xref: /llvm-project/clang/lib/StaticAnalyzer/Checkers/StdLibraryFunctionsChecker.cpp (revision 634258b80606c4bb8192077239a089ae5842781a)
1 //=== StdLibraryFunctionsChecker.cpp - Model standard functions -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This checker improves modeling of a few simple library functions.
10 //
11 // This checker provides a specification format - `Summary' - and
12 // contains descriptions of some library functions in this format. Each
13 // specification contains a list of branches for splitting the program state
14 // upon call, and range constraints on argument and return-value symbols that
15 // are satisfied on each branch. This spec can be expanded to include more
16 // items, like external effects of the function.
17 //
18 // The main difference between this approach and the body farms technique is
19 // in more explicit control over how many branches are produced. For example,
20 // consider standard C function `ispunct(int x)', which returns a non-zero value
21 // iff `x' is a punctuation character, that is, when `x' is in range
22 //   ['!', '/']   [':', '@']  U  ['[', '\`']  U  ['{', '~'].
23 // `Summary' provides only two branches for this function. However,
24 // any attempt to describe this range with if-statements in the body farm
25 // would result in many more branches. Because each branch needs to be analyzed
26 // independently, this significantly reduces performance. Additionally,
27 // once we consider a branch on which `x' is in range, say, ['!', '/'],
28 // we assume that such branch is an important separate path through the program,
29 // which may lead to false positives because considering this particular path
30 // was not consciously intended, and therefore it might have been unreachable.
31 //
32 // This checker uses eval::Call for modeling pure functions (functions without
33 // side effets), for which their `Summary' is a precise model. This avoids
34 // unnecessary invalidation passes. Conflicts with other checkers are unlikely
35 // because if the function has no other effects, other checkers would probably
36 // never want to improve upon the modeling done by this checker.
37 //
38 // Non-pure functions, for which only partial improvement over the default
39 // behavior is expected, are modeled via check::PostCall, non-intrusively.
40 //
41 // The following standard C functions are currently supported:
42 //
43 //   fgetc      getline   isdigit   isupper
44 //   fread      isalnum   isgraph   isxdigit
45 //   fwrite     isalpha   islower   read
46 //   getc       isascii   isprint   write
47 //   getchar    isblank   ispunct
48 //   getdelim   iscntrl   isspace
49 //
50 //===----------------------------------------------------------------------===//
51 
52 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
53 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
54 #include "clang/StaticAnalyzer/Core/Checker.h"
55 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
56 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
57 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
58 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h"
59 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicSize.h"
60 
61 using namespace clang;
62 using namespace clang::ento;
63 
64 namespace {
65 class StdLibraryFunctionsChecker
66     : public Checker<check::PreCall, check::PostCall, eval::Call> {
67 
68   class Summary;
69 
70   /// Specify how much the analyzer engine should entrust modeling this function
71   /// to us. If he doesn't, he performs additional invalidations.
72   enum InvalidationKind { NoEvalCall, EvalCallAsPure };
73 
74   // The universal integral type to use in value range descriptions.
75   // Unsigned to make sure overflows are well-defined.
76   typedef uint64_t RangeInt;
77 
78   /// Normally, describes a single range constraint, eg. {{0, 1}, {3, 4}} is
79   /// a non-negative integer, which less than 5 and not equal to 2. For
80   /// `ComparesToArgument', holds information about how exactly to compare to
81   /// the argument.
82   typedef std::vector<std::pair<RangeInt, RangeInt>> IntRangeVector;
83 
84   /// A reference to an argument or return value by its number.
85   /// ArgNo in CallExpr and CallEvent is defined as Unsigned, but
86   /// obviously uint32_t should be enough for all practical purposes.
87   typedef uint32_t ArgNo;
88   static const ArgNo Ret;
89 
90   class ValueConstraint;
91 
92   // Pointer to the ValueConstraint. We need a copyable, polymorphic and
93   // default initialize able type (vector needs that). A raw pointer was good,
94   // however, we cannot default initialize that. unique_ptr makes the Summary
95   // class non-copyable, therefore not an option. Releasing the copyability
96   // requirement would render the initialization of the Summary map infeasible.
97   using ValueConstraintPtr = std::shared_ptr<ValueConstraint>;
98 
99   /// Polymorphic base class that represents a constraint on a given argument
100   /// (or return value) of a function. Derived classes implement different kind
101   /// of constraints, e.g range constraints or correlation between two
102   /// arguments.
103   class ValueConstraint {
104   public:
105     ValueConstraint(ArgNo ArgN) : ArgN(ArgN) {}
106     virtual ~ValueConstraint() {}
107     /// Apply the effects of the constraint on the given program state. If null
108     /// is returned then the constraint is not feasible.
109     virtual ProgramStateRef apply(ProgramStateRef State, const CallEvent &Call,
110                                   const Summary &Summary,
111                                   CheckerContext &C) const = 0;
112     virtual ValueConstraintPtr negate() const {
113       llvm_unreachable("Not implemented");
114     };
115 
116     // Check whether the constraint is malformed or not. It is malformed if the
117     // specified argument has a mismatch with the given FunctionDecl (e.g. the
118     // arg number is out-of-range of the function's argument list).
119     bool checkValidity(const FunctionDecl *FD) const {
120       const bool ValidArg = ArgN == Ret || ArgN < FD->getNumParams();
121       assert(ValidArg && "Arg out of range!");
122       if (!ValidArg)
123         return false;
124       // Subclasses may further refine the validation.
125       return checkSpecificValidity(FD);
126     }
127     ArgNo getArgNo() const { return ArgN; }
128 
129   protected:
130     ArgNo ArgN; // Argument to which we apply the constraint.
131 
132     /// Do polymorphic sanity check on the constraint.
133     virtual bool checkSpecificValidity(const FunctionDecl *FD) const {
134       return true;
135     }
136   };
137 
138   /// Given a range, should the argument stay inside or outside this range?
139   enum RangeKind { OutOfRange, WithinRange };
140 
141   /// Encapsulates a single range on a single symbol within a branch.
