1 //=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines a variety of memory management related checkers, such as 11 // leak, double free, and use-after-free. 12 // 13 // The following checkers are defined here: 14 // 15 // * MallocChecker 16 // Despite its name, it models all sorts of memory allocations and 17 // de- or reallocation, including but not limited to malloc, free, 18 // relloc, new, delete. It also reports on a variety of memory misuse 19 // errors. 20 // Many other checkers interact very closely with this checker, in fact, 21 // most are merely options to this one. Other checkers may register 22 // MallocChecker, but do not enable MallocChecker's reports (more details 23 // to follow around its field, ChecksEnabled). 24 // It also has a boolean "Optimistic" checker option, which if set to true 25 // will cause the checker to model user defined memory management related 26 // functions annotated via the attribute ownership_takes, ownership_holds 27 // and ownership_returns. 28 // 29 // * NewDeleteChecker 30 // Enables the modeling of new, new[], delete, delete[] in MallocChecker, 31 // and checks for related double-free and use-after-free errors. 32 // 33 // * NewDeleteLeaksChecker 34 // Checks for leaks related to new, new[], delete, delete[]. 35 // Depends on NewDeleteChecker. 36 // 37 // * MismatchedDeallocatorChecker 38 // Enables checking whether memory is deallocated with the correspending 39 // allocation function in MallocChecker, such as malloc() allocated 40 // regions are only freed by free(), new by delete, new[] by delete[]. 41 // 42 // InnerPointerChecker interacts very closely with MallocChecker, but unlike 43 // the above checkers, it has it's own file, hence the many InnerPointerChecker 44 // related headers and non-static functions. 45 // 46 //===----------------------------------------------------------------------===// 47 48 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" 49 #include "InterCheckerAPI.h" 50 #include "clang/AST/Attr.h" 51 #include "clang/AST/ParentMap.h" 52 #include "clang/Basic/SourceManager.h" 53 #include "clang/Basic/TargetInfo.h" 54 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 55 #include "clang/StaticAnalyzer/Core/BugReporter/CommonBugCategories.h" 56 #include "clang/StaticAnalyzer/Core/Checker.h" 57 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 58 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 59 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 60 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 61 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 62 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" 63 #include "llvm/ADT/STLExtras.h" 64 #include "llvm/ADT/SmallString.h" 65 #include "llvm/ADT/StringExtras.h" 66 #include "AllocationState.h" 67 #include <climits> 68 #include <utility> 69 70 using namespace clang; 71 using namespace ento; 72 73 //===----------------------------------------------------------------------===// 74 // The types of allocation we're modeling. 75 //===----------------------------------------------------------------------===// 76 77 namespace { 78 79 // Used to check correspondence between allocators and deallocators. 80 enum AllocationFamily { 81 AF_None, 82 AF_Malloc, 83 AF_CXXNew, 84 AF_CXXNewArray, 85 AF_IfNameIndex, 86 AF_Alloca, 87 AF_InnerBuffer 88 }; 89 90 struct MemFunctionInfoTy; 91 92 } // end of anonymous namespace 93 94 /// Determine family of a deallocation expression. 95 static AllocationFamily getAllocationFamily( 96 const MemFunctionInfoTy &MemFunctionInfo, CheckerContext &C, const Stmt *S); 97 98 /// Print names of allocators and deallocators. 99 /// 100 /// \returns true on success. 101 static bool printAllocDeallocName(raw_ostream &os, CheckerContext &C, 102 const Expr *E); 103 104 /// Print expected name of an allocator based on the deallocator's 105 /// family derived from the DeallocExpr. 106 static void printExpectedAllocName(raw_ostream &os, 107 const MemFunctionInfoTy &MemFunctionInfo, 108 CheckerContext &C, const Expr *E); 109 110 /// Print expected name of a deallocator based on the allocator's 111 /// family. 112 static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family); 113 114 //===----------------------------------------------------------------------===// 115 // The state of a symbol, in terms of memory management. 116 //===----------------------------------------------------------------------===// 117 118 namespace { 119 120 class RefState { 121 enum Kind { 122 // Reference to allocated memory. 123 Allocated, 124 // Reference to zero-allocated memory. 125 AllocatedOfSizeZero, 126 // Reference to released/freed memory. 127 Released, 128 // The responsibility for freeing resources has transferred from 129 // this reference. A relinquished symbol should not be freed. 130 Relinquished, 131 // We are no longer guaranteed to have observed all manipulations 132 // of this pointer/memory. For example, it could have been 133 // passed as a parameter to an opaque function. 