
2160         }
2161       }
2162       [[fallthrough]];
2163     }
2164 
2165     case Stmt::CallExprClass:
2166     case Stmt::CXXMemberCallExprClass:
2167     case Stmt::UserDefinedLiteralClass:
2168       Bldr.takeNodes(Pred);
2169       VisitCallExpr(cast<CallExpr>(S), Pred, Dst);
2170       Bldr.addNodes(Dst);
2171       break;
2172 
2173     case Stmt::CXXCatchStmtClass:
2174       Bldr.takeNodes(Pred);
2175       VisitCXXCatchStmt(cast<CXXCatchStmt>(S), Pred, Dst);
2176       Bldr.addNodes(Dst);
2177       break;
2178 
2179     case Stmt::CXXTemporaryObjectExprClass:
2180     case Stmt::CXXConstructExprClass:
2181       Bldr.takeNodes(Pred);
2182       VisitCXXConstructExpr(cast<CXXConstructExpr>(S), Pred, Dst);
2183       Bldr.addNodes(Dst);
2184       break;
2185 
2186     case Stmt::CXXInheritedCtorInitExprClass:
2187       Bldr.takeNodes(Pred);
2188       VisitCXXInheritedCtorInitExpr(cast<CXXInheritedCtorInitExpr>(S), Pred,
2189                                     Dst);
2190       Bldr.addNodes(Dst);
2191       break;
2192 
2193     case Stmt::CXXNewExprClass: {
2194       Bldr.takeNodes(Pred);
2195 
2196       ExplodedNodeSet PreVisit;
2197       getCheckerManager().runCheckersForPreStmt(PreVisit, Pred, S, *this);
2198 
2199       ExplodedNodeSet PostVisit;
2200       for (const auto i : PreVisit)
2201         VisitCXXNewExpr(cast<CXXNewExpr>(S), i, PostVisit);
2202 
2203       getCheckerManager().runCheckersForPostStmt(Dst, PostVisit, S, *this);
2204       Bldr.addNodes(Dst);
2205       break;
2206     }
2207 
2208     case Stmt::CXXDeleteExprClass: {
2209       Bldr.takeNodes(Pred);
2210       ExplodedNodeSet PreVisit;
2211       const auto *CDE = cast<CXXDeleteExpr>(S);
2212       getCheckerManager().runCheckersForPreStmt(PreVisit, Pred, S, *this);
2213       ExplodedNodeSet PostVisit;
2214       getCheckerManager().runCheckersForPostStmt(PostVisit, PreVisit, S, *this);
2215 
2216       for (const auto i : PostVisit)
2217         VisitCXXDeleteExpr(CDE, i, Dst);
2218 
2219       Bldr.addNodes(Dst);
2220       break;
2221     }
2222       // FIXME: ChooseExpr is really a constant.  We need to fix
2223       //        the CFG do not model them as explicit control-flow.
2224 
2225     case Stmt::ChooseExprClass: { // __builtin_choose_expr
2226       Bldr.takeNodes(Pred);
2227       const auto *C = cast<ChooseExpr>(S);
2228       VisitGuardedExpr(C, C->getLHS(), C->getRHS(), Pred, Dst);
2229       Bldr.addNodes(Dst);
2230       break;
2231     }
2232 
2233     case Stmt::CompoundAssignOperatorClass:
2234       Bldr.takeNodes(Pred);
2235       VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst);
2236       Bldr.addNodes(Dst);
2237       break;
2238 
2239     case Stmt::CompoundLiteralExprClass:
2240       Bldr.takeNodes(Pred);
2241       VisitCompoundLiteralExpr(cast<CompoundLiteralExpr>(S), Pred, Dst);
2242       Bldr.addNodes(Dst);
2243       break;
2244 
2245     case Stmt::BinaryConditionalOperatorClass:
2246     case Stmt::ConditionalOperatorClass: { // '?' operator
2247       Bldr.takeNodes(Pred);
2248       const auto *C = cast<AbstractConditionalOperator>(S);
2249       VisitGuardedExpr(C, C->getTrueExpr(), C->getFalseExpr(), Pred, Dst);
2250       Bldr.addNodes(Dst);
2251       break;
2252     }
2253 
2254     case Stmt::CXXThisExprClass:
2255       Bldr.takeNodes(Pred);
2256       VisitCXXThisExpr(cast<CXXThisExpr>(S), Pred, Dst);
2257       Bldr.addNodes(Dst);
2258       break;
2259 
2260     case Stmt::DeclRefExprClass: {
2261       Bldr.takeNodes(Pred);
2262       const auto *DE = cast<DeclRefExpr>(S);
2263       VisitCommonDeclRefExpr(DE, DE->getDecl(), Pred, Dst);
2264       Bldr.addNodes(Dst);
2265       break;
2266     }
2267 
2268     case Stmt::DeclStmtClass:
2269       Bldr.takeNodes(Pred);
2270       VisitDeclStmt(cast<DeclStmt>(S), Pred, Dst);
2271       Bldr.addNodes(Dst);
2272       break;
2273 
2274     case Stmt::ImplicitCastExprClass:
2275     case Stmt::CStyleCastExprClass:
2276     case Stmt::CXXStaticCastExprClass:
2277     case Stmt::CXXDynamicCastExprClass:
2278     case Stmt::CXXReinterpretCastExprClass:
2279     case Stmt::CXXConstCastExprClass:
2280     case Stmt::CXXFunctionalCastExprClass:
2281     case Stmt::BuiltinBitCastExprClass:
2282     case Stmt::ObjCBridgedCastExprClass:
2283     case Stmt::CXXAddrspaceCastExprClass: {
2284       Bldr.takeNodes(Pred);
2285       const auto *C = cast<CastExpr>(S);
2286       ExplodedNodeSet dstExpr;
2287       VisitCast(C, C->getSubExpr(), Pred, dstExpr);
2288 
2289       // Handle the postvisit checks.
2290       getCheckerManager().runCheckersForPostStmt(Dst, dstExpr, C, *this);
2291       Bldr.addNodes(Dst);
2292       break;
2293     }
2294 
2295     case Expr::MaterializeTemporaryExprClass: {
2296       Bldr.takeNodes(Pred);
2297       const auto *MTE = cast<MaterializeTemporaryExpr>(S);
2298       ExplodedNodeSet dstPrevisit;
2299       getCheckerManager().runCheckersForPreStmt(dstPrevisit, Pred, MTE, *this);
2300       ExplodedNodeSet dstExpr;
2301       for (const auto i : dstPrevisit)
2302         CreateCXXTemporaryObject(MTE, i, dstExpr);
2303       getCheckerManager().runCheckersForPostStmt(Dst, dstExpr, MTE, *this);
2304       Bldr.addNodes(Dst);
2305       break;
2306     }
2307 
2308     case Stmt::InitListExprClass:
2309       Bldr.takeNodes(Pred);
2310       VisitInitListExpr(cast<InitListExpr>(S), Pred, Dst);
2311       Bldr.addNodes(Dst);
2312       break;
2313 
2314     case Stmt::MemberExprClass:
2315       Bldr.takeNodes(Pred);
2316       VisitMemberExpr(cast<MemberExpr>(S), Pred, Dst);
2317       Bldr.addNodes(Dst);
2318       break;
2319 
2320     case Stmt::AtomicExprClass:
2321       Bldr.takeNodes(Pred);
2322       VisitAtomicExpr(cast<AtomicExpr>(S), Pred, Dst);
2323       Bldr.addNodes(Dst);
2324       break;
2325 
2326     case Stmt::ObjCIvarRefExprClass:
2327       Bldr.takeNodes(Pred);
2328       VisitLvalObjCIvarRefExpr(cast<ObjCIvarRefExpr>(S), Pred, Dst);
2329       Bldr.addNodes(Dst);
2330       break;
2331 
2332     case Stmt::ObjCForCollectionStmtClass:
2333       Bldr.takeNodes(Pred);
2334       VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S), Pred, Dst);
2335       Bldr.addNodes(Dst);
2336       break;
2337 
2338     case Stmt::ObjCMessageExprClass:
2339       Bldr.takeNodes(Pred);
2340       VisitObjCMessage(cast<ObjCMessageExpr>(S), Pred, Dst);
2341       Bldr.addNodes(Dst);
2342       break;
2343 
2344     case Stmt::ObjCAtThrowStmtClass:
2345     case Stmt::CXXThrowExprClass:
2346       // FIXME: This is not complete.  We basically treat @throw as
2347       // an abort.
2348       Bldr.generateSink(S, Pred, Pred->getState());
2349       break;
2350 
2351     case Stmt::ReturnStmtClass:
2352       Bldr.takeNodes(Pred);
2353       VisitReturnStmt(cast<ReturnStmt>(S), Pred, Dst);
2354       Bldr.addNodes(Dst);
2355       break;
2356 
2357     case Stmt::OffsetOfExprClass: {
2358       Bldr.takeNodes(Pred);
2359       ExplodedNodeSet PreVisit;
2360       getCheckerManager().runCheckersForPreStmt(PreVisit, Pred, S, *this);
2361 
2362       ExplodedNodeSet PostVisit;
2363       for (const auto Node : PreVisit)
2364         VisitOffsetOfExpr(cast<OffsetOfExpr>(S), Node, PostVisit);
2365 
2366       getCheckerManager().runCheckersForPostStmt(Dst, PostVisit, S, *this);
2367       Bldr.addNodes(Dst);
2368       break;
2369     }
2370 
2371     case Stmt::UnaryExprOrTypeTraitExprClass:
2372       Bldr.takeNodes(Pred);
2373       VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S),
2374                                     Pred, Dst);
2375       Bldr.addNodes(Dst);
2376       break;
2377 
2378     case Stmt::StmtExprClass: {
2379       const auto *SE = cast<StmtExpr>(S);
2380 
2381       if (SE->getSubStmt()->body_empty()) {
2382         // Empty statement expression.