142   class RangeConstraint : public ValueConstraint {
143     RangeKind Kind;      // Kind of range definition.
144     IntRangeVector Args; // Polymorphic arguments.
145 
146   public:
147     RangeConstraint(ArgNo ArgN, RangeKind Kind, const IntRangeVector &Args)
148         : ValueConstraint(ArgN), Kind(Kind), Args(Args) {}
149 
150     const IntRangeVector &getRanges() const {
151       return Args;
152     }
153 
154   private:
155     ProgramStateRef applyAsOutOfRange(ProgramStateRef State,
156                                       const CallEvent &Call,
157                                       const Summary &Summary) const;
158     ProgramStateRef applyAsWithinRange(ProgramStateRef State,
159                                        const CallEvent &Call,
160                                        const Summary &Summary) const;
161   public:
162     ProgramStateRef apply(ProgramStateRef State, const CallEvent &Call,
163                           const Summary &Summary,
164                           CheckerContext &C) const override {
165       switch (Kind) {
166       case OutOfRange:
167         return applyAsOutOfRange(State, Call, Summary);
168       case WithinRange:
169         return applyAsWithinRange(State, Call, Summary);
170       }
171       llvm_unreachable("Unknown range kind!");
172     }
173 
174     ValueConstraintPtr negate() const override {
175       RangeConstraint Tmp(*this);
176       switch (Kind) {
177       case OutOfRange:
178         Tmp.Kind = WithinRange;
179         break;
180       case WithinRange:
181         Tmp.Kind = OutOfRange;
182         break;
183       }
184       return std::make_shared<RangeConstraint>(Tmp);
185     }
186 
187     bool checkSpecificValidity(const FunctionDecl *FD) const override {
188       const bool ValidArg =
189           getArgType(FD, ArgN)->isIntegralType(FD->getASTContext());
190       assert(ValidArg &&
191              "This constraint should be applied on an integral type");
192       return ValidArg;
193     }
194   };
195 
196   class ComparisonConstraint : public ValueConstraint {
197     BinaryOperator::Opcode Opcode;
198     ArgNo OtherArgN;
199 
200   public:
201     ComparisonConstraint(ArgNo ArgN, BinaryOperator::Opcode Opcode,
202                          ArgNo OtherArgN)
203         : ValueConstraint(ArgN), Opcode(Opcode), OtherArgN(OtherArgN) {}
204     ArgNo getOtherArgNo() const { return OtherArgN; }
205     BinaryOperator::Opcode getOpcode() const { return Opcode; }
206     ProgramStateRef apply(ProgramStateRef State, const CallEvent &Call,
207                           const Summary &Summary,
208                           CheckerContext &C) const override;
209   };
210 
211   class NotNullConstraint : public ValueConstraint {
212     using ValueConstraint::ValueConstraint;
213     // This variable has a role when we negate the constraint.
214     bool CannotBeNull = true;
215 
216   public:
217     ProgramStateRef apply(ProgramStateRef State, const CallEvent &Call,
218                           const Summary &Summary,
219                           CheckerContext &C) const override {
220       SVal V = getArgSVal(Call, getArgNo());
221       if (V.isUndef())
222         return State;
223 
224       DefinedOrUnknownSVal L = V.castAs<DefinedOrUnknownSVal>();
225       if (!L.getAs<Loc>())
226         return State;
227 
228       return State->assume(L, CannotBeNull);
229     }
230 
231     ValueConstraintPtr negate() const override {
232       NotNullConstraint Tmp(*this);
233       Tmp.CannotBeNull = !this->CannotBeNull;
234       return std::make_shared<NotNullConstraint>(Tmp);
235     }
236 
237     bool checkSpecificValidity(const FunctionDecl *FD) const override {
238       const bool ValidArg = getArgType(FD, ArgN)->isPointerType();
239       assert(ValidArg &&
240              "This constraint should be applied only on a pointer type");
241       return ValidArg;
242     }
243   };
244 
245   // Represents a buffer argument with an additional size argument.
246   // E.g. the first two arguments here:
247   //   ctime_s(char *buffer, rsize_t bufsz, const time_t *time);
248   // Another example:
249   //   size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream);
250   //   // Here, ptr is the buffer, and its minimum size is `size * nmemb`.
251   class BufferSizeConstraint : public ValueConstraint {
252     // The argument which holds the size of the buffer.
253     ArgNo SizeArgN;
254     // The argument which is a multiplier to size. This is set in case of
255     // `fread` like functions where the size is computed as a multiplication of
256     // two arguments.
257     llvm::Optional<ArgNo> SizeMultiplierArgN;
258     // The operator we use in apply. This is negated in negate().
259     BinaryOperator::Opcode Op = BO_LE;
260 
261   public:
262     BufferSizeConstraint(ArgNo Buffer, ArgNo BufSize)
263         : ValueConstraint(Buffer), SizeArgN(BufSize) {}
264 
265     BufferSizeConstraint(ArgNo Buffer, ArgNo BufSize, ArgNo BufSizeMultiplier)
266         : ValueConstraint(Buffer), SizeArgN(BufSize),
267           SizeMultiplierArgN(BufSizeMultiplier) {}
268 
269     ProgramStateRef apply(ProgramStateRef State, const CallEvent &Call,
270                           const Summary &Summary,
271                           CheckerContext &C) const override {
272       SValBuilder &SvalBuilder = C.getSValBuilder();
273       // The buffer argument.
274       SVal BufV = getArgSVal(Call, getArgNo());
275       // The size argument.
276       SVal SizeV = getArgSVal(Call, SizeArgN);
277       // Multiply with another argument if given.
278       if (SizeMultiplierArgN) {
279         SVal SizeMulV = getArgSVal(Call, *SizeMultiplierArgN);
280         SizeV = SvalBuilder.evalBinOp(State, BO_Mul, SizeV, SizeMulV,
281                                       Summary.getArgType(SizeArgN));
282       }
283       // The dynamic size of the buffer argument, got from the analyzer engine.
284       SVal BufDynSize = getDynamicSizeWithOffset(State, BufV);
285 
286       SVal Feasible = SvalBuilder.evalBinOp(State, Op, SizeV, BufDynSize,
287                                             SvalBuilder.getContext().BoolTy);
288       if (auto F = Feasible.getAs<DefinedOrUnknownSVal>())
289         return State->assume(*F, true);
290 
291       // We can get here only if the size argument or the dynamic size is
292       // undefined. But the dynamic size should never be undefined, only
293       // unknown. So, here, the size of the argument is undefined, i.e. we
294       // cannot apply the constraint. Actually, other checkers like
295       // CallAndMessage should catch this situation earlier, because we call a
296       // function with an uninitialized argument.
297       llvm_unreachable("Size argument or the dynamic size is Undefined");
298     }
299 
300     ValueConstraintPtr negate() const override {
301       BufferSizeConstraint Tmp(*this);
302       Tmp.Op = BinaryOperator::negateComparisonOp(Op);
303       return std::make_shared<BufferSizeConstraint>(Tmp);
304     }
305   };
306 
307   /// The complete list of constraints that defines a single branch.
308   typedef std::vector<ValueConstraintPtr> ConstraintSet;
309 
310   using ArgTypes = std::vector<QualType>;
311 
312   // A placeholder type, we use it whenever we do not care about the concrete
313   // type in a Signature.
314   const QualType Irrelevant{};
315   bool static isIrrelevant(QualType T) { return T.isNull(); }
316 
317   // The signature of a function we want to describe with a summary. This is a
318   // concessive signature, meaning there may be irrelevant types in the
319   // signature which we do not check against a function with concrete types.