134 Escaped 135 }; 136 137 const Stmt *S; 138 139 Kind K : 3; 140 AllocationFamily Family : 3; 141 142 RefState(Kind k, const Stmt *s, AllocationFamily family) 143 : S(s), K(k), Family(family) { 144 assert(family != AF_None); 145 } 146 public: 147 bool isAllocated() const { return K == Allocated; } 148 bool isAllocatedOfSizeZero() const { return K == AllocatedOfSizeZero; } 149 bool isReleased() const { return K == Released; } 150 bool isRelinquished() const { return K == Relinquished; } 151 bool isEscaped() const { return K == Escaped; } 152 AllocationFamily getAllocationFamily() const { 153 return Family; 154 } 155 const Stmt *getStmt() const { return S; } 156 157 bool operator==(const RefState &X) const { 158 return K == X.K && S == X.S && Family == X.Family; 159 } 160 161 static RefState getAllocated(AllocationFamily family, const Stmt *s) { 162 return RefState(Allocated, s, family); 163 } 164 static RefState getAllocatedOfSizeZero(const RefState *RS) { 165 return RefState(AllocatedOfSizeZero, RS->getStmt(), 166 RS->getAllocationFamily()); 167 } 168 static RefState getReleased(AllocationFamily family, const Stmt *s) { 169 return RefState(Released, s, family); 170 } 171 static RefState getRelinquished(AllocationFamily family, const Stmt *s) { 172 return RefState(Relinquished, s, family); 173 } 174 static RefState getEscaped(const RefState *RS) { 175 return RefState(Escaped, RS->getStmt(), RS->getAllocationFamily()); 176 } 177 178 void Profile(llvm::FoldingSetNodeID &ID) const { 179 ID.AddInteger(K); 180 ID.AddPointer(S); 181 ID.AddInteger(Family); 182 } 183 184 LLVM_DUMP_METHOD void dump(raw_ostream &OS) const { 185 switch (K) { 186 #define CASE(ID) case ID: OS << #ID; break; 187 CASE(Allocated) 188 CASE(AllocatedOfSizeZero) 189 CASE(Released) 190 CASE(Relinquished) 191 CASE(Escaped) 192 } 193 } 194 195 LLVM_DUMP_METHOD void dump() const { dump(llvm::errs()); } 196 }; 197 198 } // end of anonymous namespace 199 200 REGISTER_MAP_WITH_PROGRAMSTATE(RegionState, SymbolRef, RefState) 201 202 /// Check if the memory associated with this symbol was released. 203 static bool isReleased(SymbolRef Sym, CheckerContext &C); 204 205 /// Update the RefState to reflect the new memory allocation. 206 /// The optional \p RetVal parameter specifies the newly allocated pointer 207 /// value; if unspecified, the value of expression \p E is used. 208 static ProgramStateRef 209 MallocUpdateRefState(CheckerContext &C, const Expr *E, ProgramStateRef State, 210 AllocationFamily Family = AF_Malloc, 211 Optional<SVal> RetVal = None); 212 213 //===----------------------------------------------------------------------===// 214 // The modeling of memory reallocation. 215 // 216 // The terminology 'toPtr' and 'fromPtr' will be used: 217 // toPtr = realloc(fromPtr, 20); 218 //===----------------------------------------------------------------------===// 219 220 REGISTER_SET_WITH_PROGRAMSTATE(ReallocSizeZeroSymbols, SymbolRef) 221 222 namespace { 223 224 /// The state of 'fromPtr' after reallocation is known to have failed. 225 enum OwnershipAfterReallocKind { 226 // The symbol needs to be freed (e.g.: realloc) 227 OAR_ToBeFreedAfterFailure, 228 // The symbol has been freed (e.g.: reallocf) 229 OAR_FreeOnFailure, 230 // The symbol doesn't have to freed (e.g.: we aren't sure if, how and where 231 // 'fromPtr' was allocated: 232 // void Haha(int *ptr) { 233 // ptr = realloc(ptr, 67); 234 // // ... 235 // } 236 // ). 237 OAR_DoNotTrackAfterFailure 238 }; 239 240 /// Stores information about the 'fromPtr' symbol after reallocation. 241 /// 242 /// This is important because realloc may fail, and that needs special modeling. 243 /// Whether reallocation failed or not will not be known until later, so we'll 244 /// store whether upon failure 'fromPtr' will be freed, or needs to be freed 245 /// later, etc. 246 struct ReallocPair { 247 248 // The 'fromPtr'. 249 SymbolRef ReallocatedSym; 250 OwnershipAfterReallocKind Kind; 251 252 ReallocPair(SymbolRef S, OwnershipAfterReallocKind K) : 253 ReallocatedSym(S), Kind(K) {} 254 void Profile(llvm::FoldingSetNodeID &ID) const { 255 ID.AddInteger(Kind); 256 ID.AddPointer(ReallocatedSym); 257 } 258 bool operator==(const ReallocPair &X) const { 259 return ReallocatedSym == X.ReallocatedSym && 260 Kind == X.Kind; 261 } 262 }; 263 264 } // end of anonymous namespace 265 266 REGISTER_MAP_WITH_PROGRAMSTATE(ReallocPairs, SymbolRef, ReallocPair) 267 268 //===----------------------------------------------------------------------===// 269 // Kinds of memory operations, information about resource managing functions. 270 //===----------------------------------------------------------------------===// 271 272 namespace { 273 274 enum class MemoryOperationKind { 275 MOK_Allocate, 276 MOK_Free, 277 MOK_Any 278 }; 279 280 struct MemFunctionInfoTy { 281 /// The value of the MallocChecker:Optimistic is stored in this variable. 282 /// 283 /// In pessimistic mode, the checker assumes that it does not know which 284 /// functions might free the memory. 285 /// In optimistic mode, the checker assumes that all user-defined functions 286 /// which might free a pointer are annotated. 287 DefaultBool ShouldIncludeOwnershipAnnotatedFunctions; 288 289 // TODO: Change these to CallDescription, and get rid of lazy initialization. 290 mutable IdentifierInfo *II_alloca = nullptr, *II_win_alloca = nullptr, 291 *II_malloc = nullptr, *II_free = nullptr, 292 *II_realloc = nullptr, *II_calloc = nullptr, 293 *II_valloc = nullptr, *II_reallocf = nullptr, 294 *II_strndup = nullptr, *II_strdup = nullptr, 295 *II_win_strdup = nullptr, *II_kmalloc = nullptr, 296 *II_if_nameindex = nullptr, 297 *II_if_freenameindex = nullptr, *II_wcsdup = nullptr, 298 *II_win_wcsdup = nullptr, *II_g_malloc = nullptr, 299 *II_g_malloc0 = nullptr, *II_g_realloc = nullptr, 300 *II_g_try_malloc = nullptr, 301 *II_g_try_malloc0 = nullptr, 302 *II_g_try_realloc = nullptr, *II_g_free = nullptr, 303 *II_g_memdup = nullptr, *II_g_malloc_n = nullptr, 304 *II_g_malloc0_n = nullptr, *II_g_realloc_n = nullptr, 305 *II_g_try_malloc_n = nullptr, 306 *II_g_try_malloc0_n = nullptr, 307 *II_g_try_realloc_n = nullptr; 308 309 void initIdentifierInfo(ASTContext &C) const; 310 311 ///@{ 312 /// Check if this is one of the functions which can allocate/reallocate 313 /// memory pointed to by one of its arguments. 