1 //=== StdLibraryFunctionsChecker.cpp - Model standard functions -*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This checker improves modeling of a few simple library functions. 10 // 11 // This checker provides a specification format - `Summary' - and 12 // contains descriptions of some library functions in this format. Each 13 // specification contains a list of branches for splitting the program state 14 // upon call, and range constraints on argument and return-value symbols that 15 // are satisfied on each branch. This spec can be expanded to include more 16 // items, like external effects of the function. 17 // 18 // The main difference between this approach and the body farms technique is 19 // in more explicit control over how many branches are produced. For example, 20 // consider standard C function `ispunct(int x)', which returns a non-zero value 21 // iff `x' is a punctuation character, that is, when `x' is in range 22 // ['!', '/'] [':', '@'] U ['[', '\`'] U ['{', '~']. 23 // `Summary' provides only two branches for this function. However, 24 // any attempt to describe this range with if-statements in the body farm 25 // would result in many more branches. Because each branch needs to be analyzed 26 // independently, this significantly reduces performance. Additionally, 27 // once we consider a branch on which `x' is in range, say, ['!', '/'], 28 // we assume that such branch is an important separate path through the program, 29 // which may lead to false positives because considering this particular path 30 // was not consciously intended, and therefore it might have been unreachable. 31 // 32 // This checker uses eval::Call for modeling pure functions (functions without 33 // side effets), for which their `Summary' is a precise model. This avoids 34 // unnecessary invalidation passes. Conflicts with other checkers are unlikely 35 // because if the function has no other effects, other checkers would probably 36 // never want to improve upon the modeling done by this checker. 37 // 38 // Non-pure functions, for which only partial improvement over the default 39 // behavior is expected, are modeled via check::PostCall, non-intrusively. 40 // 41 // The following standard C functions are currently supported: 42 // 43 // fgetc getline isdigit isupper 44 // fread isalnum isgraph isxdigit 45 // fwrite isalpha islower read 46 // getc isascii isprint write 47 // getchar isblank ispunct 48 // getdelim iscntrl isspace 49 // 50 //===----------------------------------------------------------------------===// 51 52 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" 53 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 54 #include "clang/StaticAnalyzer/Core/Checker.h" 55 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 56 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 57 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 58 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h" 59 60 using namespace clang; 61 using namespace clang::ento; 62 63 namespace { 64 class StdLibraryFunctionsChecker 65 : public Checker<check::PreCall, check::PostCall, eval::Call> { 66 /// Below is a series of typedefs necessary to define function specs. 67 /// We avoid nesting types here because each additional qualifier 68 /// would need to be repeated in every function spec. 69 struct Summary; 70 71 /// Specify how much the analyzer engine should entrust modeling this function 72 /// to us. If he doesn't, he performs additional invalidations. 73 enum InvalidationKind { NoEvalCall, EvalCallAsPure }; 74 75 // The universal integral type to use in value range descriptions. 76 // Unsigned to make sure overflows are well-defined. 77 typedef uint64_t RangeInt; 78 79 /// Normally, describes a single range constraint, eg. {{0, 1}, {3, 4}} is 80 /// a non-negative integer, which less than 5 and not equal to 2. For 81 /// `ComparesToArgument', holds information about how exactly to compare to 82 /// the argument. 83 typedef std::vector<std::pair<RangeInt, RangeInt>> IntRangeVector; 84 85 /// A reference to an argument or return value by its number. 86 /// ArgNo in CallExpr and CallEvent is defined as Unsigned, but 87 /// obviously uint32_t should be enough for all practical purposes. 88 typedef uint32_t ArgNo; 89 static const ArgNo Ret; 90 91 class ValueConstraint; 92 93 // Pointer to the ValueConstraint. We need a copyable, polymorphic and 94 // default initialize able type (vector needs that). A raw pointer was good, 95 // however, we cannot default initialize that. unique_ptr makes the Summary 96 // class non-copyable, therefore not an option. Releasing the copyability 97 // requirement would render the initialization of the Summary map infeasible. 