xref: /llvm-project/clang/lib/StaticAnalyzer/Checkers/StdLibraryFunctionsChecker.cpp (revision 16506d789084fd037fc61d442da43dd5242872b7)
1 //=== StdLibraryFunctionsChecker.cpp - Model standard functions -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This checker improves modeling of a few simple library functions.
10 //
11 // This checker provides a specification format - `Summary' - and
12 // contains descriptions of some library functions in this format. Each
13 // specification contains a list of branches for splitting the program state
14 // upon call, and range constraints on argument and return-value symbols that
15 // are satisfied on each branch. This spec can be expanded to include more
16 // items, like external effects of the function.
17 //
18 // The main difference between this approach and the body farms technique is
19 // in more explicit control over how many branches are produced. For example,
20 // consider standard C function `ispunct(int x)', which returns a non-zero value
21 // iff `x' is a punctuation character, that is, when `x' is in range
22 //   ['!', '/']   [':', '@']  U  ['[', '\`']  U  ['{', '~'].
23 // `Summary' provides only two branches for this function. However,
24 // any attempt to describe this range with if-statements in the body farm
25 // would result in many more branches. Because each branch needs to be analyzed
26 // independently, this significantly reduces performance. Additionally,
27 // once we consider a branch on which `x' is in range, say, ['!', '/'],
28 // we assume that such branch is an important separate path through the program,
29 // which may lead to false positives because considering this particular path
30 // was not consciously intended, and therefore it might have been unreachable.
31 //
32 // This checker uses eval::Call for modeling pure functions (functions without
33 // side effets), for which their `Summary' is a precise model. This avoids
34 // unnecessary invalidation passes. Conflicts with other checkers are unlikely
35 // because if the function has no other effects, other checkers would probably
36 // never want to improve upon the modeling done by this checker.
37 //
38 // Non-pure functions, for which only partial improvement over the default
39 // behavior is expected, are modeled via check::PostCall, non-intrusively.
40 //
41 // The following standard C functions are currently supported:
42 //
43 //   fgetc      getline   isdigit   isupper
44 //   fread      isalnum   isgraph   isxdigit
45 //   fwrite     isalpha   islower   read
46 //   getc       isascii   isprint   write
47 //   getchar    isblank   ispunct
48 //   getdelim   iscntrl   isspace
49 //
50 //===----------------------------------------------------------------------===//
51 
52 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
53 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
54 #include "clang/StaticAnalyzer/Core/Checker.h"
55 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
56 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
57 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
58 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h"
59 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicSize.h"
60 
61 using namespace clang;
62 using namespace clang::ento;
63 
64 namespace {
65 class StdLibraryFunctionsChecker
66     : public Checker<check::PreCall, check::PostCall, eval::Call> {
67 
68   class Summary;
69 
70   /// Specify how much the analyzer engine should entrust modeling this function
71   /// to us. If he doesn't, he performs additional invalidations.
72   enum InvalidationKind { NoEvalCall, EvalCallAsPure };
73 
74   // The universal integral type to use in value range descriptions.
75   // Unsigned to make sure overflows are well-defined.
76   typedef uint64_t RangeInt;
77 
78   /// Normally, describes a single range constraint, eg. {{0, 1}, {3, 4}} is
79   /// a non-negative integer, which less than 5 and not equal to 2. For
80   /// `ComparesToArgument', holds information about how exactly to compare to
81   /// the argument.
82   typedef std::vector<std::pair<RangeInt, RangeInt>> IntRangeVector;
83 
84   /// A reference to an argument or return value by its number.
85   /// ArgNo in CallExpr and CallEvent is defined as Unsigned, but
86   /// obviously uint32_t should be enough for all practical purposes.
87   typedef uint32_t ArgNo;
88   static const ArgNo Ret;
89 
90   class ValueConstraint;
91 
92   // Pointer to the ValueConstraint. We need a copyable, polymorphic and
93   // default initialize able type (vector needs that). A raw pointer was good,
94   // however, we cannot default initialize that. unique_ptr makes the Summary
95   // class non-copyable, therefore not an option. Releasing the copyability
96   // requirement would render the initialization of the Summary map infeasible.
97   using ValueConstraintPtr = std::shared_ptr<ValueConstraint>;
98 
99   /// Polymorphic base class that represents a constraint on a given argument
100   /// (or return value) of a function. Derived classes implement different kind
101   /// of constraints, e.g range constraints or correlation between two
102   /// arguments.
103   class ValueConstraint {
104   public:
105     ValueConstraint(ArgNo ArgN) : ArgN(ArgN) {}
106     virtual ~ValueConstraint() {}
107     /// Apply the effects of the constraint on the given program state. If null
108     /// is returned then the constraint is not feasible.
109     virtual ProgramStateRef apply(ProgramStateRef State, const CallEvent &Call,
110                                   const Summary &Summary,
111                                   CheckerContext &C) const = 0;
112     virtual ValueConstraintPtr negate() const {
113       llvm_unreachable("Not implemented");
114     };
115 
116     // Check whether the constraint is malformed or not. It is malformed if the
117     // specified argument has a mismatch with the given FunctionDecl (e.g. the
118     // arg number is out-of-range of the function's argument list).
119     bool checkValidity(const FunctionDecl *FD) const {
120       const bool ValidArg = ArgN == Ret || ArgN < FD->getNumParams();
121       assert(ValidArg && "Arg out of range!");
122       if (!ValidArg)
123         return false;
124       // Subclasses may further refine the validation.
125       return checkSpecificValidity(FD);
126     }
127     ArgNo getArgNo() const { return ArgN; }
128 
129   protected:
130     ArgNo ArgN; // Argument to which we apply the constraint.
131 
132     /// Do polymorphic sanity check on the constraint.
133     virtual bool checkSpecificValidity(const FunctionDecl *FD) const {
134       return true;
135     }
136   };
137 
138   /// Given a range, should the argument stay inside or outside this range?
139   enum RangeKind { OutOfRange, WithinRange };
140 
141   /// Encapsulates a single range on a single symbol within a branch.
