xref: /llvm-project/clang/lib/StaticAnalyzer/Checkers/StdLibraryFunctionsChecker.cpp (revision a012bc4c42e4408a18e4c4d67306b79c576df961)
1 //=== StdLibraryFunctionsChecker.cpp - Model standard functions -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This checker improves modeling of a few simple library functions.
10 //
11 // This checker provides a specification format - `Summary' - and
12 // contains descriptions of some library functions in this format. Each
13 // specification contains a list of branches for splitting the program state
14 // upon call, and range constraints on argument and return-value symbols that
15 // are satisfied on each branch. This spec can be expanded to include more
16 // items, like external effects of the function.
17 //
18 // The main difference between this approach and the body farms technique is
19 // in more explicit control over how many branches are produced. For example,
20 // consider standard C function `ispunct(int x)', which returns a non-zero value
21 // iff `x' is a punctuation character, that is, when `x' is in range
22 //   ['!', '/']   [':', '@']  U  ['[', '\`']  U  ['{', '~'].
23 // `Summary' provides only two branches for this function. However,
24 // any attempt to describe this range with if-statements in the body farm
25 // would result in many more branches. Because each branch needs to be analyzed
26 // independently, this significantly reduces performance. Additionally,
27 // once we consider a branch on which `x' is in range, say, ['!', '/'],
28 // we assume that such branch is an important separate path through the program,
29 // which may lead to false positives because considering this particular path
30 // was not consciously intended, and therefore it might have been unreachable.
31 //
32 // This checker uses eval::Call for modeling pure functions (functions without
33 // side effets), for which their `Summary' is a precise model. This avoids
34 // unnecessary invalidation passes. Conflicts with other checkers are unlikely
35 // because if the function has no other effects, other checkers would probably
36 // never want to improve upon the modeling done by this checker.
37 //
38 // Non-pure functions, for which only partial improvement over the default
39 // behavior is expected, are modeled via check::PostCall, non-intrusively.
40 //
41 // The following standard C functions are currently supported:
42 //
43 //   fgetc      getline   isdigit   isupper     toascii
44 //   fread      isalnum   isgraph   isxdigit
45 //   fwrite     isalpha   islower   read
46 //   getc       isascii   isprint   write
47 //   getchar    isblank   ispunct   toupper
48 //   getdelim   iscntrl   isspace   tolower
49 //
50 //===----------------------------------------------------------------------===//
51 
52 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
53 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
54 #include "clang/StaticAnalyzer/Core/Checker.h"
55 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
56 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
57 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
58 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h"
59 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicSize.h"
60 
61 using namespace clang;
62 using namespace clang::ento;
63 
64 namespace {
65 class StdLibraryFunctionsChecker
66     : public Checker<check::PreCall, check::PostCall, eval::Call> {
67 
68   class Summary;
69 
70   /// Specify how much the analyzer engine should entrust modeling this function
71   /// to us. If he doesn't, he performs additional invalidations.
72   enum InvalidationKind { NoEvalCall, EvalCallAsPure };
73 
74   // The universal integral type to use in value range descriptions.
75   // Unsigned to make sure overflows are well-defined.
76   typedef uint64_t RangeInt;
77 
78   /// Normally, describes a single range constraint, eg. {{0, 1}, {3, 4}} is
79   /// a non-negative integer, which less than 5 and not equal to 2. For
80   /// `ComparesToArgument', holds information about how exactly to compare to
81   /// the argument.
82   typedef std::vector<std::pair<RangeInt, RangeInt>> IntRangeVector;
83 
84   /// A reference to an argument or return value by its number.
85   /// ArgNo in CallExpr and CallEvent is defined as Unsigned, but
86   /// obviously uint32_t should be enough for all practical purposes.
87   typedef uint32_t ArgNo;
88   static const ArgNo Ret;
89 
90   class ValueConstraint;
91 
92   // Pointer to the ValueConstraint. We need a copyable, polymorphic and
93   // default initialize able type (vector needs that). A raw pointer was good,
94   // however, we cannot default initialize that. unique_ptr makes the Summary
95   // class non-copyable, therefore not an option. Releasing the copyability
96   // requirement would render the initialization of the Summary map infeasible.
97   using ValueConstraintPtr = std::shared_ptr<ValueConstraint>;
98 
99   /// Polymorphic base class that represents a constraint on a given argument
100   /// (or return value) of a function. Derived classes implement different kind
101   /// of constraints, e.g range constraints or correlation between two
102   /// arguments.
103   class ValueConstraint {
104   public:
105     ValueConstraint(ArgNo ArgN) : ArgN(ArgN) {}
106     virtual ~ValueConstraint() {}
107     /// Apply the effects of the constraint on the given program state. If null
108     /// is returned then the constraint is not feasible.
109     virtual ProgramStateRef apply(ProgramStateRef State, const CallEvent &Call,
110                                   const Summary &Summary,
111                                   CheckerContext &C) const = 0;
112     virtual ValueConstraintPtr negate() const {
113       llvm_unreachable("Not implemented");
114     };
115 
116     // Check whether the constraint is malformed or not. It is malformed if the
117     // specified argument has a mismatch with the given FunctionDecl (e.g. the
118     // arg number is out-of-range of the function's argument list).
119     bool checkValidity(const FunctionDecl *FD) const {
120       const bool ValidArg = ArgN == Ret || ArgN < FD->getNumParams();
121       assert(ValidArg && "Arg out of range!");
122       if (!ValidArg)
123         return false;
124       // Subclasses may further refine the validation.
125       return checkSpecificValidity(FD);
126     }
127     ArgNo getArgNo() const { return ArgN; }
128 
129     virtual StringRef getName() const = 0;
130 
131   protected:
132     ArgNo ArgN; // Argument to which we apply the constraint.
133 
134     /// Do polymorphic sanity check on the constraint.
135     virtual bool checkSpecificValidity(const FunctionDecl *FD) const {
136       return true;
137     }
138   };
139 
140   /// Given a range, should the argument stay inside or outside this range?
141   enum RangeKind { OutOfRange, WithinRange };
142 
143   /// Encapsulates a range on a single symbol.
144   class RangeConstraint : public ValueConstraint {
145     RangeKind Kind;
146     // A range is formed as a set of intervals (sub-ranges).
147     // E.g. {['A', 'Z'], ['a', 'z']}
148     //
149     // The default constructed RangeConstraint has an empty range set, applying
150     // such constraint does not involve any assumptions, thus the State remains
151     // unchanged. This is meaningful, if the range is dependent on a looked up
152     // type (e.g. [0, Socklen_tMax]). If the type is not found, then the range
153     // is default initialized to be empty.
154     IntRangeVector Ranges;
155 
156   public:
157     StringRef getName() const override { return "Range"; }
158     RangeConstraint(ArgNo ArgN, RangeKind Kind, const IntRangeVector &Ranges)
159         : ValueConstraint(ArgN), Kind(Kind), Ranges(Ranges) {}
160 
161     const IntRangeVector &getRanges() const { return Ranges; }
162 
163   private:
164     ProgramStateRef applyAsOutOfRange(ProgramStateRef State,
165                                       const CallEvent &Call,
166                                       const Summary &Summary) const;
167     ProgramStateRef applyAsWithinRange(ProgramStateRef State,
168                                        const CallEvent &Call,
169                                        const Summary &Summary) const;
170 
171   public:
172     ProgramStateRef apply(ProgramStateRef State, const CallEvent &Call,
173                           const Summary &Summary,
174                           CheckerContext &C) const override {
175       switch (Kind) {
176       case OutOfRange:
177         return applyAsOutOfRange(State, Call, Summary);
178       case WithinRange:
179         return applyAsWithinRange(State, Call, Summary);
180       }
181       llvm_unreachable("Unknown range kind!");
182     }
183 
184     ValueConstraintPtr negate() const override {
185       RangeConstraint Tmp(*this);
186       switch (Kind) {
187       case OutOfRange:
188         Tmp.Kind = WithinRange;
189         break;
190       case WithinRange:
191         Tmp.Kind = OutOfRange;
192         break;
193       }
194       return std::make_shared<RangeConstraint>(Tmp);
195     }
196 
197     bool checkSpecificValidity(const FunctionDecl *FD) const override {
198       const bool ValidArg =
199           getArgType(FD, ArgN)->isIntegralType(FD->getASTContext());
200       assert(ValidArg &&
201              "This constraint should be applied on an integral type");
202       return ValidArg;
203     }
204   };
205 
206   class ComparisonConstraint : public ValueConstraint {
207     BinaryOperator::Opcode Opcode;
208     ArgNo OtherArgN;
209 
210   public:
211     virtual StringRef getName() const override { return "Comparison"; };
212     ComparisonConstraint(ArgNo ArgN, BinaryOperator::Opcode Opcode,
213                          ArgNo OtherArgN)
214         : ValueConstraint(ArgN), Opcode(Opcode), OtherArgN(OtherArgN) {}
215     ArgNo getOtherArgNo() const { return OtherArgN; }
216     BinaryOperator::Opcode getOpcode() const { return Opcode; }
217     ProgramStateRef apply(ProgramStateRef State, const CallEvent &Call,
218                           const Summary &Summary,
219                           CheckerContext &C) const override;
220   };
221 
222   class NotNullConstraint : public ValueConstraint {
223     using ValueConstraint::ValueConstraint;
224     // This variable has a role when we negate the constraint.
225     bool CannotBeNull = true;
226 
227   public:
228     StringRef getName() const override { return "NonNull"; }
229     ProgramStateRef apply(ProgramStateRef State, const CallEvent &Call,
230                           const Summary &Summary,
231                           CheckerContext &C) const override {
232       SVal V = getArgSVal(Call, getArgNo());
233       if (V.isUndef())
234         return State;
235 
236       DefinedOrUnknownSVal L = V.castAs<DefinedOrUnknownSVal>();
237       if (!L.getAs<Loc>())
238         return State;
239 
240       return State->assume(L, CannotBeNull);
241     }
242 
243     ValueConstraintPtr negate() const override {
244       NotNullConstraint Tmp(*this);
245       Tmp.CannotBeNull = !this->CannotBeNull;
246       return std::make_shared<NotNullConstraint>(Tmp);
247     }
248 
249     bool checkSpecificValidity(const FunctionDecl *FD) const override {
250       const bool ValidArg = getArgType(FD, ArgN)->isPointerType();
251       assert(ValidArg &&
252              "This constraint should be applied only on a pointer type");
253       return ValidArg;
254     }
255   };
256 
257   // Represents a buffer argument with an additional size constraint. The
258   // constraint may be a concrete value, or a symbolic value in an argument.
259   // Example 1. Concrete value as the minimum buffer size.
260   //   char *asctime_r(const struct tm *restrict tm, char *restrict buf);
261   //   // `buf` size must be at least 26 bytes according the POSIX standard.
262   // Example 2. Argument as a buffer size.
263   //   ctime_s(char *buffer, rsize_t bufsz, const time_t *time);
264   // Example 3. The size is computed as a multiplication of other args.
265   //   size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream);
266   //   // Here, ptr is the buffer, and its minimum size is `size * nmemb`.
267   class BufferSizeConstraint : public ValueConstraint {
268     // The concrete value which is the minimum size for the buffer.
269     llvm::Optional<llvm::APSInt> ConcreteSize;
270     // The argument which holds the size of the buffer.
271     llvm::Optional<ArgNo> SizeArgN;
272     // The argument which is a multiplier to size. This is set in case of
273     // `fread` like functions where the size is computed as a multiplication of
274     // two arguments.
275     llvm::Optional<ArgNo> SizeMultiplierArgN;
276     // The operator we use in apply. This is negated in negate().
277     BinaryOperator::Opcode Op = BO_LE;
278 
279   public:
280     StringRef getName() const override { return "BufferSize"; }
281     BufferSizeConstraint(ArgNo Buffer, llvm::APSInt BufMinSize)
282         : ValueConstraint(Buffer), ConcreteSize(BufMinSize) {}
283     BufferSizeConstraint(ArgNo Buffer, ArgNo BufSize)
284         : ValueConstraint(Buffer), SizeArgN(BufSize) {}
285     BufferSizeConstraint(ArgNo Buffer, ArgNo BufSize, ArgNo BufSizeMultiplier)
286         : ValueConstraint(Buffer), SizeArgN(BufSize),
287           SizeMultiplierArgN(BufSizeMultiplier) {}
288 
289     ProgramStateRef apply(ProgramStateRef State, const CallEvent &Call,
290                           const Summary &Summary,
291                           CheckerContext &C) const override {
292       SValBuilder &SvalBuilder = C.getSValBuilder();
293       // The buffer argument.
294       SVal BufV = getArgSVal(Call, getArgNo());
295 
296       // Get the size constraint.
297       const SVal SizeV = [this, &State, &Call, &Summary, &SvalBuilder]() {
298         if (ConcreteSize) {
299           return SVal(SvalBuilder.makeIntVal(*ConcreteSize));
300         } else if (SizeArgN) {
301           // The size argument.
302           SVal SizeV = getArgSVal(Call, *SizeArgN);
303           // Multiply with another argument if given.
304           if (SizeMultiplierArgN) {
305             SVal SizeMulV = getArgSVal(Call, *SizeMultiplierArgN);
306             SizeV = SvalBuilder.evalBinOp(State, BO_Mul, SizeV, SizeMulV,
307                                           Summary.getArgType(*SizeArgN));
308           }
309           return SizeV;
310         } else {
311           llvm_unreachable("The constraint must be either a concrete value or "
312                            "encoded in an arguement.");
313         }
314       }();
315 
316       // The dynamic size of the buffer argument, got from the analyzer engine.
317       SVal BufDynSize = getDynamicSizeWithOffset(State, BufV);
318 
319       SVal Feasible = SvalBuilder.evalBinOp(State, Op, SizeV, BufDynSize,
320                                             SvalBuilder.getContext().BoolTy);
321       if (auto F = Feasible.getAs<DefinedOrUnknownSVal>())
322         return State->assume(*F, true);
323 
324       // We can get here only if the size argument or the dynamic size is
325       // undefined. But the dynamic size should never be undefined, only
326       // unknown. So, here, the size of the argument is undefined, i.e. we
327       // cannot apply the constraint. Actually, other checkers like
328       // CallAndMessage should catch this situation earlier, because we call a
329       // function with an uninitialized argument.
330       llvm_unreachable("Size argument or the dynamic size is Undefined");
331     }
332 
333     ValueConstraintPtr negate() const override {
334       BufferSizeConstraint Tmp(*this);
335       Tmp.Op = BinaryOperator::negateComparisonOp(Op);
336       return std::make_shared<BufferSizeConstraint>(Tmp);
337     }
338 
339     bool checkSpecificValidity(const FunctionDecl *FD) const override {
340       const bool ValidArg = getArgType(FD, ArgN)->isPointerType();
341       assert(ValidArg &&
342              "This constraint should be applied only on a pointer type");
343       return ValidArg;
344     }
345   };
346 
347   /// The complete list of constraints that defines a single branch.
348   typedef std::vector<ValueConstraintPtr> ConstraintSet;
349 
350   using ArgTypes = std::vector<Optional<QualType>>;
351   using RetType = Optional<QualType>;
352 
353   // A placeholder type, we use it whenever we do not care about the concrete
354   // type in a Signature.
