xref: /llvm-project/clang/lib/StaticAnalyzer/Checkers/StdLibraryFunctionsChecker.cpp (revision 41928c97b6a17264938fc765a6a0656d8b6e86ed)
1 //=== StdLibraryFunctionsChecker.cpp - Model standard functions -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This checker improves modeling of a few simple library functions.
10 //
11 // This checker provides a specification format - `Summary' - and
12 // contains descriptions of some library functions in this format. Each
13 // specification contains a list of branches for splitting the program state
14 // upon call, and range constraints on argument and return-value symbols that
15 // are satisfied on each branch. This spec can be expanded to include more
16 // items, like external effects of the function.
17 //
18 // The main difference between this approach and the body farms technique is
19 // in more explicit control over how many branches are produced. For example,
20 // consider standard C function `ispunct(int x)', which returns a non-zero value
21 // iff `x' is a punctuation character, that is, when `x' is in range
22 //   ['!', '/']   [':', '@']  U  ['[', '\`']  U  ['{', '~'].
23 // `Summary' provides only two branches for this function. However,
24 // any attempt to describe this range with if-statements in the body farm
25 // would result in many more branches. Because each branch needs to be analyzed
26 // independently, this significantly reduces performance. Additionally,
27 // once we consider a branch on which `x' is in range, say, ['!', '/'],
28 // we assume that such branch is an important separate path through the program,
29 // which may lead to false positives because considering this particular path
30 // was not consciously intended, and therefore it might have been unreachable.
31 //
32 // This checker uses eval::Call for modeling pure functions (functions without
33 // side effets), for which their `Summary' is a precise model. This avoids
34 // unnecessary invalidation passes. Conflicts with other checkers are unlikely
35 // because if the function has no other effects, other checkers would probably
36 // never want to improve upon the modeling done by this checker.
37 //
38 // Non-pure functions, for which only partial improvement over the default
39 // behavior is expected, are modeled via check::PostCall, non-intrusively.
40 //
41 // The following standard C functions are currently supported:
42 //
43 //   fgetc      getline   isdigit   isupper
44 //   fread      isalnum   isgraph   isxdigit
45 //   fwrite     isalpha   islower   read
46 //   getc       isascii   isprint   write
47 //   getchar    isblank   ispunct
48 //   getdelim   iscntrl   isspace
49 //
50 //===----------------------------------------------------------------------===//
51 
52 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
53 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
54 #include "clang/StaticAnalyzer/Core/Checker.h"
55 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
56 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
57 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
58 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h"
59 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicSize.h"
60 
61 using namespace clang;
62 using namespace clang::ento;
63 
64 namespace {
65 class StdLibraryFunctionsChecker
66     : public Checker<check::PreCall, check::PostCall, eval::Call> {
67   /// Below is a series of typedefs necessary to define function specs.
68   /// We avoid nesting types here because each additional qualifier
69   /// would need to be repeated in every function spec.
70   struct Summary;
71 
72   /// Specify how much the analyzer engine should entrust modeling this function
73   /// to us. If he doesn't, he performs additional invalidations.
74   enum InvalidationKind { NoEvalCall, EvalCallAsPure };
75 
76   // The universal integral type to use in value range descriptions.
77   // Unsigned to make sure overflows are well-defined.
78   typedef uint64_t RangeInt;
79 
80   /// Normally, describes a single range constraint, eg. {{0, 1}, {3, 4}} is
81   /// a non-negative integer, which less than 5 and not equal to 2. For
82   /// `ComparesToArgument', holds information about how exactly to compare to
83   /// the argument.
84   typedef std::vector<std::pair<RangeInt, RangeInt>> IntRangeVector;
85 
86   /// A reference to an argument or return value by its number.
87   /// ArgNo in CallExpr and CallEvent is defined as Unsigned, but
88   /// obviously uint32_t should be enough for all practical purposes.
89   typedef uint32_t ArgNo;
90   static const ArgNo Ret;
91 
92   class ValueConstraint;
93 
94   // Pointer to the ValueConstraint. We need a copyable, polymorphic and
95   // default initialize able type (vector needs that). A raw pointer was good,
96   // however, we cannot default initialize that. unique_ptr makes the Summary
97   // class non-copyable, therefore not an option. Releasing the copyability
98   // requirement would render the initialization of the Summary map infeasible.
99   using ValueConstraintPtr = std::shared_ptr<ValueConstraint>;
100 
101   /// Polymorphic base class that represents a constraint on a given argument
102   /// (or return value) of a function. Derived classes implement different kind
103   /// of constraints, e.g range constraints or correlation between two
104   /// arguments.
105   class ValueConstraint {
106   public:
107     ValueConstraint(ArgNo ArgN) : ArgN(ArgN) {}
108     virtual ~ValueConstraint() {}
109     /// Apply the effects of the constraint on the given program state. If null
110     /// is returned then the constraint is not feasible.
111     virtual ProgramStateRef apply(ProgramStateRef State, const CallEvent &Call,
112                                   const Summary &Summary,
113                                   CheckerContext &C) const = 0;
114     virtual ValueConstraintPtr negate() const {
115       llvm_unreachable("Not implemented");
116     };
117     ArgNo getArgNo() const { return ArgN; }
118 
119   protected:
120     ArgNo ArgN; // Argument to which we apply the constraint.
121   };
122 
123   /// Given a range, should the argument stay inside or outside this range?
124   enum RangeKind { OutOfRange, WithinRange };
125 
126   /// Encapsulates a single range on a single symbol within a branch.
