1 //=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines a variety of memory management related checkers, such as 10 // leak, double free, and use-after-free. 11 // 12 // The following checkers are defined here: 13 // 14 // * MallocChecker 15 // Despite its name, it models all sorts of memory allocations and 16 // de- or reallocation, including but not limited to malloc, free, 17 // relloc, new, delete. It also reports on a variety of memory misuse 18 // errors. 19 // Many other checkers interact very closely with this checker, in fact, 20 // most are merely options to this one. Other checkers may register 21 // MallocChecker, but do not enable MallocChecker's reports (more details 22 // to follow around its field, ChecksEnabled). 23 // It also has a boolean "Optimistic" checker option, which if set to true 24 // will cause the checker to model user defined memory management related 25 // functions annotated via the attribute ownership_takes, ownership_holds 26 // and ownership_returns. 27 // 28 // * NewDeleteChecker 29 // Enables the modeling of new, new[], delete, delete[] in MallocChecker, 30 // and checks for related double-free and use-after-free errors. 31 // 32 // * NewDeleteLeaksChecker 33 // Checks for leaks related to new, new[], delete, delete[]. 34 // Depends on NewDeleteChecker. 35 // 36 // * MismatchedDeallocatorChecker 37 // Enables checking whether memory is deallocated with the correspending 38 // allocation function in MallocChecker, such as malloc() allocated 39 // regions are only freed by free(), new by delete, new[] by delete[]. 40 // 41 // InnerPointerChecker interacts very closely with MallocChecker, but unlike 42 // the above checkers, it has it's own file, hence the many InnerPointerChecker 43 // related headers and non-static functions. 44 // 45 //===----------------------------------------------------------------------===// 46 47 #include "AllocationState.h" 48 #include "InterCheckerAPI.h" 49 #include "clang/AST/Attr.h" 50 #include "clang/AST/DeclCXX.h" 51 #include "clang/AST/DeclTemplate.h" 52 #include "clang/AST/Expr.h" 53 #include "clang/AST/ExprCXX.h" 54 #include "clang/AST/ParentMap.h" 55 #include "clang/ASTMatchers/ASTMatchFinder.h" 56 #include "clang/ASTMatchers/ASTMatchers.h" 57 #include "clang/Analysis/ProgramPoint.h" 58 #include "clang/Basic/LLVM.h" 59 #include "clang/Basic/SourceManager.h" 60 #include "clang/Basic/TargetInfo.h" 61 #include "clang/Lex/Lexer.h" 62 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" 63 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 64 #include "clang/StaticAnalyzer/Core/BugReporter/CommonBugCategories.h" 65 #include "clang/StaticAnalyzer/Core/Checker.h" 66 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 67 #include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h" 68 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 69 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 70 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h" 71 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h" 72 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h" 73 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 74 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 75 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h" 76 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" 77 #include "clang/StaticAnalyzer/Core/PathSensitive/StoreRef.h" 78 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" 79 #include "llvm/ADT/STLExtras.h" 80 #include "llvm/ADT/SetOperations.h" 81 #include "llvm/ADT/SmallString.h" 82 #include "llvm/ADT/StringExtras.h" 83 #include "llvm/Support/Casting.h" 84 #include "llvm/Support/Compiler.h" 85 #include "llvm/Support/ErrorHandling.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include <climits> 88 #include <functional> 89 #include <optional> 90 #include <utility> 91 92 using namespace clang; 93 using namespace ento; 94 using namespace std::placeholders; 95 96 //===----------------------------------------------------------------------===// 97 // The types of allocation we're modeling. This is used to check whether a 98 // dynamically allocated object is deallocated with the correct function, like 99 // not using operator delete on an object created by malloc(), or alloca regions 100 // aren't ever deallocated manually. 101 //===----------------------------------------------------------------------===// 102 103 namespace { 104 105 // Used to check correspondence between allocators and deallocators. 106 enum AllocationFamily { 107 AF_None, 108 AF_Malloc, 109 AF_CXXNew, 110 AF_CXXNewArray, 111 AF_IfNameIndex, 112 AF_Alloca, 113 AF_InnerBuffer 114 }; 115 116 } // end of anonymous namespace 117 118 /// Print names of allocators and deallocators. 119 /// 120 /// \returns true on success. 121 static bool printMemFnName(raw_ostream &os, CheckerContext &C, const Expr *E); 122 123 /// Print expected name of an allocator based on the deallocator's family 124 /// derived from the DeallocExpr. 125 static void printExpectedAllocName(raw_ostream &os, AllocationFamily Family); 126 127 /// Print expected name of a deallocator based on the allocator's 128 /// family. 129 static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family); 130 131 //===----------------------------------------------------------------------===// 132 // The state of a symbol, in terms of memory management. 133 //===----------------------------------------------------------------------===// 134 135 namespace { 136 137 class RefState { 138 enum Kind { 139 // Reference to allocated memory. 140 Allocated, 141 // Reference to zero-allocated memory. 142 AllocatedOfSizeZero, 143 // Reference to released/freed memory. 144 Released, 145 // The responsibility for freeing resources has transferred from 146 // this reference. A relinquished symbol should not be freed. 147 Relinquished, 148 // We are no longer guaranteed to have observed all manipulations 149 // of this pointer/memory. For example, it could have been 150 // passed as a parameter to an opaque function. 151 Escaped 152 }; 153 154 const Stmt *S; 155 156 Kind K; 157 AllocationFamily Family; 158 159 RefState(Kind k, const Stmt *s, AllocationFamily family) 160 : S(s), K(k), Family(family) { 161 assert(family != AF_None); 162 } 163 164 public: 165 bool isAllocated() const { return K == Allocated; } 166 bool isAllocatedOfSizeZero() const { return K == AllocatedOfSizeZero; } 167 bool isReleased() const { return K == Released; } 168 bool isRelinquished() const { return K == Relinquished; } 169 bool isEscaped() const { return K == Escaped; } 170 AllocationFamily getAllocationFamily() const { return Family; } 171 const Stmt *getStmt() const { return S; } 172 173 bool operator==(const RefState &X) const { 174 return K == X.K && S == X.S && Family == X.Family; 175 } 176 177 static RefState getAllocated(AllocationFamily family, const Stmt *s) { 178 return RefState(Allocated, s, family); 179 } 180 static RefState getAllocatedOfSizeZero(const RefState *RS) { 181 return RefState(AllocatedOfSizeZero, RS->getStmt(), 182 RS->getAllocationFamily()); 183 } 184 static RefState getReleased(AllocationFamily family, const Stmt *s) { 185 return RefState(Released, s, family); 186 } 187 static RefState getRelinquished(AllocationFamily family, const Stmt *s) { 188 return RefState(Relinquished, s, family); 189 } 190 static RefState getEscaped(const RefState *RS) { 191 return RefState(Escaped, RS->getStmt(), RS->getAllocationFamily()); 192 } 193 194 void Profile(llvm::FoldingSetNodeID &ID) const { 195 ID.AddInteger(K); 196 ID.AddPointer(S); 197 ID.AddInteger(Family); 198 } 199 200 LLVM_DUMP_METHOD void dump(raw_ostream &OS) const { 201 switch (K) { 202 #define CASE(ID) case ID: OS << #ID; break; 203 CASE(Allocated) 204 CASE(AllocatedOfSizeZero) 205 CASE(Released) 206 CASE(Relinquished) 207 CASE(Escaped) 208 } 209 } 210 211 LLVM_DUMP_METHOD void dump() const { dump(llvm::errs()); } 212 }; 213 214 } // end of anonymous namespace 215 216 REGISTER_MAP_WITH_PROGRAMSTATE(RegionState, SymbolRef, RefState) 217 218 /// Check if the memory associated with this symbol was released. 219 static bool isReleased(SymbolRef Sym, CheckerContext &C); 220 221 /// Update the RefState to reflect the new memory allocation. 222 /// The optional \p RetVal parameter specifies the newly allocated pointer 223 /// value; if unspecified, the value of expression \p E is used. 224 static ProgramStateRef 225 MallocUpdateRefState(CheckerContext &C, const Expr *E, ProgramStateRef State, 226 AllocationFamily Family, 227 std::optional<SVal> RetVal = std::nullopt); 228 229 //===----------------------------------------------------------------------===// 230 // The modeling of memory reallocation. 231 // 232 // The terminology 'toPtr' and 'fromPtr' will be used: 233 // toPtr = realloc(fromPtr, 20); 234 //===----------------------------------------------------------------------===// 235 236 REGISTER_SET_WITH_PROGRAMSTATE(ReallocSizeZeroSymbols, SymbolRef) 237 238 namespace { 239 240 /// The state of 'fromPtr' after reallocation is known to have failed. 241 enum OwnershipAfterReallocKind { 242 // The symbol needs to be freed (e.g.: realloc) 243 OAR_ToBeFreedAfterFailure, 244 // The symbol has been freed (e.g.: reallocf) 245 OAR_FreeOnFailure, 246 // The symbol doesn't have to freed (e.g.: we aren't sure if, how and where 247 // 'fromPtr' was allocated: 248 // void Haha(int *ptr) { 249 // ptr = realloc(ptr, 67); 250 // // ... 251 // } 252 // ). 253 OAR_DoNotTrackAfterFailure 254 }; 255 256 /// Stores information about the 'fromPtr' symbol after reallocation. 257 /// 258 /// This is important because realloc may fail, and that needs special modeling. 259 /// Whether reallocation failed or not will not be known until later, so we'll 260 /// store whether upon failure 'fromPtr' will be freed, or needs to be freed 261 /// later, etc. 262 struct ReallocPair { 263 264 // The 'fromPtr'. 265 SymbolRef ReallocatedSym; 266 OwnershipAfterReallocKind Kind; 267 268 ReallocPair(SymbolRef S, OwnershipAfterReallocKind K) 269 : ReallocatedSym(S), Kind(K) {} 270 void Profile(llvm::FoldingSetNodeID &ID) const { 271 ID.AddInteger(Kind); 272 ID.AddPointer(ReallocatedSym); 273 } 274 bool operator==(const ReallocPair &X) const { 275 return ReallocatedSym == X.ReallocatedSym && 276 Kind == X.Kind; 277 } 278 }; 279 280 } // end of anonymous namespace 281 282 REGISTER_MAP_WITH_PROGRAMSTATE(ReallocPairs, SymbolRef, ReallocPair) 283 284 /// Tells if the callee is one of the builtin new/delete operators, including 285 /// placement operators and other standard overloads. 286 static bool isStandardNewDelete(const FunctionDecl *FD); 287 static bool isStandardNewDelete(const CallEvent &Call) { 288 if (!Call.getDecl() || !isa<FunctionDecl>(Call.getDecl())) 289 return false; 290 return isStandardNewDelete(cast<FunctionDecl>(Call.getDecl())); 291 } 292 293 //===----------------------------------------------------------------------===// 294 // Definition of the MallocChecker class. 295 //===----------------------------------------------------------------------===// 296 297 namespace { 298 299 class MallocChecker 300 : public Checker<check::DeadSymbols, check::PointerEscape, 301 check::ConstPointerEscape, check::PreStmt<ReturnStmt>, 302 check::EndFunction, check::PreCall, check::PostCall, 303 check::NewAllocator, check::PostStmt<BlockExpr>, 304 check::PostObjCMessage, check::Location, eval::Assume> { 305 public: 306 /// In pessimistic mode, the checker assumes that it does not know which 307 /// functions might free the memory. 308 /// In optimistic mode, the checker assumes that all user-defined functions 309 /// which might free a pointer are annotated. 310 bool ShouldIncludeOwnershipAnnotatedFunctions = false; 311 312 bool ShouldRegisterNoOwnershipChangeVisitor = false; 313 314 /// Many checkers are essentially built into this one, so enabling them will 315 /// make MallocChecker perform additional modeling and reporting. 316 enum CheckKind { 317 /// When a subchecker is enabled but MallocChecker isn't, model memory 318 /// management but do not emit warnings emitted with MallocChecker only 319 /// enabled. 320 CK_MallocChecker, 321 CK_NewDeleteChecker, 322 CK_NewDeleteLeaksChecker, 323 CK_MismatchedDeallocatorChecker, 324 CK_InnerPointerChecker, 325 CK_NumCheckKinds 326 }; 327 328 using LeakInfo = std::pair<const ExplodedNode *, const MemRegion *>; 329 330 bool ChecksEnabled[CK_NumCheckKinds] = {false}; 331 CheckerNameRef CheckNames[CK_NumCheckKinds]; 332 333 void checkPreCall(const CallEvent &Call, CheckerContext &C) const; 334 void checkPostCall(const CallEvent &Call, CheckerContext &C) const; 335 void checkNewAllocator(const CXXAllocatorCall &Call, CheckerContext &C) const; 336 void checkPostObjCMessage(const ObjCMethodCall &Call, CheckerContext &C) const; 337 void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const; 338 void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const; 339 void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const; 340 void checkEndFunction(const ReturnStmt *S, CheckerContext &C) const; 341 ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond, 342 bool Assumption) const; 343 void checkLocation(SVal l, bool isLoad, const Stmt *S, 344 CheckerContext &C) const; 345 346 ProgramStateRef checkPointerEscape(ProgramStateRef State, 347 const InvalidatedSymbols &Escaped, 348 const CallEvent *Call, 349 PointerEscapeKind Kind) const; 350 ProgramStateRef checkConstPointerEscape(ProgramStateRef State, 351 const InvalidatedSymbols &Escaped, 352 const CallEvent *Call, 353 PointerEscapeKind Kind) const; 354 355 void printState(raw_ostream &Out, ProgramStateRef State, 356 const char *NL, const char *Sep) const override; 357 358 private: 359 mutable std::unique_ptr<BugType> BT_DoubleFree[CK_NumCheckKinds]; 360 mutable std::unique_ptr<BugType> BT_DoubleDelete; 361 mutable std::unique_ptr<BugType> BT_Leak[CK_NumCheckKinds]; 362 mutable std::unique_ptr<BugType> BT_UseFree[CK_NumCheckKinds]; 363 mutable std::unique_ptr<BugType> BT_BadFree[CK_NumCheckKinds]; 364 mutable std::unique_ptr<BugType> BT_FreeAlloca[CK_NumCheckKinds]; 365 mutable std::unique_ptr<BugType> BT_MismatchedDealloc; 366 mutable std::unique_ptr<BugType> BT_OffsetFree[CK_NumCheckKinds]; 367 mutable std::unique_ptr<BugType> BT_UseZerroAllocated[CK_NumCheckKinds]; 368 369 #define CHECK_FN(NAME) \ 370 void NAME(const CallEvent &Call, CheckerContext &C) const; 371 372 CHECK_FN(checkFree) 373 CHECK_FN(checkIfNameIndex) 374 CHECK_FN(checkBasicAlloc) 375 CHECK_FN(checkKernelMalloc) 376 CHECK_FN(checkCalloc) 377 CHECK_FN(checkAlloca) 378 CHECK_FN(checkStrdup) 379 CHECK_FN(checkIfFreeNameIndex) 380 CHECK_FN(checkCXXNewOrCXXDelete) 381 CHECK_FN(checkGMalloc0) 382 CHECK_FN(checkGMemdup) 383 CHECK_FN(checkGMallocN) 384 CHECK_FN(checkGMallocN0) 385 CHECK_FN(preGetdelim) 386 CHECK_FN(checkGetdelim) 387 CHECK_FN(checkReallocN) 388 CHECK_FN(checkOwnershipAttr) 389 390 void checkRealloc(const CallEvent &Call, CheckerContext &C, 391 bool ShouldFreeOnFail) const; 392 393 using CheckFn = std::function<void(const MallocChecker *, 394 const CallEvent &Call, CheckerContext &C)>; 395 396 const CallDescriptionMap<CheckFn> PreFnMap{ 397 // NOTE: the following CallDescription also matches the C++ standard 398 // library function std::getline(); the callback will filter it out. 399 {{CDM::CLibrary, {"getline"}, 3}, &MallocChecker::preGetdelim}, 400 {{CDM::CLibrary, {"getdelim"}, 4}, &MallocChecker::preGetdelim}, 401 }; 402 403 const CallDescriptionMap<CheckFn> FreeingMemFnMap{ 404 {{CDM::CLibrary, {"free"}, 1}, &MallocChecker::checkFree}, 405 {{CDM::CLibrary, {"if_freenameindex"}, 1}, 406 &MallocChecker::checkIfFreeNameIndex}, 407 {{CDM::CLibrary, {"kfree"}, 1}, &MallocChecker::checkFree}, 408 {{CDM::CLibrary, {"g_free"}, 1}, &MallocChecker::checkFree}, 409 }; 410 411 bool isFreeingCall(const CallEvent &Call) const; 412 static bool isFreeingOwnershipAttrCall(const FunctionDecl *Func); 413 414 friend class NoOwnershipChangeVisitor; 415 416 CallDescriptionMap<CheckFn> AllocatingMemFnMap{ 417 {{CDM::CLibrary, {"alloca"}, 1}, &MallocChecker::checkAlloca}, 418 {{CDM::CLibrary, {"_alloca"}, 1}, &MallocChecker::checkAlloca}, 419 // The line for "alloca" also covers "__builtin_alloca", but the 420 // _with_align variant must be listed separately because it takes an 421 // extra argument: 422 {{CDM::CLibrary, {"__builtin_alloca_with_align"}, 2}, 423 &MallocChecker::checkAlloca}, 424 {{CDM::CLibrary, {"malloc"}, 1}, &MallocChecker::checkBasicAlloc}, 425 {{CDM::CLibrary, {"malloc"}, 3}, &MallocChecker::checkKernelMalloc}, 426 {{CDM::CLibrary, {"calloc"}, 2}, &MallocChecker::checkCalloc}, 427 {{CDM::CLibrary, {"valloc"}, 1}, &MallocChecker::checkBasicAlloc}, 428 {{CDM::CLibrary, {"strndup"}, 2}, &MallocChecker::checkStrdup}, 429 {{CDM::CLibrary, {"strdup"}, 1}, &MallocChecker::checkStrdup}, 430 {{CDM::CLibrary, {"_strdup"}, 1}, &MallocChecker::checkStrdup}, 431 {{CDM::CLibrary, {"kmalloc"}, 2}, &MallocChecker::checkKernelMalloc}, 432 {{CDM::CLibrary, {"if_nameindex"}, 1}, &MallocChecker::checkIfNameIndex}, 433 {{CDM::CLibrary, {"wcsdup"}, 1}, &MallocChecker::checkStrdup}, 434 {{CDM::CLibrary, {"_wcsdup"}, 1}, &MallocChecker::checkStrdup}, 435 {{CDM::CLibrary, {"g_malloc"}, 1}, &MallocChecker::checkBasicAlloc}, 436 {{CDM::CLibrary, {"g_malloc0"}, 1}, &MallocChecker::checkGMalloc0}, 437 {{CDM::CLibrary, {"g_try_malloc"}, 1}, &MallocChecker::checkBasicAlloc}, 438 {{CDM::CLibrary, {"g_try_malloc0"}, 1}, &MallocChecker::checkGMalloc0}, 439 {{CDM::CLibrary, {"g_memdup"}, 2}, &MallocChecker::checkGMemdup}, 440 {{CDM::CLibrary, {"g_malloc_n"}, 2}, &MallocChecker::checkGMallocN}, 441 {{CDM::CLibrary, {"g_malloc0_n"}, 2}, &MallocChecker::checkGMallocN0}, 442 {{CDM::CLibrary, {"g_try_malloc_n"}, 2}, &MallocChecker::checkGMallocN}, 443 {{CDM::CLibrary, {"g_try_malloc0_n"}, 2}, &MallocChecker::checkGMallocN0}, 444 }; 445 446 CallDescriptionMap<CheckFn> ReallocatingMemFnMap{ 447 {{CDM::CLibrary, {"realloc"}, 2}, 448 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)}, 449 {{CDM::CLibrary, {"reallocf"}, 2}, 450 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, true)}, 451 {{CDM::CLibrary, {"g_realloc"}, 2}, 452 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)}, 453 {{CDM::CLibrary, {"g_try_realloc"}, 2}, 454 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)}, 455 {{CDM::CLibrary, {"g_realloc_n"}, 3}, &MallocChecker::checkReallocN}, 456 {{CDM::CLibrary, {"g_try_realloc_n"}, 3}, &MallocChecker::checkReallocN}, 457 458 // NOTE: the following CallDescription also matches the C++ standard 459 // library function std::getline(); the callback will filter it out. 460 {{CDM::CLibrary, {"getline"}, 3}, &MallocChecker::checkGetdelim}, 461 {{CDM::CLibrary, {"getdelim"}, 4}, &MallocChecker::checkGetdelim}, 462 }; 463 464 bool isMemCall(const CallEvent &Call) const; 465 466 // TODO: Remove mutable by moving the initializtaion to the registry function. 