355   const QualType Irrelevant{};
356   bool static isIrrelevant(QualType T) { return T.isNull(); }
357 
358   // The signature of a function we want to describe with a summary. This is a
359   // concessive signature, meaning there may be irrelevant types in the
360   // signature which we do not check against a function with concrete types.
361   // All types in the spec need to be canonical.
362   class Signature {
363     using ArgQualTypes = std::vector<QualType>;
364     ArgQualTypes ArgTys;
365     QualType RetTy;
366     // True if any component type is not found by lookup.
367     bool Invalid = false;
368 
369   public:
370     // Construct a signature from optional types. If any of the optional types
371     // are not set then the signature will be invalid.
372     Signature(ArgTypes ArgTys, RetType RetTy) {
373       for (Optional<QualType> Arg : ArgTys) {
374         if (!Arg) {
375           Invalid = true;
376           return;
377         } else {
378           assertArgTypeSuitableForSignature(*Arg);
379           this->ArgTys.push_back(*Arg);
380         }
381       }
382       if (!RetTy) {
383         Invalid = true;
384         return;
385       } else {
386         assertRetTypeSuitableForSignature(*RetTy);
387         this->RetTy = *RetTy;
388       }
389     }
390 
391     bool isInvalid() const { return Invalid; }
392     bool matches(const FunctionDecl *FD) const;
393 
394   private:
395     static void assertArgTypeSuitableForSignature(QualType T) {
396       assert((T.isNull() || !T->isVoidType()) &&
397              "We should have no void types in the spec");
398       assert((T.isNull() || T.isCanonical()) &&
399              "We should only have canonical types in the spec");
400     }
401     static void assertRetTypeSuitableForSignature(QualType T) {
402       assert((T.isNull() || T.isCanonical()) &&
403              "We should only have canonical types in the spec");
404     }
405   };
406 
407   static QualType getArgType(const FunctionDecl *FD, ArgNo ArgN) {
408     assert(FD && "Function must be set");
409     QualType T = (ArgN == Ret)
410                      ? FD->getReturnType().getCanonicalType()
411                      : FD->getParamDecl(ArgN)->getType().getCanonicalType();
412     return T;
413   }
414 
415   using Cases = std::vector<ConstraintSet>;
416 
417   /// A summary includes information about
418   ///   * function prototype (signature)
419   ///   * approach to invalidation,
420   ///   * a list of branches - a list of list of ranges -
421   ///     A branch represents a path in the exploded graph of a function (which
422   ///     is a tree). So, a branch is a series of assumptions. In other words,
423   ///     branches represent split states and additional assumptions on top of
424   ///     the splitting assumption.
425   ///     For example, consider the branches in `isalpha(x)`
426   ///       Branch 1)
427   ///         x is in range ['A', 'Z'] or in ['a', 'z']
428   ///         then the return value is not 0. (I.e. out-of-range [0, 0])
429   ///       Branch 2)
430   ///         x is out-of-range ['A', 'Z'] and out-of-range ['a', 'z']
431   ///         then the return value is 0.
432   ///   * a list of argument constraints, that must be true on every branch.
433   ///     If these constraints are not satisfied that means a fatal error
434   ///     usually resulting in undefined behaviour.
435   ///
436   /// Application of a summary:
437   ///   The signature and argument constraints together contain information
438   ///   about which functions are handled by the summary. The signature can use
439   ///   "wildcards", i.e. Irrelevant types. Irrelevant type of a parameter in
440   ///   a signature means that type is not compared to the type of the parameter
441   ///   in the found FunctionDecl. Argument constraints may specify additional
442   ///   rules for the given parameter's type, those rules are checked once the
443   ///   signature is matched.
444   class Summary {
445     // FIXME Probably the Signature should not be part of the Summary,
446     // We can remove once all overload of addToFunctionSummaryMap requires the
447     // Signature explicitly given.
448     Optional<Signature> Sign;
449     const InvalidationKind InvalidationKd;
450     Cases CaseConstraints;
451     ConstraintSet ArgConstraints;
452 
453     // The function to which the summary applies. This is set after lookup and
454     // match to the signature.
455     const FunctionDecl *FD = nullptr;
456 
457   public:
458     Summary(ArgTypes ArgTys, RetType RetTy, InvalidationKind InvalidationKd)
459         : Sign(Signature(ArgTys, RetTy)), InvalidationKd(InvalidationKd) {}
460 
461     Summary(InvalidationKind InvalidationKd) : InvalidationKd(InvalidationKd) {}
462 
463     // FIXME Remove, once all overload of addToFunctionSummaryMap requires the
464     // Signature explicitly given.
465     Summary &setSignature(const Signature &S) {
466       Sign = S;
467       return *this;
468     }
469 
470     Summary &Case(ConstraintSet &&CS) {
471       CaseConstraints.push_back(std::move(CS));
472       return *this;
473     }
474     Summary &ArgConstraint(ValueConstraintPtr VC) {
475       assert(VC->getArgNo() != Ret &&
476              "Arg constraint should not refer to the return value");
477       ArgConstraints.push_back(VC);
478       return *this;
479     }
480 
481     InvalidationKind getInvalidationKd() const { return InvalidationKd; }
482     const Cases &getCaseConstraints() const { return CaseConstraints; }
483     const ConstraintSet &getArgConstraints() const { return ArgConstraints; }
484 
485     QualType getArgType(ArgNo ArgN) const {
486       return StdLibraryFunctionsChecker::getArgType(FD, ArgN);
487     }
488 
489     // Returns true if the summary should be applied to the given function.
490     // And if yes then store the function declaration.
491     bool matchesAndSet(const FunctionDecl *FD) {
492       assert(Sign &&
493              "Signature must be set before comparing to a FunctionDecl");
494       bool Result = Sign->matches(FD) && validateByConstraints(FD);
495       if (Result) {
496         assert(!this->FD && "FD must not be set more than once");
497         this->FD = FD;
498       }
499       return Result;
500     }
501 
502     // FIXME Remove, once all overload of addToFunctionSummaryMap requires the
503     // Signature explicitly given.
504     bool hasInvalidSignature() {
505       assert(Sign && "Signature must be set before this query");
506       return Sign->isInvalid();
507     }
508 
509   private:
510     // Once we know the exact type of the function then do sanity check on all
511     // the given constraints.
512     bool validateByConstraints(const FunctionDecl *FD) const {
513       for (const ConstraintSet &Case : CaseConstraints)
514         for (const ValueConstraintPtr &Constraint : Case)
515           if (!Constraint->checkValidity(FD))
516             return false;
517       for (const ValueConstraintPtr &Constraint : ArgConstraints)
518         if (!Constraint->checkValidity(FD))
519           return false;
520       return true;
521     }
522   };
523 
524   // The map of all functions supported by the checker. It is initialized
525   // lazily, and it doesn't change after initialization.
526   using FunctionSummaryMapType = llvm::DenseMap<const FunctionDecl *, Summary>;
527   mutable FunctionSummaryMapType FunctionSummaryMap;
528 
529   mutable std::unique_ptr<BugType> BT_InvalidArg;
530 
531   static SVal getArgSVal(const CallEvent &Call, ArgNo ArgN) {
532     return ArgN == Ret ? Call.getReturnValue() : Call.getArgSVal(ArgN);
533   }
534 
535 public:
536   void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
537   void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
538   bool evalCall(const CallEvent &Call, CheckerContext &C) const;
539 
540   enum CheckKind {
541     CK_StdCLibraryFunctionArgsChecker,
542     CK_StdCLibraryFunctionsTesterChecker,
543     CK_NumCheckKinds
544   };
545   DefaultBool ChecksEnabled[CK_NumCheckKinds];
546   CheckerNameRef CheckNames[CK_NumCheckKinds];
547 
548   bool DisplayLoadedSummaries = false;
549   bool ModelPOSIX = false;
550 
551 private:
552   Optional<Summary> findFunctionSummary(const FunctionDecl *FD,
553                                         CheckerContext &C) const;
554   Optional<Summary> findFunctionSummary(const CallEvent &Call,
555                                         CheckerContext &C) const;
556 
557   void initFunctionSummaries(CheckerContext &C) const;
558 
559   void reportBug(const CallEvent &Call, ExplodedNode *N,
560                  const ValueConstraint *VC, CheckerContext &C) const {
561     if (!ChecksEnabled[CK_StdCLibraryFunctionArgsChecker])
562       return;
563     // TODO Add more detailed diagnostic.
564     std::string Msg =
565         (Twine("Function argument constraint is not satisfied, constraint: ") +
566          VC->getName().data() + ", ArgN: " + Twine(VC->getArgNo()))
567             .str();
568     if (!BT_InvalidArg)
569       BT_InvalidArg = std::make_unique<BugType>(
570           CheckNames[CK_StdCLibraryFunctionArgsChecker],
571           "Unsatisfied argument constraints", categories::LogicError);
572     auto R = std::make_unique<PathSensitiveBugReport>(*BT_InvalidArg, Msg, N);
573     bugreporter::trackExpressionValue(N, Call.getArgExpr(VC->getArgNo()), *R);
574 
575     // Highlight the range of the argument that was violated.
576     R->addRange(Call.getArgSourceRange(VC->getArgNo()));
577 
578     C.emitReport(std::move(R));
579   }
580 };
581 
582 const StdLibraryFunctionsChecker::ArgNo StdLibraryFunctionsChecker::Ret =
583     std::numeric_limits<ArgNo>::max();
584 
585 } // end of anonymous namespace
586 
587 ProgramStateRef StdLibraryFunctionsChecker::RangeConstraint::applyAsOutOfRange(
588     ProgramStateRef State, const CallEvent &Call,
589     const Summary &Summary) const {
590   if (Ranges.empty())
591     return State;
592 
593   ProgramStateManager &Mgr = State->getStateManager();
594   SValBuilder &SVB = Mgr.getSValBuilder();
595   BasicValueFactory &BVF = SVB.getBasicValueFactory();
596   ConstraintManager &CM = Mgr.getConstraintManager();
597   QualType T = Summary.getArgType(getArgNo());
598   SVal V = getArgSVal(Call, getArgNo());
599 
600   if (auto N = V.getAs<NonLoc>()) {
601     const IntRangeVector &R = getRanges();
602     size_t E = R.size();
603     for (size_t I = 0; I != E; ++I) {
604       const llvm::APSInt &Min = BVF.getValue(R[I].first, T);
605       const llvm::APSInt &Max = BVF.getValue(R[I].second, T);
606       assert(Min <= Max);
607       State = CM.assumeInclusiveRange(State, *N, Min, Max, false);
608       if (!State)
609         break;
610     }
611   }
612 
613   return State;
614 }
615 
616 ProgramStateRef StdLibraryFunctionsChecker::RangeConstraint::applyAsWithinRange(
617     ProgramStateRef State, const CallEvent &Call,
618     const Summary &Summary) const {
619   if (Ranges.empty())
620     return State;
621 
622   ProgramStateManager &Mgr = State->getStateManager();
623   SValBuilder &SVB = Mgr.getSValBuilder();
624   BasicValueFactory &BVF = SVB.getBasicValueFactory();
625   ConstraintManager &CM = Mgr.getConstraintManager();
626   QualType T = Summary.getArgType(getArgNo());
627   SVal V = getArgSVal(Call, getArgNo());
628 
629   // "WithinRange R" is treated as "outside [T_MIN, T_MAX] \ R".
630   // We cut off [T_MIN, min(R) - 1] and [max(R) + 1, T_MAX] if necessary,
631   // and then cut away all holes in R one by one.
632   //
633   // E.g. consider a range list R as [A, B] and [C, D]
634   // -------+--------+------------------+------------+----------->
635   //        A        B                  C            D
636   // Then we assume that the value is not in [-inf, A - 1],
637   // then not in [D + 1, +inf], then not in [B + 1, C - 1]
638   if (auto N = V.getAs<NonLoc>()) {
639     const IntRangeVector &R = getRanges();
640     size_t E = R.size();
641 
642     const llvm::APSInt &MinusInf = BVF.getMinValue(T);
643     const llvm::APSInt &PlusInf = BVF.getMaxValue(T);
644 
645     const llvm::APSInt &Left = BVF.getValue(R[0].first - 1ULL, T);
646     if (Left != PlusInf) {
647       assert(MinusInf <= Left);
648       State = CM.assumeInclusiveRange(State, *N, MinusInf, Left, false);
649       if (!State)
650         return nullptr;
651     }
652 
653     const llvm::APSInt &Right = BVF.getValue(R[E - 1].second + 1ULL, T);
654     if (Right != MinusInf) {
655       assert(Right <= PlusInf);
656       State = CM.assumeInclusiveRange(State, *N, Right, PlusInf, false);
657       if (!State)
658         return nullptr;
659     }
660 
661     for (size_t I = 1; I != E; ++I) {
662       const llvm::APSInt &Min = BVF.getValue(R[I - 1].second + 1ULL, T);
663       const llvm::APSInt &Max = BVF.getValue(R[I].first - 1ULL, T);
664       if (Min <= Max) {
665         State = CM.assumeInclusiveRange(State, *N, Min, Max, false);
666         if (!State)
667           return nullptr;
668       }
669     }
670   }
671 
672   return State;
673 }
674 
675 ProgramStateRef StdLibraryFunctionsChecker::ComparisonConstraint::apply(
676     ProgramStateRef State, const CallEvent &Call, const Summary &Summary,
677     CheckerContext &C) const {
678 
679   ProgramStateManager &Mgr = State->getStateManager();
680   SValBuilder &SVB = Mgr.getSValBuilder();
681   QualType CondT = SVB.getConditionType();
682   QualType T = Summary.getArgType(getArgNo());
683   SVal V = getArgSVal(Call, getArgNo());
684 
685   BinaryOperator::Opcode Op = getOpcode();
686   ArgNo OtherArg = getOtherArgNo();
687   SVal OtherV = getArgSVal(Call, OtherArg);
688   QualType OtherT = Summary.getArgType(OtherArg);
689   // Note: we avoid integral promotion for comparison.
690   OtherV = SVB.evalCast(OtherV, T, OtherT);
691   if (auto CompV = SVB.evalBinOp(State, Op, V, OtherV, CondT)
692                        .getAs<DefinedOrUnknownSVal>())
693     State = State->assume(*CompV, true);
694   return State;
695 }
696 
697 void StdLibraryFunctionsChecker::checkPreCall(const CallEvent &Call,
698                                               CheckerContext &C) const {
699   Optional<Summary> FoundSummary = findFunctionSummary(Call, C);
700   if (!FoundSummary)
701     return;
702 
703   const Summary &Summary = *FoundSummary;
704   ProgramStateRef State = C.getState();
705 
706   ProgramStateRef NewState = State;
707   for (const ValueConstraintPtr &Constraint : Summary.getArgConstraints()) {
708     ProgramStateRef SuccessSt = Constraint->apply(NewState, Call, Summary, C);
709     ProgramStateRef FailureSt =
710         Constraint->negate()->apply(NewState, Call, Summary, C);
711     // The argument constraint is not satisfied.
