1 //=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines a variety of memory management related checkers, such as 10 // leak, double free, and use-after-free. 11 // 12 // The following checkers are defined here: 13 // 14 // * MallocChecker 15 // Despite its name, it models all sorts of memory allocations and 16 // de- or reallocation, including but not limited to malloc, free, 17 // relloc, new, delete. It also reports on a variety of memory misuse 18 // errors. 19 // Many other checkers interact very closely with this checker, in fact, 20 // most are merely options to this one. Other checkers may register 21 // MallocChecker, but do not enable MallocChecker's reports (more details 22 // to follow around its field, ChecksEnabled). 23 // It also has a boolean "Optimistic" checker option, which if set to true 24 // will cause the checker to model user defined memory management related 25 // functions annotated via the attribute ownership_takes, ownership_holds 26 // and ownership_returns. 27 // 28 // * NewDeleteChecker 29 // Enables the modeling of new, new[], delete, delete[] in MallocChecker, 30 // and checks for related double-free and use-after-free errors. 31 // 32 // * NewDeleteLeaksChecker 33 // Checks for leaks related to new, new[], delete, delete[]. 34 // Depends on NewDeleteChecker. 35 // 36 // * MismatchedDeallocatorChecker 37 // Enables checking whether memory is deallocated with the correspending 38 // allocation function in MallocChecker, such as malloc() allocated 39 // regions are only freed by free(), new by delete, new[] by delete[]. 40 // 41 // InnerPointerChecker interacts very closely with MallocChecker, but unlike 42 // the above checkers, it has it's own file, hence the many InnerPointerChecker 43 // related headers and non-static functions. 44 // 45 //===----------------------------------------------------------------------===// 46 47 #include "AllocationState.h" 48 #include "InterCheckerAPI.h" 49 #include "clang/AST/Attr.h" 50 #include "clang/AST/DeclCXX.h" 51 #include "clang/AST/DeclTemplate.h" 52 #include "clang/AST/Expr.h" 53 #include "clang/AST/ExprCXX.h" 54 #include "clang/AST/ParentMap.h" 55 #include "clang/ASTMatchers/ASTMatchFinder.h" 56 #include "clang/ASTMatchers/ASTMatchers.h" 57 #include "clang/Analysis/ProgramPoint.h" 58 #include "clang/Basic/LLVM.h" 59 #include "clang/Basic/SourceManager.h" 60 #include "clang/Basic/TargetInfo.h" 61 #include "clang/Lex/Lexer.h" 62 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" 63 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 64 #include "clang/StaticAnalyzer/Core/BugReporter/CommonBugCategories.h" 65 #include "clang/StaticAnalyzer/Core/Checker.h" 66 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 67 #include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h" 68 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 69 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 70 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h" 71 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h" 72 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h" 73 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 74 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 75 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h" 76 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" 77 #include "clang/StaticAnalyzer/Core/PathSensitive/StoreRef.h" 78 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" 79 #include "llvm/ADT/STLExtras.h" 80 #include "llvm/ADT/SetOperations.h" 81 #include "llvm/ADT/SmallString.h" 82 #include "llvm/ADT/StringExtras.h" 83 #include "llvm/Support/Casting.h" 84 #include "llvm/Support/Compiler.h" 85 #include "llvm/Support/ErrorHandling.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include <climits> 88 #include <functional> 89 #include <utility> 90 91 using namespace clang; 92 using namespace ento; 93 using namespace std::placeholders; 94 95 //===----------------------------------------------------------------------===// 96 // The types of allocation we're modeling. This is used to check whether a 97 // dynamically allocated object is deallocated with the correct function, like 98 // not using operator delete on an object created by malloc(), or alloca regions 99 // aren't ever deallocated manually. 100 //===----------------------------------------------------------------------===// 101 102 namespace { 103 104 // Used to check correspondence between allocators and deallocators. 105 enum AllocationFamily { 106 AF_None, 107 AF_Malloc, 108 AF_CXXNew, 109 AF_CXXNewArray, 110 AF_IfNameIndex, 111 AF_Alloca, 112 AF_InnerBuffer 113 }; 114 115 } // end of anonymous namespace 116 117 /// Print names of allocators and deallocators. 118 /// 119 /// \returns true on success. 120 static bool printMemFnName(raw_ostream &os, CheckerContext &C, const Expr *E); 121 122 /// Print expected name of an allocator based on the deallocator's family 123 /// derived from the DeallocExpr. 124 static void printExpectedAllocName(raw_ostream &os, AllocationFamily Family); 125 126 /// Print expected name of a deallocator based on the allocator's 127 /// family. 128 static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family); 129 130 //===----------------------------------------------------------------------===// 131 // The state of a symbol, in terms of memory management. 132 //===----------------------------------------------------------------------===// 133 134 namespace { 135 136 class RefState { 137 enum Kind { 138 // Reference to allocated memory. 139 Allocated, 140 // Reference to zero-allocated memory. 141 AllocatedOfSizeZero, 142 // Reference to released/freed memory. 143 Released, 144 // The responsibility for freeing resources has transferred from 145 // this reference. A relinquished symbol should not be freed. 146 Relinquished, 147 // We are no longer guaranteed to have observed all manipulations 148 // of this pointer/memory. For example, it could have been 149 // passed as a parameter to an opaque function. 150 Escaped 151 }; 152 153 const Stmt *S; 154 155 Kind K; 156 AllocationFamily Family; 157 158 RefState(Kind k, const Stmt *s, AllocationFamily family) 159 : S(s), K(k), Family(family) { 160 assert(family != AF_None); 161 } 162 163 public: 164 bool isAllocated() const { return K == Allocated; } 165 bool isAllocatedOfSizeZero() const { return K == AllocatedOfSizeZero; } 166 bool isReleased() const { return K == Released; } 167 bool isRelinquished() const { return K == Relinquished; } 168 bool isEscaped() const { return K == Escaped; } 169 AllocationFamily getAllocationFamily() const { return Family; } 170 const Stmt *getStmt() const { return S; } 171 172 bool operator==(const RefState &X) const { 173 return K == X.K && S == X.S && Family == X.Family; 174 } 175 176 static RefState getAllocated(AllocationFamily family, const Stmt *s) { 177 return RefState(Allocated, s, family); 178 } 179 static RefState getAllocatedOfSizeZero(const RefState *RS) { 180 return RefState(AllocatedOfSizeZero, RS->getStmt(), 181 RS->getAllocationFamily()); 182 } 183 static RefState getReleased(AllocationFamily family, const Stmt *s) { 184 return RefState(Released, s, family); 185 } 186 static RefState getRelinquished(AllocationFamily family, const Stmt *s) { 187 return RefState(Relinquished, s, family); 188 } 189 static RefState getEscaped(const RefState *RS) { 190 return RefState(Escaped, RS->getStmt(), RS->getAllocationFamily()); 191 } 192 193 void Profile(llvm::FoldingSetNodeID &ID) const { 194 ID.AddInteger(K); 195 ID.AddPointer(S); 196 ID.AddInteger(Family); 197 } 198 199 LLVM_DUMP_METHOD void dump(raw_ostream &OS) const { 200 switch (K) { 201 #define CASE(ID) case ID: OS << #ID; break; 202 CASE(Allocated) 203 CASE(AllocatedOfSizeZero) 204 CASE(Released) 205 CASE(Relinquished) 206 CASE(Escaped) 207 } 208 } 209 210 LLVM_DUMP_METHOD void dump() const { dump(llvm::errs()); } 211 }; 212 213 } // end of anonymous namespace 214 215 REGISTER_MAP_WITH_PROGRAMSTATE(RegionState, SymbolRef, RefState) 216 217 /// Check if the memory associated with this symbol was released. 218 static bool isReleased(SymbolRef Sym, CheckerContext &C); 219 220 /// Update the RefState to reflect the new memory allocation. 221 /// The optional \p RetVal parameter specifies the newly allocated pointer 222 /// value; if unspecified, the value of expression \p E is used. 223 static ProgramStateRef MallocUpdateRefState(CheckerContext &C, const Expr *E, 224 ProgramStateRef State, 225 AllocationFamily Family, 226 Optional<SVal> RetVal = None); 227 228 //===----------------------------------------------------------------------===// 229 // The modeling of memory reallocation. 230 // 231 // The terminology 'toPtr' and 'fromPtr' will be used: 232 // toPtr = realloc(fromPtr, 20); 233 //===----------------------------------------------------------------------===// 234 235 REGISTER_SET_WITH_PROGRAMSTATE(ReallocSizeZeroSymbols, SymbolRef) 236 237 namespace { 238 239 /// The state of 'fromPtr' after reallocation is known to have failed. 240 enum OwnershipAfterReallocKind { 241 // The symbol needs to be freed (e.g.: realloc) 242 OAR_ToBeFreedAfterFailure, 243 // The symbol has been freed (e.g.: reallocf) 244 OAR_FreeOnFailure, 245 // The symbol doesn't have to freed (e.g.: we aren't sure if, how and where 246 // 'fromPtr' was allocated: 247 // void Haha(int *ptr) { 248 // ptr = realloc(ptr, 67); 249 // // ... 250 // } 251 // ). 252 OAR_DoNotTrackAfterFailure 253 }; 254 255 /// Stores information about the 'fromPtr' symbol after reallocation. 256 /// 257 /// This is important because realloc may fail, and that needs special modeling. 258 /// Whether reallocation failed or not will not be known until later, so we'll 259 /// store whether upon failure 'fromPtr' will be freed, or needs to be freed 260 /// later, etc. 261 struct ReallocPair { 262 263 // The 'fromPtr'. 264 SymbolRef ReallocatedSym; 265 OwnershipAfterReallocKind Kind; 266 267 ReallocPair(SymbolRef S, OwnershipAfterReallocKind K) 268 : ReallocatedSym(S), Kind(K) {} 269 void Profile(llvm::FoldingSetNodeID &ID) const { 270 ID.AddInteger(Kind); 271 ID.AddPointer(ReallocatedSym); 272 } 273 bool operator==(const ReallocPair &X) const { 274 return ReallocatedSym == X.ReallocatedSym && 275 Kind == X.Kind; 276 } 277 }; 278 279 } // end of anonymous namespace 280 281 REGISTER_MAP_WITH_PROGRAMSTATE(ReallocPairs, SymbolRef, ReallocPair) 282 283 /// Tells if the callee is one of the builtin new/delete operators, including 284 /// placement operators and other standard overloads. 285 static bool isStandardNewDelete(const FunctionDecl *FD); 286 static bool isStandardNewDelete(const CallEvent &Call) { 287 if (!Call.getDecl() || !isa<FunctionDecl>(Call.getDecl())) 288 return false; 289 return isStandardNewDelete(cast<FunctionDecl>(Call.getDecl())); 290 } 291 292 //===----------------------------------------------------------------------===// 293 // Definition of the MallocChecker class. 294 //===----------------------------------------------------------------------===// 295 296 namespace { 297 298 class MallocChecker 299 : public Checker<check::DeadSymbols, check::PointerEscape, 300 check::ConstPointerEscape, check::PreStmt<ReturnStmt>, 301 check::EndFunction, check::PreCall, check::PostCall, 302 check::NewAllocator, check::PostStmt<BlockExpr>, 303 check::PostObjCMessage, check::Location, eval::Assume> { 304 public: 305 /// In pessimistic mode, the checker assumes that it does not know which 306 /// functions might free the memory. 307 /// In optimistic mode, the checker assumes that all user-defined functions 308 /// which might free a pointer are annotated. 309 DefaultBool ShouldIncludeOwnershipAnnotatedFunctions; 310 311 DefaultBool ShouldRegisterNoOwnershipChangeVisitor; 312 313 /// Many checkers are essentially built into this one, so enabling them will 314 /// make MallocChecker perform additional modeling and reporting. 315 enum CheckKind { 316 /// When a subchecker is enabled but MallocChecker isn't, model memory 317 /// management but do not emit warnings emitted with MallocChecker only 318 /// enabled. 319 CK_MallocChecker, 320 CK_NewDeleteChecker, 321 CK_NewDeleteLeaksChecker, 322 CK_MismatchedDeallocatorChecker, 323 CK_InnerPointerChecker, 324 CK_NumCheckKinds 325 }; 326 327 using LeakInfo = std::pair<const ExplodedNode *, const MemRegion *>; 328 329 DefaultBool ChecksEnabled[CK_NumCheckKinds]; 330 CheckerNameRef CheckNames[CK_NumCheckKinds]; 331 332 void checkPreCall(const CallEvent &Call, CheckerContext &C) const; 333 void checkPostCall(const CallEvent &Call, CheckerContext &C) const; 334 void checkNewAllocator(const CXXAllocatorCall &Call, CheckerContext &C) const; 335 void checkPostObjCMessage(const ObjCMethodCall &Call, CheckerContext &C) const; 336 void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const; 337 void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const; 338 void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const; 339 void checkEndFunction(const ReturnStmt *S, CheckerContext &C) const; 340 ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond, 341 bool Assumption) const; 342 void checkLocation(SVal l, bool isLoad, const Stmt *S, 343 CheckerContext &C) const; 344 345 ProgramStateRef checkPointerEscape(ProgramStateRef State, 346 const InvalidatedSymbols &Escaped, 347 const CallEvent *Call, 348 PointerEscapeKind Kind) const; 349 ProgramStateRef checkConstPointerEscape(ProgramStateRef State, 350 const InvalidatedSymbols &Escaped, 351 const CallEvent *Call, 352 PointerEscapeKind Kind) const; 353 354 void printState(raw_ostream &Out, ProgramStateRef State, 355 const char *NL, const char *Sep) const override; 356 357 private: 358 mutable std::unique_ptr<BugType> BT_DoubleFree[CK_NumCheckKinds]; 359 mutable std::unique_ptr<BugType> BT_DoubleDelete; 360 mutable std::unique_ptr<BugType> BT_Leak[CK_NumCheckKinds]; 361 mutable std::unique_ptr<BugType> BT_UseFree[CK_NumCheckKinds]; 362 mutable std::unique_ptr<BugType> BT_BadFree[CK_NumCheckKinds]; 363 mutable std::unique_ptr<BugType> BT_FreeAlloca[CK_NumCheckKinds]; 364 mutable std::unique_ptr<BugType> BT_MismatchedDealloc; 365 mutable std::unique_ptr<BugType> BT_OffsetFree[CK_NumCheckKinds]; 366 mutable std::unique_ptr<BugType> BT_UseZerroAllocated[CK_NumCheckKinds]; 367 368 #define CHECK_FN(NAME) \ 369 void NAME(const CallEvent &Call, CheckerContext &C) const; 370 371 CHECK_FN(checkFree) 372 CHECK_FN(checkIfNameIndex) 373 CHECK_FN(checkBasicAlloc) 374 CHECK_FN(checkKernelMalloc) 375 CHECK_FN(checkCalloc) 376 CHECK_FN(checkAlloca) 377 CHECK_FN(checkStrdup) 378 CHECK_FN(checkIfFreeNameIndex) 379 CHECK_FN(checkCXXNewOrCXXDelete) 380 CHECK_FN(checkGMalloc0) 381 CHECK_FN(checkGMemdup) 382 CHECK_FN(checkGMallocN) 383 CHECK_FN(checkGMallocN0) 384 CHECK_FN(checkReallocN) 385 CHECK_FN(checkOwnershipAttr) 386 387 void checkRealloc(const CallEvent &Call, CheckerContext &C, 388 bool ShouldFreeOnFail) const; 389 390 using CheckFn = std::function<void(const MallocChecker *, 391 const CallEvent &Call, CheckerContext &C)>; 392 393 const CallDescriptionMap<CheckFn> FreeingMemFnMap{ 394 {{"free", 1}, &MallocChecker::checkFree}, 395 {{"if_freenameindex", 1}, &MallocChecker::checkIfFreeNameIndex}, 396 {{"kfree", 1}, &MallocChecker::checkFree}, 397 {{"g_free", 1}, &MallocChecker::checkFree}, 398 }; 399 400 bool isFreeingCall(const CallEvent &Call) const; 401 402 CallDescriptionMap<CheckFn> AllocatingMemFnMap{ 403 {{"alloca", 1}, &MallocChecker::checkAlloca}, 404 {{"_alloca", 1}, &MallocChecker::checkAlloca}, 405 {{"malloc", 1}, &MallocChecker::checkBasicAlloc}, 406 {{"malloc", 3}, &MallocChecker::checkKernelMalloc}, 407 {{"calloc", 2}, &MallocChecker::checkCalloc}, 408 {{"valloc", 1}, &MallocChecker::checkBasicAlloc}, 409 {{CDF_MaybeBuiltin, "strndup", 2}, &MallocChecker::checkStrdup}, 410 {{CDF_MaybeBuiltin, "strdup", 1}, &MallocChecker::checkStrdup}, 411 {{"_strdup", 1}, &MallocChecker::checkStrdup}, 412 {{"kmalloc", 2}, &MallocChecker::checkKernelMalloc}, 413 {{"if_nameindex", 1}, &MallocChecker::checkIfNameIndex}, 414 {{CDF_MaybeBuiltin, "wcsdup", 1}, &MallocChecker::checkStrdup}, 415 {{CDF_MaybeBuiltin, "_wcsdup", 1}, &MallocChecker::checkStrdup}, 416 {{"g_malloc", 1}, &MallocChecker::checkBasicAlloc}, 417 {{"g_malloc0", 1}, &MallocChecker::checkGMalloc0}, 418 {{"g_try_malloc", 1}, &MallocChecker::checkBasicAlloc}, 419 {{"g_try_malloc0", 1}, &MallocChecker::checkGMalloc0}, 420 {{"g_memdup", 2}, &MallocChecker::checkGMemdup}, 421 {{"g_malloc_n", 2}, &MallocChecker::checkGMallocN}, 422 {{"g_malloc0_n", 2}, &MallocChecker::checkGMallocN0}, 423 {{"g_try_malloc_n", 2}, &MallocChecker::checkGMallocN}, 424 {{"g_try_malloc0_n", 2}, &MallocChecker::checkGMallocN0}, 425 }; 426 427 CallDescriptionMap<CheckFn> ReallocatingMemFnMap{ 428 {{"realloc", 2}, 429 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)}, 430 {{"reallocf", 2}, 431 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, true)}, 432 {{"g_realloc", 2}, 433 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)}, 434 {{"g_try_realloc", 2}, 435 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)}, 436 {{"g_realloc_n", 3}, &MallocChecker::checkReallocN}, 437 {{"g_try_realloc_n", 3}, &MallocChecker::checkReallocN}, 438 }; 439 440 bool isMemCall(const CallEvent &Call) const; 441 442 // TODO: Remove mutable by moving the initializtaion to the registry function. 