xref: /llvm-project/clang/lib/StaticAnalyzer/Core/ExplodedGraph.cpp (revision 95363e378aab20a8093bd22cf8c1a884a8ead039)
1 //===- ExplodedGraph.cpp - Local, Path-Sens. "Exploded Graph" -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines the template classes ExplodedNode and ExplodedGraph,
11 //  which represent a path-sensitive, intra-procedural "exploded graph."
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
16 #include "clang/AST/Expr.h"
17 #include "clang/AST/ExprObjC.h"
18 #include "clang/AST/ParentMap.h"
19 #include "clang/AST/Stmt.h"
20 #include "clang/Analysis/ProgramPoint.h"
21 #include "clang/Analysis/Support/BumpVector.h"
22 #include "clang/Basic/LLVM.h"
23 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
24 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
25 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
26 #include "llvm/ADT/DenseSet.h"
27 #include "llvm/ADT/FoldingSet.h"
28 #include "llvm/ADT/Optional.h"
29 #include "llvm/ADT/PointerUnion.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/Support/Casting.h"
32 #include <cassert>
33 #include <memory>
34 
35 using namespace clang;
36 using namespace ento;
37 
38 //===----------------------------------------------------------------------===//
39 // Cleanup.
40 //===----------------------------------------------------------------------===//
41 
42 ExplodedGraph::ExplodedGraph() = default;
43 
44 ExplodedGraph::~ExplodedGraph() = default;
45 
46 //===----------------------------------------------------------------------===//
47 // Node reclamation.
48 //===----------------------------------------------------------------------===//
49 
50 bool ExplodedGraph::isInterestingLValueExpr(const Expr *Ex) {
51   if (!Ex->isLValue())
52     return false;
53   return isa<DeclRefExpr>(Ex) ||
54          isa<MemberExpr>(Ex) ||
55          isa<ObjCIvarRefExpr>(Ex);
56 }
57 
58 bool ExplodedGraph::shouldCollect(const ExplodedNode *node) {
59   // First, we only consider nodes for reclamation of the following
60   // conditions apply:
61   //
62   // (1) 1 predecessor (that has one successor)
63   // (2) 1 successor (that has one predecessor)
64   //
65   // If a node has no successor it is on the "frontier", while a node
66   // with no predecessor is a root.
67   //
68   // After these prerequisites, we discard all "filler" nodes that
69   // are used only for intermediate processing, and are not essential
70   // for analyzer history:
71   //
72   // (a) PreStmtPurgeDeadSymbols
73   //
74   // We then discard all other nodes where *all* of the following conditions
75   // apply:
76   //
77   // (3) The ProgramPoint is for a PostStmt, but not a PostStore.
78   // (4) There is no 'tag' for the ProgramPoint.
79   // (5) The 'store' is the same as the predecessor.
80   // (6) The 'GDM' is the same as the predecessor.
81   // (7) The LocationContext is the same as the predecessor.
82   // (8) Expressions that are *not* lvalue expressions.
83   // (9) The PostStmt isn't for a non-consumed Stmt or Expr.
84   // (10) The successor is neither a CallExpr StmtPoint nor a CallEnter or
85   //      PreImplicitCall (so that we would be able to find it when retrying a
86   //      call with no inlining).
87   // FIXME: It may be safe to reclaim PreCall and PostCall nodes as well.
88 
89   // Conditions 1 and 2.
90   if (node->pred_size() != 1 || node->succ_size() != 1)
91     return false;
92 
93   const ExplodedNode *pred = *(node->pred_begin());
94   if (pred->succ_size() != 1)
95     return false;
96 
97   const ExplodedNode *succ = *(node->succ_begin());
98   if (succ->pred_size() != 1)
99     return false;
100 
101   // Now reclaim any nodes that are (by definition) not essential to
102   // analysis history and are not consulted by any client code.
103   ProgramPoint progPoint = node->getLocation();
104   if (progPoint.getAs<PreStmtPurgeDeadSymbols>())
105     return !progPoint.getTag();
106 
107   // Condition 3.
108   if (!progPoint.getAs<PostStmt>() || progPoint.getAs<PostStore>())
109     return false;
110 
111   // Condition 4.
