1 //=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines malloc/free checker, which checks for potential memory 11 // leaks, double free, and use-after-free problems. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ClangSACheckers.h" 16 #include "InterCheckerAPI.h" 17 #include "clang/AST/Attr.h" 18 #include "clang/AST/ParentMap.h" 19 #include "clang/Basic/SourceManager.h" 20 #include "clang/Basic/TargetInfo.h" 21 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 22 #include "clang/StaticAnalyzer/Core/BugReporter/CommonBugCategories.h" 23 #include "clang/StaticAnalyzer/Core/Checker.h" 24 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 25 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 26 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 27 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 28 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 29 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/StringExtras.h" 33 #include "AllocationState.h" 34 #include <climits> 35 #include <utility> 36 37 using namespace clang; 38 using namespace ento; 39 40 namespace { 41 42 // Used to check correspondence between allocators and deallocators. 43 enum AllocationFamily { 44 AF_None, 45 AF_Malloc, 46 AF_CXXNew, 47 AF_CXXNewArray, 48 AF_IfNameIndex, 49 AF_Alloca, 50 AF_InnerBuffer 51 }; 52 53 class RefState { 54 enum Kind { // Reference to allocated memory. 55 Allocated, 56 // Reference to zero-allocated memory. 57 AllocatedOfSizeZero, 58 // Reference to released/freed memory. 59 Released, 60 // The responsibility for freeing resources has transferred from 61 // this reference. A relinquished symbol should not be freed. 62 Relinquished, 63 // We are no longer guaranteed to have observed all manipulations 64 // of this pointer/memory. For example, it could have been 65 // passed as a parameter to an opaque function. 66 Escaped 67 }; 68 69 const Stmt *S; 70 unsigned K : 3; // Kind enum, but stored as a bitfield. 71 unsigned Family : 29; // Rest of 32-bit word, currently just an allocation 72 // family. 73 74 RefState(Kind k, const Stmt *s, unsigned family) 75 : S(s), K(k), Family(family) { 76 assert(family != AF_None); 77 } 78 public: 79 bool isAllocated() const { return K == Allocated; } 80 bool isAllocatedOfSizeZero() const { return K == AllocatedOfSizeZero; } 81 bool isReleased() const { return K == Released; } 82 bool isRelinquished() const { return K == Relinquished; } 83 bool isEscaped() const { return K == Escaped; } 84 AllocationFamily getAllocationFamily() const { 85 return (AllocationFamily)Family; 86 } 87 const Stmt *getStmt() const { return S; } 88 89 bool operator==(const RefState &X) const { 90 return K == X.K && S == X.S && Family == X.Family; 91 } 92 93 static RefState getAllocated(unsigned family, const Stmt *s) { 94 return RefState(Allocated, s, family); 95 } 96 static RefState getAllocatedOfSizeZero(const RefState *RS) { 97 return RefState(AllocatedOfSizeZero, RS->getStmt(), 98 RS->getAllocationFamily()); 99 } 100 static RefState getReleased(unsigned family, const Stmt *s) { 101 return RefState(Released, s, family); 102 } 103 static RefState getRelinquished(unsigned family, const Stmt *s) { 104 return RefState(Relinquished, s, family); 105 } 106 static RefState getEscaped(const RefState *RS) { 107 return RefState(Escaped, RS->getStmt(), RS->getAllocationFamily()); 108 } 109 110 void Profile(llvm::FoldingSetNodeID &ID) const { 111 ID.AddInteger(K); 112 ID.AddPointer(S); 113 ID.AddInteger(Family); 114 } 115 116 void dump(raw_ostream &OS) const { 117 switch (static_cast<Kind>(K)) { 118 #define CASE(ID) case ID: OS << #ID; break; 119 CASE(Allocated) 120 CASE(AllocatedOfSizeZero) 121 CASE(Released) 122 CASE(Relinquished) 123 CASE(Escaped) 124 } 125 } 126 127 LLVM_DUMP_METHOD void dump() const { dump(llvm::errs()); } 128 }; 129 130 enum ReallocPairKind { 131 RPToBeFreedAfterFailure, 132 // The symbol has been freed when reallocation failed. 133 RPIsFreeOnFailure, 134 // The symbol does not need to be freed after reallocation fails. 135 RPDoNotTrackAfterFailure 136 }; 137 138 /// \class ReallocPair 139 /// Stores information about the symbol being reallocated by a call to 140 /// 'realloc' to allow modeling failed reallocation later in the path. 141 struct ReallocPair { 142 // The symbol which realloc reallocated. 143 SymbolRef ReallocatedSym; 144 ReallocPairKind Kind; 145 146 ReallocPair(SymbolRef S, ReallocPairKind K) : 147 ReallocatedSym(S), Kind(K) {} 148 void Profile(llvm::FoldingSetNodeID &ID) const { 149 ID.AddInteger(Kind); 150 ID.AddPointer(ReallocatedSym); 151 } 152 bool operator==(const ReallocPair &X) const { 153 return ReallocatedSym == X.ReallocatedSym && 154 Kind == X.Kind; 155 } 156 }; 157 158 typedef std::pair<const ExplodedNode*, const MemRegion*> LeakInfo; 159 160 class MallocChecker : public Checker<check::DeadSymbols, 161 check::PointerEscape, 162 check::ConstPointerEscape, 163 check::PreStmt<ReturnStmt>, 164 check::EndFunction, 165 check::PreCall, 166 check::PostStmt<CallExpr>, 167 check::PostStmt<CXXNewExpr>, 168 check::NewAllocator, 169 check::PreStmt<CXXDeleteExpr>, 170 check::PostStmt<BlockExpr>, 171 check::PostObjCMessage, 172 check::Location, 173 eval::Assume> 174 { 175 public: 176 MallocChecker() 177 : II_alloca(nullptr), II_win_alloca(nullptr), II_malloc(nullptr), 178 II_free(nullptr), II_realloc(nullptr), II_calloc(nullptr), 179 II_valloc(nullptr), II_reallocf(nullptr), II_strndup(nullptr), 180 II_strdup(nullptr), II_win_strdup(nullptr), II_kmalloc(nullptr), 181 II_if_nameindex(nullptr), II_if_freenameindex(nullptr), 182 II_wcsdup(nullptr), II_win_wcsdup(nullptr), II_g_malloc(nullptr), 183 II_g_malloc0(nullptr), II_g_realloc(nullptr), II_g_try_malloc(nullptr), 184 II_g_try_malloc0(nullptr), II_g_try_realloc(nullptr), 185 II_g_free(nullptr), II_g_memdup(nullptr), II_g_malloc_n(nullptr), 186 II_g_malloc0_n(nullptr), II_g_realloc_n(nullptr), 187 II_g_try_malloc_n(nullptr), II_g_try_malloc0_n(nullptr), 188 II_g_try_realloc_n(nullptr) {} 189 190 /// In pessimistic mode, the checker assumes that it does not know which 191 /// functions might free the memory. 192 enum CheckKind { 193 CK_MallocChecker, 194 CK_NewDeleteChecker, 195 CK_NewDeleteLeaksChecker, 196 CK_MismatchedDeallocatorChecker, 197 CK_InnerPointerChecker, 198 CK_NumCheckKinds 199 }; 200 201 enum class MemoryOperationKind { 202 MOK_Allocate, 203 MOK_Free, 204 MOK_Any 205 }; 206 207 DefaultBool IsOptimistic; 208 209 DefaultBool ChecksEnabled[CK_NumCheckKinds]; 210 CheckName CheckNames[CK_NumCheckKinds]; 211 212 void checkPreCall(const CallEvent &Call, CheckerContext &C) const; 213 void checkPostStmt(const CallExpr *CE, CheckerContext &C) const; 214 void checkPostStmt(const CXXNewExpr *NE, CheckerContext &C) const; 215 void checkNewAllocator(const CXXNewExpr *NE, SVal Target, 216 CheckerContext &C) const; 217 void checkPreStmt(const CXXDeleteExpr *DE, CheckerContext &C) const; 218 void checkPostObjCMessage(const ObjCMethodCall &Call, CheckerContext &C) const; 219 void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const; 220 void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const; 221 void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const; 222 void checkEndFunction(const ReturnStmt *S, CheckerContext &C) const; 223 ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond, 224 bool Assumption) const; 225 void checkLocation(SVal l, bool isLoad, const Stmt *S, 226 CheckerContext &C) const; 227 228 ProgramStateRef checkPointerEscape(ProgramStateRef State, 229 const InvalidatedSymbols &Escaped, 230 const CallEvent *Call, 231 PointerEscapeKind Kind) const; 232 ProgramStateRef checkConstPointerEscape(ProgramStateRef State, 233 const InvalidatedSymbols &Escaped, 234 const CallEvent *Call, 235 PointerEscapeKind Kind) const; 236 237 void printState(raw_ostream &Out, ProgramStateRef State, 238 const char *NL, const char *Sep) const override; 239 240 private: 241 mutable std::unique_ptr<BugType> BT_DoubleFree[CK_NumCheckKinds]; 242 mutable std::unique_ptr<BugType> BT_DoubleDelete; 243 mutable std::unique_ptr<BugType> BT_Leak[CK_NumCheckKinds]; 244 mutable std::unique_ptr<BugType> BT_UseFree[CK_NumCheckKinds]; 245 mutable std::unique_ptr<BugType> BT_BadFree[CK_NumCheckKinds]; 246 mutable std::unique_ptr<BugType> BT_FreeAlloca[CK_NumCheckKinds]; 247 mutable std::unique_ptr<BugType> BT_MismatchedDealloc; 248 mutable std::unique_ptr<BugType> BT_OffsetFree[CK_NumCheckKinds]; 249 mutable std::unique_ptr<BugType> BT_UseZerroAllocated[CK_NumCheckKinds]; 250 mutable IdentifierInfo *II_alloca, *II_win_alloca, *II_malloc, *II_free, 251 *II_realloc, *II_calloc, *II_valloc, *II_reallocf, 252 *II_strndup, *II_strdup, *II_win_strdup, *II_kmalloc, 253 *II_if_nameindex, *II_if_freenameindex, *II_wcsdup, 254 *II_win_wcsdup, *II_g_malloc, *II_g_malloc0, 255 *II_g_realloc, *II_g_try_malloc, *II_g_try_malloc0, 256 *II_g_try_realloc, *II_g_free, *II_g_memdup, 257 *II_g_malloc_n, *II_g_malloc0_n, *II_g_realloc_n, 258 *II_g_try_malloc_n, *II_g_try_malloc0_n, 259 *II_g_try_realloc_n; 260 mutable Optional<uint64_t> KernelZeroFlagVal; 261 262 void initIdentifierInfo(ASTContext &C) const; 263 264 /// Determine family of a deallocation expression. 265 AllocationFamily getAllocationFamily(CheckerContext &C, const Stmt *S) const; 266 267 /// Print names of allocators and deallocators. 268 /// 269 /// \returns true on success. 270 bool printAllocDeallocName(raw_ostream &os, CheckerContext &C, 271 const Expr *E) const; 272 273 /// Print expected name of an allocator based on the deallocator's 274 /// family derived from the DeallocExpr. 275 void printExpectedAllocName(raw_ostream &os, CheckerContext &C, 276 const Expr *DeallocExpr) const; 277 /// Print expected name of a deallocator based on the allocator's 278 /// family. 279 void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family) const; 280 281 ///@{ 282 /// Check if this is one of the functions which can allocate/reallocate memory 283 /// pointed to by one of its arguments. 284 bool isMemFunction(const FunctionDecl *FD, ASTContext &C) const; 285 bool isCMemFunction(const FunctionDecl *FD, 286 ASTContext &C, 287 AllocationFamily Family, 288 MemoryOperationKind MemKind) const; 289 bool isStandardNewDelete(const FunctionDecl *FD, ASTContext &C) const; 290 ///@} 291 292 /// Process C++ operator new()'s allocation, which is the part of C++ 293 /// new-expression that goes before the constructor. 294 void processNewAllocation(const CXXNewExpr *NE, CheckerContext &C, 295 SVal Target) const; 296 297 /// Perform a zero-allocation check. 298 /// The optional \p RetVal parameter specifies the newly allocated pointer 299 /// value; if unspecified, the value of expression \p E is used. 300 ProgramStateRef ProcessZeroAllocation(CheckerContext &C, const Expr *E, 301 const unsigned AllocationSizeArg, 302 ProgramStateRef State, 303 Optional<SVal> RetVal = None) const; 304 305 ProgramStateRef MallocMemReturnsAttr(CheckerContext &C, 306 const CallExpr *CE, 307 const OwnershipAttr* Att, 308 ProgramStateRef State) const; 309 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE, 310 const Expr *SizeEx, SVal Init, 311 ProgramStateRef State, 312 AllocationFamily Family = AF_Malloc); 313 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE, 314 SVal SizeEx, SVal Init, 315 ProgramStateRef State, 316 AllocationFamily Family = AF_Malloc); 317 318 static ProgramStateRef addExtentSize(CheckerContext &C, const CXXNewExpr *NE, 319 ProgramStateRef State, SVal Target); 320 321 // Check if this malloc() for special flags. At present that means M_ZERO or 322 // __GFP_ZERO (in which case, treat it like calloc). 323 llvm::Optional<ProgramStateRef> 324 performKernelMalloc(const CallExpr *CE, CheckerContext &C, 325 const ProgramStateRef &State) const; 326 327 /// Update the RefState to reflect the new memory allocation. 328 /// The optional \p RetVal parameter specifies the newly allocated pointer 329 /// value; if unspecified, the value of expression \p E is used. 330 static ProgramStateRef 331 MallocUpdateRefState(CheckerContext &C, const Expr *E, ProgramStateRef State, 332 AllocationFamily Family = AF_Malloc, 333 Optional<SVal> RetVal = None); 334 335 ProgramStateRef FreeMemAttr(CheckerContext &C, const CallExpr *CE, 336 const OwnershipAttr* Att, 337 ProgramStateRef State) const; 338 ProgramStateRef FreeMemAux(CheckerContext &C, const CallExpr *CE, 339 ProgramStateRef state, unsigned Num, 340 bool Hold, 341 bool &ReleasedAllocated, 342 bool ReturnsNullOnFailure = false) const; 343 ProgramStateRef FreeMemAux(CheckerContext &C, const Expr *Arg, 344 const Expr *ParentExpr, 345 ProgramStateRef State, 346 bool Hold, 347 bool &ReleasedAllocated, 348 bool ReturnsNullOnFailure = false) const; 349 350 ProgramStateRef ReallocMemAux(CheckerContext &C, const CallExpr *CE, 351 bool FreesMemOnFailure, 352 ProgramStateRef State, 353 bool SuffixWithN = false) const; 354 static SVal evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, 355 const Expr *BlockBytes); 356 static ProgramStateRef CallocMem(CheckerContext &C, const CallExpr *CE, 357 ProgramStateRef State); 358 359 /// Check if the memory associated with this symbol was released. 360 bool isReleased(SymbolRef Sym, CheckerContext &C) const; 361 362 bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S) const; 363 364 void checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 365 const Stmt *S) const; 366 367 bool checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const; 368 369 /// Check if the function is known free memory, or if it is 370 /// "interesting" and should be modeled explicitly. 371 /// 372 /// \param [out] EscapingSymbol A function might not free memory in general, 373 /// but could be known to free a particular symbol. In this case, false is 374 /// returned and the single escaping symbol is returned through the out 375 /// parameter. 