443 mutable Optional<uint64_t> KernelZeroFlagVal; 444 445 using KernelZeroSizePtrValueTy = Optional<int>; 446 /// Store the value of macro called `ZERO_SIZE_PTR`. 447 /// The value is initialized at first use, before first use the outer 448 /// Optional is empty, afterwards it contains another Optional that indicates 449 /// if the macro value could be determined, and if yes the value itself. 450 mutable Optional<KernelZeroSizePtrValueTy> KernelZeroSizePtrValue; 451 452 /// Process C++ operator new()'s allocation, which is the part of C++ 453 /// new-expression that goes before the constructor. 454 LLVM_NODISCARD 455 ProgramStateRef processNewAllocation(const CXXAllocatorCall &Call, 456 CheckerContext &C, 457 AllocationFamily Family) const; 458 459 /// Perform a zero-allocation check. 460 /// 461 /// \param [in] Call The expression that allocates memory. 462 /// \param [in] IndexOfSizeArg Index of the argument that specifies the size 463 /// of the memory that needs to be allocated. E.g. for malloc, this would be 464 /// 0. 465 /// \param [in] RetVal Specifies the newly allocated pointer value; 466 /// if unspecified, the value of expression \p E is used. 467 LLVM_NODISCARD 468 static ProgramStateRef ProcessZeroAllocCheck(const CallEvent &Call, 469 const unsigned IndexOfSizeArg, 470 ProgramStateRef State, 471 Optional<SVal> RetVal = None); 472 473 /// Model functions with the ownership_returns attribute. 474 /// 475 /// User-defined function may have the ownership_returns attribute, which 476 /// annotates that the function returns with an object that was allocated on 477 /// the heap, and passes the ownertship to the callee. 478 /// 479 /// void __attribute((ownership_returns(malloc, 1))) *my_malloc(size_t); 480 /// 481 /// It has two parameters: 482 /// - first: name of the resource (e.g. 'malloc') 483 /// - (OPTIONAL) second: size of the allocated region 484 /// 485 /// \param [in] Call The expression that allocates memory. 486 /// \param [in] Att The ownership_returns attribute. 487 /// \param [in] State The \c ProgramState right before allocation. 488 /// \returns The ProgramState right after allocation. 489 LLVM_NODISCARD 490 ProgramStateRef MallocMemReturnsAttr(CheckerContext &C, const CallEvent &Call, 491 const OwnershipAttr *Att, 492 ProgramStateRef State) const; 493 494 /// Models memory allocation. 495 /// 496 /// \param [in] Call The expression that allocates memory. 497 /// \param [in] SizeEx Size of the memory that needs to be allocated. 498 /// \param [in] Init The value the allocated memory needs to be initialized. 499 /// with. For example, \c calloc initializes the allocated memory to 0, 500 /// malloc leaves it undefined. 501 /// \param [in] State The \c ProgramState right before allocation. 502 /// \returns The ProgramState right after allocation. 503 LLVM_NODISCARD 504 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallEvent &Call, 505 const Expr *SizeEx, SVal Init, 506 ProgramStateRef State, 507 AllocationFamily Family); 508 509 /// Models memory allocation. 510 /// 511 /// \param [in] Call The expression that allocates memory. 512 /// \param [in] Size Size of the memory that needs to be allocated. 513 /// \param [in] Init The value the allocated memory needs to be initialized. 514 /// with. For example, \c calloc initializes the allocated memory to 0, 515 /// malloc leaves it undefined. 516 /// \param [in] State The \c ProgramState right before allocation. 517 /// \returns The ProgramState right after allocation. 518 LLVM_NODISCARD 519 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallEvent &Call, 520 SVal Size, SVal Init, 521 ProgramStateRef State, 522 AllocationFamily Family); 523 524 // Check if this malloc() for special flags. At present that means M_ZERO or 525 // __GFP_ZERO (in which case, treat it like calloc). 526 LLVM_NODISCARD 527 llvm::Optional<ProgramStateRef> 528 performKernelMalloc(const CallEvent &Call, CheckerContext &C, 529 const ProgramStateRef &State) const; 530 531 /// Model functions with the ownership_takes and ownership_holds attributes. 532 /// 533 /// User-defined function may have the ownership_takes and/or ownership_holds 534 /// attributes, which annotates that the function frees the memory passed as a 535 /// parameter. 536 /// 537 /// void __attribute((ownership_takes(malloc, 1))) my_free(void *); 538 /// void __attribute((ownership_holds(malloc, 1))) my_hold(void *); 539 /// 540 /// They have two parameters: 541 /// - first: name of the resource (e.g. 'malloc') 542 /// - second: index of the parameter the attribute applies to 543 /// 544 /// \param [in] Call The expression that frees memory. 545 /// \param [in] Att The ownership_takes or ownership_holds attribute. 546 /// \param [in] State The \c ProgramState right before allocation. 547 /// \returns The ProgramState right after deallocation. 548 LLVM_NODISCARD 549 ProgramStateRef FreeMemAttr(CheckerContext &C, const CallEvent &Call, 550 const OwnershipAttr *Att, 551 ProgramStateRef State) const; 552 553 /// Models memory deallocation. 554 /// 555 /// \param [in] Call The expression that frees memory. 556 /// \param [in] State The \c ProgramState right before allocation. 557 /// \param [in] Num Index of the argument that needs to be freed. This is 558 /// normally 0, but for custom free functions it may be different. 559 /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds 560 /// attribute. 561 /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known 562 /// to have been allocated, or in other words, the symbol to be freed was 563 /// registered as allocated by this checker. In the following case, \c ptr 564 /// isn't known to be allocated. 565 /// void Haha(int *ptr) { 566 /// ptr = realloc(ptr, 67); 567 /// // ... 568 /// } 569 /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function 570 /// we're modeling returns with Null on failure. 571 /// \returns The ProgramState right after deallocation. 572 LLVM_NODISCARD 573 ProgramStateRef FreeMemAux(CheckerContext &C, const CallEvent &Call, 574 ProgramStateRef State, unsigned Num, bool Hold, 575 bool &IsKnownToBeAllocated, 576 AllocationFamily Family, 577 bool ReturnsNullOnFailure = false) const; 578 579 /// Models memory deallocation. 580 /// 581 /// \param [in] ArgExpr The variable who's pointee needs to be freed. 582 /// \param [in] Call The expression that frees the memory. 583 /// \param [in] State The \c ProgramState right before allocation. 584 /// normally 0, but for custom free functions it may be different. 585 /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds 586 /// attribute. 587 /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known 588 /// to have been allocated, or in other words, the symbol to be freed was 589 /// registered as allocated by this checker. In the following case, \c ptr 590 /// isn't known to be allocated. 591 /// void Haha(int *ptr) { 592 /// ptr = realloc(ptr, 67); 593 /// // ... 594 /// } 595 /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function 596 /// we're modeling returns with Null on failure. 597 /// \returns The ProgramState right after deallocation. 598 LLVM_NODISCARD 599 ProgramStateRef FreeMemAux(CheckerContext &C, const Expr *ArgExpr, 600 const CallEvent &Call, ProgramStateRef State, 601 bool Hold, bool &IsKnownToBeAllocated, 602 AllocationFamily Family, 603 bool ReturnsNullOnFailure = false) const; 604 605 // TODO: Needs some refactoring, as all other deallocation modeling 606 // functions are suffering from out parameters and messy code due to how 607 // realloc is handled. 608 // 609 /// Models memory reallocation. 610 /// 611 /// \param [in] Call The expression that reallocated memory 612 /// \param [in] ShouldFreeOnFail Whether if reallocation fails, the supplied 613 /// memory should be freed. 614 /// \param [in] State The \c ProgramState right before reallocation. 615 /// \param [in] SuffixWithN Whether the reallocation function we're modeling 616 /// has an '_n' suffix, such as g_realloc_n. 617 /// \returns The ProgramState right after reallocation. 618 LLVM_NODISCARD 619 ProgramStateRef ReallocMemAux(CheckerContext &C, const CallEvent &Call, 620 bool ShouldFreeOnFail, ProgramStateRef State, 621 AllocationFamily Family, 622 bool SuffixWithN = false) const; 623 624 /// Evaluates the buffer size that needs to be allocated. 625 /// 626 /// \param [in] Blocks The amount of blocks that needs to be allocated. 627 /// \param [in] BlockBytes The size of a block. 628 /// \returns The symbolic value of \p Blocks * \p BlockBytes. 629 LLVM_NODISCARD 630 static SVal evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, 631 const Expr *BlockBytes); 632 633 /// Models zero initialized array allocation. 634 /// 635 /// \param [in] Call The expression that reallocated memory 636 /// \param [in] State The \c ProgramState right before reallocation. 637 /// \returns The ProgramState right after allocation. 638 LLVM_NODISCARD 639 static ProgramStateRef CallocMem(CheckerContext &C, const CallEvent &Call, 640 ProgramStateRef State); 641 642 /// See if deallocation happens in a suspicious context. If so, escape the 643 /// pointers that otherwise would have been deallocated and return true. 644 bool suppressDeallocationsInSuspiciousContexts(const CallEvent &Call, 645 CheckerContext &C) const; 646 647 /// If in \p S \p Sym is used, check whether \p Sym was already freed. 648 bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S) const; 649 650 /// If in \p S \p Sym is used, check whether \p Sym was allocated as a zero 651 /// sized memory region. 652 void checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 653 const Stmt *S) const; 654 655 /// If in \p S \p Sym is being freed, check whether \p Sym was already freed. 656 bool checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const; 657 658 /// Check if the function is known to free memory, or if it is 659 /// "interesting" and should be modeled explicitly. 660 /// 661 /// \param [out] EscapingSymbol A function might not free memory in general, 662 /// but could be known to free a particular symbol. In this case, false is 663 /// returned and the single escaping symbol is returned through the out 664 /// parameter. 665 /// 666 /// We assume that pointers do not escape through calls to system functions 667 /// not handled by this checker. 668 bool mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent *Call, 669 ProgramStateRef State, 670 SymbolRef &EscapingSymbol) const; 671 672 /// Implementation of the checkPointerEscape callbacks. 673 LLVM_NODISCARD 674 ProgramStateRef checkPointerEscapeAux(ProgramStateRef State, 675 const InvalidatedSymbols &Escaped, 676 const CallEvent *Call, 677 PointerEscapeKind Kind, 678 bool IsConstPointerEscape) const; 679 680 // Implementation of the checkPreStmt and checkEndFunction callbacks. 681 void checkEscapeOnReturn(const ReturnStmt *S, CheckerContext &C) const; 682 683 ///@{ 684 /// Tells if a given family/call/symbol is tracked by the current checker. 685 /// Sets CheckKind to the kind of the checker responsible for this 686 /// family/call/symbol. 687 Optional<CheckKind> getCheckIfTracked(AllocationFamily Family, 688 bool IsALeakCheck = false) const; 689 690 Optional<CheckKind> getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 691 bool IsALeakCheck = false) const; 692 ///@} 693 static bool SummarizeValue(raw_ostream &os, SVal V); 694 static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR); 695 696 void HandleNonHeapDealloc(CheckerContext &C, SVal ArgVal, SourceRange Range, 697 const Expr *DeallocExpr, 698 AllocationFamily Family) const; 699 700 void HandleFreeAlloca(CheckerContext &C, SVal ArgVal, 701 SourceRange Range) const; 702 703 void HandleMismatchedDealloc(CheckerContext &C, SourceRange Range, 704 const Expr *DeallocExpr, const RefState *RS, 705 SymbolRef Sym, bool OwnershipTransferred) const; 706 707 void HandleOffsetFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 708 const Expr *DeallocExpr, AllocationFamily Family, 709 const Expr *AllocExpr = nullptr) const; 710 711 void HandleUseAfterFree(CheckerContext &C, SourceRange Range, 712 SymbolRef Sym) const; 713 714 void HandleDoubleFree(CheckerContext &C, SourceRange Range, bool Released, 715 SymbolRef Sym, SymbolRef PrevSym) const; 716 717 void HandleDoubleDelete(CheckerContext &C, SymbolRef Sym) const; 718 719 void HandleUseZeroAlloc(CheckerContext &C, SourceRange Range, 720 SymbolRef Sym) const; 721 722 void HandleFunctionPtrFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 723 const Expr *FreeExpr, 724 AllocationFamily Family) const; 725 726 /// Find the location of the allocation for Sym on the path leading to the 727 /// exploded node N. 728 static LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym, 729 CheckerContext &C); 730 731 void HandleLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const; 732 733 /// Test if value in ArgVal equals to value in macro `ZERO_SIZE_PTR`. 734 bool isArgZERO_SIZE_PTR(ProgramStateRef State, CheckerContext &C, 735 SVal ArgVal) const; 736 }; 737 } // end anonymous namespace 738 739 //===----------------------------------------------------------------------===// 740 // Definition of NoOwnershipChangeVisitor. 741 //===----------------------------------------------------------------------===// 742 743 namespace { 744 class NoOwnershipChangeVisitor final : public NoStateChangeFuncVisitor { 745 SymbolRef Sym; 746 using OwnerSet = llvm::SmallPtrSet<const MemRegion *, 8>; 747 748 // Collect which entities point to the allocated memory, and could be 749 // responsible for deallocating it. 750 class OwnershipBindingsHandler : public StoreManager::BindingsHandler { 751 SymbolRef Sym; 752 OwnerSet &Owners; 753 754 public: 755 OwnershipBindingsHandler(SymbolRef Sym, OwnerSet &Owners) 756 : Sym(Sym), Owners(Owners) {} 757 758 bool HandleBinding(StoreManager &SMgr, Store Store, const MemRegion *Region, 759 SVal Val) override { 760 if (Val.getAsSymbol() == Sym) 761 Owners.insert(Region); 762 return true; 763 } 764 765 LLVM_DUMP_METHOD void dump() const { dumpToStream(llvm::errs()); } 766 LLVM_DUMP_METHOD void dumpToStream(llvm::raw_ostream &out) const { 767 out << "Owners: {\n"; 768 for (const MemRegion *Owner : Owners) { 769 out << " "; 770 Owner->dumpToStream(out); 771 out << ",\n"; 772 } 773 out << "}\n"; 774 } 775 }; 776 777 protected: 778 OwnerSet getOwnersAtNode(const ExplodedNode *N) { 779 OwnerSet Ret; 780 781 ProgramStateRef State = N->getState(); 782 OwnershipBindingsHandler Handler{Sym, Ret}; 783 State->getStateManager().getStoreManager().iterBindings(State->getStore(), 784 Handler); 785 return Ret; 786 } 787 788 LLVM_DUMP_METHOD static std::string 789 getFunctionName(const ExplodedNode *CallEnterN) { 790 if (const CallExpr *CE = llvm::dyn_cast_or_null<CallExpr>( 791 CallEnterN->getLocationAs<CallEnter>()->getCallExpr())) 792 if (const FunctionDecl *FD = CE->getDirectCallee()) 793 return FD->getQualifiedNameAsString(); 794 return ""; 795 } 796 797 bool doesFnIntendToHandleOwnership(const Decl *Callee, ASTContext &ACtx) { 798 using namespace clang::ast_matchers; 799 const FunctionDecl *FD = dyn_cast<FunctionDecl>(Callee); 800 801 // Given that the stack frame was entered, the body should always be 802 // theoretically obtainable. In case of body farms, the synthesized body 803 // is not attached to declaration, thus triggering the '!FD->hasBody()' 804 // branch. That said, would a synthesized body ever intend to handle 805 // ownership? As of today they don't. And if they did, how would we 806 // put notes inside it, given that it doesn't match any source locations? 