1 //=== StdLibraryFunctionsChecker.cpp - Model standard functions -*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This checker improves modeling of a few simple library functions. 10 // 11 // This checker provides a specification format - `Summary' - and 12 // contains descriptions of some library functions in this format. Each 13 // specification contains a list of branches for splitting the program state 14 // upon call, and range constraints on argument and return-value symbols that 15 // are satisfied on each branch. This spec can be expanded to include more 16 // items, like external effects of the function. 17 // 18 // The main difference between this approach and the body farms technique is 19 // in more explicit control over how many branches are produced. For example, 20 // consider standard C function `ispunct(int x)', which returns a non-zero value 21 // iff `x' is a punctuation character, that is, when `x' is in range 22 // ['!', '/'] [':', '@'] U ['[', '\`'] U ['{', '~']. 23 // `Summary' provides only two branches for this function. However, 24 // any attempt to describe this range with if-statements in the body farm 25 // would result in many more branches. Because each branch needs to be analyzed 26 // independently, this significantly reduces performance. Additionally, 27 // once we consider a branch on which `x' is in range, say, ['!', '/'], 28 // we assume that such branch is an important separate path through the program, 29 // which may lead to false positives because considering this particular path 30 // was not consciously intended, and therefore it might have been unreachable. 31 // 32 // This checker uses eval::Call for modeling pure functions (functions without 33 // side effets), for which their `Summary' is a precise model. This avoids 34 // unnecessary invalidation passes. Conflicts with other checkers are unlikely 35 // because if the function has no other effects, other checkers would probably 36 // never want to improve upon the modeling done by this checker. 37 // 38 // Non-pure functions, for which only partial improvement over the default 39 // behavior is expected, are modeled via check::PostCall, non-intrusively. 40 // 41 // The following standard C functions are currently supported: 42 // 43 // fgetc getline isdigit isupper 44 // fread isalnum isgraph isxdigit 45 // fwrite isalpha islower read 46 // getc isascii isprint write 47 // getchar isblank ispunct 48 // getdelim iscntrl isspace 49 // 50 //===----------------------------------------------------------------------===// 51 52 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" 53 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 54 #include "clang/StaticAnalyzer/Core/Checker.h" 55 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 56 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 57 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 58 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h" 59 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicSize.h" 60 61 using namespace clang; 62 using namespace clang::ento; 63 64 namespace { 65 class StdLibraryFunctionsChecker 66 : public Checker<check::PreCall, check::PostCall, eval::Call> { 67 68 class Summary; 69 70 /// Specify how much the analyzer engine should entrust modeling this function 71 /// to us. If he doesn't, he performs additional invalidations. 72 enum InvalidationKind { NoEvalCall, EvalCallAsPure }; 73 74 // The universal integral type to use in value range descriptions. 75 // Unsigned to make sure overflows are well-defined. 76 typedef uint64_t RangeInt; 77 78 /// Normally, describes a single range constraint, eg. {{0, 1}, {3, 4}} is 79 /// a non-negative integer, which less than 5 and not equal to 2. For 80 /// `ComparesToArgument', holds information about how exactly to compare to 81 /// the argument. 82 typedef std::vector<std::pair<RangeInt, RangeInt>> IntRangeVector; 83 84 /// A reference to an argument or return value by its number. 85 /// ArgNo in CallExpr and CallEvent is defined as Unsigned, but 86 /// obviously uint32_t should be enough for all practical purposes. 87 typedef uint32_t ArgNo; 88 static const ArgNo Ret; 89 90 class ValueConstraint; 91 92 // Pointer to the ValueConstraint. We need a copyable, polymorphic and 93 // default initialize able type (vector needs that). A raw pointer was good, 94 // however, we cannot default initialize that. unique_ptr makes the Summary 95 // class non-copyable, therefore not an option. Releasing the copyability 96 // requirement would render the initialization of the Summary map infeasible. 97 using ValueConstraintPtr = std::shared_ptr<ValueConstraint>; 98 99 /// Polymorphic base class that represents a constraint on a given argument 100 /// (or return value) of a function. Derived classes implement different kind 101 /// of constraints, e.g range constraints or correlation between two 102 /// arguments. 103 class ValueConstraint { 104 public: 105 ValueConstraint(ArgNo ArgN) : ArgN(ArgN) {} 106 virtual ~ValueConstraint() {} 107 /// Apply the effects of the constraint on the given program state. If null 108 /// is returned then the constraint is not feasible. 109 virtual ProgramStateRef apply(ProgramStateRef State, const CallEvent &Call, 110 const Summary &Summary, 111 CheckerContext &C) const = 0; 112 virtual ValueConstraintPtr negate() const { 113 llvm_unreachable("Not implemented"); 114 }; 115 116 // Check whether the constraint is malformed or not. It is malformed if the 117 // specified argument has a mismatch with the given FunctionDecl (e.g. the 118 // arg number is out-of-range of the function's argument list). 119 bool checkValidity(const FunctionDecl *FD) const { 120 const bool ValidArg = ArgN == Ret || ArgN < FD->getNumParams(); 121 assert(ValidArg && "Arg out of range!"); 122 if (!ValidArg) 123 return false; 124 // Subclasses may further refine the validation. 125 return checkSpecificValidity(FD); 126 } 127 ArgNo getArgNo() const { return ArgN; } 128 129 protected: 130 ArgNo ArgN; // Argument to which we apply the constraint. 131 132 /// Do polymorphic sanity check on the constraint. 133 virtual bool checkSpecificValidity(const FunctionDecl *FD) const { 134 return true; 135 } 136 }; 137 138 /// Given a range, should the argument stay inside or outside this range? 139 enum RangeKind { OutOfRange, WithinRange }; 140 141 /// Encapsulates a single range on a single symbol within a branch. 142 class RangeConstraint : public ValueConstraint { 143 RangeKind Kind; // Kind of range definition. 144 IntRangeVector Args; // Polymorphic arguments. 145 146 public: 147 RangeConstraint(ArgNo ArgN, RangeKind Kind, const IntRangeVector &Args) 148 : ValueConstraint(ArgN), Kind(Kind), Args(Args) {} 149 150 const IntRangeVector &getRanges() const { 151 return Args; 152 } 153 154 private: 155 ProgramStateRef applyAsOutOfRange(ProgramStateRef State, 156 const CallEvent &Call, 157 const Summary &Summary) const; 158 ProgramStateRef applyAsWithinRange(ProgramStateRef State, 159 const CallEvent &Call, 160 const Summary &Summary) const; 161 public: 162 ProgramStateRef apply(ProgramStateRef State, const CallEvent &Call, 163 const Summary &Summary, 164 CheckerContext &C) const override { 165 switch (Kind) { 166 case OutOfRange: 167 return applyAsOutOfRange(State, Call, Summary); 168 case WithinRange: 169 return applyAsWithinRange(State, Call, Summary); 170 } 171 llvm_unreachable("Unknown range kind!"); 172 } 173 174 ValueConstraintPtr negate() const override { 175 RangeConstraint Tmp(*this); 176 switch (Kind) { 177 case OutOfRange: 178 Tmp.Kind = WithinRange; 179 break; 180 case WithinRange: 181 Tmp.Kind = OutOfRange; 182 break; 183 } 184 return std::make_shared<RangeConstraint>(Tmp); 185 } 186 187 bool checkSpecificValidity(const FunctionDecl *FD) const override { 188 const bool ValidArg = 189 getArgType(FD, ArgN)->isIntegralType(FD->getASTContext()); 190 assert(ValidArg && 191 "This constraint should be applied on an integral type"); 192 return ValidArg; 193 } 194 }; 195 196 class ComparisonConstraint : public ValueConstraint { 197 BinaryOperator::Opcode Opcode; 198 ArgNo OtherArgN; 199 200 public: 201 ComparisonConstraint(ArgNo ArgN, BinaryOperator::Opcode Opcode, 202 ArgNo OtherArgN) 203 : ValueConstraint(ArgN), Opcode(Opcode), OtherArgN(OtherArgN) {} 204 ArgNo getOtherArgNo() const { return OtherArgN; } 205 BinaryOperator::Opcode getOpcode() const { return Opcode; } 206 ProgramStateRef apply(ProgramStateRef State, const CallEvent &Call, 207 const Summary &Summary, 208 CheckerContext &C) const override; 209 }; 210 211 class NotNullConstraint : public ValueConstraint { 212 using ValueConstraint::ValueConstraint; 213 // This variable has a role when we negate the constraint. 