712     if (FailureSt && !SuccessSt) {
713       if (ExplodedNode *N = C.generateErrorNode(NewState))
714         reportBug(Call, N, Constraint.get(), C);
715       break;
716     } else {
717       // We will apply the constraint even if we cannot reason about the
718       // argument. This means both SuccessSt and FailureSt can be true. If we
719       // weren't applying the constraint that would mean that symbolic
720       // execution continues on a code whose behaviour is undefined.
721       assert(SuccessSt);
722       NewState = SuccessSt;
723     }
724   }
725   if (NewState && NewState != State)
726     C.addTransition(NewState);
727 }
728 
729 void StdLibraryFunctionsChecker::checkPostCall(const CallEvent &Call,
730                                                CheckerContext &C) const {
731   Optional<Summary> FoundSummary = findFunctionSummary(Call, C);
732   if (!FoundSummary)
733     return;
734 
735   // Now apply the constraints.
736   const Summary &Summary = *FoundSummary;
737   ProgramStateRef State = C.getState();
738 
739   // Apply case/branch specifications.
740   for (const ConstraintSet &Case : Summary.getCaseConstraints()) {
741     ProgramStateRef NewState = State;
742     for (const ValueConstraintPtr &Constraint : Case) {
743       NewState = Constraint->apply(NewState, Call, Summary, C);
744       if (!NewState)
745         break;
746     }
747 
748     if (NewState && NewState != State)
749       C.addTransition(NewState);
750   }
751 }
752 
753 bool StdLibraryFunctionsChecker::evalCall(const CallEvent &Call,
754                                           CheckerContext &C) const {
755   Optional<Summary> FoundSummary = findFunctionSummary(Call, C);
756   if (!FoundSummary)
757     return false;
758 
759   const Summary &Summary = *FoundSummary;
760   switch (Summary.getInvalidationKd()) {
761   case EvalCallAsPure: {
762     ProgramStateRef State = C.getState();
763     const LocationContext *LC = C.getLocationContext();
764     const auto *CE = cast_or_null<CallExpr>(Call.getOriginExpr());
765     SVal V = C.getSValBuilder().conjureSymbolVal(
766         CE, LC, CE->getType().getCanonicalType(), C.blockCount());
767     State = State->BindExpr(CE, LC, V);
768     C.addTransition(State);
769     return true;
770   }
771   case NoEvalCall:
772     // Summary tells us to avoid performing eval::Call. The function is possibly
773     // evaluated by another checker, or evaluated conservatively.
774     return false;
775   }
776   llvm_unreachable("Unknown invalidation kind!");
777 }
778 
779 bool StdLibraryFunctionsChecker::Signature::matches(
780     const FunctionDecl *FD) const {
781   assert(!isInvalid());
782   // Check the number of arguments.
783   if (FD->param_size() != ArgTys.size())
784     return false;
785 
786   // The "restrict" keyword is illegal in C++, however, many libc
787   // implementations use the "__restrict" compiler intrinsic in functions
788   // prototypes. The "__restrict" keyword qualifies a type as a restricted type
789   // even in C++.
790   // In case of any non-C99 languages, we don't want to match based on the
791   // restrict qualifier because we cannot know if the given libc implementation
792   // qualifies the paramter type or not.
793   auto RemoveRestrict = [&FD](QualType T) {
794     if (!FD->getASTContext().getLangOpts().C99)
795       T.removeLocalRestrict();
796     return T;
797   };
798 
799   // Check the return type.
800   if (!isIrrelevant(RetTy)) {
801     QualType FDRetTy = RemoveRestrict(FD->getReturnType().getCanonicalType());
802     if (RetTy != FDRetTy)
803       return false;
804   }
805 
806   // Check the argument types.
807   for (size_t I = 0, E = ArgTys.size(); I != E; ++I) {
808     QualType ArgTy = ArgTys[I];
809     if (isIrrelevant(ArgTy))
810       continue;
811     QualType FDArgTy =
812         RemoveRestrict(FD->getParamDecl(I)->getType().getCanonicalType());
813     if (ArgTy != FDArgTy)
814       return false;
815   }
816 
817   return true;
818 }
819 
820 Optional<StdLibraryFunctionsChecker::Summary>
821 StdLibraryFunctionsChecker::findFunctionSummary(const FunctionDecl *FD,
822                                                 CheckerContext &C) const {
823   if (!FD)
824     return None;
825 
826   initFunctionSummaries(C);
827 
828   auto FSMI = FunctionSummaryMap.find(FD->getCanonicalDecl());
829   if (FSMI == FunctionSummaryMap.end())
830     return None;
831   return FSMI->second;
832 }
833 
834 Optional<StdLibraryFunctionsChecker::Summary>
835 StdLibraryFunctionsChecker::findFunctionSummary(const CallEvent &Call,
836                                                 CheckerContext &C) const {
837   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Call.getDecl());
838   if (!FD)
839     return None;
840   return findFunctionSummary(FD, C);
841 }
842 
843 void StdLibraryFunctionsChecker::initFunctionSummaries(
844     CheckerContext &C) const {
845   if (!FunctionSummaryMap.empty())
846     return;
847 
848   SValBuilder &SVB = C.getSValBuilder();
849   BasicValueFactory &BVF = SVB.getBasicValueFactory();
850   const ASTContext &ACtx = BVF.getContext();
851 
852   // Helper class to lookup a type by its name.
853   class LookupType {
854     const ASTContext &ACtx;
855 
856   public:
857     LookupType(const ASTContext &ACtx) : ACtx(ACtx) {}
858 
859     // Find the type. If not found then the optional is not set.
860     llvm::Optional<QualType> operator()(StringRef Name) {
861       IdentifierInfo &II = ACtx.Idents.get(Name);
862       auto LookupRes = ACtx.getTranslationUnitDecl()->lookup(&II);
863       if (LookupRes.size() == 0)
864         return None;
865 
866       // Prioritze typedef declarations.
867       // This is needed in case of C struct typedefs. E.g.:
868       //   typedef struct FILE FILE;
869       // In this case, we have a RecordDecl 'struct FILE' with the name 'FILE'
870       // and we have a TypedefDecl with the name 'FILE'.
871       for (Decl *D : LookupRes)
872         if (auto *TD = dyn_cast<TypedefNameDecl>(D))
873           return ACtx.getTypeDeclType(TD).getCanonicalType();
874 
875       // Find the first TypeDecl.
876       // There maybe cases when a function has the same name as a struct.
877       // E.g. in POSIX: `struct stat` and the function `stat()`:
878       //   int stat(const char *restrict path, struct stat *restrict buf);
879       for (Decl *D : LookupRes)
880         if (auto *TD = dyn_cast<TypeDecl>(D))
881           return ACtx.getTypeDeclType(TD).getCanonicalType();
882       return None;
883     }
884   } lookupTy(ACtx);
885 
886   // Below are auxiliary classes to handle optional types that we get as a
887   // result of the lookup.
888   class GetRestrictTy {
889     const ASTContext &ACtx;
890 
891   public:
892     GetRestrictTy(const ASTContext &ACtx) : ACtx(ACtx) {}
893     QualType operator()(QualType Ty) {
894       return ACtx.getLangOpts().C99 ? ACtx.getRestrictType(Ty) : Ty;
895     }
896     Optional<QualType> operator()(Optional<QualType> Ty) {
897       if (Ty)
898         return operator()(*Ty);
899       return None;
900     }
901   } getRestrictTy(ACtx);
902   class GetPointerTy {
903     const ASTContext &ACtx;
904 
905   public:
906     GetPointerTy(const ASTContext &ACtx) : ACtx(ACtx) {}
907     QualType operator()(QualType Ty) { return ACtx.getPointerType(Ty); }
908     Optional<QualType> operator()(Optional<QualType> Ty) {
909       if (Ty)
910         return operator()(*Ty);
911       return None;
912     }
913   } getPointerTy(ACtx);
914   class {
915   public:
916     Optional<QualType> operator()(Optional<QualType> Ty) {
917       return Ty ? Optional<QualType>(Ty->withConst()) : None;
918     }
919     QualType operator()(QualType Ty) { return Ty.withConst(); }
920   } getConstTy;
921   class GetMaxValue {
922     BasicValueFactory &BVF;
923 
924   public:
925     GetMaxValue(BasicValueFactory &BVF) : BVF(BVF) {}
926     Optional<RangeInt> operator()(QualType Ty) {
927       return BVF.getMaxValue(Ty).getLimitedValue();
928     }
929     Optional<RangeInt> operator()(Optional<QualType> Ty) {
930       if (Ty) {
931         return operator()(*Ty);
932       }
933       return None;
934     }
935   } getMaxValue(BVF);
936 
937   // These types are useful for writing specifications quickly,
938   // New specifications should probably introduce more types.
939   // Some types are hard to obtain from the AST, eg. "ssize_t".
940   // In such cases it should be possible to provide multiple variants
941   // of function summary for common cases (eg. ssize_t could be int or long
942   // or long long, so three summary variants would be enough).
943   // Of course, function variants are also useful for C++ overloads.
944   const QualType VoidTy = ACtx.VoidTy;
945   const QualType CharTy = ACtx.CharTy;
946   const QualType WCharTy = ACtx.WCharTy;
947   const QualType IntTy = ACtx.IntTy;
948   const QualType UnsignedIntTy = ACtx.UnsignedIntTy;
949   const QualType LongTy = ACtx.LongTy;
950   const QualType LongLongTy = ACtx.LongLongTy;
951   const QualType SizeTy = ACtx.getSizeType();
952 
953   const QualType VoidPtrTy = getPointerTy(VoidTy); // void *
954   const QualType IntPtrTy = getPointerTy(IntTy);   // int *
955   const QualType UnsignedIntPtrTy =
956       getPointerTy(UnsignedIntTy); // unsigned int *
957   const QualType VoidPtrRestrictTy = getRestrictTy(VoidPtrTy);
958   const QualType ConstVoidPtrTy =
959       getPointerTy(getConstTy(VoidTy));            // const void *
960   const QualType CharPtrTy = getPointerTy(CharTy); // char *
961   const QualType CharPtrRestrictTy = getRestrictTy(CharPtrTy);
962   const QualType ConstCharPtrTy =
963       getPointerTy(getConstTy(CharTy)); // const char *
964   const QualType ConstCharPtrRestrictTy = getRestrictTy(ConstCharPtrTy);
965   const QualType Wchar_tPtrTy = getPointerTy(WCharTy); // wchar_t *
966   const QualType ConstWchar_tPtrTy =
967       getPointerTy(getConstTy(WCharTy)); // const wchar_t *
968   const QualType ConstVoidPtrRestrictTy = getRestrictTy(ConstVoidPtrTy);
969   const QualType SizePtrTy = getPointerTy(SizeTy);
970   const QualType SizePtrRestrictTy = getRestrictTy(SizePtrTy);
971 
972   const RangeInt IntMax = BVF.getMaxValue(IntTy).getLimitedValue();
973   const RangeInt UnsignedIntMax =
974       BVF.getMaxValue(UnsignedIntTy).getLimitedValue();
975   const RangeInt LongMax = BVF.getMaxValue(LongTy).getLimitedValue();
976   const RangeInt LongLongMax = BVF.getMaxValue(LongLongTy).getLimitedValue();
977   const RangeInt SizeMax = BVF.getMaxValue(SizeTy).getLimitedValue();
978 
979   // Set UCharRangeMax to min of int or uchar maximum value.
980   // The C standard states that the arguments of functions like isalpha must
981   // be representable as an unsigned char. Their type is 'int', so the max
982   // value of the argument should be min(UCharMax, IntMax). This just happen
983   // to be true for commonly used and well tested instruction set
984   // architectures, but not for others.
985   const RangeInt UCharRangeMax =
986       std::min(BVF.getMaxValue(ACtx.UnsignedCharTy).getLimitedValue(), IntMax);
987 
988   // The platform dependent value of EOF.
989   // Try our best to parse this from the Preprocessor, otherwise fallback to -1.
990   const auto EOFv = [&C]() -> RangeInt {
991     if (const llvm::Optional<int> OptInt =
992             tryExpandAsInteger("EOF", C.getPreprocessor()))
993       return *OptInt;
994     return -1;
995   }();
996 
997   // Auxiliary class to aid adding summaries to the summary map.
998   struct AddToFunctionSummaryMap {
999     const ASTContext &ACtx;
1000     FunctionSummaryMapType &Map;
1001     bool DisplayLoadedSummaries;
1002     AddToFunctionSummaryMap(const ASTContext &ACtx, FunctionSummaryMapType &FSM,
1003                             bool DisplayLoadedSummaries)
1004         : ACtx(ACtx), Map(FSM), DisplayLoadedSummaries(DisplayLoadedSummaries) {
1005     }
1006 
1007     // Add a summary to a FunctionDecl found by lookup. The lookup is performed
1008     // by the given Name, and in the global scope. The summary will be attached
1009     // to the found FunctionDecl only if the signatures match.
1010     //
1011     // Returns true if the summary has been added, false otherwise.
1012     // FIXME remove all overloads without the explicit Signature parameter.
1013     bool operator()(StringRef Name, Summary S) {
1014       if (S.hasInvalidSignature())
1015         return false;
1016       IdentifierInfo &II = ACtx.Idents.get(Name);
1017       auto LookupRes = ACtx.getTranslationUnitDecl()->lookup(&II);
1018       if (LookupRes.size() == 0)
1019         return false;
1020       for (Decl *D : LookupRes) {
1021         if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1022           if (S.matchesAndSet(FD)) {
1023             auto Res = Map.insert({FD->getCanonicalDecl(), S});
1024             assert(Res.second && "Function already has a summary set!");
1025             (void)Res;
1026             if (DisplayLoadedSummaries) {
1027               llvm::errs() << "Loaded summary for: ";
1028               FD->print(llvm::errs());
1029               llvm::errs() << "\n";
1030             }
1031             return true;
1032           }
1033         }
1034       }
1035       return false;
1036     }
1037     // Add the summary with the Signature explicitly given.
1038     bool operator()(StringRef Name, Signature Sign, Summary Sum) {
1039       return operator()(Name, Sum.setSignature(Sign));
1040     }
1041     // Add several summaries for the given name.
1042     void operator()(StringRef Name, const std::vector<Summary> &Summaries) {
1043       for (const Summary &S : Summaries)
1044         operator()(Name, S);
1045     }
1046     // Add the same summary for different names with the Signature explicitly
1047     // given.
1048     void operator()(std::vector<StringRef> Names, Signature Sign, Summary Sum) {
1049       for (StringRef Name : Names)
1050         operator()(Name, Sign, Sum);
1051     }
1052   } addToFunctionSummaryMap(ACtx, FunctionSummaryMap, DisplayLoadedSummaries);
1053 
1054   // Below are helpers functions to create the summaries.