807 if (!FD || !FD->hasBody()) 808 return false; 809 810 // TODO: Operator delete is hardly the only deallocator -- Can we reuse 811 // isFreeingCall() or something thats already here? 812 auto Deallocations = match( 813 stmt(hasDescendant(cxxDeleteExpr().bind("delete")) 814 ), *FD->getBody(), ACtx); 815 // TODO: Ownership my change with an attempt to store the allocated memory. 816 return !Deallocations.empty(); 817 } 818 819 virtual bool 820 wasModifiedInFunction(const ExplodedNode *CallEnterN, 821 const ExplodedNode *CallExitEndN) override { 822 if (!doesFnIntendToHandleOwnership( 823 CallExitEndN->getFirstPred()->getLocationContext()->getDecl(), 824 CallExitEndN->getState()->getAnalysisManager().getASTContext())) 825 return true; 826 827 if (CallEnterN->getState()->get<RegionState>(Sym) != 828 CallExitEndN->getState()->get<RegionState>(Sym)) 829 return true; 830 831 OwnerSet CurrOwners = getOwnersAtNode(CallEnterN); 832 OwnerSet ExitOwners = getOwnersAtNode(CallExitEndN); 833 834 // Owners in the current set may be purged from the analyzer later on. 835 // If a variable is dead (is not referenced directly or indirectly after 836 // some point), it will be removed from the Store before the end of its 837 // actual lifetime. 838 // This means that that if the ownership status didn't change, CurrOwners 839 // must be a superset of, but not necessarily equal to ExitOwners. 840 return !llvm::set_is_subset(ExitOwners, CurrOwners); 841 } 842 843 static PathDiagnosticPieceRef emitNote(const ExplodedNode *N) { 844 PathDiagnosticLocation L = PathDiagnosticLocation::create( 845 N->getLocation(), 846 N->getState()->getStateManager().getContext().getSourceManager()); 847 return std::make_shared<PathDiagnosticEventPiece>( 848 L, "Returning without deallocating memory or storing the pointer for " 849 "later deallocation"); 850 } 851 852 virtual PathDiagnosticPieceRef 853 maybeEmitNoteForObjCSelf(PathSensitiveBugReport &R, 854 const ObjCMethodCall &Call, 855 const ExplodedNode *N) override { 856 // TODO: Implement. 857 return nullptr; 858 } 859 860 virtual PathDiagnosticPieceRef 861 maybeEmitNoteForCXXThis(PathSensitiveBugReport &R, 862 const CXXConstructorCall &Call, 863 const ExplodedNode *N) override { 864 // TODO: Implement. 865 return nullptr; 866 } 867 868 virtual PathDiagnosticPieceRef 869 maybeEmitNoteForParameters(PathSensitiveBugReport &R, const CallEvent &Call, 870 const ExplodedNode *N) override { 871 // TODO: Factor the logic of "what constitutes as an entity being passed 872 // into a function call" out by reusing the code in 873 // NoStoreFuncVisitor::maybeEmitNoteForParameters, maybe by incorporating 874 // the printing technology in UninitializedObject's FieldChainInfo. 875 ArrayRef<ParmVarDecl *> Parameters = Call.parameters(); 876 for (unsigned I = 0; I < Call.getNumArgs() && I < Parameters.size(); ++I) { 877 SVal V = Call.getArgSVal(I); 878 if (V.getAsSymbol() == Sym) 879 return emitNote(N); 880 } 881 return nullptr; 882 } 883 884 public: 885 NoOwnershipChangeVisitor(SymbolRef Sym) 886 : NoStateChangeFuncVisitor(bugreporter::TrackingKind::Thorough), 887 Sym(Sym) {} 888 889 void Profile(llvm::FoldingSetNodeID &ID) const override { 890 static int Tag = 0; 891 ID.AddPointer(&Tag); 892 ID.AddPointer(Sym); 893 } 894 895 void *getTag() const { 896 static int Tag = 0; 897 return static_cast<void *>(&Tag); 898 } 899 }; 900 901 } // end anonymous namespace 902 903 //===----------------------------------------------------------------------===// 904 // Definition of MallocBugVisitor. 905 //===----------------------------------------------------------------------===// 906 907 namespace { 908 /// The bug visitor which allows us to print extra diagnostics along the 909 /// BugReport path. For example, showing the allocation site of the leaked 910 /// region. 911 class MallocBugVisitor final : public BugReporterVisitor { 912 protected: 913 enum NotificationMode { Normal, ReallocationFailed }; 914 915 // The allocated region symbol tracked by the main analysis. 916 SymbolRef Sym; 917 918 // The mode we are in, i.e. what kind of diagnostics will be emitted. 919 NotificationMode Mode; 920 921 // A symbol from when the primary region should have been reallocated. 922 SymbolRef FailedReallocSymbol; 923 924 // A C++ destructor stack frame in which memory was released. Used for 925 // miscellaneous false positive suppression. 926 const StackFrameContext *ReleaseDestructorLC; 927 928 bool IsLeak; 929 930 public: 931 MallocBugVisitor(SymbolRef S, bool isLeak = false) 932 : Sym(S), Mode(Normal), FailedReallocSymbol(nullptr), 933 ReleaseDestructorLC(nullptr), IsLeak(isLeak) {} 934 935 static void *getTag() { 936 static int Tag = 0; 937 return &Tag; 938 } 939 940 void Profile(llvm::FoldingSetNodeID &ID) const override { 941 ID.AddPointer(getTag()); 942 ID.AddPointer(Sym); 943 } 944 945 /// Did not track -> allocated. Other state (released) -> allocated. 946 static inline bool isAllocated(const RefState *RSCurr, const RefState *RSPrev, 947 const Stmt *Stmt) { 948 return (isa_and_nonnull<CallExpr, CXXNewExpr>(Stmt) && 949 (RSCurr && 950 (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) && 951 (!RSPrev || 952 !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero()))); 953 } 954 955 /// Did not track -> released. Other state (allocated) -> released. 956 /// The statement associated with the release might be missing. 957 static inline bool isReleased(const RefState *RSCurr, const RefState *RSPrev, 958 const Stmt *Stmt) { 959 bool IsReleased = 960 (RSCurr && RSCurr->isReleased()) && (!RSPrev || !RSPrev->isReleased()); 961 assert(!IsReleased || (isa_and_nonnull<CallExpr, CXXDeleteExpr>(Stmt)) || 962 (!Stmt && RSCurr->getAllocationFamily() == AF_InnerBuffer)); 963 return IsReleased; 964 } 965 966 /// Did not track -> relinquished. Other state (allocated) -> relinquished. 967 static inline bool isRelinquished(const RefState *RSCurr, 968 const RefState *RSPrev, const Stmt *Stmt) { 969 return ( 970 isa_and_nonnull<CallExpr, ObjCMessageExpr, ObjCPropertyRefExpr>(Stmt) && 971 (RSCurr && RSCurr->isRelinquished()) && 972 (!RSPrev || !RSPrev->isRelinquished())); 973 } 974 975 /// If the expression is not a call, and the state change is 976 /// released -> allocated, it must be the realloc return value 977 /// check. If we have to handle more cases here, it might be cleaner just 978 /// to track this extra bit in the state itself. 979 static inline bool hasReallocFailed(const RefState *RSCurr, 980 const RefState *RSPrev, 981 const Stmt *Stmt) { 982 return ((!isa_and_nonnull<CallExpr>(Stmt)) && 983 (RSCurr && 984 (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) && 985 (RSPrev && 986 !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero()))); 987 } 988 989 PathDiagnosticPieceRef VisitNode(const ExplodedNode *N, 990 BugReporterContext &BRC, 991 PathSensitiveBugReport &BR) override; 992 993 PathDiagnosticPieceRef getEndPath(BugReporterContext &BRC, 994 const ExplodedNode *EndPathNode, 995 PathSensitiveBugReport &BR) override { 996 if (!IsLeak) 997 return nullptr; 998 999 PathDiagnosticLocation L = BR.getLocation(); 1000 // Do not add the statement itself as a range in case of leak. 1001 return std::make_shared<PathDiagnosticEventPiece>(L, BR.getDescription(), 1002 false); 1003 } 1004 1005 private: 1006 class StackHintGeneratorForReallocationFailed 1007 : public StackHintGeneratorForSymbol { 1008 public: 1009 StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M) 1010 : StackHintGeneratorForSymbol(S, M) {} 1011 1012 std::string getMessageForArg(const Expr *ArgE, unsigned ArgIndex) override { 1013 // Printed parameters start at 1, not 0. 1014 ++ArgIndex; 1015 1016 SmallString<200> buf; 1017 llvm::raw_svector_ostream os(buf); 1018 1019 os << "Reallocation of " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex) 1020 << " parameter failed"; 1021 1022 return std::string(os.str()); 1023 } 1024 1025 std::string getMessageForReturn(const CallExpr *CallExpr) override { 1026 return "Reallocation of returned value failed"; 1027 } 1028 }; 1029 }; 1030 } // end anonymous namespace 1031 1032 // A map from the freed symbol to the symbol representing the return value of 1033 // the free function. 1034 REGISTER_MAP_WITH_PROGRAMSTATE(FreeReturnValue, SymbolRef, SymbolRef) 1035 1036 namespace { 1037 class StopTrackingCallback final : public SymbolVisitor { 1038 ProgramStateRef state; 1039 1040 public: 1041 StopTrackingCallback(ProgramStateRef st) : state(std::move(st)) {} 1042 ProgramStateRef getState() const { return state; } 1043 1044 bool VisitSymbol(SymbolRef sym) override { 1045 state = state->remove<RegionState>(sym); 1046 return true; 1047 } 1048 }; 1049 } // end anonymous namespace 1050 1051 static bool isStandardNewDelete(const FunctionDecl *FD) { 1052 if (!FD) 1053 return false; 1054 1055 OverloadedOperatorKind Kind = FD->getOverloadedOperator(); 1056 if (Kind != OO_New && Kind != OO_Array_New && Kind != OO_Delete && 1057 Kind != OO_Array_Delete) 1058 return false; 1059 1060 // This is standard if and only if it's not defined in a user file. 1061 SourceLocation L = FD->getLocation(); 1062 // If the header for operator delete is not included, it's still defined 1063 // in an invalid source location. Check to make sure we don't crash. 1064 return !L.isValid() || 1065 FD->getASTContext().getSourceManager().isInSystemHeader(L); 1066 } 1067 1068 //===----------------------------------------------------------------------===// 1069 // Methods of MallocChecker and MallocBugVisitor. 1070 //===----------------------------------------------------------------------===// 1071 1072 bool MallocChecker::isFreeingCall(const CallEvent &Call) const { 1073 if (FreeingMemFnMap.lookup(Call) || ReallocatingMemFnMap.lookup(Call)) 1074 return true; 1075 1076 const auto *Func = dyn_cast<FunctionDecl>(Call.getDecl()); 1077 if (Func && Func->hasAttrs()) { 1078 for (const auto *I : Func->specific_attrs<OwnershipAttr>()) { 1079 OwnershipAttr::OwnershipKind OwnKind = I->getOwnKind(); 1080 if (OwnKind == OwnershipAttr::Takes || OwnKind == OwnershipAttr::Holds) 1081 return true; 1082 } 1083 } 1084 return false; 1085 } 1086 1087 bool MallocChecker::isMemCall(const CallEvent &Call) const { 1088 if (FreeingMemFnMap.lookup(Call) || AllocatingMemFnMap.lookup(Call) || 1089 ReallocatingMemFnMap.lookup(Call)) 1090 return true; 1091 1092 if (!ShouldIncludeOwnershipAnnotatedFunctions) 1093 return false; 1094 1095 const auto *Func = dyn_cast<FunctionDecl>(Call.getDecl()); 1096 return Func && Func->hasAttr<OwnershipAttr>(); 1097 } 1098 1099 llvm::Optional<ProgramStateRef> 1100 MallocChecker::performKernelMalloc(const CallEvent &Call, CheckerContext &C, 1101 const ProgramStateRef &State) const { 1102 // 3-argument malloc(), as commonly used in {Free,Net,Open}BSD Kernels: 1103 // 1104 // void *malloc(unsigned long size, struct malloc_type *mtp, int flags); 1105 // 1106 // One of the possible flags is M_ZERO, which means 'give me back an 1107 // allocation which is already zeroed', like calloc. 1108 1109 // 2-argument kmalloc(), as used in the Linux kernel: 1110 // 1111 // void *kmalloc(size_t size, gfp_t flags); 1112 // 1113 // Has the similar flag value __GFP_ZERO. 1114 1115 // This logic is largely cloned from O_CREAT in UnixAPIChecker, maybe some 1116 // code could be shared. 1117 1118 ASTContext &Ctx = C.getASTContext(); 1119 llvm::Triple::OSType OS = Ctx.getTargetInfo().getTriple().getOS(); 1120 1121 if (!KernelZeroFlagVal.hasValue()) { 1122 if (OS == llvm::Triple::FreeBSD) 1123 KernelZeroFlagVal = 0x0100; 1124 else if (OS == llvm::Triple::NetBSD) 1125 KernelZeroFlagVal = 0x0002; 1126 else if (OS == llvm::Triple::OpenBSD) 1127 KernelZeroFlagVal = 0x0008; 1128 else if (OS == llvm::Triple::Linux) 1129 // __GFP_ZERO 1130 KernelZeroFlagVal = 0x8000; 1131 else 1132 // FIXME: We need a more general way of getting the M_ZERO value. 1133 // See also: O_CREAT in UnixAPIChecker.cpp. 1134 1135 // Fall back to normal malloc behavior on platforms where we don't 1136 // know M_ZERO. 1137 return None; 1138 } 1139 1140 // We treat the last argument as the flags argument, and callers fall-back to 1141 // normal malloc on a None return. This works for the FreeBSD kernel malloc 1142 // as well as Linux kmalloc. 1143 if (Call.getNumArgs() < 2) 1144 return None; 1145 1146 const Expr *FlagsEx = Call.getArgExpr(Call.getNumArgs() - 1); 1147 const SVal V = C.getSVal(FlagsEx); 1148 if (!V.getAs<NonLoc>()) { 1149 // The case where 'V' can be a location can only be due to a bad header, 1150 // so in this case bail out. 1151 return None; 1152 } 1153 1154 NonLoc Flags = V.castAs<NonLoc>(); 1155 NonLoc ZeroFlag = C.getSValBuilder() 1156 .makeIntVal(KernelZeroFlagVal.getValue(), FlagsEx->getType()) 1157 .castAs<NonLoc>(); 1158 SVal MaskedFlagsUC = C.getSValBuilder().evalBinOpNN(State, BO_And, 1159 Flags, ZeroFlag, 1160 FlagsEx->getType()); 1161 if (MaskedFlagsUC.isUnknownOrUndef()) 1162 return None; 1163 DefinedSVal MaskedFlags = MaskedFlagsUC.castAs<DefinedSVal>(); 1164 1165 // Check if maskedFlags is non-zero. 1166 ProgramStateRef TrueState, FalseState; 1167 std::tie(TrueState, FalseState) = State->assume(MaskedFlags); 1168 1169 // If M_ZERO is set, treat this like calloc (initialized). 1170 if (TrueState && !FalseState) { 1171 SVal ZeroVal = C.getSValBuilder().makeZeroVal(Ctx.CharTy); 1172 return MallocMemAux(C, Call, Call.getArgExpr(0), ZeroVal, TrueState, 1173 AF_Malloc); 1174 } 1175 1176 return None; 1177 } 1178 1179 SVal MallocChecker::evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, 1180 const Expr *BlockBytes) { 1181 SValBuilder &SB = C.getSValBuilder(); 1182 SVal BlocksVal = C.getSVal(Blocks); 1183 SVal BlockBytesVal = C.getSVal(BlockBytes); 1184 ProgramStateRef State = C.getState(); 1185 SVal TotalSize = SB.evalBinOp(State, BO_Mul, BlocksVal, BlockBytesVal, 1186 SB.getContext().getSizeType()); 1187 return TotalSize; 1188 } 1189 1190 void MallocChecker::checkBasicAlloc(const CallEvent &Call, 1191 CheckerContext &C) const { 1192 ProgramStateRef State = C.getState(); 1193 State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State, 1194 AF_Malloc); 1195 State = ProcessZeroAllocCheck(Call, 0, State); 1196 C.addTransition(State); 1197 } 1198 1199 void MallocChecker::checkKernelMalloc(const CallEvent &Call, 1200 CheckerContext &C) const { 1201 ProgramStateRef State = C.getState(); 1202 llvm::Optional<ProgramStateRef> MaybeState = 1203 performKernelMalloc(Call, C, State); 1204 if (MaybeState.hasValue()) 1205 State = MaybeState.getValue(); 1206 else 1207 State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State, 1208 AF_Malloc); 1209 C.addTransition(State); 1210 } 1211 1212 static bool isStandardRealloc(const CallEvent &Call) { 1213 const FunctionDecl *FD = dyn_cast<FunctionDecl>(Call.getDecl()); 1214 assert(FD); 1215 ASTContext &AC = FD->getASTContext(); 1216 1217 if (isa<CXXMethodDecl>(FD)) 1218 return false; 1219 1220 return FD->getDeclaredReturnType().getDesugaredType(AC) == AC.VoidPtrTy && 1221 FD->getParamDecl(0)->getType().getDesugaredType(AC) == AC.VoidPtrTy && 1222 FD->getParamDecl(1)->getType().getDesugaredType(AC) == 1223 AC.getSizeType(); 1224 } 1225 1226 static bool isGRealloc(const CallEvent &Call) { 1227 const FunctionDecl *FD = dyn_cast<FunctionDecl>(Call.getDecl()); 1228 assert(FD); 1229 ASTContext &AC = FD->getASTContext(); 1230 1231 if (isa<CXXMethodDecl>(FD)) 1232 return false; 1233 1234 return FD->getDeclaredReturnType().getDesugaredType(AC) == AC.VoidPtrTy && 1235 FD->getParamDecl(0)->getType().getDesugaredType(AC) == AC.VoidPtrTy && 1236 FD->getParamDecl(1)->getType().getDesugaredType(AC) == 1237 AC.UnsignedLongTy; 1238 } 1239 1240 void MallocChecker::checkRealloc(const CallEvent &Call, CheckerContext &C, 1241 bool ShouldFreeOnFail) const { 1242 // HACK: CallDescription currently recognizes non-standard realloc functions 1243 // as standard because it doesn't check the type, or wether its a non-method 1244 // function. This should be solved by making CallDescription smarter. 