467 mutable std::optional<uint64_t> KernelZeroFlagVal; 468 469 using KernelZeroSizePtrValueTy = std::optional<int>; 470 /// Store the value of macro called `ZERO_SIZE_PTR`. 471 /// The value is initialized at first use, before first use the outer 472 /// Optional is empty, afterwards it contains another Optional that indicates 473 /// if the macro value could be determined, and if yes the value itself. 474 mutable std::optional<KernelZeroSizePtrValueTy> KernelZeroSizePtrValue; 475 476 /// Process C++ operator new()'s allocation, which is the part of C++ 477 /// new-expression that goes before the constructor. 478 [[nodiscard]] ProgramStateRef 479 processNewAllocation(const CXXAllocatorCall &Call, CheckerContext &C, 480 AllocationFamily Family) const; 481 482 /// Perform a zero-allocation check. 483 /// 484 /// \param [in] Call The expression that allocates memory. 485 /// \param [in] IndexOfSizeArg Index of the argument that specifies the size 486 /// of the memory that needs to be allocated. E.g. for malloc, this would be 487 /// 0. 488 /// \param [in] RetVal Specifies the newly allocated pointer value; 489 /// if unspecified, the value of expression \p E is used. 490 [[nodiscard]] static ProgramStateRef 491 ProcessZeroAllocCheck(const CallEvent &Call, const unsigned IndexOfSizeArg, 492 ProgramStateRef State, 493 std::optional<SVal> RetVal = std::nullopt); 494 495 /// Model functions with the ownership_returns attribute. 496 /// 497 /// User-defined function may have the ownership_returns attribute, which 498 /// annotates that the function returns with an object that was allocated on 499 /// the heap, and passes the ownertship to the callee. 500 /// 501 /// void __attribute((ownership_returns(malloc, 1))) *my_malloc(size_t); 502 /// 503 /// It has two parameters: 504 /// - first: name of the resource (e.g. 'malloc') 505 /// - (OPTIONAL) second: size of the allocated region 506 /// 507 /// \param [in] Call The expression that allocates memory. 508 /// \param [in] Att The ownership_returns attribute. 509 /// \param [in] State The \c ProgramState right before allocation. 510 /// \returns The ProgramState right after allocation. 511 [[nodiscard]] ProgramStateRef 512 MallocMemReturnsAttr(CheckerContext &C, const CallEvent &Call, 513 const OwnershipAttr *Att, ProgramStateRef State) const; 514 515 /// Models memory allocation. 516 /// 517 /// \param [in] Call The expression that allocates memory. 518 /// \param [in] SizeEx Size of the memory that needs to be allocated. 519 /// \param [in] Init The value the allocated memory needs to be initialized. 520 /// with. For example, \c calloc initializes the allocated memory to 0, 521 /// malloc leaves it undefined. 522 /// \param [in] State The \c ProgramState right before allocation. 523 /// \returns The ProgramState right after allocation. 524 [[nodiscard]] static ProgramStateRef 525 MallocMemAux(CheckerContext &C, const CallEvent &Call, const Expr *SizeEx, 526 SVal Init, ProgramStateRef State, AllocationFamily Family); 527 528 /// Models memory allocation. 529 /// 530 /// \param [in] Call The expression that allocates memory. 531 /// \param [in] Size Size of the memory that needs to be allocated. 532 /// \param [in] Init The value the allocated memory needs to be initialized. 533 /// with. For example, \c calloc initializes the allocated memory to 0, 534 /// malloc leaves it undefined. 535 /// \param [in] State The \c ProgramState right before allocation. 536 /// \returns The ProgramState right after allocation. 537 [[nodiscard]] static ProgramStateRef 538 MallocMemAux(CheckerContext &C, const CallEvent &Call, SVal Size, SVal Init, 539 ProgramStateRef State, AllocationFamily Family); 540 541 // Check if this malloc() for special flags. At present that means M_ZERO or 542 // __GFP_ZERO (in which case, treat it like calloc). 543 [[nodiscard]] std::optional<ProgramStateRef> 544 performKernelMalloc(const CallEvent &Call, CheckerContext &C, 545 const ProgramStateRef &State) const; 546 547 /// Model functions with the ownership_takes and ownership_holds attributes. 548 /// 549 /// User-defined function may have the ownership_takes and/or ownership_holds 550 /// attributes, which annotates that the function frees the memory passed as a 551 /// parameter. 552 /// 553 /// void __attribute((ownership_takes(malloc, 1))) my_free(void *); 554 /// void __attribute((ownership_holds(malloc, 1))) my_hold(void *); 555 /// 556 /// They have two parameters: 557 /// - first: name of the resource (e.g. 'malloc') 558 /// - second: index of the parameter the attribute applies to 559 /// 560 /// \param [in] Call The expression that frees memory. 561 /// \param [in] Att The ownership_takes or ownership_holds attribute. 562 /// \param [in] State The \c ProgramState right before allocation. 563 /// \returns The ProgramState right after deallocation. 564 [[nodiscard]] ProgramStateRef FreeMemAttr(CheckerContext &C, 565 const CallEvent &Call, 566 const OwnershipAttr *Att, 567 ProgramStateRef State) const; 568 569 /// Models memory deallocation. 570 /// 571 /// \param [in] Call The expression that frees memory. 572 /// \param [in] State The \c ProgramState right before allocation. 573 /// \param [in] Num Index of the argument that needs to be freed. This is 574 /// normally 0, but for custom free functions it may be different. 575 /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds 576 /// attribute. 577 /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known 578 /// to have been allocated, or in other words, the symbol to be freed was 579 /// registered as allocated by this checker. In the following case, \c ptr 580 /// isn't known to be allocated. 581 /// void Haha(int *ptr) { 582 /// ptr = realloc(ptr, 67); 583 /// // ... 584 /// } 585 /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function 586 /// we're modeling returns with Null on failure. 587 /// \returns The ProgramState right after deallocation. 588 [[nodiscard]] ProgramStateRef 589 FreeMemAux(CheckerContext &C, const CallEvent &Call, ProgramStateRef State, 590 unsigned Num, bool Hold, bool &IsKnownToBeAllocated, 591 AllocationFamily Family, bool ReturnsNullOnFailure = false) const; 592 593 /// Models memory deallocation. 594 /// 595 /// \param [in] ArgExpr The variable who's pointee needs to be freed. 596 /// \param [in] Call The expression that frees the memory. 597 /// \param [in] State The \c ProgramState right before allocation. 598 /// normally 0, but for custom free functions it may be different. 599 /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds 600 /// attribute. 601 /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known 602 /// to have been allocated, or in other words, the symbol to be freed was 603 /// registered as allocated by this checker. In the following case, \c ptr 604 /// isn't known to be allocated. 605 /// void Haha(int *ptr) { 606 /// ptr = realloc(ptr, 67); 607 /// // ... 608 /// } 609 /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function 610 /// we're modeling returns with Null on failure. 611 /// \param [in] ArgValOpt Optional value to use for the argument instead of 612 /// the one obtained from ArgExpr. 613 /// \returns The ProgramState right after deallocation. 614 [[nodiscard]] ProgramStateRef 615 FreeMemAux(CheckerContext &C, const Expr *ArgExpr, const CallEvent &Call, 616 ProgramStateRef State, bool Hold, bool &IsKnownToBeAllocated, 617 AllocationFamily Family, bool ReturnsNullOnFailure = false, 618 std::optional<SVal> ArgValOpt = {}) const; 619 620 // TODO: Needs some refactoring, as all other deallocation modeling 621 // functions are suffering from out parameters and messy code due to how 622 // realloc is handled. 623 // 624 /// Models memory reallocation. 625 /// 626 /// \param [in] Call The expression that reallocated memory 627 /// \param [in] ShouldFreeOnFail Whether if reallocation fails, the supplied 628 /// memory should be freed. 629 /// \param [in] State The \c ProgramState right before reallocation. 630 /// \param [in] SuffixWithN Whether the reallocation function we're modeling 631 /// has an '_n' suffix, such as g_realloc_n. 632 /// \returns The ProgramState right after reallocation. 633 [[nodiscard]] ProgramStateRef 634 ReallocMemAux(CheckerContext &C, const CallEvent &Call, bool ShouldFreeOnFail, 635 ProgramStateRef State, AllocationFamily Family, 636 bool SuffixWithN = false) const; 637 638 /// Evaluates the buffer size that needs to be allocated. 639 /// 640 /// \param [in] Blocks The amount of blocks that needs to be allocated. 641 /// \param [in] BlockBytes The size of a block. 642 /// \returns The symbolic value of \p Blocks * \p BlockBytes. 643 [[nodiscard]] static SVal evalMulForBufferSize(CheckerContext &C, 644 const Expr *Blocks, 645 const Expr *BlockBytes); 646 647 /// Models zero initialized array allocation. 648 /// 649 /// \param [in] Call The expression that reallocated memory 650 /// \param [in] State The \c ProgramState right before reallocation. 651 /// \returns The ProgramState right after allocation. 652 [[nodiscard]] static ProgramStateRef 653 CallocMem(CheckerContext &C, const CallEvent &Call, ProgramStateRef State); 654 655 /// See if deallocation happens in a suspicious context. If so, escape the 656 /// pointers that otherwise would have been deallocated and return true. 657 bool suppressDeallocationsInSuspiciousContexts(const CallEvent &Call, 658 CheckerContext &C) const; 659 660 /// If in \p S \p Sym is used, check whether \p Sym was already freed. 661 bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S) const; 662 663 /// If in \p S \p Sym is used, check whether \p Sym was allocated as a zero 664 /// sized memory region. 665 void checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 666 const Stmt *S) const; 667 668 /// If in \p S \p Sym is being freed, check whether \p Sym was already freed. 669 bool checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const; 670 671 /// Check if the function is known to free memory, or if it is 672 /// "interesting" and should be modeled explicitly. 673 /// 674 /// \param [out] EscapingSymbol A function might not free memory in general, 675 /// but could be known to free a particular symbol. In this case, false is 676 /// returned and the single escaping symbol is returned through the out 677 /// parameter. 678 /// 679 /// We assume that pointers do not escape through calls to system functions 680 /// not handled by this checker. 681 bool mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent *Call, 682 ProgramStateRef State, 683 SymbolRef &EscapingSymbol) const; 684 685 /// Implementation of the checkPointerEscape callbacks. 686 [[nodiscard]] ProgramStateRef 687 checkPointerEscapeAux(ProgramStateRef State, 688 const InvalidatedSymbols &Escaped, 689 const CallEvent *Call, PointerEscapeKind Kind, 690 bool IsConstPointerEscape) const; 691 692 // Implementation of the checkPreStmt and checkEndFunction callbacks. 693 void checkEscapeOnReturn(const ReturnStmt *S, CheckerContext &C) const; 694 695 ///@{ 696 /// Tells if a given family/call/symbol is tracked by the current checker. 697 /// Sets CheckKind to the kind of the checker responsible for this 698 /// family/call/symbol. 699 std::optional<CheckKind> getCheckIfTracked(AllocationFamily Family, 700 bool IsALeakCheck = false) const; 701 702 std::optional<CheckKind> getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 703 bool IsALeakCheck = false) const; 704 ///@} 705 static bool SummarizeValue(raw_ostream &os, SVal V); 706 static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR); 707 708 void HandleNonHeapDealloc(CheckerContext &C, SVal ArgVal, SourceRange Range, 709 const Expr *DeallocExpr, 710 AllocationFamily Family) const; 711 712 void HandleFreeAlloca(CheckerContext &C, SVal ArgVal, 713 SourceRange Range) const; 714 715 void HandleMismatchedDealloc(CheckerContext &C, SourceRange Range, 716 const Expr *DeallocExpr, const RefState *RS, 717 SymbolRef Sym, bool OwnershipTransferred) const; 718 719 void HandleOffsetFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 720 const Expr *DeallocExpr, AllocationFamily Family, 721 const Expr *AllocExpr = nullptr) const; 722 723 void HandleUseAfterFree(CheckerContext &C, SourceRange Range, 724 SymbolRef Sym) const; 725 726 void HandleDoubleFree(CheckerContext &C, SourceRange Range, bool Released, 727 SymbolRef Sym, SymbolRef PrevSym) const; 728 729 void HandleDoubleDelete(CheckerContext &C, SymbolRef Sym) const; 730 731 void HandleUseZeroAlloc(CheckerContext &C, SourceRange Range, 732 SymbolRef Sym) const; 733 734 void HandleFunctionPtrFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 735 const Expr *FreeExpr, 736 AllocationFamily Family) const; 737 738 /// Find the location of the allocation for Sym on the path leading to the 739 /// exploded node N. 740 static LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym, 741 CheckerContext &C); 742 743 void HandleLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const; 744 745 /// Test if value in ArgVal equals to value in macro `ZERO_SIZE_PTR`. 746 bool isArgZERO_SIZE_PTR(ProgramStateRef State, CheckerContext &C, 747 SVal ArgVal) const; 748 }; 749 } // end anonymous namespace 750 751 //===----------------------------------------------------------------------===// 752 // Definition of NoOwnershipChangeVisitor. 753 //===----------------------------------------------------------------------===// 754 755 namespace { 756 class NoOwnershipChangeVisitor final : public NoStateChangeFuncVisitor { 757 // The symbol whose (lack of) ownership change we are interested in. 758 SymbolRef Sym; 759 const MallocChecker &Checker; 760 using OwnerSet = llvm::SmallPtrSet<const MemRegion *, 8>; 761 762 // Collect which entities point to the allocated memory, and could be 763 // responsible for deallocating it. 764 class OwnershipBindingsHandler : public StoreManager::BindingsHandler { 765 SymbolRef Sym; 766 OwnerSet &Owners; 767 768 public: 769 OwnershipBindingsHandler(SymbolRef Sym, OwnerSet &Owners) 770 : Sym(Sym), Owners(Owners) {} 771 772 bool HandleBinding(StoreManager &SMgr, Store Store, const MemRegion *Region, 773 SVal Val) override { 774 if (Val.getAsSymbol() == Sym) 775 Owners.insert(Region); 776 return true; 777 } 778 779 LLVM_DUMP_METHOD void dump() const { dumpToStream(llvm::errs()); } 780 LLVM_DUMP_METHOD void dumpToStream(llvm::raw_ostream &out) const { 781 out << "Owners: {\n"; 782 for (const MemRegion *Owner : Owners) { 783 out << " "; 784 Owner->dumpToStream(out); 785 out << ",\n"; 786 } 787 out << "}\n"; 788 } 789 }; 790 791 protected: 792 OwnerSet getOwnersAtNode(const ExplodedNode *N) { 793 OwnerSet Ret; 794 795 ProgramStateRef State = N->getState(); 796 OwnershipBindingsHandler Handler{Sym, Ret}; 797 State->getStateManager().getStoreManager().iterBindings(State->getStore(), 798 Handler); 799 return Ret; 800 } 801 802 LLVM_DUMP_METHOD static std::string 803 getFunctionName(const ExplodedNode *CallEnterN) { 804 if (const CallExpr *CE = llvm::dyn_cast_or_null<CallExpr>( 805 CallEnterN->getLocationAs<CallEnter>()->getCallExpr())) 806 if (const FunctionDecl *FD = CE->getDirectCallee()) 807 return FD->getQualifiedNameAsString(); 808 return ""; 809 } 810 811 /// Syntactically checks whether the callee is a deallocating function. Since 812 /// we have no path-sensitive information on this call (we would need a 813 /// CallEvent instead of a CallExpr for that), its possible that a 814 /// deallocation function was called indirectly through a function pointer, 815 /// but we are not able to tell, so this is a best effort analysis. 