214 bool CannotBeNull = true; 215 216 public: 217 ProgramStateRef apply(ProgramStateRef State, const CallEvent &Call, 218 const Summary &Summary, 219 CheckerContext &C) const override { 220 SVal V = getArgSVal(Call, getArgNo()); 221 if (V.isUndef()) 222 return State; 223 224 DefinedOrUnknownSVal L = V.castAs<DefinedOrUnknownSVal>(); 225 if (!L.getAs<Loc>()) 226 return State; 227 228 return State->assume(L, CannotBeNull); 229 } 230 231 ValueConstraintPtr negate() const override { 232 NotNullConstraint Tmp(*this); 233 Tmp.CannotBeNull = !this->CannotBeNull; 234 return std::make_shared<NotNullConstraint>(Tmp); 235 } 236 237 bool checkSpecificValidity(const FunctionDecl *FD) const override { 238 const bool ValidArg = getArgType(FD, ArgN)->isPointerType(); 239 assert(ValidArg && 240 "This constraint should be applied only on a pointer type"); 241 return ValidArg; 242 } 243 }; 244 245 // Represents a buffer argument with an additional size argument. 246 // E.g. the first two arguments here: 247 // ctime_s(char *buffer, rsize_t bufsz, const time_t *time); 248 // Another example: 249 // size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream); 250 // // Here, ptr is the buffer, and its minimum size is `size * nmemb`. 251 class BufferSizeConstraint : public ValueConstraint { 252 // The argument which holds the size of the buffer. 253 ArgNo SizeArgN; 254 // The argument which is a multiplier to size. This is set in case of 255 // `fread` like functions where the size is computed as a multiplication of 256 // two arguments. 257 llvm::Optional<ArgNo> SizeMultiplierArgN; 258 // The operator we use in apply. This is negated in negate(). 259 BinaryOperator::Opcode Op = BO_LE; 260 261 public: 262 BufferSizeConstraint(ArgNo Buffer, ArgNo BufSize) 263 : ValueConstraint(Buffer), SizeArgN(BufSize) {} 264 265 BufferSizeConstraint(ArgNo Buffer, ArgNo BufSize, ArgNo BufSizeMultiplier) 266 : ValueConstraint(Buffer), SizeArgN(BufSize), 267 SizeMultiplierArgN(BufSizeMultiplier) {} 268 269 ProgramStateRef apply(ProgramStateRef State, const CallEvent &Call, 270 const Summary &Summary, 271 CheckerContext &C) const override { 272 SValBuilder &SvalBuilder = C.getSValBuilder(); 273 // The buffer argument. 274 SVal BufV = getArgSVal(Call, getArgNo()); 275 // The size argument. 276 SVal SizeV = getArgSVal(Call, SizeArgN); 277 // Multiply with another argument if given. 278 if (SizeMultiplierArgN) { 279 SVal SizeMulV = getArgSVal(Call, *SizeMultiplierArgN); 280 SizeV = SvalBuilder.evalBinOp(State, BO_Mul, SizeV, SizeMulV, 281 Summary.getArgType(SizeArgN)); 282 } 283 // The dynamic size of the buffer argument, got from the analyzer engine. 284 SVal BufDynSize = getDynamicSizeWithOffset(State, BufV); 285 286 SVal Feasible = SvalBuilder.evalBinOp(State, Op, SizeV, BufDynSize, 287 SvalBuilder.getContext().BoolTy); 288 if (auto F = Feasible.getAs<DefinedOrUnknownSVal>()) 289 return State->assume(*F, true); 290 291 // We can get here only if the size argument or the dynamic size is 292 // undefined. But the dynamic size should never be undefined, only 293 // unknown. So, here, the size of the argument is undefined, i.e. we 294 // cannot apply the constraint. Actually, other checkers like 295 // CallAndMessage should catch this situation earlier, because we call a 296 // function with an uninitialized argument. 297 llvm_unreachable("Size argument or the dynamic size is Undefined"); 298 } 299 300 ValueConstraintPtr negate() const override { 301 BufferSizeConstraint Tmp(*this); 302 Tmp.Op = BinaryOperator::negateComparisonOp(Op); 303 return std::make_shared<BufferSizeConstraint>(Tmp); 304 } 305 }; 306 307 /// The complete list of constraints that defines a single branch. 308 typedef std::vector<ValueConstraintPtr> ConstraintSet; 309 310 using ArgTypes = std::vector<QualType>; 311 312 // A placeholder type, we use it whenever we do not care about the concrete 313 // type in a Signature. 314 const QualType Irrelevant{}; 315 bool static isIrrelevant(QualType T) { return T.isNull(); } 316 317 // The signature of a function we want to describe with a summary. This is a 318 // concessive signature, meaning there may be irrelevant types in the 319 // signature which we do not check against a function with concrete types. 320 struct Signature { 321 const ArgTypes ArgTys; 322 const QualType RetTy; 323 Signature(ArgTypes ArgTys, QualType RetTy) : ArgTys(ArgTys), RetTy(RetTy) { 324 assertRetTypeSuitableForSignature(RetTy); 325 for (size_t I = 0, E = ArgTys.size(); I != E; ++I) { 326 QualType ArgTy = ArgTys[I]; 327 assertArgTypeSuitableForSignature(ArgTy); 328 } 329 } 330 bool matches(const FunctionDecl *FD) const; 331 332 private: 333 static void assertArgTypeSuitableForSignature(QualType T) { 334 assert((T.isNull() || !T->isVoidType()) && 335 "We should have no void types in the spec"); 336 assert((T.isNull() || T.isCanonical()) && 337 "We should only have canonical types in the spec"); 338 } 339 static void assertRetTypeSuitableForSignature(QualType T) { 340 assert((T.isNull() || T.isCanonical()) && 341 "We should only have canonical types in the spec"); 342 } 343 }; 344 345 static QualType getArgType(const FunctionDecl *FD, ArgNo ArgN) { 346 assert(FD && "Function must be set"); 347 QualType T = (ArgN == Ret) 348 ? FD->getReturnType().getCanonicalType() 349 : FD->getParamDecl(ArgN)->getType().getCanonicalType(); 350 return T; 351 } 352 353 using Cases = std::vector<ConstraintSet>; 354 355 /// A summary includes information about 356 /// * function prototype (signature) 357 /// * approach to invalidation, 358 /// * a list of branches - a list of list of ranges - 359 /// A branch represents a path in the exploded graph of a function (which 360 /// is a tree). So, a branch is a series of assumptions. In other words, 361 /// branches represent split states and additional assumptions on top of 362 /// the splitting assumption. 363 /// For example, consider the branches in `isalpha(x)` 364 /// Branch 1) 365 /// x is in range ['A', 'Z'] or in ['a', 'z'] 366 /// then the return value is not 0. (I.e. out-of-range [0, 0]) 367 /// Branch 2) 368 /// x is out-of-range ['A', 'Z'] and out-of-range ['a', 'z'] 369 /// then the return value is 0. 370 /// * a list of argument constraints, that must be true on every branch. 371 /// If these constraints are not satisfied that means a fatal error 372 /// usually resulting in undefined behaviour. 373 /// 374 /// Application of a summary: 375 /// The signature and argument constraints together contain information 376 /// about which functions are handled by the summary. The signature can use 377 /// "wildcards", i.e. Irrelevant types. Irrelevant type of a parameter in 378 /// a signature means that type is not compared to the type of the parameter 379 /// in the found FunctionDecl. Argument constraints may specify additional 380 /// rules for the given parameter's type, those rules are checked once the 381 /// signature is matched. 382 class Summary { 383 const Signature Sign; 384 const InvalidationKind InvalidationKd; 385 Cases CaseConstraints; 386 ConstraintSet ArgConstraints; 387 388 // The function to which the summary applies. This is set after lookup and 389 // match to the signature. 390 const FunctionDecl *FD = nullptr; 391 392 public: 393 Summary(ArgTypes ArgTys, QualType RetTy, InvalidationKind InvalidationKd) 394 : Sign(ArgTys, RetTy), InvalidationKd(InvalidationKd) {} 395 396 Summary &Case(ConstraintSet&& CS) { 397 CaseConstraints.push_back(std::move(CS)); 398 return *this; 399 } 400 Summary &ArgConstraint(ValueConstraintPtr VC) { 401 ArgConstraints.push_back(VC); 402 return *this; 403 } 404 405 InvalidationKind getInvalidationKd() const { return InvalidationKd; } 406 const Cases &getCaseConstraints() const { return CaseConstraints; } 407 const ConstraintSet &getArgConstraints() const { return ArgConstraints; } 408 409 QualType getArgType(ArgNo ArgN) const { 410 return StdLibraryFunctionsChecker::getArgType(FD, ArgN); 411 } 412 413 // Returns true if the summary should be applied to the given function. 414 // And if yes then store the function declaration. 415 bool matchesAndSet(const FunctionDecl *FD) { 416 bool Result = Sign.matches(FD) && validateByConstraints(FD); 417 if (Result) { 418 assert(!this->FD && "FD must not be set more than once"); 419 this->FD = FD; 420 } 421 return Result; 422 } 423 424 private: 425 // Once we know the exact type of the function then do sanity check on all 426 // the given constraints. 