98 using ValueConstraintPtr = std::shared_ptr<ValueConstraint>; 99 100 /// Polymorphic base class that represents a constraint on a given argument 101 /// (or return value) of a function. Derived classes implement different kind 102 /// of constraints, e.g range constraints or correlation between two 103 /// arguments. 104 class ValueConstraint { 105 public: 106 ValueConstraint(ArgNo ArgN) : ArgN(ArgN) {} 107 virtual ~ValueConstraint() {} 108 /// Apply the effects of the constraint on the given program state. If null 109 /// is returned then the constraint is not feasible. 110 virtual ProgramStateRef apply(ProgramStateRef State, const CallEvent &Call, 111 const Summary &Summary) const = 0; 112 virtual ValueConstraintPtr negate() const { 113 llvm_unreachable("Not implemented"); 114 }; 115 ArgNo getArgNo() const { return ArgN; } 116 117 protected: 118 ArgNo ArgN; // Argument to which we apply the constraint. 119 }; 120 121 /// Given a range, should the argument stay inside or outside this range? 122 enum RangeKind { OutOfRange, WithinRange }; 123 124 /// Encapsulates a single range on a single symbol within a branch. 125 class RangeConstraint : public ValueConstraint { 126 RangeKind Kind; // Kind of range definition. 127 IntRangeVector Args; // Polymorphic arguments. 128 129 public: 130 RangeConstraint(ArgNo ArgN, RangeKind Kind, const IntRangeVector &Args) 131 : ValueConstraint(ArgN), Kind(Kind), Args(Args) {} 132 133 const IntRangeVector &getRanges() const { 134 return Args; 135 } 136 137 private: 138 ProgramStateRef applyAsOutOfRange(ProgramStateRef State, 139 const CallEvent &Call, 140 const Summary &Summary) const; 141 ProgramStateRef applyAsWithinRange(ProgramStateRef State, 142 const CallEvent &Call, 143 const Summary &Summary) const; 144 public: 145 ProgramStateRef apply(ProgramStateRef State, const CallEvent &Call, 146 const Summary &Summary) const override { 147 switch (Kind) { 148 case OutOfRange: 149 return applyAsOutOfRange(State, Call, Summary); 150 case WithinRange: 151 return applyAsWithinRange(State, Call, Summary); 152 } 153 llvm_unreachable("Unknown range kind!"); 154 } 155 156 ValueConstraintPtr negate() const override { 157 RangeConstraint Tmp(*this); 158 switch (Kind) { 159 case OutOfRange: 160 Tmp.Kind = WithinRange; 161 break; 162 case WithinRange: 163 Tmp.Kind = OutOfRange; 164 break; 165 } 166 return std::make_shared<RangeConstraint>(Tmp); 167 } 168 }; 169 170 class ComparisonConstraint : public ValueConstraint { 171 BinaryOperator::Opcode Opcode; 172 ArgNo OtherArgN; 173 174 public: 175 ComparisonConstraint(ArgNo ArgN, BinaryOperator::Opcode Opcode, 176 ArgNo OtherArgN) 177 : ValueConstraint(ArgN), Opcode(Opcode), OtherArgN(OtherArgN) {} 178 ArgNo getOtherArgNo() const { return OtherArgN; } 179 BinaryOperator::Opcode getOpcode() const { return Opcode; } 180 ProgramStateRef apply(ProgramStateRef State, const CallEvent &Call, 181 const Summary &Summary) const override; 182 }; 183 184 class NotNullConstraint : public ValueConstraint { 185 using ValueConstraint::ValueConstraint; 186 // This variable has a role when we negate the constraint. 187 bool CannotBeNull = true; 188 189 public: 190 ProgramStateRef apply(ProgramStateRef State, const CallEvent &Call, 191 const Summary &Summary) const override { 192 SVal V = getArgSVal(Call, getArgNo()); 193 if (V.isUndef()) 194 return State; 195 196 DefinedOrUnknownSVal L = V.castAs<DefinedOrUnknownSVal>(); 197 if (!L.getAs<Loc>()) 198 return State; 199 200 return State->assume(L, CannotBeNull); 201 } 202 203 ValueConstraintPtr negate() const override { 204 NotNullConstraint Tmp(*this); 205 Tmp.CannotBeNull = !this->CannotBeNull; 206 return std::make_shared<NotNullConstraint>(Tmp); 207 } 208 }; 209 210 /// The complete list of constraints that defines a single branch. 211 typedef std::vector<ValueConstraintPtr> ConstraintSet; 212 213 using ArgTypes = std::vector<QualType>; 214 using Cases = std::vector<ConstraintSet>; 215 216 /// Includes information about 217 /// * function prototype (which is necessary to 218 /// ensure we're modeling the right function and casting values properly), 219 /// * approach to invalidation, 220 /// * a list of branches - a list of list of ranges - 221 /// A branch represents a path in the exploded graph of a function (which 222 /// is a tree). So, a branch is a series of assumptions. In other words, 223 /// branches represent split states and additional assumptions on top of 224 /// the splitting assumption. 225 /// For example, consider the branches in `isalpha(x)` 226 /// Branch 1) 227 /// x is in range ['A', 'Z'] or in ['a', 'z'] 228 /// then the return value is not 0. (I.e. out-of-range [0, 0]) 229 /// Branch 2) 230 /// x is out-of-range ['A', 'Z'] and out-of-range ['a', 'z'] 231 /// then the return value is 0. 232 /// * a list of argument constraints, that must be true on every branch. 