142   class RangeConstraint : public ValueConstraint {
143     RangeKind Kind;      // Kind of range definition.
144     IntRangeVector Args; // Polymorphic arguments.
145 
146   public:
147     RangeConstraint(ArgNo ArgN, RangeKind Kind, const IntRangeVector &Args)
148         : ValueConstraint(ArgN), Kind(Kind), Args(Args) {}
149 
150     const IntRangeVector &getRanges() const {
151       return Args;
152     }
153 
154   private:
155     ProgramStateRef applyAsOutOfRange(ProgramStateRef State,
156                                       const CallEvent &Call,
157                                       const Summary &Summary) const;
158     ProgramStateRef applyAsWithinRange(ProgramStateRef State,
159                                        const CallEvent &Call,
160                                        const Summary &Summary) const;
161   public:
162     ProgramStateRef apply(ProgramStateRef State, const CallEvent &Call,
163                           const Summary &Summary,
164                           CheckerContext &C) const override {
165       switch (Kind) {
166       case OutOfRange:
167         return applyAsOutOfRange(State, Call, Summary);
168       case WithinRange:
169         return applyAsWithinRange(State, Call, Summary);
170       }
171       llvm_unreachable("Unknown range kind!");
172     }
173 
174     ValueConstraintPtr negate() const override {
175       RangeConstraint Tmp(*this);
176       switch (Kind) {
177       case OutOfRange:
178         Tmp.Kind = WithinRange;
179         break;
180       case WithinRange:
181         Tmp.Kind = OutOfRange;
182         break;
183       }
184       return std::make_shared<RangeConstraint>(Tmp);
185     }
186 
187     bool checkSpecificValidity(const FunctionDecl *FD) const override {
188       const bool ValidArg =
189           getArgType(FD, ArgN)->isIntegralType(FD->getASTContext());
190       assert(ValidArg &&
191              "This constraint should be applied on an integral type");
192       return ValidArg;
193     }
194   };
195 
196   class ComparisonConstraint : public ValueConstraint {
197     BinaryOperator::Opcode Opcode;
198     ArgNo OtherArgN;
199 
200   public:
201     ComparisonConstraint(ArgNo ArgN, BinaryOperator::Opcode Opcode,
202                          ArgNo OtherArgN)
203         : ValueConstraint(ArgN), Opcode(Opcode), OtherArgN(OtherArgN) {}
204     ArgNo getOtherArgNo() const { return OtherArgN; }
205     BinaryOperator::Opcode getOpcode() const { return Opcode; }
206     ProgramStateRef apply(ProgramStateRef State, const CallEvent &Call,
207                           const Summary &Summary,
208                           CheckerContext &C) const override;
209   };
210 
211   class NotNullConstraint : public ValueConstraint {
212     using ValueConstraint::ValueConstraint;
213     // This variable has a role when we negate the constraint.
214     bool CannotBeNull = true;
215 
216   public:
217     ProgramStateRef apply(ProgramStateRef State, const CallEvent &Call,
218                           const Summary &Summary,
219                           CheckerContext &C) const override {
220       SVal V = getArgSVal(Call, getArgNo());
221       if (V.isUndef())
222         return State;
223 
224       DefinedOrUnknownSVal L = V.castAs<DefinedOrUnknownSVal>();
225       if (!L.getAs<Loc>())
226         return State;
227 
228       return State->assume(L, CannotBeNull);
229     }
230 
231     ValueConstraintPtr negate() const override {
232       NotNullConstraint Tmp(*this);
233       Tmp.CannotBeNull = !this->CannotBeNull;
234       return std::make_shared<NotNullConstraint>(Tmp);
235     }
236 
237     bool checkSpecificValidity(const FunctionDecl *FD) const override {
238       const bool ValidArg = getArgType(FD, ArgN)->isPointerType();
239       assert(ValidArg &&
240              "This constraint should be applied only on a pointer type");
241       return ValidArg;
242     }
243   };
244 
245   // Represents a buffer argument with an additional size argument.
246   // E.g. the first two arguments here:
247   //   ctime_s(char *buffer, rsize_t bufsz, const time_t *time);
248   // Another example:
249   //   size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream);
250   //   // Here, ptr is the buffer, and its minimum size is `size * nmemb`.
251   class BufferSizeConstraint : public ValueConstraint {
252     // The argument which holds the size of the buffer.
253     ArgNo SizeArgN;
254     // The argument which is a multiplier to size. This is set in case of
255     // `fread` like functions where the size is computed as a multiplication of
256     // two arguments.
257     llvm::Optional<ArgNo> SizeMultiplierArgN;
258     // The operator we use in apply. This is negated in negate().
259     BinaryOperator::Opcode Op = BO_LE;
260 
261   public:
262     BufferSizeConstraint(ArgNo Buffer, ArgNo BufSize)
263         : ValueConstraint(Buffer), SizeArgN(BufSize) {}
264 
265     BufferSizeConstraint(ArgNo Buffer, ArgNo BufSize, ArgNo BufSizeMultiplier)
266         : ValueConstraint(Buffer), SizeArgN(BufSize),
267           SizeMultiplierArgN(BufSizeMultiplier) {}
268 
269     ProgramStateRef apply(ProgramStateRef State, const CallEvent &Call,
270                           const Summary &Summary,
271                           CheckerContext &C) const override {
272       SValBuilder &SvalBuilder = C.getSValBuilder();
273       // The buffer argument.
274       SVal BufV = getArgSVal(Call, getArgNo());
275       // The size argument.
276       SVal SizeV = getArgSVal(Call, SizeArgN);
277       // Multiply with another argument if given.
278       if (SizeMultiplierArgN) {
279         SVal SizeMulV = getArgSVal(Call, *SizeMultiplierArgN);
280         SizeV = SvalBuilder.evalBinOp(State, BO_Mul, SizeV, SizeMulV,
281                                       Summary.getArgType(SizeArgN));
282       }
283       // The dynamic size of the buffer argument, got from the analyzer engine.
284       SVal BufDynSize = getDynamicSizeWithOffset(State, BufV);
285 
286       SVal Feasible = SvalBuilder.evalBinOp(State, Op, SizeV, BufDynSize,
287                                             SvalBuilder.getContext().BoolTy);
288       if (auto F = Feasible.getAs<DefinedOrUnknownSVal>())
289         return State->assume(*F, true);
290 
291       // We can get here only if the size argument or the dynamic size is
292       // undefined. But the dynamic size should never be undefined, only
293       // unknown. So, here, the size of the argument is undefined, i.e. we
294       // cannot apply the constraint. Actually, other checkers like
295       // CallAndMessage should catch this situation earlier, because we call a
296       // function with an uninitialized argument.
297       llvm_unreachable("Size argument or the dynamic size is Undefined");
298     }
299 
300     ValueConstraintPtr negate() const override {
301       BufferSizeConstraint Tmp(*this);
302       Tmp.Op = BinaryOperator::negateComparisonOp(Op);
303       return std::make_shared<BufferSizeConstraint>(Tmp);
304     }
305   };
306 
307   /// The complete list of constraints that defines a single branch.