1055   auto ArgumentCondition = [](ArgNo ArgN, RangeKind Kind,
1056                               IntRangeVector Ranges) {
1057     return std::make_shared<RangeConstraint>(ArgN, Kind, Ranges);
1058   };
1059   auto BufferSize = [](auto... Args) {
1060     return std::make_shared<BufferSizeConstraint>(Args...);
1061   };
1062   struct {
1063     auto operator()(RangeKind Kind, IntRangeVector Ranges) {
1064       return std::make_shared<RangeConstraint>(Ret, Kind, Ranges);
1065     }
1066     auto operator()(BinaryOperator::Opcode Op, ArgNo OtherArgN) {
1067       return std::make_shared<ComparisonConstraint>(Ret, Op, OtherArgN);
1068     }
1069   } ReturnValueCondition;
1070   struct {
1071     auto operator()(RangeInt b, RangeInt e) {
1072       return IntRangeVector{std::pair<RangeInt, RangeInt>{b, e}};
1073     }
1074     auto operator()(RangeInt b, Optional<RangeInt> e) {
1075       if (e)
1076         return IntRangeVector{std::pair<RangeInt, RangeInt>{b, *e}};
1077       return IntRangeVector{};
1078     }
1079   } Range;
1080   auto SingleValue = [](RangeInt v) {
1081     return IntRangeVector{std::pair<RangeInt, RangeInt>{v, v}};
1082   };
1083   auto LessThanOrEq = BO_LE;
1084   auto NotNull = [&](ArgNo ArgN) {
1085     return std::make_shared<NotNullConstraint>(ArgN);
1086   };
1087 
1088   Optional<QualType> FileTy = lookupTy("FILE");
1089   Optional<QualType> FilePtrTy = getPointerTy(FileTy);
1090   Optional<QualType> FilePtrRestrictTy = getRestrictTy(FilePtrTy);
1091 
1092   // Templates for summaries that are reused by many functions.
1093   auto Read = [&](RetType R, RangeInt Max) {
1094     return Summary(ArgTypes{Irrelevant, Irrelevant, SizeTy}, RetType{R},
1095                    NoEvalCall)
1096         .Case({ReturnValueCondition(LessThanOrEq, ArgNo(2)),
1097                ReturnValueCondition(WithinRange, Range(-1, Max))});
1098   };
1099   auto Getline = [&](RetType R, RangeInt Max) {
1100     return Summary(ArgTypes{Irrelevant, Irrelevant, Irrelevant}, RetType{R},
1101                    NoEvalCall)
1102         .Case({ReturnValueCondition(WithinRange, {{-1, -1}, {1, Max}})});
1103   };
1104 
1105   // We are finally ready to define specifications for all supported functions.
1106   //
1107   // Argument ranges should always cover all variants. If return value
1108   // is completely unknown, omit it from the respective range set.
1109   //
1110   // Every item in the list of range sets represents a particular
1111   // execution path the analyzer would need to explore once
1112   // the call is modeled - a new program state is constructed
1113   // for every range set, and each range line in the range set
1114   // corresponds to a specific constraint within this state.
1115 
1116   // The isascii() family of functions.
1117   // The behavior is undefined if the value of the argument is not
1118   // representable as unsigned char or is not equal to EOF. See e.g. C99
1119   // 7.4.1.2 The isalpha function (p: 181-182).
1120   addToFunctionSummaryMap(
1121       "isalnum",
1122       Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
1123           // Boils down to isupper() or islower() or isdigit().
1124           .Case({ArgumentCondition(0U, WithinRange,
1125                                    {{'0', '9'}, {'A', 'Z'}, {'a', 'z'}}),
1126                  ReturnValueCondition(OutOfRange, SingleValue(0))})
1127           // The locale-specific range.
1128           // No post-condition. We are completely unaware of
1129           // locale-specific return values.
1130           .Case({ArgumentCondition(0U, WithinRange, {{128, UCharRangeMax}})})
1131           .Case(
1132               {ArgumentCondition(
1133                    0U, OutOfRange,
1134                    {{'0', '9'}, {'A', 'Z'}, {'a', 'z'}, {128, UCharRangeMax}}),
1135                ReturnValueCondition(WithinRange, SingleValue(0))})
1136           .ArgConstraint(ArgumentCondition(
1137               0U, WithinRange, {{EOFv, EOFv}, {0, UCharRangeMax}})));
1138   addToFunctionSummaryMap(
1139       "isalpha",
1140       Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
1141           .Case({ArgumentCondition(0U, WithinRange, {{'A', 'Z'}, {'a', 'z'}}),
1142                  ReturnValueCondition(OutOfRange, SingleValue(0))})
1143           // The locale-specific range.
1144           .Case({ArgumentCondition(0U, WithinRange, {{128, UCharRangeMax}})})
1145           .Case({ArgumentCondition(
1146                      0U, OutOfRange,
1147                      {{'A', 'Z'}, {'a', 'z'}, {128, UCharRangeMax}}),
1148                  ReturnValueCondition(WithinRange, SingleValue(0))}));
1149   addToFunctionSummaryMap(
1150       "isascii",
1151       Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
1152           .Case({ArgumentCondition(0U, WithinRange, Range(0, 127)),
1153                  ReturnValueCondition(OutOfRange, SingleValue(0))})
1154           .Case({ArgumentCondition(0U, OutOfRange, Range(0, 127)),
1155                  ReturnValueCondition(WithinRange, SingleValue(0))}));
1156   addToFunctionSummaryMap(
1157       "isblank",
1158       Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
1159           .Case({ArgumentCondition(0U, WithinRange, {{'\t', '\t'}, {' ', ' '}}),
1160                  ReturnValueCondition(OutOfRange, SingleValue(0))})
1161           .Case({ArgumentCondition(0U, OutOfRange, {{'\t', '\t'}, {' ', ' '}}),
1162                  ReturnValueCondition(WithinRange, SingleValue(0))}));
1163   addToFunctionSummaryMap(
1164       "iscntrl",
1165       Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
1166           .Case({ArgumentCondition(0U, WithinRange, {{0, 32}, {127, 127}}),
1167                  ReturnValueCondition(OutOfRange, SingleValue(0))})
1168           .Case({ArgumentCondition(0U, OutOfRange, {{0, 32}, {127, 127}}),
1169                  ReturnValueCondition(WithinRange, SingleValue(0))}));
1170   addToFunctionSummaryMap(
1171       "isdigit",
1172       Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
1173           .Case({ArgumentCondition(0U, WithinRange, Range('0', '9')),
1174                  ReturnValueCondition(OutOfRange, SingleValue(0))})
1175           .Case({ArgumentCondition(0U, OutOfRange, Range('0', '9')),
1176                  ReturnValueCondition(WithinRange, SingleValue(0))}));
1177   addToFunctionSummaryMap(
1178       "isgraph",
1179       Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
1180           .Case({ArgumentCondition(0U, WithinRange, Range(33, 126)),
1181                  ReturnValueCondition(OutOfRange, SingleValue(0))})
1182           .Case({ArgumentCondition(0U, OutOfRange, Range(33, 126)),
1183                  ReturnValueCondition(WithinRange, SingleValue(0))}));
1184   addToFunctionSummaryMap(
1185       "islower",
1186       Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
1187           // Is certainly lowercase.
1188           .Case({ArgumentCondition(0U, WithinRange, Range('a', 'z')),
1189                  ReturnValueCondition(OutOfRange, SingleValue(0))})
1190           // Is ascii but not lowercase.
1191           .Case({ArgumentCondition(0U, WithinRange, Range(0, 127)),
1192                  ArgumentCondition(0U, OutOfRange, Range('a', 'z')),
1193                  ReturnValueCondition(WithinRange, SingleValue(0))})
1194           // The locale-specific range.
1195           .Case({ArgumentCondition(0U, WithinRange, {{128, UCharRangeMax}})})
1196           // Is not an unsigned char.
1197           .Case({ArgumentCondition(0U, OutOfRange, Range(0, UCharRangeMax)),
1198                  ReturnValueCondition(WithinRange, SingleValue(0))}));
1199   addToFunctionSummaryMap(
1200       "isprint",
1201       Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
1202           .Case({ArgumentCondition(0U, WithinRange, Range(32, 126)),
1203                  ReturnValueCondition(OutOfRange, SingleValue(0))})
1204           .Case({ArgumentCondition(0U, OutOfRange, Range(32, 126)),
1205                  ReturnValueCondition(WithinRange, SingleValue(0))}));
1206   addToFunctionSummaryMap(
1207       "ispunct",
1208       Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
1209           .Case({ArgumentCondition(
1210                      0U, WithinRange,
1211                      {{'!', '/'}, {':', '@'}, {'[', '`'}, {'{', '~'}}),
1212                  ReturnValueCondition(OutOfRange, SingleValue(0))})
1213           .Case({ArgumentCondition(
1214                      0U, OutOfRange,
1215                      {{'!', '/'}, {':', '@'}, {'[', '`'}, {'{', '~'}}),
1216                  ReturnValueCondition(WithinRange, SingleValue(0))}));
1217   addToFunctionSummaryMap(
1218       "isspace",
1219       Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
1220           // Space, '\f', '\n', '\r', '\t', '\v'.
1221           .Case({ArgumentCondition(0U, WithinRange, {{9, 13}, {' ', ' '}}),
1222                  ReturnValueCondition(OutOfRange, SingleValue(0))})
1223           // The locale-specific range.
1224           .Case({ArgumentCondition(0U, WithinRange, {{128, UCharRangeMax}})})
1225           .Case({ArgumentCondition(0U, OutOfRange,
1226                                    {{9, 13}, {' ', ' '}, {128, UCharRangeMax}}),
1227                  ReturnValueCondition(WithinRange, SingleValue(0))}));
1228   addToFunctionSummaryMap(
1229       "isupper",
1230       Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
1231           // Is certainly uppercase.
1232           .Case({ArgumentCondition(0U, WithinRange, Range('A', 'Z')),
1233                  ReturnValueCondition(OutOfRange, SingleValue(0))})
1234           // The locale-specific range.
1235           .Case({ArgumentCondition(0U, WithinRange, {{128, UCharRangeMax}})})
1236           // Other.
1237           .Case({ArgumentCondition(0U, OutOfRange,
1238                                    {{'A', 'Z'}, {128, UCharRangeMax}}),
1239                  ReturnValueCondition(WithinRange, SingleValue(0))}));
1240   addToFunctionSummaryMap(
1241       "isxdigit",
1242       Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
1243           .Case({ArgumentCondition(0U, WithinRange,
1244                                    {{'0', '9'}, {'A', 'F'}, {'a', 'f'}}),
1245                  ReturnValueCondition(OutOfRange, SingleValue(0))})
1246           .Case({ArgumentCondition(0U, OutOfRange,
1247                                    {{'0', '9'}, {'A', 'F'}, {'a', 'f'}}),
1248                  ReturnValueCondition(WithinRange, SingleValue(0))}));
1249   addToFunctionSummaryMap(
1250       "toupper", Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
1251                      .ArgConstraint(ArgumentCondition(
1252                          0U, WithinRange, {{EOFv, EOFv}, {0, UCharRangeMax}})));
1253   addToFunctionSummaryMap(
1254       "tolower", Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
1255                      .ArgConstraint(ArgumentCondition(
1256                          0U, WithinRange, {{EOFv, EOFv}, {0, UCharRangeMax}})));
1257   addToFunctionSummaryMap(
1258       "toascii", Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
1259                      .ArgConstraint(ArgumentCondition(
1260                          0U, WithinRange, {{EOFv, EOFv}, {0, UCharRangeMax}})));
1261 
1262   // The getc() family of functions that returns either a char or an EOF.
1263   addToFunctionSummaryMap(
1264       {"getc", "fgetc"}, Signature(ArgTypes{FilePtrTy}, RetType{IntTy}),
1265       Summary(NoEvalCall)
1266           .Case({ReturnValueCondition(WithinRange,
1267                                       {{EOFv, EOFv}, {0, UCharRangeMax}})}));
1268   addToFunctionSummaryMap(
1269       "getchar", Summary(ArgTypes{}, RetType{IntTy}, NoEvalCall)
1270                      .Case({ReturnValueCondition(
1271                          WithinRange, {{EOFv, EOFv}, {0, UCharRangeMax}})}));
1272 
1273   // read()-like functions that never return more than buffer size.
1274   auto FreadSummary =
1275       Summary(NoEvalCall)
1276           .Case({
1277               ReturnValueCondition(LessThanOrEq, ArgNo(2)),
1278           })
1279           .ArgConstraint(NotNull(ArgNo(0)))
1280           .ArgConstraint(NotNull(ArgNo(3)))
1281           .ArgConstraint(BufferSize(/*Buffer=*/ArgNo(0), /*BufSize=*/ArgNo(1),
1282                                     /*BufSizeMultiplier=*/ArgNo(2)));
1283 
1284   // size_t fread(void *restrict ptr, size_t size, size_t nitems,
1285   //              FILE *restrict stream);
1286   addToFunctionSummaryMap(
1287       "fread",
1288       Signature(ArgTypes{VoidPtrRestrictTy, SizeTy, SizeTy, FilePtrRestrictTy},
1289                 RetType{SizeTy}),
1290       FreadSummary);
1291   // size_t fwrite(const void *restrict ptr, size_t size, size_t nitems,
1292   //               FILE *restrict stream);
1293   addToFunctionSummaryMap("fwrite",
1294                           Signature(ArgTypes{ConstVoidPtrRestrictTy, SizeTy,
1295                                              SizeTy, FilePtrRestrictTy},
1296                                     RetType{SizeTy}),
1297                           FreadSummary);
1298 
1299   // We are not sure how ssize_t is defined on every platform, so we
1300   // provide three variants that should cover common cases.
1301   // FIXME Use lookupTy("ssize_t") instead of the `Read` lambda.
1302   // FIXME these are actually defined by POSIX and not by the C standard, we
1303   // should handle them together with the rest of the POSIX functions.
1304   addToFunctionSummaryMap("read", {Read(IntTy, IntMax), Read(LongTy, LongMax),
1305                                    Read(LongLongTy, LongLongMax)});
1306   addToFunctionSummaryMap("write", {Read(IntTy, IntMax), Read(LongTy, LongMax),
1307                                     Read(LongLongTy, LongLongMax)});
1308 
1309   // getline()-like functions either fail or read at least the delimiter.
1310   // FIXME Use lookupTy("ssize_t") instead of the `Getline` lambda.
1311   // FIXME these are actually defined by POSIX and not by the C standard, we
1312   // should handle them together with the rest of the POSIX functions.
1313   addToFunctionSummaryMap("getline",
1314                           {Getline(IntTy, IntMax), Getline(LongTy, LongMax),
1315                            Getline(LongLongTy, LongLongMax)});
1316   // FIXME getdelim's signature is different than getline's!