1245 // Mind that this came from a bug report, and all other functions suffer from 1246 // this. 1247 // https://bugs.llvm.org/show_bug.cgi?id=46253 1248 if (!isStandardRealloc(Call) && !isGRealloc(Call)) 1249 return; 1250 ProgramStateRef State = C.getState(); 1251 State = ReallocMemAux(C, Call, ShouldFreeOnFail, State, AF_Malloc); 1252 State = ProcessZeroAllocCheck(Call, 1, State); 1253 C.addTransition(State); 1254 } 1255 1256 void MallocChecker::checkCalloc(const CallEvent &Call, 1257 CheckerContext &C) const { 1258 ProgramStateRef State = C.getState(); 1259 State = CallocMem(C, Call, State); 1260 State = ProcessZeroAllocCheck(Call, 0, State); 1261 State = ProcessZeroAllocCheck(Call, 1, State); 1262 C.addTransition(State); 1263 } 1264 1265 void MallocChecker::checkFree(const CallEvent &Call, CheckerContext &C) const { 1266 ProgramStateRef State = C.getState(); 1267 bool IsKnownToBeAllocatedMemory = false; 1268 if (suppressDeallocationsInSuspiciousContexts(Call, C)) 1269 return; 1270 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1271 AF_Malloc); 1272 C.addTransition(State); 1273 } 1274 1275 void MallocChecker::checkAlloca(const CallEvent &Call, 1276 CheckerContext &C) const { 1277 ProgramStateRef State = C.getState(); 1278 State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State, 1279 AF_Alloca); 1280 State = ProcessZeroAllocCheck(Call, 0, State); 1281 C.addTransition(State); 1282 } 1283 1284 void MallocChecker::checkStrdup(const CallEvent &Call, 1285 CheckerContext &C) const { 1286 ProgramStateRef State = C.getState(); 1287 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1288 if (!CE) 1289 return; 1290 State = MallocUpdateRefState(C, CE, State, AF_Malloc); 1291 1292 C.addTransition(State); 1293 } 1294 1295 void MallocChecker::checkIfNameIndex(const CallEvent &Call, 1296 CheckerContext &C) const { 1297 ProgramStateRef State = C.getState(); 1298 // Should we model this differently? We can allocate a fixed number of 1299 // elements with zeros in the last one. 1300 State = 1301 MallocMemAux(C, Call, UnknownVal(), UnknownVal(), State, AF_IfNameIndex); 1302 1303 C.addTransition(State); 1304 } 1305 1306 void MallocChecker::checkIfFreeNameIndex(const CallEvent &Call, 1307 CheckerContext &C) const { 1308 ProgramStateRef State = C.getState(); 1309 bool IsKnownToBeAllocatedMemory = false; 1310 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1311 AF_IfNameIndex); 1312 C.addTransition(State); 1313 } 1314 1315 void MallocChecker::checkCXXNewOrCXXDelete(const CallEvent &Call, 1316 CheckerContext &C) const { 1317 ProgramStateRef State = C.getState(); 1318 bool IsKnownToBeAllocatedMemory = false; 1319 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1320 if (!CE) 1321 return; 1322 1323 assert(isStandardNewDelete(Call)); 1324 1325 // Process direct calls to operator new/new[]/delete/delete[] functions 1326 // as distinct from new/new[]/delete/delete[] expressions that are 1327 // processed by the checkPostStmt callbacks for CXXNewExpr and 1328 // CXXDeleteExpr. 1329 const FunctionDecl *FD = C.getCalleeDecl(CE); 1330 switch (FD->getOverloadedOperator()) { 1331 case OO_New: 1332 State = 1333 MallocMemAux(C, Call, CE->getArg(0), UndefinedVal(), State, AF_CXXNew); 1334 State = ProcessZeroAllocCheck(Call, 0, State); 1335 break; 1336 case OO_Array_New: 1337 State = MallocMemAux(C, Call, CE->getArg(0), UndefinedVal(), State, 1338 AF_CXXNewArray); 1339 State = ProcessZeroAllocCheck(Call, 0, State); 1340 break; 1341 case OO_Delete: 1342 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1343 AF_CXXNew); 1344 break; 1345 case OO_Array_Delete: 1346 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1347 AF_CXXNewArray); 1348 break; 1349 default: 1350 llvm_unreachable("not a new/delete operator"); 1351 } 1352 1353 C.addTransition(State); 1354 } 1355 1356 void MallocChecker::checkGMalloc0(const CallEvent &Call, 1357 CheckerContext &C) const { 1358 ProgramStateRef State = C.getState(); 1359 SValBuilder &svalBuilder = C.getSValBuilder(); 1360 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 1361 State = MallocMemAux(C, Call, Call.getArgExpr(0), zeroVal, State, AF_Malloc); 1362 State = ProcessZeroAllocCheck(Call, 0, State); 1363 C.addTransition(State); 1364 } 1365 1366 void MallocChecker::checkGMemdup(const CallEvent &Call, 1367 CheckerContext &C) const { 1368 ProgramStateRef State = C.getState(); 1369 State = MallocMemAux(C, Call, Call.getArgExpr(1), UndefinedVal(), State, 1370 AF_Malloc); 1371 State = ProcessZeroAllocCheck(Call, 1, State); 1372 C.addTransition(State); 1373 } 1374 1375 void MallocChecker::checkGMallocN(const CallEvent &Call, 1376 CheckerContext &C) const { 1377 ProgramStateRef State = C.getState(); 1378 SVal Init = UndefinedVal(); 1379 SVal TotalSize = evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1)); 1380 State = MallocMemAux(C, Call, TotalSize, Init, State, AF_Malloc); 1381 State = ProcessZeroAllocCheck(Call, 0, State); 1382 State = ProcessZeroAllocCheck(Call, 1, State); 1383 C.addTransition(State); 1384 } 1385 1386 void MallocChecker::checkGMallocN0(const CallEvent &Call, 1387 CheckerContext &C) const { 1388 ProgramStateRef State = C.getState(); 1389 SValBuilder &SB = C.getSValBuilder(); 1390 SVal Init = SB.makeZeroVal(SB.getContext().CharTy); 1391 SVal TotalSize = evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1)); 1392 State = MallocMemAux(C, Call, TotalSize, Init, State, AF_Malloc); 1393 State = ProcessZeroAllocCheck(Call, 0, State); 1394 State = ProcessZeroAllocCheck(Call, 1, State); 1395 C.addTransition(State); 1396 } 1397 1398 void MallocChecker::checkReallocN(const CallEvent &Call, 1399 CheckerContext &C) const { 1400 ProgramStateRef State = C.getState(); 1401 State = ReallocMemAux(C, Call, /*ShouldFreeOnFail=*/false, State, AF_Malloc, 1402 /*SuffixWithN=*/true); 1403 State = ProcessZeroAllocCheck(Call, 1, State); 1404 State = ProcessZeroAllocCheck(Call, 2, State); 1405 C.addTransition(State); 1406 } 1407 1408 void MallocChecker::checkOwnershipAttr(const CallEvent &Call, 1409 CheckerContext &C) const { 1410 ProgramStateRef State = C.getState(); 1411 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1412 if (!CE) 1413 return; 1414 const FunctionDecl *FD = C.getCalleeDecl(CE); 1415 if (!FD) 1416 return; 1417 if (ShouldIncludeOwnershipAnnotatedFunctions || 1418 ChecksEnabled[CK_MismatchedDeallocatorChecker]) { 1419 // Check all the attributes, if there are any. 1420 // There can be multiple of these attributes. 1421 if (FD->hasAttrs()) 1422 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { 1423 switch (I->getOwnKind()) { 1424 case OwnershipAttr::Returns: 1425 State = MallocMemReturnsAttr(C, Call, I, State); 1426 break; 1427 case OwnershipAttr::Takes: 1428 case OwnershipAttr::Holds: 1429 State = FreeMemAttr(C, Call, I, State); 1430 break; 1431 } 1432 } 1433 } 1434 C.addTransition(State); 1435 } 1436 1437 void MallocChecker::checkPostCall(const CallEvent &Call, 1438 CheckerContext &C) const { 1439 if (C.wasInlined) 1440 return; 1441 if (!Call.getOriginExpr()) 1442 return; 1443 1444 ProgramStateRef State = C.getState(); 1445 1446 if (const CheckFn *Callback = FreeingMemFnMap.lookup(Call)) { 1447 (*Callback)(this, Call, C); 1448 return; 1449 } 1450 1451 if (const CheckFn *Callback = AllocatingMemFnMap.lookup(Call)) { 1452 (*Callback)(this, Call, C); 1453 return; 1454 } 1455 1456 if (const CheckFn *Callback = ReallocatingMemFnMap.lookup(Call)) { 1457 (*Callback)(this, Call, C); 1458 return; 1459 } 1460 1461 if (isStandardNewDelete(Call)) { 1462 checkCXXNewOrCXXDelete(Call, C); 1463 return; 1464 } 1465 1466 checkOwnershipAttr(Call, C); 1467 } 1468 1469 // Performs a 0-sized allocations check. 1470 ProgramStateRef MallocChecker::ProcessZeroAllocCheck( 1471 const CallEvent &Call, const unsigned IndexOfSizeArg, ProgramStateRef State, 1472 Optional<SVal> RetVal) { 1473 if (!State) 1474 return nullptr; 1475 1476 if (!RetVal) 1477 RetVal = Call.getReturnValue(); 1478 1479 const Expr *Arg = nullptr; 1480 1481 if (const CallExpr *CE = dyn_cast<CallExpr>(Call.getOriginExpr())) { 1482 Arg = CE->getArg(IndexOfSizeArg); 1483 } else if (const CXXNewExpr *NE = 1484 dyn_cast<CXXNewExpr>(Call.getOriginExpr())) { 1485 if (NE->isArray()) { 1486 Arg = *NE->getArraySize(); 1487 } else { 1488 return State; 1489 } 1490 } else 1491 llvm_unreachable("not a CallExpr or CXXNewExpr"); 1492 1493 assert(Arg); 1494 1495 auto DefArgVal = 1496 State->getSVal(Arg, Call.getLocationContext()).getAs<DefinedSVal>(); 1497 1498 if (!DefArgVal) 1499 return State; 1500 1501 // Check if the allocation size is 0. 1502 ProgramStateRef TrueState, FalseState; 1503 SValBuilder &SvalBuilder = State->getStateManager().getSValBuilder(); 1504 DefinedSVal Zero = 1505 SvalBuilder.makeZeroVal(Arg->getType()).castAs<DefinedSVal>(); 1506 1507 std::tie(TrueState, FalseState) = 1508 State->assume(SvalBuilder.evalEQ(State, *DefArgVal, Zero)); 1509 1510 if (TrueState && !FalseState) { 1511 SymbolRef Sym = RetVal->getAsLocSymbol(); 1512 if (!Sym) 1513 return State; 1514 1515 const RefState *RS = State->get<RegionState>(Sym); 1516 if (RS) { 1517 if (RS->isAllocated()) 1518 return TrueState->set<RegionState>(Sym, 1519 RefState::getAllocatedOfSizeZero(RS)); 1520 else 1521 return State; 1522 } else { 1523 // Case of zero-size realloc. Historically 'realloc(ptr, 0)' is treated as 1524 // 'free(ptr)' and the returned value from 'realloc(ptr, 0)' is not 1525 // tracked. Add zero-reallocated Sym to the state to catch references 1526 // to zero-allocated memory. 1527 return TrueState->add<ReallocSizeZeroSymbols>(Sym); 1528 } 1529 } 1530 1531 // Assume the value is non-zero going forward. 1532 assert(FalseState); 1533 return FalseState; 1534 } 1535 1536 static QualType getDeepPointeeType(QualType T) { 1537 QualType Result = T, PointeeType = T->getPointeeType(); 1538 while (!PointeeType.isNull()) { 1539 Result = PointeeType; 1540 PointeeType = PointeeType->getPointeeType(); 1541 } 1542 return Result; 1543 } 1544 1545 /// \returns true if the constructor invoked by \p NE has an argument of a 1546 /// pointer/reference to a record type. 1547 static bool hasNonTrivialConstructorCall(const CXXNewExpr *NE) { 1548 1549 const CXXConstructExpr *ConstructE = NE->getConstructExpr(); 1550 if (!ConstructE) 1551 return false; 1552 1553 if (!NE->getAllocatedType()->getAsCXXRecordDecl()) 1554 return false; 1555 1556 const CXXConstructorDecl *CtorD = ConstructE->getConstructor(); 1557 1558 // Iterate over the constructor parameters. 1559 for (const auto *CtorParam : CtorD->parameters()) { 1560 1561 QualType CtorParamPointeeT = CtorParam->getType()->getPointeeType(); 1562 if (CtorParamPointeeT.isNull()) 1563 continue; 1564 1565 CtorParamPointeeT = getDeepPointeeType(CtorParamPointeeT); 1566 1567 if (CtorParamPointeeT->getAsCXXRecordDecl()) 1568 return true; 1569 } 1570 1571 return false; 1572 } 1573 1574 ProgramStateRef 1575 MallocChecker::processNewAllocation(const CXXAllocatorCall &Call, 1576 CheckerContext &C, 1577 AllocationFamily Family) const { 1578 if (!isStandardNewDelete(Call)) 1579 return nullptr; 1580 1581 const CXXNewExpr *NE = Call.getOriginExpr(); 1582 const ParentMap &PM = C.getLocationContext()->getParentMap(); 1583 ProgramStateRef State = C.getState(); 1584 1585 // Non-trivial constructors have a chance to escape 'this', but marking all 1586 // invocations of trivial constructors as escaped would cause too great of 1587 // reduction of true positives, so let's just do that for constructors that 1588 // have an argument of a pointer-to-record type. 1589 if (!PM.isConsumedExpr(NE) && hasNonTrivialConstructorCall(NE)) 1590 return State; 1591 1592 // The return value from operator new is bound to a specified initialization 1593 // value (if any) and we don't want to loose this value. So we call 1594 // MallocUpdateRefState() instead of MallocMemAux() which breaks the 1595 // existing binding. 1596 SVal Target = Call.getObjectUnderConstruction(); 1597 State = MallocUpdateRefState(C, NE, State, Family, Target); 1598 State = ProcessZeroAllocCheck(Call, 0, State, Target); 1599 return State; 1600 } 1601 1602 void MallocChecker::checkNewAllocator(const CXXAllocatorCall &Call, 1603 CheckerContext &C) const { 1604 if (!C.wasInlined) { 1605 ProgramStateRef State = processNewAllocation( 1606 Call, C, 1607 (Call.getOriginExpr()->isArray() ? AF_CXXNewArray : AF_CXXNew)); 1608 C.addTransition(State); 1609 } 1610 } 1611 1612 static bool isKnownDeallocObjCMethodName(const ObjCMethodCall &Call) { 1613 // If the first selector piece is one of the names below, assume that the 1614 // object takes ownership of the memory, promising to eventually deallocate it 1615 // with free(). 1616 // Ex: [NSData dataWithBytesNoCopy:bytes length:10]; 1617 // (...unless a 'freeWhenDone' parameter is false, but that's checked later.) 1618 StringRef FirstSlot = Call.getSelector().getNameForSlot(0); 1619 return FirstSlot == "dataWithBytesNoCopy" || 1620 FirstSlot == "initWithBytesNoCopy" || 1621 FirstSlot == "initWithCharactersNoCopy"; 1622 } 1623 1624 static Optional<bool> getFreeWhenDoneArg(const ObjCMethodCall &Call) { 1625 Selector S = Call.getSelector(); 1626 1627 // FIXME: We should not rely on fully-constrained symbols being folded. 1628 for (unsigned i = 1; i < S.getNumArgs(); ++i) 1629 if (S.getNameForSlot(i).equals("freeWhenDone")) 1630 return !Call.getArgSVal(i).isZeroConstant(); 1631 1632 return None; 1633 } 1634 1635 void MallocChecker::checkPostObjCMessage(const ObjCMethodCall &Call, 1636 CheckerContext &C) const { 1637 if (C.wasInlined) 1638 return; 1639 1640 if (!isKnownDeallocObjCMethodName(Call)) 1641 return; 1642 1643 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call)) 1644 if (!*FreeWhenDone) 1645 return; 1646 1647 if (Call.hasNonZeroCallbackArg()) 1648 return; 1649 1650 bool IsKnownToBeAllocatedMemory; 1651 ProgramStateRef State = 1652 FreeMemAux(C, Call.getArgExpr(0), Call, C.getState(), 1653 /*Hold=*/true, IsKnownToBeAllocatedMemory, AF_Malloc, 1654 /*ReturnsNullOnFailure=*/true); 1655 1656 C.addTransition(State); 1657 } 1658 1659 ProgramStateRef 1660 MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallEvent &Call, 1661 const OwnershipAttr *Att, 1662 ProgramStateRef State) const { 1663 if (!State) 1664 return nullptr; 1665 1666 if (Att->getModule()->getName() != "malloc") 1667 return nullptr; 1668 1669 OwnershipAttr::args_iterator I = Att->args_begin(), E = Att->args_end(); 1670 if (I != E) { 1671 return MallocMemAux(C, Call, Call.getArgExpr(I->getASTIndex()), 1672 UndefinedVal(), State, AF_Malloc); 1673 } 1674 return MallocMemAux(C, Call, UnknownVal(), UndefinedVal(), State, AF_Malloc); 1675 } 1676 1677 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1678 const CallEvent &Call, 1679 const Expr *SizeEx, SVal Init, 1680 ProgramStateRef State, 1681 AllocationFamily Family) { 1682 if (!State) 1683 return nullptr; 1684 1685 assert(SizeEx); 1686 return MallocMemAux(C, Call, C.getSVal(SizeEx), Init, State, Family); 1687 } 1688 1689 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1690 const CallEvent &Call, SVal Size, 1691 SVal Init, ProgramStateRef State, 1692 AllocationFamily Family) { 1693 if (!State) 1694 return nullptr; 1695 1696 const Expr *CE = Call.getOriginExpr(); 1697 1698 // We expect the malloc functions to return a pointer. 1699 if (!Loc::isLocType(CE->getType())) 1700 return nullptr; 1701 1702 // Bind the return value to the symbolic value from the heap region. 1703 // TODO: We could rewrite post visit to eval call; 'malloc' does not have 1704 // side effects other than what we model here. 1705 unsigned Count = C.blockCount(); 1706 SValBuilder &svalBuilder = C.getSValBuilder(); 1707 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 1708 DefinedSVal RetVal = svalBuilder.getConjuredHeapSymbolVal(CE, LCtx, Count) 1709 .castAs<DefinedSVal>(); 1710 State = State->BindExpr(CE, C.getLocationContext(), RetVal); 1711 1712 // Fill the region with the initialization value. 1713 State = State->bindDefaultInitial(RetVal, Init, LCtx); 1714 1715 // Set the region's extent. 1716 State = setDynamicExtent(State, RetVal.getAsRegion(), 1717 Size.castAs<DefinedOrUnknownSVal>(), svalBuilder); 1718 1719 return MallocUpdateRefState(C, CE, State, Family); 1720 } 1721 1722 static ProgramStateRef MallocUpdateRefState(CheckerContext &C, const Expr *E, 1723 ProgramStateRef State, 1724 AllocationFamily Family, 1725 Optional<SVal> RetVal) { 1726 if (!State) 1727 return nullptr; 1728 1729 // Get the return value. 