2383         assert(SE->getType() == getContext().VoidTy
2384                && "Empty statement expression must have void type.");
2385         break;
2386       }
2387 
2388       if (const auto *LastExpr =
2389               dyn_cast<Expr>(*SE->getSubStmt()->body_rbegin())) {
2390         ProgramStateRef state = Pred->getState();
2391         Bldr.generateNode(SE, Pred,
2392                           state->BindExpr(SE, Pred->getLocationContext(),
2393                                           state->getSVal(LastExpr,
2394                                                   Pred->getLocationContext())));
2395       }
2396       break;
2397     }
2398 
2399     case Stmt::UnaryOperatorClass: {
2400       Bldr.takeNodes(Pred);
2401       const auto *U = cast<UnaryOperator>(S);
2402       if (AMgr.options.ShouldEagerlyAssume && (U->getOpcode() == UO_LNot)) {
2403         ExplodedNodeSet Tmp;
2404         VisitUnaryOperator(U, Pred, Tmp);
2405         evalEagerlyAssumeBifurcation(Dst, Tmp, U);
2406       }
2407       else
2408         VisitUnaryOperator(U, Pred, Dst);
2409       Bldr.addNodes(Dst);
2410       break;
2411     }
2412 
2413     case Stmt::PseudoObjectExprClass: {
2414       Bldr.takeNodes(Pred);
2415       ProgramStateRef state = Pred->getState();
2416       const auto *PE = cast<PseudoObjectExpr>(S);
2417       if (const Expr *Result = PE->getResultExpr()) {
2418         SVal V = state->getSVal(Result, Pred->getLocationContext());
2419         Bldr.generateNode(S, Pred,
2420                           state->BindExpr(S, Pred->getLocationContext(), V));
2421       }
2422       else
2423         Bldr.generateNode(S, Pred,
2424                           state->BindExpr(S, Pred->getLocationContext(),
2425                                                    UnknownVal()));
2426 
2427       Bldr.addNodes(Dst);
2428       break;
2429     }
2430 
2431     case Expr::ObjCIndirectCopyRestoreExprClass: {
2432       // ObjCIndirectCopyRestoreExpr implies passing a temporary for
2433       // correctness of lifetime management.  Due to limited analysis
2434       // of ARC, this is implemented as direct arg passing.
2435       Bldr.takeNodes(Pred);
2436       ProgramStateRef state = Pred->getState();
2437       const auto *OIE = cast<ObjCIndirectCopyRestoreExpr>(S);
2438       const Expr *E = OIE->getSubExpr();
2439       SVal V = state->getSVal(E, Pred->getLocationContext());
2440       Bldr.generateNode(S, Pred,
2441               state->BindExpr(S, Pred->getLocationContext(), V));
2442       Bldr.addNodes(Dst);
2443       break;
2444     }
2445   }
2446 }
2447 
2448 bool ExprEngine::replayWithoutInlining(ExplodedNode *N,
2449                                        const LocationContext *CalleeLC) {
2450   const StackFrameContext *CalleeSF = CalleeLC->getStackFrame();
2451   const StackFrameContext *CallerSF = CalleeSF->getParent()->getStackFrame();
2452   assert(CalleeSF && CallerSF);
2453   ExplodedNode *BeforeProcessingCall = nullptr;
2454   const Stmt *CE = CalleeSF->getCallSite();
2455 
2456   // Find the first node before we started processing the call expression.
2457   while (N) {
2458     ProgramPoint L = N->getLocation();
2459     BeforeProcessingCall = N;
2460     N = N->pred_empty() ? nullptr : *(N->pred_begin());
2461 
2462     // Skip the nodes corresponding to the inlined code.
2463     if (L.getStackFrame() != CallerSF)
2464       continue;
2465     // We reached the caller. Find the node right before we started
2466     // processing the call.
2467     if (L.isPurgeKind())
2468       continue;
2469     if (L.getAs<PreImplicitCall>())
2470       continue;
2471     if (L.getAs<CallEnter>())
2472       continue;
2473     if (std::optional<StmtPoint> SP = L.getAs<StmtPoint>())
2474       if (SP->getStmt() == CE)
2475         continue;
2476     break;
2477   }
2478 
2479   if (!BeforeProcessingCall)
2480     return false;
2481 
2482   // TODO: Clean up the unneeded nodes.
2483 
2484   // Build an Epsilon node from which we will restart the analyzes.
2485   // Note that CE is permitted to be NULL!
2486   static SimpleProgramPointTag PT("ExprEngine", "Replay without inlining");
2487   ProgramPoint NewNodeLoc = EpsilonPoint(
2488       BeforeProcessingCall->getLocationContext(), CE, nullptr, &PT);
2489   // Add the special flag to GDM to signal retrying with no inlining.
2490   // Note, changing the state ensures that we are not going to cache out.
2491   ProgramStateRef NewNodeState = BeforeProcessingCall->getState();
2492   NewNodeState =
2493     NewNodeState->set<ReplayWithoutInlining>(const_cast<Stmt *>(CE));
2494 
2495   // Make the new node a successor of BeforeProcessingCall.
2496   bool IsNew = false;
2497   ExplodedNode *NewNode = G.getNode(NewNodeLoc, NewNodeState, false, &IsNew);
2498   // We cached out at this point. Caching out is common due to us backtracking
2499   // from the inlined function, which might spawn several paths.
2500   if (!IsNew)
2501     return true;
2502 
2503   NewNode->addPredecessor(BeforeProcessingCall, G);
2504 
2505   // Add the new node to the work list.
2506   Engine.enqueueStmtNode(NewNode, CalleeSF->getCallSiteBlock(),
2507                                   CalleeSF->getIndex());
2508   NumTimesRetriedWithoutInlining++;
2509   return true;
2510 }
2511 
2512 /// Block entrance.  (Update counters).
2513 void ExprEngine::processCFGBlockEntrance(const BlockEdge &L,
2514                                          NodeBuilderWithSinks &nodeBuilder,
2515                                          ExplodedNode *Pred) {
2516   PrettyStackTraceLocationContext CrashInfo(Pred->getLocationContext());
2517   // If we reach a loop which has a known bound (and meets
2518   // other constraints) then consider completely unrolling it.
2519   if(AMgr.options.ShouldUnrollLoops) {
2520     unsigned maxBlockVisitOnPath = AMgr.options.maxBlockVisitOnPath;
2521     const Stmt *Term = nodeBuilder.getContext().getBlock()->getTerminatorStmt();
2522     if (Term) {
2523       ProgramStateRef NewState = updateLoopStack(Term, AMgr.getASTContext(),
2524                                                  Pred, maxBlockVisitOnPath);
2525       if (NewState != Pred->getState()) {
2526         ExplodedNode *UpdatedNode = nodeBuilder.generateNode(NewState, Pred);
2527         if (!UpdatedNode)
2528           return;
2529         Pred = UpdatedNode;
2530       }
2531     }
2532     // Is we are inside an unrolled loop then no need the check the counters.
2533     if(isUnrolledState(Pred->getState()))
2534       return;
2535   }
2536 
2537   // If this block is terminated by a loop and it has already been visited the
2538   // maximum number of times, widen the loop.
2539   unsigned int BlockCount = nodeBuilder.getContext().blockCount();
2540   if (BlockCount == AMgr.options.maxBlockVisitOnPath - 1 &&
2541       AMgr.options.ShouldWidenLoops) {
2542     const Stmt *Term = nodeBuilder.getContext().getBlock()->getTerminatorStmt();
2543     if (!isa_and_nonnull<ForStmt, WhileStmt, DoStmt, CXXForRangeStmt>(Term))
2544       return;
2545     // Widen.
2546     const LocationContext *LCtx = Pred->getLocationContext();
2547     ProgramStateRef WidenedState =
2548         getWidenedLoopState(Pred->getState(), LCtx, BlockCount, Term);
2549     nodeBuilder.generateNode(WidenedState, Pred);
2550     return;
2551   }
2552 
2553   // FIXME: Refactor this into a checker.
2554   if (BlockCount >= AMgr.options.maxBlockVisitOnPath) {
2555     static SimpleProgramPointTag tag(TagProviderName, "Block count exceeded");
2556     const ExplodedNode *Sink =
2557                    nodeBuilder.generateSink(Pred->getState(), Pred, &tag);
2558 
2559     // Check if we stopped at the top level function or not.
2560     // Root node should have the location context of the top most function.
2561     const LocationContext *CalleeLC = Pred->getLocation().getLocationContext();
2562     const LocationContext *CalleeSF = CalleeLC->getStackFrame();
2563     const LocationContext *RootLC =
2564                         (*G.roots_begin())->getLocation().getLocationContext();
2565     if (RootLC->getStackFrame() != CalleeSF) {
2566       Engine.FunctionSummaries->markReachedMaxBlockCount(CalleeSF->getDecl());
2567 
2568       // Re-run the call evaluation without inlining it, by storing the
2569       // no-inlining policy in the state and enqueuing the new work item on
2570       // the list. Replay should almost never fail. Use the stats to catch it
2571       // if it does.
2572       if ((!AMgr.options.NoRetryExhausted &&
2573            replayWithoutInlining(Pred, CalleeLC)))
2574         return;
2575       NumMaxBlockCountReachedInInlined++;
2576     } else
2577       NumMaxBlockCountReached++;
2578 
2579     // Make sink nodes as exhausted(for stats) only if retry failed.
2580     Engine.blocksExhausted.push_back(std::make_pair(L, Sink));
2581   }
2582 }
2583 
2584 //===----------------------------------------------------------------------===//
2585 // Branch processing.
2586 //===----------------------------------------------------------------------===//
2587 
2588 /// RecoverCastedSymbol - A helper function for ProcessBranch that is used
2589 /// to try to recover some path-sensitivity for casts of symbolic
2590 /// integers that promote their values (which are currently not tracked well).
2591 /// This function returns the SVal bound to Condition->IgnoreCasts if all the
2592 //  cast(s) did was sign-extend the original value.
2593 static SVal RecoverCastedSymbol(ProgramStateRef state,
2594                                 const Stmt *Condition,
2595                                 const LocationContext *LCtx,
2596                                 ASTContext &Ctx) {
2597 
2598   const auto *Ex = dyn_cast<Expr>(Condition);
2599   if (!Ex)
2600     return UnknownVal();
2601 
2602   uint64_t bits = 0;
2603   bool bitsInit = false;
2604 
2605   while (const auto *CE = dyn_cast<CastExpr>(Ex)) {
2606     QualType T = CE->getType();
2607 
2608     if (!T->isIntegralOrEnumerationType())
2609       return UnknownVal();
2610 
2611     uint64_t newBits = Ctx.getTypeSize(T);
2612     if (!bitsInit || newBits < bits) {
2613       bitsInit = true;
2614       bits = newBits;
2615     }
2616 
2617     Ex = CE->getSubExpr();
2618   }
2619 
2620   // We reached a non-cast.  Is it a symbolic value?