308   typedef std::vector<ValueConstraintPtr> ConstraintSet;
309 
310   using ArgTypes = std::vector<QualType>;
311 
312   // A placeholder type, we use it whenever we do not care about the concrete
313   // type in a Signature.
314   const QualType Irrelevant{};
315   bool static isIrrelevant(QualType T) { return T.isNull(); }
316 
317   // The signature of a function we want to describe with a summary. This is a
318   // concessive signature, meaning there may be irrelevant types in the
319   // signature which we do not check against a function with concrete types.
320   struct Signature {
321     const ArgTypes ArgTys;
322     const QualType RetTy;
323     Signature(ArgTypes ArgTys, QualType RetTy) : ArgTys(ArgTys), RetTy(RetTy) {
324       assertRetTypeSuitableForSignature(RetTy);
325       for (size_t I = 0, E = ArgTys.size(); I != E; ++I) {
326         QualType ArgTy = ArgTys[I];
327         assertArgTypeSuitableForSignature(ArgTy);
328       }
329     }
330     bool matches(const FunctionDecl *FD) const;
331 
332   private:
333     static void assertArgTypeSuitableForSignature(QualType T) {
334       assert((T.isNull() || !T->isVoidType()) &&
335              "We should have no void types in the spec");
336       assert((T.isNull() || T.isCanonical()) &&
337              "We should only have canonical types in the spec");
338     }
339     static void assertRetTypeSuitableForSignature(QualType T) {
340       assert((T.isNull() || T.isCanonical()) &&
341              "We should only have canonical types in the spec");
342     }
343   };
344 
345   static QualType getArgType(const FunctionDecl *FD, ArgNo ArgN) {
346     assert(FD && "Function must be set");
347     QualType T = (ArgN == Ret)
348                      ? FD->getReturnType().getCanonicalType()
349                      : FD->getParamDecl(ArgN)->getType().getCanonicalType();
350     return T;
351   }
352 
353   using Cases = std::vector<ConstraintSet>;
354 
355   /// A summary includes information about
356   ///   * function prototype (signature)
357   ///   * approach to invalidation,
358   ///   * a list of branches - a list of list of ranges -
359   ///     A branch represents a path in the exploded graph of a function (which
360   ///     is a tree). So, a branch is a series of assumptions. In other words,
361   ///     branches represent split states and additional assumptions on top of
362   ///     the splitting assumption.
363   ///     For example, consider the branches in `isalpha(x)`
364   ///       Branch 1)
365   ///         x is in range ['A', 'Z'] or in ['a', 'z']
366   ///         then the return value is not 0. (I.e. out-of-range [0, 0])
367   ///       Branch 2)
368   ///         x is out-of-range ['A', 'Z'] and out-of-range ['a', 'z']
369   ///         then the return value is 0.
370   ///   * a list of argument constraints, that must be true on every branch.
371   ///     If these constraints are not satisfied that means a fatal error
372   ///     usually resulting in undefined behaviour.
373   ///
374   /// Application of a summary:
375   ///   The signature and argument constraints together contain information
376   ///   about which functions are handled by the summary. The signature can use
377   ///   "wildcards", i.e. Irrelevant types. Irrelevant type of a parameter in
378   ///   a signature means that type is not compared to the type of the parameter
379   ///   in the found FunctionDecl. Argument constraints may specify additional
380   ///   rules for the given parameter's type, those rules are checked once the
381   ///   signature is matched.
382   class Summary {
383     const Signature Sign;
384     const InvalidationKind InvalidationKd;
385     Cases CaseConstraints;
386     ConstraintSet ArgConstraints;
387 
388     // The function to which the summary applies. This is set after lookup and
389     // match to the signature.
390     const FunctionDecl *FD = nullptr;
391 
392   public:
393     Summary(ArgTypes ArgTys, QualType RetTy, InvalidationKind InvalidationKd)
394         : Sign(ArgTys, RetTy), InvalidationKd(InvalidationKd) {}
395 
396     Summary &Case(ConstraintSet&& CS) {
397       CaseConstraints.push_back(std::move(CS));
398       return *this;
399     }
400     Summary &ArgConstraint(ValueConstraintPtr VC) {
401       ArgConstraints.push_back(VC);
402       return *this;
403     }
404 
405     InvalidationKind getInvalidationKd() const { return InvalidationKd; }
406     const Cases &getCaseConstraints() const { return CaseConstraints; }
407     const ConstraintSet &getArgConstraints() const { return ArgConstraints; }
408 
409     QualType getArgType(ArgNo ArgN) const {
410       return StdLibraryFunctionsChecker::getArgType(FD, ArgN);
411     }
412 
413     // Returns true if the summary should be applied to the given function.
414     // And if yes then store the function declaration.
415     bool matchesAndSet(const FunctionDecl *FD) {
416       bool Result = Sign.matches(FD) && validateByConstraints(FD);
417       if (Result) {
418         assert(!this->FD && "FD must not be set more than once");
419         this->FD = FD;
420       }
421       return Result;
422     }
423 
424   private:
425     // Once we know the exact type of the function then do sanity check on all
426     // the given constraints.
427     bool validateByConstraints(const FunctionDecl *FD) const {
428       for (const ConstraintSet &Case : CaseConstraints)
429         for (const ValueConstraintPtr &Constraint : Case)
430           if (!Constraint->checkValidity(FD))
431             return false;
432       for (const ValueConstraintPtr &Constraint : ArgConstraints)
433         if (!Constraint->checkValidity(FD))
434           return false;
435       return true;
436     }
437   };
438 
439   // The map of all functions supported by the checker. It is initialized
440   // lazily, and it doesn't change after initialization.
441   using FunctionSummaryMapType = llvm::DenseMap<const FunctionDecl *, Summary>;
442   mutable FunctionSummaryMapType FunctionSummaryMap;
443 
444   mutable std::unique_ptr<BugType> BT_InvalidArg;
445 
446   static SVal getArgSVal(const CallEvent &Call, ArgNo ArgN) {
447     return ArgN == Ret ? Call.getReturnValue() : Call.getArgSVal(ArgN);
448   }
449 
450 public:
451   void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
452   void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
453   bool evalCall(const CallEvent &Call, CheckerContext &C) const;
454 
455   enum CheckKind {
456     CK_StdCLibraryFunctionArgsChecker,
457     CK_StdCLibraryFunctionsTesterChecker,
458     CK_NumCheckKinds
459   };
460   DefaultBool ChecksEnabled[CK_NumCheckKinds];
461   CheckerNameRef CheckNames[CK_NumCheckKinds];
462 
463   bool DisplayLoadedSummaries = false;
464 
465 private:
466   Optional<Summary> findFunctionSummary(const FunctionDecl *FD,
467                                         CheckerContext &C) const;
468   Optional<Summary> findFunctionSummary(const CallEvent &Call,
469                                         CheckerContext &C) const;
470 
471   void initFunctionSummaries(CheckerContext &C) const;
472 
473   void reportBug(const CallEvent &Call, ExplodedNode *N,
474                  CheckerContext &C) const {
475     if (!ChecksEnabled[CK_StdCLibraryFunctionArgsChecker])
476       return;
477     // TODO Add detailed diagnostic.