233 /// If these constraints are not satisfied that means a fatal error 234 /// usually resulting in undefined behaviour. 235 struct Summary { 236 const ArgTypes ArgTys; 237 const QualType RetTy; 238 const InvalidationKind InvalidationKd; 239 Cases CaseConstraints; 240 ConstraintSet ArgConstraints; 241 242 Summary(ArgTypes ArgTys, QualType RetTy, InvalidationKind InvalidationKd) 243 : ArgTys(ArgTys), RetTy(RetTy), InvalidationKd(InvalidationKd) {} 244 245 Summary &Case(ConstraintSet&& CS) { 246 CaseConstraints.push_back(std::move(CS)); 247 return *this; 248 } 249 Summary &ArgConstraint(ValueConstraintPtr VC) { 250 ArgConstraints.push_back(VC); 251 return *this; 252 } 253 254 private: 255 static void assertTypeSuitableForSummary(QualType T) { 256 assert(!T->isVoidType() && 257 "We should have had no significant void types in the spec"); 258 assert(T.isCanonical() && 259 "We should only have canonical types in the spec"); 260 } 261 262 public: 263 QualType getArgType(ArgNo ArgN) const { 264 QualType T = (ArgN == Ret) ? RetTy : ArgTys[ArgN]; 265 assertTypeSuitableForSummary(T); 266 return T; 267 } 268 269 /// Try our best to figure out if the summary's signature matches 270 /// *the* library function to which this specification applies. 271 bool matchesSignature(const FunctionDecl *FD) const; 272 }; 273 274 // The map of all functions supported by the checker. It is initialized 275 // lazily, and it doesn't change after initialization. 276 using FunctionSummaryMapType = llvm::DenseMap<const FunctionDecl *, Summary>; 277 mutable FunctionSummaryMapType FunctionSummaryMap; 278 279 mutable std::unique_ptr<BugType> BT_InvalidArg; 280 281 // Auxiliary functions to support ArgNo within all structures 282 // in a unified manner. 283 static QualType getArgType(const Summary &Summary, ArgNo ArgN) { 284 return Summary.getArgType(ArgN); 285 } 286 static SVal getArgSVal(const CallEvent &Call, ArgNo ArgN) { 287 return ArgN == Ret ? Call.getReturnValue() : Call.getArgSVal(ArgN); 288 } 289 290 public: 291 void checkPreCall(const CallEvent &Call, CheckerContext &C) const; 292 void checkPostCall(const CallEvent &Call, CheckerContext &C) const; 293 bool evalCall(const CallEvent &Call, CheckerContext &C) const; 294 295 enum CheckKind { 296 CK_StdCLibraryFunctionArgsChecker, 297 CK_StdCLibraryFunctionsTesterChecker, 298 CK_NumCheckKinds 299 }; 300 DefaultBool ChecksEnabled[CK_NumCheckKinds]; 301 CheckerNameRef CheckNames[CK_NumCheckKinds]; 302 303 private: 304 Optional<Summary> findFunctionSummary(const FunctionDecl *FD, 305 CheckerContext &C) const; 306 Optional<Summary> findFunctionSummary(const CallEvent &Call, 307 CheckerContext &C) const; 308 309 void initFunctionSummaries(CheckerContext &C) const; 310 311 void reportBug(const CallEvent &Call, ExplodedNode *N, 312 CheckerContext &C) const { 313 if (!ChecksEnabled[CK_StdCLibraryFunctionArgsChecker]) 314 return; 315 // TODO Add detailed diagnostic. 316 StringRef Msg = "Function argument constraint is not satisfied"; 317 if (!BT_InvalidArg) 318 BT_InvalidArg = std::make_unique<BugType>( 319 CheckNames[CK_StdCLibraryFunctionArgsChecker], 320 "Unsatisfied argument constraints", categories::LogicError); 321 auto R = std::make_unique<PathSensitiveBugReport>(*BT_InvalidArg, Msg, N); 322 bugreporter::trackExpressionValue(N, Call.getArgExpr(0), *R); 323 C.emitReport(std::move(R)); 324 } 325 }; 326 327 const StdLibraryFunctionsChecker::ArgNo StdLibraryFunctionsChecker::Ret = 328 std::numeric_limits<ArgNo>::max(); 329 330 } // end of anonymous namespace 331 332 ProgramStateRef StdLibraryFunctionsChecker::RangeConstraint::applyAsOutOfRange( 333 ProgramStateRef State, const CallEvent &Call, 334 const Summary &Summary) const { 335 336 ProgramStateManager &Mgr = State->getStateManager(); 337 SValBuilder &SVB = Mgr.getSValBuilder(); 338 BasicValueFactory &BVF = SVB.getBasicValueFactory(); 339 ConstraintManager &CM = Mgr.getConstraintManager(); 340 QualType T = getArgType(Summary, getArgNo()); 341 SVal V = getArgSVal(Call, getArgNo()); 342 343 if (auto N = V.getAs<NonLoc>()) { 344 const IntRangeVector &R = getRanges(); 345 size_t E = R.size(); 346 for (size_t I = 0; I != E; ++I) { 347 const llvm::APSInt &Min = BVF.getValue(R[I].first, T); 348 const llvm::APSInt &Max = BVF.getValue(R[I].second, T); 349 assert(Min <= Max); 350 State = CM.assumeInclusiveRange(State, *N, Min, Max, false); 351 if (!State) 352 break; 353 } 354 } 355 356 return State; 357 } 358 359 ProgramStateRef StdLibraryFunctionsChecker::RangeConstraint::applyAsWithinRange( 360 ProgramStateRef State, const CallEvent &Call, 361 const Summary &Summary) const { 362 363 ProgramStateManager &Mgr = State->getStateManager(); 364 SValBuilder &SVB = Mgr.getSValBuilder(); 365 BasicValueFactory &BVF = SVB.getBasicValueFactory(); 366 ConstraintManager &CM = Mgr.getConstraintManager(); 367 QualType T = getArgType(Summary, getArgNo()); 368 SVal V = getArgSVal(Call, getArgNo()); 369 370 // "WithinRange R" is treated as "outside [T_MIN, T_MAX] \ R". 