2621   QualType T = Ex->getType();
2622 
2623   if (!bitsInit || !T->isIntegralOrEnumerationType() ||
2624       Ctx.getTypeSize(T) > bits)
2625     return UnknownVal();
2626 
2627   return state->getSVal(Ex, LCtx);
2628 }
2629 
2630 #ifndef NDEBUG
2631 static const Stmt *getRightmostLeaf(const Stmt *Condition) {
2632   while (Condition) {
2633     const auto *BO = dyn_cast<BinaryOperator>(Condition);
2634     if (!BO || !BO->isLogicalOp()) {
2635       return Condition;
2636     }
2637     Condition = BO->getRHS()->IgnoreParens();
2638   }
2639   return nullptr;
2640 }
2641 #endif
2642 
2643 // Returns the condition the branch at the end of 'B' depends on and whose value
2644 // has been evaluated within 'B'.
2645 // In most cases, the terminator condition of 'B' will be evaluated fully in
2646 // the last statement of 'B'; in those cases, the resolved condition is the
2647 // given 'Condition'.
2648 // If the condition of the branch is a logical binary operator tree, the CFG is
2649 // optimized: in that case, we know that the expression formed by all but the
2650 // rightmost leaf of the logical binary operator tree must be true, and thus
2651 // the branch condition is at this point equivalent to the truth value of that
2652 // rightmost leaf; the CFG block thus only evaluates this rightmost leaf
2653 // expression in its final statement. As the full condition in that case was
2654 // not evaluated, and is thus not in the SVal cache, we need to use that leaf
2655 // expression to evaluate the truth value of the condition in the current state
2656 // space.
2657 static const Stmt *ResolveCondition(const Stmt *Condition,
2658                                     const CFGBlock *B) {
2659   if (const auto *Ex = dyn_cast<Expr>(Condition))
2660     Condition = Ex->IgnoreParens();
2661 
2662   const auto *BO = dyn_cast<BinaryOperator>(Condition);
2663   if (!BO || !BO->isLogicalOp())
2664     return Condition;
2665 
2666   assert(B->getTerminator().isStmtBranch() &&
2667          "Other kinds of branches are handled separately!");
2668 
2669   // For logical operations, we still have the case where some branches
2670   // use the traditional "merge" approach and others sink the branch
2671   // directly into the basic blocks representing the logical operation.
2672   // We need to distinguish between those two cases here.
2673 
2674   // The invariants are still shifting, but it is possible that the
2675   // last element in a CFGBlock is not a CFGStmt.  Look for the last
2676   // CFGStmt as the value of the condition.
2677   for (CFGElement Elem : llvm::reverse(*B)) {
2678     std::optional<CFGStmt> CS = Elem.getAs<CFGStmt>();
2679     if (!CS)
2680       continue;
2681     const Stmt *LastStmt = CS->getStmt();
2682     assert(LastStmt == Condition || LastStmt == getRightmostLeaf(Condition));
2683     return LastStmt;
2684   }
2685   llvm_unreachable("could not resolve condition");
2686 }
2687 
2688 using ObjCForLctxPair =
2689     std::pair<const ObjCForCollectionStmt *, const LocationContext *>;
2690 
2691 REGISTER_MAP_WITH_PROGRAMSTATE(ObjCForHasMoreIterations, ObjCForLctxPair, bool)
2692 
2693 ProgramStateRef ExprEngine::setWhetherHasMoreIteration(
2694     ProgramStateRef State, const ObjCForCollectionStmt *O,
2695     const LocationContext *LC, bool HasMoreIteraton) {
2696   assert(!State->contains<ObjCForHasMoreIterations>({O, LC}));
2697   return State->set<ObjCForHasMoreIterations>({O, LC}, HasMoreIteraton);
2698 }
2699 
2700 ProgramStateRef
2701 ExprEngine::removeIterationState(ProgramStateRef State,
2702                                  const ObjCForCollectionStmt *O,
2703                                  const LocationContext *LC) {
2704   assert(State->contains<ObjCForHasMoreIterations>({O, LC}));
2705   return State->remove<ObjCForHasMoreIterations>({O, LC});
2706 }
2707 
2708 bool ExprEngine::hasMoreIteration(ProgramStateRef State,
2709                                   const ObjCForCollectionStmt *O,
2710                                   const LocationContext *LC) {
2711   assert(State->contains<ObjCForHasMoreIterations>({O, LC}));
2712   return *State->get<ObjCForHasMoreIterations>({O, LC});
2713 }
2714 
2715 /// Split the state on whether there are any more iterations left for this loop.
2716 /// Returns a (HasMoreIteration, HasNoMoreIteration) pair, or std::nullopt when
2717 /// the acquisition of the loop condition value failed.
2718 static std::optional<std::pair<ProgramStateRef, ProgramStateRef>>
2719 assumeCondition(const Stmt *Condition, ExplodedNode *N) {
2720   ProgramStateRef State = N->getState();
2721   if (const auto *ObjCFor = dyn_cast<ObjCForCollectionStmt>(Condition)) {
2722     bool HasMoreIteraton =
2723         ExprEngine::hasMoreIteration(State, ObjCFor, N->getLocationContext());
2724     // Checkers have already ran on branch conditions, so the current
2725     // information as to whether the loop has more iteration becomes outdated
2726     // after this point.
2727     State = ExprEngine::removeIterationState(State, ObjCFor,
2728                                              N->getLocationContext());
2729     if (HasMoreIteraton)
2730       return std::pair<ProgramStateRef, ProgramStateRef>{State, nullptr};
2731     else
2732       return std::pair<ProgramStateRef, ProgramStateRef>{nullptr, State};
2733   }
2734   SVal X = State->getSVal(Condition, N->getLocationContext());
2735 
2736   if (X.isUnknownOrUndef()) {
2737     // Give it a chance to recover from unknown.
2738     if (const auto *Ex = dyn_cast<Expr>(Condition)) {
2739       if (Ex->getType()->isIntegralOrEnumerationType()) {
2740         // Try to recover some path-sensitivity.  Right now casts of symbolic
2741         // integers that promote their values are currently not tracked well.
2742         // If 'Condition' is such an expression, try and recover the
2743         // underlying value and use that instead.
2744         SVal recovered =
2745             RecoverCastedSymbol(State, Condition, N->getLocationContext(),
2746                                 N->getState()->getStateManager().getContext());
2747 
2748         if (!recovered.isUnknown()) {
2749           X = recovered;
2750         }
2751       }
2752     }
2753   }
2754 
2755   // If the condition is still unknown, give up.
2756   if (X.isUnknownOrUndef())
2757     return std::nullopt;
2758 
2759   DefinedSVal V = X.castAs<DefinedSVal>();
2760 
2761   ProgramStateRef StTrue, StFalse;
2762   return State->assume(V);
2763 }
2764 
2765 void ExprEngine::processBranch(
2766     const Stmt *Condition, NodeBuilderContext &BldCtx, ExplodedNode *Pred,
2767     ExplodedNodeSet &Dst, const CFGBlock *DstT, const CFGBlock *DstF,
2768     std::optional<unsigned> IterationsCompletedInLoop) {
2769   assert((!Condition || !isa<CXXBindTemporaryExpr>(Condition)) &&
2770          "CXXBindTemporaryExprs are handled by processBindTemporary.");
2771   const LocationContext *LCtx = Pred->getLocationContext();
2772   PrettyStackTraceLocationContext StackCrashInfo(LCtx);
2773   currBldrCtx = &BldCtx;
2774 
2775   // Check for NULL conditions; e.g. "for(;;)"
2776   if (!Condition) {
2777     BranchNodeBuilder NullCondBldr(Pred, Dst, BldCtx, DstT, DstF);
2778     NullCondBldr.generateNode(Pred->getState(), true, Pred);
2779     return;
2780   }
2781 
2782   if (const auto *Ex = dyn_cast<Expr>(Condition))
2783     Condition = Ex->IgnoreParens();
2784 
2785   Condition = ResolveCondition(Condition, BldCtx.getBlock());
2786   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
2787                                 Condition->getBeginLoc(),
2788                                 "Error evaluating branch");
2789 
2790   ExplodedNodeSet CheckersOutSet;
2791   getCheckerManager().runCheckersForBranchCondition(Condition, CheckersOutSet,
2792                                                     Pred, *this);
2793   // We generated only sinks.
2794   if (CheckersOutSet.empty())
2795     return;
2796 
2797   BranchNodeBuilder Builder(CheckersOutSet, Dst, BldCtx, DstT, DstF);
2798   for (ExplodedNode *PredN : CheckersOutSet) {
2799     if (PredN->isSink())
2800       continue;
2801 
2802     ProgramStateRef PrevState = PredN->getState();
2803 
2804     ProgramStateRef StTrue = PrevState, StFalse = PrevState;
2805     if (const auto KnownCondValueAssumption = assumeCondition(Condition, PredN))
2806       std::tie(StTrue, StFalse) = *KnownCondValueAssumption;
2807 
2808     if (StTrue && StFalse)
2809       assert(!isa<ObjCForCollectionStmt>(Condition));
2810 
2811     if (StTrue) {
2812       // If we are processing a loop condition where two iterations have
2813       // already been completed and the false branch is also feasible, then
2814       // don't assume a third iteration because it is a redundant execution
2815       // path (unlikely to be different from earlier loop exits) and can cause
2816       // false positives if e.g. the loop iterates over a two-element structure
2817       // with an opaque condition.
2818       //
2819       // The iteration count "2" is hardcoded because it's the natural limit:
2820       // * the fact that the programmer wrote a loop (and not just an `if`)
2821       //   implies that they thought that the loop body might be executed twice;
2822       // * however, there are situations where the programmer knows that there
2823       //   are at most two iterations but writes a loop that appears to be
2824       //   generic, because there is no special syntax for "loop with at most
2825       //   two iterations". (This pattern is common in FFMPEG and appears in
2826       //   many other projects as well.)
2827       bool CompletedTwoIterations = IterationsCompletedInLoop.value_or(0) >= 2;
2828       bool FalseAlsoFeasible =
2829           StFalse ||
2830           didEagerlyAssumeBifurcateAt(PrevState, dyn_cast<Expr>(Condition));
2831       bool SkipTrueBranch = CompletedTwoIterations && FalseAlsoFeasible;
2832 
2833       // FIXME: This "don't assume third iteration" heuristic partially
2834       // conflicts with the widen-loop analysis option (which is off by
2835       // default). If we intend to support and stabilize the loop widening,
2836       // we must ensure that it 'plays nicely' with this logic.