1317   addToFunctionSummaryMap("getdelim",
1318                           {Getline(IntTy, IntMax), Getline(LongTy, LongMax),
1319                            Getline(LongLongTy, LongLongMax)});
1320 
1321   if (ModelPOSIX) {
1322 
1323     // long a64l(const char *str64);
1324     addToFunctionSummaryMap(
1325         "a64l", Summary(ArgTypes{ConstCharPtrTy}, RetType{LongTy}, NoEvalCall)
1326                     .ArgConstraint(NotNull(ArgNo(0))));
1327 
1328     // char *l64a(long value);
1329     addToFunctionSummaryMap(
1330         "l64a", Summary(ArgTypes{LongTy}, RetType{CharPtrTy}, NoEvalCall)
1331                     .ArgConstraint(
1332                         ArgumentCondition(0, WithinRange, Range(0, LongMax))));
1333 
1334     // int access(const char *pathname, int amode);
1335     addToFunctionSummaryMap("access", Summary(ArgTypes{ConstCharPtrTy, IntTy},
1336                                               RetType{IntTy}, NoEvalCall)
1337                                           .ArgConstraint(NotNull(ArgNo(0))));
1338 
1339     // int faccessat(int dirfd, const char *pathname, int mode, int flags);
1340     addToFunctionSummaryMap(
1341         "faccessat", Summary(ArgTypes{IntTy, ConstCharPtrTy, IntTy, IntTy},
1342                              RetType{IntTy}, NoEvalCall)
1343                          .ArgConstraint(NotNull(ArgNo(1))));
1344 
1345     // int dup(int fildes);
1346     addToFunctionSummaryMap(
1347         "dup", Summary(ArgTypes{IntTy}, RetType{IntTy}, NoEvalCall)
1348                    .ArgConstraint(
1349                        ArgumentCondition(0, WithinRange, Range(0, IntMax))));
1350 
1351     // int dup2(int fildes1, int filedes2);
1352     addToFunctionSummaryMap(
1353         "dup2",
1354         Summary(ArgTypes{IntTy, IntTy}, RetType{IntTy}, NoEvalCall)
1355             .ArgConstraint(ArgumentCondition(0, WithinRange, Range(0, IntMax)))
1356             .ArgConstraint(
1357                 ArgumentCondition(1, WithinRange, Range(0, IntMax))));
1358 
1359     // int fdatasync(int fildes);
1360     addToFunctionSummaryMap(
1361         "fdatasync", Summary(ArgTypes{IntTy}, RetType{IntTy}, NoEvalCall)
1362                          .ArgConstraint(ArgumentCondition(0, WithinRange,
1363                                                           Range(0, IntMax))));
1364 
1365     // int fnmatch(const char *pattern, const char *string, int flags);
1366     addToFunctionSummaryMap(
1367         "fnmatch", Summary(ArgTypes{ConstCharPtrTy, ConstCharPtrTy, IntTy},
1368                            RetType{IntTy}, EvalCallAsPure)
1369                        .ArgConstraint(NotNull(ArgNo(0)))
1370                        .ArgConstraint(NotNull(ArgNo(1))));
1371 
1372     // int fsync(int fildes);
1373     addToFunctionSummaryMap(
1374         "fsync", Summary(ArgTypes{IntTy}, RetType{IntTy}, NoEvalCall)
1375                      .ArgConstraint(
1376                          ArgumentCondition(0, WithinRange, Range(0, IntMax))));
1377 
1378     Optional<QualType> Off_tTy = lookupTy("off_t");
1379 
1380     // int truncate(const char *path, off_t length);
1381     addToFunctionSummaryMap(
1382         "truncate",
1383         Summary(ArgTypes{ConstCharPtrTy, Off_tTy}, RetType{IntTy}, NoEvalCall)
1384             .ArgConstraint(NotNull(ArgNo(0))));
1385 
1386     // int symlink(const char *oldpath, const char *newpath);
1387     addToFunctionSummaryMap("symlink",
1388                             Summary(ArgTypes{ConstCharPtrTy, ConstCharPtrTy},
1389                                     RetType{IntTy}, NoEvalCall)
1390                                 .ArgConstraint(NotNull(ArgNo(0)))
1391                                 .ArgConstraint(NotNull(ArgNo(1))));
1392 
1393     // int symlinkat(const char *oldpath, int newdirfd, const char *newpath);
1394     addToFunctionSummaryMap(
1395         "symlinkat",
1396         Summary(ArgTypes{ConstCharPtrTy, IntTy, ConstCharPtrTy}, RetType{IntTy},
1397                 NoEvalCall)
1398             .ArgConstraint(NotNull(ArgNo(0)))
1399             .ArgConstraint(ArgumentCondition(1, WithinRange, Range(0, IntMax)))
1400             .ArgConstraint(NotNull(ArgNo(2))));
1401 
1402     // int lockf(int fd, int cmd, off_t len);
1403     addToFunctionSummaryMap(
1404         "lockf",
1405         Summary(ArgTypes{IntTy, IntTy, Off_tTy}, RetType{IntTy}, NoEvalCall)
1406             .ArgConstraint(
1407                 ArgumentCondition(0, WithinRange, Range(0, IntMax))));
1408 
1409     Optional<QualType> Mode_tTy = lookupTy("mode_t");
1410 
1411     // int creat(const char *pathname, mode_t mode);
1412     addToFunctionSummaryMap("creat", Summary(ArgTypes{ConstCharPtrTy, Mode_tTy},
1413                                              RetType{IntTy}, NoEvalCall)
1414                                          .ArgConstraint(NotNull(ArgNo(0))));
1415 
1416     // unsigned int sleep(unsigned int seconds);
1417     addToFunctionSummaryMap(
1418         "sleep",
1419         Summary(ArgTypes{UnsignedIntTy}, RetType{UnsignedIntTy}, NoEvalCall)
1420             .ArgConstraint(
1421                 ArgumentCondition(0, WithinRange, Range(0, UnsignedIntMax))));
1422 
1423     Optional<QualType> DirTy = lookupTy("DIR");
1424     Optional<QualType> DirPtrTy = getPointerTy(DirTy);
1425 
1426     // int dirfd(DIR *dirp);
1427     addToFunctionSummaryMap(
1428         "dirfd", Summary(ArgTypes{DirPtrTy}, RetType{IntTy}, NoEvalCall)
1429                      .ArgConstraint(NotNull(ArgNo(0))));
1430 
1431     // unsigned int alarm(unsigned int seconds);
1432     addToFunctionSummaryMap(
1433         "alarm",
1434         Summary(ArgTypes{UnsignedIntTy}, RetType{UnsignedIntTy}, NoEvalCall)
1435             .ArgConstraint(
1436                 ArgumentCondition(0, WithinRange, Range(0, UnsignedIntMax))));
1437 
1438     // int closedir(DIR *dir);
1439     addToFunctionSummaryMap(
1440         "closedir", Summary(ArgTypes{DirPtrTy}, RetType{IntTy}, NoEvalCall)
1441                         .ArgConstraint(NotNull(ArgNo(0))));
1442 
1443     // char *strdup(const char *s);
1444     addToFunctionSummaryMap("strdup", Summary(ArgTypes{ConstCharPtrTy},
1445                                               RetType{CharPtrTy}, NoEvalCall)
1446                                           .ArgConstraint(NotNull(ArgNo(0))));
1447 
1448     // char *strndup(const char *s, size_t n);
1449     addToFunctionSummaryMap(
1450         "strndup", Summary(ArgTypes{ConstCharPtrTy, SizeTy}, RetType{CharPtrTy},
1451                            NoEvalCall)
1452                        .ArgConstraint(NotNull(ArgNo(0)))
1453                        .ArgConstraint(ArgumentCondition(1, WithinRange,
1454                                                         Range(0, SizeMax))));
1455 
1456     // wchar_t *wcsdup(const wchar_t *s);
1457     addToFunctionSummaryMap("wcsdup", Summary(ArgTypes{ConstWchar_tPtrTy},
1458                                               RetType{Wchar_tPtrTy}, NoEvalCall)
1459                                           .ArgConstraint(NotNull(ArgNo(0))));
1460 
1461     // int mkstemp(char *template);
1462     addToFunctionSummaryMap(
1463         "mkstemp", Summary(ArgTypes{CharPtrTy}, RetType{IntTy}, NoEvalCall)
1464                        .ArgConstraint(NotNull(ArgNo(0))));
1465 
1466     // char *mkdtemp(char *template);
1467     addToFunctionSummaryMap(
1468         "mkdtemp", Summary(ArgTypes{CharPtrTy}, RetType{CharPtrTy}, NoEvalCall)
1469                        .ArgConstraint(NotNull(ArgNo(0))));
1470 
1471     // char *getcwd(char *buf, size_t size);
1472     addToFunctionSummaryMap(
1473         "getcwd",
1474         Summary(ArgTypes{CharPtrTy, SizeTy}, RetType{CharPtrTy}, NoEvalCall)
1475             .ArgConstraint(
1476                 ArgumentCondition(1, WithinRange, Range(0, SizeMax))));
1477 
1478     // int mkdir(const char *pathname, mode_t mode);
1479     addToFunctionSummaryMap("mkdir", Summary(ArgTypes{ConstCharPtrTy, Mode_tTy},
1480                                              RetType{IntTy}, NoEvalCall)
1481                                          .ArgConstraint(NotNull(ArgNo(0))));
1482 
1483     // int mkdirat(int dirfd, const char *pathname, mode_t mode);
1484     addToFunctionSummaryMap("mkdirat",
1485                             Summary(ArgTypes{IntTy, ConstCharPtrTy, Mode_tTy},
1486                                     RetType{IntTy}, NoEvalCall)
1487                                 .ArgConstraint(NotNull(ArgNo(1))));
1488 
1489     Optional<QualType> Dev_tTy = lookupTy("dev_t");
1490 
1491     // int mknod(const char *pathname, mode_t mode, dev_t dev);
1492     addToFunctionSummaryMap("mknod",
1493                             Summary(ArgTypes{ConstCharPtrTy, Mode_tTy, Dev_tTy},
1494                                     RetType{IntTy}, NoEvalCall)
1495                                 .ArgConstraint(NotNull(ArgNo(0))));
1496 
1497     // int mknodat(int dirfd, const char *pathname, mode_t mode, dev_t dev);
1498     addToFunctionSummaryMap(
1499         "mknodat", Summary(ArgTypes{IntTy, ConstCharPtrTy, Mode_tTy, Dev_tTy},
1500                            RetType{IntTy}, NoEvalCall)
1501                        .ArgConstraint(NotNull(ArgNo(1))));
1502 
1503     // int chmod(const char *path, mode_t mode);
1504     addToFunctionSummaryMap("chmod", Summary(ArgTypes{ConstCharPtrTy, Mode_tTy},
1505                                              RetType{IntTy}, NoEvalCall)
1506                                          .ArgConstraint(NotNull(ArgNo(0))));
1507 
1508     // int fchmodat(int dirfd, const char *pathname, mode_t mode, int flags);
1509     addToFunctionSummaryMap(
1510         "fchmodat",
1511         Summary(ArgTypes{IntTy, ConstCharPtrTy, Mode_tTy, IntTy},
1512                 RetType{IntTy}, NoEvalCall)
1513             .ArgConstraint(ArgumentCondition(0, WithinRange, Range(0, IntMax)))
1514             .ArgConstraint(NotNull(ArgNo(1))));
1515 
1516     // int fchmod(int fildes, mode_t mode);
1517     addToFunctionSummaryMap(
1518         "fchmod", Summary(ArgTypes{IntTy, Mode_tTy}, RetType{IntTy}, NoEvalCall)
1519                       .ArgConstraint(
1520                           ArgumentCondition(0, WithinRange, Range(0, IntMax))));
1521 
1522     Optional<QualType> Uid_tTy = lookupTy("uid_t");
1523     Optional<QualType> Gid_tTy = lookupTy("gid_t");
1524 
1525     // int fchownat(int dirfd, const char *pathname, uid_t owner, gid_t group,
1526     //              int flags);
1527     addToFunctionSummaryMap(
1528         "fchownat",
1529         Summary(ArgTypes{IntTy, ConstCharPtrTy, Uid_tTy, Gid_tTy, IntTy},
1530                 RetType{IntTy}, NoEvalCall)
1531             .ArgConstraint(ArgumentCondition(0, WithinRange, Range(0, IntMax)))
1532             .ArgConstraint(NotNull(ArgNo(1))));
1533 
1534     // int chown(const char *path, uid_t owner, gid_t group);
1535     addToFunctionSummaryMap("chown",
1536                             Summary(ArgTypes{ConstCharPtrTy, Uid_tTy, Gid_tTy},
1537                                     RetType{IntTy}, NoEvalCall)
1538                                 .ArgConstraint(NotNull(ArgNo(0))));
1539 
1540     // int lchown(const char *path, uid_t owner, gid_t group);
1541     addToFunctionSummaryMap("lchown",
1542                             Summary(ArgTypes{ConstCharPtrTy, Uid_tTy, Gid_tTy},
1543                                     RetType{IntTy}, NoEvalCall)
1544                                 .ArgConstraint(NotNull(ArgNo(0))));
1545 
1546     // int fchown(int fildes, uid_t owner, gid_t group);
1547     addToFunctionSummaryMap(
1548         "fchown",
1549         Summary(ArgTypes{IntTy, Uid_tTy, Gid_tTy}, RetType{IntTy}, NoEvalCall)
1550             .ArgConstraint(
1551                 ArgumentCondition(0, WithinRange, Range(0, IntMax))));
1552 
1553     // int rmdir(const char *pathname);
1554     addToFunctionSummaryMap(
1555         "rmdir", Summary(ArgTypes{ConstCharPtrTy}, RetType{IntTy}, NoEvalCall)
1556                      .ArgConstraint(NotNull(ArgNo(0))));
1557 
1558     // int chdir(const char *path);
1559     addToFunctionSummaryMap(
1560         "chdir", Summary(ArgTypes{ConstCharPtrTy}, RetType{IntTy}, NoEvalCall)
1561                      .ArgConstraint(NotNull(ArgNo(0))));
1562 
1563     // int link(const char *oldpath, const char *newpath);
1564     addToFunctionSummaryMap("link",
1565                             Summary(ArgTypes{ConstCharPtrTy, ConstCharPtrTy},
1566                                     RetType{IntTy}, NoEvalCall)
1567                                 .ArgConstraint(NotNull(ArgNo(0)))
1568                                 .ArgConstraint(NotNull(ArgNo(1))));
1569 
1570     // int linkat(int fd1, const char *path1, int fd2, const char *path2,
1571     //            int flag);
1572     addToFunctionSummaryMap(
1573         "linkat",
1574         Summary(ArgTypes{IntTy, ConstCharPtrTy, IntTy, ConstCharPtrTy, IntTy},
1575                 RetType{IntTy}, NoEvalCall)
1576             .ArgConstraint(ArgumentCondition(0, WithinRange, Range(0, IntMax)))
1577             .ArgConstraint(NotNull(ArgNo(1)))
1578             .ArgConstraint(ArgumentCondition(2, WithinRange, Range(0, IntMax)))
1579             .ArgConstraint(NotNull(ArgNo(3))));
1580 
1581     // int unlink(const char *pathname);
1582     addToFunctionSummaryMap(
1583         "unlink", Summary(ArgTypes{ConstCharPtrTy}, RetType{IntTy}, NoEvalCall)
1584                       .ArgConstraint(NotNull(ArgNo(0))));
1585 
1586     // int unlinkat(int fd, const char *path, int flag);
1587     addToFunctionSummaryMap(
1588         "unlinkat",
1589         Summary(ArgTypes{IntTy, ConstCharPtrTy, IntTy}, RetType{IntTy},
1590                 NoEvalCall)
1591             .ArgConstraint(ArgumentCondition(0, WithinRange, Range(0, IntMax)))
1592             .ArgConstraint(NotNull(ArgNo(1))));
1593 
1594     Optional<QualType> StructStatTy = lookupTy("stat");
1595     Optional<QualType> StructStatPtrTy = getPointerTy(StructStatTy);
1596     Optional<QualType> StructStatPtrRestrictTy = getRestrictTy(StructStatPtrTy);
1597 
1598     // int fstat(int fd, struct stat *statbuf);
1599     addToFunctionSummaryMap(