314 bool isMemFunction(const FunctionDecl *FD, ASTContext &C) const; 315 bool isCMemFunction(const FunctionDecl *FD, 316 ASTContext &C, 317 AllocationFamily Family, 318 MemoryOperationKind MemKind) const; 319 320 /// Tells if the callee is one of the builtin new/delete operators, including 321 /// placement operators and other standard overloads. 322 bool isStandardNewDelete(const FunctionDecl *FD, ASTContext &C) const; 323 ///@} 324 }; 325 326 } // end of anonymous namespace 327 328 //===----------------------------------------------------------------------===// 329 // Definition of the MallocChecker class. 330 //===----------------------------------------------------------------------===// 331 332 namespace { 333 334 class MallocChecker : public Checker<check::DeadSymbols, 335 check::PointerEscape, 336 check::ConstPointerEscape, 337 check::PreStmt<ReturnStmt>, 338 check::EndFunction, 339 check::PreCall, 340 check::PostStmt<CallExpr>, 341 check::PostStmt<CXXNewExpr>, 342 check::NewAllocator, 343 check::PreStmt<CXXDeleteExpr>, 344 check::PostStmt<BlockExpr>, 345 check::PostObjCMessage, 346 check::Location, 347 eval::Assume> { 348 public: 349 MemFunctionInfoTy MemFunctionInfo; 350 351 /// Many checkers are essentially built into this one, so enabling them will 352 /// make MallocChecker perform additional modeling and reporting. 353 enum CheckKind { 354 /// When a subchecker is enabled but MallocChecker isn't, model memory 355 /// management but do not emit warnings emitted with MallocChecker only 356 /// enabled. 357 CK_MallocChecker, 358 CK_NewDeleteChecker, 359 CK_NewDeleteLeaksChecker, 360 CK_MismatchedDeallocatorChecker, 361 CK_InnerPointerChecker, 362 CK_NumCheckKinds 363 }; 364 365 using LeakInfo = std::pair<const ExplodedNode*, const MemRegion*>; 366 367 DefaultBool ChecksEnabled[CK_NumCheckKinds]; 368 CheckName CheckNames[CK_NumCheckKinds]; 369 370 void checkPreCall(const CallEvent &Call, CheckerContext &C) const; 371 void checkPostStmt(const CallExpr *CE, CheckerContext &C) const; 372 void checkPostStmt(const CXXNewExpr *NE, CheckerContext &C) const; 373 void checkNewAllocator(const CXXNewExpr *NE, SVal Target, 374 CheckerContext &C) const; 375 void checkPreStmt(const CXXDeleteExpr *DE, CheckerContext &C) const; 376 void checkPostObjCMessage(const ObjCMethodCall &Call, CheckerContext &C) const; 377 void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const; 378 void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const; 379 void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const; 380 void checkEndFunction(const ReturnStmt *S, CheckerContext &C) const; 381 ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond, 382 bool Assumption) const; 383 void checkLocation(SVal l, bool isLoad, const Stmt *S, 384 CheckerContext &C) const; 385 386 ProgramStateRef checkPointerEscape(ProgramStateRef State, 387 const InvalidatedSymbols &Escaped, 388 const CallEvent *Call, 389 PointerEscapeKind Kind) const; 390 ProgramStateRef checkConstPointerEscape(ProgramStateRef State, 391 const InvalidatedSymbols &Escaped, 392 const CallEvent *Call, 393 PointerEscapeKind Kind) const; 394 395 void printState(raw_ostream &Out, ProgramStateRef State, 396 const char *NL, const char *Sep) const override; 397 398 private: 399 mutable std::unique_ptr<BugType> BT_DoubleFree[CK_NumCheckKinds]; 400 mutable std::unique_ptr<BugType> BT_DoubleDelete; 401 mutable std::unique_ptr<BugType> BT_Leak[CK_NumCheckKinds]; 402 mutable std::unique_ptr<BugType> BT_UseFree[CK_NumCheckKinds]; 403 mutable std::unique_ptr<BugType> BT_BadFree[CK_NumCheckKinds]; 404 mutable std::unique_ptr<BugType> BT_FreeAlloca[CK_NumCheckKinds]; 405 mutable std::unique_ptr<BugType> BT_MismatchedDealloc; 406 mutable std::unique_ptr<BugType> BT_OffsetFree[CK_NumCheckKinds]; 407 mutable std::unique_ptr<BugType> BT_UseZerroAllocated[CK_NumCheckKinds]; 408 409 // TODO: Remove mutable by moving the initializtaion to the registry function. 410 mutable Optional<uint64_t> KernelZeroFlagVal; 411 412 /// Process C++ operator new()'s allocation, which is the part of C++ 413 /// new-expression that goes before the constructor. 414 void processNewAllocation(const CXXNewExpr *NE, CheckerContext &C, 415 SVal Target) const; 416 417 /// Perform a zero-allocation check. 418 /// 419 /// \param [in] E The expression that allocates memory. 420 /// \param [in] IndexOfSizeArg Index of the argument that specifies the size 421 /// of the memory that needs to be allocated. E.g. for malloc, this would be 422 /// 0. 423 /// \param [in] RetVal Specifies the newly allocated pointer value; 424 /// if unspecified, the value of expression \p E is used. 425 static ProgramStateRef ProcessZeroAllocCheck(CheckerContext &C, const Expr *E, 426 const unsigned IndexOfSizeArg, 427 ProgramStateRef State, 428 Optional<SVal> RetVal = None); 429 430 /// Model functions with the ownership_returns attribute. 431 /// 432 /// User-defined function may have the ownership_returns attribute, which 433 /// annotates that the function returns with an object that was allocated on 434 /// the heap, and passes the ownertship to the callee. 435 /// 436 /// void __attribute((ownership_returns(malloc, 1))) *my_malloc(size_t); 437 /// 438 /// It has two parameters: 439 /// - first: name of the resource (e.g. 'malloc') 440 /// - (OPTIONAL) second: size of the allocated region 441 /// 442 /// \param [in] CE The expression that allocates memory. 443 /// \param [in] Att The ownership_returns attribute. 444 /// \param [in] State The \c ProgramState right before allocation. 445 /// \returns The ProgramState right after allocation. 