2837       if (!SkipTrueBranch || AMgr.options.ShouldWidenLoops)
2838         Builder.generateNode(StTrue, true, PredN);
2839     }
2840 
2841     if (StFalse)
2842       Builder.generateNode(StFalse, false, PredN);
2843   }
2844   currBldrCtx = nullptr;
2845 }
2846 
2847 /// The GDM component containing the set of global variables which have been
2848 /// previously initialized with explicit initializers.
2849 REGISTER_TRAIT_WITH_PROGRAMSTATE(InitializedGlobalsSet,
2850                                  llvm::ImmutableSet<const VarDecl *>)
2851 
2852 void ExprEngine::processStaticInitializer(const DeclStmt *DS,
2853                                           NodeBuilderContext &BuilderCtx,
2854                                           ExplodedNode *Pred,
2855                                           ExplodedNodeSet &Dst,
2856                                           const CFGBlock *DstT,
2857                                           const CFGBlock *DstF) {
2858   PrettyStackTraceLocationContext CrashInfo(Pred->getLocationContext());
2859   currBldrCtx = &BuilderCtx;
2860 
2861   const auto *VD = cast<VarDecl>(DS->getSingleDecl());
2862   ProgramStateRef state = Pred->getState();
2863   bool initHasRun = state->contains<InitializedGlobalsSet>(VD);
2864   BranchNodeBuilder Builder(Pred, Dst, BuilderCtx, DstT, DstF);
2865 
2866   if (!initHasRun) {
2867     state = state->add<InitializedGlobalsSet>(VD);
2868   }
2869 
2870   Builder.generateNode(state, initHasRun, Pred);
2871 
2872   currBldrCtx = nullptr;
2873 }
2874 
2875 /// processIndirectGoto - Called by CoreEngine.  Used to generate successor
2876 ///  nodes by processing the 'effects' of a computed goto jump.
2877 void ExprEngine::processIndirectGoto(IndirectGotoNodeBuilder &builder) {
2878   ProgramStateRef state = builder.getState();
2879   SVal V = state->getSVal(builder.getTarget(), builder.getLocationContext());
2880 
2881   // Three possibilities:
2882   //
2883   //   (1) We know the computed label.
2884   //   (2) The label is NULL (or some other constant), or Undefined.
2885   //   (3) We have no clue about the label.  Dispatch to all targets.
2886   //
2887 
2888   using iterator = IndirectGotoNodeBuilder::iterator;
2889 
2890   if (std::optional<loc::GotoLabel> LV = V.getAs<loc::GotoLabel>()) {
2891     const LabelDecl *L = LV->getLabel();
2892 
2893     for (iterator Succ : builder) {
2894       if (Succ.getLabel() == L) {
2895         builder.generateNode(Succ, state);
2896         return;
2897       }
2898     }
2899 
2900     llvm_unreachable("No block with label.");
2901   }
2902 
2903   if (isa<UndefinedVal, loc::ConcreteInt>(V)) {
2904     // Dispatch to the first target and mark it as a sink.
2905     //ExplodedNode* N = builder.generateNode(builder.begin(), state, true);
2906     // FIXME: add checker visit.
2907     //    UndefBranches.insert(N);
2908     return;
2909   }
2910 
2911   // This is really a catch-all.  We don't support symbolics yet.
2912   // FIXME: Implement dispatch for symbolic pointers.
2913 
2914   for (iterator Succ : builder)
2915     builder.generateNode(Succ, state);
2916 }
2917 
2918 void ExprEngine::processBeginOfFunction(NodeBuilderContext &BC,
2919                                         ExplodedNode *Pred,
2920                                         ExplodedNodeSet &Dst,
2921                                         const BlockEdge &L) {
2922   SaveAndRestore<const NodeBuilderContext *> NodeContextRAII(currBldrCtx, &BC);
2923   getCheckerManager().runCheckersForBeginFunction(Dst, L, Pred, *this);
2924 }
2925 
2926 /// ProcessEndPath - Called by CoreEngine.  Used to generate end-of-path
2927 ///  nodes when the control reaches the end of a function.
2928 void ExprEngine::processEndOfFunction(NodeBuilderContext& BC,
2929                                       ExplodedNode *Pred,
2930                                       const ReturnStmt *RS) {
2931   ProgramStateRef State = Pred->getState();
2932 
2933   if (!Pred->getStackFrame()->inTopFrame())
2934     State = finishArgumentConstruction(
2935         State, *getStateManager().getCallEventManager().getCaller(
2936                    Pred->getStackFrame(), Pred->getState()));
2937 
2938   // FIXME: We currently cannot assert that temporaries are clear, because
2939   // lifetime extended temporaries are not always modelled correctly. In some
2940   // cases when we materialize the temporary, we do
2941   // createTemporaryRegionIfNeeded(), and the region changes, and also the
2942   // respective destructor becomes automatic from temporary. So for now clean up
2943   // the state manually before asserting. Ideally, this braced block of code
2944   // should go away.
2945   {
2946     const LocationContext *FromLC = Pred->getLocationContext();
2947     const LocationContext *ToLC = FromLC->getStackFrame()->getParent();
2948     const LocationContext *LC = FromLC;
2949     while (LC != ToLC) {
2950       assert(LC && "ToLC must be a parent of FromLC!");
2951       for (auto I : State->get<ObjectsUnderConstruction>())
2952         if (I.first.getLocationContext() == LC) {
2953           // The comment above only pardons us for not cleaning up a
2954           // temporary destructor. If any other statements are found here,
2955           // it must be a separate problem.
2956           assert(I.first.getItem().getKind() ==
2957                      ConstructionContextItem::TemporaryDestructorKind ||
2958                  I.first.getItem().getKind() ==
2959                      ConstructionContextItem::ElidedDestructorKind);
2960           State = State->remove<ObjectsUnderConstruction>(I.first);
2961         }
2962       LC = LC->getParent();
2963     }
2964   }
2965 
2966   // Perform the transition with cleanups.
2967   if (State != Pred->getState()) {
2968     ExplodedNodeSet PostCleanup;
2969     NodeBuilder Bldr(Pred, PostCleanup, BC);
2970     Pred = Bldr.generateNode(Pred->getLocation(), State, Pred);
2971     if (!Pred) {
2972       // The node with clean temporaries already exists. We might have reached
2973       // it on a path on which we initialize different temporaries.
2974       return;
2975     }
2976   }
2977 
2978   assert(areAllObjectsFullyConstructed(Pred->getState(),
2979                                        Pred->getLocationContext(),
2980                                        Pred->getStackFrame()->getParent()));
2981 
2982   PrettyStackTraceLocationContext CrashInfo(Pred->getLocationContext());
2983 
2984   ExplodedNodeSet Dst;
2985   if (Pred->getLocationContext()->inTopFrame()) {
2986     // Remove dead symbols.
2987     ExplodedNodeSet AfterRemovedDead;
2988     removeDeadOnEndOfFunction(BC, Pred, AfterRemovedDead);
2989 
2990     // Notify checkers.
2991     for (const auto I : AfterRemovedDead)
2992       getCheckerManager().runCheckersForEndFunction(BC, Dst, I, *this, RS);
2993   } else {
2994     getCheckerManager().runCheckersForEndFunction(BC, Dst, Pred, *this, RS);
2995   }
2996 
2997   Engine.enqueueEndOfFunction(Dst, RS);
2998 }
2999 
3000 /// ProcessSwitch - Called by CoreEngine.  Used to generate successor
3001 ///  nodes by processing the 'effects' of a switch statement.
3002 void ExprEngine::processSwitch(SwitchNodeBuilder& builder) {
3003   using iterator = SwitchNodeBuilder::iterator;
3004 
3005   ProgramStateRef state = builder.getState();
3006   const Expr *CondE = builder.getCondition();
3007   SVal  CondV_untested = state->getSVal(CondE, builder.getLocationContext());
3008 
3009   if (CondV_untested.isUndef()) {
3010     //ExplodedNode* N = builder.generateDefaultCaseNode(state, true);
3011     // FIXME: add checker
3012     //UndefBranches.insert(N);
3013 
3014     return;
3015   }
3016   DefinedOrUnknownSVal CondV = CondV_untested.castAs<DefinedOrUnknownSVal>();
3017 
3018   ProgramStateRef DefaultSt = state;
3019 
3020   iterator I = builder.begin(), EI = builder.end();
3021   bool defaultIsFeasible = I == EI;
3022 
3023   for ( ; I != EI; ++I) {
3024     // Successor may be pruned out during CFG construction.
3025     if (!I.getBlock())
3026       continue;
3027 
3028     const CaseStmt *Case = I.getCase();
3029 
3030     // Evaluate the LHS of the case value.
3031     llvm::APSInt V1 = Case->getLHS()->EvaluateKnownConstInt(getContext());
3032     assert(V1.getBitWidth() == getContext().getIntWidth(CondE->getType()));
3033 
3034     // Get the RHS of the case, if it exists.
3035     llvm::APSInt V2;
3036     if (const Expr *E = Case->getRHS())
3037       V2 = E->EvaluateKnownConstInt(getContext());
3038     else
3039       V2 = V1;
3040 
3041     ProgramStateRef StateCase;
3042     if (std::optional<NonLoc> NL = CondV.getAs<NonLoc>())
3043       std::tie(StateCase, DefaultSt) =
3044           DefaultSt->assumeInclusiveRange(*NL, V1, V2);
3045     else // UnknownVal
3046       StateCase = DefaultSt;
3047 
3048     if (StateCase)
3049       builder.generateCaseStmtNode(I, StateCase);
3050 
3051     // Now "assume" that the case doesn't match.  Add this state
3052     // to the default state (if it is feasible).
3053     if (DefaultSt)
3054       defaultIsFeasible = true;
3055     else {
3056       defaultIsFeasible = false;
3057       break;
3058     }
3059   }
3060 
3061   if (!defaultIsFeasible)
3062     return;
3063 
3064   // If we have switch(enum value), the default branch is not
3065   // feasible if all of the enum constants not covered by 'case:' statements
3066   // are not feasible values for the switch condition.
3067   //
3068   // Note that this isn't as accurate as it could be.  Even if there isn't
3069   // a case for a particular enum value as long as that enum value isn't
3070   // feasible then it shouldn't be considered for making 'default:' reachable.