816 /// See namespace `memory_passed_to_fn_call_free_through_fn_ptr` in 817 /// clang/test/Analysis/NewDeleteLeaks.cpp. 818 bool isFreeingCallAsWritten(const CallExpr &Call) const { 819 if (Checker.FreeingMemFnMap.lookupAsWritten(Call) || 820 Checker.ReallocatingMemFnMap.lookupAsWritten(Call)) 821 return true; 822 823 if (const auto *Func = 824 llvm::dyn_cast_or_null<FunctionDecl>(Call.getCalleeDecl())) 825 return MallocChecker::isFreeingOwnershipAttrCall(Func); 826 827 return false; 828 } 829 830 /// Heuristically guess whether the callee intended to free memory. This is 831 /// done syntactically, because we are trying to argue about alternative 832 /// paths of execution, and as a consequence we don't have path-sensitive 833 /// information. 834 bool doesFnIntendToHandleOwnership(const Decl *Callee, ASTContext &ACtx) { 835 using namespace clang::ast_matchers; 836 const FunctionDecl *FD = dyn_cast<FunctionDecl>(Callee); 837 838 // Given that the stack frame was entered, the body should always be 839 // theoretically obtainable. In case of body farms, the synthesized body 840 // is not attached to declaration, thus triggering the '!FD->hasBody()' 841 // branch. That said, would a synthesized body ever intend to handle 842 // ownership? As of today they don't. And if they did, how would we 843 // put notes inside it, given that it doesn't match any source locations? 844 if (!FD || !FD->hasBody()) 845 return false; 846 847 auto Matches = match(findAll(stmt(anyOf(cxxDeleteExpr().bind("delete"), 848 callExpr().bind("call")))), 849 *FD->getBody(), ACtx); 850 for (BoundNodes Match : Matches) { 851 if (Match.getNodeAs<CXXDeleteExpr>("delete")) 852 return true; 853 854 if (const auto *Call = Match.getNodeAs<CallExpr>("call")) 855 if (isFreeingCallAsWritten(*Call)) 856 return true; 857 } 858 // TODO: Ownership might change with an attempt to store the allocated 859 // memory, not only through deallocation. Check for attempted stores as 860 // well. 861 return false; 862 } 863 864 bool wasModifiedInFunction(const ExplodedNode *CallEnterN, 865 const ExplodedNode *CallExitEndN) override { 866 if (!doesFnIntendToHandleOwnership( 867 CallExitEndN->getFirstPred()->getLocationContext()->getDecl(), 868 CallExitEndN->getState()->getAnalysisManager().getASTContext())) 869 return true; 870 871 if (CallEnterN->getState()->get<RegionState>(Sym) != 872 CallExitEndN->getState()->get<RegionState>(Sym)) 873 return true; 874 875 OwnerSet CurrOwners = getOwnersAtNode(CallEnterN); 876 OwnerSet ExitOwners = getOwnersAtNode(CallExitEndN); 877 878 // Owners in the current set may be purged from the analyzer later on. 879 // If a variable is dead (is not referenced directly or indirectly after 880 // some point), it will be removed from the Store before the end of its 881 // actual lifetime. 882 // This means that if the ownership status didn't change, CurrOwners 883 // must be a superset of, but not necessarily equal to ExitOwners. 884 return !llvm::set_is_subset(ExitOwners, CurrOwners); 885 } 886 887 static PathDiagnosticPieceRef emitNote(const ExplodedNode *N) { 888 PathDiagnosticLocation L = PathDiagnosticLocation::create( 889 N->getLocation(), 890 N->getState()->getStateManager().getContext().getSourceManager()); 891 return std::make_shared<PathDiagnosticEventPiece>( 892 L, "Returning without deallocating memory or storing the pointer for " 893 "later deallocation"); 894 } 895 896 PathDiagnosticPieceRef 897 maybeEmitNoteForObjCSelf(PathSensitiveBugReport &R, 898 const ObjCMethodCall &Call, 899 const ExplodedNode *N) override { 900 // TODO: Implement. 901 return nullptr; 902 } 903 904 PathDiagnosticPieceRef 905 maybeEmitNoteForCXXThis(PathSensitiveBugReport &R, 906 const CXXConstructorCall &Call, 907 const ExplodedNode *N) override { 908 // TODO: Implement. 909 return nullptr; 910 } 911 912 PathDiagnosticPieceRef 913 maybeEmitNoteForParameters(PathSensitiveBugReport &R, const CallEvent &Call, 914 const ExplodedNode *N) override { 915 // TODO: Factor the logic of "what constitutes as an entity being passed 916 // into a function call" out by reusing the code in 917 // NoStoreFuncVisitor::maybeEmitNoteForParameters, maybe by incorporating 918 // the printing technology in UninitializedObject's FieldChainInfo. 919 ArrayRef<ParmVarDecl *> Parameters = Call.parameters(); 920 for (unsigned I = 0; I < Call.getNumArgs() && I < Parameters.size(); ++I) { 921 SVal V = Call.getArgSVal(I); 922 if (V.getAsSymbol() == Sym) 923 return emitNote(N); 924 } 925 return nullptr; 926 } 927 928 public: 929 NoOwnershipChangeVisitor(SymbolRef Sym, const MallocChecker *Checker) 930 : NoStateChangeFuncVisitor(bugreporter::TrackingKind::Thorough), Sym(Sym), 931 Checker(*Checker) {} 932 933 void Profile(llvm::FoldingSetNodeID &ID) const override { 934 static int Tag = 0; 935 ID.AddPointer(&Tag); 936 ID.AddPointer(Sym); 937 } 938 }; 939 940 } // end anonymous namespace 941 942 //===----------------------------------------------------------------------===// 943 // Definition of MallocBugVisitor. 944 //===----------------------------------------------------------------------===// 945 946 namespace { 947 /// The bug visitor which allows us to print extra diagnostics along the 948 /// BugReport path. For example, showing the allocation site of the leaked 949 /// region. 950 class MallocBugVisitor final : public BugReporterVisitor { 951 protected: 952 enum NotificationMode { Normal, ReallocationFailed }; 953 954 // The allocated region symbol tracked by the main analysis. 955 SymbolRef Sym; 956 957 // The mode we are in, i.e. what kind of diagnostics will be emitted. 958 NotificationMode Mode; 959 960 // A symbol from when the primary region should have been reallocated. 961 SymbolRef FailedReallocSymbol; 962 963 // A C++ destructor stack frame in which memory was released. Used for 964 // miscellaneous false positive suppression. 965 const StackFrameContext *ReleaseDestructorLC; 966 967 bool IsLeak; 968 969 public: 970 MallocBugVisitor(SymbolRef S, bool isLeak = false) 971 : Sym(S), Mode(Normal), FailedReallocSymbol(nullptr), 972 ReleaseDestructorLC(nullptr), IsLeak(isLeak) {} 973 974 static void *getTag() { 975 static int Tag = 0; 976 return &Tag; 977 } 978 979 void Profile(llvm::FoldingSetNodeID &ID) const override { 980 ID.AddPointer(getTag()); 981 ID.AddPointer(Sym); 982 } 983 984 /// Did not track -> allocated. Other state (released) -> allocated. 985 static inline bool isAllocated(const RefState *RSCurr, const RefState *RSPrev, 986 const Stmt *Stmt) { 987 return (isa_and_nonnull<CallExpr, CXXNewExpr>(Stmt) && 988 (RSCurr && 989 (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) && 990 (!RSPrev || 991 !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero()))); 992 } 993 994 /// Did not track -> released. Other state (allocated) -> released. 995 /// The statement associated with the release might be missing. 996 static inline bool isReleased(const RefState *RSCurr, const RefState *RSPrev, 997 const Stmt *Stmt) { 998 bool IsReleased = 999 (RSCurr && RSCurr->isReleased()) && (!RSPrev || !RSPrev->isReleased()); 1000 assert(!IsReleased || (isa_and_nonnull<CallExpr, CXXDeleteExpr>(Stmt)) || 1001 (!Stmt && RSCurr->getAllocationFamily() == AF_InnerBuffer)); 1002 return IsReleased; 1003 } 1004 1005 /// Did not track -> relinquished. Other state (allocated) -> relinquished. 1006 static inline bool isRelinquished(const RefState *RSCurr, 1007 const RefState *RSPrev, const Stmt *Stmt) { 1008 return ( 1009 isa_and_nonnull<CallExpr, ObjCMessageExpr, ObjCPropertyRefExpr>(Stmt) && 1010 (RSCurr && RSCurr->isRelinquished()) && 1011 (!RSPrev || !RSPrev->isRelinquished())); 1012 } 1013 1014 /// If the expression is not a call, and the state change is 1015 /// released -> allocated, it must be the realloc return value 1016 /// check. If we have to handle more cases here, it might be cleaner just 1017 /// to track this extra bit in the state itself. 1018 static inline bool hasReallocFailed(const RefState *RSCurr, 1019 const RefState *RSPrev, 1020 const Stmt *Stmt) { 1021 return ((!isa_and_nonnull<CallExpr>(Stmt)) && 1022 (RSCurr && 1023 (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) && 1024 (RSPrev && 1025 !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero()))); 1026 } 1027 1028 PathDiagnosticPieceRef VisitNode(const ExplodedNode *N, 1029 BugReporterContext &BRC, 1030 PathSensitiveBugReport &BR) override; 1031 1032 PathDiagnosticPieceRef getEndPath(BugReporterContext &BRC, 1033 const ExplodedNode *EndPathNode, 1034 PathSensitiveBugReport &BR) override { 1035 if (!IsLeak) 1036 return nullptr; 1037 1038 PathDiagnosticLocation L = BR.getLocation(); 1039 // Do not add the statement itself as a range in case of leak. 1040 return std::make_shared<PathDiagnosticEventPiece>(L, BR.getDescription(), 1041 false); 1042 } 1043 1044 private: 1045 class StackHintGeneratorForReallocationFailed 1046 : public StackHintGeneratorForSymbol { 1047 public: 1048 StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M) 1049 : StackHintGeneratorForSymbol(S, M) {} 1050 1051 std::string getMessageForArg(const Expr *ArgE, unsigned ArgIndex) override { 1052 // Printed parameters start at 1, not 0. 1053 ++ArgIndex; 1054 1055 SmallString<200> buf; 1056 llvm::raw_svector_ostream os(buf); 1057 1058 os << "Reallocation of " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex) 1059 << " parameter failed"; 1060 1061 return std::string(os.str()); 1062 } 1063 1064 std::string getMessageForReturn(const CallExpr *CallExpr) override { 1065 return "Reallocation of returned value failed"; 1066 } 1067 }; 1068 }; 1069 } // end anonymous namespace 1070 1071 // A map from the freed symbol to the symbol representing the return value of 1072 // the free function. 1073 REGISTER_MAP_WITH_PROGRAMSTATE(FreeReturnValue, SymbolRef, SymbolRef) 1074 1075 namespace { 1076 class StopTrackingCallback final : public SymbolVisitor { 1077 ProgramStateRef state; 1078 1079 public: 1080 StopTrackingCallback(ProgramStateRef st) : state(std::move(st)) {} 1081 ProgramStateRef getState() const { return state; } 1082 1083 bool VisitSymbol(SymbolRef sym) override { 1084 state = state->remove<RegionState>(sym); 1085 return true; 1086 } 1087 }; 1088 } // end anonymous namespace 1089 1090 static bool isStandardNewDelete(const FunctionDecl *FD) { 1091 if (!FD) 1092 return false; 1093 1094 OverloadedOperatorKind Kind = FD->getOverloadedOperator(); 1095 if (Kind != OO_New && Kind != OO_Array_New && Kind != OO_Delete && 1096 Kind != OO_Array_Delete) 1097 return false; 1098 1099 // This is standard if and only if it's not defined in a user file. 1100 SourceLocation L = FD->getLocation(); 1101 // If the header for operator delete is not included, it's still defined 1102 // in an invalid source location. Check to make sure we don't crash. 1103 return !L.isValid() || 1104 FD->getASTContext().getSourceManager().isInSystemHeader(L); 1105 } 1106 1107 //===----------------------------------------------------------------------===// 1108 // Methods of MallocChecker and MallocBugVisitor. 1109 //===----------------------------------------------------------------------===// 1110 1111 bool MallocChecker::isFreeingOwnershipAttrCall(const FunctionDecl *Func) { 1112 if (Func->hasAttrs()) { 1113 for (const auto *I : Func->specific_attrs<OwnershipAttr>()) { 1114 OwnershipAttr::OwnershipKind OwnKind = I->getOwnKind(); 1115 if (OwnKind == OwnershipAttr::Takes || OwnKind == OwnershipAttr::Holds) 1116 return true; 1117 } 1118 } 1119 return false; 1120 } 1121 1122 bool MallocChecker::isFreeingCall(const CallEvent &Call) const { 1123 if (FreeingMemFnMap.lookup(Call) || ReallocatingMemFnMap.lookup(Call)) 1124 return true; 1125 1126 if (const auto *Func = dyn_cast_or_null<FunctionDecl>(Call.getDecl())) 1127 return isFreeingOwnershipAttrCall(Func); 1128 1129 return false; 1130 } 1131 1132 bool MallocChecker::isMemCall(const CallEvent &Call) const { 1133 if (FreeingMemFnMap.lookup(Call) || AllocatingMemFnMap.lookup(Call) || 1134 ReallocatingMemFnMap.lookup(Call)) 1135 return true; 1136 1137 if (!ShouldIncludeOwnershipAnnotatedFunctions) 1138 return false; 1139 1140 const auto *Func = dyn_cast<FunctionDecl>(Call.getDecl()); 1141 return Func && Func->hasAttr<OwnershipAttr>(); 1142 } 1143 1144 std::optional<ProgramStateRef> 1145 MallocChecker::performKernelMalloc(const CallEvent &Call, CheckerContext &C, 1146 const ProgramStateRef &State) const { 1147 // 3-argument malloc(), as commonly used in {Free,Net,Open}BSD Kernels: 1148 // 1149 // void *malloc(unsigned long size, struct malloc_type *mtp, int flags); 1150 // 1151 // One of the possible flags is M_ZERO, which means 'give me back an 1152 // allocation which is already zeroed', like calloc. 1153 1154 // 2-argument kmalloc(), as used in the Linux kernel: 1155 // 1156 // void *kmalloc(size_t size, gfp_t flags); 1157 // 1158 // Has the similar flag value __GFP_ZERO. 1159 1160 // This logic is largely cloned from O_CREAT in UnixAPIChecker, maybe some 1161 // code could be shared. 1162 1163 ASTContext &Ctx = C.getASTContext(); 1164 llvm::Triple::OSType OS = Ctx.getTargetInfo().getTriple().getOS(); 1165 1166 if (!KernelZeroFlagVal) { 1167 switch (OS) { 1168 case llvm::Triple::FreeBSD: 1169 KernelZeroFlagVal = 0x0100; 1170 break; 1171 case llvm::Triple::NetBSD: 1172 KernelZeroFlagVal = 0x0002; 1173 break; 1174 case llvm::Triple::OpenBSD: 1175 KernelZeroFlagVal = 0x0008; 1176 break; 1177 case llvm::Triple::Linux: 1178 // __GFP_ZERO 1179 KernelZeroFlagVal = 0x8000; 1180 break; 1181 default: 1182 // FIXME: We need a more general way of getting the M_ZERO value. 1183 // See also: O_CREAT in UnixAPIChecker.cpp. 1184 1185 // Fall back to normal malloc behavior on platforms where we don't 1186 // know M_ZERO. 1187 return std::nullopt; 1188 } 1189 } 1190 1191 // We treat the last argument as the flags argument, and callers fall-back to 1192 // normal malloc on a None return. This works for the FreeBSD kernel malloc 1193 // as well as Linux kmalloc. 1194 if (Call.getNumArgs() < 2) 1195 return std::nullopt; 1196 1197 const Expr *FlagsEx = Call.getArgExpr(Call.getNumArgs() - 1); 1198 const SVal V = C.getSVal(FlagsEx); 1199 if (!isa<NonLoc>(V)) { 1200 // The case where 'V' can be a location can only be due to a bad header, 1201 // so in this case bail out. 1202 return std::nullopt; 1203 } 1204 1205 NonLoc Flags = V.castAs<NonLoc>(); 1206 NonLoc ZeroFlag = C.getSValBuilder() 1207 .makeIntVal(*KernelZeroFlagVal, FlagsEx->getType()) 1208 .castAs<NonLoc>(); 1209 SVal MaskedFlagsUC = C.getSValBuilder().evalBinOpNN(State, BO_And, 1210 Flags, ZeroFlag, 1211 FlagsEx->getType()); 1212 if (MaskedFlagsUC.isUnknownOrUndef()) 1213 return std::nullopt; 1214 DefinedSVal MaskedFlags = MaskedFlagsUC.castAs<DefinedSVal>(); 1215 1216 // Check if maskedFlags is non-zero. 1217 ProgramStateRef TrueState, FalseState; 1218 std::tie(TrueState, FalseState) = State->assume(MaskedFlags); 1219 1220 // If M_ZERO is set, treat this like calloc (initialized). 