478     StringRef Msg = "Function argument constraint is not satisfied";
479     if (!BT_InvalidArg)
480       BT_InvalidArg = std::make_unique<BugType>(
481           CheckNames[CK_StdCLibraryFunctionArgsChecker],
482           "Unsatisfied argument constraints", categories::LogicError);
483     auto R = std::make_unique<PathSensitiveBugReport>(*BT_InvalidArg, Msg, N);
484     bugreporter::trackExpressionValue(N, Call.getArgExpr(0), *R);
485     C.emitReport(std::move(R));
486   }
487 };
488 
489 const StdLibraryFunctionsChecker::ArgNo StdLibraryFunctionsChecker::Ret =
490     std::numeric_limits<ArgNo>::max();
491 
492 } // end of anonymous namespace
493 
494 ProgramStateRef StdLibraryFunctionsChecker::RangeConstraint::applyAsOutOfRange(
495     ProgramStateRef State, const CallEvent &Call,
496     const Summary &Summary) const {
497 
498   ProgramStateManager &Mgr = State->getStateManager();
499   SValBuilder &SVB = Mgr.getSValBuilder();
500   BasicValueFactory &BVF = SVB.getBasicValueFactory();
501   ConstraintManager &CM = Mgr.getConstraintManager();
502   QualType T = Summary.getArgType(getArgNo());
503   SVal V = getArgSVal(Call, getArgNo());
504 
505   if (auto N = V.getAs<NonLoc>()) {
506     const IntRangeVector &R = getRanges();
507     size_t E = R.size();
508     for (size_t I = 0; I != E; ++I) {
509       const llvm::APSInt &Min = BVF.getValue(R[I].first, T);
510       const llvm::APSInt &Max = BVF.getValue(R[I].second, T);
511       assert(Min <= Max);
512       State = CM.assumeInclusiveRange(State, *N, Min, Max, false);
513       if (!State)
514         break;
515     }
516   }
517 
518   return State;
519 }
520 
521 ProgramStateRef StdLibraryFunctionsChecker::RangeConstraint::applyAsWithinRange(
522     ProgramStateRef State, const CallEvent &Call,
523     const Summary &Summary) const {
524 
525   ProgramStateManager &Mgr = State->getStateManager();
526   SValBuilder &SVB = Mgr.getSValBuilder();
527   BasicValueFactory &BVF = SVB.getBasicValueFactory();
528   ConstraintManager &CM = Mgr.getConstraintManager();
529   QualType T = Summary.getArgType(getArgNo());
530   SVal V = getArgSVal(Call, getArgNo());
531 
532   // "WithinRange R" is treated as "outside [T_MIN, T_MAX] \ R".
533   // We cut off [T_MIN, min(R) - 1] and [max(R) + 1, T_MAX] if necessary,
534   // and then cut away all holes in R one by one.
535   //
536   // E.g. consider a range list R as [A, B] and [C, D]
537   // -------+--------+------------------+------------+----------->
538   //        A        B                  C            D
539   // Then we assume that the value is not in [-inf, A - 1],
540   // then not in [D + 1, +inf], then not in [B + 1, C - 1]
541   if (auto N = V.getAs<NonLoc>()) {
542     const IntRangeVector &R = getRanges();
543     size_t E = R.size();
544 
545     const llvm::APSInt &MinusInf = BVF.getMinValue(T);
546     const llvm::APSInt &PlusInf = BVF.getMaxValue(T);
547 
548     const llvm::APSInt &Left = BVF.getValue(R[0].first - 1ULL, T);
549     if (Left != PlusInf) {
550       assert(MinusInf <= Left);
551       State = CM.assumeInclusiveRange(State, *N, MinusInf, Left, false);
552       if (!State)
553         return nullptr;
554     }
555 
556     const llvm::APSInt &Right = BVF.getValue(R[E - 1].second + 1ULL, T);
557     if (Right != MinusInf) {
558       assert(Right <= PlusInf);
559       State = CM.assumeInclusiveRange(State, *N, Right, PlusInf, false);
560       if (!State)
561         return nullptr;
562     }
563 
564     for (size_t I = 1; I != E; ++I) {
565       const llvm::APSInt &Min = BVF.getValue(R[I - 1].second + 1ULL, T);
566       const llvm::APSInt &Max = BVF.getValue(R[I].first - 1ULL, T);
567       if (Min <= Max) {
568         State = CM.assumeInclusiveRange(State, *N, Min, Max, false);
569         if (!State)
570           return nullptr;
571       }
572     }
573   }
574 
575   return State;
576 }
577 
578 ProgramStateRef StdLibraryFunctionsChecker::ComparisonConstraint::apply(
579     ProgramStateRef State, const CallEvent &Call, const Summary &Summary,
580     CheckerContext &C) const {
581 
582   ProgramStateManager &Mgr = State->getStateManager();
583   SValBuilder &SVB = Mgr.getSValBuilder();
584   QualType CondT = SVB.getConditionType();
585   QualType T = Summary.getArgType(getArgNo());
586   SVal V = getArgSVal(Call, getArgNo());
587 
588   BinaryOperator::Opcode Op = getOpcode();
589   ArgNo OtherArg = getOtherArgNo();
590   SVal OtherV = getArgSVal(Call, OtherArg);
591   QualType OtherT = Summary.getArgType(OtherArg);
592   // Note: we avoid integral promotion for comparison.
593   OtherV = SVB.evalCast(OtherV, T, OtherT);
594   if (auto CompV = SVB.evalBinOp(State, Op, V, OtherV, CondT)
595                        .getAs<DefinedOrUnknownSVal>())
596     State = State->assume(*CompV, true);
597   return State;
598 }
599 
600 void StdLibraryFunctionsChecker::checkPreCall(const CallEvent &Call,
601                                               CheckerContext &C) const {
602   Optional<Summary> FoundSummary = findFunctionSummary(Call, C);
603   if (!FoundSummary)
604     return;
605 
606   const Summary &Summary = *FoundSummary;
607   ProgramStateRef State = C.getState();
608 
609   ProgramStateRef NewState = State;
610   for (const ValueConstraintPtr &Constraint : Summary.getArgConstraints()) {
611     ProgramStateRef SuccessSt = Constraint->apply(NewState, Call, Summary, C);
612     ProgramStateRef FailureSt =
613         Constraint->negate()->apply(NewState, Call, Summary, C);
614     // The argument constraint is not satisfied.