427 bool validateByConstraints(const FunctionDecl *FD) const { 428 for (const ConstraintSet &Case : CaseConstraints) 429 for (const ValueConstraintPtr &Constraint : Case) 430 if (!Constraint->checkValidity(FD)) 431 return false; 432 for (const ValueConstraintPtr &Constraint : ArgConstraints) 433 if (!Constraint->checkValidity(FD)) 434 return false; 435 return true; 436 } 437 }; 438 439 // The map of all functions supported by the checker. It is initialized 440 // lazily, and it doesn't change after initialization. 441 using FunctionSummaryMapType = llvm::DenseMap<const FunctionDecl *, Summary>; 442 mutable FunctionSummaryMapType FunctionSummaryMap; 443 444 mutable std::unique_ptr<BugType> BT_InvalidArg; 445 446 static SVal getArgSVal(const CallEvent &Call, ArgNo ArgN) { 447 return ArgN == Ret ? Call.getReturnValue() : Call.getArgSVal(ArgN); 448 } 449 450 public: 451 void checkPreCall(const CallEvent &Call, CheckerContext &C) const; 452 void checkPostCall(const CallEvent &Call, CheckerContext &C) const; 453 bool evalCall(const CallEvent &Call, CheckerContext &C) const; 454 455 enum CheckKind { 456 CK_StdCLibraryFunctionArgsChecker, 457 CK_StdCLibraryFunctionsTesterChecker, 458 CK_NumCheckKinds 459 }; 460 DefaultBool ChecksEnabled[CK_NumCheckKinds]; 461 CheckerNameRef CheckNames[CK_NumCheckKinds]; 462 463 bool DisplayLoadedSummaries = false; 464 bool ModelPOSIX = false; 465 466 private: 467 Optional<Summary> findFunctionSummary(const FunctionDecl *FD, 468 CheckerContext &C) const; 469 Optional<Summary> findFunctionSummary(const CallEvent &Call, 470 CheckerContext &C) const; 471 472 void initFunctionSummaries(CheckerContext &C) const; 473 474 void reportBug(const CallEvent &Call, ExplodedNode *N, 475 CheckerContext &C) const { 476 if (!ChecksEnabled[CK_StdCLibraryFunctionArgsChecker]) 477 return; 478 // TODO Add detailed diagnostic. 479 StringRef Msg = "Function argument constraint is not satisfied"; 480 if (!BT_InvalidArg) 481 BT_InvalidArg = std::make_unique<BugType>( 482 CheckNames[CK_StdCLibraryFunctionArgsChecker], 483 "Unsatisfied argument constraints", categories::LogicError); 484 auto R = std::make_unique<PathSensitiveBugReport>(*BT_InvalidArg, Msg, N); 485 bugreporter::trackExpressionValue(N, Call.getArgExpr(0), *R); 486 C.emitReport(std::move(R)); 487 } 488 }; 489 490 const StdLibraryFunctionsChecker::ArgNo StdLibraryFunctionsChecker::Ret = 491 std::numeric_limits<ArgNo>::max(); 492 493 } // end of anonymous namespace 494 495 ProgramStateRef StdLibraryFunctionsChecker::RangeConstraint::applyAsOutOfRange( 496 ProgramStateRef State, const CallEvent &Call, 497 const Summary &Summary) const { 498 499 ProgramStateManager &Mgr = State->getStateManager(); 500 SValBuilder &SVB = Mgr.getSValBuilder(); 501 BasicValueFactory &BVF = SVB.getBasicValueFactory(); 502 ConstraintManager &CM = Mgr.getConstraintManager(); 503 QualType T = Summary.getArgType(getArgNo()); 504 SVal V = getArgSVal(Call, getArgNo()); 505 506 if (auto N = V.getAs<NonLoc>()) { 507 const IntRangeVector &R = getRanges(); 508 size_t E = R.size(); 509 for (size_t I = 0; I != E; ++I) { 510 const llvm::APSInt &Min = BVF.getValue(R[I].first, T); 511 const llvm::APSInt &Max = BVF.getValue(R[I].second, T); 512 assert(Min <= Max); 513 State = CM.assumeInclusiveRange(State, *N, Min, Max, false); 514 if (!State) 515 break; 516 } 517 } 518 519 return State; 520 } 521 522 ProgramStateRef StdLibraryFunctionsChecker::RangeConstraint::applyAsWithinRange( 523 ProgramStateRef State, const CallEvent &Call, 524 const Summary &Summary) const { 525 526 ProgramStateManager &Mgr = State->getStateManager(); 527 SValBuilder &SVB = Mgr.getSValBuilder(); 528 BasicValueFactory &BVF = SVB.getBasicValueFactory(); 529 ConstraintManager &CM = Mgr.getConstraintManager(); 530 QualType T = Summary.getArgType(getArgNo()); 531 SVal V = getArgSVal(Call, getArgNo()); 532 533 // "WithinRange R" is treated as "outside [T_MIN, T_MAX] \ R". 534 // We cut off [T_MIN, min(R) - 1] and [max(R) + 1, T_MAX] if necessary, 535 // and then cut away all holes in R one by one. 536 // 537 // E.g. consider a range list R as [A, B] and [C, D] 538 // -------+--------+------------------+------------+-----------> 539 // A B C D 540 // Then we assume that the value is not in [-inf, A - 1], 541 // then not in [D + 1, +inf], then not in [B + 1, C - 1] 542 if (auto N = V.getAs<NonLoc>()) { 543 const IntRangeVector &R = getRanges(); 544 size_t E = R.size(); 545 546 const llvm::APSInt &MinusInf = BVF.getMinValue(T); 547 const llvm::APSInt &PlusInf = BVF.getMaxValue(T); 548 549 const llvm::APSInt &Left = BVF.getValue(R[0].first - 1ULL, T); 550 if (Left != PlusInf) { 551 assert(MinusInf <= Left); 552 State = CM.assumeInclusiveRange(State, *N, MinusInf, Left, false); 553 if (!State) 554 return nullptr; 555 } 556 557 const llvm::APSInt &Right = BVF.getValue(R[E - 1].second + 1ULL, T); 558 if (Right != MinusInf) { 559 assert(Right <= PlusInf); 560 State = CM.assumeInclusiveRange(State, *N, Right, PlusInf, false); 561 if (!State) 562 return nullptr; 563 } 564 565 for (size_t I = 1; I != E; ++I) { 566 const llvm::APSInt &Min = BVF.getValue(R[I - 1].second + 1ULL, T); 567 const llvm::APSInt &Max = BVF.getValue(R[I].first - 1ULL, T); 568 if (Min <= Max) { 569 State = CM.assumeInclusiveRange(State, *N, Min, Max, false); 570 if (!State) 571 return nullptr; 572 } 573 } 574 } 575 576 return State; 577 } 578 579 ProgramStateRef StdLibraryFunctionsChecker::ComparisonConstraint::apply( 580 ProgramStateRef State, const CallEvent &Call, const Summary &Summary, 581 CheckerContext &C) const { 582 583 ProgramStateManager &Mgr = State->getStateManager(); 584 SValBuilder &SVB = Mgr.getSValBuilder(); 585 QualType CondT = SVB.getConditionType(); 586 QualType T = Summary.getArgType(getArgNo()); 587 SVal V = getArgSVal(Call, getArgNo()); 588 589 BinaryOperator::Opcode Op = getOpcode(); 590 ArgNo OtherArg = getOtherArgNo(); 591 SVal OtherV = getArgSVal(Call, OtherArg); 592 QualType OtherT = Summary.getArgType(OtherArg); 593 // Note: we avoid integral promotion for comparison. 594 OtherV = SVB.evalCast(OtherV, T, OtherT); 595 if (auto CompV = SVB.evalBinOp(State, Op, V, OtherV, CondT) 596 .getAs<DefinedOrUnknownSVal>()) 597 State = State->assume(*CompV, true); 598 return State; 599 } 600 601 void StdLibraryFunctionsChecker::checkPreCall(const CallEvent &Call, 602 CheckerContext &C) const { 603 Optional<Summary> FoundSummary = findFunctionSummary(Call, C); 604 if (!FoundSummary) 605 return; 606 607 const Summary &Summary = *FoundSummary; 608 ProgramStateRef State = C.getState(); 609 610 ProgramStateRef NewState = State; 611 for (const ValueConstraintPtr &Constraint : Summary.getArgConstraints()) { 612 ProgramStateRef SuccessSt = Constraint->apply(NewState, Call, Summary, C); 613 ProgramStateRef FailureSt = 614 Constraint->negate()->apply(NewState, Call, Summary, C); 615 // The argument constraint is not satisfied. 616 if (FailureSt && !SuccessSt) { 617 if (ExplodedNode *N = C.generateErrorNode(NewState)) 618 reportBug(Call, N, C); 619 break; 620 } else { 621 // We will apply the constraint even if we cannot reason about the 622 // argument. This means both SuccessSt and FailureSt can be true. If we 623 // weren't applying the constraint that would mean that symbolic 624 // execution continues on a code whose behaviour is undefined. 625 assert(SuccessSt); 626 NewState = SuccessSt; 627 } 628 } 629 if (NewState && NewState != State) 630 C.addTransition(NewState); 631 } 632 633 void StdLibraryFunctionsChecker::checkPostCall(const CallEvent &Call, 634 CheckerContext &C) const { 635 Optional<Summary> FoundSummary = findFunctionSummary(Call, C); 636 if (!FoundSummary) 637 return; 638 639 // Now apply the constraints. 640 const Summary &Summary = *FoundSummary; 641 ProgramStateRef State = C.getState(); 642 643 // Apply case/branch specifications. 644 for (const ConstraintSet &Case : Summary.getCaseConstraints()) { 645 ProgramStateRef NewState = State; 646 for (const ValueConstraintPtr &Constraint : Case) { 647 NewState = Constraint->apply(NewState, Call, Summary, C); 648 if (!NewState) 649 break; 650 } 651 652 if (NewState && NewState != State) 653 C.addTransition(NewState); 654 } 655 } 656 657 bool StdLibraryFunctionsChecker::evalCall(const CallEvent &Call, 658 CheckerContext &C) const { 659 Optional<Summary> FoundSummary = findFunctionSummary(Call, C); 660 if (!FoundSummary) 661 return false; 662 663 const Summary &Summary = *FoundSummary; 664 switch (Summary.getInvalidationKd()) { 665 case EvalCallAsPure: { 666 ProgramStateRef State = C.getState(); 667 const LocationContext *LC = C.getLocationContext(); 668 const auto *CE = cast_or_null<CallExpr>(Call.getOriginExpr()); 669 SVal V = C.getSValBuilder().conjureSymbolVal( 670 CE, LC, CE->getType().getCanonicalType(), C.blockCount()); 671 State = State->BindExpr(CE, LC, V); 672 C.addTransition(State); 673 return true; 674 } 675 case NoEvalCall: 676 // Summary tells us to avoid performing eval::Call. The function is possibly 677 // evaluated by another checker, or evaluated conservatively. 