127   class RangeConstraint : public ValueConstraint {
128     RangeKind Kind;      // Kind of range definition.
129     IntRangeVector Args; // Polymorphic arguments.
130 
131   public:
132     RangeConstraint(ArgNo ArgN, RangeKind Kind, const IntRangeVector &Args)
133         : ValueConstraint(ArgN), Kind(Kind), Args(Args) {}
134 
135     const IntRangeVector &getRanges() const {
136       return Args;
137     }
138 
139   private:
140     ProgramStateRef applyAsOutOfRange(ProgramStateRef State,
141                                       const CallEvent &Call,
142                                       const Summary &Summary) const;
143     ProgramStateRef applyAsWithinRange(ProgramStateRef State,
144                                        const CallEvent &Call,
145                                        const Summary &Summary) const;
146   public:
147     ProgramStateRef apply(ProgramStateRef State, const CallEvent &Call,
148                           const Summary &Summary,
149                           CheckerContext &C) const override {
150       switch (Kind) {
151       case OutOfRange:
152         return applyAsOutOfRange(State, Call, Summary);
153       case WithinRange:
154         return applyAsWithinRange(State, Call, Summary);
155       }
156       llvm_unreachable("Unknown range kind!");
157     }
158 
159     ValueConstraintPtr negate() const override {
160       RangeConstraint Tmp(*this);
161       switch (Kind) {
162       case OutOfRange:
163         Tmp.Kind = WithinRange;
164         break;
165       case WithinRange:
166         Tmp.Kind = OutOfRange;
167         break;
168       }
169       return std::make_shared<RangeConstraint>(Tmp);
170     }
171   };
172 
173   class ComparisonConstraint : public ValueConstraint {
174     BinaryOperator::Opcode Opcode;
175     ArgNo OtherArgN;
176 
177   public:
178     ComparisonConstraint(ArgNo ArgN, BinaryOperator::Opcode Opcode,
179                          ArgNo OtherArgN)
180         : ValueConstraint(ArgN), Opcode(Opcode), OtherArgN(OtherArgN) {}
181     ArgNo getOtherArgNo() const { return OtherArgN; }
182     BinaryOperator::Opcode getOpcode() const { return Opcode; }
183     ProgramStateRef apply(ProgramStateRef State, const CallEvent &Call,
184                           const Summary &Summary,
185                           CheckerContext &C) const override;
186   };
187 
188   class NotNullConstraint : public ValueConstraint {
189     using ValueConstraint::ValueConstraint;
190     // This variable has a role when we negate the constraint.
191     bool CannotBeNull = true;
192 
193   public:
194     ProgramStateRef apply(ProgramStateRef State, const CallEvent &Call,
195                           const Summary &Summary,
196                           CheckerContext &C) const override {
197       SVal V = getArgSVal(Call, getArgNo());
198       if (V.isUndef())
199         return State;
200 
201       DefinedOrUnknownSVal L = V.castAs<DefinedOrUnknownSVal>();
202       if (!L.getAs<Loc>())
203         return State;
204 
205       return State->assume(L, CannotBeNull);
206     }
207 
208     ValueConstraintPtr negate() const override {
209       NotNullConstraint Tmp(*this);
210       Tmp.CannotBeNull = !this->CannotBeNull;
211       return std::make_shared<NotNullConstraint>(Tmp);
212     }
213   };
214 
215   // Represents a buffer argument with an additional size argument.
216   // E.g. the first two arguments here:
217   //   ctime_s(char *buffer, rsize_t bufsz, const time_t *time);
218   // Another example:
219   //   size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream);
220   //   // Here, ptr is the buffer, and its minimum size is `size * nmemb`.
221   class BufferSizeConstraint : public ValueConstraint {
222     // The argument which holds the size of the buffer.
223     ArgNo SizeArgN;
224     // The argument which is a multiplier to size. This is set in case of
225     // `fread` like functions where the size is computed as a multiplication of
226     // two arguments.
227     llvm::Optional<ArgNo> SizeMultiplierArgN;
228     // The operator we use in apply. This is negated in negate().
229     BinaryOperator::Opcode Op = BO_LE;
230 
231   public:
232     BufferSizeConstraint(ArgNo Buffer, ArgNo BufSize)
233         : ValueConstraint(Buffer), SizeArgN(BufSize) {}
234 
235     BufferSizeConstraint(ArgNo Buffer, ArgNo BufSize, ArgNo BufSizeMultiplier)
236         : ValueConstraint(Buffer), SizeArgN(BufSize),
237           SizeMultiplierArgN(BufSizeMultiplier) {}
238 
239     ProgramStateRef apply(ProgramStateRef State, const CallEvent &Call,
240                           const Summary &Summary,
241                           CheckerContext &C) const override {
242       SValBuilder &SvalBuilder = C.getSValBuilder();
243       // The buffer argument.
244       SVal BufV = getArgSVal(Call, getArgNo());
245       // The size argument.
246       SVal SizeV = getArgSVal(Call, SizeArgN);
247       // Multiply with another argument if given.
248       if (SizeMultiplierArgN) {
249         SVal SizeMulV = getArgSVal(Call, *SizeMultiplierArgN);
250         SizeV = SvalBuilder.evalBinOp(State, BO_Mul, SizeV, SizeMulV,
251                                       Summary.getArgType(SizeArgN));
252       }
253       // The dynamic size of the buffer argument, got from the analyzer engine.
254       SVal BufDynSize = getDynamicSizeWithOffset(State, BufV);
255 
256       SVal Feasible = SvalBuilder.evalBinOp(State, Op, SizeV, BufDynSize,
257                                             SvalBuilder.getContext().BoolTy);
258       if (auto F = Feasible.getAs<DefinedOrUnknownSVal>())
259         return State->assume(*F, true);
260 
261       // We can get here only if the size argument or the dynamic size is
262       // undefined. But the dynamic size should never be undefined, only
263       // unknown. So, here, the size of the argument is undefined, i.e. we
264       // cannot apply the constraint. Actually, other checkers like
265       // CallAndMessage should catch this situation earlier, because we call a
266       // function with an uninitialized argument.
267       llvm_unreachable("Size argument or the dynamic size is Undefined");
268     }
269 
270     ValueConstraintPtr negate() const override {
271       BufferSizeConstraint Tmp(*this);
272       Tmp.Op = BinaryOperator::negateComparisonOp(Op);
273       return std::make_shared<BufferSizeConstraint>(Tmp);
274     }
275   };
276 
277   /// The complete list of constraints that defines a single branch.