320   struct Signature {
321     const ArgTypes ArgTys;
322     const QualType RetTy;
323     Signature(ArgTypes ArgTys, QualType RetTy) : ArgTys(ArgTys), RetTy(RetTy) {
324       assertRetTypeSuitableForSignature(RetTy);
325       for (size_t I = 0, E = ArgTys.size(); I != E; ++I) {
326         QualType ArgTy = ArgTys[I];
327         assertArgTypeSuitableForSignature(ArgTy);
328       }
329     }
330     bool matches(const FunctionDecl *FD) const;
331 
332   private:
333     static void assertArgTypeSuitableForSignature(QualType T) {
334       assert((T.isNull() || !T->isVoidType()) &&
335              "We should have no void types in the spec");
336       assert((T.isNull() || T.isCanonical()) &&
337              "We should only have canonical types in the spec");
338     }
339     static void assertRetTypeSuitableForSignature(QualType T) {
340       assert((T.isNull() || T.isCanonical()) &&
341              "We should only have canonical types in the spec");
342     }
343   };
344 
345   static QualType getArgType(const FunctionDecl *FD, ArgNo ArgN) {
346     assert(FD && "Function must be set");
347     QualType T = (ArgN == Ret)
348                      ? FD->getReturnType().getCanonicalType()
349                      : FD->getParamDecl(ArgN)->getType().getCanonicalType();
350     return T;
351   }
352 
353   using Cases = std::vector<ConstraintSet>;
354 
355   /// A summary includes information about
356   ///   * function prototype (signature)
357   ///   * approach to invalidation,
358   ///   * a list of branches - a list of list of ranges -
359   ///     A branch represents a path in the exploded graph of a function (which
360   ///     is a tree). So, a branch is a series of assumptions. In other words,
361   ///     branches represent split states and additional assumptions on top of
362   ///     the splitting assumption.
363   ///     For example, consider the branches in `isalpha(x)`
364   ///       Branch 1)
365   ///         x is in range ['A', 'Z'] or in ['a', 'z']
366   ///         then the return value is not 0. (I.e. out-of-range [0, 0])
367   ///       Branch 2)
368   ///         x is out-of-range ['A', 'Z'] and out-of-range ['a', 'z']
369   ///         then the return value is 0.
370   ///   * a list of argument constraints, that must be true on every branch.
371   ///     If these constraints are not satisfied that means a fatal error
372   ///     usually resulting in undefined behaviour.
373   ///
374   /// Application of a summary:
375   ///   The signature and argument constraints together contain information
376   ///   about which functions are handled by the summary. The signature can use
377   ///   "wildcards", i.e. Irrelevant types. Irrelevant type of a parameter in
378   ///   a signature means that type is not compared to the type of the parameter
379   ///   in the found FunctionDecl. Argument constraints may specify additional
380   ///   rules for the given parameter's type, those rules are checked once the
381   ///   signature is matched.
382   class Summary {
383     const Signature Sign;
384     const InvalidationKind InvalidationKd;
385     Cases CaseConstraints;
386     ConstraintSet ArgConstraints;
387 
388     // The function to which the summary applies. This is set after lookup and
389     // match to the signature.
390     const FunctionDecl *FD = nullptr;
391 
392   public:
393     Summary(ArgTypes ArgTys, QualType RetTy, InvalidationKind InvalidationKd)
394         : Sign(ArgTys, RetTy), InvalidationKd(InvalidationKd) {}
395 
396     Summary &Case(ConstraintSet&& CS) {
397       CaseConstraints.push_back(std::move(CS));
398       return *this;
399     }
400     Summary &ArgConstraint(ValueConstraintPtr VC) {
401       ArgConstraints.push_back(VC);
402       return *this;
403     }
404 
405     InvalidationKind getInvalidationKd() const { return InvalidationKd; }
406     const Cases &getCaseConstraints() const { return CaseConstraints; }
407     const ConstraintSet &getArgConstraints() const { return ArgConstraints; }
408 
409     QualType getArgType(ArgNo ArgN) const {
410       return StdLibraryFunctionsChecker::getArgType(FD, ArgN);
411     }
412 
413     // Returns true if the summary should be applied to the given function.
414     // And if yes then store the function declaration.
415     bool matchesAndSet(const FunctionDecl *FD) {
416       bool Result = Sign.matches(FD) && validateByConstraints(FD);
417       if (Result) {
418         assert(!this->FD && "FD must not be set more than once");
419         this->FD = FD;
420       }
421       return Result;
422     }
423 
424   private:
425     // Once we know the exact type of the function then do sanity check on all
426     // the given constraints.
427     bool validateByConstraints(const FunctionDecl *FD) const {
428       for (const ConstraintSet &Case : CaseConstraints)
429         for (const ValueConstraintPtr &Constraint : Case)
430           if (!Constraint->checkValidity(FD))
431             return false;
432       for (const ValueConstraintPtr &Constraint : ArgConstraints)
433         if (!Constraint->checkValidity(FD))
434           return false;
435       return true;
436     }
437   };
438 
439   // The map of all functions supported by the checker. It is initialized
440   // lazily, and it doesn't change after initialization.
441   using FunctionSummaryMapType = llvm::DenseMap<const FunctionDecl *, Summary>;
442   mutable FunctionSummaryMapType FunctionSummaryMap;
443 
444   mutable std::unique_ptr<BugType> BT_InvalidArg;
445 
446   static SVal getArgSVal(const CallEvent &Call, ArgNo ArgN) {
447     return ArgN == Ret ? Call.getReturnValue() : Call.getArgSVal(ArgN);
448   }
449 
450 public:
451   void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
452   void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
453   bool evalCall(const CallEvent &Call, CheckerContext &C) const;
454 
455   enum CheckKind {
456     CK_StdCLibraryFunctionArgsChecker,
457     CK_StdCLibraryFunctionsTesterChecker,
458     CK_NumCheckKinds
459   };
460   DefaultBool ChecksEnabled[CK_NumCheckKinds];
461   CheckerNameRef CheckNames[CK_NumCheckKinds];
462 
463   bool DisplayLoadedSummaries = false;
464 
465 private:
466   Optional<Summary> findFunctionSummary(const FunctionDecl *FD,
467                                         CheckerContext &C) const;
468   Optional<Summary> findFunctionSummary(const CallEvent &Call,
469                                         CheckerContext &C) const;
470 
471   void initFunctionSummaries(CheckerContext &C) const;
472 
473   void reportBug(const CallEvent &Call, ExplodedNode *N,
474                  CheckerContext &C) const {
475     if (!ChecksEnabled[CK_StdCLibraryFunctionArgsChecker])
476       return;
477     // TODO Add detailed diagnostic.