678 return false; 679 } 680 llvm_unreachable("Unknown invalidation kind!"); 681 } 682 683 bool StdLibraryFunctionsChecker::Signature::matches( 684 const FunctionDecl *FD) const { 685 // Check number of arguments: 686 if (FD->param_size() != ArgTys.size()) 687 return false; 688 689 // Check return type. 690 if (!isIrrelevant(RetTy)) 691 if (RetTy != FD->getReturnType().getCanonicalType()) 692 return false; 693 694 // Check argument types. 695 for (size_t I = 0, E = ArgTys.size(); I != E; ++I) { 696 QualType ArgTy = ArgTys[I]; 697 if (isIrrelevant(ArgTy)) 698 continue; 699 if (ArgTy != FD->getParamDecl(I)->getType().getCanonicalType()) 700 return false; 701 } 702 703 return true; 704 } 705 706 Optional<StdLibraryFunctionsChecker::Summary> 707 StdLibraryFunctionsChecker::findFunctionSummary(const FunctionDecl *FD, 708 CheckerContext &C) const { 709 if (!FD) 710 return None; 711 712 initFunctionSummaries(C); 713 714 auto FSMI = FunctionSummaryMap.find(FD->getCanonicalDecl()); 715 if (FSMI == FunctionSummaryMap.end()) 716 return None; 717 return FSMI->second; 718 } 719 720 Optional<StdLibraryFunctionsChecker::Summary> 721 StdLibraryFunctionsChecker::findFunctionSummary(const CallEvent &Call, 722 CheckerContext &C) const { 723 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Call.getDecl()); 724 if (!FD) 725 return None; 726 return findFunctionSummary(FD, C); 727 } 728 729 llvm::Optional<QualType> lookupType(StringRef Name, const ASTContext &ACtx) { 730 IdentifierInfo &II = ACtx.Idents.get(Name); 731 auto LookupRes = ACtx.getTranslationUnitDecl()->lookup(&II); 732 if (LookupRes.size() == 0) 733 return None; 734 735 // Prioritze typedef declarations. 736 // This is needed in case of C struct typedefs. E.g.: 737 // typedef struct FILE FILE; 738 // In this case, we have a RecordDecl 'struct FILE' with the name 'FILE' and 739 // we have a TypedefDecl with the name 'FILE'. 740 for (Decl *D : LookupRes) 741 if (auto *TD = dyn_cast<TypedefNameDecl>(D)) 742 return ACtx.getTypeDeclType(TD).getCanonicalType(); 743 744 // Find the first TypeDecl. 745 // There maybe cases when a function has the same name as a struct. 746 // E.g. in POSIX: `struct stat` and the function `stat()`: 747 // int stat(const char *restrict path, struct stat *restrict buf); 748 for (Decl *D : LookupRes) 749 if (auto *TD = dyn_cast<TypeDecl>(D)) 750 return ACtx.getTypeDeclType(TD).getCanonicalType(); 751 return None; 752 } 753 754 void StdLibraryFunctionsChecker::initFunctionSummaries( 755 CheckerContext &C) const { 756 if (!FunctionSummaryMap.empty()) 757 return; 758 759 SValBuilder &SVB = C.getSValBuilder(); 760 BasicValueFactory &BVF = SVB.getBasicValueFactory(); 761 const ASTContext &ACtx = BVF.getContext(); 762 763 // These types are useful for writing specifications quickly, 764 // New specifications should probably introduce more types. 765 // Some types are hard to obtain from the AST, eg. "ssize_t". 766 // In such cases it should be possible to provide multiple variants 767 // of function summary for common cases (eg. ssize_t could be int or long 768 // or long long, so three summary variants would be enough). 769 // Of course, function variants are also useful for C++ overloads. 770 const QualType VoidTy = ACtx.VoidTy; 771 const QualType IntTy = ACtx.IntTy; 772 const QualType UnsignedIntTy = ACtx.UnsignedIntTy; 773 const QualType LongTy = ACtx.LongTy; 774 const QualType LongLongTy = ACtx.LongLongTy; 775 const QualType SizeTy = ACtx.getSizeType(); 776 777 const QualType VoidPtrTy = ACtx.VoidPtrTy; // void * 778 const QualType IntPtrTy = ACtx.getPointerType(IntTy); // int * 779 const QualType UnsignedIntPtrTy = 780 ACtx.getPointerType(UnsignedIntTy); // unsigned int * 781 const QualType VoidPtrRestrictTy = 782 ACtx.getLangOpts().C99 ? ACtx.getRestrictType(VoidPtrTy) // void *restrict 783 : VoidPtrTy; 784 const QualType ConstVoidPtrTy = 785 ACtx.getPointerType(ACtx.VoidTy.withConst()); // const void * 786 const QualType CharPtrTy = ACtx.getPointerType(ACtx.CharTy); // char * 787 const QualType CharPtrRestrictTy = 788 ACtx.getLangOpts().C99 ? ACtx.getRestrictType(CharPtrTy) // char *restrict 789 : CharPtrTy; 790 const QualType ConstCharPtrTy = 791 ACtx.getPointerType(ACtx.CharTy.withConst()); // const char * 792 const QualType ConstCharPtrRestrictTy = 793 ACtx.getLangOpts().C99 794 ? ACtx.getRestrictType(ConstCharPtrTy) // const char *restrict 795 : ConstCharPtrTy; 796 const QualType Wchar_tPtrTy = ACtx.getPointerType(ACtx.WCharTy); // wchar_t * 797 const QualType ConstWchar_tPtrTy = 798 ACtx.getPointerType(ACtx.WCharTy.withConst()); // const wchar_t * 799 const QualType ConstVoidPtrRestrictTy = 800 ACtx.getLangOpts().C99 801 ? ACtx.getRestrictType(ConstVoidPtrTy) // const void *restrict 802 : ConstVoidPtrTy; 803 804 const RangeInt IntMax = BVF.getMaxValue(IntTy).getLimitedValue(); 805 const RangeInt UnsignedIntMax = 806 BVF.getMaxValue(UnsignedIntTy).getLimitedValue(); 807 const RangeInt LongMax = BVF.getMaxValue(LongTy).getLimitedValue(); 808 const RangeInt LongLongMax = BVF.getMaxValue(LongLongTy).getLimitedValue(); 809 const RangeInt SizeMax = BVF.getMaxValue(SizeTy).getLimitedValue(); 810 811 // Set UCharRangeMax to min of int or uchar maximum value. 812 // The C standard states that the arguments of functions like isalpha must 813 // be representable as an unsigned char. Their type is 'int', so the max 814 // value of the argument should be min(UCharMax, IntMax). This just happen 815 // to be true for commonly used and well tested instruction set 816 // architectures, but not for others. 817 const RangeInt UCharRangeMax = 818 std::min(BVF.getMaxValue(ACtx.UnsignedCharTy).getLimitedValue(), IntMax); 819 820 // The platform dependent value of EOF. 821 // Try our best to parse this from the Preprocessor, otherwise fallback to -1. 822 const auto EOFv = [&C]() -> RangeInt { 823 if (const llvm::Optional<int> OptInt = 824 tryExpandAsInteger("EOF", C.getPreprocessor())) 825 return *OptInt; 826 return -1; 827 }(); 828 829 // Auxiliary class to aid adding summaries to the summary map. 830 struct AddToFunctionSummaryMap { 831 const ASTContext &ACtx; 832 FunctionSummaryMapType ⤅ 833 bool DisplayLoadedSummaries; 834 AddToFunctionSummaryMap(const ASTContext &ACtx, FunctionSummaryMapType &FSM, 835 bool DisplayLoadedSummaries) 836 : ACtx(ACtx), Map(FSM), DisplayLoadedSummaries(DisplayLoadedSummaries) { 837 } 838 839 // Add a summary to a FunctionDecl found by lookup. The lookup is performed 840 // by the given Name, and in the global scope. The summary will be attached 841 // to the found FunctionDecl only if the signatures match. 842 void operator()(StringRef Name, Summary S) { 843 IdentifierInfo &II = ACtx.Idents.get(Name); 844 auto LookupRes = ACtx.getTranslationUnitDecl()->lookup(&II); 845 if (LookupRes.size() == 0) 846 return; 847 for (Decl *D : LookupRes) { 848 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 849 if (S.matchesAndSet(FD)) { 850 auto Res = Map.insert({FD->getCanonicalDecl(), S}); 851 assert(Res.second && "Function already has a summary set!"); 852 (void)Res; 853 if (DisplayLoadedSummaries) { 854 llvm::errs() << "Loaded summary for: "; 855 FD->print(llvm::errs()); 856 llvm::errs() << "\n"; 857 } 858 return; 859 } 860 } 861 } 862 } 863 // Add several summaries for the given name. 864 void operator()(StringRef Name, const std::vector<Summary> &Summaries) { 865 for (const Summary &S : Summaries) 866 operator()(Name, S); 867 } 868 } addToFunctionSummaryMap(ACtx, FunctionSummaryMap, DisplayLoadedSummaries); 869 870 // We are finally ready to define specifications for all supported functions. 871 // 872 // The signature needs to have the correct number of arguments. 873 // However, we insert `Irrelevant' when the type is insignificant. 874 // 875 // Argument ranges should always cover all variants. If return value 876 // is completely unknown, omit it from the respective range set. 877 // 878 // All types in the spec need to be canonical. 879 // 880 // Every item in the list of range sets represents a particular 881 // execution path the analyzer would need to explore once 882 // the call is modeled - a new program state is constructed 883 // for every range set, and each range line in the range set 884 // corresponds to a specific constraint within this state. 