376 /// 377 /// We assume that pointers do not escape through calls to system functions 378 /// not handled by this checker. 379 bool mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent *Call, 380 ProgramStateRef State, 381 SymbolRef &EscapingSymbol) const; 382 383 // Implementation of the checkPointerEscape callbacks. 384 ProgramStateRef checkPointerEscapeAux(ProgramStateRef State, 385 const InvalidatedSymbols &Escaped, 386 const CallEvent *Call, 387 PointerEscapeKind Kind, 388 bool(*CheckRefState)(const RefState*)) const; 389 390 // Implementation of the checkPreStmt and checkEndFunction callbacks. 391 void checkEscapeOnReturn(const ReturnStmt *S, CheckerContext &C) const; 392 393 ///@{ 394 /// Tells if a given family/call/symbol is tracked by the current checker. 395 /// Sets CheckKind to the kind of the checker responsible for this 396 /// family/call/symbol. 397 Optional<CheckKind> getCheckIfTracked(AllocationFamily Family, 398 bool IsALeakCheck = false) const; 399 Optional<CheckKind> getCheckIfTracked(CheckerContext &C, 400 const Stmt *AllocDeallocStmt, 401 bool IsALeakCheck = false) const; 402 Optional<CheckKind> getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 403 bool IsALeakCheck = false) const; 404 ///@} 405 static bool SummarizeValue(raw_ostream &os, SVal V); 406 static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR); 407 void ReportBadFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 408 const Expr *DeallocExpr) const; 409 void ReportFreeAlloca(CheckerContext &C, SVal ArgVal, 410 SourceRange Range) const; 411 void ReportMismatchedDealloc(CheckerContext &C, SourceRange Range, 412 const Expr *DeallocExpr, const RefState *RS, 413 SymbolRef Sym, bool OwnershipTransferred) const; 414 void ReportOffsetFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 415 const Expr *DeallocExpr, 416 const Expr *AllocExpr = nullptr) const; 417 void ReportUseAfterFree(CheckerContext &C, SourceRange Range, 418 SymbolRef Sym) const; 419 void ReportDoubleFree(CheckerContext &C, SourceRange Range, bool Released, 420 SymbolRef Sym, SymbolRef PrevSym) const; 421 422 void ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const; 423 424 void ReportUseZeroAllocated(CheckerContext &C, SourceRange Range, 425 SymbolRef Sym) const; 426 427 void ReportFunctionPointerFree(CheckerContext &C, SVal ArgVal, 428 SourceRange Range, const Expr *FreeExpr) const; 429 430 /// Find the location of the allocation for Sym on the path leading to the 431 /// exploded node N. 432 LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym, 433 CheckerContext &C) const; 434 435 void reportLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const; 436 437 /// The bug visitor which allows us to print extra diagnostics along the 438 /// BugReport path. For example, showing the allocation site of the leaked 439 /// region. 440 class MallocBugVisitor final : public BugReporterVisitor { 441 protected: 442 enum NotificationMode { 443 Normal, 444 ReallocationFailed 445 }; 446 447 // The allocated region symbol tracked by the main analysis. 448 SymbolRef Sym; 449 450 // The mode we are in, i.e. what kind of diagnostics will be emitted. 451 NotificationMode Mode; 452 453 // A symbol from when the primary region should have been reallocated. 454 SymbolRef FailedReallocSymbol; 455 456 // A C++ destructor stack frame in which memory was released. Used for 457 // miscellaneous false positive suppression. 458 const StackFrameContext *ReleaseDestructorLC; 459 460 bool IsLeak; 461 462 public: 463 MallocBugVisitor(SymbolRef S, bool isLeak = false) 464 : Sym(S), Mode(Normal), FailedReallocSymbol(nullptr), 465 ReleaseDestructorLC(nullptr), IsLeak(isLeak) {} 466 467 static void *getTag() { 468 static int Tag = 0; 469 return &Tag; 470 } 471 472 void Profile(llvm::FoldingSetNodeID &ID) const override { 473 ID.AddPointer(getTag()); 474 ID.AddPointer(Sym); 475 } 476 477 inline bool isAllocated(const RefState *S, const RefState *SPrev, 478 const Stmt *Stmt) { 479 // Did not track -> allocated. Other state (released) -> allocated. 480 return (Stmt && (isa<CallExpr>(Stmt) || isa<CXXNewExpr>(Stmt)) && 481 (S && (S->isAllocated() || S->isAllocatedOfSizeZero())) && 482 (!SPrev || !(SPrev->isAllocated() || 483 SPrev->isAllocatedOfSizeZero()))); 484 } 485 486 inline bool isReleased(const RefState *S, const RefState *SPrev, 487 const Stmt *Stmt) { 488 // Did not track -> released. Other state (allocated) -> released. 489 // The statement associated with the release might be missing. 490 bool IsReleased = (S && S->isReleased()) && 491 (!SPrev || !SPrev->isReleased()); 492 assert(!IsReleased || 493 (Stmt && (isa<CallExpr>(Stmt) || isa<CXXDeleteExpr>(Stmt))) || 494 (!Stmt && S->getAllocationFamily() == AF_InnerBuffer)); 495 return IsReleased; 496 } 497 498 inline bool isRelinquished(const RefState *S, const RefState *SPrev, 499 const Stmt *Stmt) { 500 // Did not track -> relinquished. Other state (allocated) -> relinquished. 501 return (Stmt && (isa<CallExpr>(Stmt) || isa<ObjCMessageExpr>(Stmt) || 502 isa<ObjCPropertyRefExpr>(Stmt)) && 503 (S && S->isRelinquished()) && 504 (!SPrev || !SPrev->isRelinquished())); 505 } 506 507 inline bool isReallocFailedCheck(const RefState *S, const RefState *SPrev, 508 const Stmt *Stmt) { 509 // If the expression is not a call, and the state change is 510 // released -> allocated, it must be the realloc return value 511 // check. If we have to handle more cases here, it might be cleaner just 512 // to track this extra bit in the state itself. 513 return ((!Stmt || !isa<CallExpr>(Stmt)) && 514 (S && (S->isAllocated() || S->isAllocatedOfSizeZero())) && 515 (SPrev && !(SPrev->isAllocated() || 516 SPrev->isAllocatedOfSizeZero()))); 517 } 518 519 std::shared_ptr<PathDiagnosticPiece> VisitNode(const ExplodedNode *N, 520 const ExplodedNode *PrevN, 521 BugReporterContext &BRC, 522 BugReport &BR) override; 523 524 std::shared_ptr<PathDiagnosticPiece> 525 getEndPath(BugReporterContext &BRC, const ExplodedNode *EndPathNode, 526 BugReport &BR) override { 527 if (!IsLeak) 528 return nullptr; 529 530 PathDiagnosticLocation L = 531 PathDiagnosticLocation::createEndOfPath(EndPathNode, 532 BRC.getSourceManager()); 533 // Do not add the statement itself as a range in case of leak. 534 return std::make_shared<PathDiagnosticEventPiece>(L, BR.getDescription(), 535 false); 536 } 537 538 private: 539 class StackHintGeneratorForReallocationFailed 540 : public StackHintGeneratorForSymbol { 541 public: 542 StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M) 543 : StackHintGeneratorForSymbol(S, M) {} 544 545 std::string getMessageForArg(const Expr *ArgE, 546 unsigned ArgIndex) override { 547 // Printed parameters start at 1, not 0. 548 ++ArgIndex; 549 550 SmallString<200> buf; 551 llvm::raw_svector_ostream os(buf); 552 553 os << "Reallocation of " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex) 554 << " parameter failed"; 555 556 return os.str(); 557 } 558 559 std::string getMessageForReturn(const CallExpr *CallExpr) override { 560 return "Reallocation of returned value failed"; 561 } 562 }; 563 }; 564 }; 565 } // end anonymous namespace 566 567 REGISTER_MAP_WITH_PROGRAMSTATE(RegionState, SymbolRef, RefState) 568 REGISTER_MAP_WITH_PROGRAMSTATE(ReallocPairs, SymbolRef, ReallocPair) 569 REGISTER_SET_WITH_PROGRAMSTATE(ReallocSizeZeroSymbols, SymbolRef) 570 571 // A map from the freed symbol to the symbol representing the return value of 572 // the free function. 573 REGISTER_MAP_WITH_PROGRAMSTATE(FreeReturnValue, SymbolRef, SymbolRef) 574 575 namespace { 576 class StopTrackingCallback final : public SymbolVisitor { 577 ProgramStateRef state; 578 public: 579 StopTrackingCallback(ProgramStateRef st) : state(std::move(st)) {} 580 ProgramStateRef getState() const { return state; } 581 582 bool VisitSymbol(SymbolRef sym) override { 583 state = state->remove<RegionState>(sym); 584 return true; 585 } 586 }; 587 } // end anonymous namespace 588 589 void MallocChecker::initIdentifierInfo(ASTContext &Ctx) const { 590 if (II_malloc) 591 return; 592 II_alloca = &Ctx.Idents.get("alloca"); 593 II_malloc = &Ctx.Idents.get("malloc"); 594 II_free = &Ctx.Idents.get("free"); 595 II_realloc = &Ctx.Idents.get("realloc"); 596 II_reallocf = &Ctx.Idents.get("reallocf"); 597 II_calloc = &Ctx.Idents.get("calloc"); 598 II_valloc = &Ctx.Idents.get("valloc"); 599 II_strdup = &Ctx.Idents.get("strdup"); 600 II_strndup = &Ctx.Idents.get("strndup"); 601 II_wcsdup = &Ctx.Idents.get("wcsdup"); 602 II_kmalloc = &Ctx.Idents.get("kmalloc"); 603 II_if_nameindex = &Ctx.Idents.get("if_nameindex"); 604 II_if_freenameindex = &Ctx.Idents.get("if_freenameindex"); 605 606 //MSVC uses `_`-prefixed instead, so we check for them too. 607 II_win_strdup = &Ctx.Idents.get("_strdup"); 608 II_win_wcsdup = &Ctx.Idents.get("_wcsdup"); 609 II_win_alloca = &Ctx.Idents.get("_alloca"); 610 611 // Glib 612 II_g_malloc = &Ctx.Idents.get("g_malloc"); 613 II_g_malloc0 = &Ctx.Idents.get("g_malloc0"); 614 II_g_realloc = &Ctx.Idents.get("g_realloc"); 615 II_g_try_malloc = &Ctx.Idents.get("g_try_malloc"); 616 II_g_try_malloc0 = &Ctx.Idents.get("g_try_malloc0"); 617 II_g_try_realloc = &Ctx.Idents.get("g_try_realloc"); 618 II_g_free = &Ctx.Idents.get("g_free"); 619 II_g_memdup = &Ctx.Idents.get("g_memdup"); 620 II_g_malloc_n = &Ctx.Idents.get("g_malloc_n"); 621 II_g_malloc0_n = &Ctx.Idents.get("g_malloc0_n"); 622 II_g_realloc_n = &Ctx.Idents.get("g_realloc_n"); 623 II_g_try_malloc_n = &Ctx.Idents.get("g_try_malloc_n"); 624 II_g_try_malloc0_n = &Ctx.Idents.get("g_try_malloc0_n"); 625 II_g_try_realloc_n = &Ctx.Idents.get("g_try_realloc_n"); 626 } 627 628 bool MallocChecker::isMemFunction(const FunctionDecl *FD, ASTContext &C) const { 629 if (isCMemFunction(FD, C, AF_Malloc, MemoryOperationKind::MOK_Any)) 630 return true; 631 632 if (isCMemFunction(FD, C, AF_IfNameIndex, MemoryOperationKind::MOK_Any)) 633 return true; 634 635 if (isCMemFunction(FD, C, AF_Alloca, MemoryOperationKind::MOK_Any)) 636 return true; 637 638 if (isStandardNewDelete(FD, C)) 639 return true; 640 641 return false; 642 } 643 644 bool MallocChecker::isCMemFunction(const FunctionDecl *FD, 645 ASTContext &C, 646 AllocationFamily Family, 647 MemoryOperationKind MemKind) const { 648 if (!FD) 649 return false; 650 651 bool CheckFree = (MemKind == MemoryOperationKind::MOK_Any || 652 MemKind == MemoryOperationKind::MOK_Free); 653 bool CheckAlloc = (MemKind == MemoryOperationKind::MOK_Any || 654 MemKind == MemoryOperationKind::MOK_Allocate); 655 656 if (FD->getKind() == Decl::Function) { 657 const IdentifierInfo *FunI = FD->getIdentifier(); 658 initIdentifierInfo(C); 659 660 if (Family == AF_Malloc && CheckFree) { 661 if (FunI == II_free || FunI == II_realloc || FunI == II_reallocf || 662 FunI == II_g_free) 663 return true; 664 } 665 666 if (Family == AF_Malloc && CheckAlloc) { 667 if (FunI == II_malloc || FunI == II_realloc || FunI == II_reallocf || 668 FunI == II_calloc || FunI == II_valloc || FunI == II_strdup || 669 FunI == II_win_strdup || FunI == II_strndup || FunI == II_wcsdup || 670 FunI == II_win_wcsdup || FunI == II_kmalloc || 671 FunI == II_g_malloc || FunI == II_g_malloc0 || 672 FunI == II_g_realloc || FunI == II_g_try_malloc || 673 FunI == II_g_try_malloc0 || FunI == II_g_try_realloc || 674 FunI == II_g_memdup || FunI == II_g_malloc_n || 675 FunI == II_g_malloc0_n || FunI == II_g_realloc_n || 676 FunI == II_g_try_malloc_n || FunI == II_g_try_malloc0_n || 677 FunI == II_g_try_realloc_n) 678 return true; 679 } 680 681 if (Family == AF_IfNameIndex && CheckFree) { 682 if (FunI == II_if_freenameindex) 683 return true; 684 } 685 686 if (Family == AF_IfNameIndex && CheckAlloc) { 687 if (FunI == II_if_nameindex) 688 return true; 689 } 690 691 if (Family == AF_Alloca && CheckAlloc) { 692 if (FunI == II_alloca || FunI == II_win_alloca) 693 return true; 694 } 695 } 696 697 if (Family != AF_Malloc) 698 return false; 699 700 if (IsOptimistic && FD->hasAttrs()) { 701 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { 702 OwnershipAttr::OwnershipKind OwnKind = I->getOwnKind(); 703 if(OwnKind == OwnershipAttr::Takes || OwnKind == OwnershipAttr::Holds) { 704 if (CheckFree) 705 return true; 706 } else if (OwnKind == OwnershipAttr::Returns) { 707 if (CheckAlloc) 708 return true; 709 } 710 } 711 } 712 713 return false; 714 } 715 716 // Tells if the callee is one of the following: 717 // 1) A global non-placement new/delete operator function. 718 // 2) A global placement operator function with the single placement argument 719 // of type std::nothrow_t. 720 bool MallocChecker::isStandardNewDelete(const FunctionDecl *FD, 721 ASTContext &C) const { 722 if (!FD) 723 return false; 724 725 OverloadedOperatorKind Kind = FD->getOverloadedOperator(); 726 if (Kind != OO_New && Kind != OO_Array_New && 727 Kind != OO_Delete && Kind != OO_Array_Delete) 728 return false; 729 730 // Skip all operator new/delete methods. 731 if (isa<CXXMethodDecl>(FD)) 732 return false; 733 734 // Return true if tested operator is a standard placement nothrow operator. 735 if (FD->getNumParams() == 2) { 736 QualType T = FD->getParamDecl(1)->getType(); 737 if (const IdentifierInfo *II = T.getBaseTypeIdentifier()) 738 return II->getName().equals("nothrow_t"); 739 } 740 741 // Skip placement operators. 742 if (FD->getNumParams() != 1 || FD->isVariadic()) 743 return false; 744 745 // One of the standard new/new[]/delete/delete[] non-placement operators. 746 return true; 747 } 748 749 llvm::Optional<ProgramStateRef> MallocChecker::performKernelMalloc( 750 const CallExpr *CE, CheckerContext &C, const ProgramStateRef &State) const { 751 // 3-argument malloc(), as commonly used in {Free,Net,Open}BSD Kernels: 752 // 753 // void *malloc(unsigned long size, struct malloc_type *mtp, int flags); 754 // 755 // One of the possible flags is M_ZERO, which means 'give me back an 756 // allocation which is already zeroed', like calloc. 