1730 if (!RetVal) 1731 RetVal = C.getSVal(E); 1732 1733 // We expect the malloc functions to return a pointer. 1734 if (!RetVal->getAs<Loc>()) 1735 return nullptr; 1736 1737 SymbolRef Sym = RetVal->getAsLocSymbol(); 1738 // This is a return value of a function that was not inlined, such as malloc() 1739 // or new(). We've checked that in the caller. Therefore, it must be a symbol. 1740 assert(Sym); 1741 1742 // Set the symbol's state to Allocated. 1743 return State->set<RegionState>(Sym, RefState::getAllocated(Family, E)); 1744 } 1745 1746 ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C, 1747 const CallEvent &Call, 1748 const OwnershipAttr *Att, 1749 ProgramStateRef State) const { 1750 if (!State) 1751 return nullptr; 1752 1753 if (Att->getModule()->getName() != "malloc") 1754 return nullptr; 1755 1756 bool IsKnownToBeAllocated = false; 1757 1758 for (const auto &Arg : Att->args()) { 1759 ProgramStateRef StateI = 1760 FreeMemAux(C, Call, State, Arg.getASTIndex(), 1761 Att->getOwnKind() == OwnershipAttr::Holds, 1762 IsKnownToBeAllocated, AF_Malloc); 1763 if (StateI) 1764 State = StateI; 1765 } 1766 return State; 1767 } 1768 1769 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, 1770 const CallEvent &Call, 1771 ProgramStateRef State, unsigned Num, 1772 bool Hold, bool &IsKnownToBeAllocated, 1773 AllocationFamily Family, 1774 bool ReturnsNullOnFailure) const { 1775 if (!State) 1776 return nullptr; 1777 1778 if (Call.getNumArgs() < (Num + 1)) 1779 return nullptr; 1780 1781 return FreeMemAux(C, Call.getArgExpr(Num), Call, State, Hold, 1782 IsKnownToBeAllocated, Family, ReturnsNullOnFailure); 1783 } 1784 1785 /// Checks if the previous call to free on the given symbol failed - if free 1786 /// failed, returns true. Also, returns the corresponding return value symbol. 1787 static bool didPreviousFreeFail(ProgramStateRef State, 1788 SymbolRef Sym, SymbolRef &RetStatusSymbol) { 1789 const SymbolRef *Ret = State->get<FreeReturnValue>(Sym); 1790 if (Ret) { 1791 assert(*Ret && "We should not store the null return symbol"); 1792 ConstraintManager &CMgr = State->getConstraintManager(); 1793 ConditionTruthVal FreeFailed = CMgr.isNull(State, *Ret); 1794 RetStatusSymbol = *Ret; 1795 return FreeFailed.isConstrainedTrue(); 1796 } 1797 return false; 1798 } 1799 1800 static bool printMemFnName(raw_ostream &os, CheckerContext &C, const Expr *E) { 1801 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 1802 // FIXME: This doesn't handle indirect calls. 1803 const FunctionDecl *FD = CE->getDirectCallee(); 1804 if (!FD) 1805 return false; 1806 1807 os << *FD; 1808 if (!FD->isOverloadedOperator()) 1809 os << "()"; 1810 return true; 1811 } 1812 1813 if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E)) { 1814 if (Msg->isInstanceMessage()) 1815 os << "-"; 1816 else 1817 os << "+"; 1818 Msg->getSelector().print(os); 1819 return true; 1820 } 1821 1822 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { 1823 os << "'" 1824 << getOperatorSpelling(NE->getOperatorNew()->getOverloadedOperator()) 1825 << "'"; 1826 return true; 1827 } 1828 1829 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(E)) { 1830 os << "'" 1831 << getOperatorSpelling(DE->getOperatorDelete()->getOverloadedOperator()) 1832 << "'"; 1833 return true; 1834 } 1835 1836 return false; 1837 } 1838 1839 static void printExpectedAllocName(raw_ostream &os, AllocationFamily Family) { 1840 1841 switch(Family) { 1842 case AF_Malloc: os << "malloc()"; return; 1843 case AF_CXXNew: os << "'new'"; return; 1844 case AF_CXXNewArray: os << "'new[]'"; return; 1845 case AF_IfNameIndex: os << "'if_nameindex()'"; return; 1846 case AF_InnerBuffer: os << "container-specific allocator"; return; 1847 case AF_Alloca: 1848 case AF_None: llvm_unreachable("not a deallocation expression"); 1849 } 1850 } 1851 1852 static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family) { 1853 switch(Family) { 1854 case AF_Malloc: os << "free()"; return; 1855 case AF_CXXNew: os << "'delete'"; return; 1856 case AF_CXXNewArray: os << "'delete[]'"; return; 1857 case AF_IfNameIndex: os << "'if_freenameindex()'"; return; 1858 case AF_InnerBuffer: os << "container-specific deallocator"; return; 1859 case AF_Alloca: 1860 case AF_None: llvm_unreachable("suspicious argument"); 1861 } 1862 } 1863 1864 ProgramStateRef MallocChecker::FreeMemAux( 1865 CheckerContext &C, const Expr *ArgExpr, const CallEvent &Call, 1866 ProgramStateRef State, bool Hold, bool &IsKnownToBeAllocated, 1867 AllocationFamily Family, bool ReturnsNullOnFailure) const { 1868 1869 if (!State) 1870 return nullptr; 1871 1872 SVal ArgVal = C.getSVal(ArgExpr); 1873 if (!ArgVal.getAs<DefinedOrUnknownSVal>()) 1874 return nullptr; 1875 DefinedOrUnknownSVal location = ArgVal.castAs<DefinedOrUnknownSVal>(); 1876 1877 // Check for null dereferences. 1878 if (!location.getAs<Loc>()) 1879 return nullptr; 1880 1881 // The explicit NULL case, no operation is performed. 1882 ProgramStateRef notNullState, nullState; 1883 std::tie(notNullState, nullState) = State->assume(location); 1884 if (nullState && !notNullState) 1885 return nullptr; 1886 1887 // Unknown values could easily be okay 1888 // Undefined values are handled elsewhere 1889 if (ArgVal.isUnknownOrUndef()) 1890 return nullptr; 1891 1892 const MemRegion *R = ArgVal.getAsRegion(); 1893 const Expr *ParentExpr = Call.getOriginExpr(); 1894 1895 // NOTE: We detected a bug, but the checker under whose name we would emit the 1896 // error could be disabled. Generally speaking, the MallocChecker family is an 1897 // integral part of the Static Analyzer, and disabling any part of it should 1898 // only be done under exceptional circumstances, such as frequent false 1899 // positives. If this is the case, we can reasonably believe that there are 1900 // serious faults in our understanding of the source code, and even if we 1901 // don't emit an warning, we should terminate further analysis with a sink 1902 // node. 1903 1904 // Nonlocs can't be freed, of course. 1905 // Non-region locations (labels and fixed addresses) also shouldn't be freed. 1906 if (!R) { 1907 // Exception: 1908 // If the macro ZERO_SIZE_PTR is defined, this could be a kernel source 1909 // code. In that case, the ZERO_SIZE_PTR defines a special value used for a 1910 // zero-sized memory block which is allowed to be freed, despite not being a 1911 // null pointer. 1912 if (Family != AF_Malloc || !isArgZERO_SIZE_PTR(State, C, ArgVal)) 1913 HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1914 Family); 1915 return nullptr; 1916 } 1917 1918 R = R->StripCasts(); 1919 1920 // Blocks might show up as heap data, but should not be free()d 1921 if (isa<BlockDataRegion>(R)) { 1922 HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1923 Family); 1924 return nullptr; 1925 } 1926 1927 const MemSpaceRegion *MS = R->getMemorySpace(); 1928 1929 // Parameters, locals, statics, globals, and memory returned by 1930 // __builtin_alloca() shouldn't be freed. 1931 if (!isa<UnknownSpaceRegion, HeapSpaceRegion>(MS)) { 1932 // FIXME: at the time this code was written, malloc() regions were 1933 // represented by conjured symbols, which are all in UnknownSpaceRegion. 1934 // This means that there isn't actually anything from HeapSpaceRegion 1935 // that should be freed, even though we allow it here. 1936 // Of course, free() can work on memory allocated outside the current 1937 // function, so UnknownSpaceRegion is always a possibility. 1938 // False negatives are better than false positives. 1939 1940 if (isa<AllocaRegion>(R)) 1941 HandleFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1942 else 1943 HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1944 Family); 1945 1946 return nullptr; 1947 } 1948 1949 const SymbolicRegion *SrBase = dyn_cast<SymbolicRegion>(R->getBaseRegion()); 1950 // Various cases could lead to non-symbol values here. 1951 // For now, ignore them. 1952 if (!SrBase) 1953 return nullptr; 1954 1955 SymbolRef SymBase = SrBase->getSymbol(); 1956 const RefState *RsBase = State->get<RegionState>(SymBase); 1957 SymbolRef PreviousRetStatusSymbol = nullptr; 1958 1959 IsKnownToBeAllocated = 1960 RsBase && (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero()); 1961 1962 if (RsBase) { 1963 1964 // Memory returned by alloca() shouldn't be freed. 1965 if (RsBase->getAllocationFamily() == AF_Alloca) { 1966 HandleFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1967 return nullptr; 1968 } 1969 1970 // Check for double free first. 1971 if ((RsBase->isReleased() || RsBase->isRelinquished()) && 1972 !didPreviousFreeFail(State, SymBase, PreviousRetStatusSymbol)) { 1973 HandleDoubleFree(C, ParentExpr->getSourceRange(), RsBase->isReleased(), 1974 SymBase, PreviousRetStatusSymbol); 1975 return nullptr; 1976 1977 // If the pointer is allocated or escaped, but we are now trying to free it, 1978 // check that the call to free is proper. 1979 } else if (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero() || 1980 RsBase->isEscaped()) { 1981 1982 // Check if an expected deallocation function matches the real one. 1983 bool DeallocMatchesAlloc = RsBase->getAllocationFamily() == Family; 1984 if (!DeallocMatchesAlloc) { 1985 HandleMismatchedDealloc(C, ArgExpr->getSourceRange(), ParentExpr, 1986 RsBase, SymBase, Hold); 1987 return nullptr; 1988 } 1989 1990 // Check if the memory location being freed is the actual location 1991 // allocated, or an offset. 1992 RegionOffset Offset = R->getAsOffset(); 1993 if (Offset.isValid() && 1994 !Offset.hasSymbolicOffset() && 1995 Offset.getOffset() != 0) { 1996 const Expr *AllocExpr = cast<Expr>(RsBase->getStmt()); 1997 HandleOffsetFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1998 Family, AllocExpr); 1999 return nullptr; 2000 } 2001 } 2002 } 2003 2004 if (SymBase->getType()->isFunctionPointerType()) { 2005 HandleFunctionPtrFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 2006 Family); 2007 return nullptr; 2008 } 2009 2010 // Clean out the info on previous call to free return info. 2011 State = State->remove<FreeReturnValue>(SymBase); 2012 2013 // Keep track of the return value. If it is NULL, we will know that free 2014 // failed. 2015 if (ReturnsNullOnFailure) { 2016 SVal RetVal = C.getSVal(ParentExpr); 2017 SymbolRef RetStatusSymbol = RetVal.getAsSymbol(); 2018 if (RetStatusSymbol) { 2019 C.getSymbolManager().addSymbolDependency(SymBase, RetStatusSymbol); 2020 State = State->set<FreeReturnValue>(SymBase, RetStatusSymbol); 2021 } 2022 } 2023 2024 // If we don't know anything about this symbol, a free on it may be totally 2025 // valid. If this is the case, lets assume that the allocation family of the 2026 // freeing function is the same as the symbols allocation family, and go with 2027 // that. 2028 assert(!RsBase || (RsBase && RsBase->getAllocationFamily() == Family)); 2029 2030 // Normal free. 2031 if (Hold) 2032 return State->set<RegionState>(SymBase, 2033 RefState::getRelinquished(Family, 2034 ParentExpr)); 2035 2036 return State->set<RegionState>(SymBase, 2037 RefState::getReleased(Family, ParentExpr)); 2038 } 2039 2040 Optional<MallocChecker::CheckKind> 2041 MallocChecker::getCheckIfTracked(AllocationFamily Family, 2042 bool IsALeakCheck) const { 2043 switch (Family) { 2044 case AF_Malloc: 2045 case AF_Alloca: 2046 case AF_IfNameIndex: { 2047 if (ChecksEnabled[CK_MallocChecker]) 2048 return CK_MallocChecker; 2049 return None; 2050 } 2051 case AF_CXXNew: 2052 case AF_CXXNewArray: { 2053 if (IsALeakCheck) { 2054 if (ChecksEnabled[CK_NewDeleteLeaksChecker]) 2055 return CK_NewDeleteLeaksChecker; 2056 } 2057 else { 2058 if (ChecksEnabled[CK_NewDeleteChecker]) 2059 return CK_NewDeleteChecker; 2060 } 2061 return None; 2062 } 2063 case AF_InnerBuffer: { 2064 if (ChecksEnabled[CK_InnerPointerChecker]) 2065 return CK_InnerPointerChecker; 2066 return None; 2067 } 2068 case AF_None: { 2069 llvm_unreachable("no family"); 2070 } 2071 } 2072 llvm_unreachable("unhandled family"); 2073 } 2074 2075 Optional<MallocChecker::CheckKind> 2076 MallocChecker::getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 2077 bool IsALeakCheck) const { 2078 if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) 2079 return CK_MallocChecker; 2080 2081 const RefState *RS = C.getState()->get<RegionState>(Sym); 2082 assert(RS); 2083 return getCheckIfTracked(RS->getAllocationFamily(), IsALeakCheck); 2084 } 2085 2086 bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) { 2087 if (Optional<nonloc::ConcreteInt> IntVal = V.getAs<nonloc::ConcreteInt>()) 2088 os << "an integer (" << IntVal->getValue() << ")"; 2089 else if (Optional<loc::ConcreteInt> ConstAddr = V.getAs<loc::ConcreteInt>()) 2090 os << "a constant address (" << ConstAddr->getValue() << ")"; 2091 else if (Optional<loc::GotoLabel> Label = V.getAs<loc::GotoLabel>()) 2092 os << "the address of the label '" << Label->getLabel()->getName() << "'"; 2093 else 2094 return false; 2095 2096 return true; 2097 } 2098 2099 bool MallocChecker::SummarizeRegion(raw_ostream &os, 2100 const MemRegion *MR) { 2101 switch (MR->getKind()) { 2102 case MemRegion::FunctionCodeRegionKind: { 2103 const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl(); 2104 if (FD) 2105 os << "the address of the function '" << *FD << '\''; 2106 else 2107 os << "the address of a function"; 2108 return true; 2109 } 2110 case MemRegion::BlockCodeRegionKind: 2111 os << "block text"; 2112 return true; 2113 case MemRegion::BlockDataRegionKind: 2114 // FIXME: where the block came from? 2115 os << "a block"; 2116 return true; 2117 default: { 2118 const MemSpaceRegion *MS = MR->getMemorySpace(); 2119 2120 if (isa<StackLocalsSpaceRegion>(MS)) { 2121 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2122 const VarDecl *VD; 2123 if (VR) 2124 VD = VR->getDecl(); 2125 else 2126 VD = nullptr; 2127 2128 if (VD) 2129 os << "the address of the local variable '" << VD->getName() << "'"; 2130 else 2131 os << "the address of a local stack variable"; 2132 return true; 2133 } 2134 2135 if (isa<StackArgumentsSpaceRegion>(MS)) { 2136 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2137 const VarDecl *VD; 2138 if (VR) 2139 VD = VR->getDecl(); 2140 else 2141 VD = nullptr; 2142 2143 if (VD) 2144 os << "the address of the parameter '" << VD->getName() << "'"; 2145 else 2146 os << "the address of a parameter"; 2147 return true; 2148 } 2149 2150 if (isa<GlobalsSpaceRegion>(MS)) { 2151 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2152 const VarDecl *VD; 2153 if (VR) 2154 VD = VR->getDecl(); 2155 else 2156 VD = nullptr; 2157 2158 if (VD) { 2159 if (VD->isStaticLocal()) 2160 os << "the address of the static variable '" << VD->getName() << "'"; 2161 else 2162 os << "the address of the global variable '" << VD->getName() << "'"; 2163 } else 2164 os << "the address of a global variable"; 2165 return true; 2166 } 2167 2168 return false; 2169 } 2170 } 2171 } 2172 2173 void MallocChecker::HandleNonHeapDealloc(CheckerContext &C, SVal ArgVal, 2174 SourceRange Range, 2175 const Expr *DeallocExpr, 2176 AllocationFamily Family) const { 2177 2178 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2179 C.addSink(); 2180 return; 2181 } 2182 2183 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2184 if (!CheckKind.hasValue()) 2185 return; 2186 2187 if (ExplodedNode *N = C.generateErrorNode()) { 2188 if (!BT_BadFree[*CheckKind]) 2189 BT_BadFree[*CheckKind].reset(new BugType( 2190 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 2191 2192 SmallString<100> buf; 2193 llvm::raw_svector_ostream os(buf); 2194 2195 const MemRegion *MR = ArgVal.getAsRegion(); 2196 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 2197 MR = ER->getSuperRegion(); 2198 2199 os << "Argument to "; 2200 if (!printMemFnName(os, C, DeallocExpr)) 2201 os << "deallocator"; 2202 2203 os << " is "; 2204 bool Summarized = MR ? SummarizeRegion(os, MR) 2205 : SummarizeValue(os, ArgVal); 2206 if (Summarized) 2207 os << ", which is not memory allocated by "; 2208 else 2209 os << "not memory allocated by "; 2210 2211 printExpectedAllocName(os, Family); 2212 2213 auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind], 2214 os.str(), N); 2215 R->markInteresting(MR); 2216 R->addRange(Range); 2217 C.emitReport(std::move(R)); 2218 } 