278   typedef std::vector<ValueConstraintPtr> ConstraintSet;
279 
280   using ArgTypes = std::vector<QualType>;
281   using Cases = std::vector<ConstraintSet>;
282 
283   /// Includes information about
284   ///   * function prototype (which is necessary to
285   ///     ensure we're modeling the right function and casting values properly),
286   ///   * approach to invalidation,
287   ///   * a list of branches - a list of list of ranges -
288   ///     A branch represents a path in the exploded graph of a function (which
289   ///     is a tree). So, a branch is a series of assumptions. In other words,
290   ///     branches represent split states and additional assumptions on top of
291   ///     the splitting assumption.
292   ///     For example, consider the branches in `isalpha(x)`
293   ///       Branch 1)
294   ///         x is in range ['A', 'Z'] or in ['a', 'z']
295   ///         then the return value is not 0. (I.e. out-of-range [0, 0])
296   ///       Branch 2)
297   ///         x is out-of-range ['A', 'Z'] and out-of-range ['a', 'z']
298   ///         then the return value is 0.
299   ///   * a list of argument constraints, that must be true on every branch.
300   ///     If these constraints are not satisfied that means a fatal error
301   ///     usually resulting in undefined behaviour.
302   struct Summary {
303     const ArgTypes ArgTys;
304     const QualType RetTy;
305     const InvalidationKind InvalidationKd;
306     Cases CaseConstraints;
307     ConstraintSet ArgConstraints;
308 
309     Summary(ArgTypes ArgTys, QualType RetTy, InvalidationKind InvalidationKd)
310         : ArgTys(ArgTys), RetTy(RetTy), InvalidationKd(InvalidationKd) {}
311 
312     Summary &Case(ConstraintSet&& CS) {
313       CaseConstraints.push_back(std::move(CS));
314       return *this;
315     }
316     Summary &ArgConstraint(ValueConstraintPtr VC) {
317       ArgConstraints.push_back(VC);
318       return *this;
319     }
320 
321   private:
322     static void assertTypeSuitableForSummary(QualType T) {
323       assert(!T->isVoidType() &&
324              "We should have had no significant void types in the spec");
325       assert(T.isCanonical() &&
326              "We should only have canonical types in the spec");
327     }
328 
329   public:
330     QualType getArgType(ArgNo ArgN) const {
331       QualType T = (ArgN == Ret) ? RetTy : ArgTys[ArgN];
332       assertTypeSuitableForSummary(T);
333       return T;
334     }
335 
336     /// Try our best to figure out if the summary's signature matches
337     /// *the* library function to which this specification applies.
338     bool matchesSignature(const FunctionDecl *FD) const;
339   };
340 
341   // The map of all functions supported by the checker. It is initialized
342   // lazily, and it doesn't change after initialization.
343   using FunctionSummaryMapType = llvm::DenseMap<const FunctionDecl *, Summary>;
344   mutable FunctionSummaryMapType FunctionSummaryMap;
345 
346   mutable std::unique_ptr<BugType> BT_InvalidArg;
347 
348   // Auxiliary functions to support ArgNo within all structures
349   // in a unified manner.
350   static QualType getArgType(const Summary &Summary, ArgNo ArgN) {
351     return Summary.getArgType(ArgN);
352   }
353   static SVal getArgSVal(const CallEvent &Call, ArgNo ArgN) {
354     return ArgN == Ret ? Call.getReturnValue() : Call.getArgSVal(ArgN);
355   }
356 
357 public:
358   void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
359   void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
360   bool evalCall(const CallEvent &Call, CheckerContext &C) const;
361 
362   enum CheckKind {
363     CK_StdCLibraryFunctionArgsChecker,
364     CK_StdCLibraryFunctionsTesterChecker,
365     CK_NumCheckKinds
366   };
367   DefaultBool ChecksEnabled[CK_NumCheckKinds];
368   CheckerNameRef CheckNames[CK_NumCheckKinds];
369 
370   bool DisplayLoadedSummaries = false;
371 
372 private:
373   Optional<Summary> findFunctionSummary(const FunctionDecl *FD,
374                                         CheckerContext &C) const;
375   Optional<Summary> findFunctionSummary(const CallEvent &Call,
376                                         CheckerContext &C) const;
377 
378   void initFunctionSummaries(CheckerContext &C) const;
379 
380   void reportBug(const CallEvent &Call, ExplodedNode *N,
381                  CheckerContext &C) const {
382     if (!ChecksEnabled[CK_StdCLibraryFunctionArgsChecker])
383       return;
384     // TODO Add detailed diagnostic.
385     StringRef Msg = "Function argument constraint is not satisfied";
386     if (!BT_InvalidArg)
387       BT_InvalidArg = std::make_unique<BugType>(
388           CheckNames[CK_StdCLibraryFunctionArgsChecker],
389           "Unsatisfied argument constraints", categories::LogicError);
390     auto R = std::make_unique<PathSensitiveBugReport>(*BT_InvalidArg, Msg, N);
391     bugreporter::trackExpressionValue(N, Call.getArgExpr(0), *R);
392     C.emitReport(std::move(R));
393   }
394 };
395 
396 const StdLibraryFunctionsChecker::ArgNo StdLibraryFunctionsChecker::Ret =
397     std::numeric_limits<ArgNo>::max();
398 
399 } // end of anonymous namespace
400 
401 ProgramStateRef StdLibraryFunctionsChecker::RangeConstraint::applyAsOutOfRange(
402     ProgramStateRef State, const CallEvent &Call,
403     const Summary &Summary) const {
404 
405   ProgramStateManager &Mgr = State->getStateManager();
406   SValBuilder &SVB = Mgr.getSValBuilder();
407   BasicValueFactory &BVF = SVB.getBasicValueFactory();
408   ConstraintManager &CM = Mgr.getConstraintManager();
409   QualType T = getArgType(Summary, getArgNo());
410   SVal V = getArgSVal(Call, getArgNo());
411 
412   if (auto N = V.getAs<NonLoc>()) {
413     const IntRangeVector &R = getRanges();
414     size_t E = R.size();
415     for (size_t I = 0; I != E; ++I) {
416       const llvm::APSInt &Min = BVF.getValue(R[I].first, T);
417       const llvm::APSInt &Max = BVF.getValue(R[I].second, T);
418       assert(Min <= Max);
419       State = CM.assumeInclusiveRange(State, *N, Min, Max, false);
420       if (!State)
421         break;
422     }
423   }
424 
425   return State;
426 }
427 
428 ProgramStateRef StdLibraryFunctionsChecker::RangeConstraint::applyAsWithinRange(
429     ProgramStateRef State, const CallEvent &Call,
430     const Summary &Summary) const {
431 
432   ProgramStateManager &Mgr = State->getStateManager();
433   SValBuilder &SVB = Mgr.getSValBuilder();
434   BasicValueFactory &BVF = SVB.getBasicValueFactory();
435   ConstraintManager &CM = Mgr.getConstraintManager();
436   QualType T = getArgType(Summary, getArgNo());
437   SVal V = getArgSVal(Call, getArgNo());
438 
439   // "WithinRange R" is treated as "outside [T_MIN, T_MAX] \ R".