757 758 // 2-argument kmalloc(), as used in the Linux kernel: 759 // 760 // void *kmalloc(size_t size, gfp_t flags); 761 // 762 // Has the similar flag value __GFP_ZERO. 763 764 // This logic is largely cloned from O_CREAT in UnixAPIChecker, maybe some 765 // code could be shared. 766 767 ASTContext &Ctx = C.getASTContext(); 768 llvm::Triple::OSType OS = Ctx.getTargetInfo().getTriple().getOS(); 769 770 if (!KernelZeroFlagVal.hasValue()) { 771 if (OS == llvm::Triple::FreeBSD) 772 KernelZeroFlagVal = 0x0100; 773 else if (OS == llvm::Triple::NetBSD) 774 KernelZeroFlagVal = 0x0002; 775 else if (OS == llvm::Triple::OpenBSD) 776 KernelZeroFlagVal = 0x0008; 777 else if (OS == llvm::Triple::Linux) 778 // __GFP_ZERO 779 KernelZeroFlagVal = 0x8000; 780 else 781 // FIXME: We need a more general way of getting the M_ZERO value. 782 // See also: O_CREAT in UnixAPIChecker.cpp. 783 784 // Fall back to normal malloc behavior on platforms where we don't 785 // know M_ZERO. 786 return None; 787 } 788 789 // We treat the last argument as the flags argument, and callers fall-back to 790 // normal malloc on a None return. This works for the FreeBSD kernel malloc 791 // as well as Linux kmalloc. 792 if (CE->getNumArgs() < 2) 793 return None; 794 795 const Expr *FlagsEx = CE->getArg(CE->getNumArgs() - 1); 796 const SVal V = C.getSVal(FlagsEx); 797 if (!V.getAs<NonLoc>()) { 798 // The case where 'V' can be a location can only be due to a bad header, 799 // so in this case bail out. 800 return None; 801 } 802 803 NonLoc Flags = V.castAs<NonLoc>(); 804 NonLoc ZeroFlag = C.getSValBuilder() 805 .makeIntVal(KernelZeroFlagVal.getValue(), FlagsEx->getType()) 806 .castAs<NonLoc>(); 807 SVal MaskedFlagsUC = C.getSValBuilder().evalBinOpNN(State, BO_And, 808 Flags, ZeroFlag, 809 FlagsEx->getType()); 810 if (MaskedFlagsUC.isUnknownOrUndef()) 811 return None; 812 DefinedSVal MaskedFlags = MaskedFlagsUC.castAs<DefinedSVal>(); 813 814 // Check if maskedFlags is non-zero. 815 ProgramStateRef TrueState, FalseState; 816 std::tie(TrueState, FalseState) = State->assume(MaskedFlags); 817 818 // If M_ZERO is set, treat this like calloc (initialized). 819 if (TrueState && !FalseState) { 820 SVal ZeroVal = C.getSValBuilder().makeZeroVal(Ctx.CharTy); 821 return MallocMemAux(C, CE, CE->getArg(0), ZeroVal, TrueState); 822 } 823 824 return None; 825 } 826 827 SVal MallocChecker::evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, 828 const Expr *BlockBytes) { 829 SValBuilder &SB = C.getSValBuilder(); 830 SVal BlocksVal = C.getSVal(Blocks); 831 SVal BlockBytesVal = C.getSVal(BlockBytes); 832 ProgramStateRef State = C.getState(); 833 SVal TotalSize = SB.evalBinOp(State, BO_Mul, BlocksVal, BlockBytesVal, 834 SB.getContext().getSizeType()); 835 return TotalSize; 836 } 837 838 void MallocChecker::checkPostStmt(const CallExpr *CE, CheckerContext &C) const { 839 if (C.wasInlined) 840 return; 841 842 const FunctionDecl *FD = C.getCalleeDecl(CE); 843 if (!FD) 844 return; 845 846 ProgramStateRef State = C.getState(); 847 bool ReleasedAllocatedMemory = false; 848 849 if (FD->getKind() == Decl::Function) { 850 initIdentifierInfo(C.getASTContext()); 851 IdentifierInfo *FunI = FD->getIdentifier(); 852 853 if (FunI == II_malloc || FunI == II_g_malloc || FunI == II_g_try_malloc) { 854 if (CE->getNumArgs() < 1) 855 return; 856 if (CE->getNumArgs() < 3) { 857 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 858 if (CE->getNumArgs() == 1) 859 State = ProcessZeroAllocation(C, CE, 0, State); 860 } else if (CE->getNumArgs() == 3) { 861 llvm::Optional<ProgramStateRef> MaybeState = 862 performKernelMalloc(CE, C, State); 863 if (MaybeState.hasValue()) 864 State = MaybeState.getValue(); 865 else 866 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 867 } 868 } else if (FunI == II_kmalloc) { 869 if (CE->getNumArgs() < 1) 870 return; 871 llvm::Optional<ProgramStateRef> MaybeState = 872 performKernelMalloc(CE, C, State); 873 if (MaybeState.hasValue()) 874 State = MaybeState.getValue(); 875 else 876 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 877 } else if (FunI == II_valloc) { 878 if (CE->getNumArgs() < 1) 879 return; 880 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 881 State = ProcessZeroAllocation(C, CE, 0, State); 882 } else if (FunI == II_realloc || FunI == II_g_realloc || 883 FunI == II_g_try_realloc) { 884 State = ReallocMemAux(C, CE, false, State); 885 State = ProcessZeroAllocation(C, CE, 1, State); 886 } else if (FunI == II_reallocf) { 887 State = ReallocMemAux(C, CE, true, State); 888 State = ProcessZeroAllocation(C, CE, 1, State); 889 } else if (FunI == II_calloc) { 890 State = CallocMem(C, CE, State); 891 State = ProcessZeroAllocation(C, CE, 0, State); 892 State = ProcessZeroAllocation(C, CE, 1, State); 893 } else if (FunI == II_free || FunI == II_g_free) { 894 State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory); 895 } else if (FunI == II_strdup || FunI == II_win_strdup || 896 FunI == II_wcsdup || FunI == II_win_wcsdup) { 897 State = MallocUpdateRefState(C, CE, State); 898 } else if (FunI == II_strndup) { 899 State = MallocUpdateRefState(C, CE, State); 900 } else if (FunI == II_alloca || FunI == II_win_alloca) { 901 if (CE->getNumArgs() < 1) 902 return; 903 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, 904 AF_Alloca); 905 State = ProcessZeroAllocation(C, CE, 0, State); 906 } else if (isStandardNewDelete(FD, C.getASTContext())) { 907 // Process direct calls to operator new/new[]/delete/delete[] functions 908 // as distinct from new/new[]/delete/delete[] expressions that are 909 // processed by the checkPostStmt callbacks for CXXNewExpr and 910 // CXXDeleteExpr. 911 OverloadedOperatorKind K = FD->getOverloadedOperator(); 912 if (K == OO_New) { 913 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, 914 AF_CXXNew); 915 State = ProcessZeroAllocation(C, CE, 0, State); 916 } 917 else if (K == OO_Array_New) { 918 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, 919 AF_CXXNewArray); 920 State = ProcessZeroAllocation(C, CE, 0, State); 921 } 922 else if (K == OO_Delete || K == OO_Array_Delete) 923 State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory); 924 else 925 llvm_unreachable("not a new/delete operator"); 926 } else if (FunI == II_if_nameindex) { 927 // Should we model this differently? We can allocate a fixed number of 928 // elements with zeros in the last one. 929 State = MallocMemAux(C, CE, UnknownVal(), UnknownVal(), State, 930 AF_IfNameIndex); 931 } else if (FunI == II_if_freenameindex) { 932 State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory); 933 } else if (FunI == II_g_malloc0 || FunI == II_g_try_malloc0) { 934 if (CE->getNumArgs() < 1) 935 return; 936 SValBuilder &svalBuilder = C.getSValBuilder(); 937 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 938 State = MallocMemAux(C, CE, CE->getArg(0), zeroVal, State); 939 State = ProcessZeroAllocation(C, CE, 0, State); 940 } else if (FunI == II_g_memdup) { 941 if (CE->getNumArgs() < 2) 942 return; 943 State = MallocMemAux(C, CE, CE->getArg(1), UndefinedVal(), State); 944 State = ProcessZeroAllocation(C, CE, 1, State); 945 } else if (FunI == II_g_malloc_n || FunI == II_g_try_malloc_n || 946 FunI == II_g_malloc0_n || FunI == II_g_try_malloc0_n) { 947 if (CE->getNumArgs() < 2) 948 return; 949 SVal Init = UndefinedVal(); 950 if (FunI == II_g_malloc0_n || FunI == II_g_try_malloc0_n) { 951 SValBuilder &SB = C.getSValBuilder(); 952 Init = SB.makeZeroVal(SB.getContext().CharTy); 953 } 954 SVal TotalSize = evalMulForBufferSize(C, CE->getArg(0), CE->getArg(1)); 955 State = MallocMemAux(C, CE, TotalSize, Init, State); 956 State = ProcessZeroAllocation(C, CE, 0, State); 957 State = ProcessZeroAllocation(C, CE, 1, State); 958 } else if (FunI == II_g_realloc_n || FunI == II_g_try_realloc_n) { 959 if (CE->getNumArgs() < 3) 960 return; 961 State = ReallocMemAux(C, CE, false, State, true); 962 State = ProcessZeroAllocation(C, CE, 1, State); 963 State = ProcessZeroAllocation(C, CE, 2, State); 964 } 965 } 966 967 if (IsOptimistic || ChecksEnabled[CK_MismatchedDeallocatorChecker]) { 968 // Check all the attributes, if there are any. 969 // There can be multiple of these attributes. 970 if (FD->hasAttrs()) 971 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { 972 switch (I->getOwnKind()) { 973 case OwnershipAttr::Returns: 974 State = MallocMemReturnsAttr(C, CE, I, State); 975 break; 976 case OwnershipAttr::Takes: 977 case OwnershipAttr::Holds: 978 State = FreeMemAttr(C, CE, I, State); 979 break; 980 } 981 } 982 } 983 C.addTransition(State); 984 } 985 986 // Performs a 0-sized allocations check. 987 ProgramStateRef MallocChecker::ProcessZeroAllocation( 988 CheckerContext &C, const Expr *E, const unsigned AllocationSizeArg, 989 ProgramStateRef State, Optional<SVal> RetVal) const { 990 if (!State) 991 return nullptr; 992 993 if (!RetVal) 994 RetVal = C.getSVal(E); 995 996 const Expr *Arg = nullptr; 997 998 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 999 Arg = CE->getArg(AllocationSizeArg); 1000 } 1001 else if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { 1002 if (NE->isArray()) 1003 Arg = NE->getArraySize(); 1004 else 1005 return State; 1006 } 1007 else 1008 llvm_unreachable("not a CallExpr or CXXNewExpr"); 1009 1010 assert(Arg); 1011 1012 Optional<DefinedSVal> DefArgVal = C.getSVal(Arg).getAs<DefinedSVal>(); 1013 1014 if (!DefArgVal) 1015 return State; 1016 1017 // Check if the allocation size is 0. 1018 ProgramStateRef TrueState, FalseState; 1019 SValBuilder &SvalBuilder = C.getSValBuilder(); 1020 DefinedSVal Zero = 1021 SvalBuilder.makeZeroVal(Arg->getType()).castAs<DefinedSVal>(); 1022 1023 std::tie(TrueState, FalseState) = 1024 State->assume(SvalBuilder.evalEQ(State, *DefArgVal, Zero)); 1025 1026 if (TrueState && !FalseState) { 1027 SymbolRef Sym = RetVal->getAsLocSymbol(); 1028 if (!Sym) 1029 return State; 1030 1031 const RefState *RS = State->get<RegionState>(Sym); 1032 if (RS) { 1033 if (RS->isAllocated()) 1034 return TrueState->set<RegionState>(Sym, 1035 RefState::getAllocatedOfSizeZero(RS)); 1036 else 1037 return State; 1038 } else { 1039 // Case of zero-size realloc. Historically 'realloc(ptr, 0)' is treated as 1040 // 'free(ptr)' and the returned value from 'realloc(ptr, 0)' is not 1041 // tracked. Add zero-reallocated Sym to the state to catch references 1042 // to zero-allocated memory. 1043 return TrueState->add<ReallocSizeZeroSymbols>(Sym); 1044 } 1045 } 1046 1047 // Assume the value is non-zero going forward. 1048 assert(FalseState); 1049 return FalseState; 1050 } 1051 1052 static QualType getDeepPointeeType(QualType T) { 1053 QualType Result = T, PointeeType = T->getPointeeType(); 1054 while (!PointeeType.isNull()) { 1055 Result = PointeeType; 1056 PointeeType = PointeeType->getPointeeType(); 1057 } 1058 return Result; 1059 } 1060 1061 static bool treatUnusedNewEscaped(const CXXNewExpr *NE) { 1062 1063 const CXXConstructExpr *ConstructE = NE->getConstructExpr(); 1064 if (!ConstructE) 1065 return false; 1066 1067 if (!NE->getAllocatedType()->getAsCXXRecordDecl()) 1068 return false; 1069 1070 const CXXConstructorDecl *CtorD = ConstructE->getConstructor(); 1071 1072 // Iterate over the constructor parameters. 1073 for (const auto *CtorParam : CtorD->parameters()) { 1074 1075 QualType CtorParamPointeeT = CtorParam->getType()->getPointeeType(); 1076 if (CtorParamPointeeT.isNull()) 1077 continue; 1078 1079 CtorParamPointeeT = getDeepPointeeType(CtorParamPointeeT); 1080 1081 if (CtorParamPointeeT->getAsCXXRecordDecl()) 1082 return true; 1083 } 1084 1085 return false; 1086 } 1087 1088 void MallocChecker::processNewAllocation(const CXXNewExpr *NE, 1089 CheckerContext &C, 1090 SVal Target) const { 1091 if (NE->getNumPlacementArgs()) 1092 for (CXXNewExpr::const_arg_iterator I = NE->placement_arg_begin(), 1093 E = NE->placement_arg_end(); I != E; ++I) 1094 if (SymbolRef Sym = C.getSVal(*I).getAsSymbol()) 1095 checkUseAfterFree(Sym, C, *I); 1096 1097 if (!isStandardNewDelete(NE->getOperatorNew(), C.getASTContext())) 1098 return; 1099 1100 ParentMap &PM = C.getLocationContext()->getParentMap(); 1101 if (!PM.isConsumedExpr(NE) && treatUnusedNewEscaped(NE)) 1102 return; 1103 1104 ProgramStateRef State = C.getState(); 1105 // The return value from operator new is bound to a specified initialization 1106 // value (if any) and we don't want to loose this value. So we call 1107 // MallocUpdateRefState() instead of MallocMemAux() which breakes the 1108 // existing binding. 1109 State = MallocUpdateRefState(C, NE, State, NE->isArray() ? AF_CXXNewArray 1110 : AF_CXXNew, Target); 1111 State = addExtentSize(C, NE, State, Target); 1112 State = ProcessZeroAllocation(C, NE, 0, State, Target); 1113 C.addTransition(State); 1114 } 1115 1116 void MallocChecker::checkPostStmt(const CXXNewExpr *NE, 1117 CheckerContext &C) const { 1118 if (!C.getAnalysisManager().getAnalyzerOptions().mayInlineCXXAllocator()) 1119 processNewAllocation(NE, C, C.getSVal(NE)); 1120 } 1121 1122 void MallocChecker::checkNewAllocator(const CXXNewExpr *NE, SVal Target, 1123 CheckerContext &C) const { 1124 if (!C.wasInlined) 1125 processNewAllocation(NE, C, Target); 1126 } 1127 1128 // Sets the extent value of the MemRegion allocated by 1129 // new expression NE to its size in Bytes. 1130 // 1131 ProgramStateRef MallocChecker::addExtentSize(CheckerContext &C, 1132 const CXXNewExpr *NE, 1133 ProgramStateRef State, 1134 SVal Target) { 1135 if (!State) 1136 return nullptr; 1137 SValBuilder &svalBuilder = C.getSValBuilder(); 1138 SVal ElementCount; 1139 const SubRegion *Region; 1140 if (NE->isArray()) { 1141 const Expr *SizeExpr = NE->getArraySize(); 1142 ElementCount = C.getSVal(SizeExpr); 1143 // Store the extent size for the (symbolic)region 1144 // containing the elements. 