371 // We cut off [T_MIN, min(R) - 1] and [max(R) + 1, T_MAX] if necessary, 372 // and then cut away all holes in R one by one. 373 // 374 // E.g. consider a range list R as [A, B] and [C, D] 375 // -------+--------+------------------+------------+-----------> 376 // A B C D 377 // Then we assume that the value is not in [-inf, A - 1], 378 // then not in [D + 1, +inf], then not in [B + 1, C - 1] 379 if (auto N = V.getAs<NonLoc>()) { 380 const IntRangeVector &R = getRanges(); 381 size_t E = R.size(); 382 383 const llvm::APSInt &MinusInf = BVF.getMinValue(T); 384 const llvm::APSInt &PlusInf = BVF.getMaxValue(T); 385 386 const llvm::APSInt &Left = BVF.getValue(R[0].first - 1ULL, T); 387 if (Left != PlusInf) { 388 assert(MinusInf <= Left); 389 State = CM.assumeInclusiveRange(State, *N, MinusInf, Left, false); 390 if (!State) 391 return nullptr; 392 } 393 394 const llvm::APSInt &Right = BVF.getValue(R[E - 1].second + 1ULL, T); 395 if (Right != MinusInf) { 396 assert(Right <= PlusInf); 397 State = CM.assumeInclusiveRange(State, *N, Right, PlusInf, false); 398 if (!State) 399 return nullptr; 400 } 401 402 for (size_t I = 1; I != E; ++I) { 403 const llvm::APSInt &Min = BVF.getValue(R[I - 1].second + 1ULL, T); 404 const llvm::APSInt &Max = BVF.getValue(R[I].first - 1ULL, T); 405 if (Min <= Max) { 406 State = CM.assumeInclusiveRange(State, *N, Min, Max, false); 407 if (!State) 408 return nullptr; 409 } 410 } 411 } 412 413 return State; 414 } 415 416 ProgramStateRef StdLibraryFunctionsChecker::ComparisonConstraint::apply( 417 ProgramStateRef State, const CallEvent &Call, 418 const Summary &Summary) const { 419 420 ProgramStateManager &Mgr = State->getStateManager(); 421 SValBuilder &SVB = Mgr.getSValBuilder(); 422 QualType CondT = SVB.getConditionType(); 423 QualType T = getArgType(Summary, getArgNo()); 424 SVal V = getArgSVal(Call, getArgNo()); 425 426 BinaryOperator::Opcode Op = getOpcode(); 427 ArgNo OtherArg = getOtherArgNo(); 428 SVal OtherV = getArgSVal(Call, OtherArg); 429 QualType OtherT = getArgType(Summary, OtherArg); 430 // Note: we avoid integral promotion for comparison. 431 OtherV = SVB.evalCast(OtherV, T, OtherT); 432 if (auto CompV = SVB.evalBinOp(State, Op, V, OtherV, CondT) 433 .getAs<DefinedOrUnknownSVal>()) 434 State = State->assume(*CompV, true); 435 return State; 436 } 437 438 void StdLibraryFunctionsChecker::checkPreCall(const CallEvent &Call, 439 CheckerContext &C) const { 440 Optional<Summary> FoundSummary = findFunctionSummary(Call, C); 441 if (!FoundSummary) 442 return; 443 444 const Summary &Summary = *FoundSummary; 445 ProgramStateRef State = C.getState(); 446 447 ProgramStateRef NewState = State; 448 for (const ValueConstraintPtr& VC : Summary.ArgConstraints) { 449 ProgramStateRef SuccessSt = VC->apply(NewState, Call, Summary); 450 ProgramStateRef FailureSt = VC->negate()->apply(NewState, Call, Summary); 451 // The argument constraint is not satisfied. 452 if (FailureSt && !SuccessSt) { 453 if (ExplodedNode *N = C.generateErrorNode(NewState)) 454 reportBug(Call, N, C); 455 break; 456 } else { 457 // We will apply the constraint even if we cannot reason about the 458 // argument. This means both SuccessSt and FailureSt can be true. If we 459 // weren't applying the constraint that would mean that symbolic 460 // execution continues on a code whose behaviour is undefined. 461 assert(SuccessSt); 462 NewState = SuccessSt; 463 } 464 } 465 if (NewState && NewState != State) 466 C.addTransition(NewState); 467 } 468 469 void StdLibraryFunctionsChecker::checkPostCall(const CallEvent &Call, 470 CheckerContext &C) const { 471 Optional<Summary> FoundSummary = findFunctionSummary(Call, C); 472 if (!FoundSummary) 473 return; 474 475 // Now apply the constraints. 476 const Summary &Summary = *FoundSummary; 477 ProgramStateRef State = C.getState(); 478 479 // Apply case/branch specifications. 480 for (const auto &VRS : Summary.CaseConstraints) { 481 ProgramStateRef NewState = State; 482 for (const auto &VR: VRS) { 483 NewState = VR->apply(NewState, Call, Summary); 484 if (!NewState) 485 break; 486 } 487 488 if (NewState && NewState != State) 489 C.addTransition(NewState); 490 } 491 } 492 493 bool StdLibraryFunctionsChecker::evalCall(const CallEvent &Call, 494 CheckerContext &C) const { 495 Optional<Summary> FoundSummary = findFunctionSummary(Call, C); 496 if (!FoundSummary) 497 return false; 498 499 const Summary &Summary = *FoundSummary; 500 switch (Summary.InvalidationKd) { 501 case EvalCallAsPure: { 502 ProgramStateRef State = C.getState(); 503 const LocationContext *LC = C.getLocationContext(); 504 const auto *CE = cast_or_null<CallExpr>(Call.getOriginExpr()); 505 SVal V = C.getSValBuilder().conjureSymbolVal( 506 CE, LC, CE->getType().getCanonicalType(), C.blockCount()); 507 State = State->BindExpr(CE, LC, V); 508 C.addTransition(State); 509 return true; 510 } 511 case NoEvalCall: 512 // Summary tells us to avoid performing eval::Call. The function is possibly 513 // evaluated by another checker, or evaluated conservatively. 