440   // We cut off [T_MIN, min(R) - 1] and [max(R) + 1, T_MAX] if necessary,
441   // and then cut away all holes in R one by one.
442   //
443   // E.g. consider a range list R as [A, B] and [C, D]
444   // -------+--------+------------------+------------+----------->
445   //        A        B                  C            D
446   // Then we assume that the value is not in [-inf, A - 1],
447   // then not in [D + 1, +inf], then not in [B + 1, C - 1]
448   if (auto N = V.getAs<NonLoc>()) {
449     const IntRangeVector &R = getRanges();
450     size_t E = R.size();
451 
452     const llvm::APSInt &MinusInf = BVF.getMinValue(T);
453     const llvm::APSInt &PlusInf = BVF.getMaxValue(T);
454 
455     const llvm::APSInt &Left = BVF.getValue(R[0].first - 1ULL, T);
456     if (Left != PlusInf) {
457       assert(MinusInf <= Left);
458       State = CM.assumeInclusiveRange(State, *N, MinusInf, Left, false);
459       if (!State)
460         return nullptr;
461     }
462 
463     const llvm::APSInt &Right = BVF.getValue(R[E - 1].second + 1ULL, T);
464     if (Right != MinusInf) {
465       assert(Right <= PlusInf);
466       State = CM.assumeInclusiveRange(State, *N, Right, PlusInf, false);
467       if (!State)
468         return nullptr;
469     }
470 
471     for (size_t I = 1; I != E; ++I) {
472       const llvm::APSInt &Min = BVF.getValue(R[I - 1].second + 1ULL, T);
473       const llvm::APSInt &Max = BVF.getValue(R[I].first - 1ULL, T);
474       if (Min <= Max) {
475         State = CM.assumeInclusiveRange(State, *N, Min, Max, false);
476         if (!State)
477           return nullptr;
478       }
479     }
480   }
481 
482   return State;
483 }
484 
485 ProgramStateRef StdLibraryFunctionsChecker::ComparisonConstraint::apply(
486     ProgramStateRef State, const CallEvent &Call, const Summary &Summary,
487     CheckerContext &C) const {
488 
489   ProgramStateManager &Mgr = State->getStateManager();
490   SValBuilder &SVB = Mgr.getSValBuilder();
491   QualType CondT = SVB.getConditionType();
492   QualType T = getArgType(Summary, getArgNo());
493   SVal V = getArgSVal(Call, getArgNo());
494 
495   BinaryOperator::Opcode Op = getOpcode();
496   ArgNo OtherArg = getOtherArgNo();
497   SVal OtherV = getArgSVal(Call, OtherArg);
498   QualType OtherT = getArgType(Summary, OtherArg);
499   // Note: we avoid integral promotion for comparison.
500   OtherV = SVB.evalCast(OtherV, T, OtherT);
501   if (auto CompV = SVB.evalBinOp(State, Op, V, OtherV, CondT)
502                        .getAs<DefinedOrUnknownSVal>())
503     State = State->assume(*CompV, true);
504   return State;
505 }
506 
507 void StdLibraryFunctionsChecker::checkPreCall(const CallEvent &Call,
508                                               CheckerContext &C) const {
509   Optional<Summary> FoundSummary = findFunctionSummary(Call, C);
510   if (!FoundSummary)
511     return;
512 
513   const Summary &Summary = *FoundSummary;
514   ProgramStateRef State = C.getState();
515 
516   ProgramStateRef NewState = State;
517   for (const ValueConstraintPtr& VC : Summary.ArgConstraints) {
518     ProgramStateRef SuccessSt = VC->apply(NewState, Call, Summary, C);
519     ProgramStateRef FailureSt = VC->negate()->apply(NewState, Call, Summary, C);
520     // The argument constraint is not satisfied.
521     if (FailureSt && !SuccessSt) {
522       if (ExplodedNode *N = C.generateErrorNode(NewState))
523         reportBug(Call, N, C);
524       break;
525     } else {
526       // We will apply the constraint even if we cannot reason about the
527       // argument. This means both SuccessSt and FailureSt can be true. If we
528       // weren't applying the constraint that would mean that symbolic
529       // execution continues on a code whose behaviour is undefined.
530       assert(SuccessSt);
531       NewState = SuccessSt;
532     }
533   }
534   if (NewState && NewState != State)
535     C.addTransition(NewState);
536 }
537 
538 void StdLibraryFunctionsChecker::checkPostCall(const CallEvent &Call,
539                                                CheckerContext &C) const {
540   Optional<Summary> FoundSummary = findFunctionSummary(Call, C);
541   if (!FoundSummary)
542     return;
543 
544   // Now apply the constraints.
545   const Summary &Summary = *FoundSummary;
546   ProgramStateRef State = C.getState();
547 
548   // Apply case/branch specifications.