1145 Region = Target.getAsRegion() 1146 ->getAs<SubRegion>() 1147 ->StripCasts() 1148 ->getAs<SubRegion>(); 1149 } else { 1150 ElementCount = svalBuilder.makeIntVal(1, true); 1151 Region = Target.getAsRegion()->getAs<SubRegion>(); 1152 } 1153 assert(Region); 1154 1155 // Set the region's extent equal to the Size in Bytes. 1156 QualType ElementType = NE->getAllocatedType(); 1157 ASTContext &AstContext = C.getASTContext(); 1158 CharUnits TypeSize = AstContext.getTypeSizeInChars(ElementType); 1159 1160 if (ElementCount.getAs<NonLoc>()) { 1161 DefinedOrUnknownSVal Extent = Region->getExtent(svalBuilder); 1162 // size in Bytes = ElementCount*TypeSize 1163 SVal SizeInBytes = svalBuilder.evalBinOpNN( 1164 State, BO_Mul, ElementCount.castAs<NonLoc>(), 1165 svalBuilder.makeArrayIndex(TypeSize.getQuantity()), 1166 svalBuilder.getArrayIndexType()); 1167 DefinedOrUnknownSVal extentMatchesSize = svalBuilder.evalEQ( 1168 State, Extent, SizeInBytes.castAs<DefinedOrUnknownSVal>()); 1169 State = State->assume(extentMatchesSize, true); 1170 } 1171 return State; 1172 } 1173 1174 void MallocChecker::checkPreStmt(const CXXDeleteExpr *DE, 1175 CheckerContext &C) const { 1176 1177 if (!ChecksEnabled[CK_NewDeleteChecker]) 1178 if (SymbolRef Sym = C.getSVal(DE->getArgument()).getAsSymbol()) 1179 checkUseAfterFree(Sym, C, DE->getArgument()); 1180 1181 if (!isStandardNewDelete(DE->getOperatorDelete(), C.getASTContext())) 1182 return; 1183 1184 ProgramStateRef State = C.getState(); 1185 bool ReleasedAllocated; 1186 State = FreeMemAux(C, DE->getArgument(), DE, State, 1187 /*Hold*/false, ReleasedAllocated); 1188 1189 C.addTransition(State); 1190 } 1191 1192 static bool isKnownDeallocObjCMethodName(const ObjCMethodCall &Call) { 1193 // If the first selector piece is one of the names below, assume that the 1194 // object takes ownership of the memory, promising to eventually deallocate it 1195 // with free(). 1196 // Ex: [NSData dataWithBytesNoCopy:bytes length:10]; 1197 // (...unless a 'freeWhenDone' parameter is false, but that's checked later.) 1198 StringRef FirstSlot = Call.getSelector().getNameForSlot(0); 1199 return FirstSlot == "dataWithBytesNoCopy" || 1200 FirstSlot == "initWithBytesNoCopy" || 1201 FirstSlot == "initWithCharactersNoCopy"; 1202 } 1203 1204 static Optional<bool> getFreeWhenDoneArg(const ObjCMethodCall &Call) { 1205 Selector S = Call.getSelector(); 1206 1207 // FIXME: We should not rely on fully-constrained symbols being folded. 1208 for (unsigned i = 1; i < S.getNumArgs(); ++i) 1209 if (S.getNameForSlot(i).equals("freeWhenDone")) 1210 return !Call.getArgSVal(i).isZeroConstant(); 1211 1212 return None; 1213 } 1214 1215 void MallocChecker::checkPostObjCMessage(const ObjCMethodCall &Call, 1216 CheckerContext &C) const { 1217 if (C.wasInlined) 1218 return; 1219 1220 if (!isKnownDeallocObjCMethodName(Call)) 1221 return; 1222 1223 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call)) 1224 if (!*FreeWhenDone) 1225 return; 1226 1227 bool ReleasedAllocatedMemory; 1228 ProgramStateRef State = FreeMemAux(C, Call.getArgExpr(0), 1229 Call.getOriginExpr(), C.getState(), 1230 /*Hold=*/true, ReleasedAllocatedMemory, 1231 /*RetNullOnFailure=*/true); 1232 1233 C.addTransition(State); 1234 } 1235 1236 ProgramStateRef 1237 MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallExpr *CE, 1238 const OwnershipAttr *Att, 1239 ProgramStateRef State) const { 1240 if (!State) 1241 return nullptr; 1242 1243 if (Att->getModule() != II_malloc) 1244 return nullptr; 1245 1246 OwnershipAttr::args_iterator I = Att->args_begin(), E = Att->args_end(); 1247 if (I != E) { 1248 return MallocMemAux(C, CE, CE->getArg(I->getASTIndex()), UndefinedVal(), 1249 State); 1250 } 1251 return MallocMemAux(C, CE, UnknownVal(), UndefinedVal(), State); 1252 } 1253 1254 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1255 const CallExpr *CE, 1256 const Expr *SizeEx, SVal Init, 1257 ProgramStateRef State, 1258 AllocationFamily Family) { 1259 if (!State) 1260 return nullptr; 1261 1262 return MallocMemAux(C, CE, C.getSVal(SizeEx), Init, State, Family); 1263 } 1264 1265 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1266 const CallExpr *CE, 1267 SVal Size, SVal Init, 1268 ProgramStateRef State, 1269 AllocationFamily Family) { 1270 if (!State) 1271 return nullptr; 1272 1273 // We expect the malloc functions to return a pointer. 1274 if (!Loc::isLocType(CE->getType())) 1275 return nullptr; 1276 1277 // Bind the return value to the symbolic value from the heap region. 1278 // TODO: We could rewrite post visit to eval call; 'malloc' does not have 1279 // side effects other than what we model here. 1280 unsigned Count = C.blockCount(); 1281 SValBuilder &svalBuilder = C.getSValBuilder(); 1282 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 1283 DefinedSVal RetVal = svalBuilder.getConjuredHeapSymbolVal(CE, LCtx, Count) 1284 .castAs<DefinedSVal>(); 1285 State = State->BindExpr(CE, C.getLocationContext(), RetVal); 1286 1287 // Fill the region with the initialization value. 1288 State = State->bindDefaultInitial(RetVal, Init, LCtx); 1289 1290 // Set the region's extent equal to the Size parameter. 1291 const SymbolicRegion *R = 1292 dyn_cast_or_null<SymbolicRegion>(RetVal.getAsRegion()); 1293 if (!R) 1294 return nullptr; 1295 if (Optional<DefinedOrUnknownSVal> DefinedSize = 1296 Size.getAs<DefinedOrUnknownSVal>()) { 1297 SValBuilder &svalBuilder = C.getSValBuilder(); 1298 DefinedOrUnknownSVal Extent = R->getExtent(svalBuilder); 1299 DefinedOrUnknownSVal extentMatchesSize = 1300 svalBuilder.evalEQ(State, Extent, *DefinedSize); 1301 1302 State = State->assume(extentMatchesSize, true); 1303 assert(State); 1304 } 1305 1306 return MallocUpdateRefState(C, CE, State, Family); 1307 } 1308 1309 ProgramStateRef MallocChecker::MallocUpdateRefState(CheckerContext &C, 1310 const Expr *E, 1311 ProgramStateRef State, 1312 AllocationFamily Family, 1313 Optional<SVal> RetVal) { 1314 if (!State) 1315 return nullptr; 1316 1317 // Get the return value. 1318 if (!RetVal) 1319 RetVal = C.getSVal(E); 1320 1321 // We expect the malloc functions to return a pointer. 1322 if (!RetVal->getAs<Loc>()) 1323 return nullptr; 1324 1325 SymbolRef Sym = RetVal->getAsLocSymbol(); 1326 // This is a return value of a function that was not inlined, such as malloc() 1327 // or new(). We've checked that in the caller. Therefore, it must be a symbol. 1328 assert(Sym); 1329 1330 // Set the symbol's state to Allocated. 1331 return State->set<RegionState>(Sym, RefState::getAllocated(Family, E)); 1332 } 1333 1334 ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C, 1335 const CallExpr *CE, 1336 const OwnershipAttr *Att, 1337 ProgramStateRef State) const { 1338 if (!State) 1339 return nullptr; 1340 1341 if (Att->getModule() != II_malloc) 1342 return nullptr; 1343 1344 bool ReleasedAllocated = false; 1345 1346 for (const auto &Arg : Att->args()) { 1347 ProgramStateRef StateI = FreeMemAux( 1348 C, CE, State, Arg.getASTIndex(), 1349 Att->getOwnKind() == OwnershipAttr::Holds, ReleasedAllocated); 1350 if (StateI) 1351 State = StateI; 1352 } 1353 return State; 1354 } 1355 1356 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, 1357 const CallExpr *CE, 1358 ProgramStateRef State, 1359 unsigned Num, 1360 bool Hold, 1361 bool &ReleasedAllocated, 1362 bool ReturnsNullOnFailure) const { 1363 if (!State) 1364 return nullptr; 1365 1366 if (CE->getNumArgs() < (Num + 1)) 1367 return nullptr; 1368 1369 return FreeMemAux(C, CE->getArg(Num), CE, State, Hold, 1370 ReleasedAllocated, ReturnsNullOnFailure); 1371 } 1372 1373 /// Checks if the previous call to free on the given symbol failed - if free 1374 /// failed, returns true. Also, returns the corresponding return value symbol. 1375 static bool didPreviousFreeFail(ProgramStateRef State, 1376 SymbolRef Sym, SymbolRef &RetStatusSymbol) { 1377 const SymbolRef *Ret = State->get<FreeReturnValue>(Sym); 1378 if (Ret) { 1379 assert(*Ret && "We should not store the null return symbol"); 1380 ConstraintManager &CMgr = State->getConstraintManager(); 1381 ConditionTruthVal FreeFailed = CMgr.isNull(State, *Ret); 1382 RetStatusSymbol = *Ret; 1383 return FreeFailed.isConstrainedTrue(); 1384 } 1385 return false; 1386 } 1387 1388 AllocationFamily MallocChecker::getAllocationFamily(CheckerContext &C, 1389 const Stmt *S) const { 1390 if (!S) 1391 return AF_None; 1392 1393 if (const CallExpr *CE = dyn_cast<CallExpr>(S)) { 1394 const FunctionDecl *FD = C.getCalleeDecl(CE); 1395 1396 if (!FD) 1397 FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); 1398 1399 ASTContext &Ctx = C.getASTContext(); 1400 1401 if (isCMemFunction(FD, Ctx, AF_Malloc, MemoryOperationKind::MOK_Any)) 1402 return AF_Malloc; 1403 1404 if (isStandardNewDelete(FD, Ctx)) { 1405 OverloadedOperatorKind Kind = FD->getOverloadedOperator(); 1406 if (Kind == OO_New || Kind == OO_Delete) 1407 return AF_CXXNew; 1408 else if (Kind == OO_Array_New || Kind == OO_Array_Delete) 1409 return AF_CXXNewArray; 1410 } 1411 1412 if (isCMemFunction(FD, Ctx, AF_IfNameIndex, MemoryOperationKind::MOK_Any)) 1413 return AF_IfNameIndex; 1414 1415 if (isCMemFunction(FD, Ctx, AF_Alloca, MemoryOperationKind::MOK_Any)) 1416 return AF_Alloca; 1417 1418 return AF_None; 1419 } 1420 1421 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(S)) 1422 return NE->isArray() ? AF_CXXNewArray : AF_CXXNew; 1423 1424 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(S)) 1425 return DE->isArrayForm() ? AF_CXXNewArray : AF_CXXNew; 1426 1427 if (isa<ObjCMessageExpr>(S)) 1428 return AF_Malloc; 1429 1430 return AF_None; 1431 } 1432 1433 bool MallocChecker::printAllocDeallocName(raw_ostream &os, CheckerContext &C, 1434 const Expr *E) const { 1435 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 1436 // FIXME: This doesn't handle indirect calls. 1437 const FunctionDecl *FD = CE->getDirectCallee(); 1438 if (!FD) 1439 return false; 1440 1441 os << *FD; 1442 if (!FD->isOverloadedOperator()) 1443 os << "()"; 1444 return true; 1445 } 1446 1447 if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E)) { 1448 if (Msg->isInstanceMessage()) 1449 os << "-"; 1450 else 1451 os << "+"; 1452 Msg->getSelector().print(os); 1453 return true; 1454 } 1455 1456 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { 1457 os << "'" 1458 << getOperatorSpelling(NE->getOperatorNew()->getOverloadedOperator()) 1459 << "'"; 1460 return true; 1461 } 1462 1463 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(E)) { 1464 os << "'" 1465 << getOperatorSpelling(DE->getOperatorDelete()->getOverloadedOperator()) 1466 << "'"; 1467 return true; 1468 } 1469 1470 return false; 1471 } 1472 1473 void MallocChecker::printExpectedAllocName(raw_ostream &os, CheckerContext &C, 1474 const Expr *E) const { 1475 AllocationFamily Family = getAllocationFamily(C, E); 1476 1477 switch(Family) { 1478 case AF_Malloc: os << "malloc()"; return; 1479 case AF_CXXNew: os << "'new'"; return; 1480 case AF_CXXNewArray: os << "'new[]'"; return; 1481 case AF_IfNameIndex: os << "'if_nameindex()'"; return; 1482 case AF_InnerBuffer: os << "container-specific allocator"; return; 1483 case AF_Alloca: 1484 case AF_None: llvm_unreachable("not a deallocation expression"); 1485 } 1486 } 1487 1488 void MallocChecker::printExpectedDeallocName(raw_ostream &os, 1489 AllocationFamily Family) const { 1490 switch(Family) { 1491 case AF_Malloc: os << "free()"; return; 1492 case AF_CXXNew: os << "'delete'"; return; 1493 case AF_CXXNewArray: os << "'delete[]'"; return; 1494 case AF_IfNameIndex: os << "'if_freenameindex()'"; return; 1495 case AF_InnerBuffer: os << "container-specific deallocator"; return; 1496 case AF_Alloca: 1497 case AF_None: llvm_unreachable("suspicious argument"); 1498 } 1499 } 1500 1501 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, 1502 const Expr *ArgExpr, 1503 const Expr *ParentExpr, 1504 ProgramStateRef State, 1505 bool Hold, 1506 bool &ReleasedAllocated, 1507 bool ReturnsNullOnFailure) const { 1508 1509 if (!State) 1510 return nullptr; 1511 1512 SVal ArgVal = C.getSVal(ArgExpr); 1513 if (!ArgVal.getAs<DefinedOrUnknownSVal>()) 1514 return nullptr; 1515 DefinedOrUnknownSVal location = ArgVal.castAs<DefinedOrUnknownSVal>(); 1516 1517 // Check for null dereferences. 1518 if (!location.getAs<Loc>()) 1519 return nullptr; 1520 1521 // The explicit NULL case, no operation is performed. 1522 ProgramStateRef notNullState, nullState; 1523 std::tie(notNullState, nullState) = State->assume(location); 1524 if (nullState && !notNullState) 1525 return nullptr; 1526 1527 // Unknown values could easily be okay 1528 // Undefined values are handled elsewhere 1529 if (ArgVal.isUnknownOrUndef()) 1530 return nullptr; 1531 1532 const MemRegion *R = ArgVal.getAsRegion(); 1533 1534 // Nonlocs can't be freed, of course. 1535 // Non-region locations (labels and fixed addresses) also shouldn't be freed. 1536 if (!R) { 1537 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1538 return nullptr; 1539 } 1540 1541 R = R->StripCasts(); 1542 1543 // Blocks might show up as heap data, but should not be free()d 1544 if (isa<BlockDataRegion>(R)) { 1545 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1546 return nullptr; 1547 } 1548 1549 const MemSpaceRegion *MS = R->getMemorySpace(); 1550 1551 // Parameters, locals, statics, globals, and memory returned by 1552 // __builtin_alloca() shouldn't be freed. 1553 if (!(isa<UnknownSpaceRegion>(MS) || isa<HeapSpaceRegion>(MS))) { 1554 // FIXME: at the time this code was written, malloc() regions were 1555 // represented by conjured symbols, which are all in UnknownSpaceRegion. 1556 // This means that there isn't actually anything from HeapSpaceRegion 1557 // that should be freed, even though we allow it here. 1558 // Of course, free() can work on memory allocated outside the current 1559 // function, so UnknownSpaceRegion is always a possibility. 