514 return false; 515 } 516 llvm_unreachable("Unknown invalidation kind!"); 517 } 518 519 bool StdLibraryFunctionsChecker::Summary::matchesSignature( 520 const FunctionDecl *FD) const { 521 // Check number of arguments: 522 if (FD->param_size() != ArgTys.size()) 523 return false; 524 525 // Check return type if relevant: 526 if (!RetTy.isNull() && RetTy != FD->getReturnType().getCanonicalType()) 527 return false; 528 529 // Check argument types when relevant: 530 for (size_t I = 0, E = ArgTys.size(); I != E; ++I) { 531 QualType FormalT = ArgTys[I]; 532 // Null type marks irrelevant arguments. 533 if (FormalT.isNull()) 534 continue; 535 536 assertTypeSuitableForSummary(FormalT); 537 538 QualType ActualT = FD->getParamDecl(I)->getType().getCanonicalType(); 539 if (ActualT != FormalT) 540 return false; 541 } 542 543 return true; 544 } 545 546 Optional<StdLibraryFunctionsChecker::Summary> 547 StdLibraryFunctionsChecker::findFunctionSummary(const FunctionDecl *FD, 548 CheckerContext &C) const { 549 if (!FD) 550 return None; 551 552 initFunctionSummaries(C); 553 554 auto FSMI = FunctionSummaryMap.find(FD->getCanonicalDecl()); 555 if (FSMI == FunctionSummaryMap.end()) 556 return None; 557 return FSMI->second; 558 } 559 560 Optional<StdLibraryFunctionsChecker::Summary> 561 StdLibraryFunctionsChecker::findFunctionSummary(const CallEvent &Call, 562 CheckerContext &C) const { 563 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Call.getDecl()); 564 if (!FD) 565 return None; 566 return findFunctionSummary(FD, C); 567 } 568 569 llvm::Optional<const FunctionDecl *> 570 lookupGlobalCFunction(StringRef Name, const ASTContext &ACtx) { 571 IdentifierInfo &II = ACtx.Idents.get(Name); 572 auto LookupRes = ACtx.getTranslationUnitDecl()->lookup(&II); 573 if (LookupRes.size() == 0) 574 return None; 575 576 assert(LookupRes.size() == 1 && "In C, identifiers should be unique"); 577 Decl *D = LookupRes.front()->getCanonicalDecl(); 578 auto *FD = dyn_cast<FunctionDecl>(D); 579 if (!FD) 580 return None; 581 return FD->getCanonicalDecl(); 582 } 583 584 void StdLibraryFunctionsChecker::initFunctionSummaries( 585 CheckerContext &C) const { 586 if (!FunctionSummaryMap.empty()) 587 return; 588 589 SValBuilder &SVB = C.getSValBuilder(); 590 BasicValueFactory &BVF = SVB.getBasicValueFactory(); 591 const ASTContext &ACtx = BVF.getContext(); 592 593 // These types are useful for writing specifications quickly, 594 // New specifications should probably introduce more types. 595 // Some types are hard to obtain from the AST, eg. "ssize_t". 596 // In such cases it should be possible to provide multiple variants 597 // of function summary for common cases (eg. ssize_t could be int or long 598 // or long long, so three summary variants would be enough). 599 // Of course, function variants are also useful for C++ overloads. 600 const QualType 601 Irrelevant{}; // A placeholder, whenever we do not care about the type. 602 const QualType IntTy = ACtx.IntTy; 603 const QualType LongTy = ACtx.LongTy; 604 const QualType LongLongTy = ACtx.LongLongTy; 605 const QualType SizeTy = ACtx.getSizeType(); 606 const QualType VoidPtrTy = ACtx.VoidPtrTy; // void * 607 const QualType VoidPtrRestrictTy = 608 ACtx.getRestrictType(VoidPtrTy); // void *restrict 609 const QualType ConstVoidPtrTy = 610 ACtx.getPointerType(ACtx.VoidTy.withConst()); // const void * 611 const QualType ConstCharPtrTy = 612 ACtx.getPointerType(ACtx.CharTy.withConst()); // const char * 613 const QualType ConstVoidPtrRestrictTy = 614 ACtx.getRestrictType(ConstVoidPtrTy); // const void *restrict 615 616 const RangeInt IntMax = BVF.getMaxValue(IntTy).getLimitedValue(); 617 const RangeInt LongMax = BVF.getMaxValue(LongTy).getLimitedValue(); 618 const RangeInt LongLongMax = BVF.getMaxValue(LongLongTy).getLimitedValue(); 619 620 // Set UCharRangeMax to min of int or uchar maximum value. 621 // The C standard states that the arguments of functions like isalpha must 622 // be representable as an unsigned char. Their type is 'int', so the max 623 // value of the argument should be min(UCharMax, IntMax). This just happen 624 // to be true for commonly used and well tested instruction set 625 // architectures, but not for others. 626 const RangeInt UCharRangeMax = 627 std::min(BVF.getMaxValue(ACtx.UnsignedCharTy).getLimitedValue(), IntMax); 628 629 // The platform dependent value of EOF. 630 // Try our best to parse this from the Preprocessor, otherwise fallback to -1. 