549   for (const auto &VRS : Summary.CaseConstraints) {
550     ProgramStateRef NewState = State;
551     for (const auto &VR: VRS) {
552       NewState = VR->apply(NewState, Call, Summary, C);
553       if (!NewState)
554         break;
555     }
556 
557     if (NewState && NewState != State)
558       C.addTransition(NewState);
559   }
560 }
561 
562 bool StdLibraryFunctionsChecker::evalCall(const CallEvent &Call,
563                                           CheckerContext &C) const {
564   Optional<Summary> FoundSummary = findFunctionSummary(Call, C);
565   if (!FoundSummary)
566     return false;
567 
568   const Summary &Summary = *FoundSummary;
569   switch (Summary.InvalidationKd) {
570   case EvalCallAsPure: {
571     ProgramStateRef State = C.getState();
572     const LocationContext *LC = C.getLocationContext();
573     const auto *CE = cast_or_null<CallExpr>(Call.getOriginExpr());
574     SVal V = C.getSValBuilder().conjureSymbolVal(
575         CE, LC, CE->getType().getCanonicalType(), C.blockCount());
576     State = State->BindExpr(CE, LC, V);
577     C.addTransition(State);
578     return true;
579   }
580   case NoEvalCall:
581     // Summary tells us to avoid performing eval::Call. The function is possibly
582     // evaluated by another checker, or evaluated conservatively.
583     return false;
584   }
585   llvm_unreachable("Unknown invalidation kind!");
586 }
587 
588 bool StdLibraryFunctionsChecker::Summary::matchesSignature(
589     const FunctionDecl *FD) const {
590   // Check number of arguments:
591   if (FD->param_size() != ArgTys.size())
592     return false;
593 
594   // Check return type if relevant:
595   if (!RetTy.isNull() && RetTy != FD->getReturnType().getCanonicalType())
596     return false;
597 
598   // Check argument types when relevant:
599   for (size_t I = 0, E = ArgTys.size(); I != E; ++I) {
600     QualType FormalT = ArgTys[I];
601     // Null type marks irrelevant arguments.
602     if (FormalT.isNull())
603       continue;
604 
605     assertTypeSuitableForSummary(FormalT);
606 
607     QualType ActualT = FD->getParamDecl(I)->getType().getCanonicalType();
608     if (ActualT != FormalT)
609       return false;
610   }
611 
612   return true;
613 }
614 
615 Optional<StdLibraryFunctionsChecker::Summary>
616 StdLibraryFunctionsChecker::findFunctionSummary(const FunctionDecl *FD,
617                                                 CheckerContext &C) const {
618   if (!FD)
619     return None;
620 
621   initFunctionSummaries(C);
622 
623   auto FSMI = FunctionSummaryMap.find(FD->getCanonicalDecl());
624   if (FSMI == FunctionSummaryMap.end())
625     return None;
626   return FSMI->second;
627 }
628 
629 Optional<StdLibraryFunctionsChecker::Summary>
630 StdLibraryFunctionsChecker::findFunctionSummary(const CallEvent &Call,
631                                                 CheckerContext &C) const {
632   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Call.getDecl());
633   if (!FD)
634     return None;
635   return findFunctionSummary(FD, C);
636 }
637 
638 void StdLibraryFunctionsChecker::initFunctionSummaries(
639     CheckerContext &C) const {
640   if (!FunctionSummaryMap.empty())
641     return;
642 
643   SValBuilder &SVB = C.getSValBuilder();
644   BasicValueFactory &BVF = SVB.getBasicValueFactory();
645   const ASTContext &ACtx = BVF.getContext();
646 
647   // These types are useful for writing specifications quickly,
648   // New specifications should probably introduce more types.
649   // Some types are hard to obtain from the AST, eg. "ssize_t".
650   // In such cases it should be possible to provide multiple variants
651   // of function summary for common cases (eg. ssize_t could be int or long
652   // or long long, so three summary variants would be enough).
653   // Of course, function variants are also useful for C++ overloads.
654   const QualType
655       Irrelevant{}; // A placeholder, whenever we do not care about the type.
656   const QualType IntTy = ACtx.IntTy;
657   const QualType LongTy = ACtx.LongTy;
658   const QualType LongLongTy = ACtx.LongLongTy;
659   const QualType SizeTy = ACtx.getSizeType();
660   const QualType VoidPtrTy = ACtx.VoidPtrTy; // void *
661   const QualType VoidPtrRestrictTy =
662       ACtx.getRestrictType(VoidPtrTy); // void *restrict
663   const QualType ConstVoidPtrTy =
664       ACtx.getPointerType(ACtx.VoidTy.withConst()); // const void *
665   const QualType ConstCharPtrTy =
666       ACtx.getPointerType(ACtx.CharTy.withConst()); // const char *
667   const QualType ConstVoidPtrRestrictTy =
668       ACtx.getRestrictType(ConstVoidPtrTy); // const void *restrict
669 
670   const RangeInt IntMax = BVF.getMaxValue(IntTy).getLimitedValue();
671   const RangeInt LongMax = BVF.getMaxValue(LongTy).getLimitedValue();
672   const RangeInt LongLongMax = BVF.getMaxValue(LongLongTy).getLimitedValue();
673 
674   // Set UCharRangeMax to min of int or uchar maximum value.
675   // The C standard states that the arguments of functions like isalpha must
676   // be representable as an unsigned char. Their type is 'int', so the max
677   // value of the argument should be min(UCharMax, IntMax). This just happen
678   // to be true for commonly used and well tested instruction set
679   // architectures, but not for others.
680   const RangeInt UCharRangeMax =
681       std::min(BVF.getMaxValue(ACtx.UnsignedCharTy).getLimitedValue(), IntMax);
682 
683   // The platform dependent value of EOF.
684   // Try our best to parse this from the Preprocessor, otherwise fallback to -1.
685   const auto EOFv = [&C]() -> RangeInt {
686     if (const llvm::Optional<int> OptInt =
687             tryExpandAsInteger("EOF", C.getPreprocessor()))
688       return *OptInt;
689     return -1;
690   }();
691 
692   // Auxiliary class to aid adding summaries to the summary map.
693   struct AddToFunctionSummaryMap {
694     const ASTContext &ACtx;
695     FunctionSummaryMapType &Map;
696     bool DisplayLoadedSummaries;
697     AddToFunctionSummaryMap(const ASTContext &ACtx, FunctionSummaryMapType &FSM,
698                             bool DisplayLoadedSummaries)
699         : ACtx(ACtx), Map(FSM), DisplayLoadedSummaries(DisplayLoadedSummaries) {
700     }
701 
702     // Add a summary to a FunctionDecl found by lookup. The lookup is performed
703     // by the given Name, and in the global scope. The summary will be attached
704     // to the found FunctionDecl only if the signatures match.