478     StringRef Msg = "Function argument constraint is not satisfied";
479     if (!BT_InvalidArg)
480       BT_InvalidArg = std::make_unique<BugType>(
481           CheckNames[CK_StdCLibraryFunctionArgsChecker],
482           "Unsatisfied argument constraints", categories::LogicError);
483     auto R = std::make_unique<PathSensitiveBugReport>(*BT_InvalidArg, Msg, N);
484     bugreporter::trackExpressionValue(N, Call.getArgExpr(0), *R);
485     C.emitReport(std::move(R));
486   }
487 };
488 
489 const StdLibraryFunctionsChecker::ArgNo StdLibraryFunctionsChecker::Ret =
490     std::numeric_limits<ArgNo>::max();
491 
492 } // end of anonymous namespace
493 
494 ProgramStateRef StdLibraryFunctionsChecker::RangeConstraint::applyAsOutOfRange(
495     ProgramStateRef State, const CallEvent &Call,
496     const Summary &Summary) const {
497 
498   ProgramStateManager &Mgr = State->getStateManager();
499   SValBuilder &SVB = Mgr.getSValBuilder();
500   BasicValueFactory &BVF = SVB.getBasicValueFactory();
501   ConstraintManager &CM = Mgr.getConstraintManager();
502   QualType T = Summary.getArgType(getArgNo());
503   SVal V = getArgSVal(Call, getArgNo());
504 
505   if (auto N = V.getAs<NonLoc>()) {
506     const IntRangeVector &R = getRanges();
507     size_t E = R.size();
508     for (size_t I = 0; I != E; ++I) {
509       const llvm::APSInt &Min = BVF.getValue(R[I].first, T);
510       const llvm::APSInt &Max = BVF.getValue(R[I].second, T);
511       assert(Min <= Max);
512       State = CM.assumeInclusiveRange(State, *N, Min, Max, false);
513       if (!State)
514         break;
515     }
516   }
517 
518   return State;
519 }
520 
521 ProgramStateRef StdLibraryFunctionsChecker::RangeConstraint::applyAsWithinRange(
522     ProgramStateRef State, const CallEvent &Call,
523     const Summary &Summary) const {
524 
525   ProgramStateManager &Mgr = State->getStateManager();
526   SValBuilder &SVB = Mgr.getSValBuilder();
527   BasicValueFactory &BVF = SVB.getBasicValueFactory();
528   ConstraintManager &CM = Mgr.getConstraintManager();
529   QualType T = Summary.getArgType(getArgNo());
530   SVal V = getArgSVal(Call, getArgNo());
531 
532   // "WithinRange R" is treated as "outside [T_MIN, T_MAX] \ R".
533   // We cut off [T_MIN, min(R) - 1] and [max(R) + 1, T_MAX] if necessary,
534   // and then cut away all holes in R one by one.
535   //
536   // E.g. consider a range list R as [A, B] and [C, D]
537   // -------+--------+------------------+------------+----------->
538   //        A        B                  C            D
539   // Then we assume that the value is not in [-inf, A - 1],
540   // then not in [D + 1, +inf], then not in [B + 1, C - 1]
541   if (auto N = V.getAs<NonLoc>()) {
542     const IntRangeVector &R = getRanges();
543     size_t E = R.size();
544 
545     const llvm::APSInt &MinusInf = BVF.getMinValue(T);
546     const llvm::APSInt &PlusInf = BVF.getMaxValue(T);
547 
548     const llvm::APSInt &Left = BVF.getValue(R[0].first - 1ULL, T);
549     if (Left != PlusInf) {
550       assert(MinusInf <= Left);
551       State = CM.assumeInclusiveRange(State, *N, MinusInf, Left, false);
552       if (!State)
553         return nullptr;
554     }
555 
556     const llvm::APSInt &Right = BVF.getValue(R[E - 1].second + 1ULL, T);
557     if (Right != MinusInf) {
558       assert(Right <= PlusInf);
559       State = CM.assumeInclusiveRange(State, *N, Right, PlusInf, false);
560       if (!State)
561         return nullptr;
562     }
563 
564     for (size_t I = 1; I != E; ++I) {
565       const llvm::APSInt &Min = BVF.getValue(R[I - 1].second + 1ULL, T);
566       const llvm::APSInt &Max = BVF.getValue(R[I].first - 1ULL, T);
567       if (Min <= Max) {
568         State = CM.assumeInclusiveRange(State, *N, Min, Max, false);
569         if (!State)
570           return nullptr;
571       }
572     }
573   }
574 
575   return State;
576 }
577 
578 ProgramStateRef StdLibraryFunctionsChecker::ComparisonConstraint::apply(
579     ProgramStateRef State, const CallEvent &Call, const Summary &Summary,
580     CheckerContext &C) const {
581 
582   ProgramStateManager &Mgr = State->getStateManager();
583   SValBuilder &SVB = Mgr.getSValBuilder();
584   QualType CondT = SVB.getConditionType();
585   QualType T = Summary.getArgType(getArgNo());
586   SVal V = getArgSVal(Call, getArgNo());
587 
588   BinaryOperator::Opcode Op = getOpcode();
589   ArgNo OtherArg = getOtherArgNo();
590   SVal OtherV = getArgSVal(Call, OtherArg);
591   QualType OtherT = Summary.getArgType(OtherArg);
592   // Note: we avoid integral promotion for comparison.
593   OtherV = SVB.evalCast(OtherV, T, OtherT);
594   if (auto CompV = SVB.evalBinOp(State, Op, V, OtherV, CondT)
595                        .getAs<DefinedOrUnknownSVal>())
596     State = State->assume(*CompV, true);
597   return State;
598 }
599 
600 void StdLibraryFunctionsChecker::checkPreCall(const CallEvent &Call,
601                                               CheckerContext &C) const {
602   Optional<Summary> FoundSummary = findFunctionSummary(Call, C);
603   if (!FoundSummary)
604     return;
605 
606   const Summary &Summary = *FoundSummary;
607   ProgramStateRef State = C.getState();
608 
609   ProgramStateRef NewState = State;
610   for (const ValueConstraintPtr &Constraint : Summary.getArgConstraints()) {
611     ProgramStateRef SuccessSt = Constraint->apply(NewState, Call, Summary, C);
612     ProgramStateRef FailureSt =
613         Constraint->negate()->apply(NewState, Call, Summary, C);
614     // The argument constraint is not satisfied.
615     if (FailureSt && !SuccessSt) {
616       if (ExplodedNode *N = C.generateErrorNode(NewState))
617         reportBug(Call, N, C);
618       break;
619     } else {
620       // We will apply the constraint even if we cannot reason about the
621       // argument. This means both SuccessSt and FailureSt can be true. If we
622       // weren't applying the constraint that would mean that symbolic
623       // execution continues on a code whose behaviour is undefined.
624       assert(SuccessSt);
625       NewState = SuccessSt;
626     }
627   }
628   if (NewState && NewState != State)
629     C.addTransition(NewState);
630 }
631 
632 void StdLibraryFunctionsChecker::checkPostCall(const CallEvent &Call,
633                                                CheckerContext &C) const {
634   Optional<Summary> FoundSummary = findFunctionSummary(Call, C);
635   if (!FoundSummary)
636     return;
637 
638   // Now apply the constraints.