2219 } 2220 2221 void MallocChecker::HandleFreeAlloca(CheckerContext &C, SVal ArgVal, 2222 SourceRange Range) const { 2223 2224 Optional<MallocChecker::CheckKind> CheckKind; 2225 2226 if (ChecksEnabled[CK_MallocChecker]) 2227 CheckKind = CK_MallocChecker; 2228 else if (ChecksEnabled[CK_MismatchedDeallocatorChecker]) 2229 CheckKind = CK_MismatchedDeallocatorChecker; 2230 else { 2231 C.addSink(); 2232 return; 2233 } 2234 2235 if (ExplodedNode *N = C.generateErrorNode()) { 2236 if (!BT_FreeAlloca[*CheckKind]) 2237 BT_FreeAlloca[*CheckKind].reset(new BugType( 2238 CheckNames[*CheckKind], "Free alloca()", categories::MemoryError)); 2239 2240 auto R = std::make_unique<PathSensitiveBugReport>( 2241 *BT_FreeAlloca[*CheckKind], 2242 "Memory allocated by alloca() should not be deallocated", N); 2243 R->markInteresting(ArgVal.getAsRegion()); 2244 R->addRange(Range); 2245 C.emitReport(std::move(R)); 2246 } 2247 } 2248 2249 void MallocChecker::HandleMismatchedDealloc(CheckerContext &C, 2250 SourceRange Range, 2251 const Expr *DeallocExpr, 2252 const RefState *RS, SymbolRef Sym, 2253 bool OwnershipTransferred) const { 2254 2255 if (!ChecksEnabled[CK_MismatchedDeallocatorChecker]) { 2256 C.addSink(); 2257 return; 2258 } 2259 2260 if (ExplodedNode *N = C.generateErrorNode()) { 2261 if (!BT_MismatchedDealloc) 2262 BT_MismatchedDealloc.reset( 2263 new BugType(CheckNames[CK_MismatchedDeallocatorChecker], 2264 "Bad deallocator", categories::MemoryError)); 2265 2266 SmallString<100> buf; 2267 llvm::raw_svector_ostream os(buf); 2268 2269 const Expr *AllocExpr = cast<Expr>(RS->getStmt()); 2270 SmallString<20> AllocBuf; 2271 llvm::raw_svector_ostream AllocOs(AllocBuf); 2272 SmallString<20> DeallocBuf; 2273 llvm::raw_svector_ostream DeallocOs(DeallocBuf); 2274 2275 if (OwnershipTransferred) { 2276 if (printMemFnName(DeallocOs, C, DeallocExpr)) 2277 os << DeallocOs.str() << " cannot"; 2278 else 2279 os << "Cannot"; 2280 2281 os << " take ownership of memory"; 2282 2283 if (printMemFnName(AllocOs, C, AllocExpr)) 2284 os << " allocated by " << AllocOs.str(); 2285 } else { 2286 os << "Memory"; 2287 if (printMemFnName(AllocOs, C, AllocExpr)) 2288 os << " allocated by " << AllocOs.str(); 2289 2290 os << " should be deallocated by "; 2291 printExpectedDeallocName(os, RS->getAllocationFamily()); 2292 2293 if (printMemFnName(DeallocOs, C, DeallocExpr)) 2294 os << ", not " << DeallocOs.str(); 2295 } 2296 2297 auto R = std::make_unique<PathSensitiveBugReport>(*BT_MismatchedDealloc, 2298 os.str(), N); 2299 R->markInteresting(Sym); 2300 R->addRange(Range); 2301 R->addVisitor<MallocBugVisitor>(Sym); 2302 C.emitReport(std::move(R)); 2303 } 2304 } 2305 2306 void MallocChecker::HandleOffsetFree(CheckerContext &C, SVal ArgVal, 2307 SourceRange Range, const Expr *DeallocExpr, 2308 AllocationFamily Family, 2309 const Expr *AllocExpr) const { 2310 2311 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2312 C.addSink(); 2313 return; 2314 } 2315 2316 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2317 if (!CheckKind.hasValue()) 2318 return; 2319 2320 ExplodedNode *N = C.generateErrorNode(); 2321 if (!N) 2322 return; 2323 2324 if (!BT_OffsetFree[*CheckKind]) 2325 BT_OffsetFree[*CheckKind].reset(new BugType( 2326 CheckNames[*CheckKind], "Offset free", categories::MemoryError)); 2327 2328 SmallString<100> buf; 2329 llvm::raw_svector_ostream os(buf); 2330 SmallString<20> AllocNameBuf; 2331 llvm::raw_svector_ostream AllocNameOs(AllocNameBuf); 2332 2333 const MemRegion *MR = ArgVal.getAsRegion(); 2334 assert(MR && "Only MemRegion based symbols can have offset free errors"); 2335 2336 RegionOffset Offset = MR->getAsOffset(); 2337 assert((Offset.isValid() && 2338 !Offset.hasSymbolicOffset() && 2339 Offset.getOffset() != 0) && 2340 "Only symbols with a valid offset can have offset free errors"); 2341 2342 int offsetBytes = Offset.getOffset() / C.getASTContext().getCharWidth(); 2343 2344 os << "Argument to "; 2345 if (!printMemFnName(os, C, DeallocExpr)) 2346 os << "deallocator"; 2347 os << " is offset by " 2348 << offsetBytes 2349 << " " 2350 << ((abs(offsetBytes) > 1) ? "bytes" : "byte") 2351 << " from the start of "; 2352 if (AllocExpr && printMemFnName(AllocNameOs, C, AllocExpr)) 2353 os << "memory allocated by " << AllocNameOs.str(); 2354 else 2355 os << "allocated memory"; 2356 2357 auto R = std::make_unique<PathSensitiveBugReport>(*BT_OffsetFree[*CheckKind], 2358 os.str(), N); 2359 R->markInteresting(MR->getBaseRegion()); 2360 R->addRange(Range); 2361 C.emitReport(std::move(R)); 2362 } 2363 2364 void MallocChecker::HandleUseAfterFree(CheckerContext &C, SourceRange Range, 2365 SymbolRef Sym) const { 2366 2367 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker] && 2368 !ChecksEnabled[CK_InnerPointerChecker]) { 2369 C.addSink(); 2370 return; 2371 } 2372 2373 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2374 if (!CheckKind.hasValue()) 2375 return; 2376 2377 if (ExplodedNode *N = C.generateErrorNode()) { 2378 if (!BT_UseFree[*CheckKind]) 2379 BT_UseFree[*CheckKind].reset(new BugType( 2380 CheckNames[*CheckKind], "Use-after-free", categories::MemoryError)); 2381 2382 AllocationFamily AF = 2383 C.getState()->get<RegionState>(Sym)->getAllocationFamily(); 2384 2385 auto R = std::make_unique<PathSensitiveBugReport>( 2386 *BT_UseFree[*CheckKind], 2387 AF == AF_InnerBuffer 2388 ? "Inner pointer of container used after re/deallocation" 2389 : "Use of memory after it is freed", 2390 N); 2391 2392 R->markInteresting(Sym); 2393 R->addRange(Range); 2394 R->addVisitor<MallocBugVisitor>(Sym); 2395 2396 if (AF == AF_InnerBuffer) 2397 R->addVisitor(allocation_state::getInnerPointerBRVisitor(Sym)); 2398 2399 C.emitReport(std::move(R)); 2400 } 2401 } 2402 2403 void MallocChecker::HandleDoubleFree(CheckerContext &C, SourceRange Range, 2404 bool Released, SymbolRef Sym, 2405 SymbolRef PrevSym) const { 2406 2407 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2408 C.addSink(); 2409 return; 2410 } 2411 2412 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2413 if (!CheckKind.hasValue()) 2414 return; 2415 2416 if (ExplodedNode *N = C.generateErrorNode()) { 2417 if (!BT_DoubleFree[*CheckKind]) 2418 BT_DoubleFree[*CheckKind].reset(new BugType( 2419 CheckNames[*CheckKind], "Double free", categories::MemoryError)); 2420 2421 auto R = std::make_unique<PathSensitiveBugReport>( 2422 *BT_DoubleFree[*CheckKind], 2423 (Released ? "Attempt to free released memory" 2424 : "Attempt to free non-owned memory"), 2425 N); 2426 R->addRange(Range); 2427 R->markInteresting(Sym); 2428 if (PrevSym) 2429 R->markInteresting(PrevSym); 2430 R->addVisitor<MallocBugVisitor>(Sym); 2431 C.emitReport(std::move(R)); 2432 } 2433 } 2434 2435 void MallocChecker::HandleDoubleDelete(CheckerContext &C, SymbolRef Sym) const { 2436 2437 if (!ChecksEnabled[CK_NewDeleteChecker]) { 2438 C.addSink(); 2439 return; 2440 } 2441 2442 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2443 if (!CheckKind.hasValue()) 2444 return; 2445 2446 if (ExplodedNode *N = C.generateErrorNode()) { 2447 if (!BT_DoubleDelete) 2448 BT_DoubleDelete.reset(new BugType(CheckNames[CK_NewDeleteChecker], 2449 "Double delete", 2450 categories::MemoryError)); 2451 2452 auto R = std::make_unique<PathSensitiveBugReport>( 2453 *BT_DoubleDelete, "Attempt to delete released memory", N); 2454 2455 R->markInteresting(Sym); 2456 R->addVisitor<MallocBugVisitor>(Sym); 2457 C.emitReport(std::move(R)); 2458 } 2459 } 2460 2461 void MallocChecker::HandleUseZeroAlloc(CheckerContext &C, SourceRange Range, 2462 SymbolRef Sym) const { 2463 2464 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2465 C.addSink(); 2466 return; 2467 } 2468 2469 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2470 2471 if (!CheckKind.hasValue()) 2472 return; 2473 2474 if (ExplodedNode *N = C.generateErrorNode()) { 2475 if (!BT_UseZerroAllocated[*CheckKind]) 2476 BT_UseZerroAllocated[*CheckKind].reset( 2477 new BugType(CheckNames[*CheckKind], "Use of zero allocated", 2478 categories::MemoryError)); 2479 2480 auto R = std::make_unique<PathSensitiveBugReport>( 2481 *BT_UseZerroAllocated[*CheckKind], 2482 "Use of memory allocated with size zero", N); 2483 2484 R->addRange(Range); 2485 if (Sym) { 2486 R->markInteresting(Sym); 2487 R->addVisitor<MallocBugVisitor>(Sym); 2488 } 2489 C.emitReport(std::move(R)); 2490 } 2491 } 2492 2493 void MallocChecker::HandleFunctionPtrFree(CheckerContext &C, SVal ArgVal, 2494 SourceRange Range, 2495 const Expr *FreeExpr, 2496 AllocationFamily Family) const { 2497 if (!ChecksEnabled[CK_MallocChecker]) { 2498 C.addSink(); 2499 return; 2500 } 2501 2502 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2503 if (!CheckKind.hasValue()) 2504 return; 2505 2506 if (ExplodedNode *N = C.generateErrorNode()) { 2507 if (!BT_BadFree[*CheckKind]) 2508 BT_BadFree[*CheckKind].reset(new BugType( 2509 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 2510 2511 SmallString<100> Buf; 2512 llvm::raw_svector_ostream Os(Buf); 2513 2514 const MemRegion *MR = ArgVal.getAsRegion(); 2515 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 2516 MR = ER->getSuperRegion(); 2517 2518 Os << "Argument to "; 2519 if (!printMemFnName(Os, C, FreeExpr)) 2520 Os << "deallocator"; 2521 2522 Os << " is a function pointer"; 2523 2524 auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind], 2525 Os.str(), N); 2526 R->markInteresting(MR); 2527 R->addRange(Range); 2528 C.emitReport(std::move(R)); 2529 } 2530 } 2531 2532 ProgramStateRef 2533 MallocChecker::ReallocMemAux(CheckerContext &C, const CallEvent &Call, 2534 bool ShouldFreeOnFail, ProgramStateRef State, 2535 AllocationFamily Family, bool SuffixWithN) const { 2536 if (!State) 2537 return nullptr; 2538 2539 const CallExpr *CE = cast<CallExpr>(Call.getOriginExpr()); 2540 2541 if (SuffixWithN && CE->getNumArgs() < 3) 2542 return nullptr; 2543 else if (CE->getNumArgs() < 2) 2544 return nullptr; 2545 2546 const Expr *arg0Expr = CE->getArg(0); 2547 SVal Arg0Val = C.getSVal(arg0Expr); 2548 if (!Arg0Val.getAs<DefinedOrUnknownSVal>()) 2549 return nullptr; 2550 DefinedOrUnknownSVal arg0Val = Arg0Val.castAs<DefinedOrUnknownSVal>(); 2551 2552 SValBuilder &svalBuilder = C.getSValBuilder(); 2553 2554 DefinedOrUnknownSVal PtrEQ = 2555 svalBuilder.evalEQ(State, arg0Val, svalBuilder.makeNull()); 2556 2557 // Get the size argument. 2558 const Expr *Arg1 = CE->getArg(1); 2559 2560 // Get the value of the size argument. 2561 SVal TotalSize = C.getSVal(Arg1); 2562 if (SuffixWithN) 2563 TotalSize = evalMulForBufferSize(C, Arg1, CE->getArg(2)); 2564 if (!TotalSize.getAs<DefinedOrUnknownSVal>()) 2565 return nullptr; 2566 2567 // Compare the size argument to 0. 2568 DefinedOrUnknownSVal SizeZero = 2569 svalBuilder.evalEQ(State, TotalSize.castAs<DefinedOrUnknownSVal>(), 2570 svalBuilder.makeIntValWithPtrWidth(0, false)); 2571 2572 ProgramStateRef StatePtrIsNull, StatePtrNotNull; 2573 std::tie(StatePtrIsNull, StatePtrNotNull) = State->assume(PtrEQ); 2574 ProgramStateRef StateSizeIsZero, StateSizeNotZero; 2575 std::tie(StateSizeIsZero, StateSizeNotZero) = State->assume(SizeZero); 2576 // We only assume exceptional states if they are definitely true; if the 2577 // state is under-constrained, assume regular realloc behavior. 2578 bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull; 2579 bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero; 2580 2581 // If the ptr is NULL and the size is not 0, the call is equivalent to 2582 // malloc(size). 2583 if (PrtIsNull && !SizeIsZero) { 2584 ProgramStateRef stateMalloc = MallocMemAux( 2585 C, Call, TotalSize, UndefinedVal(), StatePtrIsNull, Family); 2586 return stateMalloc; 2587 } 2588 2589 if (PrtIsNull && SizeIsZero) 2590 return State; 2591 2592 assert(!PrtIsNull); 2593 2594 bool IsKnownToBeAllocated = false; 2595 2596 // If the size is 0, free the memory. 2597 if (SizeIsZero) 2598 // The semantics of the return value are: 2599 // If size was equal to 0, either NULL or a pointer suitable to be passed 2600 // to free() is returned. We just free the input pointer and do not add 2601 // any constrains on the output pointer. 2602 if (ProgramStateRef stateFree = FreeMemAux( 2603 C, Call, StateSizeIsZero, 0, false, IsKnownToBeAllocated, Family)) 2604 return stateFree; 2605 2606 // Default behavior. 2607 if (ProgramStateRef stateFree = 2608 FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocated, Family)) { 2609 2610 ProgramStateRef stateRealloc = 2611 MallocMemAux(C, Call, TotalSize, UnknownVal(), stateFree, Family); 2612 if (!stateRealloc) 2613 return nullptr; 2614 2615 OwnershipAfterReallocKind Kind = OAR_ToBeFreedAfterFailure; 2616 if (ShouldFreeOnFail) 2617 Kind = OAR_FreeOnFailure; 2618 else if (!IsKnownToBeAllocated) 2619 Kind = OAR_DoNotTrackAfterFailure; 2620 2621 // Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size). 2622 SymbolRef FromPtr = arg0Val.getLocSymbolInBase(); 2623 SVal RetVal = C.getSVal(CE); 2624 SymbolRef ToPtr = RetVal.getAsSymbol(); 2625 assert(FromPtr && ToPtr && 2626 "By this point, FreeMemAux and MallocMemAux should have checked " 2627 "whether the argument or the return value is symbolic!"); 2628 2629 // Record the info about the reallocated symbol so that we could properly 2630 // process failed reallocation. 2631 stateRealloc = stateRealloc->set<ReallocPairs>(ToPtr, 2632 ReallocPair(FromPtr, Kind)); 2633 // The reallocated symbol should stay alive for as long as the new symbol. 2634 C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr); 2635 return stateRealloc; 2636 } 2637 return nullptr; 2638 } 2639 2640 ProgramStateRef MallocChecker::CallocMem(CheckerContext &C, 2641 const CallEvent &Call, 2642 ProgramStateRef State) { 2643 if (!State) 2644 return nullptr; 2645 2646 if (Call.getNumArgs() < 2) 2647 return nullptr; 2648 2649 SValBuilder &svalBuilder = C.getSValBuilder(); 2650 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 2651 SVal TotalSize = 2652 evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1)); 2653 2654 return MallocMemAux(C, Call, TotalSize, zeroVal, State, AF_Malloc); 2655 } 2656 2657 MallocChecker::LeakInfo MallocChecker::getAllocationSite(const ExplodedNode *N, 2658 SymbolRef Sym, 2659 CheckerContext &C) { 2660 const LocationContext *LeakContext = N->getLocationContext(); 2661 // Walk the ExplodedGraph backwards and find the first node that referred to 2662 // the tracked symbol. 2663 const ExplodedNode *AllocNode = N; 2664 const MemRegion *ReferenceRegion = nullptr; 2665 2666 while (N) { 2667 ProgramStateRef State = N->getState(); 2668 if (!State->get<RegionState>(Sym)) 2669 break; 2670 2671 // Find the most recent expression bound to the symbol in the current 2672 // context. 2673 if (!ReferenceRegion) { 2674 if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) { 2675 SVal Val = State->getSVal(MR); 2676 if (Val.getAsLocSymbol() == Sym) { 2677 const VarRegion *VR = MR->getBaseRegion()->getAs<VarRegion>(); 2678 // Do not show local variables belonging to a function other than 2679 // where the error is reported. 2680 if (!VR || (VR->getStackFrame() == LeakContext->getStackFrame())) 2681 ReferenceRegion = MR; 2682 } 2683 } 2684 } 2685 2686 // Allocation node, is the last node in the current or parent context in 2687 // which the symbol was tracked. 2688 const LocationContext *NContext = N->getLocationContext(); 2689 if (NContext == LeakContext || 2690 NContext->isParentOf(LeakContext)) 2691 AllocNode = N; 2692 N = N->pred_empty() ? nullptr : *(N->pred_begin()); 2693 } 2694 2695 return LeakInfo(AllocNode, ReferenceRegion); 2696 } 2697 2698 void MallocChecker::HandleLeak(SymbolRef Sym, ExplodedNode *N, 2699 CheckerContext &C) const { 2700 2701 if (!ChecksEnabled[CK_MallocChecker] && 2702 !ChecksEnabled[CK_NewDeleteLeaksChecker]) 2703 return; 2704 2705 const RefState *RS = C.getState()->get<RegionState>(Sym); 2706 assert(RS && "cannot leak an untracked symbol"); 2707 AllocationFamily Family = RS->getAllocationFamily(); 2708 2709 if (Family == AF_Alloca) 2710 return; 2711 2712 Optional<MallocChecker::CheckKind> 2713 CheckKind = getCheckIfTracked(Family, true); 2714 2715 if (!CheckKind.hasValue()) 2716 return; 2717 2718 assert(N); 2719 if (!BT_Leak[*CheckKind]) { 2720 // Leaks should not be reported if they are post-dominated by a sink: 2721 // (1) Sinks are higher importance bugs. 2722 // (2) NoReturnFunctionChecker uses sink nodes to represent paths ending 2723 // with __noreturn functions such as assert() or exit(). We choose not 2724 // to report leaks on such paths. 