446 ProgramStateRef MallocMemReturnsAttr(CheckerContext &C, 447 const CallExpr *CE, 448 const OwnershipAttr* Att, 449 ProgramStateRef State) const; 450 451 /// Models memory allocation. 452 /// 453 /// \param [in] CE The expression that allocates memory. 454 /// \param [in] SizeEx Size of the memory that needs to be allocated. 455 /// \param [in] Init The value the allocated memory needs to be initialized. 456 /// with. For example, \c calloc initializes the allocated memory to 0, 457 /// malloc leaves it undefined. 458 /// \param [in] State The \c ProgramState right before allocation. 459 /// \returns The ProgramState right after allocation. 460 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE, 461 const Expr *SizeEx, SVal Init, 462 ProgramStateRef State, 463 AllocationFamily Family = AF_Malloc); 464 465 /// Models memory allocation. 466 /// 467 /// \param [in] CE The expression that allocates memory. 468 /// \param [in] Size Size of the memory that needs to be allocated. 469 /// \param [in] Init The value the allocated memory needs to be initialized. 470 /// with. For example, \c calloc initializes the allocated memory to 0, 471 /// malloc leaves it undefined. 472 /// \param [in] State The \c ProgramState right before allocation. 473 /// \returns The ProgramState right after allocation. 474 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE, 475 SVal Size, SVal Init, 476 ProgramStateRef State, 477 AllocationFamily Family = AF_Malloc); 478 479 static ProgramStateRef addExtentSize(CheckerContext &C, const CXXNewExpr *NE, 480 ProgramStateRef State, SVal Target); 481 482 // Check if this malloc() for special flags. At present that means M_ZERO or 483 // __GFP_ZERO (in which case, treat it like calloc). 484 llvm::Optional<ProgramStateRef> 485 performKernelMalloc(const CallExpr *CE, CheckerContext &C, 486 const ProgramStateRef &State) const; 487 488 /// Model functions with the ownership_takes and ownership_holds attributes. 489 /// 490 /// User-defined function may have the ownership_takes and/or ownership_holds 491 /// attributes, which annotates that the function frees the memory passed as a 492 /// parameter. 493 /// 494 /// void __attribute((ownership_takes(malloc, 1))) my_free(void *); 495 /// void __attribute((ownership_holds(malloc, 1))) my_hold(void *); 496 /// 497 /// They have two parameters: 498 /// - first: name of the resource (e.g. 'malloc') 499 /// - second: index of the parameter the attribute applies to 500 /// 501 /// \param [in] CE The expression that frees memory. 502 /// \param [in] Att The ownership_takes or ownership_holds attribute. 503 /// \param [in] State The \c ProgramState right before allocation. 504 /// \returns The ProgramState right after deallocation. 505 ProgramStateRef FreeMemAttr(CheckerContext &C, const CallExpr *CE, 506 const OwnershipAttr* Att, 507 ProgramStateRef State) const; 508 509 /// Models memory deallocation. 510 /// 511 /// \param [in] CE The expression that frees memory. 512 /// \param [in] State The \c ProgramState right before allocation. 513 /// \param [in] Num Index of the argument that needs to be freed. This is 514 /// normally 0, but for custom free functions it may be different. 515 /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds 516 /// attribute. 517 /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known 518 /// to have been allocated, or in other words, the symbol to be freed was 519 /// registered as allocated by this checker. In the following case, \c ptr 520 /// isn't known to be allocated. 521 /// void Haha(int *ptr) { 522 /// ptr = realloc(ptr, 67); 523 /// // ... 524 /// } 525 /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function 526 /// we're modeling returns with Null on failure. 527 /// \returns The ProgramState right after deallocation. 528 ProgramStateRef FreeMemAux(CheckerContext &C, const CallExpr *CE, 529 ProgramStateRef State, unsigned Num, 530 bool Hold, 531 bool &IsKnownToBeAllocated, 532 bool ReturnsNullOnFailure = false) const; 533 534 /// Models memory deallocation. 535 /// 536 /// \param [in] ArgExpr The variable who's pointee needs to be freed. 537 /// \param [in] ParentExpr The expression that frees the memory. 538 /// \param [in] State The \c ProgramState right before allocation. 539 /// normally 0, but for custom free functions it may be different. 540 /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds 541 /// attribute. 542 /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known 543 /// to have been allocated, or in other words, the symbol to be freed was 544 /// registered as allocated by this checker. In the following case, \c ptr 545 /// isn't known to be allocated. 546 /// void Haha(int *ptr) { 547 /// ptr = realloc(ptr, 67); 548 /// // ... 549 /// } 550 /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function 551 /// we're modeling returns with Null on failure. 552 /// \returns The ProgramState right after deallocation. 553 ProgramStateRef FreeMemAux(CheckerContext &C, const Expr *ArgExpr, 554 const Expr *ParentExpr, 555 ProgramStateRef State, 556 bool Hold, 557 bool &IsKnownToBeAllocated, 558 bool ReturnsNullOnFailure = false) const; 559 560 // TODO: Needs some refactoring, as all other deallocation modeling 561 // functions are suffering from out parameters and messy code due to how 562 // realloc is handled. 563 // 564 /// Models memory reallocation. 565 /// 566 /// \param [in] CE The expression that reallocated memory 567 /// \param [in] FreesMemOnFailure Whether if reallocation fails, the supplied 568 /// memory should be freed. 569 /// \param [in] State The \c ProgramState right before reallocation. 