705     void operator()(StringRef Name, const Summary &S) {
706       IdentifierInfo &II = ACtx.Idents.get(Name);
707       auto LookupRes = ACtx.getTranslationUnitDecl()->lookup(&II);
708       if (LookupRes.size() == 0)
709         return;
710       for (Decl *D : LookupRes) {
711         if (auto *FD = dyn_cast<FunctionDecl>(D)) {
712           if (S.matchesSignature(FD)) {
713             auto Res = Map.insert({FD->getCanonicalDecl(), S});
714             assert(Res.second && "Function already has a summary set!");
715             (void)Res;
716             if (DisplayLoadedSummaries) {
717               llvm::errs() << "Loaded summary for: ";
718               FD->print(llvm::errs());
719               llvm::errs() << "\n";
720             }
721             return;
722           }
723         }
724       }
725     }
726     // Add several summaries for the given name.
727     void operator()(StringRef Name, const std::vector<Summary> &Summaries) {
728       for (const Summary &S : Summaries)
729         operator()(Name, S);
730     }
731   } addToFunctionSummaryMap(ACtx, FunctionSummaryMap, DisplayLoadedSummaries);
732 
733   // We are finally ready to define specifications for all supported functions.
734   //
735   // The signature needs to have the correct number of arguments.
736   // However, we insert `Irrelevant' when the type is insignificant.
737   //
738   // Argument ranges should always cover all variants. If return value
739   // is completely unknown, omit it from the respective range set.
740   //
741   // All types in the spec need to be canonical.
742   //
743   // Every item in the list of range sets represents a particular
744   // execution path the analyzer would need to explore once
745   // the call is modeled - a new program state is constructed
746   // for every range set, and each range line in the range set
747   // corresponds to a specific constraint within this state.
748   //
749   // Upon comparing to another argument, the other argument is casted
750   // to the current argument's type. This avoids proper promotion but
751   // seems useful. For example, read() receives size_t argument,
752   // and its return value, which is of type ssize_t, cannot be greater
753   // than this argument. If we made a promotion, and the size argument
754   // is equal to, say, 10, then we'd impose a range of [0, 10] on the
755   // return value, however the correct range is [-1, 10].
756   //
757   // Please update the list of functions in the header after editing!
758 
759   // Below are helpers functions to create the summaries.
760   auto ArgumentCondition = [](ArgNo ArgN, RangeKind Kind,
761                               IntRangeVector Ranges) {
762     return std::make_shared<RangeConstraint>(ArgN, Kind, Ranges);
763   };
764   auto BufferSize = [](auto... Args) {
765     return std::make_shared<BufferSizeConstraint>(Args...);
766   };
767   struct {
768     auto operator()(RangeKind Kind, IntRangeVector Ranges) {
769       return std::make_shared<RangeConstraint>(Ret, Kind, Ranges);
770     }
771     auto operator()(BinaryOperator::Opcode Op, ArgNo OtherArgN) {
772       return std::make_shared<ComparisonConstraint>(Ret, Op, OtherArgN);
773     }
774   } ReturnValueCondition;
775   auto Range = [](RangeInt b, RangeInt e) {
776     return IntRangeVector{std::pair<RangeInt, RangeInt>{b, e}};
777   };
778   auto SingleValue = [](RangeInt v) {
779     return IntRangeVector{std::pair<RangeInt, RangeInt>{v, v}};
780   };
781   auto LessThanOrEq = BO_LE;
782   auto NotNull = [&](ArgNo ArgN) {
783     return std::make_shared<NotNullConstraint>(ArgN);
784   };
785 
786   using RetType = QualType;
787   // Templates for summaries that are reused by many functions.
788   auto Getc = [&]() {
789     return Summary(ArgTypes{Irrelevant}, RetType{IntTy}, NoEvalCall)
790         .Case({ReturnValueCondition(WithinRange,
791                                     {{EOFv, EOFv}, {0, UCharRangeMax}})});
792   };
793   auto Read = [&](RetType R, RangeInt Max) {
794     return Summary(ArgTypes{Irrelevant, Irrelevant, SizeTy}, RetType{R},
795                    NoEvalCall)
796         .Case({ReturnValueCondition(LessThanOrEq, ArgNo(2)),
797                ReturnValueCondition(WithinRange, Range(-1, Max))});
798   };
799   auto Fread = [&]() {
800     return Summary(ArgTypes{VoidPtrRestrictTy, Irrelevant, SizeTy, Irrelevant},
801                    RetType{SizeTy}, NoEvalCall)
802         .Case({
803             ReturnValueCondition(LessThanOrEq, ArgNo(2)),
804         })
805         .ArgConstraint(NotNull(ArgNo(0)));
806   };
807   auto Fwrite = [&]() {
808     return Summary(
809                ArgTypes{ConstVoidPtrRestrictTy, Irrelevant, SizeTy, Irrelevant},
810                RetType{SizeTy}, NoEvalCall)
811         .Case({
812             ReturnValueCondition(LessThanOrEq, ArgNo(2)),
813         })
814         .ArgConstraint(NotNull(ArgNo(0)));
815   };
816   auto Getline = [&](RetType R, RangeInt Max) {
817     return Summary(ArgTypes{Irrelevant, Irrelevant, Irrelevant}, RetType{R},
818                    NoEvalCall)
819         .Case({ReturnValueCondition(WithinRange, {{-1, -1}, {1, Max}})});
820   };
821 
822   // The isascii() family of functions.
823   // The behavior is undefined if the value of the argument is not
824   // representable as unsigned char or is not equal to EOF. See e.g. C99
825   // 7.4.1.2 The isalpha function (p: 181-182).
826   addToFunctionSummaryMap(
827       "isalnum",
828       Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
829           // Boils down to isupper() or islower() or isdigit().
830           .Case({ArgumentCondition(0U, WithinRange,
831                                    {{'0', '9'}, {'A', 'Z'}, {'a', 'z'}}),
832                  ReturnValueCondition(OutOfRange, SingleValue(0))})
833           // The locale-specific range.