615     if (FailureSt && !SuccessSt) {
616       if (ExplodedNode *N = C.generateErrorNode(NewState))
617         reportBug(Call, N, C);
618       break;
619     } else {
620       // We will apply the constraint even if we cannot reason about the
621       // argument. This means both SuccessSt and FailureSt can be true. If we
622       // weren't applying the constraint that would mean that symbolic
623       // execution continues on a code whose behaviour is undefined.
624       assert(SuccessSt);
625       NewState = SuccessSt;
626     }
627   }
628   if (NewState && NewState != State)
629     C.addTransition(NewState);
630 }
631 
632 void StdLibraryFunctionsChecker::checkPostCall(const CallEvent &Call,
633                                                CheckerContext &C) const {
634   Optional<Summary> FoundSummary = findFunctionSummary(Call, C);
635   if (!FoundSummary)
636     return;
637 
638   // Now apply the constraints.
639   const Summary &Summary = *FoundSummary;
640   ProgramStateRef State = C.getState();
641 
642   // Apply case/branch specifications.
643   for (const ConstraintSet &Case : Summary.getCaseConstraints()) {
644     ProgramStateRef NewState = State;
645     for (const ValueConstraintPtr &Constraint : Case) {
646       NewState = Constraint->apply(NewState, Call, Summary, C);
647       if (!NewState)
648         break;
649     }
650 
651     if (NewState && NewState != State)
652       C.addTransition(NewState);
653   }
654 }
655 
656 bool StdLibraryFunctionsChecker::evalCall(const CallEvent &Call,
657                                           CheckerContext &C) const {
658   Optional<Summary> FoundSummary = findFunctionSummary(Call, C);
659   if (!FoundSummary)
660     return false;
661 
662   const Summary &Summary = *FoundSummary;
663   switch (Summary.getInvalidationKd()) {
664   case EvalCallAsPure: {
665     ProgramStateRef State = C.getState();
666     const LocationContext *LC = C.getLocationContext();
667     const auto *CE = cast_or_null<CallExpr>(Call.getOriginExpr());
668     SVal V = C.getSValBuilder().conjureSymbolVal(
669         CE, LC, CE->getType().getCanonicalType(), C.blockCount());
670     State = State->BindExpr(CE, LC, V);
671     C.addTransition(State);
672     return true;
673   }
674   case NoEvalCall:
675     // Summary tells us to avoid performing eval::Call. The function is possibly
676     // evaluated by another checker, or evaluated conservatively.
677     return false;
678   }
679   llvm_unreachable("Unknown invalidation kind!");
680 }
681 
682 bool StdLibraryFunctionsChecker::Signature::matches(
683     const FunctionDecl *FD) const {
684   // Check number of arguments:
685   if (FD->param_size() != ArgTys.size())
686     return false;
687 
688   // Check return type.
689   if (!isIrrelevant(RetTy))
690     if (RetTy != FD->getReturnType().getCanonicalType())
691       return false;
692 
693   // Check argument types.
694   for (size_t I = 0, E = ArgTys.size(); I != E; ++I) {
695     QualType ArgTy = ArgTys[I];
696     if (isIrrelevant(ArgTy))
697       continue;
698     if (ArgTy != FD->getParamDecl(I)->getType().getCanonicalType())
699       return false;
700   }
701 
702   return true;
703 }
704 
705 Optional<StdLibraryFunctionsChecker::Summary>
706 StdLibraryFunctionsChecker::findFunctionSummary(const FunctionDecl *FD,
707                                                 CheckerContext &C) const {
708   if (!FD)
709     return None;
710 
711   initFunctionSummaries(C);
712 
713   auto FSMI = FunctionSummaryMap.find(FD->getCanonicalDecl());
714   if (FSMI == FunctionSummaryMap.end())
715     return None;
716   return FSMI->second;
717 }
718 
719 Optional<StdLibraryFunctionsChecker::Summary>
720 StdLibraryFunctionsChecker::findFunctionSummary(const CallEvent &Call,
721                                                 CheckerContext &C) const {
722   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Call.getDecl());
723   if (!FD)
724     return None;
725   return findFunctionSummary(FD, C);
726 }
727 
728 void StdLibraryFunctionsChecker::initFunctionSummaries(
729     CheckerContext &C) const {
730   if (!FunctionSummaryMap.empty())
731     return;
732 
733   SValBuilder &SVB = C.getSValBuilder();
734   BasicValueFactory &BVF = SVB.getBasicValueFactory();
735   const ASTContext &ACtx = BVF.getContext();
736 
737   // These types are useful for writing specifications quickly,
738   // New specifications should probably introduce more types.
739   // Some types are hard to obtain from the AST, eg. "ssize_t".
740   // In such cases it should be possible to provide multiple variants
741   // of function summary for common cases (eg. ssize_t could be int or long
742   // or long long, so three summary variants would be enough).
743   // Of course, function variants are also useful for C++ overloads.
744   const QualType IntTy = ACtx.IntTy;
745   const QualType LongTy = ACtx.LongTy;
746   const QualType LongLongTy = ACtx.LongLongTy;
747   const QualType SizeTy = ACtx.getSizeType();
748   const QualType VoidPtrTy = ACtx.VoidPtrTy; // void *
749   const QualType VoidPtrRestrictTy =
750       ACtx.getRestrictType(VoidPtrTy); // void *restrict
751   const QualType ConstVoidPtrTy =
752       ACtx.getPointerType(ACtx.VoidTy.withConst()); // const void *
753   const QualType ConstCharPtrTy =
754       ACtx.getPointerType(ACtx.CharTy.withConst()); // const char *
755   const QualType ConstVoidPtrRestrictTy =
756       ACtx.getRestrictType(ConstVoidPtrTy); // const void *restrict
757 
758   const RangeInt IntMax = BVF.getMaxValue(IntTy).getLimitedValue();
759   const RangeInt LongMax = BVF.getMaxValue(LongTy).getLimitedValue();
760   const RangeInt LongLongMax = BVF.getMaxValue(LongLongTy).getLimitedValue();
761 
762   // Set UCharRangeMax to min of int or uchar maximum value.