1221 if (TrueState && !FalseState) { 1222 SVal ZeroVal = C.getSValBuilder().makeZeroVal(Ctx.CharTy); 1223 return MallocMemAux(C, Call, Call.getArgExpr(0), ZeroVal, TrueState, 1224 AF_Malloc); 1225 } 1226 1227 return std::nullopt; 1228 } 1229 1230 SVal MallocChecker::evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, 1231 const Expr *BlockBytes) { 1232 SValBuilder &SB = C.getSValBuilder(); 1233 SVal BlocksVal = C.getSVal(Blocks); 1234 SVal BlockBytesVal = C.getSVal(BlockBytes); 1235 ProgramStateRef State = C.getState(); 1236 SVal TotalSize = SB.evalBinOp(State, BO_Mul, BlocksVal, BlockBytesVal, 1237 SB.getContext().getSizeType()); 1238 return TotalSize; 1239 } 1240 1241 void MallocChecker::checkBasicAlloc(const CallEvent &Call, 1242 CheckerContext &C) const { 1243 ProgramStateRef State = C.getState(); 1244 State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State, 1245 AF_Malloc); 1246 State = ProcessZeroAllocCheck(Call, 0, State); 1247 C.addTransition(State); 1248 } 1249 1250 void MallocChecker::checkKernelMalloc(const CallEvent &Call, 1251 CheckerContext &C) const { 1252 ProgramStateRef State = C.getState(); 1253 std::optional<ProgramStateRef> MaybeState = 1254 performKernelMalloc(Call, C, State); 1255 if (MaybeState) 1256 State = *MaybeState; 1257 else 1258 State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State, 1259 AF_Malloc); 1260 C.addTransition(State); 1261 } 1262 1263 static bool isStandardRealloc(const CallEvent &Call) { 1264 const FunctionDecl *FD = dyn_cast<FunctionDecl>(Call.getDecl()); 1265 assert(FD); 1266 ASTContext &AC = FD->getASTContext(); 1267 1268 return FD->getDeclaredReturnType().getDesugaredType(AC) == AC.VoidPtrTy && 1269 FD->getParamDecl(0)->getType().getDesugaredType(AC) == AC.VoidPtrTy && 1270 FD->getParamDecl(1)->getType().getDesugaredType(AC) == 1271 AC.getSizeType(); 1272 } 1273 1274 static bool isGRealloc(const CallEvent &Call) { 1275 const FunctionDecl *FD = dyn_cast<FunctionDecl>(Call.getDecl()); 1276 assert(FD); 1277 ASTContext &AC = FD->getASTContext(); 1278 1279 return FD->getDeclaredReturnType().getDesugaredType(AC) == AC.VoidPtrTy && 1280 FD->getParamDecl(0)->getType().getDesugaredType(AC) == AC.VoidPtrTy && 1281 FD->getParamDecl(1)->getType().getDesugaredType(AC) == 1282 AC.UnsignedLongTy; 1283 } 1284 1285 void MallocChecker::checkRealloc(const CallEvent &Call, CheckerContext &C, 1286 bool ShouldFreeOnFail) const { 1287 // Ignore calls to functions whose type does not match the expected type of 1288 // either the standard realloc or g_realloc from GLib. 1289 // FIXME: Should we perform this kind of checking consistently for each 1290 // function? If yes, then perhaps extend the `CallDescription` interface to 1291 // handle this. 1292 if (!isStandardRealloc(Call) && !isGRealloc(Call)) 1293 return; 1294 1295 ProgramStateRef State = C.getState(); 1296 State = ReallocMemAux(C, Call, ShouldFreeOnFail, State, AF_Malloc); 1297 State = ProcessZeroAllocCheck(Call, 1, State); 1298 C.addTransition(State); 1299 } 1300 1301 void MallocChecker::checkCalloc(const CallEvent &Call, 1302 CheckerContext &C) const { 1303 ProgramStateRef State = C.getState(); 1304 State = CallocMem(C, Call, State); 1305 State = ProcessZeroAllocCheck(Call, 0, State); 1306 State = ProcessZeroAllocCheck(Call, 1, State); 1307 C.addTransition(State); 1308 } 1309 1310 void MallocChecker::checkFree(const CallEvent &Call, CheckerContext &C) const { 1311 ProgramStateRef State = C.getState(); 1312 bool IsKnownToBeAllocatedMemory = false; 1313 if (suppressDeallocationsInSuspiciousContexts(Call, C)) 1314 return; 1315 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1316 AF_Malloc); 1317 C.addTransition(State); 1318 } 1319 1320 void MallocChecker::checkAlloca(const CallEvent &Call, 1321 CheckerContext &C) const { 1322 ProgramStateRef State = C.getState(); 1323 State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State, 1324 AF_Alloca); 1325 State = ProcessZeroAllocCheck(Call, 0, State); 1326 C.addTransition(State); 1327 } 1328 1329 void MallocChecker::checkStrdup(const CallEvent &Call, 1330 CheckerContext &C) const { 1331 ProgramStateRef State = C.getState(); 1332 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1333 if (!CE) 1334 return; 1335 State = MallocUpdateRefState(C, CE, State, AF_Malloc); 1336 1337 C.addTransition(State); 1338 } 1339 1340 void MallocChecker::checkIfNameIndex(const CallEvent &Call, 1341 CheckerContext &C) const { 1342 ProgramStateRef State = C.getState(); 1343 // Should we model this differently? We can allocate a fixed number of 1344 // elements with zeros in the last one. 1345 State = 1346 MallocMemAux(C, Call, UnknownVal(), UnknownVal(), State, AF_IfNameIndex); 1347 1348 C.addTransition(State); 1349 } 1350 1351 void MallocChecker::checkIfFreeNameIndex(const CallEvent &Call, 1352 CheckerContext &C) const { 1353 ProgramStateRef State = C.getState(); 1354 bool IsKnownToBeAllocatedMemory = false; 1355 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1356 AF_IfNameIndex); 1357 C.addTransition(State); 1358 } 1359 1360 void MallocChecker::checkCXXNewOrCXXDelete(const CallEvent &Call, 1361 CheckerContext &C) const { 1362 ProgramStateRef State = C.getState(); 1363 bool IsKnownToBeAllocatedMemory = false; 1364 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1365 if (!CE) 1366 return; 1367 1368 assert(isStandardNewDelete(Call)); 1369 1370 // Process direct calls to operator new/new[]/delete/delete[] functions 1371 // as distinct from new/new[]/delete/delete[] expressions that are 1372 // processed by the checkPostStmt callbacks for CXXNewExpr and 1373 // CXXDeleteExpr. 1374 const FunctionDecl *FD = C.getCalleeDecl(CE); 1375 switch (FD->getOverloadedOperator()) { 1376 case OO_New: 1377 State = 1378 MallocMemAux(C, Call, CE->getArg(0), UndefinedVal(), State, AF_CXXNew); 1379 State = ProcessZeroAllocCheck(Call, 0, State); 1380 break; 1381 case OO_Array_New: 1382 State = MallocMemAux(C, Call, CE->getArg(0), UndefinedVal(), State, 1383 AF_CXXNewArray); 1384 State = ProcessZeroAllocCheck(Call, 0, State); 1385 break; 1386 case OO_Delete: 1387 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1388 AF_CXXNew); 1389 break; 1390 case OO_Array_Delete: 1391 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1392 AF_CXXNewArray); 1393 break; 1394 default: 1395 llvm_unreachable("not a new/delete operator"); 1396 } 1397 1398 C.addTransition(State); 1399 } 1400 1401 void MallocChecker::checkGMalloc0(const CallEvent &Call, 1402 CheckerContext &C) const { 1403 ProgramStateRef State = C.getState(); 1404 SValBuilder &svalBuilder = C.getSValBuilder(); 1405 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 1406 State = MallocMemAux(C, Call, Call.getArgExpr(0), zeroVal, State, AF_Malloc); 1407 State = ProcessZeroAllocCheck(Call, 0, State); 1408 C.addTransition(State); 1409 } 1410 1411 void MallocChecker::checkGMemdup(const CallEvent &Call, 1412 CheckerContext &C) const { 1413 ProgramStateRef State = C.getState(); 1414 State = 1415 MallocMemAux(C, Call, Call.getArgExpr(1), UnknownVal(), State, AF_Malloc); 1416 State = ProcessZeroAllocCheck(Call, 1, State); 1417 C.addTransition(State); 1418 } 1419 1420 void MallocChecker::checkGMallocN(const CallEvent &Call, 1421 CheckerContext &C) const { 1422 ProgramStateRef State = C.getState(); 1423 SVal Init = UndefinedVal(); 1424 SVal TotalSize = evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1)); 1425 State = MallocMemAux(C, Call, TotalSize, Init, State, AF_Malloc); 1426 State = ProcessZeroAllocCheck(Call, 0, State); 1427 State = ProcessZeroAllocCheck(Call, 1, State); 1428 C.addTransition(State); 1429 } 1430 1431 void MallocChecker::checkGMallocN0(const CallEvent &Call, 1432 CheckerContext &C) const { 1433 ProgramStateRef State = C.getState(); 1434 SValBuilder &SB = C.getSValBuilder(); 1435 SVal Init = SB.makeZeroVal(SB.getContext().CharTy); 1436 SVal TotalSize = evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1)); 1437 State = MallocMemAux(C, Call, TotalSize, Init, State, AF_Malloc); 1438 State = ProcessZeroAllocCheck(Call, 0, State); 1439 State = ProcessZeroAllocCheck(Call, 1, State); 1440 C.addTransition(State); 1441 } 1442 1443 static bool isFromStdNamespace(const CallEvent &Call) { 1444 const Decl *FD = Call.getDecl(); 1445 assert(FD && "a CallDescription cannot match a call without a Decl"); 1446 return FD->isInStdNamespace(); 1447 } 1448 1449 void MallocChecker::preGetdelim(const CallEvent &Call, 1450 CheckerContext &C) const { 1451 // Discard calls to the C++ standard library function std::getline(), which 1452 // is completely unrelated to the POSIX getline() that we're checking. 1453 if (isFromStdNamespace(Call)) 1454 return; 1455 1456 ProgramStateRef State = C.getState(); 1457 const auto LinePtr = getPointeeVal(Call.getArgSVal(0), State); 1458 if (!LinePtr) 1459 return; 1460 1461 // FreeMemAux takes IsKnownToBeAllocated as an output parameter, and it will 1462 // be true after the call if the symbol was registered by this checker. 1463 // We do not need this value here, as FreeMemAux will take care 1464 // of reporting any violation of the preconditions. 1465 bool IsKnownToBeAllocated = false; 1466 State = FreeMemAux(C, Call.getArgExpr(0), Call, State, false, 1467 IsKnownToBeAllocated, AF_Malloc, false, LinePtr); 1468 if (State) 1469 C.addTransition(State); 1470 } 1471 1472 void MallocChecker::checkGetdelim(const CallEvent &Call, 1473 CheckerContext &C) const { 1474 // Discard calls to the C++ standard library function std::getline(), which 1475 // is completely unrelated to the POSIX getline() that we're checking. 1476 if (isFromStdNamespace(Call)) 1477 return; 1478 1479 ProgramStateRef State = C.getState(); 1480 // Handle the post-conditions of getline and getdelim: 1481 // Register the new conjured value as an allocated buffer. 1482 const CallExpr *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1483 if (!CE) 1484 return; 1485 1486 SValBuilder &SVB = C.getSValBuilder(); 1487 1488 const auto LinePtr = 1489 getPointeeVal(Call.getArgSVal(0), State)->getAs<DefinedSVal>(); 1490 const auto Size = 1491 getPointeeVal(Call.getArgSVal(1), State)->getAs<DefinedSVal>(); 1492 if (!LinePtr || !Size || !LinePtr->getAsRegion()) 1493 return; 1494 1495 State = setDynamicExtent(State, LinePtr->getAsRegion(), *Size, SVB); 1496 C.addTransition(MallocUpdateRefState(C, CE, State, AF_Malloc, *LinePtr)); 1497 } 1498 1499 void MallocChecker::checkReallocN(const CallEvent &Call, 1500 CheckerContext &C) const { 1501 ProgramStateRef State = C.getState(); 1502 State = ReallocMemAux(C, Call, /*ShouldFreeOnFail=*/false, State, AF_Malloc, 1503 /*SuffixWithN=*/true); 1504 State = ProcessZeroAllocCheck(Call, 1, State); 1505 State = ProcessZeroAllocCheck(Call, 2, State); 1506 C.addTransition(State); 1507 } 1508 1509 void MallocChecker::checkOwnershipAttr(const CallEvent &Call, 1510 CheckerContext &C) const { 1511 ProgramStateRef State = C.getState(); 1512 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1513 if (!CE) 1514 return; 1515 const FunctionDecl *FD = C.getCalleeDecl(CE); 1516 if (!FD) 1517 return; 1518 if (ShouldIncludeOwnershipAnnotatedFunctions || 1519 ChecksEnabled[CK_MismatchedDeallocatorChecker]) { 1520 // Check all the attributes, if there are any. 1521 // There can be multiple of these attributes. 1522 if (FD->hasAttrs()) 1523 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { 1524 switch (I->getOwnKind()) { 1525 case OwnershipAttr::Returns: 1526 State = MallocMemReturnsAttr(C, Call, I, State); 1527 break; 1528 case OwnershipAttr::Takes: 1529 case OwnershipAttr::Holds: 1530 State = FreeMemAttr(C, Call, I, State); 1531 break; 1532 } 1533 } 1534 } 1535 C.addTransition(State); 1536 } 1537 1538 void MallocChecker::checkPostCall(const CallEvent &Call, 1539 CheckerContext &C) const { 1540 if (C.wasInlined) 1541 return; 1542 if (!Call.getOriginExpr()) 1543 return; 1544 1545 ProgramStateRef State = C.getState(); 1546 1547 if (const CheckFn *Callback = FreeingMemFnMap.lookup(Call)) { 1548 (*Callback)(this, Call, C); 1549 return; 1550 } 1551 1552 if (const CheckFn *Callback = AllocatingMemFnMap.lookup(Call)) { 1553 (*Callback)(this, Call, C); 1554 return; 1555 } 1556 1557 if (const CheckFn *Callback = ReallocatingMemFnMap.lookup(Call)) { 1558 (*Callback)(this, Call, C); 1559 return; 1560 } 1561 1562 if (isStandardNewDelete(Call)) { 1563 checkCXXNewOrCXXDelete(Call, C); 1564 return; 1565 } 1566 1567 checkOwnershipAttr(Call, C); 1568 } 1569 1570 // Performs a 0-sized allocations check. 1571 ProgramStateRef MallocChecker::ProcessZeroAllocCheck( 1572 const CallEvent &Call, const unsigned IndexOfSizeArg, ProgramStateRef State, 1573 std::optional<SVal> RetVal) { 1574 if (!State) 1575 return nullptr; 1576 1577 if (!RetVal) 1578 RetVal = Call.getReturnValue(); 1579 1580 const Expr *Arg = nullptr; 1581 1582 if (const CallExpr *CE = dyn_cast<CallExpr>(Call.getOriginExpr())) { 1583 Arg = CE->getArg(IndexOfSizeArg); 1584 } else if (const CXXNewExpr *NE = 1585 dyn_cast<CXXNewExpr>(Call.getOriginExpr())) { 1586 if (NE->isArray()) { 1587 Arg = *NE->getArraySize(); 1588 } else { 1589 return State; 1590 } 1591 } else 1592 llvm_unreachable("not a CallExpr or CXXNewExpr"); 1593 1594 assert(Arg); 1595 1596 auto DefArgVal = 1597 State->getSVal(Arg, Call.getLocationContext()).getAs<DefinedSVal>(); 1598 1599 if (!DefArgVal) 1600 return State; 1601 1602 // Check if the allocation size is 0. 1603 ProgramStateRef TrueState, FalseState; 1604 SValBuilder &SvalBuilder = State->getStateManager().getSValBuilder(); 1605 DefinedSVal Zero = 1606 SvalBuilder.makeZeroVal(Arg->getType()).castAs<DefinedSVal>(); 1607 1608 std::tie(TrueState, FalseState) = 1609 State->assume(SvalBuilder.evalEQ(State, *DefArgVal, Zero)); 1610 1611 if (TrueState && !FalseState) { 1612 SymbolRef Sym = RetVal->getAsLocSymbol(); 1613 if (!Sym) 1614 return State; 1615 1616 const RefState *RS = State->get<RegionState>(Sym); 1617 if (RS) { 1618 if (RS->isAllocated()) 1619 return TrueState->set<RegionState>(Sym, 1620 RefState::getAllocatedOfSizeZero(RS)); 1621 else 1622 return State; 1623 } else { 1624 // Case of zero-size realloc. Historically 'realloc(ptr, 0)' is treated as 1625 // 'free(ptr)' and the returned value from 'realloc(ptr, 0)' is not 1626 // tracked. Add zero-reallocated Sym to the state to catch references 1627 // to zero-allocated memory. 1628 return TrueState->add<ReallocSizeZeroSymbols>(Sym); 1629 } 1630 } 1631 1632 // Assume the value is non-zero going forward. 1633 assert(FalseState); 1634 return FalseState; 1635 } 1636 1637 static QualType getDeepPointeeType(QualType T) { 1638 QualType Result = T, PointeeType = T->getPointeeType(); 1639 while (!PointeeType.isNull()) { 1640 Result = PointeeType; 1641 PointeeType = PointeeType->getPointeeType(); 1642 } 1643 return Result; 1644 } 1645 1646 /// \returns true if the constructor invoked by \p NE has an argument of a 1647 /// pointer/reference to a record type. 1648 static bool hasNonTrivialConstructorCall(const CXXNewExpr *NE) { 1649 1650 const CXXConstructExpr *ConstructE = NE->getConstructExpr(); 1651 if (!ConstructE) 1652 return false; 1653 1654 if (!NE->getAllocatedType()->getAsCXXRecordDecl()) 1655 return false; 1656 1657 const CXXConstructorDecl *CtorD = ConstructE->getConstructor(); 1658 1659 // Iterate over the constructor parameters. 1660 for (const auto *CtorParam : CtorD->parameters()) { 1661 1662 QualType CtorParamPointeeT = CtorParam->getType()->getPointeeType(); 1663 if (CtorParamPointeeT.isNull()) 1664 continue; 1665 1666 CtorParamPointeeT = getDeepPointeeType(CtorParamPointeeT); 1667 1668 if (CtorParamPointeeT->getAsCXXRecordDecl()) 1669 return true; 1670 } 1671 1672 return false; 1673 } 1674 1675 ProgramStateRef 1676 MallocChecker::processNewAllocation(const CXXAllocatorCall &Call, 1677 CheckerContext &C, 1678 AllocationFamily Family) const { 1679 if (!isStandardNewDelete(Call)) 1680 return nullptr; 1681 1682 const CXXNewExpr *NE = Call.getOriginExpr(); 1683 const ParentMap &PM = C.getLocationContext()->getParentMap(); 1684 ProgramStateRef State = C.getState(); 1685 1686 // Non-trivial constructors have a chance to escape 'this', but marking all 1687 // invocations of trivial constructors as escaped would cause too great of 1688 // reduction of true positives, so let's just do that for constructors that 1689 // have an argument of a pointer-to-record type. 1690 if (!PM.isConsumedExpr(NE) && hasNonTrivialConstructorCall(NE)) 1691 return State; 1692 1693 // The return value from operator new is bound to a specified initialization 1694 // value (if any) and we don't want to loose this value. So we call 1695 // MallocUpdateRefState() instead of MallocMemAux() which breaks the 1696 // existing binding. 1697 SVal Target = Call.getObjectUnderConstruction(); 1698 State = MallocUpdateRefState(C, NE, State, Family, Target); 1699 State = ProcessZeroAllocCheck(Call, 0, State, Target); 1700 return State; 1701 } 1702 1703 void MallocChecker::checkNewAllocator(const CXXAllocatorCall &Call, 1704 CheckerContext &C) const { 1705 if (!C.wasInlined) { 1706 ProgramStateRef State = processNewAllocation( 1707 Call, C, 1708 (Call.getOriginExpr()->isArray() ? AF_CXXNewArray : AF_CXXNew)); 1709 C.addTransition(State); 1710 } 1711 } 1712 1713 static bool isKnownDeallocObjCMethodName(const ObjCMethodCall &Call) { 1714 // If the first selector piece is one of the names below, assume that the 1715 // object takes ownership of the memory, promising to eventually deallocate it 1716 // with free(). 1717 // Ex: [NSData dataWithBytesNoCopy:bytes length:10]; 1718 // (...unless a 'freeWhenDone' parameter is false, but that's checked later.) 1719 StringRef FirstSlot = Call.getSelector().getNameForSlot(0); 1720 return FirstSlot == "dataWithBytesNoCopy" || 1721 FirstSlot == "initWithBytesNoCopy" || 1722 FirstSlot == "initWithCharactersNoCopy"; 1723 } 1724 1725 static std::optional<bool> getFreeWhenDoneArg(const ObjCMethodCall &Call) { 1726 Selector S = Call.getSelector(); 1727 1728 // FIXME: We should not rely on fully-constrained symbols being folded. 1729 for (unsigned i = 1; i < S.getNumArgs(); ++i) 1730 if (S.getNameForSlot(i).equals("freeWhenDone")) 1731 return !Call.getArgSVal(i).isZeroConstant(); 1732 1733 return std::nullopt; 1734 } 1735 1736 void MallocChecker::checkPostObjCMessage(const ObjCMethodCall &Call, 1737 CheckerContext &C) const { 1738 if (C.wasInlined) 1739 return; 1740 1741 if (!isKnownDeallocObjCMethodName(Call)) 1742 return; 1743 1744 if (std::optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call)) 1745 if (!