570 /// \param [in] SuffixWithN Whether the reallocation function we're modeling 571 /// has an '_n' suffix, such as g_realloc_n. 572 /// \returns The ProgramState right after reallocation. 573 ProgramStateRef ReallocMemAux(CheckerContext &C, const CallExpr *CE, 574 bool ShouldFreeOnFail, 575 ProgramStateRef State, 576 bool SuffixWithN = false) const; 577 578 /// Evaluates the buffer size that needs to be allocated. 579 /// 580 /// \param [in] Blocks The amount of blocks that needs to be allocated. 581 /// \param [in] BlockBytes The size of a block. 582 /// \returns The symbolic value of \p Blocks * \p BlockBytes. 583 static SVal evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, 584 const Expr *BlockBytes); 585 586 /// Models zero initialized array allocation. 587 /// 588 /// \param [in] CE The expression that reallocated memory 589 /// \param [in] State The \c ProgramState right before reallocation. 590 /// \returns The ProgramState right after allocation. 591 static ProgramStateRef CallocMem(CheckerContext &C, const CallExpr *CE, 592 ProgramStateRef State); 593 594 /// If in \p S \p Sym is used, check whether \p Sym was already freed. 595 bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S) const; 596 597 /// If in \p S \p Sym is used, check whether \p Sym was allocated as a zero 598 /// sized memory region. 599 void checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 600 const Stmt *S) const; 601 602 /// If in \p S \p Sym is being freed, check whether \p Sym was already freed. 603 bool checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const; 604 605 /// Check if the function is known to free memory, or if it is 606 /// "interesting" and should be modeled explicitly. 607 /// 608 /// \param [out] EscapingSymbol A function might not free memory in general, 609 /// but could be known to free a particular symbol. In this case, false is 610 /// returned and the single escaping symbol is returned through the out 611 /// parameter. 612 /// 613 /// We assume that pointers do not escape through calls to system functions 614 /// not handled by this checker. 615 bool mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent *Call, 616 ProgramStateRef State, 617 SymbolRef &EscapingSymbol) const; 618 619 /// Implementation of the checkPointerEscape callbacks. 620 ProgramStateRef checkPointerEscapeAux(ProgramStateRef State, 621 const InvalidatedSymbols &Escaped, 622 const CallEvent *Call, 623 PointerEscapeKind Kind, 624 bool IsConstPointerEscape) const; 625 626 // Implementation of the checkPreStmt and checkEndFunction callbacks. 627 void checkEscapeOnReturn(const ReturnStmt *S, CheckerContext &C) const; 628 629 ///@{ 630 /// Tells if a given family/call/symbol is tracked by the current checker. 631 /// Sets CheckKind to the kind of the checker responsible for this 632 /// family/call/symbol. 633 Optional<CheckKind> getCheckIfTracked(AllocationFamily Family, 634 bool IsALeakCheck = false) const; 635 Optional<CheckKind> getCheckIfTracked(CheckerContext &C, 636 const Stmt *AllocDeallocStmt, 637 bool IsALeakCheck = false) const; 638 Optional<CheckKind> getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 639 bool IsALeakCheck = false) const; 640 ///@} 641 static bool SummarizeValue(raw_ostream &os, SVal V); 642 static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR); 643 644 void ReportBadFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 645 const Expr *DeallocExpr) const; 646 void ReportFreeAlloca(CheckerContext &C, SVal ArgVal, 647 SourceRange Range) const; 648 void ReportMismatchedDealloc(CheckerContext &C, SourceRange Range, 649 const Expr *DeallocExpr, const RefState *RS, 650 SymbolRef Sym, bool OwnershipTransferred) const; 651 void ReportOffsetFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 652 const Expr *DeallocExpr, 653 const Expr *AllocExpr = nullptr) const; 654 void ReportUseAfterFree(CheckerContext &C, SourceRange Range, 655 SymbolRef Sym) const; 656 void ReportDoubleFree(CheckerContext &C, SourceRange Range, bool Released, 657 SymbolRef Sym, SymbolRef PrevSym) const; 658 659 void ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const; 660 661 void ReportUseZeroAllocated(CheckerContext &C, SourceRange Range, 662 SymbolRef Sym) const; 663 664 void ReportFunctionPointerFree(CheckerContext &C, SVal ArgVal, 665 SourceRange Range, const Expr *FreeExpr) const; 666 667 /// Find the location of the allocation for Sym on the path leading to the 668 /// exploded node N. 669 static LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym, 670 CheckerContext &C); 671 672 673 void reportLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const; 674 }; 675 676 } // end anonymous namespace 677 678 //===----------------------------------------------------------------------===// 679 // Definition of MallocBugVisitor. 680 //===----------------------------------------------------------------------===// 681 682 /// The bug visitor which allows us to print extra diagnostics along the 683 /// BugReport path. For example, showing the allocation site of the leaked 684 /// region. 685 class MallocBugVisitor final : public BugReporterVisitor { 686 protected: 687 enum NotificationMode { 688 Normal, 689 ReallocationFailed 690 }; 691 692 // The allocated region symbol tracked by the main analysis. 693 SymbolRef Sym; 694 695 // The mode we are in, i.e. what kind of diagnostics will be emitted. 696 NotificationMode Mode; 697 698 // A symbol from when the primary region should have been reallocated. 699 SymbolRef FailedReallocSymbol; 700 701 // A C++ destructor stack frame in which memory was released. Used for 702 // miscellaneous false positive suppression. 