631 const auto EOFv = [&C]() -> RangeInt { 632 if (const llvm::Optional<int> OptInt = 633 tryExpandAsInteger("EOF", C.getPreprocessor())) 634 return *OptInt; 635 return -1; 636 }(); 637 638 // Auxiliary class to aid adding summaries to the summary map. 639 struct AddToFunctionSummaryMap { 640 const ASTContext &ACtx; 641 FunctionSummaryMapType ⤅ 642 AddToFunctionSummaryMap(const ASTContext &ACtx, FunctionSummaryMapType &FSM) 643 : ACtx(ACtx), Map(FSM) {} 644 // Add a summary to a FunctionDecl found by lookup. The lookup is performed 645 // by the given Name, and in the global scope. The summary will be attached 646 // to the found FunctionDecl only if the signatures match. 647 void operator()(StringRef Name, const Summary &S) { 648 IdentifierInfo &II = ACtx.Idents.get(Name); 649 auto LookupRes = ACtx.getTranslationUnitDecl()->lookup(&II); 650 if (LookupRes.size() == 0) 651 return; 652 for (Decl *D : LookupRes) { 653 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 654 if (S.matchesSignature(FD)) { 655 auto Res = Map.insert({FD->getCanonicalDecl(), S}); 656 assert(Res.second && "Function already has a summary set!"); 657 (void)Res; 658 return; 659 } 660 } 661 } 662 } 663 // Add several summaries for the given name. 664 void operator()(StringRef Name, const std::vector<Summary> &Summaries) { 665 for (const Summary &S : Summaries) 666 operator()(Name, S); 667 } 668 } addToFunctionSummaryMap(ACtx, FunctionSummaryMap); 669 670 // We are finally ready to define specifications for all supported functions. 671 // 672 // The signature needs to have the correct number of arguments. 673 // However, we insert `Irrelevant' when the type is insignificant. 674 // 675 // Argument ranges should always cover all variants. If return value 676 // is completely unknown, omit it from the respective range set. 677 // 678 // All types in the spec need to be canonical. 679 // 680 // Every item in the list of range sets represents a particular 681 // execution path the analyzer would need to explore once 682 // the call is modeled - a new program state is constructed 683 // for every range set, and each range line in the range set 684 // corresponds to a specific constraint within this state. 685 // 686 // Upon comparing to another argument, the other argument is casted 687 // to the current argument's type. This avoids proper promotion but 688 // seems useful. For example, read() receives size_t argument, 689 // and its return value, which is of type ssize_t, cannot be greater 690 // than this argument. If we made a promotion, and the size argument 691 // is equal to, say, 10, then we'd impose a range of [0, 10] on the 692 // return value, however the correct range is [-1, 10]. 693 // 694 // Please update the list of functions in the header after editing! 695 696 // Below are helpers functions to create the summaries. 697 auto ArgumentCondition = [](ArgNo ArgN, RangeKind Kind, 698 IntRangeVector Ranges) { 699 return std::make_shared<RangeConstraint>(ArgN, Kind, Ranges); 700 }; 701 struct { 702 auto operator()(RangeKind Kind, IntRangeVector Ranges) { 703 return std::make_shared<RangeConstraint>(Ret, Kind, Ranges); 704 } 705 auto operator()(BinaryOperator::Opcode Op, ArgNo OtherArgN) { 706 return std::make_shared<ComparisonConstraint>(Ret, Op, OtherArgN); 707 } 708 } ReturnValueCondition; 709 auto Range = [](RangeInt b, RangeInt e) { 710 return IntRangeVector{std::pair<RangeInt, RangeInt>{b, e}}; 711 }; 712 auto SingleValue = [](RangeInt v) { 713 return IntRangeVector{std::pair<RangeInt, RangeInt>{v, v}}; 714 }; 715 auto LessThanOrEq = BO_LE; 716 auto NotNull = [&](ArgNo ArgN) { 717 return std::make_shared<NotNullConstraint>(ArgN); 718 }; 719 720 using RetType = QualType; 721 // Templates for summaries that are reused by many functions. 722 auto Getc = [&]() { 723 return Summary(ArgTypes{Irrelevant}, RetType{IntTy}, NoEvalCall) 724 .Case({ReturnValueCondition(WithinRange, 725 {{EOFv, EOFv}, {0, UCharRangeMax}})}); 726 }; 727 auto Read = [&](RetType R, RangeInt Max) { 728 return Summary(ArgTypes{Irrelevant, Irrelevant, SizeTy}, RetType{R}, 729 NoEvalCall) 730 .Case({ReturnValueCondition(LessThanOrEq, ArgNo(2)), 731 ReturnValueCondition(WithinRange, Range(-1, Max))}); 732 }; 733 auto Fread = [&]() { 734 return Summary(ArgTypes{VoidPtrRestrictTy, Irrelevant, SizeTy, Irrelevant}, 735 RetType{SizeTy}, NoEvalCall) 736 .Case({ 737 ReturnValueCondition(LessThanOrEq, ArgNo(2)), 738 }) 739 .ArgConstraint(NotNull(ArgNo(0))); 740 }; 741 auto Fwrite = [&]() { 742 return Summary( 743 ArgTypes{ConstVoidPtrRestrictTy, Irrelevant, SizeTy, Irrelevant}, 744 RetType{SizeTy}, NoEvalCall) 745 .Case({ 746 ReturnValueCondition(LessThanOrEq, ArgNo(2)), 747 }) 748 .ArgConstraint(NotNull(ArgNo(0))); 749 }; 750 auto Getline = [&](RetType R, RangeInt Max) { 751 return Summary(ArgTypes{Irrelevant, Irrelevant, Irrelevant}, RetType{R}, 752 NoEvalCall) 753 .Case({ReturnValueCondition(WithinRange, {{-1, -1}, {1, Max}})}); 754 }; 755 756 // The isascii() family of functions. 