112   if (progPoint.getTag())
113     return false;
114 
115   // Conditions 5, 6, and 7.
116   ProgramStateRef state = node->getState();
117   ProgramStateRef pred_state = pred->getState();
118   if (state->store != pred_state->store || state->GDM != pred_state->GDM ||
119       progPoint.getLocationContext() != pred->getLocationContext())
120     return false;
121 
122   // All further checks require expressions. As per #3, we know that we have
123   // a PostStmt.
124   const Expr *Ex = dyn_cast<Expr>(progPoint.castAs<PostStmt>().getStmt());
125   if (!Ex)
126     return false;
127 
128   // Condition 8.
129   // Do not collect nodes for "interesting" lvalue expressions since they are
130   // used extensively for generating path diagnostics.
131   if (isInterestingLValueExpr(Ex))
132     return false;
133 
134   // Condition 9.
135   // Do not collect nodes for non-consumed Stmt or Expr to ensure precise
136   // diagnostic generation; specifically, so that we could anchor arrows
137   // pointing to the beginning of statements (as written in code).
138   ParentMap &PM = progPoint.getLocationContext()->getParentMap();
139   if (!PM.isConsumedExpr(Ex))
140     return false;
141 
142   // Condition 10.
143   const ProgramPoint SuccLoc = succ->getLocation();
144   if (Optional<StmtPoint> SP = SuccLoc.getAs<StmtPoint>())
145     if (CallEvent::isCallStmt(SP->getStmt()))
146       return false;
147 
148   // Condition 10, continuation.
149   if (SuccLoc.getAs<CallEnter>() || SuccLoc.getAs<PreImplicitCall>())
150     return false;
151 
152   return true;
153 }
154 
155 void ExplodedGraph::collectNode(ExplodedNode *node) {
156   // Removing a node means:
157   // (a) changing the predecessors successor to the successor of this node
158   // (b) changing the successors predecessor to the predecessor of this node
159   // (c) Putting 'node' onto freeNodes.
160   assert(node->pred_size() == 1 || node->succ_size() == 1);
161   ExplodedNode *pred = *(node->pred_begin());
162   ExplodedNode *succ = *(node->succ_begin());
163   pred->replaceSuccessor(succ);
164   succ->replacePredecessor(pred);
165   FreeNodes.push_back(node);
166   Nodes.RemoveNode(node);
167   --NumNodes;
168   node->~ExplodedNode();
169 }
170 
171 void ExplodedGraph::reclaimRecentlyAllocatedNodes() {
172   if (ChangedNodes.empty())
173     return;
174 
175   // Only periodically reclaim nodes so that we can build up a set of
176   // nodes that meet the reclamation criteria.  Freshly created nodes
177   // by definition have no successor, and thus cannot be reclaimed (see below).
178   assert(ReclaimCounter > 0);
179   if (--ReclaimCounter != 0)
180     return;
181   ReclaimCounter = ReclaimNodeInterval;
182 
183   for (const auto node : ChangedNodes)
184     if (shouldCollect(node))
185       collectNode(node);
186   ChangedNodes.clear();
187 }
188 
189 //===----------------------------------------------------------------------===//
190 // ExplodedNode.
191 //===----------------------------------------------------------------------===//
192 
193 // An NodeGroup's storage type is actually very much like a TinyPtrVector:
194 // it can be either a pointer to a single ExplodedNode, or a pointer to a
195 // BumpVector allocated with the ExplodedGraph's allocator. This allows the
196 // common case of single-node NodeGroups to be implemented with no extra memory.
197 //
198 // Consequently, each of the NodeGroup methods have up to four cases to handle:
199 // 1. The flag is set and this group does not actually contain any nodes.
200 // 2. The group is empty, in which case the storage value is null.
201 // 3. The group contains a single node.
202 // 4. The group contains more than one node.