639   const Summary &Summary = *FoundSummary;
640   ProgramStateRef State = C.getState();
641 
642   // Apply case/branch specifications.
643   for (const ConstraintSet &Case : Summary.getCaseConstraints()) {
644     ProgramStateRef NewState = State;
645     for (const ValueConstraintPtr &Constraint : Case) {
646       NewState = Constraint->apply(NewState, Call, Summary, C);
647       if (!NewState)
648         break;
649     }
650 
651     if (NewState && NewState != State)
652       C.addTransition(NewState);
653   }
654 }
655 
656 bool StdLibraryFunctionsChecker::evalCall(const CallEvent &Call,
657                                           CheckerContext &C) const {
658   Optional<Summary> FoundSummary = findFunctionSummary(Call, C);
659   if (!FoundSummary)
660     return false;
661 
662   const Summary &Summary = *FoundSummary;
663   switch (Summary.getInvalidationKd()) {
664   case EvalCallAsPure: {
665     ProgramStateRef State = C.getState();
666     const LocationContext *LC = C.getLocationContext();
667     const auto *CE = cast_or_null<CallExpr>(Call.getOriginExpr());
668     SVal V = C.getSValBuilder().conjureSymbolVal(
669         CE, LC, CE->getType().getCanonicalType(), C.blockCount());
670     State = State->BindExpr(CE, LC, V);
671     C.addTransition(State);
672     return true;
673   }
674   case NoEvalCall:
675     // Summary tells us to avoid performing eval::Call. The function is possibly
676     // evaluated by another checker, or evaluated conservatively.
677     return false;
678   }
679   llvm_unreachable("Unknown invalidation kind!");
680 }
681 
682 bool StdLibraryFunctionsChecker::Signature::matches(
683     const FunctionDecl *FD) const {
684   // Check number of arguments:
685   if (FD->param_size() != ArgTys.size())
686     return false;
687 
688   // Check return type.
689   if (!isIrrelevant(RetTy))
690     if (RetTy != FD->getReturnType().getCanonicalType())
691       return false;
692 
693   // Check argument types.
694   for (size_t I = 0, E = ArgTys.size(); I != E; ++I) {
695     QualType ArgTy = ArgTys[I];
696     if (isIrrelevant(ArgTy))
697       continue;
698     if (ArgTy != FD->getParamDecl(I)->getType().getCanonicalType())
699       return false;
700   }
701 
702   return true;
703 }
704 
705 Optional<StdLibraryFunctionsChecker::Summary>
706 StdLibraryFunctionsChecker::findFunctionSummary(const FunctionDecl *FD,
707                                                 CheckerContext &C) const {
708   if (!FD)
709     return None;
710 
711   initFunctionSummaries(C);
712 
713   auto FSMI = FunctionSummaryMap.find(FD->getCanonicalDecl());
714   if (FSMI == FunctionSummaryMap.end())
715     return None;
716   return FSMI->second;
717 }
718 
719 Optional<StdLibraryFunctionsChecker::Summary>
720 StdLibraryFunctionsChecker::findFunctionSummary(const CallEvent &Call,
721                                                 CheckerContext &C) const {
722   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Call.getDecl());
723   if (!FD)
724     return None;
725   return findFunctionSummary(FD, C);
726 }
727 
728 llvm::Optional<QualType> lookupType(StringRef Name, const ASTContext &ACtx) {
729   IdentifierInfo &II = ACtx.Idents.get(Name);
730   auto LookupRes = ACtx.getTranslationUnitDecl()->lookup(&II);
731   if (LookupRes.size() == 0)
732     return None;
733 
734   // Prioritze typedef declarations.
735   // This is needed in case of C struct typedefs. E.g.:
736   //   typedef struct FILE FILE;
737   // In this case, we have a RecordDecl 'struct FILE' with the name 'FILE' and
738   // we have a TypedefDecl with the name 'FILE'.
739   for (Decl *D : LookupRes) {
740     if (auto *TD = dyn_cast<TypedefNameDecl>(D))
741       return ACtx.getTypeDeclType(TD).getCanonicalType();
742   }
743   assert(LookupRes.size() == 1 && "Type identifier should be unique");
744   auto *D = cast<TypeDecl>(LookupRes.front());
745   return ACtx.getTypeDeclType(D).getCanonicalType();
746 }
747 
748 void StdLibraryFunctionsChecker::initFunctionSummaries(
749     CheckerContext &C) const {
750   if (!FunctionSummaryMap.empty())
751     return;
752 
753   SValBuilder &SVB = C.getSValBuilder();
754   BasicValueFactory &BVF = SVB.getBasicValueFactory();
755   const ASTContext &ACtx = BVF.getContext();
756 
757   // These types are useful for writing specifications quickly,
758   // New specifications should probably introduce more types.
759   // Some types are hard to obtain from the AST, eg. "ssize_t".
760   // In such cases it should be possible to provide multiple variants
761   // of function summary for common cases (eg. ssize_t could be int or long
762   // or long long, so three summary variants would be enough).
763   // Of course, function variants are also useful for C++ overloads.
764   const QualType IntTy = ACtx.IntTy;
765   const QualType LongTy = ACtx.LongTy;
766   const QualType LongLongTy = ACtx.LongLongTy;
767   const QualType SizeTy = ACtx.getSizeType();
768   const QualType VoidPtrTy = ACtx.VoidPtrTy; // void *
769   const QualType VoidPtrRestrictTy =
770       ACtx.getLangOpts().C99 ? ACtx.getRestrictType(VoidPtrTy) // void *restrict
771                              : VoidPtrTy;
772   const QualType ConstVoidPtrTy =
773       ACtx.getPointerType(ACtx.VoidTy.withConst()); // const void *
774   const QualType ConstCharPtrTy =
775       ACtx.getPointerType(ACtx.CharTy.withConst()); // const char *
776   const QualType ConstVoidPtrRestrictTy =
777       ACtx.getLangOpts().C99
778           ? ACtx.getRestrictType(ConstVoidPtrTy) // const void *restrict
779           : ConstVoidPtrTy;
780 
781   const RangeInt IntMax = BVF.getMaxValue(IntTy).getLimitedValue();
782   const RangeInt LongMax = BVF.getMaxValue(LongTy).getLimitedValue();
783   const RangeInt LongLongMax = BVF.getMaxValue(LongLongTy).getLimitedValue();
784 
785   // Set UCharRangeMax to min of int or uchar maximum value.
786   // The C standard states that the arguments of functions like isalpha must
787   // be representable as an unsigned char. Their type is 'int', so the max
788   // value of the argument should be min(UCharMax, IntMax). This just happen
789   // to be true for commonly used and well tested instruction set
790   // architectures, but not for others.