757 // The behavior is undefined if the value of the argument is not 758 // representable as unsigned char or is not equal to EOF. See e.g. C99 759 // 7.4.1.2 The isalpha function (p: 181-182). 760 addToFunctionSummaryMap( 761 "isalnum", 762 Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure) 763 // Boils down to isupper() or islower() or isdigit(). 764 .Case({ArgumentCondition(0U, WithinRange, 765 {{'0', '9'}, {'A', 'Z'}, {'a', 'z'}}), 766 ReturnValueCondition(OutOfRange, SingleValue(0))}) 767 // The locale-specific range. 768 // No post-condition. We are completely unaware of 769 // locale-specific return values. 770 .Case({ArgumentCondition(0U, WithinRange, {{128, UCharRangeMax}})}) 771 .Case( 772 {ArgumentCondition( 773 0U, OutOfRange, 774 {{'0', '9'}, {'A', 'Z'}, {'a', 'z'}, {128, UCharRangeMax}}), 775 ReturnValueCondition(WithinRange, SingleValue(0))}) 776 .ArgConstraint(ArgumentCondition( 777 0U, WithinRange, {{EOFv, EOFv}, {0, UCharRangeMax}}))); 778 addToFunctionSummaryMap( 779 "isalpha", 780 Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure) 781 .Case({ArgumentCondition(0U, WithinRange, {{'A', 'Z'}, {'a', 'z'}}), 782 ReturnValueCondition(OutOfRange, SingleValue(0))}) 783 // The locale-specific range. 784 .Case({ArgumentCondition(0U, WithinRange, {{128, UCharRangeMax}})}) 785 .Case({ArgumentCondition( 786 0U, OutOfRange, 787 {{'A', 'Z'}, {'a', 'z'}, {128, UCharRangeMax}}), 788 ReturnValueCondition(WithinRange, SingleValue(0))})); 789 addToFunctionSummaryMap( 790 "isascii", 791 Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure) 792 .Case({ArgumentCondition(0U, WithinRange, Range(0, 127)), 793 ReturnValueCondition(OutOfRange, SingleValue(0))}) 794 .Case({ArgumentCondition(0U, OutOfRange, Range(0, 127)), 795 ReturnValueCondition(WithinRange, SingleValue(0))})); 796 addToFunctionSummaryMap( 797 "isblank", 798 Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure) 799 .Case({ArgumentCondition(0U, WithinRange, {{'\t', '\t'}, {' ', ' '}}), 800 ReturnValueCondition(OutOfRange, SingleValue(0))}) 801 .Case({ArgumentCondition(0U, OutOfRange, {{'\t', '\t'}, {' ', ' '}}), 802 ReturnValueCondition(WithinRange, SingleValue(0))})); 803 addToFunctionSummaryMap( 804 "iscntrl", 805 Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure) 806 .Case({ArgumentCondition(0U, WithinRange, {{0, 32}, {127, 127}}), 807 ReturnValueCondition(OutOfRange, SingleValue(0))}) 808 .Case({ArgumentCondition(0U, OutOfRange, {{0, 32}, {127, 127}}), 809 ReturnValueCondition(WithinRange, SingleValue(0))})); 810 addToFunctionSummaryMap( 811 "isdigit", 812 Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure) 813 .Case({ArgumentCondition(0U, WithinRange, Range('0', '9')), 814 ReturnValueCondition(OutOfRange, SingleValue(0))}) 815 .Case({ArgumentCondition(0U, OutOfRange, Range('0', '9')), 816 ReturnValueCondition(WithinRange, SingleValue(0))})); 817 addToFunctionSummaryMap( 818 "isgraph", 819 Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure) 820 .Case({ArgumentCondition(0U, WithinRange, Range(33, 126)), 821 ReturnValueCondition(OutOfRange, SingleValue(0))}) 822 .Case({ArgumentCondition(0U, OutOfRange, Range(33, 126)), 823 ReturnValueCondition(WithinRange, SingleValue(0))})); 824 addToFunctionSummaryMap( 825 "islower", 826 Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure) 827 // Is certainly lowercase. 828 .Case({ArgumentCondition(0U, WithinRange, Range('a', 'z')), 829 ReturnValueCondition(OutOfRange, SingleValue(0))}) 830 // Is ascii but not lowercase. 831 .Case({ArgumentCondition(0U, WithinRange, Range(0, 127)), 832 ArgumentCondition(0U, OutOfRange, Range('a', 'z')), 833 ReturnValueCondition(WithinRange, SingleValue(0))}) 834 // The locale-specific range. 835 .Case({ArgumentCondition(0U, WithinRange, {{128, UCharRangeMax}})}) 836 // Is not an unsigned char. 837 .Case({ArgumentCondition(0U, OutOfRange, Range(0, UCharRangeMax)), 838 ReturnValueCondition(WithinRange, SingleValue(0))})); 839 addToFunctionSummaryMap( 840 "isprint", 841 Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure) 842 .Case({ArgumentCondition(0U, WithinRange, Range(32, 126)), 843 ReturnValueCondition(OutOfRange, SingleValue(0))}) 844 .Case({ArgumentCondition(0U, OutOfRange, Range(32, 126)), 845 ReturnValueCondition(WithinRange, SingleValue(0))})); 846 addToFunctionSummaryMap( 847 "ispunct", 848 Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure) 849 .Case({ArgumentCondition( 850 0U, WithinRange, 851 {{'!', '/'}, {':', '@'}, {'[', '`'}, {'{', '~'}}), 852 ReturnValueCondition(OutOfRange, SingleValue(0))}) 853 .Case({ArgumentCondition( 854 0U, OutOfRange, 855 {{'!', '/'}, {':', '@'}, {'[', '`'}, {'{', '~'}}), 856 ReturnValueCondition(WithinRange, SingleValue(0))})); 857 addToFunctionSummaryMap( 858 "isspace", 859 Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure) 860 // Space, '\f', '\n', '\r', '\t', '\v'. 