1560 // False negatives are better than false positives. 1561 1562 if (isa<AllocaRegion>(R)) 1563 ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1564 else 1565 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1566 1567 return nullptr; 1568 } 1569 1570 const SymbolicRegion *SrBase = dyn_cast<SymbolicRegion>(R->getBaseRegion()); 1571 // Various cases could lead to non-symbol values here. 1572 // For now, ignore them. 1573 if (!SrBase) 1574 return nullptr; 1575 1576 SymbolRef SymBase = SrBase->getSymbol(); 1577 const RefState *RsBase = State->get<RegionState>(SymBase); 1578 SymbolRef PreviousRetStatusSymbol = nullptr; 1579 1580 if (RsBase) { 1581 1582 // Memory returned by alloca() shouldn't be freed. 1583 if (RsBase->getAllocationFamily() == AF_Alloca) { 1584 ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1585 return nullptr; 1586 } 1587 1588 // Check for double free first. 1589 if ((RsBase->isReleased() || RsBase->isRelinquished()) && 1590 !didPreviousFreeFail(State, SymBase, PreviousRetStatusSymbol)) { 1591 ReportDoubleFree(C, ParentExpr->getSourceRange(), RsBase->isReleased(), 1592 SymBase, PreviousRetStatusSymbol); 1593 return nullptr; 1594 1595 // If the pointer is allocated or escaped, but we are now trying to free it, 1596 // check that the call to free is proper. 1597 } else if (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero() || 1598 RsBase->isEscaped()) { 1599 1600 // Check if an expected deallocation function matches the real one. 1601 bool DeallocMatchesAlloc = 1602 RsBase->getAllocationFamily() == getAllocationFamily(C, ParentExpr); 1603 if (!DeallocMatchesAlloc) { 1604 ReportMismatchedDealloc(C, ArgExpr->getSourceRange(), 1605 ParentExpr, RsBase, SymBase, Hold); 1606 return nullptr; 1607 } 1608 1609 // Check if the memory location being freed is the actual location 1610 // allocated, or an offset. 1611 RegionOffset Offset = R->getAsOffset(); 1612 if (Offset.isValid() && 1613 !Offset.hasSymbolicOffset() && 1614 Offset.getOffset() != 0) { 1615 const Expr *AllocExpr = cast<Expr>(RsBase->getStmt()); 1616 ReportOffsetFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1617 AllocExpr); 1618 return nullptr; 1619 } 1620 } 1621 } 1622 1623 if (SymBase->getType()->isFunctionPointerType()) { 1624 ReportFunctionPointerFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1625 return nullptr; 1626 } 1627 1628 ReleasedAllocated = (RsBase != nullptr) && (RsBase->isAllocated() || 1629 RsBase->isAllocatedOfSizeZero()); 1630 1631 // Clean out the info on previous call to free return info. 1632 State = State->remove<FreeReturnValue>(SymBase); 1633 1634 // Keep track of the return value. If it is NULL, we will know that free 1635 // failed. 1636 if (ReturnsNullOnFailure) { 1637 SVal RetVal = C.getSVal(ParentExpr); 1638 SymbolRef RetStatusSymbol = RetVal.getAsSymbol(); 1639 if (RetStatusSymbol) { 1640 C.getSymbolManager().addSymbolDependency(SymBase, RetStatusSymbol); 1641 State = State->set<FreeReturnValue>(SymBase, RetStatusSymbol); 1642 } 1643 } 1644 1645 AllocationFamily Family = RsBase ? RsBase->getAllocationFamily() 1646 : getAllocationFamily(C, ParentExpr); 1647 // Normal free. 1648 if (Hold) 1649 return State->set<RegionState>(SymBase, 1650 RefState::getRelinquished(Family, 1651 ParentExpr)); 1652 1653 return State->set<RegionState>(SymBase, 1654 RefState::getReleased(Family, ParentExpr)); 1655 } 1656 1657 Optional<MallocChecker::CheckKind> 1658 MallocChecker::getCheckIfTracked(AllocationFamily Family, 1659 bool IsALeakCheck) const { 1660 switch (Family) { 1661 case AF_Malloc: 1662 case AF_Alloca: 1663 case AF_IfNameIndex: { 1664 if (ChecksEnabled[CK_MallocChecker]) 1665 return CK_MallocChecker; 1666 return None; 1667 } 1668 case AF_CXXNew: 1669 case AF_CXXNewArray: { 1670 if (IsALeakCheck) { 1671 if (ChecksEnabled[CK_NewDeleteLeaksChecker]) 1672 return CK_NewDeleteLeaksChecker; 1673 } 1674 else { 1675 if (ChecksEnabled[CK_NewDeleteChecker]) 1676 return CK_NewDeleteChecker; 1677 } 1678 return None; 1679 } 1680 case AF_InnerBuffer: { 1681 if (ChecksEnabled[CK_InnerPointerChecker]) 1682 return CK_InnerPointerChecker; 1683 return None; 1684 } 1685 case AF_None: { 1686 llvm_unreachable("no family"); 1687 } 1688 } 1689 llvm_unreachable("unhandled family"); 1690 } 1691 1692 Optional<MallocChecker::CheckKind> 1693 MallocChecker::getCheckIfTracked(CheckerContext &C, 1694 const Stmt *AllocDeallocStmt, 1695 bool IsALeakCheck) const { 1696 return getCheckIfTracked(getAllocationFamily(C, AllocDeallocStmt), 1697 IsALeakCheck); 1698 } 1699 1700 Optional<MallocChecker::CheckKind> 1701 MallocChecker::getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 1702 bool IsALeakCheck) const { 1703 if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) 1704 return CK_MallocChecker; 1705 1706 const RefState *RS = C.getState()->get<RegionState>(Sym); 1707 assert(RS); 1708 return getCheckIfTracked(RS->getAllocationFamily(), IsALeakCheck); 1709 } 1710 1711 bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) { 1712 if (Optional<nonloc::ConcreteInt> IntVal = V.getAs<nonloc::ConcreteInt>()) 1713 os << "an integer (" << IntVal->getValue() << ")"; 1714 else if (Optional<loc::ConcreteInt> ConstAddr = V.getAs<loc::ConcreteInt>()) 1715 os << "a constant address (" << ConstAddr->getValue() << ")"; 1716 else if (Optional<loc::GotoLabel> Label = V.getAs<loc::GotoLabel>()) 1717 os << "the address of the label '" << Label->getLabel()->getName() << "'"; 1718 else 1719 return false; 1720 1721 return true; 1722 } 1723 1724 bool MallocChecker::SummarizeRegion(raw_ostream &os, 1725 const MemRegion *MR) { 1726 switch (MR->getKind()) { 1727 case MemRegion::FunctionCodeRegionKind: { 1728 const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl(); 1729 if (FD) 1730 os << "the address of the function '" << *FD << '\''; 1731 else 1732 os << "the address of a function"; 1733 return true; 1734 } 1735 case MemRegion::BlockCodeRegionKind: 1736 os << "block text"; 1737 return true; 1738 case MemRegion::BlockDataRegionKind: 1739 // FIXME: where the block came from? 1740 os << "a block"; 1741 return true; 1742 default: { 1743 const MemSpaceRegion *MS = MR->getMemorySpace(); 1744 1745 if (isa<StackLocalsSpaceRegion>(MS)) { 1746 const VarRegion *VR = dyn_cast<VarRegion>(MR); 1747 const VarDecl *VD; 1748 if (VR) 1749 VD = VR->getDecl(); 1750 else 1751 VD = nullptr; 1752 1753 if (VD) 1754 os << "the address of the local variable '" << VD->getName() << "'"; 1755 else 1756 os << "the address of a local stack variable"; 1757 return true; 1758 } 1759 1760 if (isa<StackArgumentsSpaceRegion>(MS)) { 1761 const VarRegion *VR = dyn_cast<VarRegion>(MR); 1762 const VarDecl *VD; 1763 if (VR) 1764 VD = VR->getDecl(); 1765 else 1766 VD = nullptr; 1767 1768 if (VD) 1769 os << "the address of the parameter '" << VD->getName() << "'"; 1770 else 1771 os << "the address of a parameter"; 1772 return true; 1773 } 1774 1775 if (isa<GlobalsSpaceRegion>(MS)) { 1776 const VarRegion *VR = dyn_cast<VarRegion>(MR); 1777 const VarDecl *VD; 1778 if (VR) 1779 VD = VR->getDecl(); 1780 else 1781 VD = nullptr; 1782 1783 if (VD) { 1784 if (VD->isStaticLocal()) 1785 os << "the address of the static variable '" << VD->getName() << "'"; 1786 else 1787 os << "the address of the global variable '" << VD->getName() << "'"; 1788 } else 1789 os << "the address of a global variable"; 1790 return true; 1791 } 1792 1793 return false; 1794 } 1795 } 1796 } 1797 1798 void MallocChecker::ReportBadFree(CheckerContext &C, SVal ArgVal, 1799 SourceRange Range, 1800 const Expr *DeallocExpr) const { 1801 1802 if (!ChecksEnabled[CK_MallocChecker] && 1803 !ChecksEnabled[CK_NewDeleteChecker]) 1804 return; 1805 1806 Optional<MallocChecker::CheckKind> CheckKind = 1807 getCheckIfTracked(C, DeallocExpr); 1808 if (!CheckKind.hasValue()) 1809 return; 1810 1811 if (ExplodedNode *N = C.generateErrorNode()) { 1812 if (!BT_BadFree[*CheckKind]) 1813 BT_BadFree[*CheckKind].reset(new BugType( 1814 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 1815 1816 SmallString<100> buf; 1817 llvm::raw_svector_ostream os(buf); 1818 1819 const MemRegion *MR = ArgVal.getAsRegion(); 1820 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 1821 MR = ER->getSuperRegion(); 1822 1823 os << "Argument to "; 1824 if (!printAllocDeallocName(os, C, DeallocExpr)) 1825 os << "deallocator"; 1826 1827 os << " is "; 1828 bool Summarized = MR ? SummarizeRegion(os, MR) 1829 : SummarizeValue(os, ArgVal); 1830 if (Summarized) 1831 os << ", which is not memory allocated by "; 1832 else 1833 os << "not memory allocated by "; 1834 1835 printExpectedAllocName(os, C, DeallocExpr); 1836 1837 auto R = llvm::make_unique<BugReport>(*BT_BadFree[*CheckKind], os.str(), N); 1838 R->markInteresting(MR); 1839 R->addRange(Range); 1840 C.emitReport(std::move(R)); 1841 } 1842 } 1843 1844 void MallocChecker::ReportFreeAlloca(CheckerContext &C, SVal ArgVal, 1845 SourceRange Range) const { 1846 1847 Optional<MallocChecker::CheckKind> CheckKind; 1848 1849 if (ChecksEnabled[CK_MallocChecker]) 1850 CheckKind = CK_MallocChecker; 1851 else if (ChecksEnabled[CK_MismatchedDeallocatorChecker]) 1852 CheckKind = CK_MismatchedDeallocatorChecker; 1853 else 1854 return; 1855 1856 if (ExplodedNode *N = C.generateErrorNode()) { 1857 if (!BT_FreeAlloca[*CheckKind]) 1858 BT_FreeAlloca[*CheckKind].reset(new BugType( 1859 CheckNames[*CheckKind], "Free alloca()", categories::MemoryError)); 1860 1861 auto R = llvm::make_unique<BugReport>( 1862 *BT_FreeAlloca[*CheckKind], 1863 "Memory allocated by alloca() should not be deallocated", N); 1864 R->markInteresting(ArgVal.getAsRegion()); 1865 R->addRange(Range); 1866 C.emitReport(std::move(R)); 1867 } 1868 } 1869 1870 void MallocChecker::ReportMismatchedDealloc(CheckerContext &C, 1871 SourceRange Range, 1872 const Expr *DeallocExpr, 1873 const RefState *RS, 1874 SymbolRef Sym, 1875 bool OwnershipTransferred) const { 1876 1877 if (!ChecksEnabled[CK_MismatchedDeallocatorChecker]) 1878 return; 1879 1880 if (ExplodedNode *N = C.generateErrorNode()) { 1881 if (!BT_MismatchedDealloc) 1882 BT_MismatchedDealloc.reset( 1883 new BugType(CheckNames[CK_MismatchedDeallocatorChecker], 1884 "Bad deallocator", categories::MemoryError)); 1885 1886 SmallString<100> buf; 1887 llvm::raw_svector_ostream os(buf); 1888 1889 const Expr *AllocExpr = cast<Expr>(RS->getStmt()); 1890 SmallString<20> AllocBuf; 1891 llvm::raw_svector_ostream AllocOs(AllocBuf); 1892 SmallString<20> DeallocBuf; 1893 llvm::raw_svector_ostream DeallocOs(DeallocBuf); 1894 1895 if (OwnershipTransferred) { 1896 if (printAllocDeallocName(DeallocOs, C, DeallocExpr)) 1897 os << DeallocOs.str() << " cannot"; 1898 else 1899 os << "Cannot"; 1900 1901 os << " take ownership of memory"; 1902 1903 if (printAllocDeallocName(AllocOs, C, AllocExpr)) 1904 os << " allocated by " << AllocOs.str(); 1905 } else { 1906 os << "Memory"; 1907 if (printAllocDeallocName(AllocOs, C, AllocExpr)) 1908 os << " allocated by " << AllocOs.str(); 1909 1910 os << " should be deallocated by "; 1911 printExpectedDeallocName(os, RS->getAllocationFamily()); 1912 1913 if (printAllocDeallocName(DeallocOs, C, DeallocExpr)) 1914 os << ", not " << DeallocOs.str(); 1915 } 1916 1917 auto R = llvm::make_unique<BugReport>(*BT_MismatchedDealloc, os.str(), N); 1918 R->markInteresting(Sym); 1919 R->addRange(Range); 1920 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 1921 C.emitReport(std::move(R)); 1922 } 1923 } 1924 1925 void MallocChecker::ReportOffsetFree(CheckerContext &C, SVal ArgVal, 1926 SourceRange Range, const Expr *DeallocExpr, 1927 const Expr *AllocExpr) const { 1928 1929 1930 if (!ChecksEnabled[CK_MallocChecker] && 1931 !ChecksEnabled[CK_NewDeleteChecker]) 1932 return; 1933 1934 Optional<MallocChecker::CheckKind> CheckKind = 1935 getCheckIfTracked(C, AllocExpr); 1936 if (!CheckKind.hasValue()) 1937 return; 1938 1939 ExplodedNode *N = C.generateErrorNode(); 1940 if (!N) 1941 return; 1942 1943 if (!BT_OffsetFree[*CheckKind]) 1944 BT_OffsetFree[*CheckKind].reset(new BugType( 1945 CheckNames[*CheckKind], "Offset free", categories::MemoryError)); 1946 1947 SmallString<100> buf; 1948 llvm::raw_svector_ostream os(buf); 1949 SmallString<20> AllocNameBuf; 1950 llvm::raw_svector_ostream AllocNameOs(AllocNameBuf); 1951 1952 const MemRegion *MR = ArgVal.getAsRegion(); 1953 assert(MR && "Only MemRegion based symbols can have offset free errors"); 1954 1955 RegionOffset Offset = MR->getAsOffset(); 1956 assert((Offset.isValid() && 1957 !Offset.hasSymbolicOffset() && 1958 Offset.getOffset() != 0) && 1959 "Only symbols with a valid offset can have offset free errors"); 1960 1961 int offsetBytes = Offset.getOffset() / C.getASTContext().getCharWidth(); 1962 1963 os << "Argument to "; 1964 if (!printAllocDeallocName(os, C, DeallocExpr)) 1965 os << "deallocator"; 1966 os << " is offset by " 1967 << offsetBytes 1968 << " " 1969 << ((abs(offsetBytes) > 1) ? "bytes" : "byte") 1970 << " from the start of "; 1971 if (AllocExpr && printAllocDeallocName(AllocNameOs, C, AllocExpr)) 1972 os << "memory allocated by " << AllocNameOs.str(); 1973 else 1974 os << "allocated memory"; 1975 1976 auto R = llvm::make_unique<BugReport>(*BT_OffsetFree[*CheckKind], os.str(), N); 1977 R->markInteresting(MR->getBaseRegion()); 1978 R->addRange(Range); 1979 C.emitReport(std::move(R)); 1980 } 1981 1982 void MallocChecker::ReportUseAfterFree(CheckerContext &C, SourceRange Range, 1983 SymbolRef Sym) const { 1984 1985 if (!ChecksEnabled[CK_MallocChecker] && 1986 !ChecksEnabled[CK_NewDeleteChecker] && 1987 !ChecksEnabled[CK_InnerPointerChecker]) 1988 return; 1989 1990 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 1991 if (!CheckKind.hasValue()) 1992 return; 1993 1994 if (ExplodedNode *N = C.generateErrorNode()) { 1995 if (!BT_UseFree[*CheckKind]) 1996 BT_UseFree[*CheckKind].reset(new