703 const StackFrameContext *ReleaseDestructorLC; 704 705 bool IsLeak; 706 707 public: 708 MallocBugVisitor(SymbolRef S, bool isLeak = false) 709 : Sym(S), Mode(Normal), FailedReallocSymbol(nullptr), 710 ReleaseDestructorLC(nullptr), IsLeak(isLeak) {} 711 712 static void *getTag() { 713 static int Tag = 0; 714 return &Tag; 715 } 716 717 void Profile(llvm::FoldingSetNodeID &ID) const override { 718 ID.AddPointer(getTag()); 719 ID.AddPointer(Sym); 720 } 721 722 /// Did not track -> allocated. Other state (released) -> allocated. 723 static inline bool isAllocated(const RefState *RSCurr, const RefState *RSPrev, 724 const Stmt *Stmt) { 725 return (Stmt && (isa<CallExpr>(Stmt) || isa<CXXNewExpr>(Stmt)) && 726 (RSCurr && (RSCurr->isAllocated() || 727 RSCurr->isAllocatedOfSizeZero())) && 728 (!RSPrev || !(RSPrev->isAllocated() || 729 RSPrev->isAllocatedOfSizeZero()))); 730 } 731 732 /// Did not track -> released. Other state (allocated) -> released. 733 /// The statement associated with the release might be missing. 734 static inline bool isReleased(const RefState *RSCurr, const RefState *RSPrev, 735 const Stmt *Stmt) { 736 bool IsReleased = (RSCurr && RSCurr->isReleased()) && 737 (!RSPrev || !RSPrev->isReleased()); 738 assert(!IsReleased || 739 (Stmt && (isa<CallExpr>(Stmt) || isa<CXXDeleteExpr>(Stmt))) || 740 (!Stmt && RSCurr->getAllocationFamily() == AF_InnerBuffer)); 741 return IsReleased; 742 } 743 744 /// Did not track -> relinquished. Other state (allocated) -> relinquished. 745 static inline bool isRelinquished(const RefState *RSCurr, 746 const RefState *RSPrev, 747 const Stmt *Stmt) { 748 return (Stmt && (isa<CallExpr>(Stmt) || isa<ObjCMessageExpr>(Stmt) || 749 isa<ObjCPropertyRefExpr>(Stmt)) && 750 (RSCurr && RSCurr->isRelinquished()) && 751 (!RSPrev || !RSPrev->isRelinquished())); 752 } 753 754 /// If the expression is not a call, and the state change is 755 /// released -> allocated, it must be the realloc return value 756 /// check. If we have to handle more cases here, it might be cleaner just 757 /// to track this extra bit in the state itself. 758 static inline bool hasReallocFailed(const RefState *RSCurr, 759 const RefState *RSPrev, 760 const Stmt *Stmt) { 761 return ((!Stmt || !isa<CallExpr>(Stmt)) && 762 (RSCurr && (RSCurr->isAllocated() || 763 RSCurr->isAllocatedOfSizeZero())) && 764 (RSPrev && !(RSPrev->isAllocated() || 765 RSPrev->isAllocatedOfSizeZero()))); 766 } 767 768 std::shared_ptr<PathDiagnosticPiece> VisitNode(const ExplodedNode *N, 769 BugReporterContext &BRC, 770 BugReport &BR) override; 771 772 std::shared_ptr<PathDiagnosticPiece> 773 getEndPath(BugReporterContext &BRC, const ExplodedNode *EndPathNode, 774 BugReport &BR) override { 775 if (!IsLeak) 776 return nullptr; 777 778 PathDiagnosticLocation L = 779 PathDiagnosticLocation::createEndOfPath(EndPathNode, 780 BRC.getSourceManager()); 781 // Do not add the statement itself as a range in case of leak. 782 return std::make_shared<PathDiagnosticEventPiece>(L, BR.getDescription(), 783 false); 784 } 785 786 private: 787 class StackHintGeneratorForReallocationFailed 788 : public StackHintGeneratorForSymbol { 789 public: 790 StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M) 791 : StackHintGeneratorForSymbol(S, M) {} 792 793 std::string getMessageForArg(const Expr *ArgE, 794 unsigned ArgIndex) override { 795 // Printed parameters start at 1, not 0. 796 ++ArgIndex; 797 798 SmallString<200> buf; 799 llvm::raw_svector_ostream os(buf); 800 801 os << "Reallocation of " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex) 802 << " parameter failed"; 803 804 return os.str(); 805 } 806 807 std::string getMessageForReturn(const CallExpr *CallExpr) override { 808 return "Reallocation of returned value failed"; 809 } 810 }; 811 }; 812 813 // A map from the freed symbol to the symbol representing the return value of 814 // the free function. 815 REGISTER_MAP_WITH_PROGRAMSTATE(FreeReturnValue, SymbolRef, SymbolRef) 816 817 namespace { 818 class StopTrackingCallback final : public SymbolVisitor { 819 ProgramStateRef state; 820 public: 821 StopTrackingCallback(ProgramStateRef st) : state(std::move(st)) {} 822 ProgramStateRef getState() const { return state; } 823 824 bool VisitSymbol(SymbolRef sym) override { 825 state = state->remove<RegionState>(sym); 826 return true; 827 } 828 }; 829 } // end anonymous namespace 830 831 //===----------------------------------------------------------------------===// 832 // Methods of MemFunctionInfoTy. 833 //===----------------------------------------------------------------------===// 834 835 void MemFunctionInfoTy::initIdentifierInfo(ASTContext &Ctx) const { 836 if (II_malloc) 837 return; 838 II_alloca = &Ctx.Idents.get("alloca"); 839 II_malloc = &Ctx.Idents.get("malloc"); 840 II_free = &Ctx.Idents.get("free"); 841 II_realloc = &Ctx.Idents.get("realloc"); 842 II_reallocf = &Ctx.Idents.get("reallocf"); 843 II_calloc = &Ctx.Idents.get("calloc"); 844 II_valloc = &Ctx.Idents.get("valloc"); 845 II_strdup = &Ctx.Idents.get("strdup"); 846 II_strndup = &Ctx.Idents.get("strndup"); 847 II_wcsdup = &Ctx.Idents.get("wcsdup"); 848 II_kmalloc = &Ctx.Idents.get("kmalloc"); 849 II_if_nameindex = &Ctx.Idents.get("if_nameindex"); 850 II_if_freenameindex = &Ctx.Idents.get("if_freenameindex"); 851 852 //MSVC uses `_`-prefixed instead, so we check for them too. 853 II_win_strdup = &Ctx.Idents.get("_strdup"); 854 II_win_wcsdup = &Ctx.Idents.get("_wcsdup"); 855 II_win_alloca = &Ctx.Idents.get("_alloca"); 856 857 // Glib 858 II_g_malloc = &Ctx.Idents.get("g_malloc"); 859 II_g_malloc0 = &Ctx.Idents.get("g_malloc0"); 860 II_g_realloc = &Ctx.Idents.get("g_realloc"); 861 II_g_try_malloc = &Ctx.Idents.get("g_try_malloc"); 862 