791   const RangeInt UCharRangeMax =
792       std::min(BVF.getMaxValue(ACtx.UnsignedCharTy).getLimitedValue(), IntMax);
793 
794   // The platform dependent value of EOF.
795   // Try our best to parse this from the Preprocessor, otherwise fallback to -1.
796   const auto EOFv = [&C]() -> RangeInt {
797     if (const llvm::Optional<int> OptInt =
798             tryExpandAsInteger("EOF", C.getPreprocessor()))
799       return *OptInt;
800     return -1;
801   }();
802 
803   // Auxiliary class to aid adding summaries to the summary map.
804   struct AddToFunctionSummaryMap {
805     const ASTContext &ACtx;
806     FunctionSummaryMapType &Map;
807     bool DisplayLoadedSummaries;
808     AddToFunctionSummaryMap(const ASTContext &ACtx, FunctionSummaryMapType &FSM,
809                             bool DisplayLoadedSummaries)
810         : ACtx(ACtx), Map(FSM), DisplayLoadedSummaries(DisplayLoadedSummaries) {
811     }
812 
813     // Add a summary to a FunctionDecl found by lookup. The lookup is performed
814     // by the given Name, and in the global scope. The summary will be attached
815     // to the found FunctionDecl only if the signatures match.
816     void operator()(StringRef Name, Summary S) {
817       IdentifierInfo &II = ACtx.Idents.get(Name);
818       auto LookupRes = ACtx.getTranslationUnitDecl()->lookup(&II);
819       if (LookupRes.size() == 0)
820         return;
821       for (Decl *D : LookupRes) {
822         if (auto *FD = dyn_cast<FunctionDecl>(D)) {
823           if (S.matchesAndSet(FD)) {
824             auto Res = Map.insert({FD->getCanonicalDecl(), S});
825             assert(Res.second && "Function already has a summary set!");
826             (void)Res;
827             if (DisplayLoadedSummaries) {
828               llvm::errs() << "Loaded summary for: ";
829               FD->print(llvm::errs());
830               llvm::errs() << "\n";
831             }
832             return;
833           }
834         }
835       }
836     }
837     // Add several summaries for the given name.
838     void operator()(StringRef Name, const std::vector<Summary> &Summaries) {
839       for (const Summary &S : Summaries)
840         operator()(Name, S);
841     }
842   } addToFunctionSummaryMap(ACtx, FunctionSummaryMap, DisplayLoadedSummaries);
843 
844   // We are finally ready to define specifications for all supported functions.
845   //
846   // The signature needs to have the correct number of arguments.
847   // However, we insert `Irrelevant' when the type is insignificant.
848   //
849   // Argument ranges should always cover all variants. If return value
850   // is completely unknown, omit it from the respective range set.
851   //
852   // All types in the spec need to be canonical.
853   //
854   // Every item in the list of range sets represents a particular
855   // execution path the analyzer would need to explore once
856   // the call is modeled - a new program state is constructed
857   // for every range set, and each range line in the range set
858   // corresponds to a specific constraint within this state.
859   //
860   // Upon comparing to another argument, the other argument is casted
861   // to the current argument's type. This avoids proper promotion but
862   // seems useful. For example, read() receives size_t argument,
863   // and its return value, which is of type ssize_t, cannot be greater
864   // than this argument. If we made a promotion, and the size argument
865   // is equal to, say, 10, then we'd impose a range of [0, 10] on the
866   // return value, however the correct range is [-1, 10].
867   //
868   // Please update the list of functions in the header after editing!
869 
870   // Below are helpers functions to create the summaries.
871   auto ArgumentCondition = [](ArgNo ArgN, RangeKind Kind,
872                               IntRangeVector Ranges) {
873     return std::make_shared<RangeConstraint>(ArgN, Kind, Ranges);
874   };
875   auto BufferSize = [](auto... Args) {
876     return std::make_shared<BufferSizeConstraint>(Args...);
877   };
878   struct {
879     auto operator()(RangeKind Kind, IntRangeVector Ranges) {
880       return std::make_shared<RangeConstraint>(Ret, Kind, Ranges);
881     }
882     auto operator()(BinaryOperator::Opcode Op, ArgNo OtherArgN) {
883       return std::make_shared<ComparisonConstraint>(Ret, Op, OtherArgN);
884     }
885   } ReturnValueCondition;
886   auto Range = [](RangeInt b, RangeInt e) {
887     return IntRangeVector{std::pair<RangeInt, RangeInt>{b, e}};
888   };
889   auto SingleValue = [](RangeInt v) {
890     return IntRangeVector{std::pair<RangeInt, RangeInt>{v, v}};
891   };
892   auto LessThanOrEq = BO_LE;
893   auto NotNull = [&](ArgNo ArgN) {
894     return std::make_shared<NotNullConstraint>(ArgN);
895   };
896 
897   Optional<QualType> FileTy = lookupType("FILE", ACtx);
898   Optional<QualType> FilePtrTy, FilePtrRestrictTy;
899   if (FileTy) {
900     // FILE *
901     FilePtrTy = ACtx.getPointerType(*FileTy);
902     // FILE *restrict
903     FilePtrRestrictTy =
904         ACtx.getLangOpts().C99 ? ACtx.getRestrictType(*FilePtrTy) : *FilePtrTy;
905   }
906 
907   using RetType = QualType;
908   // Templates for summaries that are reused by many functions.
909   auto Getc = [&]() {
910     return Summary(ArgTypes{*FilePtrTy}, RetType{IntTy}, NoEvalCall)
911         .Case({ReturnValueCondition(WithinRange,
912                                     {{EOFv, EOFv}, {0, UCharRangeMax}})});
913   };
914   auto Read = [&](RetType R, RangeInt Max) {
915     return Summary(ArgTypes{Irrelevant, Irrelevant, SizeTy}, RetType{R},
916                    NoEvalCall)
917         .Case({ReturnValueCondition(LessThanOrEq, ArgNo(2)),
918                ReturnValueCondition(WithinRange, Range(-1, Max))});
919   };
920   auto Fread = [&]() {
921     return Summary(
922                ArgTypes{VoidPtrRestrictTy, SizeTy, SizeTy, *FilePtrRestrictTy},
923                RetType{SizeTy}, NoEvalCall)
924         .Case({
925             ReturnValueCondition(LessThanOrEq, ArgNo(2)),
926         })
927         .ArgConstraint(NotNull(ArgNo(0)));
928   };
929   auto Fwrite = [&]() {
930     return Summary(ArgTypes{ConstVoidPtrRestrictTy, SizeTy, SizeTy,
931                             *FilePtrRestrictTy},
932                    RetType{SizeTy}, NoEvalCall)
933         .Case({
934             ReturnValueCondition(LessThanOrEq, ArgNo(2)),
935         })
936         .ArgConstraint(NotNull(ArgNo(0)));
937   };
938   auto Getline = [&](RetType R, RangeInt Max) {
939     return Summary(ArgTypes{Irrelevant, Irrelevant, Irrelevant}, RetType{R},
940                    NoEvalCall)
941         .Case({ReturnValueCondition(WithinRange, {{-1, -1}, {1, Max}})});
942   };
943 
944   // The isascii() family of functions.