BugType( 1997 CheckNames[*CheckKind], "Use-after-free", categories::MemoryError)); 1998 1999 auto R = llvm::make_unique<BugReport>(*BT_UseFree[*CheckKind], 2000 "Use of memory after it is freed", N); 2001 2002 R->markInteresting(Sym); 2003 R->addRange(Range); 2004 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 2005 2006 const RefState *RS = C.getState()->get<RegionState>(Sym); 2007 if (RS->getAllocationFamily() == AF_InnerBuffer) 2008 R->addVisitor(allocation_state::getInnerPointerBRVisitor(Sym)); 2009 2010 C.emitReport(std::move(R)); 2011 } 2012 } 2013 2014 void MallocChecker::ReportDoubleFree(CheckerContext &C, SourceRange Range, 2015 bool Released, SymbolRef Sym, 2016 SymbolRef PrevSym) const { 2017 2018 if (!ChecksEnabled[CK_MallocChecker] && 2019 !ChecksEnabled[CK_NewDeleteChecker]) 2020 return; 2021 2022 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2023 if (!CheckKind.hasValue()) 2024 return; 2025 2026 if (ExplodedNode *N = C.generateErrorNode()) { 2027 if (!BT_DoubleFree[*CheckKind]) 2028 BT_DoubleFree[*CheckKind].reset(new BugType( 2029 CheckNames[*CheckKind], "Double free", categories::MemoryError)); 2030 2031 auto R = llvm::make_unique<BugReport>( 2032 *BT_DoubleFree[*CheckKind], 2033 (Released ? "Attempt to free released memory" 2034 : "Attempt to free non-owned memory"), 2035 N); 2036 R->addRange(Range); 2037 R->markInteresting(Sym); 2038 if (PrevSym) 2039 R->markInteresting(PrevSym); 2040 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 2041 C.emitReport(std::move(R)); 2042 } 2043 } 2044 2045 void MallocChecker::ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const { 2046 2047 if (!ChecksEnabled[CK_NewDeleteChecker]) 2048 return; 2049 2050 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2051 if (!CheckKind.hasValue()) 2052 return; 2053 2054 if (ExplodedNode *N = C.generateErrorNode()) { 2055 if (!BT_DoubleDelete) 2056 BT_DoubleDelete.reset(new BugType(CheckNames[CK_NewDeleteChecker], 2057 "Double delete", 2058 categories::MemoryError)); 2059 2060 auto R = llvm::make_unique<BugReport>( 2061 *BT_DoubleDelete, "Attempt to delete released memory", N); 2062 2063 R->markInteresting(Sym); 2064 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 2065 C.emitReport(std::move(R)); 2066 } 2067 } 2068 2069 void MallocChecker::ReportUseZeroAllocated(CheckerContext &C, 2070 SourceRange Range, 2071 SymbolRef Sym) const { 2072 2073 if (!ChecksEnabled[CK_MallocChecker] && 2074 !ChecksEnabled[CK_NewDeleteChecker]) 2075 return; 2076 2077 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2078 2079 if (!CheckKind.hasValue()) 2080 return; 2081 2082 if (ExplodedNode *N = C.generateErrorNode()) { 2083 if (!BT_UseZerroAllocated[*CheckKind]) 2084 BT_UseZerroAllocated[*CheckKind].reset( 2085 new BugType(CheckNames[*CheckKind], "Use of zero allocated", 2086 categories::MemoryError)); 2087 2088 auto R = llvm::make_unique<BugReport>(*BT_UseZerroAllocated[*CheckKind], 2089 "Use of zero-allocated memory", N); 2090 2091 R->addRange(Range); 2092 if (Sym) { 2093 R->markInteresting(Sym); 2094 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 2095 } 2096 C.emitReport(std::move(R)); 2097 } 2098 } 2099 2100 void MallocChecker::ReportFunctionPointerFree(CheckerContext &C, SVal ArgVal, 2101 SourceRange Range, 2102 const Expr *FreeExpr) const { 2103 if (!ChecksEnabled[CK_MallocChecker]) 2104 return; 2105 2106 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, FreeExpr); 2107 if (!CheckKind.hasValue()) 2108 return; 2109 2110 if (ExplodedNode *N = C.generateErrorNode()) { 2111 if (!BT_BadFree[*CheckKind]) 2112 BT_BadFree[*CheckKind].reset(new BugType( 2113 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 2114 2115 SmallString<100> Buf; 2116 llvm::raw_svector_ostream Os(Buf); 2117 2118 const MemRegion *MR = ArgVal.getAsRegion(); 2119 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 2120 MR = ER->getSuperRegion(); 2121 2122 Os << "Argument to "; 2123 if (!printAllocDeallocName(Os, C, FreeExpr)) 2124 Os << "deallocator"; 2125 2126 Os << " is a function pointer"; 2127 2128 auto R = llvm::make_unique<BugReport>(*BT_BadFree[*CheckKind], Os.str(), N); 2129 R->markInteresting(MR); 2130 R->addRange(Range); 2131 C.emitReport(std::move(R)); 2132 } 2133 } 2134 2135 ProgramStateRef MallocChecker::ReallocMemAux(CheckerContext &C, 2136 const CallExpr *CE, 2137 bool FreesOnFail, 2138 ProgramStateRef State, 2139 bool SuffixWithN) const { 2140 if (!State) 2141 return nullptr; 2142 2143 if (SuffixWithN && CE->getNumArgs() < 3) 2144 return nullptr; 2145 else if (CE->getNumArgs() < 2) 2146 return nullptr; 2147 2148 const Expr *arg0Expr = CE->getArg(0); 2149 SVal Arg0Val = C.getSVal(arg0Expr); 2150 if (!Arg0Val.getAs<DefinedOrUnknownSVal>()) 2151 return nullptr; 2152 DefinedOrUnknownSVal arg0Val = Arg0Val.castAs<DefinedOrUnknownSVal>(); 2153 2154 SValBuilder &svalBuilder = C.getSValBuilder(); 2155 2156 DefinedOrUnknownSVal PtrEQ = 2157 svalBuilder.evalEQ(State, arg0Val, svalBuilder.makeNull()); 2158 2159 // Get the size argument. 2160 const Expr *Arg1 = CE->getArg(1); 2161 2162 // Get the value of the size argument. 2163 SVal TotalSize = C.getSVal(Arg1); 2164 if (SuffixWithN) 2165 TotalSize = evalMulForBufferSize(C, Arg1, CE->getArg(2)); 2166 if (!TotalSize.getAs<DefinedOrUnknownSVal>()) 2167 return nullptr; 2168 2169 // Compare the size argument to 0. 2170 DefinedOrUnknownSVal SizeZero = 2171 svalBuilder.evalEQ(State, TotalSize.castAs<DefinedOrUnknownSVal>(), 2172 svalBuilder.makeIntValWithPtrWidth(0, false)); 2173 2174 ProgramStateRef StatePtrIsNull, StatePtrNotNull; 2175 std::tie(StatePtrIsNull, StatePtrNotNull) = State->assume(PtrEQ); 2176 ProgramStateRef StateSizeIsZero, StateSizeNotZero; 2177 std::tie(StateSizeIsZero, StateSizeNotZero) = State->assume(SizeZero); 2178 // We only assume exceptional states if they are definitely true; if the 2179 // state is under-constrained, assume regular realloc behavior. 2180 bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull; 2181 bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero; 2182 2183 // If the ptr is NULL and the size is not 0, the call is equivalent to 2184 // malloc(size). 2185 if (PrtIsNull && !SizeIsZero) { 2186 ProgramStateRef stateMalloc = MallocMemAux(C, CE, TotalSize, 2187 UndefinedVal(), StatePtrIsNull); 2188 return stateMalloc; 2189 } 2190 2191 if (PrtIsNull && SizeIsZero) 2192 return State; 2193 2194 // Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size). 2195 assert(!PrtIsNull); 2196 SymbolRef FromPtr = arg0Val.getAsSymbol(); 2197 SVal RetVal = C.getSVal(CE); 2198 SymbolRef ToPtr = RetVal.getAsSymbol(); 2199 if (!FromPtr || !ToPtr) 2200 return nullptr; 2201 2202 bool ReleasedAllocated = false; 2203 2204 // If the size is 0, free the memory. 2205 if (SizeIsZero) 2206 if (ProgramStateRef stateFree = FreeMemAux(C, CE, StateSizeIsZero, 0, 2207 false, ReleasedAllocated)){ 2208 // The semantics of the return value are: 2209 // If size was equal to 0, either NULL or a pointer suitable to be passed 2210 // to free() is returned. We just free the input pointer and do not add 2211 // any constrains on the output pointer. 2212 return stateFree; 2213 } 2214 2215 // Default behavior. 2216 if (ProgramStateRef stateFree = 2217 FreeMemAux(C, CE, State, 0, false, ReleasedAllocated)) { 2218 2219 ProgramStateRef stateRealloc = MallocMemAux(C, CE, TotalSize, 2220 UnknownVal(), stateFree); 2221 if (!stateRealloc) 2222 return nullptr; 2223 2224 ReallocPairKind Kind = RPToBeFreedAfterFailure; 2225 if (FreesOnFail) 2226 Kind = RPIsFreeOnFailure; 2227 else if (!ReleasedAllocated) 2228 Kind = RPDoNotTrackAfterFailure; 2229 2230 // Record the info about the reallocated symbol so that we could properly 2231 // process failed reallocation. 2232 stateRealloc = stateRealloc->set<ReallocPairs>(ToPtr, 2233 ReallocPair(FromPtr, Kind)); 2234 // The reallocated symbol should stay alive for as long as the new symbol. 2235 C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr); 2236 return stateRealloc; 2237 } 2238 return nullptr; 2239 } 2240 2241 ProgramStateRef MallocChecker::CallocMem(CheckerContext &C, const CallExpr *CE, 2242 ProgramStateRef State) { 2243 if (!State) 2244 return nullptr; 2245 2246 if (CE->getNumArgs() < 2) 2247 return nullptr; 2248 2249 SValBuilder &svalBuilder = C.getSValBuilder(); 2250 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 2251 SVal TotalSize = evalMulForBufferSize(C, CE->getArg(0), CE->getArg(1)); 2252 2253 return MallocMemAux(C, CE, TotalSize, zeroVal, State); 2254 } 2255 2256 LeakInfo 2257 MallocChecker::getAllocationSite(const ExplodedNode *N, SymbolRef Sym, 2258 CheckerContext &C) const { 2259 const LocationContext *LeakContext = N->getLocationContext(); 2260 // Walk the ExplodedGraph backwards and find the first node that referred to 2261 // the tracked symbol. 2262 const ExplodedNode *AllocNode = N; 2263 const MemRegion *ReferenceRegion = nullptr; 2264 2265 while (N) { 2266 ProgramStateRef State = N->getState(); 2267 if (!State->get<RegionState>(Sym)) 2268 break; 2269 2270 // Find the most recent expression bound to the symbol in the current 2271 // context. 2272 if (!ReferenceRegion) { 2273 if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) { 2274 SVal Val = State->getSVal(MR); 2275 if (Val.getAsLocSymbol() == Sym) { 2276 const VarRegion* VR = MR->getBaseRegion()->getAs<VarRegion>(); 2277 // Do not show local variables belonging to a function other than 2278 // where the error is reported. 2279 if (!VR || 2280 (VR->getStackFrame() == LeakContext->getStackFrame())) 2281 ReferenceRegion = MR; 2282 } 2283 } 2284 } 2285 2286 // Allocation node, is the last node in the current or parent context in 2287 // which the symbol was tracked. 2288 const LocationContext *NContext = N->getLocationContext(); 2289 if (NContext == LeakContext || 2290 NContext->isParentOf(LeakContext)) 2291 AllocNode = N; 2292 N = N->pred_empty() ? nullptr : *(N->pred_begin()); 2293 } 2294 2295 return LeakInfo(AllocNode, ReferenceRegion); 2296 } 2297 2298 void MallocChecker::reportLeak(SymbolRef Sym, ExplodedNode *N, 2299 CheckerContext &C) const { 2300 2301 if (!ChecksEnabled[CK_MallocChecker] && 2302 !ChecksEnabled[CK_NewDeleteLeaksChecker]) 2303 return; 2304 2305 const RefState *RS = C.getState()->get<RegionState>(Sym); 2306 assert(RS && "cannot leak an untracked symbol"); 2307 AllocationFamily Family = RS->getAllocationFamily(); 2308 2309 if (Family == AF_Alloca) 2310 return; 2311 2312 Optional<MallocChecker::CheckKind> 2313 CheckKind = getCheckIfTracked(Family, true); 2314 2315 if (!CheckKind.hasValue()) 2316 return; 2317 2318 assert(N); 2319 if (!BT_Leak[*CheckKind]) { 2320 BT_Leak[*CheckKind].reset(new BugType(CheckNames[*CheckKind], "Memory leak", 2321 categories::MemoryError)); 2322 // Leaks should not be reported if they are post-dominated by a sink: 2323 // (1) Sinks are higher importance bugs. 2324 // (2) NoReturnFunctionChecker uses sink nodes to represent paths ending 2325 // with __noreturn functions such as assert() or exit(). We choose not 2326 // to report leaks on such paths. 2327 BT_Leak[*CheckKind]->setSuppressOnSink(true); 2328 } 2329 2330 // Most bug reports are cached at the location where they occurred. 2331 // With leaks, we want to unique them by the location where they were 2332 // allocated, and only report a single path. 2333 PathDiagnosticLocation LocUsedForUniqueing; 2334 const ExplodedNode *AllocNode = nullptr; 2335 const MemRegion *Region = nullptr; 2336 std::tie(AllocNode, Region) = getAllocationSite(N, Sym, C); 2337 2338 const Stmt *AllocationStmt = PathDiagnosticLocation::getStmt(AllocNode); 2339 if (AllocationStmt) 2340 LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocationStmt, 2341 C.getSourceManager(), 2342 AllocNode->getLocationContext()); 2343 2344 SmallString<200> buf; 2345 llvm::raw_svector_ostream os(buf); 2346 if (Region && Region->canPrintPretty()) { 2347 os << "Potential leak of memory pointed to by "; 2348 Region->printPretty(os); 2349 } else { 2350 os << "Potential memory leak"; 2351 } 2352 2353 auto R = llvm::make_unique<BugReport>( 2354 *BT_Leak[*CheckKind], os.str(), N, LocUsedForUniqueing, 2355 AllocNode->getLocationContext()->getDecl()); 2356 R->markInteresting(Sym); 2357 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym, true)); 2358 C.emitReport(std::move(R)); 2359 } 2360 2361 void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper, 2362 CheckerContext &C) const 2363 { 2364 if (!SymReaper.hasDeadSymbols()) 2365 return; 2366 2367 ProgramStateRef state = C.getState(); 2368 RegionStateTy RS = state->get<RegionState>(); 2369 RegionStateTy::Factory &F = state->get_context<RegionState>(); 2370 2371 SmallVector<SymbolRef, 2> Errors; 2372 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2373 if (SymReaper.isDead(I->first)) { 2374 if (I->second.isAllocated() || I->second.isAllocatedOfSizeZero()) 2375 Errors.push_back(I->first); 2376 // Remove the dead symbol from the map. 2377 RS = F.remove(RS, I->first); 2378 2379 } 2380 } 2381 2382 // Cleanup the Realloc Pairs Map. 2383 ReallocPairsTy RP = state->get<ReallocPairs>(); 2384 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 2385 if (SymReaper.isDead(I->first) || 2386 SymReaper.isDead(I->second.ReallocatedSym)) { 2387 state = state->remove<ReallocPairs>(I->first); 2388 } 2389 } 2390 2391 // Cleanup the FreeReturnValue Map. 2392 FreeReturnValueTy FR = state->get<FreeReturnValue>(); 2393 for (FreeReturnValueTy::iterator I = FR.begin(), E = FR.end(); I != E; ++I) { 2394 if (SymReaper.isDead(I->first) || 2395 SymReaper.isDead(I->second)) { 2396 state = state->remove<FreeReturnValue>(I->first); 2397 } 2398 } 2399 2400 // Generate leak node. 2401 ExplodedNode *N = C.getPredecessor(); 2402 if (!Errors.empty()) { 2403 static CheckerProgramPointTag Tag("MallocChecker", "DeadSymbolsLeak"); 2404 N = C.generateNonFatalErrorNode(C.getState(), &Tag); 2405 if (N) { 2406 for (SmallVectorImpl<SymbolRef>::iterator 2407 I = Errors.begin(), E = Errors.end(); I != E; ++I) { 2408 reportLeak(*I, N, C); 2409 } 2410 } 2411 } 2412 2413 C.addTransition(state->set<RegionState>(RS), N); 2414 } 2415 2416 void MallocChecker::checkPreCall(const CallEvent &Call, 2417 CheckerContext &C) const { 2418 2419 if (const CXXDestructorCall *DC = dyn_cast<CXXDestructorCall>(&Call)) { 2420 SymbolRef Sym = DC->getCXXThisVal().getAsSymbol(); 2421 if (!Sym || checkDoubleDelete(Sym, C)) 2422 return; 2423 } 2424 2425 // We will check for double free in the post visit. 