2725 BT_Leak[*CheckKind].reset(new BugType(CheckNames[*CheckKind], "Memory leak", 2726 categories::MemoryError, 2727 /*SuppressOnSink=*/true)); 2728 } 2729 2730 // Most bug reports are cached at the location where they occurred. 2731 // With leaks, we want to unique them by the location where they were 2732 // allocated, and only report a single path. 2733 PathDiagnosticLocation LocUsedForUniqueing; 2734 const ExplodedNode *AllocNode = nullptr; 2735 const MemRegion *Region = nullptr; 2736 std::tie(AllocNode, Region) = getAllocationSite(N, Sym, C); 2737 2738 const Stmt *AllocationStmt = AllocNode->getStmtForDiagnostics(); 2739 if (AllocationStmt) 2740 LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocationStmt, 2741 C.getSourceManager(), 2742 AllocNode->getLocationContext()); 2743 2744 SmallString<200> buf; 2745 llvm::raw_svector_ostream os(buf); 2746 if (Region && Region->canPrintPretty()) { 2747 os << "Potential leak of memory pointed to by "; 2748 Region->printPretty(os); 2749 } else { 2750 os << "Potential memory leak"; 2751 } 2752 2753 auto R = std::make_unique<PathSensitiveBugReport>( 2754 *BT_Leak[*CheckKind], os.str(), N, LocUsedForUniqueing, 2755 AllocNode->getLocationContext()->getDecl()); 2756 R->markInteresting(Sym); 2757 R->addVisitor<MallocBugVisitor>(Sym, true); 2758 if (ShouldRegisterNoOwnershipChangeVisitor) 2759 R->addVisitor<NoOwnershipChangeVisitor>(Sym); 2760 C.emitReport(std::move(R)); 2761 } 2762 2763 void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper, 2764 CheckerContext &C) const 2765 { 2766 ProgramStateRef state = C.getState(); 2767 RegionStateTy OldRS = state->get<RegionState>(); 2768 RegionStateTy::Factory &F = state->get_context<RegionState>(); 2769 2770 RegionStateTy RS = OldRS; 2771 SmallVector<SymbolRef, 2> Errors; 2772 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2773 if (SymReaper.isDead(I->first)) { 2774 if (I->second.isAllocated() || I->second.isAllocatedOfSizeZero()) 2775 Errors.push_back(I->first); 2776 // Remove the dead symbol from the map. 2777 RS = F.remove(RS, I->first); 2778 } 2779 } 2780 2781 if (RS == OldRS) { 2782 // We shouldn't have touched other maps yet. 2783 assert(state->get<ReallocPairs>() == 2784 C.getState()->get<ReallocPairs>()); 2785 assert(state->get<FreeReturnValue>() == 2786 C.getState()->get<FreeReturnValue>()); 2787 return; 2788 } 2789 2790 // Cleanup the Realloc Pairs Map. 2791 ReallocPairsTy RP = state->get<ReallocPairs>(); 2792 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 2793 if (SymReaper.isDead(I->first) || 2794 SymReaper.isDead(I->second.ReallocatedSym)) { 2795 state = state->remove<ReallocPairs>(I->first); 2796 } 2797 } 2798 2799 // Cleanup the FreeReturnValue Map. 2800 FreeReturnValueTy FR = state->get<FreeReturnValue>(); 2801 for (FreeReturnValueTy::iterator I = FR.begin(), E = FR.end(); I != E; ++I) { 2802 if (SymReaper.isDead(I->first) || 2803 SymReaper.isDead(I->second)) { 2804 state = state->remove<FreeReturnValue>(I->first); 2805 } 2806 } 2807 2808 // Generate leak node. 2809 ExplodedNode *N = C.getPredecessor(); 2810 if (!Errors.empty()) { 2811 static CheckerProgramPointTag Tag("MallocChecker", "DeadSymbolsLeak"); 2812 N = C.generateNonFatalErrorNode(C.getState(), &Tag); 2813 if (N) { 2814 for (SmallVectorImpl<SymbolRef>::iterator 2815 I = Errors.begin(), E = Errors.end(); I != E; ++I) { 2816 HandleLeak(*I, N, C); 2817 } 2818 } 2819 } 2820 2821 C.addTransition(state->set<RegionState>(RS), N); 2822 } 2823 2824 void MallocChecker::checkPreCall(const CallEvent &Call, 2825 CheckerContext &C) const { 2826 2827 if (const auto *DC = dyn_cast<CXXDeallocatorCall>(&Call)) { 2828 const CXXDeleteExpr *DE = DC->getOriginExpr(); 2829 2830 if (!ChecksEnabled[CK_NewDeleteChecker]) 2831 if (SymbolRef Sym = C.getSVal(DE->getArgument()).getAsSymbol()) 2832 checkUseAfterFree(Sym, C, DE->getArgument()); 2833 2834 if (!isStandardNewDelete(DC->getDecl())) 2835 return; 2836 2837 ProgramStateRef State = C.getState(); 2838 bool IsKnownToBeAllocated; 2839 State = FreeMemAux(C, DE->getArgument(), Call, State, 2840 /*Hold*/ false, IsKnownToBeAllocated, 2841 (DE->isArrayForm() ? AF_CXXNewArray : AF_CXXNew)); 2842 2843 C.addTransition(State); 2844 return; 2845 } 2846 2847 if (const auto *DC = dyn_cast<CXXDestructorCall>(&Call)) { 2848 SymbolRef Sym = DC->getCXXThisVal().getAsSymbol(); 2849 if (!Sym || checkDoubleDelete(Sym, C)) 2850 return; 2851 } 2852 2853 // We will check for double free in the post visit. 2854 if (const AnyFunctionCall *FC = dyn_cast<AnyFunctionCall>(&Call)) { 2855 const FunctionDecl *FD = FC->getDecl(); 2856 if (!FD) 2857 return; 2858 2859 if (ChecksEnabled[CK_MallocChecker] && isFreeingCall(Call)) 2860 return; 2861 } 2862 2863 // Check if the callee of a method is deleted. 2864 if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(&Call)) { 2865 SymbolRef Sym = CC->getCXXThisVal().getAsSymbol(); 2866 if (!Sym || checkUseAfterFree(Sym, C, CC->getCXXThisExpr())) 2867 return; 2868 } 2869 2870 // Check arguments for being used after free. 2871 for (unsigned I = 0, E = Call.getNumArgs(); I != E; ++I) { 2872 SVal ArgSVal = Call.getArgSVal(I); 2873 if (ArgSVal.getAs<Loc>()) { 2874 SymbolRef Sym = ArgSVal.getAsSymbol(); 2875 if (!Sym) 2876 continue; 2877 if (checkUseAfterFree(Sym, C, Call.getArgExpr(I))) 2878 return; 2879 } 2880 } 2881 } 2882 2883 void MallocChecker::checkPreStmt(const ReturnStmt *S, 2884 CheckerContext &C) const { 2885 checkEscapeOnReturn(S, C); 2886 } 2887 2888 // In the CFG, automatic destructors come after the return statement. 2889 // This callback checks for returning memory that is freed by automatic 2890 // destructors, as those cannot be reached in checkPreStmt(). 2891 void MallocChecker::checkEndFunction(const ReturnStmt *S, 2892 CheckerContext &C) const { 2893 checkEscapeOnReturn(S, C); 2894 } 2895 2896 void MallocChecker::checkEscapeOnReturn(const ReturnStmt *S, 2897 CheckerContext &C) const { 2898 if (!S) 2899 return; 2900 2901 const Expr *E = S->getRetValue(); 2902 if (!E) 2903 return; 2904 2905 // Check if we are returning a symbol. 2906 ProgramStateRef State = C.getState(); 2907 SVal RetVal = C.getSVal(E); 2908 SymbolRef Sym = RetVal.getAsSymbol(); 2909 if (!Sym) 2910 // If we are returning a field of the allocated struct or an array element, 2911 // the callee could still free the memory. 2912 // TODO: This logic should be a part of generic symbol escape callback. 2913 if (const MemRegion *MR = RetVal.getAsRegion()) 2914 if (isa<FieldRegion, ElementRegion>(MR)) 2915 if (const SymbolicRegion *BMR = 2916 dyn_cast<SymbolicRegion>(MR->getBaseRegion())) 2917 Sym = BMR->getSymbol(); 2918 2919 // Check if we are returning freed memory. 2920 if (Sym) 2921 checkUseAfterFree(Sym, C, E); 2922 } 2923 2924 // TODO: Blocks should be either inlined or should call invalidate regions 2925 // upon invocation. After that's in place, special casing here will not be 2926 // needed. 2927 void MallocChecker::checkPostStmt(const BlockExpr *BE, 2928 CheckerContext &C) const { 2929 2930 // Scan the BlockDecRefExprs for any object the retain count checker 2931 // may be tracking. 2932 if (!BE->getBlockDecl()->hasCaptures()) 2933 return; 2934 2935 ProgramStateRef state = C.getState(); 2936 const BlockDataRegion *R = 2937 cast<BlockDataRegion>(C.getSVal(BE).getAsRegion()); 2938 2939 BlockDataRegion::referenced_vars_iterator I = R->referenced_vars_begin(), 2940 E = R->referenced_vars_end(); 2941 2942 if (I == E) 2943 return; 2944 2945 SmallVector<const MemRegion*, 10> Regions; 2946 const LocationContext *LC = C.getLocationContext(); 2947 MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager(); 2948 2949 for ( ; I != E; ++I) { 2950 const VarRegion *VR = I.getCapturedRegion(); 2951 if (VR->getSuperRegion() == R) { 2952 VR = MemMgr.getVarRegion(VR->getDecl(), LC); 2953 } 2954 Regions.push_back(VR); 2955 } 2956 2957 state = 2958 state->scanReachableSymbols<StopTrackingCallback>(Regions).getState(); 2959 C.addTransition(state); 2960 } 2961 2962 static bool isReleased(SymbolRef Sym, CheckerContext &C) { 2963 assert(Sym); 2964 const RefState *RS = C.getState()->get<RegionState>(Sym); 2965 return (RS && RS->isReleased()); 2966 } 2967 2968 bool MallocChecker::suppressDeallocationsInSuspiciousContexts( 2969 const CallEvent &Call, CheckerContext &C) const { 2970 if (Call.getNumArgs() == 0) 2971 return false; 2972 2973 StringRef FunctionStr = ""; 2974 if (const auto *FD = dyn_cast<FunctionDecl>(C.getStackFrame()->getDecl())) 2975 if (const Stmt *Body = FD->getBody()) 2976 if (Body->getBeginLoc().isValid()) 2977 FunctionStr = 2978 Lexer::getSourceText(CharSourceRange::getTokenRange( 2979 {FD->getBeginLoc(), Body->getBeginLoc()}), 2980 C.getSourceManager(), C.getLangOpts()); 2981 2982 // We do not model the Integer Set Library's retain-count based allocation. 2983 if (!FunctionStr.contains("__isl_")) 2984 return false; 2985 2986 ProgramStateRef State = C.getState(); 2987 2988 for (const Expr *Arg : cast<CallExpr>(Call.getOriginExpr())->arguments()) 2989 if (SymbolRef Sym = C.getSVal(Arg).getAsSymbol()) 2990 if (const RefState *RS = State->get<RegionState>(Sym)) 2991 State = State->set<RegionState>(Sym, RefState::getEscaped(RS)); 2992 2993 C.addTransition(State); 2994 return true; 2995 } 2996 2997 bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C, 2998 const Stmt *S) const { 2999 3000 if (isReleased(Sym, C)) { 3001 HandleUseAfterFree(C, S->getSourceRange(), Sym); 3002 return true; 3003 } 3004 3005 return false; 3006 } 3007 3008 void MallocChecker::checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 3009 const Stmt *S) const { 3010 assert(Sym); 3011 3012 if (const RefState *RS = C.getState()->get<RegionState>(Sym)) { 3013 if (RS->isAllocatedOfSizeZero()) 3014 HandleUseZeroAlloc(C, RS->getStmt()->getSourceRange(), Sym); 3015 } 3016 else if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) { 3017 HandleUseZeroAlloc(C, S->getSourceRange(), Sym); 3018 } 3019 } 3020 3021 bool MallocChecker::checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const { 3022 3023 if (isReleased(Sym, C)) { 3024 HandleDoubleDelete(C, Sym); 3025 return true; 3026 } 3027 return false; 3028 } 3029 3030 // Check if the location is a freed symbolic region. 3031 void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S, 3032 CheckerContext &C) const { 3033 SymbolRef Sym = l.getLocSymbolInBase(); 3034 if (Sym) { 3035 checkUseAfterFree(Sym, C, S); 3036 checkUseZeroAllocated(Sym, C, S); 3037 } 3038 } 3039 3040 // If a symbolic region is assumed to NULL (or another constant), stop tracking 3041 // it - assuming that allocation failed on this path. 3042 ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state, 3043 SVal Cond, 3044 bool Assumption) const { 3045 RegionStateTy RS = state->get<RegionState>(); 3046 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 3047 // If the symbol is assumed to be NULL, remove it from consideration. 3048 ConstraintManager &CMgr = state->getConstraintManager(); 3049 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 3050 if (AllocFailed.isConstrainedTrue()) 3051 state = state->remove<RegionState>(I.getKey()); 3052 } 3053 3054 // Realloc returns 0 when reallocation fails, which means that we should 3055 // restore the state of the pointer being reallocated. 3056 ReallocPairsTy RP = state->get<ReallocPairs>(); 3057 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 3058 // If the symbol is assumed to be NULL, remove it from consideration. 3059 ConstraintManager &CMgr = state->getConstraintManager(); 3060 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 3061 if (!AllocFailed.isConstrainedTrue()) 3062 continue; 3063 3064 SymbolRef ReallocSym = I.getData().ReallocatedSym; 3065 if (const RefState *RS = state->get<RegionState>(ReallocSym)) { 3066 if (RS->isReleased()) { 3067 switch (I.getData().Kind) { 3068 case OAR_ToBeFreedAfterFailure: 3069 state = state->set<RegionState>(ReallocSym, 3070 RefState::getAllocated(RS->getAllocationFamily(), RS->getStmt())); 3071 break; 3072 case OAR_DoNotTrackAfterFailure: 3073 state = state->remove<RegionState>(ReallocSym); 3074 break; 3075 default: 3076 assert(I.getData().Kind == OAR_FreeOnFailure); 3077 } 3078 } 3079 } 3080 state = state->remove<ReallocPairs>(I.getKey()); 3081 } 3082 3083 return state; 3084 } 3085 3086 bool MallocChecker::mayFreeAnyEscapedMemoryOrIsModeledExplicitly( 3087 const CallEvent *Call, 3088 ProgramStateRef State, 3089 SymbolRef &EscapingSymbol) const { 3090 assert(Call); 3091 EscapingSymbol = nullptr; 3092 3093 // For now, assume that any C++ or block call can free memory. 3094 // TODO: If we want to be more optimistic here, we'll need to make sure that 3095 // regions escape to C++ containers. They seem to do that even now, but for 3096 // mysterious reasons. 3097 if (!isa<SimpleFunctionCall, ObjCMethodCall>(Call)) 3098 return true; 3099 3100 // Check Objective-C messages by selector name. 3101 if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) { 3102 // If it's not a framework call, or if it takes a callback, assume it 3103 // can free memory. 3104 if (!Call->isInSystemHeader() || Call->argumentsMayEscape()) 3105 return true; 3106 3107 // If it's a method we know about, handle it explicitly post-call. 3108 // This should happen before the "freeWhenDone" check below. 3109 if (isKnownDeallocObjCMethodName(*Msg)) 3110 return false; 3111 3112 // If there's a "freeWhenDone" parameter, but the method isn't one we know 3113 // about, we can't be sure that the object will use free() to deallocate the 3114 // memory, so we can't model it explicitly. The best we can do is use it to 3115 // decide whether the pointer escapes. 3116 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(*Msg)) 3117 return *FreeWhenDone; 3118 3119 // If the first selector piece ends with "NoCopy", and there is no 3120 // "freeWhenDone" parameter set to zero, we know ownership is being 3121 // transferred. Again, though, we can't be sure that the object will use 3122 // free() to deallocate the memory, so we can't model it explicitly. 3123 StringRef FirstSlot = Msg->getSelector().getNameForSlot(0); 3124 if (FirstSlot.endswith("NoCopy")) 3125 return true; 3126 3127 // If the first selector starts with addPointer, insertPointer, 3128 // or replacePointer, assume we are dealing with NSPointerArray or similar. 3129 // This is similar to C++ containers (vector); we still might want to check 3130 // that the pointers get freed by following the container itself. 3131 if (FirstSlot.startswith("addPointer") || 3132 FirstSlot.startswith("insertPointer") || 3133 FirstSlot.startswith("replacePointer") || 3134 FirstSlot.equals("valueWithPointer")) { 3135 return true; 3136 } 3137 3138 // We should escape receiver on call to 'init'. This is especially relevant 3139 // to the receiver, as the corresponding symbol is usually not referenced 3140 // after the call. 3141 if (Msg->getMethodFamily() == OMF_init) { 3142 EscapingSymbol = Msg->getReceiverSVal().getAsSymbol(); 3143 return true; 3144 } 3145 3146 // Otherwise, assume that the method does not free memory. 3147 // Most framework methods do not free memory. 3148 return false; 3149 } 3150 3151 // At this point the only thing left to handle is straight function calls. 3152 const FunctionDecl *FD = cast<SimpleFunctionCall>(Call)->getDecl(); 3153 if (!FD) 3154 return true; 3155 3156 // If it's one of the allocation functions we can reason about, we model 3157 // its behavior explicitly. 3158 if (isMemCall(*Call)) 3159 return false; 3160 3161 // If it's not a system call, assume it frees memory. 3162 if (!Call->isInSystemHeader()) 3163 return true; 3164 3165 // White list the system functions whose arguments escape. 3166 const IdentifierInfo *II = FD->getIdentifier(); 3167 if (!II) 3168 return true; 3169 StringRef FName = II->getName(); 3170 3171 // White list the 'XXXNoCopy' CoreFoundation functions. 3172 // We specifically check these before 3173 if (FName.endswith("NoCopy")) { 3174 // Look for the deallocator argument. We know that the memory ownership 3175 // is not transferred only if the deallocator argument is 3176 // 'kCFAllocatorNull'. 