885 // 886 // Upon comparing to another argument, the other argument is casted 887 // to the current argument's type. This avoids proper promotion but 888 // seems useful. For example, read() receives size_t argument, 889 // and its return value, which is of type ssize_t, cannot be greater 890 // than this argument. If we made a promotion, and the size argument 891 // is equal to, say, 10, then we'd impose a range of [0, 10] on the 892 // return value, however the correct range is [-1, 10]. 893 // 894 // Please update the list of functions in the header after editing! 895 896 // Below are helpers functions to create the summaries. 897 auto ArgumentCondition = [](ArgNo ArgN, RangeKind Kind, 898 IntRangeVector Ranges) { 899 return std::make_shared<RangeConstraint>(ArgN, Kind, Ranges); 900 }; 901 auto BufferSize = [](auto... Args) { 902 return std::make_shared<BufferSizeConstraint>(Args...); 903 }; 904 struct { 905 auto operator()(RangeKind Kind, IntRangeVector Ranges) { 906 return std::make_shared<RangeConstraint>(Ret, Kind, Ranges); 907 } 908 auto operator()(BinaryOperator::Opcode Op, ArgNo OtherArgN) { 909 return std::make_shared<ComparisonConstraint>(Ret, Op, OtherArgN); 910 } 911 } ReturnValueCondition; 912 auto Range = [](RangeInt b, RangeInt e) { 913 return IntRangeVector{std::pair<RangeInt, RangeInt>{b, e}}; 914 }; 915 auto SingleValue = [](RangeInt v) { 916 return IntRangeVector{std::pair<RangeInt, RangeInt>{v, v}}; 917 }; 918 auto LessThanOrEq = BO_LE; 919 auto NotNull = [&](ArgNo ArgN) { 920 return std::make_shared<NotNullConstraint>(ArgN); 921 }; 922 923 Optional<QualType> FileTy = lookupType("FILE", ACtx); 924 Optional<QualType> FilePtrTy, FilePtrRestrictTy; 925 if (FileTy) { 926 // FILE * 927 FilePtrTy = ACtx.getPointerType(*FileTy); 928 // FILE *restrict 929 FilePtrRestrictTy = 930 ACtx.getLangOpts().C99 ? ACtx.getRestrictType(*FilePtrTy) : *FilePtrTy; 931 } 932 933 using RetType = QualType; 934 // Templates for summaries that are reused by many functions. 935 auto Getc = [&]() { 936 return Summary(ArgTypes{*FilePtrTy}, RetType{IntTy}, NoEvalCall) 937 .Case({ReturnValueCondition(WithinRange, 938 {{EOFv, EOFv}, {0, UCharRangeMax}})}); 939 }; 940 auto Read = [&](RetType R, RangeInt Max) { 941 return Summary(ArgTypes{Irrelevant, Irrelevant, SizeTy}, RetType{R}, 942 NoEvalCall) 943 .Case({ReturnValueCondition(LessThanOrEq, ArgNo(2)), 944 ReturnValueCondition(WithinRange, Range(-1, Max))}); 945 }; 946 auto Fread = [&]() { 947 return Summary( 948 ArgTypes{VoidPtrRestrictTy, SizeTy, SizeTy, *FilePtrRestrictTy}, 949 RetType{SizeTy}, NoEvalCall) 950 .Case({ 951 ReturnValueCondition(LessThanOrEq, ArgNo(2)), 952 }) 953 .ArgConstraint(NotNull(ArgNo(0))); 954 }; 955 auto Fwrite = [&]() { 956 return Summary(ArgTypes{ConstVoidPtrRestrictTy, SizeTy, SizeTy, 957 *FilePtrRestrictTy}, 958 RetType{SizeTy}, NoEvalCall) 959 .Case({ 960 ReturnValueCondition(LessThanOrEq, ArgNo(2)), 961 }) 962 .ArgConstraint(NotNull(ArgNo(0))); 963 }; 964 auto Getline = [&](RetType R, RangeInt Max) { 965 return Summary(ArgTypes{Irrelevant, Irrelevant, Irrelevant}, RetType{R}, 966 NoEvalCall) 967 .Case({ReturnValueCondition(WithinRange, {{-1, -1}, {1, Max}})}); 968 }; 969 970 // The isascii() family of functions. 971 // The behavior is undefined if the value of the argument is not 972 // representable as unsigned char or is not equal to EOF. See e.g. C99 973 // 7.4.1.2 The isalpha function (p: 181-182). 974 addToFunctionSummaryMap( 975 "isalnum", 976 Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure) 977 // Boils down to isupper() or islower() or isdigit(). 978 .Case({ArgumentCondition(0U, WithinRange, 979 {{'0', '9'}, {'A', 'Z'}, {'a', 'z'}}), 980 ReturnValueCondition(OutOfRange, SingleValue(0))}) 981 // The locale-specific range. 982 // No post-condition. We are completely unaware of 983 // locale-specific return values. 984 .Case({ArgumentCondition(0U, WithinRange, {{128, UCharRangeMax}})}) 985 .Case( 986 {ArgumentCondition( 987 0U, OutOfRange, 988 {{'0', '9'}, {'A', 'Z'}, {'a', 'z'}, {128, UCharRangeMax}}), 989 ReturnValueCondition(WithinRange, SingleValue(0))}) 990 .ArgConstraint(ArgumentCondition( 991 0U, WithinRange, {{EOFv, EOFv}, {0, UCharRangeMax}}))); 992 addToFunctionSummaryMap( 993 "isalpha", 994 Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure) 995 .Case({ArgumentCondition(0U, WithinRange, {{'A', 'Z'}, {'a', 'z'}}), 996 ReturnValueCondition(OutOfRange, SingleValue(0))}) 997 // The locale-specific range. 998 .Case({ArgumentCondition(0U, WithinRange, {{128, UCharRangeMax}})}) 999 .Case({ArgumentCondition( 1000 0U, OutOfRange, 1001 {{'A', 'Z'}, {'a', 'z'}, {128, UCharRangeMax}}), 1002 ReturnValueCondition(WithinRange, SingleValue(0))})); 1003 addToFunctionSummaryMap( 1004 "isascii", 1005 Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure) 1006 .Case({ArgumentCondition(0U, WithinRange, Range(0, 127)), 1007 ReturnValueCondition(OutOfRange, SingleValue(0))}) 1008 .Case({ArgumentCondition(0U, OutOfRange, Range(0, 127)), 1009 ReturnValueCondition(WithinRange, SingleValue(0))})); 1010 addToFunctionSummaryMap( 1011 "isblank", 1012 Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure) 1013 .Case({ArgumentCondition(0U, WithinRange, {{'\t', '\t'}, {' ', ' '}}), 1014 ReturnValueCondition(OutOfRange, SingleValue(0))}) 1015 .Case({ArgumentCondition(0U, OutOfRange, {{'\t', '\t'}, {' ', ' '}}), 1016 ReturnValueCondition(WithinRange, SingleValue(0))})); 1017 addToFunctionSummaryMap( 1018 "iscntrl", 1019 Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure) 1020 .Case({ArgumentCondition(0U, WithinRange, {{0, 32}, {127, 127}}), 1021 ReturnValueCondition(OutOfRange, SingleValue(0))}) 1022 .Case({ArgumentCondition(0U, OutOfRange, {{0, 32}, {127, 127}}), 1023 ReturnValueCondition(WithinRange, SingleValue(0))})); 1024 addToFunctionSummaryMap( 1025 "isdigit", 1026 Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure) 1027 .Case({ArgumentCondition(0U, WithinRange, Range('0', '9')), 1028 ReturnValueCondition(OutOfRange, SingleValue(0))}) 1029 .Case({ArgumentCondition(0U, OutOfRange, Range('0', '9')), 1030 ReturnValueCondition(WithinRange, SingleValue(0))})); 1031 addToFunctionSummaryMap( 1032 "isgraph", 1033 Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure) 1034 .Case({ArgumentCondition(0U, WithinRange, Range(33, 126)), 1035 ReturnValueCondition(OutOfRange, SingleValue(0))}) 1036 .Case({ArgumentCondition(0U, OutOfRange, Range(33, 126)), 1037 ReturnValueCondition(WithinRange, SingleValue(0))})); 1038 addToFunctionSummaryMap( 1039 "islower", 1040 Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure) 1041 // Is certainly lowercase. 1042 .Case({ArgumentCondition(0U, WithinRange, Range('a', 'z')), 1043 ReturnValueCondition(OutOfRange, SingleValue(0))}) 1044 // Is ascii but not lowercase. 1045 .Case({ArgumentCondition(0U, WithinRange, Range(0, 127)), 1046 ArgumentCondition(0U, OutOfRange, Range('a', 'z')), 1047 ReturnValueCondition(WithinRange, SingleValue(0))}) 1048 // The locale-specific range. 1049 .Case({ArgumentCondition(0U, WithinRange, {{128, UCharRangeMax}})}) 1050 // Is not an unsigned char. 1051 .Case({ArgumentCondition(0U, OutOfRange, Range(0, UCharRangeMax)), 1052 ReturnValueCondition(WithinRange, SingleValue(0))})); 1053 addToFunctionSummaryMap( 1054 "isprint", 1055 Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure) 1056 .Case({ArgumentCondition(0U, WithinRange, Range(32, 126)), 1057 ReturnValueCondition(OutOfRange, SingleValue(0))}) 1058 .Case({ArgumentCondition(0U, OutOfRange, Range(32, 126)), 1059 ReturnValueCondition(WithinRange, SingleValue(0))})); 1060 addToFunctionSummaryMap( 1061 "ispunct", 1062 Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure) 1063 .Case({ArgumentCondition( 1064 0U, WithinRange, 1065 {{'!', '/'}, {':', '@'}, {'[', '`'}, {'{', '~'}}), 1066 ReturnValueCondition(OutOfRange, SingleValue(0))}) 1067 .Case({ArgumentCondition( 1068 0U, OutOfRange, 1069 {{'!', '/'}, {':', '@'}, {'[', '`'}, {'{', '~'}}), 1070 ReturnValueCondition(WithinRange, SingleValue(0))})); 1071 addToFunctionSummaryMap( 1072 "isspace", 1073 Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure) 1074 // Space, '\f', '\n', '\r', '\t', '\v'. 1075 .Case({ArgumentCondition(0U, WithinRange, {{9, 13}, {' ', ' '}}), 1076 ReturnValueCondition(OutOfRange, SingleValue(0))}) 1077 // The locale-specific range. 1078 .Case({ArgumentCondition(0U, WithinRange, {{128, UCharRangeMax}})}) 1079 .Case({ArgumentCondition(0U, OutOfRange, 1080 {{9, 13}, {' ', ' '}, {128, UCharRangeMax}}), 1081 ReturnValueCondition(WithinRange, SingleValue(0))})); 1082 addToFunctionSummaryMap( 1083 "isupper", 1084 Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure) 1085 // Is certainly uppercase. 1086 .Case({ArgumentCondition(0U, WithinRange, Range('A', 'Z')), 1087 ReturnValueCondition(OutOfRange, SingleValue(0))}) 1088 // The locale-specific range. 