945   // The behavior is undefined if the value of the argument is not
946   // representable as unsigned char or is not equal to EOF. See e.g. C99
947   // 7.4.1.2 The isalpha function (p: 181-182).
948   addToFunctionSummaryMap(
949       "isalnum",
950       Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
951           // Boils down to isupper() or islower() or isdigit().
952           .Case({ArgumentCondition(0U, WithinRange,
953                                    {{'0', '9'}, {'A', 'Z'}, {'a', 'z'}}),
954                  ReturnValueCondition(OutOfRange, SingleValue(0))})
955           // The locale-specific range.
956           // No post-condition. We are completely unaware of
957           // locale-specific return values.
958           .Case({ArgumentCondition(0U, WithinRange, {{128, UCharRangeMax}})})
959           .Case(
960               {ArgumentCondition(
961                    0U, OutOfRange,
962                    {{'0', '9'}, {'A', 'Z'}, {'a', 'z'}, {128, UCharRangeMax}}),
963                ReturnValueCondition(WithinRange, SingleValue(0))})
964           .ArgConstraint(ArgumentCondition(
965               0U, WithinRange, {{EOFv, EOFv}, {0, UCharRangeMax}})));
966   addToFunctionSummaryMap(
967       "isalpha",
968       Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
969           .Case({ArgumentCondition(0U, WithinRange, {{'A', 'Z'}, {'a', 'z'}}),
970                  ReturnValueCondition(OutOfRange, SingleValue(0))})
971           // The locale-specific range.
972           .Case({ArgumentCondition(0U, WithinRange, {{128, UCharRangeMax}})})
973           .Case({ArgumentCondition(
974                      0U, OutOfRange,
975                      {{'A', 'Z'}, {'a', 'z'}, {128, UCharRangeMax}}),
976                  ReturnValueCondition(WithinRange, SingleValue(0))}));
977   addToFunctionSummaryMap(
978       "isascii",
979       Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
980           .Case({ArgumentCondition(0U, WithinRange, Range(0, 127)),
981                  ReturnValueCondition(OutOfRange, SingleValue(0))})
982           .Case({ArgumentCondition(0U, OutOfRange, Range(0, 127)),
983                  ReturnValueCondition(WithinRange, SingleValue(0))}));
984   addToFunctionSummaryMap(
985       "isblank",
986       Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
987           .Case({ArgumentCondition(0U, WithinRange, {{'\t', '\t'}, {' ', ' '}}),
988                  ReturnValueCondition(OutOfRange, SingleValue(0))})
989           .Case({ArgumentCondition(0U, OutOfRange, {{'\t', '\t'}, {' ', ' '}}),
990                  ReturnValueCondition(WithinRange, SingleValue(0))}));
991   addToFunctionSummaryMap(
992       "iscntrl",
993       Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
994           .Case({ArgumentCondition(0U, WithinRange, {{0, 32}, {127, 127}}),
995                  ReturnValueCondition(OutOfRange, SingleValue(0))})
996           .Case({ArgumentCondition(0U, OutOfRange, {{0, 32}, {127, 127}}),
997                  ReturnValueCondition(WithinRange, SingleValue(0))}));
998   addToFunctionSummaryMap(
999       "isdigit",
1000       Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
1001           .Case({ArgumentCondition(0U, WithinRange, Range('0', '9')),
1002                  ReturnValueCondition(OutOfRange, SingleValue(0))})
1003           .Case({ArgumentCondition(0U, OutOfRange, Range('0', '9')),
1004                  ReturnValueCondition(WithinRange, SingleValue(0))}));
1005   addToFunctionSummaryMap(
1006       "isgraph",
1007       Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
1008           .Case({ArgumentCondition(0U, WithinRange, Range(33, 126)),
1009                  ReturnValueCondition(OutOfRange, SingleValue(0))})
1010           .Case({ArgumentCondition(0U, OutOfRange, Range(33, 126)),
1011                  ReturnValueCondition(WithinRange, SingleValue(0))}));
1012   addToFunctionSummaryMap(
1013       "islower",
1014       Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
1015           // Is certainly lowercase.
1016           .Case({ArgumentCondition(0U, WithinRange, Range('a', 'z')),
1017                  ReturnValueCondition(OutOfRange, SingleValue(0))})
1018           // Is ascii but not lowercase.
1019           .Case({ArgumentCondition(0U, WithinRange, Range(0, 127)),
1020                  ArgumentCondition(0U, OutOfRange, Range('a', 'z')),
1021                  ReturnValueCondition(WithinRange, SingleValue(0))})
1022           // The locale-specific range.
1023           .Case({ArgumentCondition(0U, WithinRange, {{128, UCharRangeMax}})})
1024           // Is not an unsigned char.
1025           .Case({ArgumentCondition(0U, OutOfRange, Range(0, UCharRangeMax)),
1026                  ReturnValueCondition(WithinRange, SingleValue(0))}));
1027   addToFunctionSummaryMap(
1028       "isprint",
1029       Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
1030           .Case({ArgumentCondition(0U, WithinRange, Range(32, 126)),
1031                  ReturnValueCondition(OutOfRange, SingleValue(0))})
1032           .Case({ArgumentCondition(0U, OutOfRange, Range(32, 126)),
1033                  ReturnValueCondition(WithinRange, SingleValue(0))}));
1034   addToFunctionSummaryMap(
1035       "ispunct",
1036       Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
1037           .Case({ArgumentCondition(
1038                      0U, WithinRange,
1039                      {{'!', '/'}, {':', '@'}, {'[', '`'}, {'{', '~'}}),
1040                  ReturnValueCondition(OutOfRange, SingleValue(0))})
1041           .Case({ArgumentCondition(
1042                      0U, OutOfRange,
1043                      {{'!', '/'}, {':', '@'}, {'[', '`'}, {'{', '~'}}),
1044                  ReturnValueCondition(WithinRange, SingleValue(0))}));
1045   addToFunctionSummaryMap(
1046       "isspace",
1047       Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
1048           // Space, '\f', '\n', '\r', '\t', '\v'.
1049           .Case({ArgumentCondition(0U, WithinRange, {{9, 13}, {' ', ' '}}),
1050                  ReturnValueCondition(OutOfRange, SingleValue(0))})
1051           // The locale-specific range.
1052           .Case({ArgumentCondition(0U, WithinRange, {{128, UCharRangeMax}})})
1053           .Case({ArgumentCondition(0U, OutOfRange,
1054                                    {{9, 13}, {' ', ' '}, {128, UCharRangeMax}}),
1055                  ReturnValueCondition(WithinRange, SingleValue(0))}));
1056   addToFunctionSummaryMap(
1057       "isupper",
1058       Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
1059           // Is certainly uppercase.