*FreeWhenDone) 1746 return; 1747 1748 if (Call.hasNonZeroCallbackArg()) 1749 return; 1750 1751 bool IsKnownToBeAllocatedMemory; 1752 ProgramStateRef State = 1753 FreeMemAux(C, Call.getArgExpr(0), Call, C.getState(), 1754 /*Hold=*/true, IsKnownToBeAllocatedMemory, AF_Malloc, 1755 /*ReturnsNullOnFailure=*/true); 1756 1757 C.addTransition(State); 1758 } 1759 1760 ProgramStateRef 1761 MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallEvent &Call, 1762 const OwnershipAttr *Att, 1763 ProgramStateRef State) const { 1764 if (!State) 1765 return nullptr; 1766 1767 if (Att->getModule()->getName() != "malloc") 1768 return nullptr; 1769 1770 if (!Att->args().empty()) { 1771 return MallocMemAux(C, Call, 1772 Call.getArgExpr(Att->args_begin()->getASTIndex()), 1773 UndefinedVal(), State, AF_Malloc); 1774 } 1775 return MallocMemAux(C, Call, UnknownVal(), UndefinedVal(), State, AF_Malloc); 1776 } 1777 1778 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1779 const CallEvent &Call, 1780 const Expr *SizeEx, SVal Init, 1781 ProgramStateRef State, 1782 AllocationFamily Family) { 1783 if (!State) 1784 return nullptr; 1785 1786 assert(SizeEx); 1787 return MallocMemAux(C, Call, C.getSVal(SizeEx), Init, State, Family); 1788 } 1789 1790 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1791 const CallEvent &Call, SVal Size, 1792 SVal Init, ProgramStateRef State, 1793 AllocationFamily Family) { 1794 if (!State) 1795 return nullptr; 1796 1797 const Expr *CE = Call.getOriginExpr(); 1798 1799 // We expect the malloc functions to return a pointer. 1800 if (!Loc::isLocType(CE->getType())) 1801 return nullptr; 1802 1803 // Bind the return value to the symbolic value from the heap region. 1804 // TODO: move use of this functions to an EvalCall callback, becasue 1805 // BindExpr() should'nt be used elsewhere. 1806 unsigned Count = C.blockCount(); 1807 SValBuilder &SVB = C.getSValBuilder(); 1808 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 1809 DefinedSVal RetVal = 1810 ((Family == AF_Alloca) ? SVB.getAllocaRegionVal(CE, LCtx, Count) 1811 : SVB.getConjuredHeapSymbolVal(CE, LCtx, Count) 1812 .castAs<DefinedSVal>()); 1813 State = State->BindExpr(CE, C.getLocationContext(), RetVal); 1814 1815 // Fill the region with the initialization value. 1816 State = State->bindDefaultInitial(RetVal, Init, LCtx); 1817 1818 // If Size is somehow undefined at this point, this line prevents a crash. 1819 if (Size.isUndef()) 1820 Size = UnknownVal(); 1821 1822 // Set the region's extent. 1823 State = setDynamicExtent(State, RetVal.getAsRegion(), 1824 Size.castAs<DefinedOrUnknownSVal>(), SVB); 1825 1826 return MallocUpdateRefState(C, CE, State, Family); 1827 } 1828 1829 static ProgramStateRef MallocUpdateRefState(CheckerContext &C, const Expr *E, 1830 ProgramStateRef State, 1831 AllocationFamily Family, 1832 std::optional<SVal> RetVal) { 1833 if (!State) 1834 return nullptr; 1835 1836 // Get the return value. 1837 if (!RetVal) 1838 RetVal = C.getSVal(E); 1839 1840 // We expect the malloc functions to return a pointer. 1841 if (!RetVal->getAs<Loc>()) 1842 return nullptr; 1843 1844 SymbolRef Sym = RetVal->getAsLocSymbol(); 1845 1846 // This is a return value of a function that was not inlined, such as malloc() 1847 // or new(). We've checked that in the caller. Therefore, it must be a symbol. 1848 assert(Sym); 1849 // FIXME: In theory this assertion should fail for `alloca()` calls (because 1850 // `AllocaRegion`s are not symbolic); but in practice this does not happen. 1851 // As the current code appears to work correctly, I'm not touching this issue 1852 // now, but it would be good to investigate and clarify this. 1853 // Also note that perhaps the special `AllocaRegion` should be replaced by 1854 // `SymbolicRegion` (or turned into a subclass of `SymbolicRegion`) to enable 1855 // proper tracking of memory allocated by `alloca()` -- and after that change 1856 // this assertion would become valid again. 1857 1858 // Set the symbol's state to Allocated. 1859 return State->set<RegionState>(Sym, RefState::getAllocated(Family, E)); 1860 } 1861 1862 ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C, 1863 const CallEvent &Call, 1864 const OwnershipAttr *Att, 1865 ProgramStateRef State) const { 1866 if (!State) 1867 return nullptr; 1868 1869 if (Att->getModule()->getName() != "malloc") 1870 return nullptr; 1871 1872 bool IsKnownToBeAllocated = false; 1873 1874 for (const auto &Arg : Att->args()) { 1875 ProgramStateRef StateI = 1876 FreeMemAux(C, Call, State, Arg.getASTIndex(), 1877 Att->getOwnKind() == OwnershipAttr::Holds, 1878 IsKnownToBeAllocated, AF_Malloc); 1879 if (StateI) 1880 State = StateI; 1881 } 1882 return State; 1883 } 1884 1885 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, 1886 const CallEvent &Call, 1887 ProgramStateRef State, unsigned Num, 1888 bool Hold, bool &IsKnownToBeAllocated, 1889 AllocationFamily Family, 1890 bool ReturnsNullOnFailure) const { 1891 if (!State) 1892 return nullptr; 1893 1894 if (Call.getNumArgs() < (Num + 1)) 1895 return nullptr; 1896 1897 return FreeMemAux(C, Call.getArgExpr(Num), Call, State, Hold, 1898 IsKnownToBeAllocated, Family, ReturnsNullOnFailure); 1899 } 1900 1901 /// Checks if the previous call to free on the given symbol failed - if free 1902 /// failed, returns true. Also, returns the corresponding return value symbol. 1903 static bool didPreviousFreeFail(ProgramStateRef State, 1904 SymbolRef Sym, SymbolRef &RetStatusSymbol) { 1905 const SymbolRef *Ret = State->get<FreeReturnValue>(Sym); 1906 if (Ret) { 1907 assert(*Ret && "We should not store the null return symbol"); 1908 ConstraintManager &CMgr = State->getConstraintManager(); 1909 ConditionTruthVal FreeFailed = CMgr.isNull(State, *Ret); 1910 RetStatusSymbol = *Ret; 1911 return FreeFailed.isConstrainedTrue(); 1912 } 1913 return false; 1914 } 1915 1916 static bool printMemFnName(raw_ostream &os, CheckerContext &C, const Expr *E) { 1917 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 1918 // FIXME: This doesn't handle indirect calls. 1919 const FunctionDecl *FD = CE->getDirectCallee(); 1920 if (!FD) 1921 return false; 1922 1923 os << *FD; 1924 if (!FD->isOverloadedOperator()) 1925 os << "()"; 1926 return true; 1927 } 1928 1929 if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E)) { 1930 if (Msg->isInstanceMessage()) 1931 os << "-"; 1932 else 1933 os << "+"; 1934 Msg->getSelector().print(os); 1935 return true; 1936 } 1937 1938 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { 1939 os << "'" 1940 << getOperatorSpelling(NE->getOperatorNew()->getOverloadedOperator()) 1941 << "'"; 1942 return true; 1943 } 1944 1945 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(E)) { 1946 os << "'" 1947 << getOperatorSpelling(DE->getOperatorDelete()->getOverloadedOperator()) 1948 << "'"; 1949 return true; 1950 } 1951 1952 return false; 1953 } 1954 1955 static void printExpectedAllocName(raw_ostream &os, AllocationFamily Family) { 1956 1957 switch(Family) { 1958 case AF_Malloc: os << "malloc()"; return; 1959 case AF_CXXNew: os << "'new'"; return; 1960 case AF_CXXNewArray: os << "'new[]'"; return; 1961 case AF_IfNameIndex: os << "'if_nameindex()'"; return; 1962 case AF_InnerBuffer: os << "container-specific allocator"; return; 1963 case AF_Alloca: 1964 case AF_None: llvm_unreachable("not a deallocation expression"); 1965 } 1966 } 1967 1968 static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family) { 1969 switch(Family) { 1970 case AF_Malloc: os << "free()"; return; 1971 case AF_CXXNew: os << "'delete'"; return; 1972 case AF_CXXNewArray: os << "'delete[]'"; return; 1973 case AF_IfNameIndex: os << "'if_freenameindex()'"; return; 1974 case AF_InnerBuffer: os << "container-specific deallocator"; return; 1975 case AF_Alloca: 1976 case AF_None: llvm_unreachable("suspicious argument"); 1977 } 1978 } 1979 1980 ProgramStateRef 1981 MallocChecker::FreeMemAux(CheckerContext &C, const Expr *ArgExpr, 1982 const CallEvent &Call, ProgramStateRef State, 1983 bool Hold, bool &IsKnownToBeAllocated, 1984 AllocationFamily Family, bool ReturnsNullOnFailure, 1985 std::optional<SVal> ArgValOpt) const { 1986 1987 if (!State) 1988 return nullptr; 1989 1990 SVal ArgVal = ArgValOpt.value_or(C.getSVal(ArgExpr)); 1991 if (!isa<DefinedOrUnknownSVal>(ArgVal)) 1992 return nullptr; 1993 DefinedOrUnknownSVal location = ArgVal.castAs<DefinedOrUnknownSVal>(); 1994 1995 // Check for null dereferences. 1996 if (!isa<Loc>(location)) 1997 return nullptr; 1998 1999 // The explicit NULL case, no operation is performed. 2000 ProgramStateRef notNullState, nullState; 2001 std::tie(notNullState, nullState) = State->assume(location); 2002 if (nullState && !notNullState) 2003 return nullptr; 2004 2005 // Unknown values could easily be okay 2006 // Undefined values are handled elsewhere 2007 if (ArgVal.isUnknownOrUndef()) 2008 return nullptr; 2009 2010 const MemRegion *R = ArgVal.getAsRegion(); 2011 const Expr *ParentExpr = Call.getOriginExpr(); 2012 2013 // NOTE: We detected a bug, but the checker under whose name we would emit the 2014 // error could be disabled. Generally speaking, the MallocChecker family is an 2015 // integral part of the Static Analyzer, and disabling any part of it should 2016 // only be done under exceptional circumstances, such as frequent false 2017 // positives. If this is the case, we can reasonably believe that there are 2018 // serious faults in our understanding of the source code, and even if we 2019 // don't emit an warning, we should terminate further analysis with a sink 2020 // node. 2021 2022 // Nonlocs can't be freed, of course. 2023 // Non-region locations (labels and fixed addresses) also shouldn't be freed. 2024 if (!R) { 2025 // Exception: 2026 // If the macro ZERO_SIZE_PTR is defined, this could be a kernel source 2027 // code. In that case, the ZERO_SIZE_PTR defines a special value used for a 2028 // zero-sized memory block which is allowed to be freed, despite not being a 2029 // null pointer. 2030 if (Family != AF_Malloc || !isArgZERO_SIZE_PTR(State, C, ArgVal)) 2031 HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 2032 Family); 2033 return nullptr; 2034 } 2035 2036 R = R->StripCasts(); 2037 2038 // Blocks might show up as heap data, but should not be free()d 2039 if (isa<BlockDataRegion>(R)) { 2040 HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 2041 Family); 2042 return nullptr; 2043 } 2044 2045 const MemSpaceRegion *MS = R->getMemorySpace(); 2046 2047 // Parameters, locals, statics, globals, and memory returned by 2048 // __builtin_alloca() shouldn't be freed. 2049 if (!isa<UnknownSpaceRegion, HeapSpaceRegion>(MS)) { 2050 // Regions returned by malloc() are represented by SymbolicRegion objects 2051 // within HeapSpaceRegion. Of course, free() can work on memory allocated 2052 // outside the current function, so UnknownSpaceRegion is also a 2053 // possibility here. 2054 2055 if (isa<AllocaRegion>(R)) 2056 HandleFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 2057 else 2058 HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 2059 Family); 2060 2061 return nullptr; 2062 } 2063 2064 const SymbolicRegion *SrBase = dyn_cast<SymbolicRegion>(R->getBaseRegion()); 2065 // Various cases could lead to non-symbol values here. 2066 // For now, ignore them. 2067 if (!SrBase) 2068 return nullptr; 2069 2070 SymbolRef SymBase = SrBase->getSymbol(); 2071 const RefState *RsBase = State->get<RegionState>(SymBase); 2072 SymbolRef PreviousRetStatusSymbol = nullptr; 2073 2074 IsKnownToBeAllocated = 2075 RsBase && (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero()); 2076 2077 if (RsBase) { 2078 2079 // Memory returned by alloca() shouldn't be freed. 2080 if (RsBase->getAllocationFamily() == AF_Alloca) { 2081 HandleFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 2082 return nullptr; 2083 } 2084 2085 // Check for double free first. 2086 if ((RsBase->isReleased() || RsBase->isRelinquished()) && 2087 !didPreviousFreeFail(State, SymBase, PreviousRetStatusSymbol)) { 2088 HandleDoubleFree(C, ParentExpr->getSourceRange(), RsBase->isReleased(), 2089 SymBase, PreviousRetStatusSymbol); 2090 return nullptr; 2091 2092 // If the pointer is allocated or escaped, but we are now trying to free it, 2093 // check that the call to free is proper. 2094 } else if (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero() || 2095 RsBase->isEscaped()) { 2096 2097 // Check if an expected deallocation function matches the real one. 2098 bool DeallocMatchesAlloc = RsBase->getAllocationFamily() == Family; 2099 if (!DeallocMatchesAlloc) { 2100 HandleMismatchedDealloc(C, ArgExpr->getSourceRange(), ParentExpr, 2101 RsBase, SymBase, Hold); 2102 return nullptr; 2103 } 2104 2105 // Check if the memory location being freed is the actual location 2106 // allocated, or an offset. 2107 RegionOffset Offset = R->getAsOffset(); 2108 if (Offset.isValid() && 2109 !Offset.hasSymbolicOffset() && 2110 Offset.getOffset() != 0) { 2111 const Expr *AllocExpr = cast<Expr>(RsBase->getStmt()); 2112 HandleOffsetFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 2113 Family, AllocExpr); 2114 return nullptr; 2115 } 2116 } 2117 } 2118 2119 if (SymBase->getType()->isFunctionPointerType()) { 2120 HandleFunctionPtrFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 2121 Family); 2122 return nullptr; 2123 } 2124 2125 // Clean out the info on previous call to free return info. 2126 State = State->remove<FreeReturnValue>(SymBase); 2127 2128 // Keep track of the return value. If it is NULL, we will know that free 2129 // failed. 2130 if (ReturnsNullOnFailure) { 2131 SVal RetVal = C.getSVal(ParentExpr); 2132 SymbolRef RetStatusSymbol = RetVal.getAsSymbol(); 2133 if (RetStatusSymbol) { 2134 C.getSymbolManager().addSymbolDependency(SymBase, RetStatusSymbol); 2135 State = State->set<FreeReturnValue>(SymBase, RetStatusSymbol); 2136 } 2137 } 2138 2139 // If we don't know anything about this symbol, a free on it may be totally 2140 // valid. If this is the case, lets assume that the allocation family of the 2141 // freeing function is the same as the symbols allocation family, and go with 2142 // that. 2143 assert(!RsBase || (RsBase && RsBase->getAllocationFamily() == Family)); 2144 2145 // Normal free. 2146 if (Hold) 2147 return State->set<RegionState>(SymBase, 2148 RefState::getRelinquished(Family, 2149 ParentExpr)); 2150 2151 return State->set<RegionState>(SymBase, 2152 RefState::getReleased(Family, ParentExpr)); 2153 } 2154 2155 std::optional<MallocChecker::CheckKind> 2156 MallocChecker::getCheckIfTracked(AllocationFamily Family, 2157 bool IsALeakCheck) const { 2158 switch (Family) { 2159 case AF_Malloc: 2160 case AF_Alloca: 2161 case AF_IfNameIndex: { 2162 if (ChecksEnabled[CK_MallocChecker]) 2163 return CK_MallocChecker; 2164 return std::nullopt; 2165 } 2166 case AF_CXXNew: 2167 case AF_CXXNewArray: { 2168 if (IsALeakCheck) { 2169 if (ChecksEnabled[CK_NewDeleteLeaksChecker]) 2170 return CK_NewDeleteLeaksChecker; 2171 } 2172 else { 2173 if (ChecksEnabled[CK_NewDeleteChecker]) 2174 return CK_NewDeleteChecker; 2175 } 2176 return std::nullopt; 2177 } 2178 case AF_InnerBuffer: { 2179 if (ChecksEnabled[CK_InnerPointerChecker]) 2180 return CK_InnerPointerChecker; 2181 return std::nullopt; 2182 } 2183 case AF_None: { 2184 llvm_unreachable("no family"); 2185 } 2186 } 2187 llvm_unreachable("unhandled family"); 2188 } 2189 2190 std::optional<MallocChecker::CheckKind> 2191 MallocChecker::getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 2192 bool IsALeakCheck) const { 2193 if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) 2194 return CK_MallocChecker; 2195 2196 const RefState *RS = C.getState()->get<RegionState>(Sym); 2197 assert(RS); 2198 return getCheckIfTracked(RS->getAllocationFamily(), IsALeakCheck); 2199 } 2200 2201 bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) { 2202 if (std::optional<nonloc::ConcreteInt> IntVal = 2203 V.getAs<nonloc::ConcreteInt>()) 2204 os << "an integer (" << IntVal->getValue() << ")"; 2205 else if (std::optional<loc::ConcreteInt> ConstAddr = 2206 V.getAs<loc::ConcreteInt>()) 2207 os << "a constant address (" << ConstAddr->getValue() << ")"; 2208 else if (std::optional<loc::GotoLabel> Label = V.getAs<loc::GotoLabel>()) 2209 os << "the address of the label '" << Label->getLabel()->getName() << "'"; 2210 else 2211 return false; 2212 2213 return true; 2214 } 2215 2216 bool MallocChecker::SummarizeRegion(raw_ostream &os, 2217 const MemRegion *MR) { 2218 switch (MR->getKind()) { 2219 case MemRegion::FunctionCodeRegionKind: { 2220 const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl(); 2221 if (FD) 2222 os << "the address of the function '" << *FD << '\''; 2223 else 2224 os << "the address of a function"; 2225 return true; 2226 } 2227 case MemRegion::BlockCodeRegionKind: 2228 os << "block text"; 2229 return true; 2230 case MemRegion::BlockDataRegionKind: 2231 // FIXME: where the block came from? 2232 os << "a block"; 2233 return true; 2234 default: { 2235 const MemSpaceRegion *MS = MR->getMemorySpace(); 2236 2237 if (isa<StackLocalsSpaceRegion>(MS)) { 2238 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2239 const VarDecl *VD; 2240 if (VR) 2241 VD = VR->getDecl(); 2242 else 2243 VD = nullptr; 2244 2245 if (VD) 2246 os << "the address of the local variable '" << VD->getName() << "'"; 2247 else 2248 os << "the address of a local stack variable"; 2249 