834           // No post-condition. We are completely unaware of
835           // locale-specific return values.
836           .Case({ArgumentCondition(0U, WithinRange, {{128, UCharRangeMax}})})
837           .Case(
838               {ArgumentCondition(
839                    0U, OutOfRange,
840                    {{'0', '9'}, {'A', 'Z'}, {'a', 'z'}, {128, UCharRangeMax}}),
841                ReturnValueCondition(WithinRange, SingleValue(0))})
842           .ArgConstraint(ArgumentCondition(
843               0U, WithinRange, {{EOFv, EOFv}, {0, UCharRangeMax}})));
844   addToFunctionSummaryMap(
845       "isalpha",
846       Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
847           .Case({ArgumentCondition(0U, WithinRange, {{'A', 'Z'}, {'a', 'z'}}),
848                  ReturnValueCondition(OutOfRange, SingleValue(0))})
849           // The locale-specific range.
850           .Case({ArgumentCondition(0U, WithinRange, {{128, UCharRangeMax}})})
851           .Case({ArgumentCondition(
852                      0U, OutOfRange,
853                      {{'A', 'Z'}, {'a', 'z'}, {128, UCharRangeMax}}),
854                  ReturnValueCondition(WithinRange, SingleValue(0))}));
855   addToFunctionSummaryMap(
856       "isascii",
857       Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
858           .Case({ArgumentCondition(0U, WithinRange, Range(0, 127)),
859                  ReturnValueCondition(OutOfRange, SingleValue(0))})
860           .Case({ArgumentCondition(0U, OutOfRange, Range(0, 127)),
861                  ReturnValueCondition(WithinRange, SingleValue(0))}));
862   addToFunctionSummaryMap(
863       "isblank",
864       Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
865           .Case({ArgumentCondition(0U, WithinRange, {{'\t', '\t'}, {' ', ' '}}),
866                  ReturnValueCondition(OutOfRange, SingleValue(0))})
867           .Case({ArgumentCondition(0U, OutOfRange, {{'\t', '\t'}, {' ', ' '}}),
868                  ReturnValueCondition(WithinRange, SingleValue(0))}));
869   addToFunctionSummaryMap(
870       "iscntrl",
871       Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
872           .Case({ArgumentCondition(0U, WithinRange, {{0, 32}, {127, 127}}),
873                  ReturnValueCondition(OutOfRange, SingleValue(0))})
874           .Case({ArgumentCondition(0U, OutOfRange, {{0, 32}, {127, 127}}),
875                  ReturnValueCondition(WithinRange, SingleValue(0))}));
876   addToFunctionSummaryMap(
877       "isdigit",
878       Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
879           .Case({ArgumentCondition(0U, WithinRange, Range('0', '9')),
880                  ReturnValueCondition(OutOfRange, SingleValue(0))})
881           .Case({ArgumentCondition(0U, OutOfRange, Range('0', '9')),
882                  ReturnValueCondition(WithinRange, SingleValue(0))}));
883   addToFunctionSummaryMap(
884       "isgraph",
885       Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
886           .Case({ArgumentCondition(0U, WithinRange, Range(33, 126)),
887                  ReturnValueCondition(OutOfRange, SingleValue(0))})
888           .Case({ArgumentCondition(0U, OutOfRange, Range(33, 126)),
889                  ReturnValueCondition(WithinRange, SingleValue(0))}));
890   addToFunctionSummaryMap(
891       "islower",
892       Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
893           // Is certainly lowercase.
894           .Case({ArgumentCondition(0U, WithinRange, Range('a', 'z')),
895                  ReturnValueCondition(OutOfRange, SingleValue(0))})
896           // Is ascii but not lowercase.
897           .Case({ArgumentCondition(0U, WithinRange, Range(0, 127)),
898                  ArgumentCondition(0U, OutOfRange, Range('a', 'z')),
899                  ReturnValueCondition(WithinRange, SingleValue(0))})
900           // The locale-specific range.
901           .Case({ArgumentCondition(0U, WithinRange, {{128, UCharRangeMax}})})
902           // Is not an unsigned char.
903           .Case({ArgumentCondition(0U, OutOfRange, Range(0, UCharRangeMax)),
904                  ReturnValueCondition(WithinRange, SingleValue(0))}));
905   addToFunctionSummaryMap(
906       "isprint",
907       Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
908           .Case({ArgumentCondition(0U, WithinRange, Range(32, 126)),
909                  ReturnValueCondition(OutOfRange, SingleValue(0))})
910           .Case({ArgumentCondition(0U, OutOfRange, Range(32, 126)),
911                  ReturnValueCondition(WithinRange, SingleValue(0))}));
912   addToFunctionSummaryMap(
913       "ispunct",
914       Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
915           .Case({ArgumentCondition(
916                      0U, WithinRange,
917                      {{'!', '/'}, {':', '@'}, {'[', '`'}, {'{', '~'}}),
918                  ReturnValueCondition(OutOfRange, SingleValue(0))})
919           .Case({ArgumentCondition(
920                      0U, OutOfRange,
921                      {{'!', '/'}, {':', '@'}, {'[', '`'}, {'{', '~'}}),
922                  ReturnValueCondition(WithinRange, SingleValue(0))}));
923   addToFunctionSummaryMap(
924       "isspace",
925       Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
926           // Space, '\f', '\n', '\r', '\t', '\v'.
927           .Case({ArgumentCondition(0U, WithinRange, {{9, 13}, {' ', ' '}}),
928                  ReturnValueCondition(OutOfRange, SingleValue(0))})
929           // The locale-specific range.
930           .Case({ArgumentCondition(0U, WithinRange, {{128, UCharRangeMax}})})
931           .Case({ArgumentCondition(0U, OutOfRange,
932                                    {{9, 13}, {' ', ' '}, {128, UCharRangeMax}}),
933                  ReturnValueCondition(WithinRange, SingleValue(0))}));
934   addToFunctionSummaryMap(
935       "isupper",
936       Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
937           // Is certainly uppercase.