763   // The C standard states that the arguments of functions like isalpha must
764   // be representable as an unsigned char. Their type is 'int', so the max
765   // value of the argument should be min(UCharMax, IntMax). This just happen
766   // to be true for commonly used and well tested instruction set
767   // architectures, but not for others.
768   const RangeInt UCharRangeMax =
769       std::min(BVF.getMaxValue(ACtx.UnsignedCharTy).getLimitedValue(), IntMax);
770 
771   // The platform dependent value of EOF.
772   // Try our best to parse this from the Preprocessor, otherwise fallback to -1.
773   const auto EOFv = [&C]() -> RangeInt {
774     if (const llvm::Optional<int> OptInt =
775             tryExpandAsInteger("EOF", C.getPreprocessor()))
776       return *OptInt;
777     return -1;
778   }();
779 
780   // Auxiliary class to aid adding summaries to the summary map.
781   struct AddToFunctionSummaryMap {
782     const ASTContext &ACtx;
783     FunctionSummaryMapType &Map;
784     bool DisplayLoadedSummaries;
785     AddToFunctionSummaryMap(const ASTContext &ACtx, FunctionSummaryMapType &FSM,
786                             bool DisplayLoadedSummaries)
787         : ACtx(ACtx), Map(FSM), DisplayLoadedSummaries(DisplayLoadedSummaries) {
788     }
789 
790     // Add a summary to a FunctionDecl found by lookup. The lookup is performed
791     // by the given Name, and in the global scope. The summary will be attached
792     // to the found FunctionDecl only if the signatures match.
793     void operator()(StringRef Name, Summary S) {
794       IdentifierInfo &II = ACtx.Idents.get(Name);
795       auto LookupRes = ACtx.getTranslationUnitDecl()->lookup(&II);
796       if (LookupRes.size() == 0)
797         return;
798       for (Decl *D : LookupRes) {
799         if (auto *FD = dyn_cast<FunctionDecl>(D)) {
800           if (S.matchesAndSet(FD)) {
801             auto Res = Map.insert({FD->getCanonicalDecl(), S});
802             assert(Res.second && "Function already has a summary set!");
803             (void)Res;
804             if (DisplayLoadedSummaries) {
805               llvm::errs() << "Loaded summary for: ";
806               FD->print(llvm::errs());
807               llvm::errs() << "\n";
808             }
809             return;
810           }
811         }
812       }
813     }
814     // Add several summaries for the given name.
815     void operator()(StringRef Name, const std::vector<Summary> &Summaries) {
816       for (const Summary &S : Summaries)
817         operator()(Name, S);
818     }
819   } addToFunctionSummaryMap(ACtx, FunctionSummaryMap, DisplayLoadedSummaries);
820 
821   // We are finally ready to define specifications for all supported functions.
822   //
823   // The signature needs to have the correct number of arguments.
824   // However, we insert `Irrelevant' when the type is insignificant.
825   //
826   // Argument ranges should always cover all variants. If return value
827   // is completely unknown, omit it from the respective range set.
828   //
829   // All types in the spec need to be canonical.
830   //
831   // Every item in the list of range sets represents a particular
832   // execution path the analyzer would need to explore once
833   // the call is modeled - a new program state is constructed
834   // for every range set, and each range line in the range set
835   // corresponds to a specific constraint within this state.
836   //
837   // Upon comparing to another argument, the other argument is casted
838   // to the current argument's type. This avoids proper promotion but
839   // seems useful. For example, read() receives size_t argument,
840   // and its return value, which is of type ssize_t, cannot be greater
841   // than this argument. If we made a promotion, and the size argument
842   // is equal to, say, 10, then we'd impose a range of [0, 10] on the
843   // return value, however the correct range is [-1, 10].
844   //
845   // Please update the list of functions in the header after editing!
846 
847   // Below are helpers functions to create the summaries.
848   auto ArgumentCondition = [](ArgNo ArgN, RangeKind Kind,
849                               IntRangeVector Ranges) {
850     return std::make_shared<RangeConstraint>(ArgN, Kind, Ranges);
851   };
852   auto BufferSize = [](auto... Args) {
853     return std::make_shared<BufferSizeConstraint>(Args...);
854   };
855   struct {
856     auto operator()(RangeKind Kind, IntRangeVector Ranges) {
857       return std::make_shared<RangeConstraint>(Ret, Kind, Ranges);
858     }
859     auto operator()(BinaryOperator::Opcode Op, ArgNo OtherArgN) {
860       return std::make_shared<ComparisonConstraint>(Ret, Op, OtherArgN);
861     }
862   } ReturnValueCondition;
863   auto Range = [](RangeInt b, RangeInt e) {
864     return IntRangeVector{std::pair<RangeInt, RangeInt>{b, e}};
865   };
866   auto SingleValue = [](RangeInt v) {
867     return IntRangeVector{std::pair<RangeInt, RangeInt>{v, v}};
868   };
869   auto LessThanOrEq = BO_LE;
870   auto NotNull = [&](ArgNo ArgN) {
871     return std::make_shared<NotNullConstraint>(ArgN);
872   };
873 
874   using RetType = QualType;
875   // Templates for summaries that are reused by many functions.
876   auto Getc = [&]() {
877     return Summary(ArgTypes{Irrelevant}, RetType{IntTy}, NoEvalCall)
878         .Case({ReturnValueCondition(WithinRange,
879                                     {{EOFv, EOFv}, {0, UCharRangeMax}})});
880   };
881   auto Read = [&](RetType R, RangeInt Max) {
882     return Summary(ArgTypes{Irrelevant, Irrelevant, SizeTy}, RetType{R},
883                    NoEvalCall)
884         .Case({ReturnValueCondition(LessThanOrEq, ArgNo(2)),
885                ReturnValueCondition(WithinRange, Range(-1, Max))});
886   };
887   auto Fread = [&]() {
888     return Summary(ArgTypes{VoidPtrRestrictTy, Irrelevant, SizeTy, Irrelevant},
889                    RetType{SizeTy}, NoEvalCall)
890         .Case({
891             ReturnValueCondition(LessThanOrEq, ArgNo(2)),
892         })
893         .ArgConstraint(NotNull(ArgNo(0)));
894   };
895   auto Fwrite = [&]() {
896     return Summary(
897                ArgTypes{ConstVoidPtrRestrictTy, Irrelevant, SizeTy, Irrelevant},
898                RetType{SizeTy}, NoEvalCall)
899         .Case({
900             ReturnValueCondition(LessThanOrEq, ArgNo(2)),
901         })
902         .ArgConstraint(NotNull(ArgNo(0)));
903   };
904   auto Getline = [&](RetType R, RangeInt Max) {
905     return Summary(ArgTypes{Irrelevant, Irrelevant, Irrelevant}, RetType{R},
906                    NoEvalCall)
907         .Case({ReturnValueCondition(WithinRange, {{-1, -1}, {1, Max}})});
908   };
909 
910   // The isascii() family of functions.