3071   const SwitchStmt *SS = builder.getSwitch();
3072   const Expr *CondExpr = SS->getCond()->IgnoreParenImpCasts();
3073   if (CondExpr->getType()->getAs<EnumType>()) {
3074     if (SS->isAllEnumCasesCovered())
3075       return;
3076   }
3077 
3078   builder.generateDefaultCaseNode(DefaultSt);
3079 }
3080 
3081 //===----------------------------------------------------------------------===//
3082 // Transfer functions: Loads and stores.
3083 //===----------------------------------------------------------------------===//
3084 
3085 void ExprEngine::VisitCommonDeclRefExpr(const Expr *Ex, const NamedDecl *D,
3086                                         ExplodedNode *Pred,
3087                                         ExplodedNodeSet &Dst) {
3088   StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
3089 
3090   ProgramStateRef state = Pred->getState();
3091   const LocationContext *LCtx = Pred->getLocationContext();
3092 
3093   if (const auto *VD = dyn_cast<VarDecl>(D)) {
3094     // C permits "extern void v", and if you cast the address to a valid type,
3095     // you can even do things with it. We simply pretend
3096     assert(Ex->isGLValue() || VD->getType()->isVoidType());
3097     const LocationContext *LocCtxt = Pred->getLocationContext();
3098     const Decl *D = LocCtxt->getDecl();
3099     const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
3100     const auto *DeclRefEx = dyn_cast<DeclRefExpr>(Ex);
3101     std::optional<std::pair<SVal, QualType>> VInfo;
3102 
3103     if (AMgr.options.ShouldInlineLambdas && DeclRefEx &&
3104         DeclRefEx->refersToEnclosingVariableOrCapture() && MD &&
3105         MD->getParent()->isLambda()) {
3106       // Lookup the field of the lambda.
3107       const CXXRecordDecl *CXXRec = MD->getParent();
3108       llvm::DenseMap<const ValueDecl *, FieldDecl *> LambdaCaptureFields;
3109       FieldDecl *LambdaThisCaptureField;
3110       CXXRec->getCaptureFields(LambdaCaptureFields, LambdaThisCaptureField);
3111 
3112       // Sema follows a sequence of complex rules to determine whether the
3113       // variable should be captured.
3114       if (const FieldDecl *FD = LambdaCaptureFields[VD]) {
3115         Loc CXXThis =
3116             svalBuilder.getCXXThis(MD, LocCtxt->getStackFrame());
3117         SVal CXXThisVal = state->getSVal(CXXThis);
3118         VInfo = std::make_pair(state->getLValue(FD, CXXThisVal), FD->getType());
3119       }
3120     }
3121 
3122     if (!VInfo)
3123       VInfo = std::make_pair(state->getLValue(VD, LocCtxt), VD->getType());
3124 
3125     SVal V = VInfo->first;
3126     bool IsReference = VInfo->second->isReferenceType();
3127 
3128     // For references, the 'lvalue' is the pointer address stored in the
3129     // reference region.
3130     if (IsReference) {
3131       if (const MemRegion *R = V.getAsRegion())
3132         V = state->getSVal(R);
3133       else
3134         V = UnknownVal();
3135     }
3136 
3137     Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V), nullptr,
3138                       ProgramPoint::PostLValueKind);
3139     return;
3140   }
3141   if (const auto *ED = dyn_cast<EnumConstantDecl>(D)) {
3142     assert(!Ex->isGLValue());
3143     SVal V = svalBuilder.makeIntVal(ED->getInitVal());
3144     Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V));
3145     return;
3146   }
3147   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3148     SVal V = svalBuilder.getFunctionPointer(FD);
3149     Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V), nullptr,
3150                       ProgramPoint::PostLValueKind);
3151     return;
3152   }
3153   if (isa<FieldDecl, IndirectFieldDecl>(D)) {
3154     // Delegate all work related to pointer to members to the surrounding
3155     // operator&.
3156     return;
3157   }
3158   if (const auto *BD = dyn_cast<BindingDecl>(D)) {
3159     const auto *DD = cast<DecompositionDecl>(BD->getDecomposedDecl());
3160 
3161     SVal Base = state->getLValue(DD, LCtx);
3162     if (DD->getType()->isReferenceType()) {
3163       if (const MemRegion *R = Base.getAsRegion())
3164         Base = state->getSVal(R);
3165       else
3166         Base = UnknownVal();
3167     }
3168 
3169     SVal V = UnknownVal();
3170 
3171     // Handle binding to data members
3172     if (const auto *ME = dyn_cast<MemberExpr>(BD->getBinding())) {
3173       const auto *Field = cast<FieldDecl>(ME->getMemberDecl());
3174       V = state->getLValue(Field, Base);
3175     }
3176     // Handle binding to arrays
3177     else if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(BD->getBinding())) {
3178       SVal Idx = state->getSVal(ASE->getIdx(), LCtx);
3179 
3180       // Note: the index of an element in a structured binding is automatically
3181       // created and it is a unique identifier of the specific element. Thus it
3182       // cannot be a value that varies at runtime.
3183       assert(Idx.isConstant() && "BindingDecl array index is not a constant!");
3184 
3185       V = state->getLValue(BD->getType(), Idx, Base);
3186     }
3187     // Handle binding to tuple-like structures
3188     else if (const auto *HV = BD->getHoldingVar()) {
3189       V = state->getLValue(HV, LCtx);
3190 
3191       if (HV->getType()->isReferenceType()) {
3192         if (const MemRegion *R = V.getAsRegion())
3193           V = state->getSVal(R);
3194         else
3195           V = UnknownVal();
3196       }
3197     } else
3198       llvm_unreachable("An unknown case of structured binding encountered!");
3199 
3200     // In case of tuple-like types the references are already handled, so we
3201     // don't want to handle them again.
3202     if (BD->getType()->isReferenceType() && !BD->getHoldingVar()) {
3203       if (const MemRegion *R = V.getAsRegion())
3204         V = state->getSVal(R);
3205       else
3206         V = UnknownVal();
3207     }
3208 
3209     Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V), nullptr,
3210                       ProgramPoint::PostLValueKind);
3211 
3212     return;
3213   }
3214 
3215   if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(D)) {
3216     // FIXME: We should meaningfully implement this.
3217     (void)TPO;
3218     return;
3219   }
3220 
3221   llvm_unreachable("Support for this Decl not implemented.");
3222 }
3223 
3224 /// VisitArrayInitLoopExpr - Transfer function for array init loop.
3225 void ExprEngine::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *Ex,
3226                                         ExplodedNode *Pred,
3227                                         ExplodedNodeSet &Dst) {
3228   ExplodedNodeSet CheckerPreStmt;
3229   getCheckerManager().runCheckersForPreStmt(CheckerPreStmt, Pred, Ex, *this);
3230 
3231   ExplodedNodeSet EvalSet;
3232   StmtNodeBuilder Bldr(CheckerPreStmt, EvalSet, *currBldrCtx);
3233 
3234   const Expr *Arr = Ex->getCommonExpr()->getSourceExpr();
3235 
3236   for (auto *Node : CheckerPreStmt) {
3237 
3238     // The constructor visitior has already taken care of everything.
3239     if (isa<CXXConstructExpr>(Ex->getSubExpr()))
3240       break;
3241 
3242     const LocationContext *LCtx = Node->getLocationContext();
3243     ProgramStateRef state = Node->getState();
3244 
3245     SVal Base = UnknownVal();
3246 
3247     // As in case of this expression the sub-expressions are not visited by any
3248     // other transfer functions, they are handled by matching their AST.
3249 
3250     // Case of implicit copy or move ctor of object with array member
3251     //
3252     // Note: ExprEngine::VisitMemberExpr is not able to bind the array to the
3253     // environment.
3254     //
3255     //    struct S {
3256     //      int arr[2];
3257     //    };
3258     //
3259     //
3260     //    S a;
3261     //    S b = a;
3262     //
3263     // The AST in case of a *copy constructor* looks like this:
3264     //    ArrayInitLoopExpr
3265     //    |-OpaqueValueExpr
3266     //    | `-MemberExpr              <-- match this
3267     //    |   `-DeclRefExpr
3268     //    ` ...
3269     //
3270     //
3271     //    S c;
3272     //    S d = std::move(d);
3273     //
3274     // In case of a *move constructor* the resulting AST looks like:
3275     //    ArrayInitLoopExpr
3276     //    |-OpaqueValueExpr
3277     //    | `-MemberExpr              <-- match this first
3278     //    |   `-CXXStaticCastExpr     <-- match this after
3279     //    |     `-DeclRefExpr
3280     //    ` ...
3281     if (const auto *ME = dyn_cast<MemberExpr>(Arr)) {
3282       Expr *MEBase = ME->getBase();
3283 
3284       // Move ctor
3285       if (auto CXXSCE = dyn_cast<CXXStaticCastExpr>(MEBase)) {
3286         MEBase = CXXSCE->getSubExpr();
3287       }
3288 
3289       auto ObjDeclExpr = cast<DeclRefExpr>(MEBase);
3290       SVal Obj = state->getLValue(cast<VarDecl>(ObjDeclExpr->getDecl()), LCtx);
3291 
3292       Base = state->getLValue(cast<FieldDecl>(ME->getMemberDecl()), Obj);
3293     }
3294 
3295     // Case of lambda capture and decomposition declaration
3296     //
3297     //    int arr[2];
3298     //
3299     //    [arr]{ int a = arr[0]; }();
3300     //    auto[a, b] = arr;
3301     //
3302     // In both of these cases the AST looks like the following:
3303     //    ArrayInitLoopExpr
3304     //    |-OpaqueValueExpr
3305     //    | `-DeclRefExpr             <-- match this
3306     //    ` ...