1089 .Case({ArgumentCondition(0U, WithinRange, {{128, UCharRangeMax}})}) 1090 // Other. 1091 .Case({ArgumentCondition(0U, OutOfRange, 1092 {{'A', 'Z'}, {128, UCharRangeMax}}), 1093 ReturnValueCondition(WithinRange, SingleValue(0))})); 1094 addToFunctionSummaryMap( 1095 "isxdigit", 1096 Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure) 1097 .Case({ArgumentCondition(0U, WithinRange, 1098 {{'0', '9'}, {'A', 'F'}, {'a', 'f'}}), 1099 ReturnValueCondition(OutOfRange, SingleValue(0))}) 1100 .Case({ArgumentCondition(0U, OutOfRange, 1101 {{'0', '9'}, {'A', 'F'}, {'a', 'f'}}), 1102 ReturnValueCondition(WithinRange, SingleValue(0))})); 1103 1104 // The getc() family of functions that returns either a char or an EOF. 1105 if (FilePtrTy) { 1106 addToFunctionSummaryMap("getc", Getc()); 1107 addToFunctionSummaryMap("fgetc", Getc()); 1108 } 1109 addToFunctionSummaryMap( 1110 "getchar", Summary(ArgTypes{}, RetType{IntTy}, NoEvalCall) 1111 .Case({ReturnValueCondition( 1112 WithinRange, {{EOFv, EOFv}, {0, UCharRangeMax}})})); 1113 1114 // read()-like functions that never return more than buffer size. 1115 if (FilePtrRestrictTy) { 1116 addToFunctionSummaryMap("fread", Fread()); 1117 addToFunctionSummaryMap("fwrite", Fwrite()); 1118 } 1119 1120 // We are not sure how ssize_t is defined on every platform, so we 1121 // provide three variants that should cover common cases. 1122 // FIXME these are actually defined by POSIX and not by the C standard, we 1123 // should handle them together with the rest of the POSIX functions. 1124 addToFunctionSummaryMap("read", {Read(IntTy, IntMax), Read(LongTy, LongMax), 1125 Read(LongLongTy, LongLongMax)}); 1126 addToFunctionSummaryMap("write", {Read(IntTy, IntMax), Read(LongTy, LongMax), 1127 Read(LongLongTy, LongLongMax)}); 1128 1129 // getline()-like functions either fail or read at least the delimiter. 1130 // FIXME these are actually defined by POSIX and not by the C standard, we 1131 // should handle them together with the rest of the POSIX functions. 1132 addToFunctionSummaryMap("getline", 1133 {Getline(IntTy, IntMax), Getline(LongTy, LongMax), 1134 Getline(LongLongTy, LongLongMax)}); 1135 addToFunctionSummaryMap("getdelim", 1136 {Getline(IntTy, IntMax), Getline(LongTy, LongMax), 1137 Getline(LongLongTy, LongLongMax)}); 1138 1139 if (ModelPOSIX) { 1140 1141 // long a64l(const char *str64); 1142 addToFunctionSummaryMap( 1143 "a64l", Summary(ArgTypes{ConstCharPtrTy}, RetType{LongTy}, NoEvalCall) 1144 .ArgConstraint(NotNull(ArgNo(0)))); 1145 1146 // char *l64a(long value); 1147 addToFunctionSummaryMap( 1148 "l64a", Summary(ArgTypes{LongTy}, RetType{CharPtrTy}, NoEvalCall) 1149 .ArgConstraint( 1150 ArgumentCondition(0, WithinRange, Range(0, LongMax)))); 1151 1152 // int access(const char *pathname, int amode); 1153 addToFunctionSummaryMap("access", Summary(ArgTypes{ConstCharPtrTy, IntTy}, 1154 RetType{IntTy}, NoEvalCall) 1155 .ArgConstraint(NotNull(ArgNo(0)))); 1156 1157 // int faccessat(int dirfd, const char *pathname, int mode, int flags); 1158 addToFunctionSummaryMap( 1159 "faccessat", Summary(ArgTypes{IntTy, ConstCharPtrTy, IntTy, IntTy}, 1160 RetType{IntTy}, NoEvalCall) 1161 .ArgConstraint(NotNull(ArgNo(1)))); 1162 1163 // int dup(int fildes); 1164 addToFunctionSummaryMap( 1165 "dup", Summary(ArgTypes{IntTy}, RetType{IntTy}, NoEvalCall) 1166 .ArgConstraint( 1167 ArgumentCondition(0, WithinRange, Range(0, IntMax)))); 1168 1169 // int dup2(int fildes1, int filedes2); 1170 addToFunctionSummaryMap( 1171 "dup2", 1172 Summary(ArgTypes{IntTy, IntTy}, RetType{IntTy}, NoEvalCall) 1173 .ArgConstraint(ArgumentCondition(0, WithinRange, Range(0, IntMax))) 1174 .ArgConstraint( 1175 ArgumentCondition(1, WithinRange, Range(0, IntMax)))); 1176 1177 // int fdatasync(int fildes); 1178 addToFunctionSummaryMap( 1179 "fdatasync", Summary(ArgTypes{IntTy}, RetType{IntTy}, NoEvalCall) 1180 .ArgConstraint(ArgumentCondition(0, WithinRange, 1181 Range(0, IntMax)))); 1182 1183 // int fnmatch(const char *pattern, const char *string, int flags); 1184 addToFunctionSummaryMap( 1185 "fnmatch", Summary(ArgTypes{ConstCharPtrTy, ConstCharPtrTy, IntTy}, 1186 RetType{IntTy}, EvalCallAsPure) 1187 .ArgConstraint(NotNull(ArgNo(0))) 1188 .ArgConstraint(NotNull(ArgNo(1)))); 1189 1190 // int fsync(int fildes); 1191 addToFunctionSummaryMap( 1192 "fsync", Summary(ArgTypes{IntTy}, RetType{IntTy}, NoEvalCall) 1193 .ArgConstraint( 1194 ArgumentCondition(0, WithinRange, Range(0, IntMax)))); 1195 1196 Optional<QualType> Off_tTy = lookupType("off_t", ACtx); 1197 1198 if (Off_tTy) 1199 // int truncate(const char *path, off_t length); 1200 addToFunctionSummaryMap("truncate", 1201 Summary(ArgTypes{ConstCharPtrTy, *Off_tTy}, 1202 RetType{IntTy}, NoEvalCall) 1203 .ArgConstraint(NotNull(ArgNo(0)))); 1204 1205 // int symlink(const char *oldpath, const char *newpath); 1206 addToFunctionSummaryMap("symlink", 1207 Summary(ArgTypes{ConstCharPtrTy, ConstCharPtrTy}, 1208 RetType{IntTy}, NoEvalCall) 1209 .ArgConstraint(NotNull(ArgNo(0))) 1210 .ArgConstraint(NotNull(ArgNo(1)))); 1211 1212 // int symlinkat(const char *oldpath, int newdirfd, const char *newpath); 1213 addToFunctionSummaryMap( 1214 "symlinkat", 1215 Summary(ArgTypes{ConstCharPtrTy, IntTy, ConstCharPtrTy}, RetType{IntTy}, 1216 NoEvalCall) 1217 .ArgConstraint(NotNull(ArgNo(0))) 1218 .ArgConstraint(ArgumentCondition(1, WithinRange, Range(0, IntMax))) 1219 .ArgConstraint(NotNull(ArgNo(2)))); 1220 1221 if (Off_tTy) 1222 // int lockf(int fd, int cmd, off_t len); 1223 addToFunctionSummaryMap( 1224 "lockf", 1225 Summary(ArgTypes{IntTy, IntTy, *Off_tTy}, RetType{IntTy}, NoEvalCall) 1226 .ArgConstraint( 1227 ArgumentCondition(0, WithinRange, Range(0, IntMax)))); 1228 1229 Optional<QualType> Mode_tTy = lookupType("mode_t", ACtx); 1230 1231 if (Mode_tTy) 1232 // int creat(const char *pathname, mode_t mode); 1233 addToFunctionSummaryMap("creat", 1234 Summary(ArgTypes{ConstCharPtrTy, *Mode_tTy}, 1235 RetType{IntTy}, NoEvalCall) 1236 .ArgConstraint(NotNull(ArgNo(0)))); 1237 1238 // unsigned int sleep(unsigned int seconds); 1239 addToFunctionSummaryMap( 1240 "sleep", 1241 Summary(ArgTypes{UnsignedIntTy}, RetType{UnsignedIntTy}, NoEvalCall) 1242 .ArgConstraint( 1243 ArgumentCondition(0, WithinRange, Range(0, UnsignedIntMax)))); 1244 1245 Optional<QualType> DirTy = lookupType("DIR", ACtx); 1246 Optional<QualType> DirPtrTy; 1247 if (DirTy) 1248 DirPtrTy = ACtx.getPointerType(*DirTy); 1249 1250 if (DirPtrTy) 1251 // int dirfd(DIR *dirp); 1252 addToFunctionSummaryMap( 1253 "dirfd", Summary(ArgTypes{*DirPtrTy}, RetType{IntTy}, NoEvalCall) 1254 .ArgConstraint(NotNull(ArgNo(0)))); 1255 1256 // unsigned int alarm(unsigned int seconds); 1257 addToFunctionSummaryMap( 1258 "alarm", 1259 Summary(ArgTypes{UnsignedIntTy}, RetType{UnsignedIntTy}, NoEvalCall) 1260 .ArgConstraint( 1261 ArgumentCondition(0, WithinRange, Range(0, UnsignedIntMax)))); 1262 1263 if (DirPtrTy) 1264 // int closedir(DIR *dir); 1265 addToFunctionSummaryMap( 1266 "closedir", Summary(ArgTypes{*DirPtrTy}, RetType{IntTy}, NoEvalCall) 1267 .ArgConstraint(NotNull(ArgNo(0)))); 1268 1269 // char *strdup(const char *s); 1270 addToFunctionSummaryMap("strdup", Summary(ArgTypes{ConstCharPtrTy}, 1271 RetType{CharPtrTy}, NoEvalCall) 1272 .ArgConstraint(NotNull(ArgNo(0)))); 1273 1274 // char *strndup(const char *s, size_t n); 1275 addToFunctionSummaryMap( 1276 "strndup", Summary(ArgTypes{ConstCharPtrTy, SizeTy}, RetType{CharPtrTy}, 1277 NoEvalCall) 1278 .ArgConstraint(NotNull(ArgNo(0))) 1279 .ArgConstraint(ArgumentCondition(1, WithinRange, 1280 Range(0, SizeMax)))); 1281 1282 // wchar_t *wcsdup(const wchar_t *s); 1283 addToFunctionSummaryMap("wcsdup", Summary(ArgTypes{ConstWchar_tPtrTy}, 1284 RetType{Wchar_tPtrTy}, NoEvalCall) 1285 .ArgConstraint(NotNull(ArgNo(0)))); 1286 1287 // int mkstemp(char *template); 1288 addToFunctionSummaryMap( 1289 "mkstemp", Summary(ArgTypes{CharPtrTy}, RetType{IntTy}, NoEvalCall) 1290 .ArgConstraint(NotNull(ArgNo(0)))); 1291 1292 // char *mkdtemp(char *template); 1293 addToFunctionSummaryMap( 1294 "mkdtemp", Summary(ArgTypes{CharPtrTy}, RetType{CharPtrTy}, NoEvalCall) 1295 .ArgConstraint(NotNull(ArgNo(0)))); 1296 1297 // char *getcwd(char *buf, size_t size); 1298 addToFunctionSummaryMap( 1299 "getcwd", 1300 Summary(ArgTypes{CharPtrTy, SizeTy}, RetType{CharPtrTy}, NoEvalCall) 1301 .ArgConstraint( 1302 ArgumentCondition(1, WithinRange, Range(0, SizeMax)))); 1303 1304 if (Mode_tTy) { 1305 // int mkdir(const char *pathname, mode_t mode); 1306 addToFunctionSummaryMap("mkdir", 1307 Summary(ArgTypes{ConstCharPtrTy, *Mode_tTy}, 1308 RetType{IntTy}, NoEvalCall) 1309 .ArgConstraint(NotNull(ArgNo(0)))); 1310 1311 // int mkdirat(int