861 .Case({ArgumentCondition(0U, WithinRange, {{9, 13}, {' ', ' '}}), 862 ReturnValueCondition(OutOfRange, SingleValue(0))}) 863 // The locale-specific range. 864 .Case({ArgumentCondition(0U, WithinRange, {{128, UCharRangeMax}})}) 865 .Case({ArgumentCondition(0U, OutOfRange, 866 {{9, 13}, {' ', ' '}, {128, UCharRangeMax}}), 867 ReturnValueCondition(WithinRange, SingleValue(0))})); 868 addToFunctionSummaryMap( 869 "isupper", 870 Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure) 871 // Is certainly uppercase. 872 .Case({ArgumentCondition(0U, WithinRange, Range('A', 'Z')), 873 ReturnValueCondition(OutOfRange, SingleValue(0))}) 874 // The locale-specific range. 875 .Case({ArgumentCondition(0U, WithinRange, {{128, UCharRangeMax}})}) 876 // Other. 877 .Case({ArgumentCondition(0U, OutOfRange, 878 {{'A', 'Z'}, {128, UCharRangeMax}}), 879 ReturnValueCondition(WithinRange, SingleValue(0))})); 880 addToFunctionSummaryMap( 881 "isxdigit", 882 Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure) 883 .Case({ArgumentCondition(0U, WithinRange, 884 {{'0', '9'}, {'A', 'F'}, {'a', 'f'}}), 885 ReturnValueCondition(OutOfRange, SingleValue(0))}) 886 .Case({ArgumentCondition(0U, OutOfRange, 887 {{'0', '9'}, {'A', 'F'}, {'a', 'f'}}), 888 ReturnValueCondition(WithinRange, SingleValue(0))})); 889 890 // The getc() family of functions that returns either a char or an EOF. 891 addToFunctionSummaryMap("getc", Getc()); 892 addToFunctionSummaryMap("fgetc", Getc()); 893 addToFunctionSummaryMap( 894 "getchar", Summary(ArgTypes{}, RetType{IntTy}, NoEvalCall) 895 .Case({ReturnValueCondition( 896 WithinRange, {{EOFv, EOFv}, {0, UCharRangeMax}})})); 897 898 // read()-like functions that never return more than buffer size. 899 // We are not sure how ssize_t is defined on every platform, so we 900 // provide three variants that should cover common cases. 901 addToFunctionSummaryMap("read", {Read(IntTy, IntMax), Read(LongTy, LongMax), 902 Read(LongLongTy, LongLongMax)}); 903 addToFunctionSummaryMap("write", {Read(IntTy, IntMax), Read(LongTy, LongMax), 904 Read(LongLongTy, LongLongMax)}); 905 addToFunctionSummaryMap("fread", Fread()); 906 addToFunctionSummaryMap("fwrite", Fwrite()); 907 // getline()-like functions either fail or read at least the delimiter. 908 addToFunctionSummaryMap("getline", 909 {Getline(IntTy, IntMax), Getline(LongTy, LongMax), 910 Getline(LongLongTy, LongLongMax)}); 911 addToFunctionSummaryMap("getdelim", 912 {Getline(IntTy, IntMax), Getline(LongTy, LongMax), 913 Getline(LongLongTy, LongLongMax)}); 914 915 // Functions for testing. 916 if (ChecksEnabled[CK_StdCLibraryFunctionsTesterChecker]) { 917 addToFunctionSummaryMap( 918 "__two_constrained_args", 919 Summary(ArgTypes{IntTy, IntTy}, RetType{IntTy}, EvalCallAsPure) 920 .ArgConstraint(ArgumentCondition(0U, WithinRange, SingleValue(1))) 921 .ArgConstraint(ArgumentCondition(1U, WithinRange, SingleValue(1)))); 922 addToFunctionSummaryMap( 923 "__arg_constrained_twice", 924 Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure) 925 .ArgConstraint(ArgumentCondition(0U, OutOfRange, SingleValue(1))) 926 .ArgConstraint(ArgumentCondition(0U, OutOfRange, SingleValue(2)))); 927 addToFunctionSummaryMap( 928 "__defaultparam", 929 Summary(ArgTypes{Irrelevant, IntTy}, RetType{IntTy}, EvalCallAsPure) 930 .ArgConstraint(NotNull(ArgNo(0)))); 931 addToFunctionSummaryMap("__variadic", 932 Summary(ArgTypes{VoidPtrTy, ConstCharPtrTy}, 933 RetType{IntTy}, EvalCallAsPure) 934 .ArgConstraint(NotNull(ArgNo(0))) 935 .ArgConstraint(NotNull(ArgNo(1)))); 936 } 937 } 938 939 void ento::registerStdCLibraryFunctionsChecker(CheckerManager &mgr) { 940 mgr.registerChecker<StdLibraryFunctionsChecker>(); 941 } 942 943 bool ento::shouldRegisterStdCLibraryFunctionsChecker(const CheckerManager &mgr) { 944 return true; 945 } 946 947 #define REGISTER_CHECKER(name) \ 948 void ento::register##name(CheckerManager &mgr) { \ 949 StdLibraryFunctionsChecker *checker = \ 950 mgr.getChecker<StdLibraryFunctionsChecker>(); \ 951 checker->ChecksEnabled[StdLibraryFunctionsChecker::CK_##name] = true; \ 952 checker->CheckNames[StdLibraryFunctionsChecker::CK_##name] = \ 953 mgr.getCurrentCheckerName(); \ 954 } \ 955 \ 956 bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; } 957 958 REGISTER_CHECKER(StdCLibraryFunctionArgsChecker) 959 REGISTER_CHECKER(StdCLibraryFunctionsTesterChecker) 960