3177 for (unsigned i = 1; i < Call->getNumArgs(); ++i) { 3178 const Expr *ArgE = Call->getArgExpr(i)->IgnoreParenCasts(); 3179 if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(ArgE)) { 3180 StringRef DeallocatorName = DE->getFoundDecl()->getName(); 3181 if (DeallocatorName == "kCFAllocatorNull") 3182 return false; 3183 } 3184 } 3185 return true; 3186 } 3187 3188 // Associating streams with malloced buffers. The pointer can escape if 3189 // 'closefn' is specified (and if that function does free memory), 3190 // but it will not if closefn is not specified. 3191 // Currently, we do not inspect the 'closefn' function (PR12101). 3192 if (FName == "funopen") 3193 if (Call->getNumArgs() >= 4 && Call->getArgSVal(4).isConstant(0)) 3194 return false; 3195 3196 // Do not warn on pointers passed to 'setbuf' when used with std streams, 3197 // these leaks might be intentional when setting the buffer for stdio. 3198 // http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer 3199 if (FName == "setbuf" || FName =="setbuffer" || 3200 FName == "setlinebuf" || FName == "setvbuf") { 3201 if (Call->getNumArgs() >= 1) { 3202 const Expr *ArgE = Call->getArgExpr(0)->IgnoreParenCasts(); 3203 if (const DeclRefExpr *ArgDRE = dyn_cast<DeclRefExpr>(ArgE)) 3204 if (const VarDecl *D = dyn_cast<VarDecl>(ArgDRE->getDecl())) 3205 if (D->getCanonicalDecl()->getName().contains("std")) 3206 return true; 3207 } 3208 } 3209 3210 // A bunch of other functions which either take ownership of a pointer or 3211 // wrap the result up in a struct or object, meaning it can be freed later. 3212 // (See RetainCountChecker.) Not all the parameters here are invalidated, 3213 // but the Malloc checker cannot differentiate between them. The right way 3214 // of doing this would be to implement a pointer escapes callback. 3215 if (FName == "CGBitmapContextCreate" || 3216 FName == "CGBitmapContextCreateWithData" || 3217 FName == "CVPixelBufferCreateWithBytes" || 3218 FName == "CVPixelBufferCreateWithPlanarBytes" || 3219 FName == "OSAtomicEnqueue") { 3220 return true; 3221 } 3222 3223 if (FName == "postEvent" && 3224 FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") { 3225 return true; 3226 } 3227 3228 if (FName == "connectImpl" && 3229 FD->getQualifiedNameAsString() == "QObject::connectImpl") { 3230 return true; 3231 } 3232 3233 // Handle cases where we know a buffer's /address/ can escape. 3234 // Note that the above checks handle some special cases where we know that 3235 // even though the address escapes, it's still our responsibility to free the 3236 // buffer. 3237 if (Call->argumentsMayEscape()) 3238 return true; 3239 3240 // Otherwise, assume that the function does not free memory. 3241 // Most system calls do not free the memory. 3242 return false; 3243 } 3244 3245 ProgramStateRef MallocChecker::checkPointerEscape(ProgramStateRef State, 3246 const InvalidatedSymbols &Escaped, 3247 const CallEvent *Call, 3248 PointerEscapeKind Kind) const { 3249 return checkPointerEscapeAux(State, Escaped, Call, Kind, 3250 /*IsConstPointerEscape*/ false); 3251 } 3252 3253 ProgramStateRef MallocChecker::checkConstPointerEscape(ProgramStateRef State, 3254 const InvalidatedSymbols &Escaped, 3255 const CallEvent *Call, 3256 PointerEscapeKind Kind) const { 3257 // If a const pointer escapes, it may not be freed(), but it could be deleted. 3258 return checkPointerEscapeAux(State, Escaped, Call, Kind, 3259 /*IsConstPointerEscape*/ true); 3260 } 3261 3262 static bool checkIfNewOrNewArrayFamily(const RefState *RS) { 3263 return (RS->getAllocationFamily() == AF_CXXNewArray || 3264 RS->getAllocationFamily() == AF_CXXNew); 3265 } 3266 3267 ProgramStateRef MallocChecker::checkPointerEscapeAux( 3268 ProgramStateRef State, const InvalidatedSymbols &Escaped, 3269 const CallEvent *Call, PointerEscapeKind Kind, 3270 bool IsConstPointerEscape) const { 3271 // If we know that the call does not free memory, or we want to process the 3272 // call later, keep tracking the top level arguments. 3273 SymbolRef EscapingSymbol = nullptr; 3274 if (Kind == PSK_DirectEscapeOnCall && 3275 !mayFreeAnyEscapedMemoryOrIsModeledExplicitly(Call, State, 3276 EscapingSymbol) && 3277 !EscapingSymbol) { 3278 return State; 3279 } 3280 3281 for (InvalidatedSymbols::const_iterator I = Escaped.begin(), 3282 E = Escaped.end(); 3283 I != E; ++I) { 3284 SymbolRef sym = *I; 3285 3286 if (EscapingSymbol && EscapingSymbol != sym) 3287 continue; 3288 3289 if (const RefState *RS = State->get<RegionState>(sym)) 3290 if (RS->isAllocated() || RS->isAllocatedOfSizeZero()) 3291 if (!IsConstPointerEscape || checkIfNewOrNewArrayFamily(RS)) 3292 State = State->set<RegionState>(sym, RefState::getEscaped(RS)); 3293 } 3294 return State; 3295 } 3296 3297 bool MallocChecker::isArgZERO_SIZE_PTR(ProgramStateRef State, CheckerContext &C, 3298 SVal ArgVal) const { 3299 if (!KernelZeroSizePtrValue) 3300 KernelZeroSizePtrValue = 3301 tryExpandAsInteger("ZERO_SIZE_PTR", C.getPreprocessor()); 3302 3303 const llvm::APSInt *ArgValKnown = 3304 C.getSValBuilder().getKnownValue(State, ArgVal); 3305 return ArgValKnown && *KernelZeroSizePtrValue && 3306 ArgValKnown->getSExtValue() == **KernelZeroSizePtrValue; 3307 } 3308 3309 static SymbolRef findFailedReallocSymbol(ProgramStateRef currState, 3310 ProgramStateRef prevState) { 3311 ReallocPairsTy currMap = currState->get<ReallocPairs>(); 3312 ReallocPairsTy prevMap = prevState->get<ReallocPairs>(); 3313 3314 for (const ReallocPairsTy::value_type &Pair : prevMap) { 3315 SymbolRef sym = Pair.first; 3316 if (!currMap.lookup(sym)) 3317 return sym; 3318 } 3319 3320 return nullptr; 3321 } 3322 3323 static bool isReferenceCountingPointerDestructor(const CXXDestructorDecl *DD) { 3324 if (const IdentifierInfo *II = DD->getParent()->getIdentifier()) { 3325 StringRef N = II->getName(); 3326 if (N.contains_insensitive("ptr") || N.contains_insensitive("pointer")) { 3327 if (N.contains_insensitive("ref") || N.contains_insensitive("cnt") || 3328 N.contains_insensitive("intrusive") || 3329 N.contains_insensitive("shared")) { 3330 return true; 3331 } 3332 } 3333 } 3334 return false; 3335 } 3336 3337 PathDiagnosticPieceRef MallocBugVisitor::VisitNode(const ExplodedNode *N, 3338 BugReporterContext &BRC, 3339 PathSensitiveBugReport &BR) { 3340 ProgramStateRef state = N->getState(); 3341 ProgramStateRef statePrev = N->getFirstPred()->getState(); 3342 3343 const RefState *RSCurr = state->get<RegionState>(Sym); 3344 const RefState *RSPrev = statePrev->get<RegionState>(Sym); 3345 3346 const Stmt *S = N->getStmtForDiagnostics(); 3347 // When dealing with containers, we sometimes want to give a note 3348 // even if the statement is missing. 3349 if (!S && (!RSCurr || RSCurr->getAllocationFamily() != AF_InnerBuffer)) 3350 return nullptr; 3351 3352 const LocationContext *CurrentLC = N->getLocationContext(); 3353 3354 // If we find an atomic fetch_add or fetch_sub within the destructor in which 3355 // the pointer was released (before the release), this is likely a destructor 3356 // of a shared pointer. 3357 // Because we don't model atomics, and also because we don't know that the 3358 // original reference count is positive, we should not report use-after-frees 3359 // on objects deleted in such destructors. This can probably be improved 3360 // through better shared pointer modeling. 3361 if (ReleaseDestructorLC) { 3362 if (const auto *AE = dyn_cast<AtomicExpr>(S)) { 3363 AtomicExpr::AtomicOp Op = AE->getOp(); 3364 if (Op == AtomicExpr::AO__c11_atomic_fetch_add || 3365 Op == AtomicExpr::AO__c11_atomic_fetch_sub) { 3366 if (ReleaseDestructorLC == CurrentLC || 3367 ReleaseDestructorLC->isParentOf(CurrentLC)) { 3368 BR.markInvalid(getTag(), S); 3369 } 3370 } 3371 } 3372 } 3373 3374 // FIXME: We will eventually need to handle non-statement-based events 3375 // (__attribute__((cleanup))). 3376 3377 // Find out if this is an interesting point and what is the kind. 3378 StringRef Msg; 3379 std::unique_ptr<StackHintGeneratorForSymbol> StackHint = nullptr; 3380 SmallString<256> Buf; 3381 llvm::raw_svector_ostream OS(Buf); 3382 3383 if (Mode == Normal) { 3384 if (isAllocated(RSCurr, RSPrev, S)) { 3385 Msg = "Memory is allocated"; 3386 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3387 Sym, "Returned allocated memory"); 3388 } else if (isReleased(RSCurr, RSPrev, S)) { 3389 const auto Family = RSCurr->getAllocationFamily(); 3390 switch (Family) { 3391 case AF_Alloca: 3392 case AF_Malloc: 3393 case AF_CXXNew: 3394 case AF_CXXNewArray: 3395 case AF_IfNameIndex: 3396 Msg = "Memory is released"; 3397 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3398 Sym, "Returning; memory was released"); 3399 break; 3400 case AF_InnerBuffer: { 3401 const MemRegion *ObjRegion = 3402 allocation_state::getContainerObjRegion(statePrev, Sym); 3403 const auto *TypedRegion = cast<TypedValueRegion>(ObjRegion); 3404 QualType ObjTy = TypedRegion->getValueType(); 3405 OS << "Inner buffer of '" << ObjTy.getAsString() << "' "; 3406 3407 if (N->getLocation().getKind() == ProgramPoint::PostImplicitCallKind) { 3408 OS << "deallocated by call to destructor"; 3409 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3410 Sym, "Returning; inner buffer was deallocated"); 3411 } else { 3412 OS << "reallocated by call to '"; 3413 const Stmt *S = RSCurr->getStmt(); 3414 if (const auto *MemCallE = dyn_cast<CXXMemberCallExpr>(S)) { 3415 OS << MemCallE->getMethodDecl()->getDeclName(); 3416 } else if (const auto *OpCallE = dyn_cast<CXXOperatorCallExpr>(S)) { 3417 OS << OpCallE->getDirectCallee()->getDeclName(); 3418 } else if (const auto *CallE = dyn_cast<CallExpr>(S)) { 3419 auto &CEMgr = BRC.getStateManager().getCallEventManager(); 3420 CallEventRef<> Call = CEMgr.getSimpleCall(CallE, state, CurrentLC); 3421 if (const auto *D = dyn_cast_or_null<NamedDecl>(Call->getDecl())) 3422 OS << D->getDeclName(); 3423 else 3424 OS << "unknown"; 3425 } 3426 OS << "'"; 3427 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3428 Sym, "Returning; inner buffer was reallocated"); 3429 } 3430 Msg = OS.str(); 3431 break; 3432 } 3433 case AF_None: 3434 llvm_unreachable("Unhandled allocation family!"); 3435 } 3436 3437 // See if we're releasing memory while inlining a destructor 3438 // (or one of its callees). This turns on various common 3439 // false positive suppressions. 3440 bool FoundAnyDestructor = false; 3441 for (const LocationContext *LC = CurrentLC; LC; LC = LC->getParent()) { 3442 if (const auto *DD = dyn_cast<CXXDestructorDecl>(LC->getDecl())) { 3443 if (isReferenceCountingPointerDestructor(DD)) { 3444 // This immediately looks like a reference-counting destructor. 3445 // We're bad at guessing the original reference count of the object, 3446 // so suppress the report for now. 3447 BR.markInvalid(getTag(), DD); 3448 } else if (!FoundAnyDestructor) { 3449 assert(!ReleaseDestructorLC && 3450 "There can be only one release point!"); 3451 // Suspect that it's a reference counting pointer destructor. 3452 // On one of the next nodes might find out that it has atomic 3453 // reference counting operations within it (see the code above), 3454 // and if so, we'd conclude that it likely is a reference counting 3455 // pointer destructor. 3456 ReleaseDestructorLC = LC->getStackFrame(); 3457 // It is unlikely that releasing memory is delegated to a destructor 3458 // inside a destructor of a shared pointer, because it's fairly hard 3459 // to pass the information that the pointer indeed needs to be 3460 // released into it. So we're only interested in the innermost 3461 // destructor. 3462 FoundAnyDestructor = true; 3463 } 3464 } 3465 } 3466 } else if (isRelinquished(RSCurr, RSPrev, S)) { 3467 Msg = "Memory ownership is transferred"; 3468 StackHint = std::make_unique<StackHintGeneratorForSymbol>(Sym, ""); 3469 } else if (hasReallocFailed(RSCurr, RSPrev, S)) { 3470 Mode = ReallocationFailed; 3471 Msg = "Reallocation failed"; 3472 StackHint = std::make_unique<StackHintGeneratorForReallocationFailed>( 3473 Sym, "Reallocation failed"); 3474 3475 if (SymbolRef sym = findFailedReallocSymbol(state, statePrev)) { 3476 // Is it possible to fail two reallocs WITHOUT testing in between? 3477 assert((!FailedReallocSymbol || FailedReallocSymbol == sym) && 3478 "We only support one failed realloc at a time."); 3479 BR.markInteresting(sym); 3480 FailedReallocSymbol = sym; 3481 } 3482 } 3483 3484 // We are in a special mode if a reallocation failed later in the path. 3485 } else if (Mode == ReallocationFailed) { 3486 assert(FailedReallocSymbol && "No symbol to look for."); 3487 3488 // Is this is the first appearance of the reallocated symbol? 3489 if (!statePrev->get<RegionState>(FailedReallocSymbol)) { 3490 // We're at the reallocation point. 3491 Msg = "Attempt to reallocate memory"; 3492 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3493 Sym, "Returned reallocated memory"); 3494 FailedReallocSymbol = nullptr; 3495 Mode = Normal; 3496 } 3497 } 3498 3499 if (Msg.empty()) { 3500 assert(!StackHint); 3501 return nullptr; 3502 } 3503 3504 assert(StackHint); 3505 3506 // Generate the extra diagnostic. 3507 PathDiagnosticLocation Pos; 3508 if (!S) { 3509 assert(RSCurr->getAllocationFamily() == AF_InnerBuffer); 3510 auto PostImplCall = N->getLocation().getAs<PostImplicitCall>(); 3511 if (!PostImplCall) 3512 return nullptr; 3513 Pos = PathDiagnosticLocation(PostImplCall->getLocation(), 3514 BRC.getSourceManager()); 3515 } else { 3516 Pos = PathDiagnosticLocation(S, BRC.getSourceManager(), 3517 N->getLocationContext()); 3518 } 3519 3520 auto P = std::make_shared<PathDiagnosticEventPiece>(Pos, Msg, true); 3521 BR.addCallStackHint(P, std::move(StackHint)); 3522 return P; 3523 } 3524 3525 void MallocChecker::printState(raw_ostream &Out, ProgramStateRef State, 3526 const char *NL, const char *Sep) const { 3527 3528 RegionStateTy RS = State->get<RegionState>(); 3529 3530 if (!RS.isEmpty()) { 3531 Out << Sep << "MallocChecker :" << NL; 3532 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 3533 const RefState *RefS = State->get<RegionState>(I.getKey()); 3534 AllocationFamily Family = RefS->getAllocationFamily(); 3535 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 3536 if (!CheckKind.hasValue()) 3537 CheckKind = getCheckIfTracked(Family, true); 3538 3539 I.getKey()->dumpToStream(Out); 3540 Out << " : "; 3541 I.getData().dump(Out); 3542 if (CheckKind.hasValue()) 3543 Out << " (" << CheckNames[*CheckKind].getName() << ")"; 3544 Out << NL; 3545 } 3546 } 3547 } 3548 3549 namespace clang { 3550 namespace ento { 3551 namespace allocation_state { 3552 3553 ProgramStateRef 3554 markReleased(ProgramStateRef State, SymbolRef Sym, const Expr *Origin) { 3555 AllocationFamily Family = AF_InnerBuffer; 3556 return State->set<RegionState>(Sym, RefState::getReleased(Family, Origin)); 3557 } 3558 3559 } // end namespace allocation_state 3560 } // end namespace ento 3561 } // end namespace clang 3562 3563 // Intended to be used in InnerPointerChecker to register the part of 3564 // MallocChecker connected to it. 3565 void ento::registerInnerPointerCheckerAux(CheckerManager &mgr) { 3566 MallocChecker *checker = mgr.getChecker<MallocChecker>(); 3567 checker->ChecksEnabled[MallocChecker::CK_InnerPointerChecker] = true; 3568 checker->CheckNames[MallocChecker::CK_InnerPointerChecker] = 3569 mgr.getCurrentCheckerName(); 3570 } 3571 3572 void ento::registerDynamicMemoryModeling(CheckerManager &mgr) { 3573 auto *checker = mgr.registerChecker<MallocChecker>(); 3574 checker->ShouldIncludeOwnershipAnnotatedFunctions = 3575 mgr.getAnalyzerOptions().getCheckerBooleanOption(checker, "Optimistic"); 3576 checker->ShouldRegisterNoOwnershipChangeVisitor = 3577 mgr.getAnalyzerOptions().getCheckerBooleanOption( 3578 checker, "AddNoOwnershipChangeNotes"); 3579 } 3580 3581 bool ento::shouldRegisterDynamicMemoryModeling(const CheckerManager &mgr) { 3582 return true; 3583 } 3584 3585 #define REGISTER_CHECKER(name) \ 3586 void ento::register##name(CheckerManager &mgr) { \ 3587 MallocChecker *checker = mgr.getChecker<MallocChecker>(); \ 3588 checker->ChecksEnabled[MallocChecker::CK_##name] = true; \ 3589 checker->CheckNames[MallocChecker::CK_##name] = \ 3590 mgr.getCurrentCheckerName(); \ 3591 } \ 3592 \ 3593 bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; } 3594 3595 REGISTER_CHECKER(MallocChecker) 3596 REGISTER_CHECKER(NewDeleteChecker) 3597 REGISTER_CHECKER(NewDeleteLeaksChecker) 3598 REGISTER_CHECKER(MismatchedDeallocatorChecker) 3599