3307     if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arr))
3308       Base = state->getLValue(cast<VarDecl>(DRE->getDecl()), LCtx);
3309 
3310     // Create a lazy compound value to the original array
3311     if (const MemRegion *R = Base.getAsRegion())
3312       Base = state->getSVal(R);
3313     else
3314       Base = UnknownVal();
3315 
3316     Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, Base));
3317   }
3318 
3319   getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, Ex, *this);
3320 }
3321 
3322 /// VisitArraySubscriptExpr - Transfer function for array accesses
3323 void ExprEngine::VisitArraySubscriptExpr(const ArraySubscriptExpr *A,
3324                                              ExplodedNode *Pred,
3325                                              ExplodedNodeSet &Dst){
3326   const Expr *Base = A->getBase()->IgnoreParens();
3327   const Expr *Idx  = A->getIdx()->IgnoreParens();
3328 
3329   ExplodedNodeSet CheckerPreStmt;
3330   getCheckerManager().runCheckersForPreStmt(CheckerPreStmt, Pred, A, *this);
3331 
3332   ExplodedNodeSet EvalSet;
3333   StmtNodeBuilder Bldr(CheckerPreStmt, EvalSet, *currBldrCtx);
3334 
3335   bool IsVectorType = A->getBase()->getType()->isVectorType();
3336 
3337   // The "like" case is for situations where C standard prohibits the type to
3338   // be an lvalue, e.g. taking the address of a subscript of an expression of
3339   // type "void *".
3340   bool IsGLValueLike = A->isGLValue() ||
3341     (A->getType().isCForbiddenLValueType() && !AMgr.getLangOpts().CPlusPlus);
3342 
3343   for (auto *Node : CheckerPreStmt) {
3344     const LocationContext *LCtx = Node->getLocationContext();
3345     ProgramStateRef state = Node->getState();
3346 
3347     if (IsGLValueLike) {
3348       QualType T = A->getType();
3349 
3350       // One of the forbidden LValue types! We still need to have sensible
3351       // symbolic locations to represent this stuff. Note that arithmetic on
3352       // void pointers is a GCC extension.
3353       if (T->isVoidType())
3354         T = getContext().CharTy;
3355 
3356       SVal V = state->getLValue(T,
3357                                 state->getSVal(Idx, LCtx),
3358                                 state->getSVal(Base, LCtx));
3359       Bldr.generateNode(A, Node, state->BindExpr(A, LCtx, V), nullptr,
3360           ProgramPoint::PostLValueKind);
3361     } else if (IsVectorType) {
3362       // FIXME: non-glvalue vector reads are not modelled.
3363       Bldr.generateNode(A, Node, state, nullptr);
3364     } else {
3365       llvm_unreachable("Array subscript should be an lValue when not \
3366 a vector and not a forbidden lvalue type");
3367     }
3368   }
3369 
3370   getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, A, *this);
3371 }
3372 
3373 /// VisitMemberExpr - Transfer function for member expressions.
3374 void ExprEngine::VisitMemberExpr(const MemberExpr *M, ExplodedNode *Pred,
3375                                  ExplodedNodeSet &Dst) {
3376   // FIXME: Prechecks eventually go in ::Visit().
3377   ExplodedNodeSet CheckedSet;
3378   getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, M, *this);
3379 
3380   ExplodedNodeSet EvalSet;
3381   ValueDecl *Member = M->getMemberDecl();
3382 
3383   // Handle static member variables and enum constants accessed via
3384   // member syntax.
3385   if (isa<VarDecl, EnumConstantDecl>(Member)) {
3386     for (const auto I : CheckedSet)
3387       VisitCommonDeclRefExpr(M, Member, I, EvalSet);
3388   } else {
3389     StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx);
3390     ExplodedNodeSet Tmp;
3391 
3392     for (const auto I : CheckedSet) {
3393       ProgramStateRef state = I->getState();
3394       const LocationContext *LCtx = I->getLocationContext();
3395       Expr *BaseExpr = M->getBase();
3396 
3397       // Handle C++ method calls.
3398       if (const auto *MD = dyn_cast<CXXMethodDecl>(Member)) {
3399         if (MD->isImplicitObjectMemberFunction())
3400           state = createTemporaryRegionIfNeeded(state, LCtx, BaseExpr);
3401 
3402         SVal MDVal = svalBuilder.getFunctionPointer(MD);
3403         state = state->BindExpr(M, LCtx, MDVal);
3404 
3405         Bldr.generateNode(M, I, state);
3406         continue;
3407       }
3408 
3409       // Handle regular struct fields / member variables.
3410       const SubRegion *MR = nullptr;
3411       state = createTemporaryRegionIfNeeded(state, LCtx, BaseExpr,
3412                                             /*Result=*/nullptr,
3413                                             /*OutRegionWithAdjustments=*/&MR);
3414       SVal baseExprVal =
3415           MR ? loc::MemRegionVal(MR) : state->getSVal(BaseExpr, LCtx);
3416 
3417       // FIXME: Copied from RegionStoreManager::bind()
3418       if (const auto *SR =
3419               dyn_cast_or_null<SymbolicRegion>(baseExprVal.getAsRegion())) {
3420         QualType T = SR->getPointeeStaticType();
3421         baseExprVal =
3422             loc::MemRegionVal(getStoreManager().GetElementZeroRegion(SR, T));
3423       }
3424 
3425       const auto *field = cast<FieldDecl>(Member);
3426       SVal L = state->getLValue(field, baseExprVal);
3427 
3428       if (M->isGLValue() || M->getType()->isArrayType()) {
3429         // We special-case rvalues of array type because the analyzer cannot
3430         // reason about them, since we expect all regions to be wrapped in Locs.
3431         // We instead treat these as lvalues and assume that they will decay to
3432         // pointers as soon as they are used.
3433         if (!M->isGLValue()) {
3434           assert(M->getType()->isArrayType());
3435           const auto *PE =
3436             dyn_cast<ImplicitCastExpr>(I->getParentMap().getParentIgnoreParens(M));
3437           if (!PE || PE->getCastKind() != CK_ArrayToPointerDecay) {
3438             llvm_unreachable("should always be wrapped in ArrayToPointerDecay");
3439           }
3440         }
3441 
3442         if (field->getType()->isReferenceType()) {
3443           if (const MemRegion *R = L.getAsRegion())
3444             L = state->getSVal(R);
3445           else
3446             L = UnknownVal();
3447         }
3448 
3449         Bldr.generateNode(M, I, state->BindExpr(M, LCtx, L), nullptr,
3450                           ProgramPoint::PostLValueKind);
3451       } else {
3452         Bldr.takeNodes(I);
3453         evalLoad(Tmp, M, M, I, state, L);
3454         Bldr.addNodes(Tmp);
3455       }
3456     }
3457   }
3458 
3459   getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, M, *this);
3460 }
3461 
3462 void ExprEngine::VisitAtomicExpr(const AtomicExpr *AE, ExplodedNode *Pred,
3463                                  ExplodedNodeSet &Dst) {
3464   ExplodedNodeSet AfterPreSet;
3465   getCheckerManager().runCheckersForPreStmt(AfterPreSet, Pred, AE, *this);
3466 
3467   // For now, treat all the arguments to C11 atomics as escaping.
3468   // FIXME: Ideally we should model the behavior of the atomics precisely here.
3469 
3470   ExplodedNodeSet AfterInvalidateSet;
3471   StmtNodeBuilder Bldr(AfterPreSet, AfterInvalidateSet, *currBldrCtx);
3472 
3473   for (const auto I : AfterPreSet) {
3474     ProgramStateRef State = I->getState();
3475     const LocationContext *LCtx = I->getLocationContext();
3476 
3477     SmallVector<SVal, 8> ValuesToInvalidate;
3478     for (unsigned SI = 0, Count = AE->getNumSubExprs(); SI != Count; SI++) {
3479       const Expr *SubExpr = AE->getSubExprs()[SI];
3480       SVal SubExprVal = State->getSVal(SubExpr, LCtx);
3481       ValuesToInvalidate.push_back(SubExprVal);
3482     }
3483 
3484     State = State->invalidateRegions(ValuesToInvalidate, AE,
3485                                     currBldrCtx->blockCount(),
3486                                     LCtx,
3487                                     /*CausedByPointerEscape*/true,
3488                                     /*Symbols=*/nullptr);
3489 
3490     SVal ResultVal = UnknownVal();
3491     State = State->BindExpr(AE, LCtx, ResultVal);
3492     Bldr.generateNode(AE, I, State, nullptr,
3493                       ProgramPoint::PostStmtKind);
3494   }
3495 
3496   getCheckerManager().runCheckersForPostStmt(Dst, AfterInvalidateSet, AE, *this);
3497 }
3498 
3499 // A value escapes in four possible cases:
3500 // (1) We are binding to something that is not a memory region.
3501 // (2) We are binding to a MemRegion that does not have stack storage.
3502 // (3) We are binding to a top-level parameter region with a non-trivial
3503 //     destructor. We won't see the destructor during analysis, but it's there.
3504 // (4) We are binding to a MemRegion with stack storage that the store
3505 //     does not understand.
3506 ProgramStateRef ExprEngine::processPointerEscapedOnBind(
3507     ProgramStateRef State, ArrayRef<std::pair<SVal, SVal>> LocAndVals,
3508     const LocationContext *LCtx, PointerEscapeKind Kind,
3509     const CallEvent *Call) {
3510   SmallVector<SVal, 8> Escaped;
3511   for (const std::pair<SVal, SVal> &LocAndVal : LocAndVals) {
3512     // Cases (1) and (2).
3513     const MemRegion *MR = LocAndVal.first.getAsRegion();
3514     if (!MR ||
3515         !isa<StackSpaceRegion, StaticGlobalSpaceRegion>(MR->getMemorySpace())) {
3516       Escaped.push_back(LocAndVal.second);
3517       continue;
3518     }
3519 
3520     // Case (3).
3521     if (const auto *VR = dyn_cast<VarRegion>(MR->getBaseRegion()))
3522       if (VR->hasStackParametersStorage() && VR->getStackFrame()->inTopFrame())
3523         if (const auto *RD = VR->getValueType()->getAsCXXRecordDecl())
3524           if (!RD->hasTrivialDestructor()) {
3525             Escaped.push_back(LocAndVal.second);
3526             continue;
3527           }
3528 
3529     // Case (4): in order to test that, generate a new state with the binding
3530     // added. If it is the same state, then it escapes (since the store cannot
3531     // represent the binding).
3532     // Do this only if we know that the store is not supposed to generate the
3533     // same state.