return true; 2250 } 2251 2252 if (isa<StackArgumentsSpaceRegion>(MS)) { 2253 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2254 const VarDecl *VD; 2255 if (VR) 2256 VD = VR->getDecl(); 2257 else 2258 VD = nullptr; 2259 2260 if (VD) 2261 os << "the address of the parameter '" << VD->getName() << "'"; 2262 else 2263 os << "the address of a parameter"; 2264 return true; 2265 } 2266 2267 if (isa<GlobalsSpaceRegion>(MS)) { 2268 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2269 const VarDecl *VD; 2270 if (VR) 2271 VD = VR->getDecl(); 2272 else 2273 VD = nullptr; 2274 2275 if (VD) { 2276 if (VD->isStaticLocal()) 2277 os << "the address of the static variable '" << VD->getName() << "'"; 2278 else 2279 os << "the address of the global variable '" << VD->getName() << "'"; 2280 } else 2281 os << "the address of a global variable"; 2282 return true; 2283 } 2284 2285 return false; 2286 } 2287 } 2288 } 2289 2290 void MallocChecker::HandleNonHeapDealloc(CheckerContext &C, SVal ArgVal, 2291 SourceRange Range, 2292 const Expr *DeallocExpr, 2293 AllocationFamily Family) const { 2294 2295 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2296 C.addSink(); 2297 return; 2298 } 2299 2300 std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2301 if (!CheckKind) 2302 return; 2303 2304 if (ExplodedNode *N = C.generateErrorNode()) { 2305 if (!BT_BadFree[*CheckKind]) 2306 BT_BadFree[*CheckKind].reset(new BugType( 2307 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 2308 2309 SmallString<100> buf; 2310 llvm::raw_svector_ostream os(buf); 2311 2312 const MemRegion *MR = ArgVal.getAsRegion(); 2313 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 2314 MR = ER->getSuperRegion(); 2315 2316 os << "Argument to "; 2317 if (!printMemFnName(os, C, DeallocExpr)) 2318 os << "deallocator"; 2319 2320 os << " is "; 2321 bool Summarized = MR ? SummarizeRegion(os, MR) 2322 : SummarizeValue(os, ArgVal); 2323 if (Summarized) 2324 os << ", which is not memory allocated by "; 2325 else 2326 os << "not memory allocated by "; 2327 2328 printExpectedAllocName(os, Family); 2329 2330 auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind], 2331 os.str(), N); 2332 R->markInteresting(MR); 2333 R->addRange(Range); 2334 C.emitReport(std::move(R)); 2335 } 2336 } 2337 2338 void MallocChecker::HandleFreeAlloca(CheckerContext &C, SVal ArgVal, 2339 SourceRange Range) const { 2340 2341 std::optional<MallocChecker::CheckKind> CheckKind; 2342 2343 if (ChecksEnabled[CK_MallocChecker]) 2344 CheckKind = CK_MallocChecker; 2345 else if (ChecksEnabled[CK_MismatchedDeallocatorChecker]) 2346 CheckKind = CK_MismatchedDeallocatorChecker; 2347 else { 2348 C.addSink(); 2349 return; 2350 } 2351 2352 if (ExplodedNode *N = C.generateErrorNode()) { 2353 if (!BT_FreeAlloca[*CheckKind]) 2354 BT_FreeAlloca[*CheckKind].reset(new BugType( 2355 CheckNames[*CheckKind], "Free alloca()", categories::MemoryError)); 2356 2357 auto R = std::make_unique<PathSensitiveBugReport>( 2358 *BT_FreeAlloca[*CheckKind], 2359 "Memory allocated by alloca() should not be deallocated", N); 2360 R->markInteresting(ArgVal.getAsRegion()); 2361 R->addRange(Range); 2362 C.emitReport(std::move(R)); 2363 } 2364 } 2365 2366 void MallocChecker::HandleMismatchedDealloc(CheckerContext &C, 2367 SourceRange Range, 2368 const Expr *DeallocExpr, 2369 const RefState *RS, SymbolRef Sym, 2370 bool OwnershipTransferred) const { 2371 2372 if (!ChecksEnabled[CK_MismatchedDeallocatorChecker]) { 2373 C.addSink(); 2374 return; 2375 } 2376 2377 if (ExplodedNode *N = C.generateErrorNode()) { 2378 if (!BT_MismatchedDealloc) 2379 BT_MismatchedDealloc.reset( 2380 new BugType(CheckNames[CK_MismatchedDeallocatorChecker], 2381 "Bad deallocator", categories::MemoryError)); 2382 2383 SmallString<100> buf; 2384 llvm::raw_svector_ostream os(buf); 2385 2386 const Expr *AllocExpr = cast<Expr>(RS->getStmt()); 2387 SmallString<20> AllocBuf; 2388 llvm::raw_svector_ostream AllocOs(AllocBuf); 2389 SmallString<20> DeallocBuf; 2390 llvm::raw_svector_ostream DeallocOs(DeallocBuf); 2391 2392 if (OwnershipTransferred) { 2393 if (printMemFnName(DeallocOs, C, DeallocExpr)) 2394 os << DeallocOs.str() << " cannot"; 2395 else 2396 os << "Cannot"; 2397 2398 os << " take ownership of memory"; 2399 2400 if (printMemFnName(AllocOs, C, AllocExpr)) 2401 os << " allocated by " << AllocOs.str(); 2402 } else { 2403 os << "Memory"; 2404 if (printMemFnName(AllocOs, C, AllocExpr)) 2405 os << " allocated by " << AllocOs.str(); 2406 2407 os << " should be deallocated by "; 2408 printExpectedDeallocName(os, RS->getAllocationFamily()); 2409 2410 if (printMemFnName(DeallocOs, C, DeallocExpr)) 2411 os << ", not " << DeallocOs.str(); 2412 } 2413 2414 auto R = std::make_unique<PathSensitiveBugReport>(*BT_MismatchedDealloc, 2415 os.str(), N); 2416 R->markInteresting(Sym); 2417 R->addRange(Range); 2418 R->addVisitor<MallocBugVisitor>(Sym); 2419 C.emitReport(std::move(R)); 2420 } 2421 } 2422 2423 void MallocChecker::HandleOffsetFree(CheckerContext &C, SVal ArgVal, 2424 SourceRange Range, const Expr *DeallocExpr, 2425 AllocationFamily Family, 2426 const Expr *AllocExpr) const { 2427 2428 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2429 C.addSink(); 2430 return; 2431 } 2432 2433 std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2434 if (!CheckKind) 2435 return; 2436 2437 ExplodedNode *N = C.generateErrorNode(); 2438 if (!N) 2439 return; 2440 2441 if (!BT_OffsetFree[*CheckKind]) 2442 BT_OffsetFree[*CheckKind].reset(new BugType( 2443 CheckNames[*CheckKind], "Offset free", categories::MemoryError)); 2444 2445 SmallString<100> buf; 2446 llvm::raw_svector_ostream os(buf); 2447 SmallString<20> AllocNameBuf; 2448 llvm::raw_svector_ostream AllocNameOs(AllocNameBuf); 2449 2450 const MemRegion *MR = ArgVal.getAsRegion(); 2451 assert(MR && "Only MemRegion based symbols can have offset free errors"); 2452 2453 RegionOffset Offset = MR->getAsOffset(); 2454 assert((Offset.isValid() && 2455 !Offset.hasSymbolicOffset() && 2456 Offset.getOffset() != 0) && 2457 "Only symbols with a valid offset can have offset free errors"); 2458 2459 int offsetBytes = Offset.getOffset() / C.getASTContext().getCharWidth(); 2460 2461 os << "Argument to "; 2462 if (!printMemFnName(os, C, DeallocExpr)) 2463 os << "deallocator"; 2464 os << " is offset by " 2465 << offsetBytes 2466 << " " 2467 << ((abs(offsetBytes) > 1) ? "bytes" : "byte") 2468 << " from the start of "; 2469 if (AllocExpr && printMemFnName(AllocNameOs, C, AllocExpr)) 2470 os << "memory allocated by " << AllocNameOs.str(); 2471 else 2472 os << "allocated memory"; 2473 2474 auto R = std::make_unique<PathSensitiveBugReport>(*BT_OffsetFree[*CheckKind], 2475 os.str(), N); 2476 R->markInteresting(MR->getBaseRegion()); 2477 R->addRange(Range); 2478 C.emitReport(std::move(R)); 2479 } 2480 2481 void MallocChecker::HandleUseAfterFree(CheckerContext &C, SourceRange Range, 2482 SymbolRef Sym) const { 2483 2484 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker] && 2485 !ChecksEnabled[CK_InnerPointerChecker]) { 2486 C.addSink(); 2487 return; 2488 } 2489 2490 std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2491 if (!CheckKind) 2492 return; 2493 2494 if (ExplodedNode *N = C.generateErrorNode()) { 2495 if (!BT_UseFree[*CheckKind]) 2496 BT_UseFree[*CheckKind].reset(new BugType( 2497 CheckNames[*CheckKind], "Use-after-free", categories::MemoryError)); 2498 2499 AllocationFamily AF = 2500 C.getState()->get<RegionState>(Sym)->getAllocationFamily(); 2501 2502 auto R = std::make_unique<PathSensitiveBugReport>( 2503 *BT_UseFree[*CheckKind], 2504 AF == AF_InnerBuffer 2505 ? "Inner pointer of container used after re/deallocation" 2506 : "Use of memory after it is freed", 2507 N); 2508 2509 R->markInteresting(Sym); 2510 R->addRange(Range); 2511 R->addVisitor<MallocBugVisitor>(Sym); 2512 2513 if (AF == AF_InnerBuffer) 2514 R->addVisitor(allocation_state::getInnerPointerBRVisitor(Sym)); 2515 2516 C.emitReport(std::move(R)); 2517 } 2518 } 2519 2520 void MallocChecker::HandleDoubleFree(CheckerContext &C, SourceRange Range, 2521 bool Released, SymbolRef Sym, 2522 SymbolRef PrevSym) const { 2523 2524 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2525 C.addSink(); 2526 return; 2527 } 2528 2529 std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2530 if (!CheckKind) 2531 return; 2532 2533 if (ExplodedNode *N = C.generateErrorNode()) { 2534 if (!BT_DoubleFree[*CheckKind]) 2535 BT_DoubleFree[*CheckKind].reset(new BugType( 2536 CheckNames[*CheckKind], "Double free", categories::MemoryError)); 2537 2538 auto R = std::make_unique<PathSensitiveBugReport>( 2539 *BT_DoubleFree[*CheckKind], 2540 (Released ? "Attempt to free released memory" 2541 : "Attempt to free non-owned memory"), 2542 N); 2543 R->addRange(Range); 2544 R->markInteresting(Sym); 2545 if (PrevSym) 2546 R->markInteresting(PrevSym); 2547 R->addVisitor<MallocBugVisitor>(Sym); 2548 C.emitReport(std::move(R)); 2549 } 2550 } 2551 2552 void MallocChecker::HandleDoubleDelete(CheckerContext &C, SymbolRef Sym) const { 2553 2554 if (!ChecksEnabled[CK_NewDeleteChecker]) { 2555 C.addSink(); 2556 return; 2557 } 2558 2559 std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2560 if (!CheckKind) 2561 return; 2562 2563 if (ExplodedNode *N = C.generateErrorNode()) { 2564 if (!BT_DoubleDelete) 2565 BT_DoubleDelete.reset(new BugType(CheckNames[CK_NewDeleteChecker], 2566 "Double delete", 2567 categories::MemoryError)); 2568 2569 auto R = std::make_unique<PathSensitiveBugReport>( 2570 *BT_DoubleDelete, "Attempt to delete released memory", N); 2571 2572 R->markInteresting(Sym); 2573 R->addVisitor<MallocBugVisitor>(Sym); 2574 C.emitReport(std::move(R)); 2575 } 2576 } 2577 2578 void MallocChecker::HandleUseZeroAlloc(CheckerContext &C, SourceRange Range, 2579 SymbolRef Sym) const { 2580 2581 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2582 C.addSink(); 2583 return; 2584 } 2585 2586 std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2587 2588 if (!CheckKind) 2589 return; 2590 2591 if (ExplodedNode *N = C.generateErrorNode()) { 2592 if (!BT_UseZerroAllocated[*CheckKind]) 2593 BT_UseZerroAllocated[*CheckKind].reset( 2594 new BugType(CheckNames[*CheckKind], "Use of zero allocated", 2595 categories::MemoryError)); 2596 2597 auto R = std::make_unique<PathSensitiveBugReport>( 2598 *BT_UseZerroAllocated[*CheckKind], 2599 "Use of memory allocated with size zero", N); 2600 2601 R->addRange(Range); 2602 if (Sym) { 2603 R->markInteresting(Sym); 2604 R->addVisitor<MallocBugVisitor>(Sym); 2605 } 2606 C.emitReport(std::move(R)); 2607 } 2608 } 2609 2610 void MallocChecker::HandleFunctionPtrFree(CheckerContext &C, SVal ArgVal, 2611 SourceRange Range, 2612 const Expr *FreeExpr, 2613 AllocationFamily Family) const { 2614 if (!ChecksEnabled[CK_MallocChecker]) { 2615 C.addSink(); 2616 return; 2617 } 2618 2619 std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2620 if (!CheckKind) 2621 return; 2622 2623 if (ExplodedNode *N = C.generateErrorNode()) { 2624 if (!BT_BadFree[*CheckKind]) 2625 BT_BadFree[*CheckKind].reset(new BugType( 2626 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 2627 2628 SmallString<100> Buf; 2629 llvm::raw_svector_ostream Os(Buf); 2630 2631 const MemRegion *MR = ArgVal.getAsRegion(); 2632 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 2633 MR = ER->getSuperRegion(); 2634 2635 Os << "Argument to "; 2636 if (!printMemFnName(Os, C, FreeExpr)) 2637 Os << "deallocator"; 2638 2639 Os << " is a function pointer"; 2640 2641 auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind], 2642 Os.str(), N); 2643 R->markInteresting(MR); 2644 R->addRange(Range); 2645 C.emitReport(std::move(R)); 2646 } 2647 } 2648 2649 ProgramStateRef 2650 MallocChecker::ReallocMemAux(CheckerContext &C, const CallEvent &Call, 2651 bool ShouldFreeOnFail, ProgramStateRef State, 2652 AllocationFamily Family, bool SuffixWithN) const { 2653 if (!State) 2654 return nullptr; 2655 2656 const CallExpr *CE = cast<CallExpr>(Call.getOriginExpr()); 2657 2658 if (SuffixWithN && CE->getNumArgs() < 3) 2659 return nullptr; 2660 else if (CE->getNumArgs() < 2) 2661 return nullptr; 2662 2663 const Expr *arg0Expr = CE->getArg(0); 2664 SVal Arg0Val = C.getSVal(arg0Expr); 2665 if (!isa<DefinedOrUnknownSVal>(Arg0Val)) 2666 return nullptr; 2667 DefinedOrUnknownSVal arg0Val = Arg0Val.castAs<DefinedOrUnknownSVal>(); 2668 2669 SValBuilder &svalBuilder = C.getSValBuilder(); 2670 2671 DefinedOrUnknownSVal PtrEQ = svalBuilder.evalEQ( 2672 State, arg0Val, svalBuilder.makeNullWithType(arg0Expr->getType())); 2673 2674 // Get the size argument. 2675 const Expr *Arg1 = CE->getArg(1); 2676 2677 // Get the value of the size argument. 2678 SVal TotalSize = C.getSVal(Arg1); 2679 if (SuffixWithN) 2680 TotalSize = evalMulForBufferSize(C, Arg1, CE->getArg(2)); 2681 if (!isa<DefinedOrUnknownSVal>(TotalSize)) 2682 return nullptr; 2683 2684 // Compare the size argument to 0. 2685 DefinedOrUnknownSVal SizeZero = 2686 svalBuilder.evalEQ(State, TotalSize.castAs<DefinedOrUnknownSVal>(), 2687 svalBuilder.makeIntValWithWidth( 2688 svalBuilder.getContext().getSizeType(), 0)); 2689 2690 ProgramStateRef StatePtrIsNull, StatePtrNotNull; 2691 std::tie(StatePtrIsNull, StatePtrNotNull) = State->assume(PtrEQ); 2692 ProgramStateRef StateSizeIsZero, StateSizeNotZero; 2693 std::tie(StateSizeIsZero, StateSizeNotZero) = State->assume(SizeZero); 2694 // We only assume exceptional states if they are definitely true; if the 2695 // state is under-constrained, assume regular realloc behavior. 2696 bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull; 2697 bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero; 2698 2699 // If the ptr is NULL and the size is not 0, the call is equivalent to 2700 // malloc(size). 2701 if (PrtIsNull && !SizeIsZero) { 2702 ProgramStateRef stateMalloc = MallocMemAux( 2703 C, Call, TotalSize, UndefinedVal(), StatePtrIsNull, Family); 2704 return stateMalloc; 2705 } 2706 2707 if (PrtIsNull && SizeIsZero) 2708 return State; 2709 2710 assert(!PrtIsNull); 2711 2712 bool IsKnownToBeAllocated = false; 2713 2714 // If the size is 0, free the memory. 2715 if (SizeIsZero) 2716 // The semantics of the return value are: 2717 // If size was equal to 0, either NULL or a pointer suitable to be passed 2718 // to free() is returned. We just free the input pointer and do not add 2719 // any constrains on the output pointer. 2720 if (ProgramStateRef stateFree = FreeMemAux( 2721 C, Call, StateSizeIsZero, 0, false, IsKnownToBeAllocated, Family)) 2722 return stateFree; 2723 2724 // Default behavior. 2725 if (ProgramStateRef stateFree = 2726 FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocated, Family)) { 2727 2728 ProgramStateRef stateRealloc = 2729 MallocMemAux(C, Call, TotalSize, UnknownVal(), stateFree, Family); 2730 if (!stateRealloc) 2731 return nullptr; 2732 2733 OwnershipAfterReallocKind Kind = OAR_ToBeFreedAfterFailure; 2734 if (ShouldFreeOnFail) 2735 Kind = OAR_FreeOnFailure; 2736 else if (!IsKnownToBeAllocated) 2737 Kind = OAR_DoNotTrackAfterFailure; 2738 2739 // Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size). 2740 SymbolRef FromPtr = arg0Val.getLocSymbolInBase(); 2741 SVal RetVal = C.getSVal(CE); 2742 SymbolRef ToPtr = RetVal.getAsSymbol(); 2743 assert(FromPtr && ToPtr && 2744 "By this point, FreeMemAux and MallocMemAux should have checked " 2745 "whether the argument or the return value is symbolic!"); 2746 2747 // Record the info about the reallocated symbol so that we could properly 2748 // process failed reallocation. 2749 stateRealloc = stateRealloc->set<ReallocPairs>(ToPtr, 2750 ReallocPair(FromPtr, Kind)); 2751 // The reallocated symbol should stay alive for as long as the new symbol. 2752 C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr); 2753 return stateRealloc; 2754 } 2755 return nullptr; 2756 } 2757 2758 ProgramStateRef MallocChecker::CallocMem(CheckerContext &C, 2759 const CallEvent &Call, 2760 ProgramStateRef State) { 2761 if (!State) 2762 return nullptr; 2763 2764 if (Call.getNumArgs() < 2) 2765 return nullptr; 2766 2767 SValBuilder &svalBuilder = C.getSValBuilder(); 2768 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 2769 SVal TotalSize = 2770 evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1)); 2771 2772 return MallocMemAux(C, Call, TotalSize, zeroVal, State, AF_Malloc); 2773 } 2774 2775 MallocChecker::LeakInfo MallocChecker::getAllocationSite(const ExplodedNode *N, 2776 SymbolRef Sym, 2777 CheckerContext &C) { 2778 const LocationContext *LeakContext = N->getLocationContext(); 2779 // Walk the ExplodedGraph backwards and find the first node that referred to 2780 // the tracked symbol. 2781 const ExplodedNode *AllocNode = N; 2782 const MemRegion *ReferenceRegion = nullptr; 2783 2784 while (N) { 2785 ProgramStateRef State = N->getState(); 2786 if (!State->get<RegionState>(Sym)) 2787 break; 2788 2789 // Find the most recent expression bound to the symbol in the current 2790 // context. 