dirfd, const char *pathname, mode_t mode); 1312 addToFunctionSummaryMap( 1313 "mkdirat", Summary(ArgTypes{IntTy, ConstCharPtrTy, *Mode_tTy}, 1314 RetType{IntTy}, NoEvalCall) 1315 .ArgConstraint(NotNull(ArgNo(1)))); 1316 } 1317 1318 Optional<QualType> Dev_tTy = lookupType("dev_t", ACtx); 1319 1320 if (Mode_tTy && Dev_tTy) { 1321 // int mknod(const char *pathname, mode_t mode, dev_t dev); 1322 addToFunctionSummaryMap( 1323 "mknod", Summary(ArgTypes{ConstCharPtrTy, *Mode_tTy, *Dev_tTy}, 1324 RetType{IntTy}, NoEvalCall) 1325 .ArgConstraint(NotNull(ArgNo(0)))); 1326 1327 // int mknodat(int dirfd, const char *pathname, mode_t mode, dev_t dev); 1328 addToFunctionSummaryMap("mknodat", Summary(ArgTypes{IntTy, ConstCharPtrTy, 1329 *Mode_tTy, *Dev_tTy}, 1330 RetType{IntTy}, NoEvalCall) 1331 .ArgConstraint(NotNull(ArgNo(1)))); 1332 } 1333 1334 if (Mode_tTy) { 1335 // int chmod(const char *path, mode_t mode); 1336 addToFunctionSummaryMap("chmod", 1337 Summary(ArgTypes{ConstCharPtrTy, *Mode_tTy}, 1338 RetType{IntTy}, NoEvalCall) 1339 .ArgConstraint(NotNull(ArgNo(0)))); 1340 1341 // int fchmodat(int dirfd, const char *pathname, mode_t mode, int flags); 1342 addToFunctionSummaryMap( 1343 "fchmodat", Summary(ArgTypes{IntTy, ConstCharPtrTy, *Mode_tTy, IntTy}, 1344 RetType{IntTy}, NoEvalCall) 1345 .ArgConstraint(ArgumentCondition(0, WithinRange, 1346 Range(0, IntMax))) 1347 .ArgConstraint(NotNull(ArgNo(1)))); 1348 1349 // int fchmod(int fildes, mode_t mode); 1350 addToFunctionSummaryMap( 1351 "fchmod", 1352 Summary(ArgTypes{IntTy, *Mode_tTy}, RetType{IntTy}, NoEvalCall) 1353 .ArgConstraint( 1354 ArgumentCondition(0, WithinRange, Range(0, IntMax)))); 1355 } 1356 1357 Optional<QualType> Uid_tTy = lookupType("uid_t", ACtx); 1358 Optional<QualType> Gid_tTy = lookupType("gid_t", ACtx); 1359 1360 if (Uid_tTy && Gid_tTy) { 1361 // int fchownat(int dirfd, const char *pathname, uid_t owner, gid_t group, 1362 // int flags); 1363 addToFunctionSummaryMap( 1364 "fchownat", 1365 Summary(ArgTypes{IntTy, ConstCharPtrTy, *Uid_tTy, *Gid_tTy, IntTy}, 1366 RetType{IntTy}, NoEvalCall) 1367 .ArgConstraint( 1368 ArgumentCondition(0, WithinRange, Range(0, IntMax))) 1369 .ArgConstraint(NotNull(ArgNo(1)))); 1370 1371 // int chown(const char *path, uid_t owner, gid_t group); 1372 addToFunctionSummaryMap( 1373 "chown", Summary(ArgTypes{ConstCharPtrTy, *Uid_tTy, *Gid_tTy}, 1374 RetType{IntTy}, NoEvalCall) 1375 .ArgConstraint(NotNull(ArgNo(0)))); 1376 1377 // int lchown(const char *path, uid_t owner, gid_t group); 1378 addToFunctionSummaryMap( 1379 "lchown", Summary(ArgTypes{ConstCharPtrTy, *Uid_tTy, *Gid_tTy}, 1380 RetType{IntTy}, NoEvalCall) 1381 .ArgConstraint(NotNull(ArgNo(0)))); 1382 1383 // int fchown(int fildes, uid_t owner, gid_t group); 1384 addToFunctionSummaryMap( 1385 "fchown", Summary(ArgTypes{IntTy, *Uid_tTy, *Gid_tTy}, RetType{IntTy}, 1386 NoEvalCall) 1387 .ArgConstraint(ArgumentCondition(0, WithinRange, 1388 Range(0, IntMax)))); 1389 } 1390 1391 // int rmdir(const char *pathname); 1392 addToFunctionSummaryMap( 1393 "rmdir", Summary(ArgTypes{ConstCharPtrTy}, RetType{IntTy}, NoEvalCall) 1394 .ArgConstraint(NotNull(ArgNo(0)))); 1395 1396 // int chdir(const char *path); 1397 addToFunctionSummaryMap( 1398 "chdir", Summary(ArgTypes{ConstCharPtrTy}, RetType{IntTy}, NoEvalCall) 1399 .ArgConstraint(NotNull(ArgNo(0)))); 1400 1401 // int link(const char *oldpath, const char *newpath); 1402 addToFunctionSummaryMap("link", 1403 Summary(ArgTypes{ConstCharPtrTy, ConstCharPtrTy}, 1404 RetType{IntTy}, NoEvalCall) 1405 .ArgConstraint(NotNull(ArgNo(0))) 1406 .ArgConstraint(NotNull(ArgNo(1)))); 1407 1408 // int linkat(int fd1, const char *path1, int fd2, const char *path2, 1409 // int flag); 1410 addToFunctionSummaryMap( 1411 "linkat", 1412 Summary(ArgTypes{IntTy, ConstCharPtrTy, IntTy, ConstCharPtrTy, IntTy}, 1413 RetType{IntTy}, NoEvalCall) 1414 .ArgConstraint(ArgumentCondition(0, WithinRange, Range(0, IntMax))) 1415 .ArgConstraint(NotNull(ArgNo(1))) 1416 .ArgConstraint(ArgumentCondition(2, WithinRange, Range(0, IntMax))) 1417 .ArgConstraint(NotNull(ArgNo(3)))); 1418 1419 // int unlink(const char *pathname); 1420 addToFunctionSummaryMap( 1421 "unlink", Summary(ArgTypes{ConstCharPtrTy}, RetType{IntTy}, NoEvalCall) 1422 .ArgConstraint(NotNull(ArgNo(0)))); 1423 1424 // int unlinkat(int fd, const char *path, int flag); 1425 addToFunctionSummaryMap( 1426 "unlinkat", 1427 Summary(ArgTypes{IntTy, ConstCharPtrTy, IntTy}, RetType{IntTy}, 1428 NoEvalCall) 1429 .ArgConstraint(ArgumentCondition(0, WithinRange, Range(0, IntMax))) 1430 .ArgConstraint(NotNull(ArgNo(1)))); 1431 1432 Optional<QualType> StructStatTy = lookupType("stat", ACtx); 1433 Optional<QualType> StructStatPtrTy, StructStatPtrRestrictTy; 1434 if (StructStatTy) { 1435 StructStatPtrTy = ACtx.getPointerType(*StructStatTy); 1436 StructStatPtrRestrictTy = ACtx.getLangOpts().C99 1437 ? ACtx.getRestrictType(*StructStatPtrTy) 1438 : *StructStatPtrTy; 1439 } 1440 1441 if (StructStatPtrTy) 1442 // int fstat(int fd, struct stat *statbuf); 1443 addToFunctionSummaryMap( 1444 "fstat", 1445 Summary(ArgTypes{IntTy, *StructStatPtrTy}, RetType{IntTy}, NoEvalCall) 1446 .ArgConstraint( 1447 ArgumentCondition(0, WithinRange, Range(0, IntMax))) 1448 .ArgConstraint(NotNull(ArgNo(1)))); 1449 1450 if (StructStatPtrRestrictTy) { 1451 // int stat(const char *restrict path, struct stat *restrict buf); 1452 addToFunctionSummaryMap( 1453 "stat", 1454 Summary(ArgTypes{ConstCharPtrRestrictTy, *StructStatPtrRestrictTy}, 1455 RetType{IntTy}, NoEvalCall) 1456 .ArgConstraint(NotNull(ArgNo(0))) 1457 .ArgConstraint(NotNull(ArgNo(1)))); 1458 1459 // int lstat(const char *restrict path, struct stat *restrict buf); 1460 addToFunctionSummaryMap( 1461 "lstat", 1462 Summary(ArgTypes{ConstCharPtrRestrictTy, *StructStatPtrRestrictTy}, 1463 RetType{IntTy}, NoEvalCall) 1464 .ArgConstraint(NotNull(ArgNo(0))) 1465 .ArgConstraint(NotNull(ArgNo(1)))); 1466 1467 // int fstatat(int fd, const char *restrict path, 1468 // struct stat *restrict buf, int flag); 1469 addToFunctionSummaryMap( 1470 "fstatat", Summary(ArgTypes{IntTy, ConstCharPtrRestrictTy, 1471 *StructStatPtrRestrictTy, IntTy}, 1472 RetType{IntTy}, NoEvalCall) 1473 .ArgConstraint(ArgumentCondition(0, WithinRange, 1474 Range(0, IntMax))) 1475 .ArgConstraint(NotNull(ArgNo(1))) 1476 .ArgConstraint(NotNull(ArgNo(2)))); 1477 } 1478 1479 if (DirPtrTy) { 1480 // DIR *opendir(const char *name); 1481 addToFunctionSummaryMap("opendir", Summary(ArgTypes{ConstCharPtrTy}, 1482 RetType{*DirPtrTy}, NoEvalCall) 1483 .ArgConstraint(NotNull(ArgNo(0)))); 1484 1485 // DIR *fdopendir(int fd); 1486 addToFunctionSummaryMap( 1487 "fdopendir", Summary(ArgTypes{IntTy}, RetType{*DirPtrTy}, NoEvalCall) 1488 .ArgConstraint(ArgumentCondition(0, WithinRange, 1489 Range(0, IntMax)))); 1490 } 1491 1492 // int isatty(int fildes); 1493 addToFunctionSummaryMap( 1494 "isatty", Summary(ArgTypes{IntTy}, RetType{IntTy}, NoEvalCall) 1495 .ArgConstraint( 1496 ArgumentCondition(0, WithinRange, Range(0, IntMax)))); 1497 1498 if (FilePtrTy) { 1499 // FILE *popen(const char *command, const char *type); 1500 addToFunctionSummaryMap("popen", 1501 Summary(ArgTypes{ConstCharPtrTy, ConstCharPtrTy}, 1502 RetType{*FilePtrTy}, NoEvalCall) 1503 .ArgConstraint(NotNull(ArgNo(0))) 1504 .ArgConstraint(NotNull(ArgNo(1)))); 1505 1506 // int pclose(FILE *stream); 1507 addToFunctionSummaryMap( 1508 "pclose", Summary(ArgTypes{*FilePtrTy}, RetType{IntTy}, NoEvalCall) 1509 .ArgConstraint(NotNull(ArgNo(0)))); 1510 } 1511 1512 // int close(int fildes); 1513 addToFunctionSummaryMap( 1514 "close", Summary(ArgTypes{IntTy}, RetType{IntTy}, NoEvalCall) 1515 .ArgConstraint( 1516 ArgumentCondition(0, WithinRange, Range(0, IntMax)))); 1517 1518 // long fpathconf(int fildes, int name); 1519 addToFunctionSummaryMap( 1520 "fpathconf", 1521 Summary(ArgTypes{IntTy, IntTy}, RetType{LongTy}, NoEvalCall) 1522 .ArgConstraint( 1523 ArgumentCondition(0, WithinRange, Range(0, IntMax)))); 1524 1525 // long pathconf(const char *path, int name); 1526 addToFunctionSummaryMap("pathconf", Summary(ArgTypes{ConstCharPtrTy, IntTy}, 1527 RetType{LongTy}, NoEvalCall) 1528 .ArgConstraint(NotNull(ArgNo(0)))); 1529 1530 if (FilePtrTy) 1531 // FILE *fdopen(int fd, const char *mode); 1532 addToFunctionSummaryMap( 1533 "fdopen", Summary(ArgTypes{IntTy, ConstCharPtrTy}, 1534 RetType{*FilePtrTy}, NoEvalCall) 1535 .ArgConstraint( 1536 ArgumentCondition(0, WithinRange, Range(0, IntMax))) 1537 .ArgConstraint(NotNull(ArgNo(1)))); 1538 1539 if (DirPtrTy) { 1540 // void rewinddir(DIR *dir); 1541 addToFunctionSummaryMap( 1542 "rewinddir", Summary(ArgTypes{*DirPtrTy}, RetType{VoidTy}, NoEvalCall) 1543 .ArgConstraint(NotNull(ArgNo(0)))); 