3534     SVal StoredVal = State->getSVal(MR);
3535     if (StoredVal != LocAndVal.second)
3536       if (State ==
3537           (State->bindLoc(loc::MemRegionVal(MR), LocAndVal.second, LCtx)))
3538         Escaped.push_back(LocAndVal.second);
3539   }
3540 
3541   if (Escaped.empty())
3542     return State;
3543 
3544   return escapeValues(State, Escaped, Kind, Call);
3545 }
3546 
3547 ProgramStateRef
3548 ExprEngine::processPointerEscapedOnBind(ProgramStateRef State, SVal Loc,
3549                                         SVal Val, const LocationContext *LCtx) {
3550   std::pair<SVal, SVal> LocAndVal(Loc, Val);
3551   return processPointerEscapedOnBind(State, LocAndVal, LCtx, PSK_EscapeOnBind,
3552                                      nullptr);
3553 }
3554 
3555 ProgramStateRef
3556 ExprEngine::notifyCheckersOfPointerEscape(ProgramStateRef State,
3557     const InvalidatedSymbols *Invalidated,
3558     ArrayRef<const MemRegion *> ExplicitRegions,
3559     const CallEvent *Call,
3560     RegionAndSymbolInvalidationTraits &ITraits) {
3561   if (!Invalidated || Invalidated->empty())
3562     return State;
3563 
3564   if (!Call)
3565     return getCheckerManager().runCheckersForPointerEscape(State,
3566                                                            *Invalidated,
3567                                                            nullptr,
3568                                                            PSK_EscapeOther,
3569                                                            &ITraits);
3570 
3571   // If the symbols were invalidated by a call, we want to find out which ones
3572   // were invalidated directly due to being arguments to the call.
3573   InvalidatedSymbols SymbolsDirectlyInvalidated;
3574   for (const auto I : ExplicitRegions) {
3575     if (const SymbolicRegion *R = I->StripCasts()->getAs<SymbolicRegion>())
3576       SymbolsDirectlyInvalidated.insert(R->getSymbol());
3577   }
3578 
3579   InvalidatedSymbols SymbolsIndirectlyInvalidated;
3580   for (const auto &sym : *Invalidated) {
3581     if (SymbolsDirectlyInvalidated.count(sym))
3582       continue;
3583     SymbolsIndirectlyInvalidated.insert(sym);
3584   }
3585 
3586   if (!SymbolsDirectlyInvalidated.empty())
3587     State = getCheckerManager().runCheckersForPointerEscape(State,
3588         SymbolsDirectlyInvalidated, Call, PSK_DirectEscapeOnCall, &ITraits);
3589 
3590   // Notify about the symbols that get indirectly invalidated by the call.
3591   if (!SymbolsIndirectlyInvalidated.empty())
3592     State = getCheckerManager().runCheckersForPointerEscape(State,
3593         SymbolsIndirectlyInvalidated, Call, PSK_IndirectEscapeOnCall, &ITraits);
3594 
3595   return State;
3596 }
3597 
3598 /// evalBind - Handle the semantics of binding a value to a specific location.
3599 ///  This method is used by evalStore and (soon) VisitDeclStmt, and others.
3600 void ExprEngine::evalBind(ExplodedNodeSet &Dst, const Stmt *StoreE,
3601                           ExplodedNode *Pred,
3602                           SVal location, SVal Val,
3603                           bool atDeclInit, const ProgramPoint *PP) {
3604   const LocationContext *LC = Pred->getLocationContext();
3605   PostStmt PS(StoreE, LC);
3606   if (!PP)
3607     PP = &PS;
3608 
3609   // Do a previsit of the bind.
3610   ExplodedNodeSet CheckedSet;
3611   getCheckerManager().runCheckersForBind(CheckedSet, Pred, location, Val,
3612                                          StoreE, *this, *PP);
3613 
3614   StmtNodeBuilder Bldr(CheckedSet, Dst, *currBldrCtx);
3615 
3616   // If the location is not a 'Loc', it will already be handled by
3617   // the checkers.  There is nothing left to do.
3618   if (!isa<Loc>(location)) {
3619     const ProgramPoint L = PostStore(StoreE, LC, /*Loc*/nullptr,
3620                                      /*tag*/nullptr);
3621     ProgramStateRef state = Pred->getState();
3622     state = processPointerEscapedOnBind(state, location, Val, LC);
3623     Bldr.generateNode(L, state, Pred);
3624     return;
3625   }
3626 
3627   for (const auto PredI : CheckedSet) {
3628     ProgramStateRef state = PredI->getState();
3629 
3630     state = processPointerEscapedOnBind(state, location, Val, LC);
3631 
3632     // When binding the value, pass on the hint that this is a initialization.
3633     // For initializations, we do not need to inform clients of region
3634     // changes.
3635     state = state->bindLoc(location.castAs<Loc>(),
3636                            Val, LC, /* notifyChanges = */ !atDeclInit);
3637 
3638     const MemRegion *LocReg = nullptr;
3639     if (std::optional<loc::MemRegionVal> LocRegVal =
3640             location.getAs<loc::MemRegionVal>()) {
3641       LocReg = LocRegVal->getRegion();
3642     }
3643 
3644     const ProgramPoint L = PostStore(StoreE, LC, LocReg, nullptr);
3645     Bldr.generateNode(L, state, PredI);
3646   }
3647 }
3648 
3649 /// evalStore - Handle the semantics of a store via an assignment.
3650 ///  @param Dst The node set to store generated state nodes
3651 ///  @param AssignE The assignment expression if the store happens in an
3652 ///         assignment.
3653 ///  @param LocationE The location expression that is stored to.
3654 ///  @param state The current simulation state
3655 ///  @param location The location to store the value
3656 ///  @param Val The value to be stored
3657 void ExprEngine::evalStore(ExplodedNodeSet &Dst, const Expr *AssignE,
3658                              const Expr *LocationE,
3659                              ExplodedNode *Pred,
3660                              ProgramStateRef state, SVal location, SVal Val,
3661                              const ProgramPointTag *tag) {
3662   // Proceed with the store.  We use AssignE as the anchor for the PostStore
3663   // ProgramPoint if it is non-NULL, and LocationE otherwise.
3664   const Expr *StoreE = AssignE ? AssignE : LocationE;
3665 
3666   // Evaluate the location (checks for bad dereferences).
3667   ExplodedNodeSet Tmp;
3668   evalLocation(Tmp, AssignE, LocationE, Pred, state, location, false);
3669 
3670   if (Tmp.empty())
3671     return;
3672 
3673   if (location.isUndef())
3674     return;
3675 
3676   for (const auto I : Tmp)
3677     evalBind(Dst, StoreE, I, location, Val, false);
3678 }
3679 
3680 void ExprEngine::evalLoad(ExplodedNodeSet &Dst,
3681                           const Expr *NodeEx,
3682                           const Expr *BoundEx,
3683                           ExplodedNode *Pred,
3684                           ProgramStateRef state,
3685                           SVal location,
3686                           const ProgramPointTag *tag,
3687                           QualType LoadTy) {
3688   assert(!isa<NonLoc>(location) && "location cannot be a NonLoc.");
3689   assert(NodeEx);
3690   assert(BoundEx);
3691   // Evaluate the location (checks for bad dereferences).
3692   ExplodedNodeSet Tmp;
3693   evalLocation(Tmp, NodeEx, BoundEx, Pred, state, location, true);
3694   if (Tmp.empty())
3695     return;
3696 
3697   StmtNodeBuilder Bldr(Tmp, Dst, *currBldrCtx);
3698   if (location.isUndef())
3699     return;
3700 
3701   // Proceed with the load.
3702   for (const auto I : Tmp) {
3703     state = I->getState();
3704     const LocationContext *LCtx = I->getLocationContext();
3705 
3706     SVal V = UnknownVal();
3707     if (location.isValid()) {
3708       if (LoadTy.isNull())
3709         LoadTy = BoundEx->getType();
3710       V = state->getSVal(location.castAs<Loc>(), LoadTy);
3711     }
3712 
3713     Bldr.generateNode(NodeEx, I, state->BindExpr(BoundEx, LCtx, V), tag,
3714                       ProgramPoint::PostLoadKind);
3715   }
3716 }
3717 
3718 void ExprEngine::evalLocation(ExplodedNodeSet &Dst,
3719                               const Stmt *NodeEx,
3720                               const Stmt *BoundEx,
3721                               ExplodedNode *Pred,
3722                               ProgramStateRef state,
3723                               SVal location,
3724                               bool isLoad) {
3725   StmtNodeBuilder BldrTop(Pred, Dst, *currBldrCtx);
3726   // Early checks for performance reason.
3727   if (location.isUnknown()) {
3728     return;
3729   }
3730 
3731   ExplodedNodeSet Src;
3732   BldrTop.takeNodes(Pred);
3733   StmtNodeBuilder Bldr(Pred, Src, *currBldrCtx);
3734   if (Pred->getState() != state) {
3735     // Associate this new state with an ExplodedNode.
3736     // FIXME: If I pass null tag, the graph is incorrect, e.g for
3737     //   int *p;
3738     //   p = 0;
3739     //   *p = 0xDEADBEEF;
3740     // "p = 0" is not noted as "Null pointer value stored to 'p'" but
3741     // instead "int *p" is noted as
3742     // "Variable 'p' initialized to a null pointer value"
3743 
3744     static SimpleProgramPointTag tag(TagProviderName, "Location");
3745     Bldr.generateNode(NodeEx, Pred, state, &tag);
3746   }
3747   ExplodedNodeSet Tmp;
3748   getCheckerManager().runCheckersForLocation(Tmp, Src, location, isLoad,
3749                                              NodeEx, BoundEx, *this);
3750   BldrTop.addNodes(Tmp);
3751 }
3752 
3753 std::pair<const ProgramPointTag *, const ProgramPointTag *>
3754 ExprEngine::getEagerlyAssumeBifurcationTags() {
3755   static SimpleProgramPointTag TrueTag(TagProviderName, "Eagerly Assume True"),
3756       FalseTag(TagProviderName, "Eagerly Assume False");
3757 
3758   return std::make_pair(&TrueTag, &FalseTag);
3759 }
3760 
3761 /// If the last EagerlyAssume attempt was successful (i.e. the true and false
3762 /// cases were both feasible), this state trait stores the expression where it
3763 /// happened; otherwise this holds nullptr.
3764 REGISTER_TRAIT_WITH_PROGRAMSTATE(LastEagerlyAssumeExprIfSuccessful,
3765                                  const Expr *)
3766 
3767 void ExprEngine::evalEagerlyAssumeBifurcation(ExplodedNodeSet &Dst,
3768                                               ExplodedNodeSet &Src,
3769                                               const Expr *Ex) {
3770   StmtNodeBuilder Bldr(Src, Dst, *currBldrCtx);
3771 
3772   for (ExplodedNode *Pred : Src) {
3773     // Test if the previous node was as the same expression.  This can happen
3774     // when the expression fails to evaluate to anything meaningful and
3775     // (as an optimization) we don't generate a node.