2791 if (!ReferenceRegion) { 2792 if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) { 2793 SVal Val = State->getSVal(MR); 2794 if (Val.getAsLocSymbol() == Sym) { 2795 const VarRegion *VR = MR->getBaseRegion()->getAs<VarRegion>(); 2796 // Do not show local variables belonging to a function other than 2797 // where the error is reported. 2798 if (!VR || (VR->getStackFrame() == LeakContext->getStackFrame())) 2799 ReferenceRegion = MR; 2800 } 2801 } 2802 } 2803 2804 // Allocation node, is the last node in the current or parent context in 2805 // which the symbol was tracked. 2806 const LocationContext *NContext = N->getLocationContext(); 2807 if (NContext == LeakContext || 2808 NContext->isParentOf(LeakContext)) 2809 AllocNode = N; 2810 N = N->pred_empty() ? nullptr : *(N->pred_begin()); 2811 } 2812 2813 return LeakInfo(AllocNode, ReferenceRegion); 2814 } 2815 2816 void MallocChecker::HandleLeak(SymbolRef Sym, ExplodedNode *N, 2817 CheckerContext &C) const { 2818 2819 if (!ChecksEnabled[CK_MallocChecker] && 2820 !ChecksEnabled[CK_NewDeleteLeaksChecker]) 2821 return; 2822 2823 const RefState *RS = C.getState()->get<RegionState>(Sym); 2824 assert(RS && "cannot leak an untracked symbol"); 2825 AllocationFamily Family = RS->getAllocationFamily(); 2826 2827 if (Family == AF_Alloca) 2828 return; 2829 2830 std::optional<MallocChecker::CheckKind> CheckKind = 2831 getCheckIfTracked(Family, true); 2832 2833 if (!CheckKind) 2834 return; 2835 2836 assert(N); 2837 if (!BT_Leak[*CheckKind]) { 2838 // Leaks should not be reported if they are post-dominated by a sink: 2839 // (1) Sinks are higher importance bugs. 2840 // (2) NoReturnFunctionChecker uses sink nodes to represent paths ending 2841 // with __noreturn functions such as assert() or exit(). We choose not 2842 // to report leaks on such paths. 2843 BT_Leak[*CheckKind].reset(new BugType(CheckNames[*CheckKind], "Memory leak", 2844 categories::MemoryError, 2845 /*SuppressOnSink=*/true)); 2846 } 2847 2848 // Most bug reports are cached at the location where they occurred. 2849 // With leaks, we want to unique them by the location where they were 2850 // allocated, and only report a single path. 2851 PathDiagnosticLocation LocUsedForUniqueing; 2852 const ExplodedNode *AllocNode = nullptr; 2853 const MemRegion *Region = nullptr; 2854 std::tie(AllocNode, Region) = getAllocationSite(N, Sym, C); 2855 2856 const Stmt *AllocationStmt = AllocNode->getStmtForDiagnostics(); 2857 if (AllocationStmt) 2858 LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocationStmt, 2859 C.getSourceManager(), 2860 AllocNode->getLocationContext()); 2861 2862 SmallString<200> buf; 2863 llvm::raw_svector_ostream os(buf); 2864 if (Region && Region->canPrintPretty()) { 2865 os << "Potential leak of memory pointed to by "; 2866 Region->printPretty(os); 2867 } else { 2868 os << "Potential memory leak"; 2869 } 2870 2871 auto R = std::make_unique<PathSensitiveBugReport>( 2872 *BT_Leak[*CheckKind], os.str(), N, LocUsedForUniqueing, 2873 AllocNode->getLocationContext()->getDecl()); 2874 R->markInteresting(Sym); 2875 R->addVisitor<MallocBugVisitor>(Sym, true); 2876 if (ShouldRegisterNoOwnershipChangeVisitor) 2877 R->addVisitor<NoOwnershipChangeVisitor>(Sym, this); 2878 C.emitReport(std::move(R)); 2879 } 2880 2881 void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper, 2882 CheckerContext &C) const 2883 { 2884 ProgramStateRef state = C.getState(); 2885 RegionStateTy OldRS = state->get<RegionState>(); 2886 RegionStateTy::Factory &F = state->get_context<RegionState>(); 2887 2888 RegionStateTy RS = OldRS; 2889 SmallVector<SymbolRef, 2> Errors; 2890 for (auto [Sym, State] : RS) { 2891 if (SymReaper.isDead(Sym)) { 2892 if (State.isAllocated() || State.isAllocatedOfSizeZero()) 2893 Errors.push_back(Sym); 2894 // Remove the dead symbol from the map. 2895 RS = F.remove(RS, Sym); 2896 } 2897 } 2898 2899 if (RS == OldRS) { 2900 // We shouldn't have touched other maps yet. 2901 assert(state->get<ReallocPairs>() == 2902 C.getState()->get<ReallocPairs>()); 2903 assert(state->get<FreeReturnValue>() == 2904 C.getState()->get<FreeReturnValue>()); 2905 return; 2906 } 2907 2908 // Cleanup the Realloc Pairs Map. 2909 ReallocPairsTy RP = state->get<ReallocPairs>(); 2910 for (auto [Sym, ReallocPair] : RP) { 2911 if (SymReaper.isDead(Sym) || SymReaper.isDead(ReallocPair.ReallocatedSym)) { 2912 state = state->remove<ReallocPairs>(Sym); 2913 } 2914 } 2915 2916 // Cleanup the FreeReturnValue Map. 2917 FreeReturnValueTy FR = state->get<FreeReturnValue>(); 2918 for (auto [Sym, RetSym] : FR) { 2919 if (SymReaper.isDead(Sym) || SymReaper.isDead(RetSym)) { 2920 state = state->remove<FreeReturnValue>(Sym); 2921 } 2922 } 2923 2924 // Generate leak node. 2925 ExplodedNode *N = C.getPredecessor(); 2926 if (!Errors.empty()) { 2927 static CheckerProgramPointTag Tag("MallocChecker", "DeadSymbolsLeak"); 2928 N = C.generateNonFatalErrorNode(C.getState(), &Tag); 2929 if (N) { 2930 for (SymbolRef Sym : Errors) { 2931 HandleLeak(Sym, N, C); 2932 } 2933 } 2934 } 2935 2936 C.addTransition(state->set<RegionState>(RS), N); 2937 } 2938 2939 void MallocChecker::checkPreCall(const CallEvent &Call, 2940 CheckerContext &C) const { 2941 2942 if (const auto *DC = dyn_cast<CXXDeallocatorCall>(&Call)) { 2943 const CXXDeleteExpr *DE = DC->getOriginExpr(); 2944 2945 if (!ChecksEnabled[CK_NewDeleteChecker]) 2946 if (SymbolRef Sym = C.getSVal(DE->getArgument()).getAsSymbol()) 2947 checkUseAfterFree(Sym, C, DE->getArgument()); 2948 2949 if (!isStandardNewDelete(DC->getDecl())) 2950 return; 2951 2952 ProgramStateRef State = C.getState(); 2953 bool IsKnownToBeAllocated; 2954 State = FreeMemAux(C, DE->getArgument(), Call, State, 2955 /*Hold*/ false, IsKnownToBeAllocated, 2956 (DE->isArrayForm() ? AF_CXXNewArray : AF_CXXNew)); 2957 2958 C.addTransition(State); 2959 return; 2960 } 2961 2962 if (const auto *DC = dyn_cast<CXXDestructorCall>(&Call)) { 2963 SymbolRef Sym = DC->getCXXThisVal().getAsSymbol(); 2964 if (!Sym || checkDoubleDelete(Sym, C)) 2965 return; 2966 } 2967 2968 // We need to handle getline pre-conditions here before the pointed region 2969 // gets invalidated by StreamChecker 2970 if (const auto *PreFN = PreFnMap.lookup(Call)) { 2971 (*PreFN)(this, Call, C); 2972 return; 2973 } 2974 2975 // We will check for double free in the post visit. 2976 if (const AnyFunctionCall *FC = dyn_cast<AnyFunctionCall>(&Call)) { 2977 const FunctionDecl *FD = FC->getDecl(); 2978 if (!FD) 2979 return; 2980 2981 if (ChecksEnabled[CK_MallocChecker] && isFreeingCall(Call)) 2982 return; 2983 } 2984 2985 // Check if the callee of a method is deleted. 2986 if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(&Call)) { 2987 SymbolRef Sym = CC->getCXXThisVal().getAsSymbol(); 2988 if (!Sym || checkUseAfterFree(Sym, C, CC->getCXXThisExpr())) 2989 return; 2990 } 2991 2992 // Check arguments for being used after free. 2993 for (unsigned I = 0, E = Call.getNumArgs(); I != E; ++I) { 2994 SVal ArgSVal = Call.getArgSVal(I); 2995 if (isa<Loc>(ArgSVal)) { 2996 SymbolRef Sym = ArgSVal.getAsSymbol(); 2997 if (!Sym) 2998 continue; 2999 if (checkUseAfterFree(Sym, C, Call.getArgExpr(I))) 3000 return; 3001 } 3002 } 3003 } 3004 3005 void MallocChecker::checkPreStmt(const ReturnStmt *S, 3006 CheckerContext &C) const { 3007 checkEscapeOnReturn(S, C); 3008 } 3009 3010 // In the CFG, automatic destructors come after the return statement. 3011 // This callback checks for returning memory that is freed by automatic 3012 // destructors, as those cannot be reached in checkPreStmt(). 3013 void MallocChecker::checkEndFunction(const ReturnStmt *S, 3014 CheckerContext &C) const { 3015 checkEscapeOnReturn(S, C); 3016 } 3017 3018 void MallocChecker::checkEscapeOnReturn(const ReturnStmt *S, 3019 CheckerContext &C) const { 3020 if (!S) 3021 return; 3022 3023 const Expr *E = S->getRetValue(); 3024 if (!E) 3025 return; 3026 3027 // Check if we are returning a symbol. 3028 ProgramStateRef State = C.getState(); 3029 SVal RetVal = C.getSVal(E); 3030 SymbolRef Sym = RetVal.getAsSymbol(); 3031 if (!Sym) 3032 // If we are returning a field of the allocated struct or an array element, 3033 // the callee could still free the memory. 3034 // TODO: This logic should be a part of generic symbol escape callback. 3035 if (const MemRegion *MR = RetVal.getAsRegion()) 3036 if (isa<FieldRegion, ElementRegion>(MR)) 3037 if (const SymbolicRegion *BMR = 3038 dyn_cast<SymbolicRegion>(MR->getBaseRegion())) 3039 Sym = BMR->getSymbol(); 3040 3041 // Check if we are returning freed memory. 3042 if (Sym) 3043 checkUseAfterFree(Sym, C, E); 3044 } 3045 3046 // TODO: Blocks should be either inlined or should call invalidate regions 3047 // upon invocation. After that's in place, special casing here will not be 3048 // needed. 3049 void MallocChecker::checkPostStmt(const BlockExpr *BE, 3050 CheckerContext &C) const { 3051 3052 // Scan the BlockDecRefExprs for any object the retain count checker 3053 // may be tracking. 3054 if (!BE->getBlockDecl()->hasCaptures()) 3055 return; 3056 3057 ProgramStateRef state = C.getState(); 3058 const BlockDataRegion *R = 3059 cast<BlockDataRegion>(C.getSVal(BE).getAsRegion()); 3060 3061 auto ReferencedVars = R->referenced_vars(); 3062 if (ReferencedVars.empty()) 3063 return; 3064 3065 SmallVector<const MemRegion*, 10> Regions; 3066 const LocationContext *LC = C.getLocationContext(); 3067 MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager(); 3068 3069 for (const auto &Var : ReferencedVars) { 3070 const VarRegion *VR = Var.getCapturedRegion(); 3071 if (VR->getSuperRegion() == R) { 3072 VR = MemMgr.getVarRegion(VR->getDecl(), LC); 3073 } 3074 Regions.push_back(VR); 3075 } 3076 3077 state = 3078 state->scanReachableSymbols<StopTrackingCallback>(Regions).getState(); 3079 C.addTransition(state); 3080 } 3081 3082 static bool isReleased(SymbolRef Sym, CheckerContext &C) { 3083 assert(Sym); 3084 const RefState *RS = C.getState()->get<RegionState>(Sym); 3085 return (RS && RS->isReleased()); 3086 } 3087 3088 bool MallocChecker::suppressDeallocationsInSuspiciousContexts( 3089 const CallEvent &Call, CheckerContext &C) const { 3090 if (Call.getNumArgs() == 0) 3091 return false; 3092 3093 StringRef FunctionStr = ""; 3094 if (const auto *FD = dyn_cast<FunctionDecl>(C.getStackFrame()->getDecl())) 3095 if (const Stmt *Body = FD->getBody()) 3096 if (Body->getBeginLoc().isValid()) 3097 FunctionStr = 3098 Lexer::getSourceText(CharSourceRange::getTokenRange( 3099 {FD->getBeginLoc(), Body->getBeginLoc()}), 3100 C.getSourceManager(), C.getLangOpts()); 3101 3102 // We do not model the Integer Set Library's retain-count based allocation. 3103 if (!FunctionStr.contains("__isl_")) 3104 return false; 3105 3106 ProgramStateRef State = C.getState(); 3107 3108 for (const Expr *Arg : cast<CallExpr>(Call.getOriginExpr())->arguments()) 3109 if (SymbolRef Sym = C.getSVal(Arg).getAsSymbol()) 3110 if (const RefState *RS = State->get<RegionState>(Sym)) 3111 State = State->set<RegionState>(Sym, RefState::getEscaped(RS)); 3112 3113 C.addTransition(State); 3114 return true; 3115 } 3116 3117 bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C, 3118 const Stmt *S) const { 3119 3120 if (isReleased(Sym, C)) { 3121 HandleUseAfterFree(C, S->getSourceRange(), Sym); 3122 return true; 3123 } 3124 3125 return false; 3126 } 3127 3128 void MallocChecker::checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 3129 const Stmt *S) const { 3130 assert(Sym); 3131 3132 if (const RefState *RS = C.getState()->get<RegionState>(Sym)) { 3133 if (RS->isAllocatedOfSizeZero()) 3134 HandleUseZeroAlloc(C, RS->getStmt()->getSourceRange(), Sym); 3135 } 3136 else if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) { 3137 HandleUseZeroAlloc(C, S->getSourceRange(), Sym); 3138 } 3139 } 3140 3141 bool MallocChecker::checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const { 3142 3143 if (isReleased(Sym, C)) { 3144 HandleDoubleDelete(C, Sym); 3145 return true; 3146 } 3147 return false; 3148 } 3149 3150 // Check if the location is a freed symbolic region. 3151 void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S, 3152 CheckerContext &C) const { 3153 SymbolRef Sym = l.getLocSymbolInBase(); 3154 if (Sym) { 3155 checkUseAfterFree(Sym, C, S); 3156 checkUseZeroAllocated(Sym, C, S); 3157 } 3158 } 3159 3160 // If a symbolic region is assumed to NULL (or another constant), stop tracking 3161 // it - assuming that allocation failed on this path. 3162 ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state, 3163 SVal Cond, 3164 bool Assumption) const { 3165 RegionStateTy RS = state->get<RegionState>(); 3166 for (SymbolRef Sym : llvm::make_first_range(RS)) { 3167 // If the symbol is assumed to be NULL, remove it from consideration. 3168 ConstraintManager &CMgr = state->getConstraintManager(); 3169 ConditionTruthVal AllocFailed = CMgr.isNull(state, Sym); 3170 if (AllocFailed.isConstrainedTrue()) 3171 state = state->remove<RegionState>(Sym); 3172 } 3173 3174 // Realloc returns 0 when reallocation fails, which means that we should 3175 // restore the state of the pointer being reallocated. 3176 ReallocPairsTy RP = state->get<ReallocPairs>(); 3177 for (auto [Sym, ReallocPair] : RP) { 3178 // If the symbol is assumed to be NULL, remove it from consideration. 3179 ConstraintManager &CMgr = state->getConstraintManager(); 3180 ConditionTruthVal AllocFailed = CMgr.isNull(state, Sym); 3181 if (!AllocFailed.isConstrainedTrue()) 3182 continue; 3183 3184 SymbolRef ReallocSym = ReallocPair.ReallocatedSym; 3185 if (const RefState *RS = state->get<RegionState>(ReallocSym)) { 3186 if (RS->isReleased()) { 3187 switch (ReallocPair.Kind) { 3188 case OAR_ToBeFreedAfterFailure: 3189 state = state->set<RegionState>(ReallocSym, 3190 RefState::getAllocated(RS->getAllocationFamily(), RS->getStmt())); 3191 break; 3192 case OAR_DoNotTrackAfterFailure: 3193 state = state->remove<RegionState>(ReallocSym); 3194 break; 3195 default: 3196 assert(ReallocPair.Kind == OAR_FreeOnFailure); 3197 } 3198 } 3199 } 3200 state = state->remove<ReallocPairs>(Sym); 3201 } 3202 3203 return state; 3204 } 3205 3206 bool MallocChecker::mayFreeAnyEscapedMemoryOrIsModeledExplicitly( 3207 const CallEvent *Call, 3208 ProgramStateRef State, 3209 SymbolRef &EscapingSymbol) const { 3210 assert(Call); 3211 EscapingSymbol = nullptr; 3212 3213 // For now, assume that any C++ or block call can free memory. 3214 // TODO: If we want to be more optimistic here, we'll need to make sure that 3215 // regions escape to C++ containers. They seem to do that even now, but for 3216 // mysterious reasons. 3217 if (!isa<SimpleFunctionCall, ObjCMethodCall>(Call)) 3218 return true; 3219 3220 // Check Objective-C messages by selector name. 3221 if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) { 3222 // If it's not a framework call, or if it takes a callback, assume it 3223 // can free memory. 3224 if (!Call->isInSystemHeader() || Call->argumentsMayEscape()) 3225 return true; 3226 3227 // If it's a method we know about, handle it explicitly post-call. 3228 // This should happen before the "freeWhenDone" check below. 3229 if (isKnownDeallocObjCMethodName(*Msg)) 3230 return false; 3231 3232 // If there's a "freeWhenDone" parameter, but the method isn't one we know 3233 // about, we can't be sure that the object will use free() to deallocate the 3234 // memory, so we can't model it explicitly. The best we can do is use it to 3235 // decide whether the pointer escapes. 3236 if (std::optional<bool> FreeWhenDone = getFreeWhenDoneArg(*Msg)) 3237 return *FreeWhenDone; 3238 3239 // If the first selector piece ends with "NoCopy", and there is no 3240 // "freeWhenDone" parameter set to zero, we know ownership is being 3241 // transferred. Again, though, we can't be sure that the object will use 3242 // free() to deallocate the memory, so we can't model it explicitly. 3243 StringRef FirstSlot = Msg->getSelector().getNameForSlot(0); 3244 if (FirstSlot.ends_with("NoCopy")) 3245 return true; 3246 3247 // If the first selector starts with addPointer, insertPointer, 3248 // or replacePointer, assume we are dealing with NSPointerArray or similar. 3249 // This is similar to C++ containers (vector); we still might want to check 3250 // that the pointers get freed by following the container itself. 3251 if (FirstSlot.starts_with("addPointer") || 3252 FirstSlot.starts_with("insertPointer") || 3253 FirstSlot.starts_with("replacePointer") || 3254 FirstSlot.equals("valueWithPointer")) { 3255 return true; 3256 } 3257 3258 // We should escape receiver on call to 'init'. This is especially relevant 3259 // to the receiver, as the corresponding symbol is usually not referenced 3260 // after the call. 3261 if (Msg->getMethodFamily() == OMF_init) { 3262 EscapingSymbol = Msg->getReceiverSVal().getAsSymbol(); 3263 return true; 3264 } 3265 3266 // Otherwise, assume that the method does not free memory. 3267 // Most framework methods do not free memory. 3268 return false; 3269 } 3270 3271 // At this point the only thing left to handle is straight function calls. 3272 const FunctionDecl *FD = cast<SimpleFunctionCall>(Call)->getDecl(); 3273 if (!FD) 3274 return true; 3275 3276 // If it's one of the allocation functions we can reason about, we model 3277 // its behavior explicitly. 