II_g_try_malloc0 = &Ctx.Idents.get("g_try_malloc0"); 863 II_g_try_realloc = &Ctx.Idents.get("g_try_realloc"); 864 II_g_free = &Ctx.Idents.get("g_free"); 865 II_g_memdup = &Ctx.Idents.get("g_memdup"); 866 II_g_malloc_n = &Ctx.Idents.get("g_malloc_n"); 867 II_g_malloc0_n = &Ctx.Idents.get("g_malloc0_n"); 868 II_g_realloc_n = &Ctx.Idents.get("g_realloc_n"); 869 II_g_try_malloc_n = &Ctx.Idents.get("g_try_malloc_n"); 870 II_g_try_malloc0_n = &Ctx.Idents.get("g_try_malloc0_n"); 871 II_g_try_realloc_n = &Ctx.Idents.get("g_try_realloc_n"); 872 } 873 874 bool MemFunctionInfoTy::isMemFunction(const FunctionDecl *FD, 875 ASTContext &C) const { 876 if (isCMemFunction(FD, C, AF_Malloc, MemoryOperationKind::MOK_Any)) 877 return true; 878 879 if (isCMemFunction(FD, C, AF_IfNameIndex, MemoryOperationKind::MOK_Any)) 880 return true; 881 882 if (isCMemFunction(FD, C, AF_Alloca, MemoryOperationKind::MOK_Any)) 883 return true; 884 885 if (isStandardNewDelete(FD, C)) 886 return true; 887 888 return false; 889 } 890 891 bool MemFunctionInfoTy::isCMemFunction(const FunctionDecl *FD, 892 ASTContext &C, 893 AllocationFamily Family, 894 MemoryOperationKind MemKind) const { 895 if (!FD) 896 return false; 897 898 bool CheckFree = (MemKind == MemoryOperationKind::MOK_Any || 899 MemKind == MemoryOperationKind::MOK_Free); 900 bool CheckAlloc = (MemKind == MemoryOperationKind::MOK_Any || 901 MemKind == MemoryOperationKind::MOK_Allocate); 902 903 if (FD->getKind() == Decl::Function) { 904 const IdentifierInfo *FunI = FD->getIdentifier(); 905 initIdentifierInfo(C); 906 907 if (Family == AF_Malloc && CheckFree) { 908 if (FunI == II_free || FunI == II_realloc || FunI == II_reallocf || 909 FunI == II_g_free) 910 return true; 911 } 912 913 if (Family == AF_Malloc && CheckAlloc) { 914 if (FunI == II_malloc || FunI == II_realloc || FunI == II_reallocf || 915 FunI == II_calloc || FunI == II_valloc || FunI == II_strdup || 916 FunI == II_win_strdup || FunI == II_strndup || FunI == II_wcsdup || 917 FunI == II_win_wcsdup || FunI == II_kmalloc || 918 FunI == II_g_malloc || FunI == II_g_malloc0 || 919 FunI == II_g_realloc || FunI == II_g_try_malloc || 920 FunI == II_g_try_malloc0 || FunI == II_g_try_realloc || 921 FunI == II_g_memdup || FunI == II_g_malloc_n || 922 FunI == II_g_malloc0_n || FunI == II_g_realloc_n || 923 FunI == II_g_try_malloc_n || FunI == II_g_try_malloc0_n || 924 FunI == II_g_try_realloc_n) 925 return true; 926 } 927 928 if (Family == AF_IfNameIndex && CheckFree) { 929 if (FunI == II_if_freenameindex) 930 return true; 931 } 932 933 if (Family == AF_IfNameIndex && CheckAlloc) { 934 if (FunI == II_if_nameindex) 935 return true; 936 } 937 938 if (Family == AF_Alloca && CheckAlloc) { 939 if (FunI == II_alloca || FunI == II_win_alloca) 940 return true; 941 } 942 } 943 944 if (Family != AF_Malloc) 945 return false; 946 947 if (ShouldIncludeOwnershipAnnotatedFunctions && FD->hasAttrs()) { 948 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { 949 OwnershipAttr::OwnershipKind OwnKind = I->getOwnKind(); 950 if(OwnKind == OwnershipAttr::Takes || OwnKind == OwnershipAttr::Holds) { 951 if (CheckFree) 952 return true; 953 } else if (OwnKind == OwnershipAttr::Returns) { 954 if (CheckAlloc) 955 return true; 956 } 957 } 958 } 959 960 return false; 961 } 962 bool MemFunctionInfoTy::isStandardNewDelete(const FunctionDecl *FD, 963 ASTContext &C) const { 964 if (!FD) 965 return false; 966 967 OverloadedOperatorKind Kind = FD->getOverloadedOperator(); 968 if (Kind != OO_New && Kind != OO_Array_New && 969 Kind != OO_Delete && Kind != OO_Array_Delete) 970 return false; 971 972 // This is standard if and only if it's not defined in a user file. 973 SourceLocation L = FD->getLocation(); 974 // If the header for operator delete is not included, it's still defined 975 // in an invalid source location. Check to make sure we don't crash. 976 return !L.isValid() || C.getSourceManager().isInSystemHeader(L); 977 } 978 979 //===----------------------------------------------------------------------===// 980 // Methods of MallocChecker and MallocBugVisitor. 981 //===----------------------------------------------------------------------===// 982 983 llvm::Optional<ProgramStateRef> MallocChecker::performKernelMalloc( 984 const CallExpr *CE, CheckerContext &C, const ProgramStateRef &State) const { 985 // 3-argument malloc(), as commonly used in {Free,Net,Open}BSD Kernels: 986 // 987 // void *malloc(unsigned long size, struct malloc_type *mtp, int flags); 988 // 989 // One of the possible flags is M_ZERO, which means 'give me back an 990 // allocation which is already zeroed', like calloc. 991 992 // 2-argument kmalloc(), as used in the Linux kernel: 993 // 994 // void *kmalloc(size_t size, gfp_t flags); 995 // 996 // Has the similar flag value __GFP_ZERO. 997 998 // This logic is largely cloned from O_CREAT in UnixAPIChecker, maybe some 999 // code could be shared. 1000 1001 ASTContext &Ctx = C.getASTContext(); 1002 llvm::Triple::OSType OS = Ctx.getTargetInfo().getTriple().getOS(); 1003 1004 if (!KernelZeroFlagVal.hasValue()) { 1005 if (OS == llvm::Triple::FreeBSD) 1006 KernelZeroFlagVal = 0x0100; 1007 else if (OS == llvm::Triple::NetBSD) 1008 KernelZeroFlagVal = 0x0002; 1009 else if (OS == llvm::Triple::OpenBSD) 1010 KernelZeroFlagVal = 0x0008; 1011 else if (OS == llvm::Triple::Linux) 1012 // __GFP_ZERO 1013 KernelZeroFlagVal = 0x8000; 1014 else 1015 // FIXME: We need a more general way of getting the M_ZERO value. 1016 // See also: O_CREAT in UnixAPIChecker.cpp. 1017 1018 // Fall back to normal malloc behavior on platforms where we don't 1019 // know M_ZERO. 1020 return None; 1021 } 1022 1023 // We treat the last argument as the flags argument, and callers fall-back to 1024 // normal malloc on a None return. This works for the FreeBSD kernel malloc 1025 // as well as Linux kmalloc. 