203 using ExplodedNodeVector = BumpVector<ExplodedNode *>;
204 using GroupStorage = llvm::PointerUnion<ExplodedNode *, ExplodedNodeVector *>;
205 
206 void ExplodedNode::addPredecessor(ExplodedNode *V, ExplodedGraph &G) {
207   assert(!V->isSink());
208   Preds.addNode(V, G);
209   V->Succs.addNode(this, G);
210 }
211 
212 void ExplodedNode::NodeGroup::replaceNode(ExplodedNode *node) {
213   assert(!getFlag());
214 
215   GroupStorage &Storage = reinterpret_cast<GroupStorage&>(P);
216   assert(Storage.is<ExplodedNode *>());
217   Storage = node;
218   assert(Storage.is<ExplodedNode *>());
219 }
220 
221 void ExplodedNode::NodeGroup::addNode(ExplodedNode *N, ExplodedGraph &G) {
222   assert(!getFlag());
223 
224   GroupStorage &Storage = reinterpret_cast<GroupStorage&>(P);
225   if (Storage.isNull()) {
226     Storage = N;
227     assert(Storage.is<ExplodedNode *>());
228     return;
229   }
230 
231   ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>();
232 
233   if (!V) {
234     // Switch from single-node to multi-node representation.
235     ExplodedNode *Old = Storage.get<ExplodedNode *>();
236 
237     BumpVectorContext &Ctx = G.getNodeAllocator();
238     V = G.getAllocator().Allocate<ExplodedNodeVector>();
239     new (V) ExplodedNodeVector(Ctx, 4);
240     V->push_back(Old, Ctx);
241 
242     Storage = V;
243     assert(!getFlag());
244     assert(Storage.is<ExplodedNodeVector *>());
245   }
246 
247   V->push_back(N, G.getNodeAllocator());
248 }
249 
250 unsigned ExplodedNode::NodeGroup::size() const {
251   if (getFlag())
252     return 0;
253 
254   const GroupStorage &Storage = reinterpret_cast<const GroupStorage &>(P);
255   if (Storage.isNull())
256     return 0;
257   if (ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>())
258     return V->size();
259   return 1;
260 }
261 
262 ExplodedNode * const *ExplodedNode::NodeGroup::begin() const {
263   if (getFlag())
264     return nullptr;
265 
266   const GroupStorage &Storage = reinterpret_cast<const GroupStorage &>(P);
267   if (Storage.isNull())
268     return nullptr;
269   if (ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>())
270     return V->begin();
271   return Storage.getAddrOfPtr1();
272 }
273 
274 ExplodedNode * const *ExplodedNode::NodeGroup::end() const {
275   if (getFlag())
276     return nullptr;
277 
278   const GroupStorage &Storage = reinterpret_cast<const GroupStorage &>(P);
279   if (Storage.isNull())
280     return nullptr;
281   if (ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>())
282     return V->end();
283   return Storage.getAddrOfPtr1() + 1;
284 }
285 
286 ExplodedNode *ExplodedGraph::getNode(const ProgramPoint &L,
287                                      ProgramStateRef State,
288                                      bool IsSink,
289                                      bool* IsNew) {
290   // Profile 'State' to determine if we already have an existing node.
291   llvm::FoldingSetNodeID profile;
292   void *InsertPos = nullptr;
293 
294   NodeTy::Profile(profile, L, State, IsSink);
295   NodeTy* V = Nodes.FindNodeOrInsertPos(profile, InsertPos);
296 
297   if (!V) {
298     if (!FreeNodes.empty()) {
299       V = FreeNodes.back();
300       FreeNodes.pop_back();
301     }
302     else {
303       // Allocate a new node.
304       V = (NodeTy*) getAllocator().Allocate<NodeTy>();
305     }
306 
307     new (V) NodeTy(L, State, IsSink);
308 
309     if (ReclaimNodeInterval)
310       ChangedNodes.push_back(V);
311 
312     // Insert the node into the node set and return it.
