1 //===- ExplodedGraph.cpp - Local, Path-Sens. "Exploded Graph" -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the template classes ExplodedNode and ExplodedGraph, 11 // which represent a path-sensitive, intra-procedural "exploded graph." 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h" 16 #include "clang/AST/Expr.h" 17 #include "clang/AST/ExprObjC.h" 18 #include "clang/AST/ParentMap.h" 19 #include "clang/AST/Stmt.h" 20 #include "clang/Analysis/ProgramPoint.h" 21 #include "clang/Analysis/Support/BumpVector.h" 22 #include "clang/Basic/LLVM.h" 23 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 24 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 25 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h" 26 #include "llvm/ADT/DenseSet.h" 27 #include "llvm/ADT/FoldingSet.h" 28 #include "llvm/ADT/Optional.h" 29 #include "llvm/ADT/PointerUnion.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/Support/Casting.h" 32 #include <cassert> 33 #include <memory> 34 35 using namespace clang; 36 using namespace ento; 37 38 //===----------------------------------------------------------------------===// 39 // Cleanup. 40 //===----------------------------------------------------------------------===// 41 42 ExplodedGraph::ExplodedGraph() = default; 43 44 ExplodedGraph::~ExplodedGraph() = default; 45 46 //===----------------------------------------------------------------------===// 47 // Node reclamation. 48 //===----------------------------------------------------------------------===// 49 50 bool ExplodedGraph::isInterestingLValueExpr(const Expr *Ex) { 51 if (!Ex->isLValue()) 52 return false; 53 return isa<DeclRefExpr>(Ex) || 54 isa<MemberExpr>(Ex) || 55 isa<ObjCIvarRefExpr>(Ex); 56 } 57 58 bool ExplodedGraph::shouldCollect(const ExplodedNode *node) { 59 // First, we only consider nodes for reclamation of the following 60 // conditions apply: 61 // 62 // (1) 1 predecessor (that has one successor) 63 // (2) 1 successor (that has one predecessor) 64 // 65 // If a node has no successor it is on the "frontier", while a node 66 // with no predecessor is a root. 67 // 68 // After these prerequisites, we discard all "filler" nodes that 69 // are used only for intermediate processing, and are not essential 70 // for analyzer history: 71 // 72 // (a) PreStmtPurgeDeadSymbols 73 // 74 // We then discard all other nodes where *all* of the following conditions 75 // apply: 76 // 77 // (3) The ProgramPoint is for a PostStmt, but not a PostStore. 78 // (4) There is no 'tag' for the ProgramPoint. 79 // (5) The 'store' is the same as the predecessor. 80 // (6) The 'GDM' is the same as the predecessor. 81 // (7) The LocationContext is the same as the predecessor. 82 // (8) Expressions that are *not* lvalue expressions. 83 // (9) The PostStmt isn't for a non-consumed Stmt or Expr. 84 // (10) The successor is neither a CallExpr StmtPoint nor a CallEnter or 85 // PreImplicitCall (so that we would be able to find it when retrying a 86 // call with no inlining). 87 // FIXME: It may be safe to reclaim PreCall and PostCall nodes as well. 88 89 // Conditions 1 and 2. 90 if (node->pred_size() != 1 || node->succ_size() != 1) 91 return false; 92 93 const ExplodedNode *pred = *(node->pred_begin()); 94 if (pred->succ_size() != 1) 95 return false; 96 97 const ExplodedNode *succ = *(node->succ_begin()); 98 if (succ->pred_size() != 1) 99 return false; 100 101 // Now reclaim any nodes that are (by definition) not essential to 102 // analysis history and are not consulted by any client code. 103 ProgramPoint progPoint = node->getLocation(); 104 if (progPoint.getAs<PreStmtPurgeDeadSymbols>()) 105 return !progPoint.getTag(); 106 107 // Condition 3. 