1600         "fstat",
1601         Summary(ArgTypes{IntTy, StructStatPtrTy}, RetType{IntTy}, NoEvalCall)
1602             .ArgConstraint(ArgumentCondition(0, WithinRange, Range(0, IntMax)))
1603             .ArgConstraint(NotNull(ArgNo(1))));
1604 
1605     // int stat(const char *restrict path, struct stat *restrict buf);
1606     addToFunctionSummaryMap("stat", Summary(ArgTypes{ConstCharPtrRestrictTy,
1607                                                      StructStatPtrRestrictTy},
1608                                             RetType{IntTy}, NoEvalCall)
1609                                         .ArgConstraint(NotNull(ArgNo(0)))
1610                                         .ArgConstraint(NotNull(ArgNo(1))));
1611 
1612     // int lstat(const char *restrict path, struct stat *restrict buf);
1613     addToFunctionSummaryMap("lstat", Summary(ArgTypes{ConstCharPtrRestrictTy,
1614                                                       StructStatPtrRestrictTy},
1615                                              RetType{IntTy}, NoEvalCall)
1616                                          .ArgConstraint(NotNull(ArgNo(0)))
1617                                          .ArgConstraint(NotNull(ArgNo(1))));
1618 
1619     // int fstatat(int fd, const char *restrict path,
1620     //             struct stat *restrict buf, int flag);
1621     addToFunctionSummaryMap(
1622         "fstatat",
1623         Summary(ArgTypes{IntTy, ConstCharPtrRestrictTy, StructStatPtrRestrictTy,
1624                          IntTy},
1625                 RetType{IntTy}, NoEvalCall)
1626             .ArgConstraint(ArgumentCondition(0, WithinRange, Range(0, IntMax)))
1627             .ArgConstraint(NotNull(ArgNo(1)))
1628             .ArgConstraint(NotNull(ArgNo(2))));
1629 
1630     // DIR *opendir(const char *name);
1631     addToFunctionSummaryMap("opendir", Summary(ArgTypes{ConstCharPtrTy},
1632                                                RetType{DirPtrTy}, NoEvalCall)
1633                                            .ArgConstraint(NotNull(ArgNo(0))));
1634 
1635     // DIR *fdopendir(int fd);
1636     addToFunctionSummaryMap(
1637         "fdopendir", Summary(ArgTypes{IntTy}, RetType{DirPtrTy}, NoEvalCall)
1638                          .ArgConstraint(ArgumentCondition(0, WithinRange,
1639                                                           Range(0, IntMax))));
1640 
1641     // int isatty(int fildes);
1642     addToFunctionSummaryMap(
1643         "isatty", Summary(ArgTypes{IntTy}, RetType{IntTy}, NoEvalCall)
1644                       .ArgConstraint(
1645                           ArgumentCondition(0, WithinRange, Range(0, IntMax))));
1646 
1647     // FILE *popen(const char *command, const char *type);
1648     addToFunctionSummaryMap("popen",
1649                             Summary(ArgTypes{ConstCharPtrTy, ConstCharPtrTy},
1650                                     RetType{FilePtrTy}, NoEvalCall)
1651                                 .ArgConstraint(NotNull(ArgNo(0)))
1652                                 .ArgConstraint(NotNull(ArgNo(1))));
1653 
1654     // int pclose(FILE *stream);
1655     addToFunctionSummaryMap(
1656         "pclose", Summary(ArgTypes{FilePtrTy}, RetType{IntTy}, NoEvalCall)
1657                       .ArgConstraint(NotNull(ArgNo(0))));
1658 
1659     // int close(int fildes);
1660     addToFunctionSummaryMap(
1661         "close", Summary(ArgTypes{IntTy}, RetType{IntTy}, NoEvalCall)
1662                      .ArgConstraint(
1663                          ArgumentCondition(0, WithinRange, Range(0, IntMax))));
1664 
1665     // long fpathconf(int fildes, int name);
1666     addToFunctionSummaryMap(
1667         "fpathconf",
1668         Summary(ArgTypes{IntTy, IntTy}, RetType{LongTy}, NoEvalCall)
1669             .ArgConstraint(
1670                 ArgumentCondition(0, WithinRange, Range(0, IntMax))));
1671 
1672     // long pathconf(const char *path, int name);
1673     addToFunctionSummaryMap("pathconf", Summary(ArgTypes{ConstCharPtrTy, IntTy},
1674                                                 RetType{LongTy}, NoEvalCall)
1675                                             .ArgConstraint(NotNull(ArgNo(0))));
1676 
1677     // FILE *fdopen(int fd, const char *mode);
1678     addToFunctionSummaryMap(
1679         "fdopen",
1680         Summary(ArgTypes{IntTy, ConstCharPtrTy}, RetType{FilePtrTy}, NoEvalCall)
1681             .ArgConstraint(ArgumentCondition(0, WithinRange, Range(0, IntMax)))
1682             .ArgConstraint(NotNull(ArgNo(1))));
1683 
1684     // void rewinddir(DIR *dir);
1685     addToFunctionSummaryMap(
1686         "rewinddir", Summary(ArgTypes{DirPtrTy}, RetType{VoidTy}, NoEvalCall)
1687                          .ArgConstraint(NotNull(ArgNo(0))));
1688 
1689     // void seekdir(DIR *dirp, long loc);
1690     addToFunctionSummaryMap("seekdir", Summary(ArgTypes{DirPtrTy, LongTy},
1691                                                RetType{VoidTy}, NoEvalCall)
1692                                            .ArgConstraint(NotNull(ArgNo(0))));
1693 
1694     // int rand_r(unsigned int *seedp);
1695     addToFunctionSummaryMap("rand_r", Summary(ArgTypes{UnsignedIntPtrTy},
1696                                               RetType{IntTy}, NoEvalCall)
1697                                           .ArgConstraint(NotNull(ArgNo(0))));
1698 
1699     // int fileno(FILE *stream);
1700     addToFunctionSummaryMap(
1701         "fileno", Summary(ArgTypes{FilePtrTy}, RetType{IntTy}, NoEvalCall)
1702                       .ArgConstraint(NotNull(ArgNo(0))));
1703 
1704     // int fseeko(FILE *stream, off_t offset, int whence);
1705     addToFunctionSummaryMap(
1706         "fseeko",
1707         Summary(ArgTypes{FilePtrTy, Off_tTy, IntTy}, RetType{IntTy}, NoEvalCall)
1708             .ArgConstraint(NotNull(ArgNo(0))));
1709 
1710     // off_t ftello(FILE *stream);
1711     addToFunctionSummaryMap(
1712         "ftello", Summary(ArgTypes{FilePtrTy}, RetType{Off_tTy}, NoEvalCall)
1713                       .ArgConstraint(NotNull(ArgNo(0))));
1714 
1715     Optional<RangeInt> Off_tMax = getMaxValue(Off_tTy);
1716     // void *mmap(void *addr, size_t length, int prot, int flags, int fd,
1717     // off_t offset);
1718     addToFunctionSummaryMap(
1719         "mmap",
1720         Summary(ArgTypes{VoidPtrTy, SizeTy, IntTy, IntTy, IntTy, Off_tTy},
1721                 RetType{VoidPtrTy}, NoEvalCall)
1722             .ArgConstraint(ArgumentCondition(1, WithinRange, Range(1, SizeMax)))
1723             .ArgConstraint(
1724                 ArgumentCondition(4, WithinRange, Range(0, Off_tMax))));
1725 
1726     Optional<QualType> Off64_tTy = lookupTy("off64_t");
1727     Optional<RangeInt> Off64_tMax = getMaxValue(Off_tTy);
1728     // void *mmap64(void *addr, size_t length, int prot, int flags, int fd,
1729     // off64_t offset);
1730     addToFunctionSummaryMap(
1731         "mmap64",
1732         Summary(ArgTypes{VoidPtrTy, SizeTy, IntTy, IntTy, IntTy, Off64_tTy},
1733                 RetType{VoidPtrTy}, NoEvalCall)
1734             .ArgConstraint(ArgumentCondition(1, WithinRange, Range(1, SizeMax)))
1735             .ArgConstraint(
1736                 ArgumentCondition(4, WithinRange, Range(0, Off64_tMax))));
1737 
1738     // int pipe(int fildes[2]);
1739     addToFunctionSummaryMap(
1740         "pipe", Summary(ArgTypes{IntPtrTy}, RetType{IntTy}, NoEvalCall)
1741                     .ArgConstraint(NotNull(ArgNo(0))));
1742 
1743     // off_t lseek(int fildes, off_t offset, int whence);
1744     addToFunctionSummaryMap(
1745         "lseek",
1746         Summary(ArgTypes{IntTy, Off_tTy, IntTy}, RetType{Off_tTy}, NoEvalCall)
1747             .ArgConstraint(
1748                 ArgumentCondition(0, WithinRange, Range(0, IntMax))));
1749 
1750     Optional<QualType> Ssize_tTy = lookupTy("ssize_t");
1751 
1752     // ssize_t readlink(const char *restrict path, char *restrict buf,
1753     //                  size_t bufsize);
1754     addToFunctionSummaryMap(
1755         "readlink",
1756         Summary(ArgTypes{ConstCharPtrRestrictTy, CharPtrRestrictTy, SizeTy},
1757                 RetType{Ssize_tTy}, NoEvalCall)
1758             .ArgConstraint(NotNull(ArgNo(0)))
1759             .ArgConstraint(NotNull(ArgNo(1)))
1760             .ArgConstraint(BufferSize(/*Buffer=*/ArgNo(1),
1761                                       /*BufSize=*/ArgNo(2)))
1762             .ArgConstraint(
1763                 ArgumentCondition(2, WithinRange, Range(0, SizeMax))));
1764 
1765     // ssize_t readlinkat(int fd, const char *restrict path,
1766     //                    char *restrict buf, size_t bufsize);
1767     addToFunctionSummaryMap(
1768         "readlinkat",
1769         Summary(
1770             ArgTypes{IntTy, ConstCharPtrRestrictTy, CharPtrRestrictTy, SizeTy},
1771             RetType{Ssize_tTy}, NoEvalCall)
1772             .ArgConstraint(ArgumentCondition(0, WithinRange, Range(0, IntMax)))
1773             .ArgConstraint(NotNull(ArgNo(1)))
1774             .ArgConstraint(NotNull(ArgNo(2)))
1775             .ArgConstraint(BufferSize(/*Buffer=*/ArgNo(2),
1776                                       /*BufSize=*/ArgNo(3)))
1777             .ArgConstraint(
1778                 ArgumentCondition(3, WithinRange, Range(0, SizeMax))));
1779 
1780     // int renameat(int olddirfd, const char *oldpath, int newdirfd, const char
1781     // *newpath);
1782     addToFunctionSummaryMap("renameat", Summary(ArgTypes{IntTy, ConstCharPtrTy,
1783                                                          IntTy, ConstCharPtrTy},
1784                                                 RetType{IntTy}, NoEvalCall)
1785                                             .ArgConstraint(NotNull(ArgNo(1)))
1786                                             .ArgConstraint(NotNull(ArgNo(3))));
1787 
1788     // char *realpath(const char *restrict file_name,
1789     //                char *restrict resolved_name);
1790     addToFunctionSummaryMap(
1791         "realpath", Summary(ArgTypes{ConstCharPtrRestrictTy, CharPtrRestrictTy},
1792                             RetType{CharPtrTy}, NoEvalCall)
1793                         .ArgConstraint(NotNull(ArgNo(0))));
1794 
1795     QualType CharPtrConstPtr = getPointerTy(getConstTy(CharPtrTy));
1796 
1797     // int execv(const char *path, char *const argv[]);
1798     addToFunctionSummaryMap("execv",
1799                             Summary(ArgTypes{ConstCharPtrTy, CharPtrConstPtr},
1800                                     RetType{IntTy}, NoEvalCall)
1801                                 .ArgConstraint(NotNull(ArgNo(0))));
1802 
1803     // int execvp(const char *file, char *const argv[]);
1804     addToFunctionSummaryMap("execvp",
1805                             Summary(ArgTypes{ConstCharPtrTy, CharPtrConstPtr},
1806                                     RetType{IntTy}, NoEvalCall)
1807                                 .ArgConstraint(NotNull(ArgNo(0))));
1808 
1809     // int getopt(int argc, char * const argv[], const char *optstring);
1810     addToFunctionSummaryMap(
1811         "getopt",
1812         Summary(ArgTypes{IntTy, CharPtrConstPtr, ConstCharPtrTy},
1813                 RetType{IntTy}, NoEvalCall)
1814             .ArgConstraint(ArgumentCondition(0, WithinRange, Range(0, IntMax)))
1815             .ArgConstraint(NotNull(ArgNo(1)))
1816             .ArgConstraint(NotNull(ArgNo(2))));
1817 
1818     Optional<QualType> StructSockaddrTy = lookupTy("sockaddr");
1819     Optional<QualType> StructSockaddrPtrTy = getPointerTy(StructSockaddrTy);
1820     Optional<QualType> ConstStructSockaddrPtrTy =
1821         getPointerTy(getConstTy(StructSockaddrTy));
1822     Optional<QualType> StructSockaddrPtrRestrictTy =
1823         getRestrictTy(StructSockaddrPtrTy);
1824     Optional<QualType> ConstStructSockaddrPtrRestrictTy =
1825         getRestrictTy(ConstStructSockaddrPtrTy);
1826     Optional<QualType> Socklen_tTy = lookupTy("socklen_t");
1827     Optional<QualType> Socklen_tPtrTy = getPointerTy(Socklen_tTy);
1828     Optional<QualType> Socklen_tPtrRestrictTy = getRestrictTy(Socklen_tPtrTy);
1829     Optional<RangeInt> Socklen_tMax = getMaxValue(Socklen_tTy);
1830 
1831     // In 'socket.h' of some libc implementations with C99, sockaddr parameter
1832     // is a transparent union of the underlying sockaddr_ family of pointers
1833     // instead of being a pointer to struct sockaddr. In these cases, the
1834     // standardized signature will not match, thus we try to match with another
1835     // signature that has the joker Irrelevant type. We also remove those
1836     // constraints which require pointer types for the sockaddr param.
1837     auto Accept =
1838         Summary(NoEvalCall)
1839             .ArgConstraint(ArgumentCondition(0, WithinRange, Range(0, IntMax)));
1840     if (!addToFunctionSummaryMap(
1841             "accept",
1842             // int accept(int socket, struct sockaddr *restrict address,
1843             //            socklen_t *restrict address_len);
1844             Signature(ArgTypes{IntTy, StructSockaddrPtrRestrictTy,
1845                                Socklen_tPtrRestrictTy},
1846                       RetType{IntTy}),
1847             Accept))
1848       addToFunctionSummaryMap(
1849           "accept",
1850           Signature(ArgTypes{IntTy, Irrelevant, Socklen_tPtrRestrictTy},
1851                     RetType{IntTy}),
1852           Accept);
1853 
1854     // int bind(int socket, const struct sockaddr *address, socklen_t
1855     //          address_len);
1856     if (!addToFunctionSummaryMap(
1857             "bind",
1858             Summary(ArgTypes{IntTy, ConstStructSockaddrPtrTy, Socklen_tTy},
1859                     RetType{IntTy}, NoEvalCall)
1860                 .ArgConstraint(
1861                     ArgumentCondition(0, WithinRange, Range(0, IntMax)))
1862                 .ArgConstraint(NotNull(ArgNo(1)))
1863                 .ArgConstraint(
1864                     BufferSize(/*Buffer=*/ArgNo(1), /*BufSize=*/ArgNo(2)))
1865                 .ArgConstraint(
1866                     ArgumentCondition(2, WithinRange, Range(0, Socklen_tMax)))))
1867       // Do not add constraints on sockaddr.