3776     ProgramPoint P = Pred->getLocation();
3777     if (!P.getAs<PostStmt>() || P.castAs<PostStmt>().getStmt() != Ex) {
3778       continue;
3779     }
3780 
3781     ProgramStateRef State = Pred->getState();
3782     State = State->set<LastEagerlyAssumeExprIfSuccessful>(nullptr);
3783     SVal V = State->getSVal(Ex, Pred->getLocationContext());
3784     std::optional<nonloc::SymbolVal> SEV = V.getAs<nonloc::SymbolVal>();
3785     if (SEV && SEV->isExpression()) {
3786       const auto &[TrueTag, FalseTag] = getEagerlyAssumeBifurcationTags();
3787 
3788       auto [StateTrue, StateFalse] = State->assume(*SEV);
3789 
3790       if (StateTrue && StateFalse) {
3791         StateTrue = StateTrue->set<LastEagerlyAssumeExprIfSuccessful>(Ex);
3792         StateFalse = StateFalse->set<LastEagerlyAssumeExprIfSuccessful>(Ex);
3793       }
3794 
3795       // First assume that the condition is true.
3796       if (StateTrue) {
3797         SVal Val = svalBuilder.makeIntVal(1U, Ex->getType());
3798         StateTrue = StateTrue->BindExpr(Ex, Pred->getLocationContext(), Val);
3799         Bldr.generateNode(Ex, Pred, StateTrue, TrueTag);
3800       }
3801 
3802       // Next, assume that the condition is false.
3803       if (StateFalse) {
3804         SVal Val = svalBuilder.makeIntVal(0U, Ex->getType());
3805         StateFalse = StateFalse->BindExpr(Ex, Pred->getLocationContext(), Val);
3806         Bldr.generateNode(Ex, Pred, StateFalse, FalseTag);
3807       }
3808     }
3809   }
3810 }
3811 
3812 bool ExprEngine::didEagerlyAssumeBifurcateAt(ProgramStateRef State,
3813                                              const Expr *Ex) const {
3814   return Ex && State->get<LastEagerlyAssumeExprIfSuccessful>() == Ex;
3815 }
3816 
3817 void ExprEngine::VisitGCCAsmStmt(const GCCAsmStmt *A, ExplodedNode *Pred,
3818                                  ExplodedNodeSet &Dst) {
3819   StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
3820   // We have processed both the inputs and the outputs.  All of the outputs
3821   // should evaluate to Locs.  Nuke all of their values.
3822 
3823   // FIXME: Some day in the future it would be nice to allow a "plug-in"
3824   // which interprets the inline asm and stores proper results in the
3825   // outputs.
3826 
3827   ProgramStateRef state = Pred->getState();
3828 
3829   for (const Expr *O : A->outputs()) {
3830     SVal X = state->getSVal(O, Pred->getLocationContext());
3831     assert(!isa<NonLoc>(X)); // Should be an Lval, or unknown, undef.
3832 
3833     if (std::optional<Loc> LV = X.getAs<Loc>())
3834       state = state->invalidateRegions(*LV, A, currBldrCtx->blockCount(),
3835                                        Pred->getLocationContext(),
3836                                        /*CausedByPointerEscape=*/true);
3837   }
3838 
3839   // Do not reason about locations passed inside inline assembly.
3840   for (const Expr *I : A->inputs()) {
3841     SVal X = state->getSVal(I, Pred->getLocationContext());
3842 
3843     if (std::optional<Loc> LV = X.getAs<Loc>())
3844       state = state->invalidateRegions(*LV, A, currBldrCtx->blockCount(),
3845                                        Pred->getLocationContext(),
3846                                        /*CausedByPointerEscape=*/true);
3847   }
3848 
3849   Bldr.generateNode(A, Pred, state);
3850 }
3851 
3852 void ExprEngine::VisitMSAsmStmt(const MSAsmStmt *A, ExplodedNode *Pred,
3853                                 ExplodedNodeSet &Dst) {
3854   StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
3855   Bldr.generateNode(A, Pred, Pred->getState());
3856 }
3857 
3858 //===----------------------------------------------------------------------===//
3859 // Visualization.
3860 //===----------------------------------------------------------------------===//
3861 
3862 namespace llvm {
3863 
3864 template<>
3865 struct DOTGraphTraits<ExplodedGraph*> : public DefaultDOTGraphTraits {
3866   DOTGraphTraits (bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
3867 
3868   static bool nodeHasBugReport(const ExplodedNode *N) {
3869     BugReporter &BR = static_cast<ExprEngine &>(
3870       N->getState()->getStateManager().getOwningEngine()).getBugReporter();
3871 
3872     for (const auto &Class : BR.equivalenceClasses()) {
3873       for (const auto &Report : Class.getReports()) {
3874         const auto *PR = dyn_cast<PathSensitiveBugReport>(Report.get());
3875         if (!PR)
3876           continue;
3877         const ExplodedNode *EN = PR->getErrorNode();
3878         if (EN->getState() == N->getState() &&
3879             EN->getLocation() == N->getLocation())
3880           return true;
3881       }
3882     }
3883     return false;
3884   }
3885 
3886   /// \p PreCallback: callback before break.
3887   /// \p PostCallback: callback after break.
3888   /// \p Stop: stop iteration if returns @c true
3889   /// \return Whether @c Stop ever returned @c true.
3890   static bool traverseHiddenNodes(
3891       const ExplodedNode *N,
3892       llvm::function_ref<void(const ExplodedNode *)> PreCallback,
3893       llvm::function_ref<void(const ExplodedNode *)> PostCallback,
3894       llvm::function_ref<bool(const ExplodedNode *)> Stop) {
3895     while (true) {
3896       PreCallback(N);
3897       if (Stop(N))
3898         return true;
3899 
3900       if (N->succ_size() != 1 || !isNodeHidden(N->getFirstSucc(), nullptr))
3901         break;
3902       PostCallback(N);
3903 
3904       N = N->getFirstSucc();
3905     }
3906     return false;
3907   }
3908 
3909   static bool isNodeHidden(const ExplodedNode *N, const ExplodedGraph *G) {
3910     return N->isTrivial();
3911   }
3912 
3913   static std::string getNodeLabel(const ExplodedNode *N, ExplodedGraph *G){
3914     std::string Buf;
3915     llvm::raw_string_ostream Out(Buf);
3916 
3917     const bool IsDot = true;
3918     const unsigned int Space = 1;
3919     ProgramStateRef State = N->getState();
3920 
3921     Out << "{ \"state_id\": " << State->getID()
3922         << ",\\l";
3923 
3924     Indent(Out, Space, IsDot) << "\"program_points\": [\\l";
3925 
3926     // Dump program point for all the previously skipped nodes.
3927     traverseHiddenNodes(
3928         N,
3929         [&](const ExplodedNode *OtherNode) {
3930           Indent(Out, Space + 1, IsDot) << "{ ";
3931           OtherNode->getLocation().printJson(Out, /*NL=*/"\\l");
3932           Out << ", \"tag\": ";
3933           if (const ProgramPointTag *Tag = OtherNode->getLocation().getTag())
3934             Out << '\"' << Tag->getTagDescription() << '\"';
3935           else
3936             Out << "null";
3937           Out << ", \"node_id\": " << OtherNode->getID() <<
3938                  ", \"is_sink\": " << OtherNode->isSink() <<
3939                  ", \"has_report\": " << nodeHasBugReport(OtherNode) << " }";
3940         },
3941         // Adds a comma and a new-line between each program point.
3942         [&](const ExplodedNode *) { Out << ",\\l"; },
3943         [&](const ExplodedNode *) { return false; });
3944 
3945     Out << "\\l"; // Adds a new-line to the last program point.
3946     Indent(Out, Space, IsDot) << "],\\l";
3947 
3948     State->printDOT(Out, N->getLocationContext(), Space);
3949 
3950     Out << "\\l}\\l";
3951     return Buf;
3952   }
3953 };
3954 
3955 } // namespace llvm
3956 
3957 void ExprEngine::ViewGraph(bool trim) {
3958   std::string Filename = DumpGraph(trim);
3959   llvm::DisplayGraph(Filename, false, llvm::GraphProgram::DOT);
3960 }
3961 
3962 void ExprEngine::ViewGraph(ArrayRef<const ExplodedNode *> Nodes) {
3963   std::string Filename = DumpGraph(Nodes);
3964   llvm::DisplayGraph(Filename, false, llvm::GraphProgram::DOT);
3965 }
3966 
3967 std::string ExprEngine::DumpGraph(bool trim, StringRef Filename) {
3968   if (trim) {
3969     std::vector<const ExplodedNode *> Src;
3970 
3971     // Iterate through the reports and get their nodes.
3972     for (const auto &Class : BR.equivalenceClasses()) {
3973       const auto *R =
3974           dyn_cast<PathSensitiveBugReport>(Class.getReports()[0].get());
3975       if (!R)
3976         continue;
3977       const auto *N = const_cast<ExplodedNode *>(R->getErrorNode());
3978       Src.push_back(N);
3979     }
3980     return DumpGraph(Src, Filename);
3981   }
3982 
3983   return llvm::WriteGraph(&G, "ExprEngine", /*ShortNames=*/false,
3984                           /*Title=*/"Exploded Graph",
3985                           /*Filename=*/std::string(Filename));
3986 }
3987 
3988 std::string ExprEngine::DumpGraph(ArrayRef<const ExplodedNode *> Nodes,
3989                                   StringRef Filename) {
3990   std::unique_ptr<ExplodedGraph> TrimmedG(G.trim(Nodes));
3991 
3992   if (!TrimmedG.get()) {
3993     llvm::errs() << "warning: Trimmed ExplodedGraph is empty.\n";
3994     return "";
3995   }
3996 
3997   return llvm::WriteGraph(TrimmedG.get(), "TrimmedExprEngine",
3998                           /*ShortNames=*/false,
3999                           /*Title=*/"Trimmed Exploded Graph",
4000                           /*Filename=*/std::string(Filename));
4001 }
4002 
4003 void *ProgramStateTrait<ReplayWithoutInlining>::GDMIndex() {
4004   static int index = 0;
4005   return &index;
4006 }
4007 
4008 void ExprEngine::anchor() { }
4009