938           .Case({ArgumentCondition(0U, WithinRange, Range('A', 'Z')),
939                  ReturnValueCondition(OutOfRange, SingleValue(0))})
940           // The locale-specific range.
941           .Case({ArgumentCondition(0U, WithinRange, {{128, UCharRangeMax}})})
942           // Other.
943           .Case({ArgumentCondition(0U, OutOfRange,
944                                    {{'A', 'Z'}, {128, UCharRangeMax}}),
945                  ReturnValueCondition(WithinRange, SingleValue(0))}));
946   addToFunctionSummaryMap(
947       "isxdigit",
948       Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
949           .Case({ArgumentCondition(0U, WithinRange,
950                                    {{'0', '9'}, {'A', 'F'}, {'a', 'f'}}),
951                  ReturnValueCondition(OutOfRange, SingleValue(0))})
952           .Case({ArgumentCondition(0U, OutOfRange,
953                                    {{'0', '9'}, {'A', 'F'}, {'a', 'f'}}),
954                  ReturnValueCondition(WithinRange, SingleValue(0))}));
955 
956   // The getc() family of functions that returns either a char or an EOF.
957   addToFunctionSummaryMap("getc", Getc());
958   addToFunctionSummaryMap("fgetc", Getc());
959   addToFunctionSummaryMap(
960       "getchar", Summary(ArgTypes{}, RetType{IntTy}, NoEvalCall)
961                      .Case({ReturnValueCondition(
962                          WithinRange, {{EOFv, EOFv}, {0, UCharRangeMax}})}));
963 
964   // read()-like functions that never return more than buffer size.
965   // We are not sure how ssize_t is defined on every platform, so we
966   // provide three variants that should cover common cases.
967   addToFunctionSummaryMap("read", {Read(IntTy, IntMax), Read(LongTy, LongMax),
968                                    Read(LongLongTy, LongLongMax)});
969   addToFunctionSummaryMap("write", {Read(IntTy, IntMax), Read(LongTy, LongMax),
970                                     Read(LongLongTy, LongLongMax)});
971   addToFunctionSummaryMap("fread", Fread());
972   addToFunctionSummaryMap("fwrite", Fwrite());
973   // getline()-like functions either fail or read at least the delimiter.
974   addToFunctionSummaryMap("getline",
975                           {Getline(IntTy, IntMax), Getline(LongTy, LongMax),
976                            Getline(LongLongTy, LongLongMax)});
977   addToFunctionSummaryMap("getdelim",
978                           {Getline(IntTy, IntMax), Getline(LongTy, LongMax),
979                            Getline(LongLongTy, LongLongMax)});
980 
981   // Functions for testing.
982   if (ChecksEnabled[CK_StdCLibraryFunctionsTesterChecker]) {
983     addToFunctionSummaryMap(
984         "__two_constrained_args",
985         Summary(ArgTypes{IntTy, IntTy}, RetType{IntTy}, EvalCallAsPure)
986             .ArgConstraint(ArgumentCondition(0U, WithinRange, SingleValue(1)))
987             .ArgConstraint(ArgumentCondition(1U, WithinRange, SingleValue(1))));
988     addToFunctionSummaryMap(
989         "__arg_constrained_twice",
990         Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
991             .ArgConstraint(ArgumentCondition(0U, OutOfRange, SingleValue(1)))
992             .ArgConstraint(ArgumentCondition(0U, OutOfRange, SingleValue(2))));
993     addToFunctionSummaryMap(
994         "__defaultparam",
995         Summary(ArgTypes{Irrelevant, IntTy}, RetType{IntTy}, EvalCallAsPure)
996             .ArgConstraint(NotNull(ArgNo(0))));
997     addToFunctionSummaryMap("__variadic",
998                             Summary(ArgTypes{VoidPtrTy, ConstCharPtrTy},
999                                     RetType{IntTy}, EvalCallAsPure)
1000                                 .ArgConstraint(NotNull(ArgNo(0)))
1001                                 .ArgConstraint(NotNull(ArgNo(1))));
1002     addToFunctionSummaryMap(
1003         "__buf_size_arg_constraint",
1004         Summary(ArgTypes{ConstVoidPtrTy, SizeTy}, RetType{IntTy},
1005                 EvalCallAsPure)
1006             .ArgConstraint(
1007                 BufferSize(/*Buffer=*/ArgNo(0), /*BufSize=*/ArgNo(1))));
1008     addToFunctionSummaryMap(
1009         "__buf_size_arg_constraint_mul",
1010         Summary(ArgTypes{ConstVoidPtrTy, SizeTy, SizeTy}, RetType{IntTy},
1011                 EvalCallAsPure)
1012             .ArgConstraint(BufferSize(/*Buffer=*/ArgNo(0), /*BufSize=*/ArgNo(1),
1013                                       /*BufSizeMultiplier=*/ArgNo(2))));
1014   }
1015 }
1016 
1017 void ento::registerStdCLibraryFunctionsChecker(CheckerManager &mgr) {
1018   auto *Checker = mgr.registerChecker<StdLibraryFunctionsChecker>();
1019   Checker->DisplayLoadedSummaries =
1020       mgr.getAnalyzerOptions().getCheckerBooleanOption(
1021           Checker, "DisplayLoadedSummaries");
1022 }
1023 
1024 bool ento::shouldRegisterStdCLibraryFunctionsChecker(const CheckerManager &mgr) {
1025   return true;
1026 }
1027 
1028 #define REGISTER_CHECKER(name)                                                 \
1029   void ento::register##name(CheckerManager &mgr) {                             \
1030     StdLibraryFunctionsChecker *checker =                                      \
1031         mgr.getChecker<StdLibraryFunctionsChecker>();                          \
1032     checker->ChecksEnabled[StdLibraryFunctionsChecker::CK_##name] = true;      \
1033     checker->CheckNames[StdLibraryFunctionsChecker::CK_##name] =               \
1034         mgr.getCurrentCheckerName();                                           \
1035   }                                                                            \
1036                                                                                \
1037   bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; }
1038 
1039 REGISTER_CHECKER(StdCLibraryFunctionArgsChecker)
1040 REGISTER_CHECKER(StdCLibraryFunctionsTesterChecker)
1041