1868       addToFunctionSummaryMap(
1869           "bind", Summary(ArgTypes{IntTy, Irrelevant, Socklen_tTy},
1870                           RetType{IntTy}, NoEvalCall)
1871                       .ArgConstraint(
1872                           ArgumentCondition(0, WithinRange, Range(0, IntMax)))
1873                       .ArgConstraint(ArgumentCondition(
1874                           2, WithinRange, Range(0, Socklen_tMax))));
1875 
1876     // int getpeername(int socket, struct sockaddr *restrict address,
1877     //                 socklen_t *restrict address_len);
1878     if (!addToFunctionSummaryMap(
1879             "getpeername", Summary(ArgTypes{IntTy, StructSockaddrPtrRestrictTy,
1880                                             Socklen_tPtrRestrictTy},
1881                                    RetType{IntTy}, NoEvalCall)
1882                                .ArgConstraint(ArgumentCondition(
1883                                    0, WithinRange, Range(0, IntMax)))
1884                                .ArgConstraint(NotNull(ArgNo(1)))
1885                                .ArgConstraint(NotNull(ArgNo(2)))))
1886       addToFunctionSummaryMap(
1887           "getpeername",
1888           Summary(ArgTypes{IntTy, Irrelevant, Socklen_tPtrRestrictTy},
1889                   RetType{IntTy}, NoEvalCall)
1890               .ArgConstraint(
1891                   ArgumentCondition(0, WithinRange, Range(0, IntMax))));
1892 
1893     // int getsockname(int socket, struct sockaddr *restrict address,
1894     //                 socklen_t *restrict address_len);
1895     if (!addToFunctionSummaryMap(
1896             "getsockname", Summary(ArgTypes{IntTy, StructSockaddrPtrRestrictTy,
1897                                             Socklen_tPtrRestrictTy},
1898                                    RetType{IntTy}, NoEvalCall)
1899                                .ArgConstraint(ArgumentCondition(
1900                                    0, WithinRange, Range(0, IntMax)))
1901                                .ArgConstraint(NotNull(ArgNo(1)))
1902                                .ArgConstraint(NotNull(ArgNo(2)))))
1903       addToFunctionSummaryMap(
1904           "getsockname",
1905           Summary(ArgTypes{IntTy, Irrelevant, Socklen_tPtrRestrictTy},
1906                   RetType{IntTy}, NoEvalCall)
1907               .ArgConstraint(
1908                   ArgumentCondition(0, WithinRange, Range(0, IntMax))));
1909 
1910     // int connect(int socket, const struct sockaddr *address, socklen_t
1911     //             address_len);
1912     if (!addToFunctionSummaryMap(
1913             "connect",
1914             Summary(ArgTypes{IntTy, ConstStructSockaddrPtrTy, Socklen_tTy},
1915                     RetType{IntTy}, NoEvalCall)
1916                 .ArgConstraint(
1917                     ArgumentCondition(0, WithinRange, Range(0, IntMax)))
1918                 .ArgConstraint(NotNull(ArgNo(1)))))
1919       addToFunctionSummaryMap(
1920           "connect", Summary(ArgTypes{IntTy, Irrelevant, Socklen_tTy},
1921                              RetType{IntTy}, NoEvalCall)
1922                          .ArgConstraint(ArgumentCondition(0, WithinRange,
1923                                                           Range(0, IntMax))));
1924 
1925     auto Recvfrom =
1926         Summary(NoEvalCall)
1927             .ArgConstraint(ArgumentCondition(0, WithinRange, Range(0, IntMax)))
1928             .ArgConstraint(BufferSize(/*Buffer=*/ArgNo(1),
1929                                       /*BufSize=*/ArgNo(2)));
1930     if (!addToFunctionSummaryMap(
1931             "recvfrom",
1932             // ssize_t recvfrom(int socket, void *restrict buffer,
1933             //                  size_t length,
1934             //                  int flags, struct sockaddr *restrict address,
1935             //                  socklen_t *restrict address_len);
1936             Signature(ArgTypes{IntTy, VoidPtrRestrictTy, SizeTy, IntTy,
1937                                StructSockaddrPtrRestrictTy,
1938                                Socklen_tPtrRestrictTy},
1939                       RetType{Ssize_tTy}),
1940             Recvfrom))
1941       addToFunctionSummaryMap(
1942           "recvfrom",
1943           Signature(ArgTypes{IntTy, VoidPtrRestrictTy, SizeTy, IntTy,
1944                              Irrelevant, Socklen_tPtrRestrictTy},
1945                     RetType{Ssize_tTy}),
1946           Recvfrom);
1947 
1948     auto Sendto =
1949         Summary(NoEvalCall)
1950             .ArgConstraint(ArgumentCondition(0, WithinRange, Range(0, IntMax)))
1951             .ArgConstraint(BufferSize(/*Buffer=*/ArgNo(1),
1952                                       /*BufSize=*/ArgNo(2)));
1953     if (!addToFunctionSummaryMap(
1954             "sendto",
1955             // ssize_t sendto(int socket, const void *message, size_t length,
1956             //                int flags, const struct sockaddr *dest_addr,
1957             //                socklen_t dest_len);
1958             Signature(ArgTypes{IntTy, ConstVoidPtrTy, SizeTy, IntTy,
1959                                ConstStructSockaddrPtrTy, Socklen_tTy},
1960                       RetType{Ssize_tTy}),
1961             Sendto))
1962       addToFunctionSummaryMap(
1963           "sendto",
1964           Signature(ArgTypes{IntTy, ConstVoidPtrTy, SizeTy, IntTy, Irrelevant,
1965                              Socklen_tTy},
1966                     RetType{Ssize_tTy}),
1967           Sendto);
1968 
1969     // int listen(int sockfd, int backlog);
1970     addToFunctionSummaryMap(
1971         "listen", Summary(ArgTypes{IntTy, IntTy}, RetType{IntTy}, NoEvalCall)
1972                       .ArgConstraint(
1973                           ArgumentCondition(0, WithinRange, Range(0, IntMax))));
1974 
1975     // ssize_t recv(int sockfd, void *buf, size_t len, int flags);
1976     addToFunctionSummaryMap(
1977         "recv",
1978         Summary(ArgTypes{IntTy, VoidPtrTy, SizeTy, IntTy}, RetType{Ssize_tTy},
1979                 NoEvalCall)
1980             .ArgConstraint(ArgumentCondition(0, WithinRange, Range(0, IntMax)))
1981             .ArgConstraint(BufferSize(/*Buffer=*/ArgNo(1),
1982                                       /*BufSize=*/ArgNo(2))));
1983 
1984     Optional<QualType> StructMsghdrTy = lookupTy("msghdr");
1985     Optional<QualType> StructMsghdrPtrTy = getPointerTy(StructMsghdrTy);
1986     Optional<QualType> ConstStructMsghdrPtrTy =
1987         getPointerTy(getConstTy(StructMsghdrTy));
1988 
1989     // ssize_t recvmsg(int sockfd, struct msghdr *msg, int flags);
1990     addToFunctionSummaryMap(
1991         "recvmsg", Summary(ArgTypes{IntTy, StructMsghdrPtrTy, IntTy},
1992                            RetType{Ssize_tTy}, NoEvalCall)
1993                        .ArgConstraint(ArgumentCondition(0, WithinRange,
1994                                                         Range(0, IntMax))));
1995 
1996     // ssize_t sendmsg(int sockfd, const struct msghdr *msg, int flags);
1997     addToFunctionSummaryMap(
1998         "sendmsg", Summary(ArgTypes{IntTy, ConstStructMsghdrPtrTy, IntTy},
1999                            RetType{Ssize_tTy}, NoEvalCall)
2000                        .ArgConstraint(ArgumentCondition(0, WithinRange,
2001                                                         Range(0, IntMax))));
2002 
2003     // int setsockopt(int socket, int level, int option_name,
2004     //                const void *option_value, socklen_t option_len);
2005     addToFunctionSummaryMap(
2006         "setsockopt",
2007         Summary(ArgTypes{IntTy, IntTy, IntTy, ConstVoidPtrTy, Socklen_tTy},
2008                 RetType{IntTy}, NoEvalCall)
2009             .ArgConstraint(NotNull(ArgNo(3)))
2010             .ArgConstraint(
2011                 BufferSize(/*Buffer=*/ArgNo(3), /*BufSize=*/ArgNo(4)))
2012             .ArgConstraint(
2013                 ArgumentCondition(4, WithinRange, Range(0, Socklen_tMax))));
2014 
2015     // int getsockopt(int socket, int level, int option_name,
2016     //                void *restrict option_value,
2017     //                socklen_t *restrict option_len);
2018     addToFunctionSummaryMap(
2019         "getsockopt", Summary(ArgTypes{IntTy, IntTy, IntTy, VoidPtrRestrictTy,
2020                                        Socklen_tPtrRestrictTy},
2021                               RetType{IntTy}, NoEvalCall)
2022                           .ArgConstraint(NotNull(ArgNo(3)))
2023                           .ArgConstraint(NotNull(ArgNo(4))));
2024 
2025     // ssize_t send(int sockfd, const void *buf, size_t len, int flags);
2026     addToFunctionSummaryMap(
2027         "send",
2028         Summary(ArgTypes{IntTy, ConstVoidPtrTy, SizeTy, IntTy},
2029                 RetType{Ssize_tTy}, NoEvalCall)
2030             .ArgConstraint(ArgumentCondition(0, WithinRange, Range(0, IntMax)))
2031             .ArgConstraint(BufferSize(/*Buffer=*/ArgNo(1),
2032                                       /*BufSize=*/ArgNo(2))));
2033 
2034     // int socketpair(int domain, int type, int protocol, int sv[2]);
2035     addToFunctionSummaryMap("socketpair",
2036                             Summary(ArgTypes{IntTy, IntTy, IntTy, IntPtrTy},
2037                                     RetType{IntTy}, NoEvalCall)
2038                                 .ArgConstraint(NotNull(ArgNo(3))));
2039 
2040     // int getnameinfo(const struct sockaddr *restrict sa, socklen_t salen,
2041     //                 char *restrict node, socklen_t nodelen,
2042     //                 char *restrict service,
2043     //                 socklen_t servicelen, int flags);
2044     //
2045     // This is defined in netdb.h. And contrary to 'socket.h', the sockaddr
2046     // parameter is never handled as a transparent union in netdb.h
2047     addToFunctionSummaryMap(
2048         "getnameinfo",
2049         Summary(ArgTypes{ConstStructSockaddrPtrRestrictTy, Socklen_tTy,
2050                          CharPtrRestrictTy, Socklen_tTy, CharPtrRestrictTy,
2051                          Socklen_tTy, IntTy},
2052                 RetType{IntTy}, NoEvalCall)
2053             .ArgConstraint(
2054                 BufferSize(/*Buffer=*/ArgNo(0), /*BufSize=*/ArgNo(1)))
2055             .ArgConstraint(
2056                 ArgumentCondition(1, WithinRange, Range(0, Socklen_tMax)))
2057             .ArgConstraint(
2058                 BufferSize(/*Buffer=*/ArgNo(2), /*BufSize=*/ArgNo(3)))
2059             .ArgConstraint(
2060                 ArgumentCondition(3, WithinRange, Range(0, Socklen_tMax)))
2061             .ArgConstraint(
2062                 BufferSize(/*Buffer=*/ArgNo(4), /*BufSize=*/ArgNo(5)))
2063             .ArgConstraint(
2064                 ArgumentCondition(5, WithinRange, Range(0, Socklen_tMax))));
2065 
2066     Optional<QualType> StructUtimbufTy = lookupTy("utimbuf");
2067     Optional<QualType> StructUtimbufPtrTy = getPointerTy(StructUtimbufTy);
2068 
2069     // int utime(const char *filename, struct utimbuf *buf);
2070     addToFunctionSummaryMap(
2071         "utime", Summary(ArgTypes{ConstCharPtrTy, StructUtimbufPtrTy},
2072                          RetType{IntTy}, NoEvalCall)
2073                      .ArgConstraint(NotNull(ArgNo(0))));
2074 
2075     Optional<QualType> StructTimespecTy = lookupTy("timespec");
2076     Optional<QualType> StructTimespecPtrTy = getPointerTy(StructTimespecTy);
2077     Optional<QualType> ConstStructTimespecPtrTy =
2078         getPointerTy(getConstTy(StructTimespecTy));
2079 
2080     // int futimens(int fd, const struct timespec times[2]);
2081     addToFunctionSummaryMap(
2082         "futimens", Summary(ArgTypes{IntTy, ConstStructTimespecPtrTy},
2083                             RetType{IntTy}, NoEvalCall)
2084                         .ArgConstraint(ArgumentCondition(0, WithinRange,
2085                                                          Range(0, IntMax))));
2086 
2087     // int utimensat(int dirfd, const char *pathname,
2088     //               const struct timespec times[2], int flags);
2089     addToFunctionSummaryMap("utimensat",
2090                             Summary(ArgTypes{IntTy, ConstCharPtrTy,
2091                                              ConstStructTimespecPtrTy, IntTy},
2092                                     RetType{IntTy}, NoEvalCall)
2093                                 .ArgConstraint(NotNull(ArgNo(1))));
2094 
2095     Optional<QualType> StructTimevalTy = lookupTy("timeval");
2096     Optional<QualType> ConstStructTimevalPtrTy =
2097         getPointerTy(getConstTy(StructTimevalTy));
2098 
2099     // int utimes(const char *filename, const struct timeval times[2]);
2100     addToFunctionSummaryMap(
2101         "utimes", Summary(ArgTypes{ConstCharPtrTy, ConstStructTimevalPtrTy},
2102                           RetType{IntTy}, NoEvalCall)
2103                       .ArgConstraint(NotNull(ArgNo(0))));
2104 
2105     // int nanosleep(const struct timespec *rqtp, struct timespec *rmtp);
2106     addToFunctionSummaryMap(
2107         "nanosleep",
2108         Summary(ArgTypes{ConstStructTimespecPtrTy, StructTimespecPtrTy},
2109                 RetType{IntTy}, NoEvalCall)
2110             .ArgConstraint(NotNull(ArgNo(0))));
2111 
2112     Optional<QualType> Time_tTy = lookupTy("time_t");