313     Nodes.InsertNode(V, InsertPos);
314     ++NumNodes;
315 
316     if (IsNew) *IsNew = true;
317   }
318   else
319     if (IsNew) *IsNew = false;
320 
321   return V;
322 }
323 
324 ExplodedNode *ExplodedGraph::createUncachedNode(const ProgramPoint &L,
325                                                 ProgramStateRef State,
326                                                 bool IsSink) {
327   NodeTy *V = (NodeTy *) getAllocator().Allocate<NodeTy>();
328   new (V) NodeTy(L, State, IsSink);
329   return V;
330 }
331 
332 std::unique_ptr<ExplodedGraph>
333 ExplodedGraph::trim(ArrayRef<const NodeTy *> Sinks,
334                     InterExplodedGraphMap *ForwardMap,
335                     InterExplodedGraphMap *InverseMap) const {
336   if (Nodes.empty())
337     return nullptr;
338 
339   using Pass1Ty = llvm::DenseSet<const ExplodedNode *>;
340   Pass1Ty Pass1;
341 
342   using Pass2Ty = InterExplodedGraphMap;
343   InterExplodedGraphMap Pass2Scratch;
344   Pass2Ty &Pass2 = ForwardMap ? *ForwardMap : Pass2Scratch;
345 
346   SmallVector<const ExplodedNode*, 10> WL1, WL2;
347 
348   // ===- Pass 1 (reverse DFS) -===
349   for (const auto Sink : Sinks)
350     if (Sink)
351       WL1.push_back(Sink);
352 
353   // Process the first worklist until it is empty.
354   while (!WL1.empty()) {
355     const ExplodedNode *N = WL1.pop_back_val();
356 
357     // Have we already visited this node?  If so, continue to the next one.
358     if (!Pass1.insert(N).second)
359       continue;
360 
361     // If this is a root enqueue it to the second worklist.
362     if (N->Preds.empty()) {
363       WL2.push_back(N);
364       continue;
365     }
366 
367     // Visit our predecessors and enqueue them.
368     WL1.append(N->Preds.begin(), N->Preds.end());
369   }
370 
371   // We didn't hit a root? Return with a null pointer for the new graph.
372   if (WL2.empty())
373     return nullptr;
374 
375   // Create an empty graph.
376   std::unique_ptr<ExplodedGraph> G = MakeEmptyGraph();
377 
378   // ===- Pass 2 (forward DFS to construct the new graph) -===
379   while (!WL2.empty()) {
380     const ExplodedNode *N = WL2.pop_back_val();
381 
382     // Skip this node if we have already processed it.
383     if (Pass2.find(N) != Pass2.end())
384       continue;
385 
386     // Create the corresponding node in the new graph and record the mapping
387     // from the old node to the new node.
388     ExplodedNode *NewN = G->createUncachedNode(N->getLocation(), N->State, N->isSink());
389     Pass2[N] = NewN;
390 
391     // Also record the reverse mapping from the new node to the old node.
392     if (InverseMap) (*InverseMap)[NewN] = N;
393 
394     // If this node is a root, designate it as such in the graph.
395     if (N->Preds.empty())
396       G->addRoot(NewN);
397 
398     // In the case that some of the intended predecessors of NewN have already
399     // been created, we should hook them up as predecessors.
400 
401     // Walk through the predecessors of 'N' and hook up their corresponding
402     // nodes in the new graph (if any) to the freshly created node.
403     for (ExplodedNode::pred_iterator I = N->Preds.begin(), E = N->Preds.end();
404          I != E; ++I) {
405       Pass2Ty::iterator PI = Pass2.find(*I);
406       if (PI == Pass2.end())
407         continue;
408 
409       NewN->addPredecessor(const_cast<ExplodedNode *>(PI->second), *G);
410     }
411 
412     // In the case that some of the intended successors of NewN have already
413     // been created, we should hook them up as successors.  Otherwise, enqueue
414     // the new nodes from the original graph that should have nodes created
415     // in the new graph.
416     for (ExplodedNode::succ_iterator I = N->Succs.begin(), E = N->Succs.end();
417          I != E; ++I) {
418       Pass2Ty::iterator PI = Pass2.find(*I);
419       if (PI != Pass2.end()) {
420         const_cast<ExplodedNode *>(PI->second)->addPredecessor(NewN, *G);
421         continue;
422       }
423 
424       // Enqueue nodes to the worklist that were marked during pass 1.
425       if (Pass1.count(*I))
426         WL2.push_back(*I);
427     }
428   }
429 
430   return G;
431 }
432