3278 if (isMemCall(*Call)) 3279 return false; 3280 3281 // If it's not a system call, assume it frees memory. 3282 if (!Call->isInSystemHeader()) 3283 return true; 3284 3285 // White list the system functions whose arguments escape. 3286 const IdentifierInfo *II = FD->getIdentifier(); 3287 if (!II) 3288 return true; 3289 StringRef FName = II->getName(); 3290 3291 // White list the 'XXXNoCopy' CoreFoundation functions. 3292 // We specifically check these before 3293 if (FName.ends_with("NoCopy")) { 3294 // Look for the deallocator argument. We know that the memory ownership 3295 // is not transferred only if the deallocator argument is 3296 // 'kCFAllocatorNull'. 3297 for (unsigned i = 1; i < Call->getNumArgs(); ++i) { 3298 const Expr *ArgE = Call->getArgExpr(i)->IgnoreParenCasts(); 3299 if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(ArgE)) { 3300 StringRef DeallocatorName = DE->getFoundDecl()->getName(); 3301 if (DeallocatorName == "kCFAllocatorNull") 3302 return false; 3303 } 3304 } 3305 return true; 3306 } 3307 3308 // Associating streams with malloced buffers. The pointer can escape if 3309 // 'closefn' is specified (and if that function does free memory), 3310 // but it will not if closefn is not specified. 3311 // Currently, we do not inspect the 'closefn' function (PR12101). 3312 if (FName == "funopen") 3313 if (Call->getNumArgs() >= 4 && Call->getArgSVal(4).isConstant(0)) 3314 return false; 3315 3316 // Do not warn on pointers passed to 'setbuf' when used with std streams, 3317 // these leaks might be intentional when setting the buffer for stdio. 3318 // http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer 3319 if (FName == "setbuf" || FName =="setbuffer" || 3320 FName == "setlinebuf" || FName == "setvbuf") { 3321 if (Call->getNumArgs() >= 1) { 3322 const Expr *ArgE = Call->getArgExpr(0)->IgnoreParenCasts(); 3323 if (const DeclRefExpr *ArgDRE = dyn_cast<DeclRefExpr>(ArgE)) 3324 if (const VarDecl *D = dyn_cast<VarDecl>(ArgDRE->getDecl())) 3325 if (D->getCanonicalDecl()->getName().contains("std")) 3326 return true; 3327 } 3328 } 3329 3330 // A bunch of other functions which either take ownership of a pointer or 3331 // wrap the result up in a struct or object, meaning it can be freed later. 3332 // (See RetainCountChecker.) Not all the parameters here are invalidated, 3333 // but the Malloc checker cannot differentiate between them. The right way 3334 // of doing this would be to implement a pointer escapes callback. 3335 if (FName == "CGBitmapContextCreate" || 3336 FName == "CGBitmapContextCreateWithData" || 3337 FName == "CVPixelBufferCreateWithBytes" || 3338 FName == "CVPixelBufferCreateWithPlanarBytes" || 3339 FName == "OSAtomicEnqueue") { 3340 return true; 3341 } 3342 3343 if (FName == "postEvent" && 3344 FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") { 3345 return true; 3346 } 3347 3348 if (FName == "connectImpl" && 3349 FD->getQualifiedNameAsString() == "QObject::connectImpl") { 3350 return true; 3351 } 3352 3353 if (FName == "singleShotImpl" && 3354 FD->getQualifiedNameAsString() == "QTimer::singleShotImpl") { 3355 return true; 3356 } 3357 3358 // Handle cases where we know a buffer's /address/ can escape. 3359 // Note that the above checks handle some special cases where we know that 3360 // even though the address escapes, it's still our responsibility to free the 3361 // buffer. 3362 if (Call->argumentsMayEscape()) 3363 return true; 3364 3365 // Otherwise, assume that the function does not free memory. 3366 // Most system calls do not free the memory. 3367 return false; 3368 } 3369 3370 ProgramStateRef MallocChecker::checkPointerEscape(ProgramStateRef State, 3371 const InvalidatedSymbols &Escaped, 3372 const CallEvent *Call, 3373 PointerEscapeKind Kind) const { 3374 return checkPointerEscapeAux(State, Escaped, Call, Kind, 3375 /*IsConstPointerEscape*/ false); 3376 } 3377 3378 ProgramStateRef MallocChecker::checkConstPointerEscape(ProgramStateRef State, 3379 const InvalidatedSymbols &Escaped, 3380 const CallEvent *Call, 3381 PointerEscapeKind Kind) const { 3382 // If a const pointer escapes, it may not be freed(), but it could be deleted. 3383 return checkPointerEscapeAux(State, Escaped, Call, Kind, 3384 /*IsConstPointerEscape*/ true); 3385 } 3386 3387 static bool checkIfNewOrNewArrayFamily(const RefState *RS) { 3388 return (RS->getAllocationFamily() == AF_CXXNewArray || 3389 RS->getAllocationFamily() == AF_CXXNew); 3390 } 3391 3392 ProgramStateRef MallocChecker::checkPointerEscapeAux( 3393 ProgramStateRef State, const InvalidatedSymbols &Escaped, 3394 const CallEvent *Call, PointerEscapeKind Kind, 3395 bool IsConstPointerEscape) const { 3396 // If we know that the call does not free memory, or we want to process the 3397 // call later, keep tracking the top level arguments. 3398 SymbolRef EscapingSymbol = nullptr; 3399 if (Kind == PSK_DirectEscapeOnCall && 3400 !mayFreeAnyEscapedMemoryOrIsModeledExplicitly(Call, State, 3401 EscapingSymbol) && 3402 !EscapingSymbol) { 3403 return State; 3404 } 3405 3406 for (SymbolRef sym : Escaped) { 3407 if (EscapingSymbol && EscapingSymbol != sym) 3408 continue; 3409 3410 if (const RefState *RS = State->get<RegionState>(sym)) 3411 if (RS->isAllocated() || RS->isAllocatedOfSizeZero()) 3412 if (!IsConstPointerEscape || checkIfNewOrNewArrayFamily(RS)) 3413 State = State->set<RegionState>(sym, RefState::getEscaped(RS)); 3414 } 3415 return State; 3416 } 3417 3418 bool MallocChecker::isArgZERO_SIZE_PTR(ProgramStateRef State, CheckerContext &C, 3419 SVal ArgVal) const { 3420 if (!KernelZeroSizePtrValue) 3421 KernelZeroSizePtrValue = 3422 tryExpandAsInteger("ZERO_SIZE_PTR", C.getPreprocessor()); 3423 3424 const llvm::APSInt *ArgValKnown = 3425 C.getSValBuilder().getKnownValue(State, ArgVal); 3426 return ArgValKnown && *KernelZeroSizePtrValue && 3427 ArgValKnown->getSExtValue() == **KernelZeroSizePtrValue; 3428 } 3429 3430 static SymbolRef findFailedReallocSymbol(ProgramStateRef currState, 3431 ProgramStateRef prevState) { 3432 ReallocPairsTy currMap = currState->get<ReallocPairs>(); 3433 ReallocPairsTy prevMap = prevState->get<ReallocPairs>(); 3434 3435 for (const ReallocPairsTy::value_type &Pair : prevMap) { 3436 SymbolRef sym = Pair.first; 3437 if (!currMap.lookup(sym)) 3438 return sym; 3439 } 3440 3441 return nullptr; 3442 } 3443 3444 static bool isReferenceCountingPointerDestructor(const CXXDestructorDecl *DD) { 3445 if (const IdentifierInfo *II = DD->getParent()->getIdentifier()) { 3446 StringRef N = II->getName(); 3447 if (N.contains_insensitive("ptr") || N.contains_insensitive("pointer")) { 3448 if (N.contains_insensitive("ref") || N.contains_insensitive("cnt") || 3449 N.contains_insensitive("intrusive") || 3450 N.contains_insensitive("shared")) { 3451 return true; 3452 } 3453 } 3454 } 3455 return false; 3456 } 3457 3458 PathDiagnosticPieceRef MallocBugVisitor::VisitNode(const ExplodedNode *N, 3459 BugReporterContext &BRC, 3460 PathSensitiveBugReport &BR) { 3461 ProgramStateRef state = N->getState(); 3462 ProgramStateRef statePrev = N->getFirstPred()->getState(); 3463 3464 const RefState *RSCurr = state->get<RegionState>(Sym); 3465 const RefState *RSPrev = statePrev->get<RegionState>(Sym); 3466 3467 const Stmt *S = N->getStmtForDiagnostics(); 3468 // When dealing with containers, we sometimes want to give a note 3469 // even if the statement is missing. 3470 if (!S && (!RSCurr || RSCurr->getAllocationFamily() != AF_InnerBuffer)) 3471 return nullptr; 3472 3473 const LocationContext *CurrentLC = N->getLocationContext(); 3474 3475 // If we find an atomic fetch_add or fetch_sub within the destructor in which 3476 // the pointer was released (before the release), this is likely a destructor 3477 // of a shared pointer. 3478 // Because we don't model atomics, and also because we don't know that the 3479 // original reference count is positive, we should not report use-after-frees 3480 // on objects deleted in such destructors. This can probably be improved 3481 // through better shared pointer modeling. 3482 if (ReleaseDestructorLC) { 3483 if (const auto *AE = dyn_cast<AtomicExpr>(S)) { 3484 AtomicExpr::AtomicOp Op = AE->getOp(); 3485 if (Op == AtomicExpr::AO__c11_atomic_fetch_add || 3486 Op == AtomicExpr::AO__c11_atomic_fetch_sub) { 3487 if (ReleaseDestructorLC == CurrentLC || 3488 ReleaseDestructorLC->isParentOf(CurrentLC)) { 3489 BR.markInvalid(getTag(), S); 3490 } 3491 } 3492 } 3493 } 3494 3495 // FIXME: We will eventually need to handle non-statement-based events 3496 // (__attribute__((cleanup))). 3497 3498 // Find out if this is an interesting point and what is the kind. 3499 StringRef Msg; 3500 std::unique_ptr<StackHintGeneratorForSymbol> StackHint = nullptr; 3501 SmallString<256> Buf; 3502 llvm::raw_svector_ostream OS(Buf); 3503 3504 if (Mode == Normal) { 3505 if (isAllocated(RSCurr, RSPrev, S)) { 3506 Msg = "Memory is allocated"; 3507 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3508 Sym, "Returned allocated memory"); 3509 } else if (isReleased(RSCurr, RSPrev, S)) { 3510 const auto Family = RSCurr->getAllocationFamily(); 3511 switch (Family) { 3512 case AF_Alloca: 3513 case AF_Malloc: 3514 case AF_CXXNew: 3515 case AF_CXXNewArray: 3516 case AF_IfNameIndex: 3517 Msg = "Memory is released"; 3518 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3519 Sym, "Returning; memory was released"); 3520 break; 3521 case AF_InnerBuffer: { 3522 const MemRegion *ObjRegion = 3523 allocation_state::getContainerObjRegion(statePrev, Sym); 3524 const auto *TypedRegion = cast<TypedValueRegion>(ObjRegion); 3525 QualType ObjTy = TypedRegion->getValueType(); 3526 OS << "Inner buffer of '" << ObjTy << "' "; 3527 3528 if (N->getLocation().getKind() == ProgramPoint::PostImplicitCallKind) { 3529 OS << "deallocated by call to destructor"; 3530 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3531 Sym, "Returning; inner buffer was deallocated"); 3532 } else { 3533 OS << "reallocated by call to '"; 3534 const Stmt *S = RSCurr->getStmt(); 3535 if (const auto *MemCallE = dyn_cast<CXXMemberCallExpr>(S)) { 3536 OS << MemCallE->getMethodDecl()->getDeclName(); 3537 } else if (const auto *OpCallE = dyn_cast<CXXOperatorCallExpr>(S)) { 3538 OS << OpCallE->getDirectCallee()->getDeclName(); 3539 } else if (const auto *CallE = dyn_cast<CallExpr>(S)) { 3540 auto &CEMgr = BRC.getStateManager().getCallEventManager(); 3541 CallEventRef<> Call = 3542 CEMgr.getSimpleCall(CallE, state, CurrentLC, {nullptr, 0}); 3543 if (const auto *D = dyn_cast_or_null<NamedDecl>(Call->getDecl())) 3544 OS << D->getDeclName(); 3545 else 3546 OS << "unknown"; 3547 } 3548 OS << "'"; 3549 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3550 Sym, "Returning; inner buffer was reallocated"); 3551 } 3552 Msg = OS.str(); 3553 break; 3554 } 3555 case AF_None: 3556 llvm_unreachable("Unhandled allocation family!"); 3557 } 3558 3559 // See if we're releasing memory while inlining a destructor 3560 // (or one of its callees). This turns on various common 3561 // false positive suppressions. 3562 bool FoundAnyDestructor = false; 3563 for (const LocationContext *LC = CurrentLC; LC; LC = LC->getParent()) { 3564 if (const auto *DD = dyn_cast<CXXDestructorDecl>(LC->getDecl())) { 3565 if (isReferenceCountingPointerDestructor(DD)) { 3566 // This immediately looks like a reference-counting destructor. 3567 // We're bad at guessing the original reference count of the object, 3568 // so suppress the report for now. 3569 BR.markInvalid(getTag(), DD); 3570 } else if (!FoundAnyDestructor) { 3571 assert(!ReleaseDestructorLC && 3572 "There can be only one release point!"); 3573 // Suspect that it's a reference counting pointer destructor. 3574 // On one of the next nodes might find out that it has atomic 3575 // reference counting operations within it (see the code above), 3576 // and if so, we'd conclude that it likely is a reference counting 3577 // pointer destructor. 3578 ReleaseDestructorLC = LC->getStackFrame(); 3579 // It is unlikely that releasing memory is delegated to a destructor 3580 // inside a destructor of a shared pointer, because it's fairly hard 3581 // to pass the information that the pointer indeed needs to be 3582 // released into it. So we're only interested in the innermost 3583 // destructor. 3584 FoundAnyDestructor = true; 3585 } 3586 } 3587 } 3588 } else if (isRelinquished(RSCurr, RSPrev, S)) { 3589 Msg = "Memory ownership is transferred"; 3590 StackHint = std::make_unique<StackHintGeneratorForSymbol>(Sym, ""); 3591 } else if (hasReallocFailed(RSCurr, RSPrev, S)) { 3592 Mode = ReallocationFailed; 3593 Msg = "Reallocation failed"; 3594 StackHint = std::make_unique<StackHintGeneratorForReallocationFailed>( 3595 Sym, "Reallocation failed"); 3596 3597 if (SymbolRef sym = findFailedReallocSymbol(state, statePrev)) { 3598 // Is it possible to fail two reallocs WITHOUT testing in between? 3599 assert((!FailedReallocSymbol || FailedReallocSymbol == sym) && 3600 "We only support one failed realloc at a time."); 3601 BR.markInteresting(sym); 3602 FailedReallocSymbol = sym; 3603 } 3604 } 3605 3606 // We are in a special mode if a reallocation failed later in the path. 3607 } else if (Mode == ReallocationFailed) { 3608 assert(FailedReallocSymbol && "No symbol to look for."); 3609 3610 // Is this is the first appearance of the reallocated symbol? 3611 if (!statePrev->get<RegionState>(FailedReallocSymbol)) { 3612 // We're at the reallocation point. 3613 Msg = "Attempt to reallocate memory"; 3614 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3615 Sym, "Returned reallocated memory"); 3616 FailedReallocSymbol = nullptr; 3617 Mode = Normal; 3618 } 3619 } 3620 3621 if (Msg.empty()) { 3622 assert(!StackHint); 3623 return nullptr; 3624 } 3625 3626 assert(StackHint); 3627 3628 // Generate the extra diagnostic. 3629 PathDiagnosticLocation Pos; 3630 if (!S) { 3631 assert(RSCurr->getAllocationFamily() == AF_InnerBuffer); 3632 auto PostImplCall = N->getLocation().getAs<PostImplicitCall>(); 3633 if (!PostImplCall) 3634 return nullptr; 3635 Pos = PathDiagnosticLocation(PostImplCall->getLocation(), 3636 BRC.getSourceManager()); 3637 } else { 3638 Pos = PathDiagnosticLocation(S, BRC.getSourceManager(), 3639 N->getLocationContext()); 3640 } 3641 3642 auto P = std::make_shared<PathDiagnosticEventPiece>(Pos, Msg, true); 3643 BR.addCallStackHint(P, std::move(StackHint)); 3644 return P; 3645 } 3646 3647 void MallocChecker::printState(raw_ostream &Out, ProgramStateRef State, 3648 const char *NL, const char *Sep) const { 3649 3650 RegionStateTy RS = State->get<RegionState>(); 3651 3652 if (!RS.isEmpty()) { 3653 Out << Sep << "MallocChecker :" << NL; 3654 for (auto [Sym, Data] : RS) { 3655 const RefState *RefS = State->get<RegionState>(Sym); 3656 AllocationFamily Family = RefS->getAllocationFamily(); 3657 std::optional<MallocChecker::CheckKind> CheckKind = 3658 getCheckIfTracked(Family); 3659 if (!CheckKind) 3660 CheckKind = getCheckIfTracked(Family, true); 3661 3662 Sym->dumpToStream(Out); 3663 Out << " : "; 3664 Data.dump(Out); 3665 if (CheckKind) 3666 Out << " (" << CheckNames[*CheckKind].getName() << ")"; 3667 Out << NL; 3668 } 3669 } 3670 } 3671 3672 namespace clang { 3673 namespace ento { 3674 namespace allocation_state { 3675 3676 ProgramStateRef 3677 markReleased(ProgramStateRef State, SymbolRef Sym, const Expr *Origin) { 3678 AllocationFamily Family = AF_InnerBuffer; 3679 return State->set<RegionState>(Sym, RefState::getReleased(Family, Origin)); 3680 } 3681 3682 } // end namespace allocation_state 3683 } // end namespace ento 3684 } // end namespace clang 3685 3686 // Intended to be used in InnerPointerChecker to register the part of 3687 // MallocChecker connected to it. 3688 void ento::registerInnerPointerCheckerAux(CheckerManager &mgr) { 3689 MallocChecker *checker = mgr.getChecker<MallocChecker>(); 3690 checker->ChecksEnabled[MallocChecker::CK_InnerPointerChecker] = true; 3691 checker->CheckNames[MallocChecker::CK_InnerPointerChecker] = 3692 mgr.getCurrentCheckerName(); 3693 } 3694 3695 void ento::registerDynamicMemoryModeling(CheckerManager &mgr) { 3696 auto *checker = mgr.registerChecker<MallocChecker>(); 3697 checker->ShouldIncludeOwnershipAnnotatedFunctions = 3698 mgr.getAnalyzerOptions().getCheckerBooleanOption(checker, "Optimistic"); 3699 checker->ShouldRegisterNoOwnershipChangeVisitor = 3700 mgr.getAnalyzerOptions().getCheckerBooleanOption( 3701 checker, "AddNoOwnershipChangeNotes"); 3702 } 3703 3704 bool ento::shouldRegisterDynamicMemoryModeling(const CheckerManager &mgr) { 3705 return true; 3706 } 3707 3708 #define REGISTER_CHECKER(name) \ 3709 void ento::register##name(CheckerManager &mgr) { \ 3710 MallocChecker *checker = mgr.getChecker<MallocChecker>(); \ 3711 checker->ChecksEnabled[MallocChecker::CK_##name] = true; \ 3712 checker->CheckNames[MallocChecker::CK_##name] = \ 3713 mgr.getCurrentCheckerName(); \ 3714 } \ 3715 \ 3716 bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; } 3717 3718 REGISTER_CHECKER(MallocChecker) 3719 REGISTER_CHECKER(NewDeleteChecker) 3720 REGISTER_CHECKER(NewDeleteLeaksChecker) 3721 REGISTER_CHECKER(MismatchedDeallocatorChecker) 3722