911   // The behavior is undefined if the value of the argument is not
912   // representable as unsigned char or is not equal to EOF. See e.g. C99
913   // 7.4.1.2 The isalpha function (p: 181-182).
914   addToFunctionSummaryMap(
915       "isalnum",
916       Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
917           // Boils down to isupper() or islower() or isdigit().
918           .Case({ArgumentCondition(0U, WithinRange,
919                                    {{'0', '9'}, {'A', 'Z'}, {'a', 'z'}}),
920                  ReturnValueCondition(OutOfRange, SingleValue(0))})
921           // The locale-specific range.
922           // No post-condition. We are completely unaware of
923           // locale-specific return values.
924           .Case({ArgumentCondition(0U, WithinRange, {{128, UCharRangeMax}})})
925           .Case(
926               {ArgumentCondition(
927                    0U, OutOfRange,
928                    {{'0', '9'}, {'A', 'Z'}, {'a', 'z'}, {128, UCharRangeMax}}),
929                ReturnValueCondition(WithinRange, SingleValue(0))})
930           .ArgConstraint(ArgumentCondition(
931               0U, WithinRange, {{EOFv, EOFv}, {0, UCharRangeMax}})));
932   addToFunctionSummaryMap(
933       "isalpha",
934       Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
935           .Case({ArgumentCondition(0U, WithinRange, {{'A', 'Z'}, {'a', 'z'}}),
936                  ReturnValueCondition(OutOfRange, SingleValue(0))})
937           // The locale-specific range.
938           .Case({ArgumentCondition(0U, WithinRange, {{128, UCharRangeMax}})})
939           .Case({ArgumentCondition(
940                      0U, OutOfRange,
941                      {{'A', 'Z'}, {'a', 'z'}, {128, UCharRangeMax}}),
942                  ReturnValueCondition(WithinRange, SingleValue(0))}));
943   addToFunctionSummaryMap(
944       "isascii",
945       Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
946           .Case({ArgumentCondition(0U, WithinRange, Range(0, 127)),
947                  ReturnValueCondition(OutOfRange, SingleValue(0))})
948           .Case({ArgumentCondition(0U, OutOfRange, Range(0, 127)),
949                  ReturnValueCondition(WithinRange, SingleValue(0))}));
950   addToFunctionSummaryMap(
951       "isblank",
952       Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
953           .Case({ArgumentCondition(0U, WithinRange, {{'\t', '\t'}, {' ', ' '}}),
954                  ReturnValueCondition(OutOfRange, SingleValue(0))})
955           .Case({ArgumentCondition(0U, OutOfRange, {{'\t', '\t'}, {' ', ' '}}),
956                  ReturnValueCondition(WithinRange, SingleValue(0))}));
957   addToFunctionSummaryMap(
958       "iscntrl",
959       Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
960           .Case({ArgumentCondition(0U, WithinRange, {{0, 32}, {127, 127}}),
961                  ReturnValueCondition(OutOfRange, SingleValue(0))})
962           .Case({ArgumentCondition(0U, OutOfRange, {{0, 32}, {127, 127}}),
963                  ReturnValueCondition(WithinRange, SingleValue(0))}));
964   addToFunctionSummaryMap(
965       "isdigit",
966       Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
967           .Case({ArgumentCondition(0U, WithinRange, Range('0', '9')),
968                  ReturnValueCondition(OutOfRange, SingleValue(0))})
969           .Case({ArgumentCondition(0U, OutOfRange, Range('0', '9')),
970                  ReturnValueCondition(WithinRange, SingleValue(0))}));
971   addToFunctionSummaryMap(
972       "isgraph",
973       Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
974           .Case({ArgumentCondition(0U, WithinRange, Range(33, 126)),
975                  ReturnValueCondition(OutOfRange, SingleValue(0))})
976           .Case({ArgumentCondition(0U, OutOfRange, Range(33, 126)),
977                  ReturnValueCondition(WithinRange, SingleValue(0))}));
978   addToFunctionSummaryMap(
979       "islower",
980       Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
981           // Is certainly lowercase.
982           .Case({ArgumentCondition(0U, WithinRange, Range('a', 'z')),
983                  ReturnValueCondition(OutOfRange, SingleValue(0))})
984           // Is ascii but not lowercase.
985           .Case({ArgumentCondition(0U, WithinRange, Range(0, 127)),
986                  ArgumentCondition(0U, OutOfRange, Range('a', 'z')),
987                  ReturnValueCondition(WithinRange, SingleValue(0))})
988           // The locale-specific range.
989           .Case({ArgumentCondition(0U, WithinRange, {{128, UCharRangeMax}})})
990           // Is not an unsigned char.
991           .Case({ArgumentCondition(0U, OutOfRange, Range(0, UCharRangeMax)),
992                  ReturnValueCondition(WithinRange, SingleValue(0))}));
993   addToFunctionSummaryMap(
994       "isprint",
995       Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
996           .Case({ArgumentCondition(0U, WithinRange, Range(32, 126)),
997                  ReturnValueCondition(OutOfRange, SingleValue(0))})
998           .Case({ArgumentCondition(0U, OutOfRange, Range(32, 126)),
999                  ReturnValueCondition(WithinRange, SingleValue(0))}));
1000   addToFunctionSummaryMap(
1001       "ispunct",
1002       Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
1003           .Case({ArgumentCondition(
1004                      0U, WithinRange,
1005                      {{'!', '/'}, {':', '@'}, {'[', '`'}, {'{', '~'}}),
1006                  ReturnValueCondition(OutOfRange, SingleValue(0))})
1007           .Case({ArgumentCondition(
1008                      0U, OutOfRange,
1009                      {{'!', '/'}, {':', '@'}, {'[', '`'}, {'{', '~'}}),
1010                  ReturnValueCondition(WithinRange, SingleValue(0))}));
1011   addToFunctionSummaryMap(
1012       "isspace",
1013       Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
1014           // Space, '\f', '\n', '\r', '\t', '\v'.
1015           .Case({ArgumentCondition(0U, WithinRange, {{9, 13}, {' ', ' '}}),
1016                  ReturnValueCondition(OutOfRange, SingleValue(0))})
1017           // The locale-specific range.