1060           .Case({ArgumentCondition(0U, WithinRange, Range('A', 'Z')),
1061                  ReturnValueCondition(OutOfRange, SingleValue(0))})
1062           // The locale-specific range.
1063           .Case({ArgumentCondition(0U, WithinRange, {{128, UCharRangeMax}})})
1064           // Other.
1065           .Case({ArgumentCondition(0U, OutOfRange,
1066                                    {{'A', 'Z'}, {128, UCharRangeMax}}),
1067                  ReturnValueCondition(WithinRange, SingleValue(0))}));
1068   addToFunctionSummaryMap(
1069       "isxdigit",
1070       Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
1071           .Case({ArgumentCondition(0U, WithinRange,
1072                                    {{'0', '9'}, {'A', 'F'}, {'a', 'f'}}),
1073                  ReturnValueCondition(OutOfRange, SingleValue(0))})
1074           .Case({ArgumentCondition(0U, OutOfRange,
1075                                    {{'0', '9'}, {'A', 'F'}, {'a', 'f'}}),
1076                  ReturnValueCondition(WithinRange, SingleValue(0))}));
1077 
1078   // The getc() family of functions that returns either a char or an EOF.
1079   if (FilePtrTy) {
1080     addToFunctionSummaryMap("getc", Getc());
1081     addToFunctionSummaryMap("fgetc", Getc());
1082   }
1083   addToFunctionSummaryMap(
1084       "getchar", Summary(ArgTypes{}, RetType{IntTy}, NoEvalCall)
1085                      .Case({ReturnValueCondition(
1086                          WithinRange, {{EOFv, EOFv}, {0, UCharRangeMax}})}));
1087 
1088   // read()-like functions that never return more than buffer size.
1089   if (FilePtrRestrictTy) {
1090     addToFunctionSummaryMap("fread", Fread());
1091     addToFunctionSummaryMap("fwrite", Fwrite());
1092   }
1093 
1094   // We are not sure how ssize_t is defined on every platform, so we
1095   // provide three variants that should cover common cases.
1096   // FIXME these are actually defined by POSIX and not by the C standard, we
1097   // should handle them together with the rest of the POSIX functions.
1098   addToFunctionSummaryMap("read", {Read(IntTy, IntMax), Read(LongTy, LongMax),
1099                                    Read(LongLongTy, LongLongMax)});
1100   addToFunctionSummaryMap("write", {Read(IntTy, IntMax), Read(LongTy, LongMax),
1101                                     Read(LongLongTy, LongLongMax)});
1102 
1103   // getline()-like functions either fail or read at least the delimiter.
1104   // FIXME these are actually defined by POSIX and not by the C standard, we
1105   // should handle them together with the rest of the POSIX functions.
1106   addToFunctionSummaryMap("getline",
1107                           {Getline(IntTy, IntMax), Getline(LongTy, LongMax),
1108                            Getline(LongLongTy, LongLongMax)});
1109   addToFunctionSummaryMap("getdelim",
1110                           {Getline(IntTy, IntMax), Getline(LongTy, LongMax),
1111                            Getline(LongLongTy, LongLongMax)});
1112 
1113   // Functions for testing.
1114   if (ChecksEnabled[CK_StdCLibraryFunctionsTesterChecker]) {
1115     addToFunctionSummaryMap(
1116         "__two_constrained_args",
1117         Summary(ArgTypes{IntTy, IntTy}, RetType{IntTy}, EvalCallAsPure)
1118             .ArgConstraint(ArgumentCondition(0U, WithinRange, SingleValue(1)))
1119             .ArgConstraint(ArgumentCondition(1U, WithinRange, SingleValue(1))));
1120     addToFunctionSummaryMap(
1121         "__arg_constrained_twice",
1122         Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
1123             .ArgConstraint(ArgumentCondition(0U, OutOfRange, SingleValue(1)))
1124             .ArgConstraint(ArgumentCondition(0U, OutOfRange, SingleValue(2))));
1125     addToFunctionSummaryMap(
1126         "__defaultparam",
1127         Summary(ArgTypes{Irrelevant, IntTy}, RetType{IntTy}, EvalCallAsPure)
1128             .ArgConstraint(NotNull(ArgNo(0))));
1129     addToFunctionSummaryMap("__variadic",
1130                             Summary(ArgTypes{VoidPtrTy, ConstCharPtrTy},
1131                                     RetType{IntTy}, EvalCallAsPure)
1132                                 .ArgConstraint(NotNull(ArgNo(0)))
1133                                 .ArgConstraint(NotNull(ArgNo(1))));
1134     addToFunctionSummaryMap(
1135         "__buf_size_arg_constraint",
1136         Summary(ArgTypes{ConstVoidPtrTy, SizeTy}, RetType{IntTy},
1137                 EvalCallAsPure)
1138             .ArgConstraint(
1139                 BufferSize(/*Buffer=*/ArgNo(0), /*BufSize=*/ArgNo(1))));
1140     addToFunctionSummaryMap(
1141         "__buf_size_arg_constraint_mul",
1142         Summary(ArgTypes{ConstVoidPtrTy, SizeTy, SizeTy}, RetType{IntTy},
1143                 EvalCallAsPure)
1144             .ArgConstraint(BufferSize(/*Buffer=*/ArgNo(0), /*BufSize=*/ArgNo(1),
1145                                       /*BufSizeMultiplier=*/ArgNo(2))));
1146   }
1147 }
1148 
1149 void ento::registerStdCLibraryFunctionsChecker(CheckerManager &mgr) {
1150   auto *Checker = mgr.registerChecker<StdLibraryFunctionsChecker>();
1151   Checker->DisplayLoadedSummaries =
1152       mgr.getAnalyzerOptions().getCheckerBooleanOption(
1153           Checker, "DisplayLoadedSummaries");
1154 }
1155 
1156 bool ento::shouldRegisterStdCLibraryFunctionsChecker(const CheckerManager &mgr) {
1157   return true;
1158 }
1159 
1160 #define REGISTER_CHECKER(name)                                                 \
1161   void ento::register##name(CheckerManager &mgr) {                             \
1162     StdLibraryFunctionsChecker *checker =                                      \
1163         mgr.getChecker<StdLibraryFunctionsChecker>();                          \
1164     checker->ChecksEnabled[StdLibraryFunctionsChecker::CK_##name] = true;      \
1165     checker->CheckNames[StdLibraryFunctionsChecker::CK_##name] =               \
1166         mgr.getCurrentCheckerName();                                           \
1167   }                                                                            \
1168                                                                                \
1169   bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; }
1170 
1171 REGISTER_CHECKER(StdCLibraryFunctionArgsChecker)
1172 REGISTER_CHECKER(StdCLibraryFunctionsTesterChecker)
1173