2113     Optional<QualType> ConstTime_tPtrTy = getPointerTy(getConstTy(Time_tTy));
2114     Optional<QualType> ConstTime_tPtrRestrictTy =
2115         getRestrictTy(ConstTime_tPtrTy);
2116 
2117     Optional<QualType> StructTmTy = lookupTy("tm");
2118     Optional<QualType> StructTmPtrTy = getPointerTy(StructTmTy);
2119     Optional<QualType> StructTmPtrRestrictTy = getRestrictTy(StructTmPtrTy);
2120     Optional<QualType> ConstStructTmPtrTy =
2121         getPointerTy(getConstTy(StructTmTy));
2122     Optional<QualType> ConstStructTmPtrRestrictTy =
2123         getRestrictTy(ConstStructTmPtrTy);
2124 
2125     // struct tm * localtime(const time_t *tp);
2126     addToFunctionSummaryMap(
2127         "localtime",
2128         Summary(ArgTypes{ConstTime_tPtrTy}, RetType{StructTmPtrTy}, NoEvalCall)
2129             .ArgConstraint(NotNull(ArgNo(0))));
2130 
2131     // struct tm *localtime_r(const time_t *restrict timer,
2132     //                        struct tm *restrict result);
2133     addToFunctionSummaryMap(
2134         "localtime_r",
2135         Summary(ArgTypes{ConstTime_tPtrRestrictTy, StructTmPtrRestrictTy},
2136                 RetType{StructTmPtrTy}, NoEvalCall)
2137             .ArgConstraint(NotNull(ArgNo(0)))
2138             .ArgConstraint(NotNull(ArgNo(1))));
2139 
2140     // char *asctime_r(const struct tm *restrict tm, char *restrict buf);
2141     addToFunctionSummaryMap(
2142         "asctime_r",
2143         Summary(ArgTypes{ConstStructTmPtrRestrictTy, CharPtrRestrictTy},
2144                 RetType{CharPtrTy}, NoEvalCall)
2145             .ArgConstraint(NotNull(ArgNo(0)))
2146             .ArgConstraint(NotNull(ArgNo(1)))
2147             .ArgConstraint(BufferSize(/*Buffer=*/ArgNo(1),
2148                                       /*MinBufSize=*/BVF.getValue(26, IntTy))));
2149 
2150     // char *ctime_r(const time_t *timep, char *buf);
2151     addToFunctionSummaryMap("ctime_r",
2152                             Summary(ArgTypes{ConstTime_tPtrTy, CharPtrTy},
2153                                     RetType{CharPtrTy}, NoEvalCall)
2154                                 .ArgConstraint(NotNull(ArgNo(0)))
2155                                 .ArgConstraint(NotNull(ArgNo(1)))
2156                                 .ArgConstraint(BufferSize(
2157                                     /*Buffer=*/ArgNo(1),
2158                                     /*MinBufSize=*/BVF.getValue(26, IntTy))));
2159 
2160     // struct tm *gmtime_r(const time_t *restrict timer,
2161     //                     struct tm *restrict result);
2162     addToFunctionSummaryMap(
2163         "gmtime_r",
2164         Summary(ArgTypes{ConstTime_tPtrRestrictTy, StructTmPtrRestrictTy},
2165                 RetType{StructTmPtrTy}, NoEvalCall)
2166             .ArgConstraint(NotNull(ArgNo(0)))
2167             .ArgConstraint(NotNull(ArgNo(1))));
2168 
2169     // struct tm * gmtime(const time_t *tp);
2170     addToFunctionSummaryMap(
2171         "gmtime",
2172         Summary(ArgTypes{ConstTime_tPtrTy}, RetType{StructTmPtrTy}, NoEvalCall)
2173             .ArgConstraint(NotNull(ArgNo(0))));
2174 
2175     Optional<QualType> Clockid_tTy = lookupTy("clockid_t");
2176 
2177     // int clock_gettime(clockid_t clock_id, struct timespec *tp);
2178     addToFunctionSummaryMap("clock_gettime",
2179                             Summary(ArgTypes{Clockid_tTy, StructTimespecPtrTy},
2180                                     RetType{IntTy}, NoEvalCall)
2181                                 .ArgConstraint(NotNull(ArgNo(1))));
2182 
2183     Optional<QualType> StructItimervalTy = lookupTy("itimerval");
2184     Optional<QualType> StructItimervalPtrTy = getPointerTy(StructItimervalTy);
2185 
2186     // int getitimer(int which, struct itimerval *curr_value);
2187     addToFunctionSummaryMap("getitimer",
2188                             Summary(ArgTypes{IntTy, StructItimervalPtrTy},
2189                                     RetType{IntTy}, NoEvalCall)
2190                                 .ArgConstraint(NotNull(ArgNo(1))));
2191 
2192     Optional<QualType> Pthread_cond_tTy = lookupTy("pthread_cond_t");
2193     Optional<QualType> Pthread_cond_tPtrTy = getPointerTy(Pthread_cond_tTy);
2194     Optional<QualType> Pthread_tTy = lookupTy("pthread_t");
2195     Optional<QualType> Pthread_tPtrTy = getPointerTy(Pthread_tTy);
2196     Optional<QualType> Pthread_tPtrRestrictTy = getRestrictTy(Pthread_tPtrTy);
2197     Optional<QualType> Pthread_mutex_tTy = lookupTy("pthread_mutex_t");
2198     Optional<QualType> Pthread_mutex_tPtrTy = getPointerTy(Pthread_mutex_tTy);
2199     Optional<QualType> Pthread_mutex_tPtrRestrictTy =
2200         getRestrictTy(Pthread_mutex_tPtrTy);
2201     Optional<QualType> Pthread_attr_tTy = lookupTy("pthread_attr_t");
2202     Optional<QualType> Pthread_attr_tPtrTy = getPointerTy(Pthread_attr_tTy);
2203     Optional<QualType> ConstPthread_attr_tPtrTy =
2204         getPointerTy(getConstTy(Pthread_attr_tTy));
2205     Optional<QualType> ConstPthread_attr_tPtrRestrictTy =
2206         getRestrictTy(ConstPthread_attr_tPtrTy);
2207     Optional<QualType> Pthread_mutexattr_tTy = lookupTy("pthread_mutexattr_t");
2208     Optional<QualType> ConstPthread_mutexattr_tPtrTy =
2209         getPointerTy(getConstTy(Pthread_mutexattr_tTy));
2210     Optional<QualType> ConstPthread_mutexattr_tPtrRestrictTy =
2211         getRestrictTy(ConstPthread_mutexattr_tPtrTy);
2212 
2213     QualType PthreadStartRoutineTy = getPointerTy(
2214         ACtx.getFunctionType(/*ResultTy=*/VoidPtrTy, /*Args=*/VoidPtrTy,
2215                              FunctionProtoType::ExtProtoInfo()));
2216 
2217     // int pthread_cond_signal(pthread_cond_t *cond);
2218     // int pthread_cond_broadcast(pthread_cond_t *cond);
2219     addToFunctionSummaryMap(
2220         {"pthread_cond_signal", "pthread_cond_broadcast"},
2221         Signature(ArgTypes{Pthread_cond_tPtrTy}, RetType{IntTy}),
2222         Summary(NoEvalCall).ArgConstraint(NotNull(ArgNo(0))));
2223 
2224     // int pthread_create(pthread_t *restrict thread,
2225     //                    const pthread_attr_t *restrict attr,
2226     //                    void *(*start_routine)(void*), void *restrict arg);
2227     addToFunctionSummaryMap(
2228         "pthread_create",
2229         Signature(ArgTypes{Pthread_tPtrRestrictTy,
2230                            ConstPthread_attr_tPtrRestrictTy,
2231                            PthreadStartRoutineTy, VoidPtrRestrictTy},
2232                   RetType{IntTy}),
2233         Summary(NoEvalCall)
2234             .ArgConstraint(NotNull(ArgNo(0)))
2235             .ArgConstraint(NotNull(ArgNo(2))));
2236 
2237     // int pthread_attr_destroy(pthread_attr_t *attr);
2238     // int pthread_attr_init(pthread_attr_t *attr);
2239     addToFunctionSummaryMap(
2240         {"pthread_attr_destroy", "pthread_attr_init"},
2241         Signature(ArgTypes{Pthread_attr_tPtrTy}, RetType{IntTy}),
2242         Summary(NoEvalCall).ArgConstraint(NotNull(ArgNo(0))));
2243 
2244     // int pthread_attr_getstacksize(const pthread_attr_t *restrict attr,
2245     //                               size_t *restrict stacksize);
2246     // int pthread_attr_getguardsize(const pthread_attr_t *restrict attr,
2247     //                               size_t *restrict guardsize);
2248     addToFunctionSummaryMap(
2249         {"pthread_attr_getstacksize", "pthread_attr_getguardsize"},
2250         Signature(ArgTypes{ConstPthread_attr_tPtrRestrictTy, SizePtrRestrictTy},
2251                   RetType{IntTy}),
2252         Summary(NoEvalCall)
2253             .ArgConstraint(NotNull(ArgNo(0)))
2254             .ArgConstraint(NotNull(ArgNo(1))));
2255 
2256     // int pthread_attr_setstacksize(pthread_attr_t *attr, size_t stacksize);
2257     // int pthread_attr_setguardsize(pthread_attr_t *attr, size_t guardsize);
2258     addToFunctionSummaryMap(
2259         {"pthread_attr_setstacksize", "pthread_attr_setguardsize"},
2260         Signature(ArgTypes{Pthread_attr_tPtrTy, SizeTy}, RetType{IntTy}),
2261         Summary(NoEvalCall)
2262             .ArgConstraint(NotNull(ArgNo(0)))
2263             .ArgConstraint(
2264                 ArgumentCondition(1, WithinRange, Range(0, SizeMax))));
2265 
2266     // int pthread_mutex_init(pthread_mutex_t *restrict mutex, const
2267     //                        pthread_mutexattr_t *restrict attr);
2268     addToFunctionSummaryMap(
2269         "pthread_mutex_init",
2270         Signature(ArgTypes{Pthread_mutex_tPtrRestrictTy,
2271                            ConstPthread_mutexattr_tPtrRestrictTy},
2272                   RetType{IntTy}),
2273         Summary(NoEvalCall).ArgConstraint(NotNull(ArgNo(0))));
2274 
2275     // int pthread_mutex_destroy(pthread_mutex_t *mutex);
2276     // int pthread_mutex_lock(pthread_mutex_t *mutex);
2277     // int pthread_mutex_trylock(pthread_mutex_t *mutex);
2278     // int pthread_mutex_unlock(pthread_mutex_t *mutex);
2279     addToFunctionSummaryMap(
2280         {"pthread_mutex_destroy", "pthread_mutex_lock", "pthread_mutex_trylock",
2281          "pthread_mutex_unlock"},
2282         Signature(ArgTypes{Pthread_mutex_tPtrTy}, RetType{IntTy}),
2283         Summary(NoEvalCall).ArgConstraint(NotNull(ArgNo(0))));
2284   }
2285 
2286   // Functions for testing.
2287   if (ChecksEnabled[CK_StdCLibraryFunctionsTesterChecker]) {
2288     addToFunctionSummaryMap(
2289         "__two_constrained_args",
2290         Summary(ArgTypes{IntTy, IntTy}, RetType{IntTy}, EvalCallAsPure)
2291             .ArgConstraint(ArgumentCondition(0U, WithinRange, SingleValue(1)))
2292             .ArgConstraint(ArgumentCondition(1U, WithinRange, SingleValue(1))));
2293     addToFunctionSummaryMap(
2294         "__arg_constrained_twice",
2295         Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
2296             .ArgConstraint(ArgumentCondition(0U, OutOfRange, SingleValue(1)))
2297             .ArgConstraint(ArgumentCondition(0U, OutOfRange, SingleValue(2))));
2298     addToFunctionSummaryMap(
2299         "__defaultparam",
2300         Summary(ArgTypes{Irrelevant, IntTy}, RetType{IntTy}, EvalCallAsPure)
2301             .ArgConstraint(NotNull(ArgNo(0))));
2302     addToFunctionSummaryMap("__variadic",
2303                             Summary(ArgTypes{VoidPtrTy, ConstCharPtrTy},
2304                                     RetType{IntTy}, EvalCallAsPure)
2305                                 .ArgConstraint(NotNull(ArgNo(0)))
2306                                 .ArgConstraint(NotNull(ArgNo(1))));
2307     addToFunctionSummaryMap(
2308         "__buf_size_arg_constraint",
2309         Summary(ArgTypes{ConstVoidPtrTy, SizeTy}, RetType{IntTy},
2310                 EvalCallAsPure)
2311             .ArgConstraint(
2312                 BufferSize(/*Buffer=*/ArgNo(0), /*BufSize=*/ArgNo(1))));
2313     addToFunctionSummaryMap(
2314         "__buf_size_arg_constraint_mul",
2315         Summary(ArgTypes{ConstVoidPtrTy, SizeTy, SizeTy}, RetType{IntTy},
2316                 EvalCallAsPure)
2317             .ArgConstraint(BufferSize(/*Buffer=*/ArgNo(0), /*BufSize=*/ArgNo(1),
2318                                       /*BufSizeMultiplier=*/ArgNo(2))));
2319     addToFunctionSummaryMap(
2320         "__buf_size_arg_constraint_concrete",
2321         Summary(ArgTypes{ConstVoidPtrTy}, RetType{IntTy}, EvalCallAsPure)
2322             .ArgConstraint(BufferSize(/*Buffer=*/ArgNo(0),
2323                                       /*BufSize=*/BVF.getValue(10, IntTy))));
2324     addToFunctionSummaryMap(
2325         {"__test_restrict_param_0", "__test_restrict_param_1",
2326          "__test_restrict_param_2"},
2327         Signature(ArgTypes{VoidPtrRestrictTy}, RetType{VoidTy}),
2328         Summary(EvalCallAsPure));
2329   }
2330 }
2331 
2332 void ento::registerStdCLibraryFunctionsChecker(CheckerManager &mgr) {
2333   auto *Checker = mgr.registerChecker<StdLibraryFunctionsChecker>();
2334   Checker->DisplayLoadedSummaries =
2335       mgr.getAnalyzerOptions().getCheckerBooleanOption(
2336           Checker, "DisplayLoadedSummaries");
2337   Checker->ModelPOSIX =
2338       mgr.getAnalyzerOptions().getCheckerBooleanOption(Checker, "ModelPOSIX");
2339 }
2340 
2341 bool ento::shouldRegisterStdCLibraryFunctionsChecker(
2342     const CheckerManager &mgr) {
2343   return true;
2344 }
2345 
2346 #define REGISTER_CHECKER(name)                                                 \
2347   void ento::register##name(CheckerManager &mgr) {                             \
2348     StdLibraryFunctionsChecker *checker =                                      \
2349         mgr.getChecker<StdLibraryFunctionsChecker>();                          \
2350     checker->ChecksEnabled[StdLibraryFunctionsChecker::CK_##name] = true;      \
2351     checker->CheckNames[StdLibraryFunctionsChecker::CK_##name] =               \
2352         mgr.getCurrentCheckerName();                                           \
2353   }                                                                            \
2354                                                                                \
2355   bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; }
2356 
2357 REGISTER_CHECKER(StdCLibraryFunctionArgsChecker)
2358 REGISTER_CHECKER(StdCLibraryFunctionsTesterChecker)
2359