1018           .Case({ArgumentCondition(0U, WithinRange, {{128, UCharRangeMax}})})
1019           .Case({ArgumentCondition(0U, OutOfRange,
1020                                    {{9, 13}, {' ', ' '}, {128, UCharRangeMax}}),
1021                  ReturnValueCondition(WithinRange, SingleValue(0))}));
1022   addToFunctionSummaryMap(
1023       "isupper",
1024       Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
1025           // Is certainly uppercase.
1026           .Case({ArgumentCondition(0U, WithinRange, Range('A', 'Z')),
1027                  ReturnValueCondition(OutOfRange, SingleValue(0))})
1028           // The locale-specific range.
1029           .Case({ArgumentCondition(0U, WithinRange, {{128, UCharRangeMax}})})
1030           // Other.
1031           .Case({ArgumentCondition(0U, OutOfRange,
1032                                    {{'A', 'Z'}, {128, UCharRangeMax}}),
1033                  ReturnValueCondition(WithinRange, SingleValue(0))}));
1034   addToFunctionSummaryMap(
1035       "isxdigit",
1036       Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
1037           .Case({ArgumentCondition(0U, WithinRange,
1038                                    {{'0', '9'}, {'A', 'F'}, {'a', 'f'}}),
1039                  ReturnValueCondition(OutOfRange, SingleValue(0))})
1040           .Case({ArgumentCondition(0U, OutOfRange,
1041                                    {{'0', '9'}, {'A', 'F'}, {'a', 'f'}}),
1042                  ReturnValueCondition(WithinRange, SingleValue(0))}));
1043 
1044   // The getc() family of functions that returns either a char or an EOF.
1045   addToFunctionSummaryMap("getc", Getc());
1046   addToFunctionSummaryMap("fgetc", Getc());
1047   addToFunctionSummaryMap(
1048       "getchar", Summary(ArgTypes{}, RetType{IntTy}, NoEvalCall)
1049                      .Case({ReturnValueCondition(
1050                          WithinRange, {{EOFv, EOFv}, {0, UCharRangeMax}})}));
1051 
1052   // read()-like functions that never return more than buffer size.
1053   // We are not sure how ssize_t is defined on every platform, so we
1054   // provide three variants that should cover common cases.
1055   addToFunctionSummaryMap("read", {Read(IntTy, IntMax), Read(LongTy, LongMax),
1056                                    Read(LongLongTy, LongLongMax)});
1057   addToFunctionSummaryMap("write", {Read(IntTy, IntMax), Read(LongTy, LongMax),
1058                                     Read(LongLongTy, LongLongMax)});
1059   addToFunctionSummaryMap("fread", Fread());
1060   addToFunctionSummaryMap("fwrite", Fwrite());
1061   // getline()-like functions either fail or read at least the delimiter.
1062   addToFunctionSummaryMap("getline",
1063                           {Getline(IntTy, IntMax), Getline(LongTy, LongMax),
1064                            Getline(LongLongTy, LongLongMax)});
1065   addToFunctionSummaryMap("getdelim",
1066                           {Getline(IntTy, IntMax), Getline(LongTy, LongMax),
1067                            Getline(LongLongTy, LongLongMax)});
1068 
1069   // Functions for testing.
1070   if (ChecksEnabled[CK_StdCLibraryFunctionsTesterChecker]) {
1071     addToFunctionSummaryMap(
1072         "__two_constrained_args",
1073         Summary(ArgTypes{IntTy, IntTy}, RetType{IntTy}, EvalCallAsPure)
1074             .ArgConstraint(ArgumentCondition(0U, WithinRange, SingleValue(1)))
1075             .ArgConstraint(ArgumentCondition(1U, WithinRange, SingleValue(1))));
1076     addToFunctionSummaryMap(
1077         "__arg_constrained_twice",
1078         Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
1079             .ArgConstraint(ArgumentCondition(0U, OutOfRange, SingleValue(1)))
1080             .ArgConstraint(ArgumentCondition(0U, OutOfRange, SingleValue(2))));
1081     addToFunctionSummaryMap(
1082         "__defaultparam",
1083         Summary(ArgTypes{Irrelevant, IntTy}, RetType{IntTy}, EvalCallAsPure)
1084             .ArgConstraint(NotNull(ArgNo(0))));
1085     addToFunctionSummaryMap("__variadic",
1086                             Summary(ArgTypes{VoidPtrTy, ConstCharPtrTy},
1087                                     RetType{IntTy}, EvalCallAsPure)
1088                                 .ArgConstraint(NotNull(ArgNo(0)))
1089                                 .ArgConstraint(NotNull(ArgNo(1))));
1090     addToFunctionSummaryMap(
1091         "__buf_size_arg_constraint",
1092         Summary(ArgTypes{ConstVoidPtrTy, SizeTy}, RetType{IntTy},
1093                 EvalCallAsPure)
1094             .ArgConstraint(
1095                 BufferSize(/*Buffer=*/ArgNo(0), /*BufSize=*/ArgNo(1))));
1096     addToFunctionSummaryMap(
1097         "__buf_size_arg_constraint_mul",
1098         Summary(ArgTypes{ConstVoidPtrTy, SizeTy, SizeTy}, RetType{IntTy},
1099                 EvalCallAsPure)
1100             .ArgConstraint(BufferSize(/*Buffer=*/ArgNo(0), /*BufSize=*/ArgNo(1),
1101                                       /*BufSizeMultiplier=*/ArgNo(2))));
1102   }
1103 }
1104 
1105 void ento::registerStdCLibraryFunctionsChecker(CheckerManager &mgr) {
1106   auto *Checker = mgr.registerChecker<StdLibraryFunctionsChecker>();
1107   Checker->DisplayLoadedSummaries =
1108       mgr.getAnalyzerOptions().getCheckerBooleanOption(
1109           Checker, "DisplayLoadedSummaries");
1110 }
1111 
1112 bool ento::shouldRegisterStdCLibraryFunctionsChecker(const CheckerManager &mgr) {
1113   return true;
1114 }
1115 
1116 #define REGISTER_CHECKER(name)                                                 \
1117   void ento::register##name(CheckerManager &mgr) {                             \
1118     StdLibraryFunctionsChecker *checker =                                      \
1119         mgr.getChecker<StdLibraryFunctionsChecker>();                          \
1120     checker->ChecksEnabled[StdLibraryFunctionsChecker::CK_##name] = true;      \
1121     checker->CheckNames[StdLibraryFunctionsChecker::CK_##name] =               \
1122         mgr.getCurrentCheckerName();                                           \
1123   }                                                                            \
1124                                                                                \
1125   bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; }
1126 
1127 REGISTER_CHECKER(StdCLibraryFunctionArgsChecker)
1128 REGISTER_CHECKER(StdCLibraryFunctionsTesterChecker)
1129