2426 if (const AnyFunctionCall *FC = dyn_cast<AnyFunctionCall>(&Call)) { 2427 const FunctionDecl *FD = FC->getDecl(); 2428 if (!FD) 2429 return; 2430 2431 ASTContext &Ctx = C.getASTContext(); 2432 if (ChecksEnabled[CK_MallocChecker] && 2433 (isCMemFunction(FD, Ctx, AF_Malloc, MemoryOperationKind::MOK_Free) || 2434 isCMemFunction(FD, Ctx, AF_IfNameIndex, 2435 MemoryOperationKind::MOK_Free))) 2436 return; 2437 2438 if (ChecksEnabled[CK_NewDeleteChecker] && 2439 isStandardNewDelete(FD, Ctx)) 2440 return; 2441 } 2442 2443 // Check if the callee of a method is deleted. 2444 if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(&Call)) { 2445 SymbolRef Sym = CC->getCXXThisVal().getAsSymbol(); 2446 if (!Sym || checkUseAfterFree(Sym, C, CC->getCXXThisExpr())) 2447 return; 2448 } 2449 2450 // Check arguments for being used after free. 2451 for (unsigned I = 0, E = Call.getNumArgs(); I != E; ++I) { 2452 SVal ArgSVal = Call.getArgSVal(I); 2453 if (ArgSVal.getAs<Loc>()) { 2454 SymbolRef Sym = ArgSVal.getAsSymbol(); 2455 if (!Sym) 2456 continue; 2457 if (checkUseAfterFree(Sym, C, Call.getArgExpr(I))) 2458 return; 2459 } 2460 } 2461 } 2462 2463 void MallocChecker::checkPreStmt(const ReturnStmt *S, 2464 CheckerContext &C) const { 2465 checkEscapeOnReturn(S, C); 2466 } 2467 2468 // In the CFG, automatic destructors come after the return statement. 2469 // This callback checks for returning memory that is freed by automatic 2470 // destructors, as those cannot be reached in checkPreStmt(). 2471 void MallocChecker::checkEndFunction(const ReturnStmt *S, 2472 CheckerContext &C) const { 2473 checkEscapeOnReturn(S, C); 2474 } 2475 2476 void MallocChecker::checkEscapeOnReturn(const ReturnStmt *S, 2477 CheckerContext &C) const { 2478 if (!S) 2479 return; 2480 2481 const Expr *E = S->getRetValue(); 2482 if (!E) 2483 return; 2484 2485 // Check if we are returning a symbol. 2486 ProgramStateRef State = C.getState(); 2487 SVal RetVal = C.getSVal(E); 2488 SymbolRef Sym = RetVal.getAsSymbol(); 2489 if (!Sym) 2490 // If we are returning a field of the allocated struct or an array element, 2491 // the callee could still free the memory. 2492 // TODO: This logic should be a part of generic symbol escape callback. 2493 if (const MemRegion *MR = RetVal.getAsRegion()) 2494 if (isa<FieldRegion>(MR) || isa<ElementRegion>(MR)) 2495 if (const SymbolicRegion *BMR = 2496 dyn_cast<SymbolicRegion>(MR->getBaseRegion())) 2497 Sym = BMR->getSymbol(); 2498 2499 // Check if we are returning freed memory. 2500 if (Sym) 2501 checkUseAfterFree(Sym, C, E); 2502 } 2503 2504 // TODO: Blocks should be either inlined or should call invalidate regions 2505 // upon invocation. After that's in place, special casing here will not be 2506 // needed. 2507 void MallocChecker::checkPostStmt(const BlockExpr *BE, 2508 CheckerContext &C) const { 2509 2510 // Scan the BlockDecRefExprs for any object the retain count checker 2511 // may be tracking. 2512 if (!BE->getBlockDecl()->hasCaptures()) 2513 return; 2514 2515 ProgramStateRef state = C.getState(); 2516 const BlockDataRegion *R = 2517 cast<BlockDataRegion>(C.getSVal(BE).getAsRegion()); 2518 2519 BlockDataRegion::referenced_vars_iterator I = R->referenced_vars_begin(), 2520 E = R->referenced_vars_end(); 2521 2522 if (I == E) 2523 return; 2524 2525 SmallVector<const MemRegion*, 10> Regions; 2526 const LocationContext *LC = C.getLocationContext(); 2527 MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager(); 2528 2529 for ( ; I != E; ++I) { 2530 const VarRegion *VR = I.getCapturedRegion(); 2531 if (VR->getSuperRegion() == R) { 2532 VR = MemMgr.getVarRegion(VR->getDecl(), LC); 2533 } 2534 Regions.push_back(VR); 2535 } 2536 2537 state = 2538 state->scanReachableSymbols<StopTrackingCallback>(Regions.data(), 2539 Regions.data() + Regions.size()).getState(); 2540 C.addTransition(state); 2541 } 2542 2543 bool MallocChecker::isReleased(SymbolRef Sym, CheckerContext &C) const { 2544 assert(Sym); 2545 const RefState *RS = C.getState()->get<RegionState>(Sym); 2546 return (RS && RS->isReleased()); 2547 } 2548 2549 bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C, 2550 const Stmt *S) const { 2551 2552 if (isReleased(Sym, C)) { 2553 ReportUseAfterFree(C, S->getSourceRange(), Sym); 2554 return true; 2555 } 2556 2557 return false; 2558 } 2559 2560 void MallocChecker::checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 2561 const Stmt *S) const { 2562 assert(Sym); 2563 2564 if (const RefState *RS = C.getState()->get<RegionState>(Sym)) { 2565 if (RS->isAllocatedOfSizeZero()) 2566 ReportUseZeroAllocated(C, RS->getStmt()->getSourceRange(), Sym); 2567 } 2568 else if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) { 2569 ReportUseZeroAllocated(C, S->getSourceRange(), Sym); 2570 } 2571 } 2572 2573 bool MallocChecker::checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const { 2574 2575 if (isReleased(Sym, C)) { 2576 ReportDoubleDelete(C, Sym); 2577 return true; 2578 } 2579 return false; 2580 } 2581 2582 // Check if the location is a freed symbolic region. 2583 void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S, 2584 CheckerContext &C) const { 2585 SymbolRef Sym = l.getLocSymbolInBase(); 2586 if (Sym) { 2587 checkUseAfterFree(Sym, C, S); 2588 checkUseZeroAllocated(Sym, C, S); 2589 } 2590 } 2591 2592 // If a symbolic region is assumed to NULL (or another constant), stop tracking 2593 // it - assuming that allocation failed on this path. 2594 ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state, 2595 SVal Cond, 2596 bool Assumption) const { 2597 RegionStateTy RS = state->get<RegionState>(); 2598 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2599 // If the symbol is assumed to be NULL, remove it from consideration. 2600 ConstraintManager &CMgr = state->getConstraintManager(); 2601 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 2602 if (AllocFailed.isConstrainedTrue()) 2603 state = state->remove<RegionState>(I.getKey()); 2604 } 2605 2606 // Realloc returns 0 when reallocation fails, which means that we should 2607 // restore the state of the pointer being reallocated. 2608 ReallocPairsTy RP = state->get<ReallocPairs>(); 2609 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 2610 // If the symbol is assumed to be NULL, remove it from consideration. 2611 ConstraintManager &CMgr = state->getConstraintManager(); 2612 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 2613 if (!AllocFailed.isConstrainedTrue()) 2614 continue; 2615 2616 SymbolRef ReallocSym = I.getData().ReallocatedSym; 2617 if (const RefState *RS = state->get<RegionState>(ReallocSym)) { 2618 if (RS->isReleased()) { 2619 if (I.getData().Kind == RPToBeFreedAfterFailure) 2620 state = state->set<RegionState>(ReallocSym, 2621 RefState::getAllocated(RS->getAllocationFamily(), RS->getStmt())); 2622 else if (I.getData().Kind == RPDoNotTrackAfterFailure) 2623 state = state->remove<RegionState>(ReallocSym); 2624 else 2625 assert(I.getData().Kind == RPIsFreeOnFailure); 2626 } 2627 } 2628 state = state->remove<ReallocPairs>(I.getKey()); 2629 } 2630 2631 return state; 2632 } 2633 2634 bool MallocChecker::mayFreeAnyEscapedMemoryOrIsModeledExplicitly( 2635 const CallEvent *Call, 2636 ProgramStateRef State, 2637 SymbolRef &EscapingSymbol) const { 2638 assert(Call); 2639 EscapingSymbol = nullptr; 2640 2641 // For now, assume that any C++ or block call can free memory. 2642 // TODO: If we want to be more optimistic here, we'll need to make sure that 2643 // regions escape to C++ containers. They seem to do that even now, but for 2644 // mysterious reasons. 2645 if (!(isa<SimpleFunctionCall>(Call) || isa<ObjCMethodCall>(Call))) 2646 return true; 2647 2648 // Check Objective-C messages by selector name. 2649 if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) { 2650 // If it's not a framework call, or if it takes a callback, assume it 2651 // can free memory. 2652 if (!Call->isInSystemHeader() || Call->argumentsMayEscape()) 2653 return true; 2654 2655 // If it's a method we know about, handle it explicitly post-call. 2656 // This should happen before the "freeWhenDone" check below. 2657 if (isKnownDeallocObjCMethodName(*Msg)) 2658 return false; 2659 2660 // If there's a "freeWhenDone" parameter, but the method isn't one we know 2661 // about, we can't be sure that the object will use free() to deallocate the 2662 // memory, so we can't model it explicitly. The best we can do is use it to 2663 // decide whether the pointer escapes. 2664 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(*Msg)) 2665 return *FreeWhenDone; 2666 2667 // If the first selector piece ends with "NoCopy", and there is no 2668 // "freeWhenDone" parameter set to zero, we know ownership is being 2669 // transferred. Again, though, we can't be sure that the object will use 2670 // free() to deallocate the memory, so we can't model it explicitly. 2671 StringRef FirstSlot = Msg->getSelector().getNameForSlot(0); 2672 if (FirstSlot.endswith("NoCopy")) 2673 return true; 2674 2675 // If the first selector starts with addPointer, insertPointer, 2676 // or replacePointer, assume we are dealing with NSPointerArray or similar. 2677 // This is similar to C++ containers (vector); we still might want to check 2678 // that the pointers get freed by following the container itself. 2679 if (FirstSlot.startswith("addPointer") || 2680 FirstSlot.startswith("insertPointer") || 2681 FirstSlot.startswith("replacePointer") || 2682 FirstSlot.equals("valueWithPointer")) { 2683 return true; 2684 } 2685 2686 // We should escape receiver on call to 'init'. This is especially relevant 2687 // to the receiver, as the corresponding symbol is usually not referenced 2688 // after the call. 2689 if (Msg->getMethodFamily() == OMF_init) { 2690 EscapingSymbol = Msg->getReceiverSVal().getAsSymbol(); 2691 return true; 2692 } 2693 2694 // Otherwise, assume that the method does not free memory. 2695 // Most framework methods do not free memory. 2696 return false; 2697 } 2698 2699 // At this point the only thing left to handle is straight function calls. 2700 const FunctionDecl *FD = cast<SimpleFunctionCall>(Call)->getDecl(); 2701 if (!FD) 2702 return true; 2703 2704 ASTContext &ASTC = State->getStateManager().getContext(); 2705 2706 // If it's one of the allocation functions we can reason about, we model 2707 // its behavior explicitly. 2708 if (isMemFunction(FD, ASTC)) 2709 return false; 2710 2711 // If it's not a system call, assume it frees memory. 2712 if (!Call->isInSystemHeader()) 2713 return true; 2714 2715 // White list the system functions whose arguments escape. 2716 const IdentifierInfo *II = FD->getIdentifier(); 2717 if (!II) 2718 return true; 2719 StringRef FName = II->getName(); 2720 2721 // White list the 'XXXNoCopy' CoreFoundation functions. 2722 // We specifically check these before 2723 if (FName.endswith("NoCopy")) { 2724 // Look for the deallocator argument. We know that the memory ownership 2725 // is not transferred only if the deallocator argument is 2726 // 'kCFAllocatorNull'. 2727 for (unsigned i = 1; i < Call->getNumArgs(); ++i) { 2728 const Expr *ArgE = Call->getArgExpr(i)->IgnoreParenCasts(); 2729 if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(ArgE)) { 2730 StringRef DeallocatorName = DE->getFoundDecl()->getName(); 2731 if (DeallocatorName == "kCFAllocatorNull") 2732 return false; 2733 } 2734 } 2735 return true; 2736 } 2737 2738 // Associating streams with malloced buffers. The pointer can escape if 2739 // 'closefn' is specified (and if that function does free memory), 2740 // but it will not if closefn is not specified. 2741 // Currently, we do not inspect the 'closefn' function (PR12101). 2742 if (FName == "funopen") 2743 if (Call->getNumArgs() >= 4 && Call->getArgSVal(4).isConstant(0)) 2744 return false; 2745 2746 // Do not warn on pointers passed to 'setbuf' when used with std streams, 2747 // these leaks might be intentional when setting the buffer for stdio. 2748 // http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer 2749 if (FName == "setbuf" || FName =="setbuffer" || 2750 FName == "setlinebuf" || FName == "setvbuf") { 2751 if (Call->getNumArgs() >= 1) { 2752 const Expr *ArgE = Call->getArgExpr(0)->IgnoreParenCasts(); 2753 if (const DeclRefExpr *ArgDRE = dyn_cast<DeclRefExpr>(ArgE)) 2754 if (const VarDecl *D = dyn_cast<VarDecl>(ArgDRE->getDecl())) 2755 if (D->getCanonicalDecl()->getName().find("std") != StringRef::npos) 2756 return true; 2757 } 2758 } 2759 2760 // A bunch of other functions which either take ownership of a pointer or 2761 // wrap the result up in a struct or object, meaning it can be freed later. 2762 // (See RetainCountChecker.) Not all the parameters here are invalidated, 2763 // but the Malloc checker cannot differentiate between them. The right way 2764 // of doing this would be to implement a pointer escapes callback. 2765 if (FName == "CGBitmapContextCreate" || 2766 FName == "CGBitmapContextCreateWithData" || 2767 FName == "CVPixelBufferCreateWithBytes" || 2768 FName == "CVPixelBufferCreateWithPlanarBytes" || 2769 FName == "OSAtomicEnqueue") { 2770 return true; 2771 } 2772 2773 if (FName == "postEvent" && 2774 FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") { 2775 return true; 2776 } 2777 2778 if (FName == "postEvent" && 2779 FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") { 2780 return true; 2781 } 2782 2783 if (FName == "connectImpl" && 2784 FD->getQualifiedNameAsString() == "QObject::connectImpl") { 2785 return true; 2786 } 2787 2788 // Handle cases where we know a buffer's /address/ can escape. 