1544 1545 // void seekdir(DIR *dirp, long loc); 1546 addToFunctionSummaryMap("seekdir", Summary(ArgTypes{*DirPtrTy, LongTy}, 1547 RetType{VoidTy}, NoEvalCall) 1548 .ArgConstraint(NotNull(ArgNo(0)))); 1549 } 1550 1551 // int rand_r(unsigned int *seedp); 1552 addToFunctionSummaryMap("rand_r", Summary(ArgTypes{UnsignedIntPtrTy}, 1553 RetType{IntTy}, NoEvalCall) 1554 .ArgConstraint(NotNull(ArgNo(0)))); 1555 1556 // int strcasecmp(const char *s1, const char *s2); 1557 addToFunctionSummaryMap("strcasecmp", 1558 Summary(ArgTypes{ConstCharPtrTy, ConstCharPtrTy}, 1559 RetType{IntTy}, EvalCallAsPure) 1560 .ArgConstraint(NotNull(ArgNo(0))) 1561 .ArgConstraint(NotNull(ArgNo(1)))); 1562 1563 // int strncasecmp(const char *s1, const char *s2, size_t n); 1564 addToFunctionSummaryMap( 1565 "strncasecmp", Summary(ArgTypes{ConstCharPtrTy, ConstCharPtrTy, SizeTy}, 1566 RetType{IntTy}, EvalCallAsPure) 1567 .ArgConstraint(NotNull(ArgNo(0))) 1568 .ArgConstraint(NotNull(ArgNo(1))) 1569 .ArgConstraint(ArgumentCondition( 1570 2, WithinRange, Range(0, SizeMax)))); 1571 1572 if (FilePtrTy && Off_tTy) { 1573 1574 // int fileno(FILE *stream); 1575 addToFunctionSummaryMap( 1576 "fileno", Summary(ArgTypes{*FilePtrTy}, RetType{IntTy}, NoEvalCall) 1577 .ArgConstraint(NotNull(ArgNo(0)))); 1578 1579 // int fseeko(FILE *stream, off_t offset, int whence); 1580 addToFunctionSummaryMap("fseeko", 1581 Summary(ArgTypes{*FilePtrTy, *Off_tTy, IntTy}, 1582 RetType{IntTy}, NoEvalCall) 1583 .ArgConstraint(NotNull(ArgNo(0)))); 1584 1585 // off_t ftello(FILE *stream); 1586 addToFunctionSummaryMap( 1587 "ftello", Summary(ArgTypes{*FilePtrTy}, RetType{*Off_tTy}, NoEvalCall) 1588 .ArgConstraint(NotNull(ArgNo(0)))); 1589 } 1590 1591 if (Off_tTy) { 1592 Optional<RangeInt> Off_tMax = BVF.getMaxValue(*Off_tTy).getLimitedValue(); 1593 1594 // void *mmap(void *addr, size_t length, int prot, int flags, int fd, 1595 // off_t offset); 1596 addToFunctionSummaryMap( 1597 "mmap", 1598 Summary(ArgTypes{VoidPtrTy, SizeTy, IntTy, IntTy, IntTy, *Off_tTy}, 1599 RetType{VoidPtrTy}, NoEvalCall) 1600 .ArgConstraint( 1601 ArgumentCondition(1, WithinRange, Range(1, SizeMax))) 1602 .ArgConstraint( 1603 ArgumentCondition(4, WithinRange, Range(0, *Off_tMax)))); 1604 } 1605 1606 Optional<QualType> Off64_tTy = lookupType("off64_t", ACtx); 1607 Optional<RangeInt> Off64_tMax; 1608 if (Off64_tTy) { 1609 Off64_tMax = BVF.getMaxValue(*Off_tTy).getLimitedValue(); 1610 // void *mmap64(void *addr, size_t length, int prot, int flags, int fd, 1611 // off64_t offset); 1612 addToFunctionSummaryMap( 1613 "mmap64", 1614 Summary(ArgTypes{VoidPtrTy, SizeTy, IntTy, IntTy, IntTy, *Off64_tTy}, 1615 RetType{VoidPtrTy}, NoEvalCall) 1616 .ArgConstraint( 1617 ArgumentCondition(1, WithinRange, Range(1, SizeMax))) 1618 .ArgConstraint( 1619 ArgumentCondition(4, WithinRange, Range(0, *Off64_tMax)))); 1620 } 1621 1622 // int pipe(int fildes[2]); 1623 addToFunctionSummaryMap( 1624 "pipe", Summary(ArgTypes{IntPtrTy}, RetType{IntTy}, NoEvalCall) 1625 .ArgConstraint(NotNull(ArgNo(0)))); 1626 1627 if (Off_tTy) 1628 // off_t lseek(int fildes, off_t offset, int whence); 1629 addToFunctionSummaryMap( 1630 "lseek", Summary(ArgTypes{IntTy, *Off_tTy, IntTy}, RetType{*Off_tTy}, 1631 NoEvalCall) 1632 .ArgConstraint(ArgumentCondition(0, WithinRange, 1633 Range(0, IntMax)))); 1634 1635 Optional<QualType> Ssize_tTy = lookupType("ssize_t", ACtx); 1636 1637 if (Ssize_tTy) { 1638 // ssize_t readlink(const char *restrict path, char *restrict buf, 1639 // size_t bufsize); 1640 addToFunctionSummaryMap( 1641 "readlink", 1642 Summary(ArgTypes{ConstCharPtrRestrictTy, CharPtrRestrictTy, SizeTy}, 1643 RetType{*Ssize_tTy}, NoEvalCall) 1644 .ArgConstraint(NotNull(ArgNo(0))) 1645 .ArgConstraint(NotNull(ArgNo(1))) 1646 .ArgConstraint(BufferSize(/*Buffer=*/ArgNo(1), 1647 /*BufSize=*/ArgNo(2))) 1648 .ArgConstraint( 1649 ArgumentCondition(2, WithinRange, Range(0, SizeMax)))); 1650 1651 // ssize_t readlinkat(int fd, const char *restrict path, 1652 // char *restrict buf, size_t bufsize); 1653 addToFunctionSummaryMap( 1654 "readlinkat", Summary(ArgTypes{IntTy, ConstCharPtrRestrictTy, 1655 CharPtrRestrictTy, SizeTy}, 1656 RetType{*Ssize_tTy}, NoEvalCall) 1657 .ArgConstraint(ArgumentCondition(0, WithinRange, 1658 Range(0, IntMax))) 1659 .ArgConstraint(NotNull(ArgNo(1))) 1660 .ArgConstraint(NotNull(ArgNo(2))) 1661 .ArgConstraint(BufferSize(/*Buffer=*/ArgNo(2), 1662 /*BufSize=*/ArgNo(3))) 1663 .ArgConstraint(ArgumentCondition( 1664 3, WithinRange, Range(0, SizeMax)))); 1665 } 1666 1667 // int renameat(int olddirfd, const char *oldpath, int newdirfd, const char 1668 // *newpath); 1669 addToFunctionSummaryMap("renameat", Summary(ArgTypes{IntTy, ConstCharPtrTy, 1670 IntTy, ConstCharPtrTy}, 1671 RetType{IntTy}, NoEvalCall) 1672 .ArgConstraint(NotNull(ArgNo(1))) 1673 .ArgConstraint(NotNull(ArgNo(3)))); 1674 1675 // char *realpath(const char *restrict file_name, 1676 // char *restrict resolved_name); 1677 addToFunctionSummaryMap( 1678 "realpath", Summary(ArgTypes{ConstCharPtrRestrictTy, CharPtrRestrictTy}, 1679 RetType{CharPtrTy}, NoEvalCall) 1680 .ArgConstraint(NotNull(ArgNo(0)))); 1681 1682 QualType CharPtrConstPtr = ACtx.getPointerType(CharPtrTy.withConst()); 1683 1684 // int execv(const char *path, char *const argv[]); 1685 addToFunctionSummaryMap("execv", 1686 Summary(ArgTypes{ConstCharPtrTy, CharPtrConstPtr}, 1687 RetType{IntTy}, NoEvalCall) 1688 .ArgConstraint(NotNull(ArgNo(0)))); 1689 1690 // int execvp(const char *file, char *const argv[]); 1691 addToFunctionSummaryMap("execvp", 1692 Summary(ArgTypes{ConstCharPtrTy, CharPtrConstPtr}, 1693 RetType{IntTy}, NoEvalCall) 1694 .ArgConstraint(NotNull(ArgNo(0)))); 1695 1696 // int getopt(int argc, char * const argv[], const char *optstring); 1697 addToFunctionSummaryMap( 1698 "getopt", 1699 Summary(ArgTypes{IntTy, CharPtrConstPtr, ConstCharPtrTy}, 1700 RetType{IntTy}, NoEvalCall) 1701 .ArgConstraint(ArgumentCondition(0, WithinRange, Range(0, IntMax))) 1702 .ArgConstraint(NotNull(ArgNo(1))) 1703 .ArgConstraint(NotNull(ArgNo(2)))); 1704 } 1705 1706 // Functions for testing. 1707 if (ChecksEnabled[CK_StdCLibraryFunctionsTesterChecker]) { 1708 addToFunctionSummaryMap( 1709 "__two_constrained_args", 1710 Summary(ArgTypes{IntTy, IntTy}, RetType{IntTy}, EvalCallAsPure) 1711 .ArgConstraint(ArgumentCondition(0U, WithinRange, SingleValue(1))) 1712 .ArgConstraint(ArgumentCondition(1U, WithinRange, SingleValue(1)))); 1713 addToFunctionSummaryMap( 1714 "__arg_constrained_twice", 1715 Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure) 1716 .ArgConstraint(ArgumentCondition(0U, OutOfRange, SingleValue(1))) 1717 .ArgConstraint(ArgumentCondition(0U, OutOfRange, SingleValue(2)))); 1718 addToFunctionSummaryMap( 1719 "__defaultparam", 1720 Summary(ArgTypes{Irrelevant, IntTy}, RetType{IntTy}, EvalCallAsPure) 1721 .ArgConstraint(NotNull(ArgNo(0)))); 1722 addToFunctionSummaryMap("__variadic", 1723 Summary(ArgTypes{VoidPtrTy, ConstCharPtrTy}, 1724 RetType{IntTy}, EvalCallAsPure) 1725 .ArgConstraint(NotNull(ArgNo(0))) 1726 .ArgConstraint(NotNull(ArgNo(1)))); 1727 addToFunctionSummaryMap( 1728 "__buf_size_arg_constraint", 1729 Summary(ArgTypes{ConstVoidPtrTy, SizeTy}, RetType{IntTy}, 1730 EvalCallAsPure) 1731 .ArgConstraint( 1732 BufferSize(/*Buffer=*/ArgNo(0), /*BufSize=*/ArgNo(1)))); 1733 addToFunctionSummaryMap( 1734 "__buf_size_arg_constraint_mul", 1735 Summary(ArgTypes{ConstVoidPtrTy, SizeTy, SizeTy}, RetType{IntTy}, 1736 EvalCallAsPure) 1737 .ArgConstraint(BufferSize(/*Buffer=*/ArgNo(0), /*BufSize=*/ArgNo(1), 1738 /*BufSizeMultiplier=*/ArgNo(2)))); 1739 } 1740 } 1741 1742 void ento::registerStdCLibraryFunctionsChecker(CheckerManager &mgr) { 1743 auto *Checker = mgr.registerChecker<StdLibraryFunctionsChecker>(); 1744 Checker->DisplayLoadedSummaries = 1745 mgr.getAnalyzerOptions().getCheckerBooleanOption( 1746 Checker, "DisplayLoadedSummaries"); 1747 Checker->ModelPOSIX = 1748 mgr.getAnalyzerOptions().getCheckerBooleanOption(Checker, "ModelPOSIX"); 1749 } 1750 1751 bool ento::shouldRegisterStdCLibraryFunctionsChecker(const CheckerManager &mgr) { 1752 return true; 1753 } 1754 1755 #define REGISTER_CHECKER(name) \ 1756 void ento::register##name(CheckerManager &mgr) { \ 1757 StdLibraryFunctionsChecker *checker = \ 1758 mgr.getChecker<StdLibraryFunctionsChecker>(); \ 1759 checker->ChecksEnabled[StdLibraryFunctionsChecker::CK_##name] = true; \ 1760 checker->CheckNames[StdLibraryFunctionsChecker::CK_##name] = \ 1761 mgr.getCurrentCheckerName(); \ 1762 } \ 1763 \ 1764 bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; } 1765 1766 REGISTER_CHECKER(StdCLibraryFunctionArgsChecker) 1767 REGISTER_CHECKER(StdCLibraryFunctionsTesterChecker) 1768