108 if (!progPoint.getAs<PostStmt>() || progPoint.getAs<PostStore>()) 109 return false; 110 111 // Condition 4. 112 if (progPoint.getTag()) 113 return false; 114 115 // Conditions 5, 6, and 7. 116 ProgramStateRef state = node->getState(); 117 ProgramStateRef pred_state = pred->getState(); 118 if (state->store != pred_state->store || state->GDM != pred_state->GDM || 119 progPoint.getLocationContext() != pred->getLocationContext()) 120 return false; 121 122 // All further checks require expressions. As per #3, we know that we have 123 // a PostStmt. 124 const Expr *Ex = dyn_cast<Expr>(progPoint.castAs<PostStmt>().getStmt()); 125 if (!Ex) 126 return false; 127 128 // Condition 8. 129 // Do not collect nodes for "interesting" lvalue expressions since they are 130 // used extensively for generating path diagnostics. 131 if (isInterestingLValueExpr(Ex)) 132 return false; 133 134 // Condition 9. 135 // Do not collect nodes for non-consumed Stmt or Expr to ensure precise 136 // diagnostic generation; specifically, so that we could anchor arrows 137 // pointing to the beginning of statements (as written in code). 138 ParentMap &PM = progPoint.getLocationContext()->getParentMap(); 139 if (!PM.isConsumedExpr(Ex)) 140 return false; 141 142 // Condition 10. 143 const ProgramPoint SuccLoc = succ->getLocation(); 144 if (Optional<StmtPoint> SP = SuccLoc.getAs<StmtPoint>()) 145 if (CallEvent::isCallStmt(SP->getStmt())) 146 return false; 147 148 // Condition 10, continuation. 149 if (SuccLoc.getAs<CallEnter>() || SuccLoc.getAs<PreImplicitCall>()) 150 return false; 151 152 return true; 153 } 154 155 void ExplodedGraph::collectNode(ExplodedNode *node) { 156 // Removing a node means: 157 // (a) changing the predecessors successor to the successor of this node 158 // (b) changing the successors predecessor to the predecessor of this node 159 // (c) Putting 'node' onto freeNodes. 160 assert(node->pred_size() == 1 || node->succ_size() == 1); 161 ExplodedNode *pred = *(node->pred_begin()); 162 ExplodedNode *succ = *(node->succ_begin()); 163 pred->replaceSuccessor(succ); 164 succ->replacePredecessor(pred); 165 FreeNodes.push_back(node); 166 Nodes.RemoveNode(node); 167 --NumNodes; 168 node->~ExplodedNode(); 169 } 170 171 void ExplodedGraph::reclaimRecentlyAllocatedNodes() { 172 if (ChangedNodes.empty()) 173 return; 174 175 // Only periodically reclaim nodes so that we can build up a set of 176 // nodes that meet the reclamation criteria. Freshly created nodes 177 // by definition have no successor, and thus cannot be reclaimed (see below). 178 assert(ReclaimCounter > 0); 179 if (--ReclaimCounter != 0) 180 return; 181 ReclaimCounter = ReclaimNodeInterval; 182 183 for (const auto node : ChangedNodes) 184 if (shouldCollect(node)) 185 collectNode(node); 186 ChangedNodes.clear(); 187 } 188 189 //===----------------------------------------------------------------------===// 190 // ExplodedNode. 191 //===----------------------------------------------------------------------===// 192 193 // An NodeGroup's storage type is actually very much like a TinyPtrVector: 194 // it can be either a pointer to a single ExplodedNode, or a pointer to a 195 // BumpVector allocated with the ExplodedGraph's allocator. This allows the 196 // common case of single-node NodeGroups to be implemented with no extra memory. 197 // 198 // Consequently, each of the NodeGroup methods have up to four cases to handle: 199 // 1. The flag is set and this group does not actually contain any nodes. 