2789 // Note that the above checks handle some special cases where we know that 2790 // even though the address escapes, it's still our responsibility to free the 2791 // buffer. 2792 if (Call->argumentsMayEscape()) 2793 return true; 2794 2795 // Otherwise, assume that the function does not free memory. 2796 // Most system calls do not free the memory. 2797 return false; 2798 } 2799 2800 static bool retTrue(const RefState *RS) { 2801 return true; 2802 } 2803 2804 static bool checkIfNewOrNewArrayFamily(const RefState *RS) { 2805 return (RS->getAllocationFamily() == AF_CXXNewArray || 2806 RS->getAllocationFamily() == AF_CXXNew); 2807 } 2808 2809 ProgramStateRef MallocChecker::checkPointerEscape(ProgramStateRef State, 2810 const InvalidatedSymbols &Escaped, 2811 const CallEvent *Call, 2812 PointerEscapeKind Kind) const { 2813 return checkPointerEscapeAux(State, Escaped, Call, Kind, &retTrue); 2814 } 2815 2816 ProgramStateRef MallocChecker::checkConstPointerEscape(ProgramStateRef State, 2817 const InvalidatedSymbols &Escaped, 2818 const CallEvent *Call, 2819 PointerEscapeKind Kind) const { 2820 return checkPointerEscapeAux(State, Escaped, Call, Kind, 2821 &checkIfNewOrNewArrayFamily); 2822 } 2823 2824 ProgramStateRef MallocChecker::checkPointerEscapeAux(ProgramStateRef State, 2825 const InvalidatedSymbols &Escaped, 2826 const CallEvent *Call, 2827 PointerEscapeKind Kind, 2828 bool(*CheckRefState)(const RefState*)) const { 2829 // If we know that the call does not free memory, or we want to process the 2830 // call later, keep tracking the top level arguments. 2831 SymbolRef EscapingSymbol = nullptr; 2832 if (Kind == PSK_DirectEscapeOnCall && 2833 !mayFreeAnyEscapedMemoryOrIsModeledExplicitly(Call, State, 2834 EscapingSymbol) && 2835 !EscapingSymbol) { 2836 return State; 2837 } 2838 2839 for (InvalidatedSymbols::const_iterator I = Escaped.begin(), 2840 E = Escaped.end(); 2841 I != E; ++I) { 2842 SymbolRef sym = *I; 2843 2844 if (EscapingSymbol && EscapingSymbol != sym) 2845 continue; 2846 2847 if (const RefState *RS = State->get<RegionState>(sym)) { 2848 if ((RS->isAllocated() || RS->isAllocatedOfSizeZero()) && 2849 CheckRefState(RS)) { 2850 State = State->remove<RegionState>(sym); 2851 State = State->set<RegionState>(sym, RefState::getEscaped(RS)); 2852 } 2853 } 2854 } 2855 return State; 2856 } 2857 2858 static SymbolRef findFailedReallocSymbol(ProgramStateRef currState, 2859 ProgramStateRef prevState) { 2860 ReallocPairsTy currMap = currState->get<ReallocPairs>(); 2861 ReallocPairsTy prevMap = prevState->get<ReallocPairs>(); 2862 2863 for (ReallocPairsTy::iterator I = prevMap.begin(), E = prevMap.end(); 2864 I != E; ++I) { 2865 SymbolRef sym = I.getKey(); 2866 if (!currMap.lookup(sym)) 2867 return sym; 2868 } 2869 2870 return nullptr; 2871 } 2872 2873 static bool isReferenceCountingPointerDestructor(const CXXDestructorDecl *DD) { 2874 if (const IdentifierInfo *II = DD->getParent()->getIdentifier()) { 2875 StringRef N = II->getName(); 2876 if (N.contains_lower("ptr") || N.contains_lower("pointer")) { 2877 if (N.contains_lower("ref") || N.contains_lower("cnt") || 2878 N.contains_lower("intrusive") || N.contains_lower("shared")) { 2879 return true; 2880 } 2881 } 2882 } 2883 return false; 2884 } 2885 2886 std::shared_ptr<PathDiagnosticPiece> MallocChecker::MallocBugVisitor::VisitNode( 2887 const ExplodedNode *N, const ExplodedNode *PrevN, BugReporterContext &BRC, 2888 BugReport &BR) { 2889 2890 ProgramStateRef state = N->getState(); 2891 ProgramStateRef statePrev = PrevN->getState(); 2892 2893 const RefState *RS = state->get<RegionState>(Sym); 2894 const RefState *RSPrev = statePrev->get<RegionState>(Sym); 2895 2896 const Stmt *S = PathDiagnosticLocation::getStmt(N); 2897 // When dealing with containers, we sometimes want to give a note 2898 // even if the statement is missing. 2899 if (!S && (!RS || RS->getAllocationFamily() != AF_InnerBuffer)) 2900 return nullptr; 2901 2902 const LocationContext *CurrentLC = N->getLocationContext(); 2903 2904 // If we find an atomic fetch_add or fetch_sub within the destructor in which 2905 // the pointer was released (before the release), this is likely a destructor 2906 // of a shared pointer. 2907 // Because we don't model atomics, and also because we don't know that the 2908 // original reference count is positive, we should not report use-after-frees 2909 // on objects deleted in such destructors. This can probably be improved 2910 // through better shared pointer modeling. 2911 if (ReleaseDestructorLC) { 2912 if (const auto *AE = dyn_cast<AtomicExpr>(S)) { 2913 AtomicExpr::AtomicOp Op = AE->getOp(); 2914 if (Op == AtomicExpr::AO__c11_atomic_fetch_add || 2915 Op == AtomicExpr::AO__c11_atomic_fetch_sub) { 2916 if (ReleaseDestructorLC == CurrentLC || 2917 ReleaseDestructorLC->isParentOf(CurrentLC)) { 2918 BR.markInvalid(getTag(), S); 2919 } 2920 } 2921 } 2922 } 2923 2924 // FIXME: We will eventually need to handle non-statement-based events 2925 // (__attribute__((cleanup))). 2926 2927 // Find out if this is an interesting point and what is the kind. 2928 StringRef Msg; 2929 StackHintGeneratorForSymbol *StackHint = nullptr; 2930 SmallString<256> Buf; 2931 llvm::raw_svector_ostream OS(Buf); 2932 2933 if (Mode == Normal) { 2934 if (isAllocated(RS, RSPrev, S)) { 2935 Msg = "Memory is allocated"; 2936 StackHint = new StackHintGeneratorForSymbol(Sym, 2937 "Returned allocated memory"); 2938 } else if (isReleased(RS, RSPrev, S)) { 2939 const auto Family = RS->getAllocationFamily(); 2940 switch (Family) { 2941 case AF_Alloca: 2942 case AF_Malloc: 2943 case AF_CXXNew: 2944 case AF_CXXNewArray: 2945 case AF_IfNameIndex: 2946 Msg = "Memory is released"; 2947 break; 2948 case AF_InnerBuffer: { 2949 OS << "Inner pointer invalidated by call to "; 2950 if (N->getLocation().getKind() == ProgramPoint::PostImplicitCallKind) { 2951 OS << "destructor"; 2952 } else { 2953 OS << "'"; 2954 const Stmt *S = RS->getStmt(); 2955 if (const auto *MemCallE = dyn_cast<CXXMemberCallExpr>(S)) { 2956 OS << MemCallE->getMethodDecl()->getNameAsString(); 2957 } else if (const auto *OpCallE = dyn_cast<CXXOperatorCallExpr>(S)) { 2958 OS << OpCallE->getDirectCallee()->getNameAsString(); 2959 } else if (const auto *CallE = dyn_cast<CallExpr>(S)) { 2960 auto &CEMgr = BRC.getStateManager().getCallEventManager(); 2961 CallEventRef<> Call = CEMgr.getSimpleCall(CallE, state, CurrentLC); 2962 const auto *D = dyn_cast_or_null<NamedDecl>(Call->getDecl()); 2963 OS << (D ? D->getNameAsString() : "unknown"); 2964 } 2965 OS << "'"; 2966 } 2967 Msg = OS.str(); 2968 break; 2969 } 2970 case AF_None: 2971 llvm_unreachable("Unhandled allocation family!"); 2972 } 2973 StackHint = new StackHintGeneratorForSymbol(Sym, 2974 "Returning; memory was released"); 2975 2976 // See if we're releasing memory while inlining a destructor 2977 // (or one of its callees). This turns on various common 2978 // false positive suppressions. 2979 bool FoundAnyDestructor = false; 2980 for (const LocationContext *LC = CurrentLC; LC; LC = LC->getParent()) { 2981 if (const auto *DD = dyn_cast<CXXDestructorDecl>(LC->getDecl())) { 2982 if (isReferenceCountingPointerDestructor(DD)) { 2983 // This immediately looks like a reference-counting destructor. 2984 // We're bad at guessing the original reference count of the object, 2985 // so suppress the report for now. 2986 BR.markInvalid(getTag(), DD); 2987 } else if (!FoundAnyDestructor) { 2988 assert(!ReleaseDestructorLC && 2989 "There can be only one release point!"); 2990 // Suspect that it's a reference counting pointer destructor. 2991 // On one of the next nodes might find out that it has atomic 2992 // reference counting operations within it (see the code above), 2993 // and if so, we'd conclude that it likely is a reference counting 2994 // pointer destructor. 2995 ReleaseDestructorLC = LC->getStackFrame(); 2996 // It is unlikely that releasing memory is delegated to a destructor 2997 // inside a destructor of a shared pointer, because it's fairly hard 2998 // to pass the information that the pointer indeed needs to be 2999 // released into it. So we're only interested in the innermost 3000 // destructor. 3001 FoundAnyDestructor = true; 3002 } 3003 } 3004 } 3005 } else if (isRelinquished(RS, RSPrev, S)) { 3006 Msg = "Memory ownership is transferred"; 3007 StackHint = new StackHintGeneratorForSymbol(Sym, ""); 3008 } else if (isReallocFailedCheck(RS, RSPrev, S)) { 3009 Mode = ReallocationFailed; 3010 Msg = "Reallocation failed"; 3011 StackHint = new StackHintGeneratorForReallocationFailed(Sym, 3012 "Reallocation failed"); 3013 3014 if (SymbolRef sym = findFailedReallocSymbol(state, statePrev)) { 3015 // Is it possible to fail two reallocs WITHOUT testing in between? 3016 assert((!FailedReallocSymbol || FailedReallocSymbol == sym) && 3017 "We only support one failed realloc at a time."); 3018 BR.markInteresting(sym); 3019 FailedReallocSymbol = sym; 3020 } 3021 } 3022 3023 // We are in a special mode if a reallocation failed later in the path. 3024 } else if (Mode == ReallocationFailed) { 3025 assert(FailedReallocSymbol && "No symbol to look for."); 3026 3027 // Is this is the first appearance of the reallocated symbol? 3028 if (!statePrev->get<RegionState>(FailedReallocSymbol)) { 3029 // We're at the reallocation point. 3030 Msg = "Attempt to reallocate memory"; 3031 StackHint = new StackHintGeneratorForSymbol(Sym, 3032 "Returned reallocated memory"); 3033 FailedReallocSymbol = nullptr; 3034 Mode = Normal; 3035 } 3036 } 3037 3038 if (Msg.empty()) 3039 return nullptr; 3040 assert(StackHint); 3041 3042 // Generate the extra diagnostic. 3043 PathDiagnosticLocation Pos; 3044 if (!S) { 3045 assert(RS->getAllocationFamily() == AF_InnerBuffer); 3046 auto PostImplCall = N->getLocation().getAs<PostImplicitCall>(); 3047 if (!PostImplCall) 3048 return nullptr; 3049 Pos = PathDiagnosticLocation(PostImplCall->getLocation(), 3050 BRC.getSourceManager()); 3051 } else { 3052 Pos = PathDiagnosticLocation(S, BRC.getSourceManager(), 3053 N->getLocationContext()); 3054 } 3055 3056 return std::make_shared<PathDiagnosticEventPiece>(Pos, Msg, true, StackHint); 3057 } 3058 3059 void MallocChecker::printState(raw_ostream &Out, ProgramStateRef State, 3060 const char *NL, const char *Sep) const { 3061 3062 RegionStateTy RS = State->get<RegionState>(); 3063 3064 if (!RS.isEmpty()) { 3065 Out << Sep << "MallocChecker :" << NL; 3066 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 3067 const RefState *RefS = State->get<RegionState>(I.getKey()); 3068 AllocationFamily Family = RefS->getAllocationFamily(); 3069 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 3070 if (!CheckKind.hasValue()) 3071 CheckKind = getCheckIfTracked(Family, true); 3072 3073 I.getKey()->dumpToStream(Out); 3074 Out << " : "; 3075 I.getData().dump(Out); 3076 if (CheckKind.hasValue()) 3077 Out << " (" << CheckNames[*CheckKind].getName() << ")"; 3078 Out << NL; 3079 } 3080 } 3081 } 3082 3083 namespace clang { 3084 namespace ento { 3085 namespace allocation_state { 3086 3087 ProgramStateRef 3088 markReleased(ProgramStateRef State, SymbolRef Sym, const Expr *Origin) { 3089 AllocationFamily Family = AF_InnerBuffer; 3090 return State->set<RegionState>(Sym, RefState::getReleased(Family, Origin)); 3091 } 3092 3093 } // end namespace allocation_state 3094 } // end namespace ento 3095 } // end namespace clang 3096 3097 void ento::registerNewDeleteLeaksChecker(CheckerManager &mgr) { 3098 registerCStringCheckerBasic(mgr); 3099 MallocChecker *checker = mgr.registerChecker<MallocChecker>(); 3100 checker->IsOptimistic = mgr.getAnalyzerOptions().getBooleanOption( 3101 "Optimistic", false, checker); 3102 checker->ChecksEnabled[MallocChecker::CK_NewDeleteLeaksChecker] = true; 3103 checker->CheckNames[MallocChecker::CK_NewDeleteLeaksChecker] = 3104 mgr.getCurrentCheckName(); 3105 // We currently treat NewDeleteLeaks checker as a subchecker of NewDelete 3106 // checker. 3107 if (!checker->ChecksEnabled[MallocChecker::CK_NewDeleteChecker]) { 3108 checker->ChecksEnabled[MallocChecker::CK_NewDeleteChecker] = true; 3109 // FIXME: This does not set the correct name, but without this workaround 3110 // no name will be set at all. 3111 checker->CheckNames[MallocChecker::CK_NewDeleteChecker] = 3112 mgr.getCurrentCheckName(); 3113 } 3114 } 3115 3116 // Intended to be used in InnerPointerChecker to register the part of 3117 // MallocChecker connected to it. 3118 void ento::registerInnerPointerCheckerAux(CheckerManager &mgr) { 3119 registerCStringCheckerBasic(mgr); 3120 MallocChecker *checker = mgr.registerChecker<MallocChecker>(); 3121 checker->IsOptimistic = mgr.getAnalyzerOptions().getBooleanOption( 3122 "Optimistic", false, checker); 3123 checker->ChecksEnabled[MallocChecker::CK_InnerPointerChecker] = true; 3124 checker->CheckNames[MallocChecker::CK_InnerPointerChecker] = 3125 mgr.getCurrentCheckName(); 3126 } 3127 3128 #define REGISTER_CHECKER(name) \ 3129 void ento::register##name(CheckerManager &mgr) { \ 3130 registerCStringCheckerBasic(mgr); \ 3131 MallocChecker *checker = mgr.registerChecker<MallocChecker>(); \ 3132 checker->IsOptimistic = mgr.getAnalyzerOptions().getBooleanOption( \ 3133 "Optimistic", false, checker); \ 3134 checker->ChecksEnabled[MallocChecker::CK_##name] = true; \ 3135 checker->CheckNames[MallocChecker::CK_##name] = mgr.getCurrentCheckName(); \ 3136 } 3137 3138 REGISTER_CHECKER(MallocChecker) 3139 REGISTER_CHECKER(NewDeleteChecker) 3140 REGISTER_CHECKER(MismatchedDeallocatorChecker) 3141