200 // 2. The group is empty, in which case the storage value is null. 201 // 3. The group contains a single node. 202 // 4. The group contains more than one node. 203 using ExplodedNodeVector = BumpVector<ExplodedNode *>; 204 using GroupStorage = llvm::PointerUnion<ExplodedNode *, ExplodedNodeVector *>; 205 206 void ExplodedNode::addPredecessor(ExplodedNode *V, ExplodedGraph &G) { 207 assert(!V->isSink()); 208 Preds.addNode(V, G); 209 V->Succs.addNode(this, G); 210 } 211 212 void ExplodedNode::NodeGroup::replaceNode(ExplodedNode *node) { 213 assert(!getFlag()); 214 215 GroupStorage &Storage = reinterpret_cast<GroupStorage&>(P); 216 assert(Storage.is<ExplodedNode *>()); 217 Storage = node; 218 assert(Storage.is<ExplodedNode *>()); 219 } 220 221 void ExplodedNode::NodeGroup::addNode(ExplodedNode *N, ExplodedGraph &G) { 222 assert(!getFlag()); 223 224 GroupStorage &Storage = reinterpret_cast<GroupStorage&>(P); 225 if (Storage.isNull()) { 226 Storage = N; 227 assert(Storage.is<ExplodedNode *>()); 228 return; 229 } 230 231 ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>(); 232 233 if (!V) { 234 // Switch from single-node to multi-node representation. 235 ExplodedNode *Old = Storage.get<ExplodedNode *>(); 236 237 BumpVectorContext &Ctx = G.getNodeAllocator(); 238 V = G.getAllocator().Allocate<ExplodedNodeVector>(); 239 new (V) ExplodedNodeVector(Ctx, 4); 240 V->push_back(Old, Ctx); 241 242 Storage = V; 243 assert(!getFlag()); 244 assert(Storage.is<ExplodedNodeVector *>()); 245 } 246 247 V->push_back(N, G.getNodeAllocator()); 248 } 249 250 unsigned ExplodedNode::NodeGroup::size() const { 251 if (getFlag()) 252 return 0; 253 254 const GroupStorage &Storage = reinterpret_cast<const GroupStorage &>(P); 255 if (Storage.isNull()) 256 return 0; 257 if (ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>()) 258 return V->size(); 259 return 1; 260 } 261 262 ExplodedNode * const *ExplodedNode::NodeGroup::begin() const { 263 if (getFlag()) 264 return nullptr; 265 266 const GroupStorage &Storage = reinterpret_cast<const GroupStorage &>(P); 267 if (Storage.isNull()) 268 return nullptr; 269 if (ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>()) 270 return V->begin(); 271 return Storage.getAddrOfPtr1(); 272 } 273 274 ExplodedNode * const *ExplodedNode::NodeGroup::end() const { 275 if (getFlag()) 276 return nullptr; 277 278 const GroupStorage &Storage = reinterpret_cast<const GroupStorage &>(P); 279 if (Storage.isNull()) 280 return nullptr; 281 if (ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>()) 282 return V->end(); 283 return Storage.getAddrOfPtr1() + 1; 284 } 285 286 int64_t ExplodedNode::getID(ExplodedGraph *G) const { 287 Optional<int64_t> Out = G->getAllocator().identifyObject(this); 288 assert(Out && "Wrong allocator used"); 289 assert(*Out % alignof(ExplodedNode) == 0 && "Wrong alignment information"); 290 return *Out / alignof(ExplodedNode); 291 } 292 293 bool ExplodedNode::isTrivial() const { 294 return pred_size() == 1 && succ_size() == 1 && 295 getFirstPred()->getState()->getID() == getState()->getID() && 296 getFirstPred()->succ_size() == 1; 297 } 298 299 ExplodedNode *ExplodedGraph::getNode(const ProgramPoint &L, 300 ProgramStateRef State, 301 bool IsSink, 302 bool* IsNew) { 303 // Profile 'State' to determine if we already have an existing node. 304 llvm::FoldingSetNodeID profile; 305 void *InsertPos = nullptr; 306 307 NodeTy::Profile(profile, L, State, IsSink); 308 NodeTy* V = Nodes.FindNodeOrInsertPos(profile, InsertPos); 309 310 if (!V) { 311 if (!FreeNodes.empty()) { 312 V = FreeNodes.back(); 313 FreeNodes.pop_back(); 314 } 315 else { 316 // Allocate a new node. 317 V = (NodeTy*) getAllocator().Allocate<NodeTy>(); 318 } 319 320 new (V) NodeTy(L, State, IsSink); 321 322 if (ReclaimNodeInterval) 323 ChangedNodes.push_back(V); 324 325 // Insert the node into the node set and return it. 326 Nodes.InsertNode(V, InsertPos); 327 ++NumNodes; 328 329 if (IsNew) *IsNew = true; 330 } 331 else 332 if (IsNew) *IsNew = false; 333 334 return V; 335 } 336 337 ExplodedNode *ExplodedGraph::createUncachedNode(const ProgramPoint &L, 338 ProgramStateRef State, 339 bool IsSink) { 340 NodeTy *V = (NodeTy *) getAllocator().Allocate<NodeTy>(); 341 new (V) NodeTy(L, State, IsSink); 342 return V; 343 } 344 345 std::unique_ptr<ExplodedGraph> 346 ExplodedGraph::trim(ArrayRef<const NodeTy *> Sinks, 347 InterExplodedGraphMap *ForwardMap, 348 InterExplodedGraphMap *InverseMap) const { 349 if (Nodes.empty()) 350 return nullptr; 351 352 using Pass1Ty = llvm::DenseSet<const ExplodedNode *>; 353 Pass1Ty Pass1; 354 355 using Pass2Ty = InterExplodedGraphMap; 356 InterExplodedGraphMap Pass2Scratch; 357 Pass2Ty &Pass2 = ForwardMap ? *ForwardMap : Pass2Scratch; 358 359 SmallVector<const ExplodedNode*, 10> WL1, WL2; 360 361 // ===- Pass 1 (reverse DFS) -=== 362 for (const auto Sink : Sinks) 363 if (Sink) 364 WL1.push_back(Sink); 365 366 // Process the first worklist until it is empty. 367 while (!WL1.empty()) { 368 const ExplodedNode *N = WL1.pop_back_val(); 369 370 // Have we already visited this node? If so, continue to the next one. 371 if (!Pass1.insert(N).second) 372 continue; 373 374 // If this is a root enqueue it to the second worklist. 375 if (N->Preds.empty()) { 376 WL2.push_back(N); 377 continue; 378 } 379 380 // Visit our predecessors and enqueue them. 381 WL1.append(N->Preds.begin(), N->Preds.end()); 382 } 383 384 // We didn't hit a root? Return with a null pointer for the new graph. 385 if (WL2.empty()) 386 return nullptr; 387 388 // Create an empty graph. 389 std::unique_ptr<ExplodedGraph> G = MakeEmptyGraph(); 390 391 // ===- Pass 2 (forward DFS to construct the new graph) -=== 392 while (!WL2.empty()) { 393 const ExplodedNode *N = WL2.pop_back_val(); 394 395 // Skip this node if we have already processed it. 396 if (Pass2.find(N) != Pass2.end()) 397 continue; 398 399 // Create the corresponding node in the new graph and record the mapping 400 // from the old node to the new node. 401 ExplodedNode *NewN = G->createUncachedNode(N->getLocation(), N->State, N->isSink()); 402 Pass2[N] = NewN; 403 404 // Also record the reverse mapping from the new node to the old node. 405 if (InverseMap) (*InverseMap)[NewN] = N; 406 407 // If this node is a root, designate it as such in the graph. 408 if (N->Preds.empty()) 409 G->addRoot(NewN); 410 411 // In the case that some of the intended predecessors of NewN have already 412 // been created, we should hook them up as predecessors. 413 414 // Walk through the predecessors of 'N' and hook up their corresponding 415 // nodes in the new graph (if any) to the freshly created node. 416 for (ExplodedNode::pred_iterator I = N->Preds.begin(), E = N->Preds.end(); 417 I != E; ++I) { 418 Pass2Ty::iterator PI = Pass2.find(*I); 419 if (PI == Pass2.end()) 420 continue; 421 422 NewN->addPredecessor(const_cast<ExplodedNode *>(PI->second), *G); 423 } 424 425 // In the case that some of the intended successors of NewN have already 426 // been created, we should hook them up as successors. Otherwise, enqueue 427 // the new nodes from the original graph that should have nodes created 428 // in the new graph. 429 for (ExplodedNode::succ_iterator I = N->Succs.begin(), E = N->Succs.end(); 430 I != E; ++I) { 431 Pass2Ty::iterator PI = Pass2.find(*I); 432 if (PI != Pass2.end()) { 433 const_cast<ExplodedNode *>(PI->second)->addPredecessor(NewN, *G); 434 continue; 435 } 436 437 // Enqueue nodes to the worklist that were marked during pass 1. 438 if (Pass1.count(*I)) 439 WL2.push_back(*I); 440 } 441 } 442 443 return G; 444 } 445