1026 if (CE->getNumArgs() < 2) 1027 return None; 1028 1029 const Expr *FlagsEx = CE->getArg(CE->getNumArgs() - 1); 1030 const SVal V = C.getSVal(FlagsEx); 1031 if (!V.getAs<NonLoc>()) { 1032 // The case where 'V' can be a location can only be due to a bad header, 1033 // so in this case bail out. 1034 return None; 1035 } 1036 1037 NonLoc Flags = V.castAs<NonLoc>(); 1038 NonLoc ZeroFlag = C.getSValBuilder() 1039 .makeIntVal(KernelZeroFlagVal.getValue(), FlagsEx->getType()) 1040 .castAs<NonLoc>(); 1041 SVal MaskedFlagsUC = C.getSValBuilder().evalBinOpNN(State, BO_And, 1042 Flags, ZeroFlag, 1043 FlagsEx->getType()); 1044 if (MaskedFlagsUC.isUnknownOrUndef()) 1045 return None; 1046 DefinedSVal MaskedFlags = MaskedFlagsUC.castAs<DefinedSVal>(); 1047 1048 // Check if maskedFlags is non-zero. 1049 ProgramStateRef TrueState, FalseState; 1050 std::tie(TrueState, FalseState) = State->assume(MaskedFlags); 1051 1052 // If M_ZERO is set, treat this like calloc (initialized). 1053 if (TrueState && !FalseState) { 1054 SVal ZeroVal = C.getSValBuilder().makeZeroVal(Ctx.CharTy); 1055 return MallocMemAux(C, CE, CE->getArg(0), ZeroVal, TrueState); 1056 } 1057 1058 return None; 1059 } 1060 1061 SVal MallocChecker::evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, 1062 const Expr *BlockBytes) { 1063 SValBuilder &SB = C.getSValBuilder(); 1064 SVal BlocksVal = C.getSVal(Blocks); 1065 SVal BlockBytesVal = C.getSVal(BlockBytes); 1066 ProgramStateRef State = C.getState(); 1067 SVal TotalSize = SB.evalBinOp(State, BO_Mul, BlocksVal, BlockBytesVal, 1068 SB.getContext().getSizeType()); 1069 return TotalSize; 1070 } 1071 1072 void MallocChecker::checkPostStmt(const CallExpr *CE, CheckerContext &C) const { 1073 if (C.wasInlined) 1074 return; 1075 1076 const FunctionDecl *FD = C.getCalleeDecl(CE); 1077 if (!FD) 1078 return; 1079 1080 ProgramStateRef State = C.getState(); 1081 bool IsKnownToBeAllocatedMemory = false; 1082 1083 if (FD->getKind() == Decl::Function) { 1084 MemFunctionInfo.initIdentifierInfo(C.getASTContext()); 1085 IdentifierInfo *FunI = FD->getIdentifier(); 1086 1087 if (FunI == MemFunctionInfo.II_malloc || 1088 FunI == MemFunctionInfo.II_g_malloc || 1089 FunI == MemFunctionInfo.II_g_try_malloc) { 1090 switch(CE->getNumArgs()) { 1091 default: 1092 return; 1093 case 1: 1094 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 1095 State = ProcessZeroAllocCheck(C, CE, 0, State); 1096 break; 1097 case 2: 1098 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 1099 break; 1100 case 3: 1101 llvm::Optional<ProgramStateRef> MaybeState = 1102 performKernelMalloc(CE, C, State); 1103 if (MaybeState.hasValue()) 1104 State = MaybeState.getValue(); 1105 else 1106 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 1107 break; 1108 } 1109 } else if (FunI == MemFunctionInfo.II_kmalloc) { 1110 if (CE->getNumArgs() < 1) 1111 return; 1112 llvm::Optional<ProgramStateRef> MaybeState = 1113 performKernelMalloc(CE, C, State); 1114 if (MaybeState.hasValue()) 1115 State = MaybeState.getValue(); 1116 else 1117 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 1118 } else if (FunI == MemFunctionInfo.II_valloc) { 1119 if (CE->getNumArgs() < 1) 1120 return; 1121 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 1122 State = ProcessZeroAllocCheck(C, CE, 0, State); 1123 } else if (FunI == MemFunctionInfo.II_realloc || 1124 FunI == MemFunctionInfo.II_g_realloc || 1125 FunI == MemFunctionInfo.II_g_try_realloc) { 1126 State = ReallocMemAux(C, CE, /*ShouldFreeOnFail*/false, State); 1127 State = ProcessZeroAllocCheck(C, CE, 1, State); 1128 } else if (FunI == MemFunctionInfo.II_reallocf) { 1129 State = ReallocMemAux(C, CE, /*ShouldFreeOnFail*/true, State); 1130 State = ProcessZeroAllocCheck(C, CE, 1, State); 1131 } else if (FunI == MemFunctionInfo.II_calloc) { 1132 State = CallocMem(C, CE, State); 1133 State = ProcessZeroAllocCheck(C, CE, 0, State); 1134 State = ProcessZeroAllocCheck(C, CE, 1, State); 1135 } else if (FunI == MemFunctionInfo.II_free || 1136 FunI == MemFunctionInfo.II_g_free) { 1137 State = FreeMemAux(C, CE, State, 0, false, IsKnownToBeAllocatedMemory); 1138 } else if (FunI == MemFunctionInfo.II_strdup || 1139 FunI == MemFunctionInfo.II_win_strdup || 1140 FunI == MemFunctionInfo.II_wcsdup || 1141 FunI == MemFunctionInfo.II_win_wcsdup) { 1142 State = MallocUpdateRefState(C, CE, State); 1143 } else if (FunI == MemFunctionInfo.II_strndup) { 1144 State = MallocUpdateRefState(C, CE, State); 1145 } else if (FunI == MemFunctionInfo.II_alloca || 1146 FunI == MemFunctionInfo.II_win_alloca) { 1147 if (CE->getNumArgs() < 1) 1148 return; 1149 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, 1150 AF_Alloca); 1151 State = ProcessZeroAllocCheck(C, CE, 0, State); 1152 } else if (MemFunctionInfo.isStandardNewDelete(FD, C.getASTContext())) { 1153 // Process direct calls to operator new/new[]/delete/delete[] functions 1154 // as distinct from new/new[]/delete/delete[] expressions that are 1155 // processed by the checkPostStmt callbacks for CXXNewExpr and 1156 // CXXDeleteExpr. 1157 switch(FD->getOverloadedOperator()) { 1158 case OO_New: 1159 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, 1160 AF_CXXNew); 1161 State = ProcessZeroAllocCheck(C, CE, 0, State); 1162 break; 1163 case OO_Array_New: 1164 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, 1165 AF_CXXNewArray); 1166 State = ProcessZeroAllocCheck(C, CE, 0, State); 1167 break; 1168 case OO_Delete: 1169 case OO_Array_Delete: 1170 State = FreeMemAux(C, CE, State, 0, false, IsKnownToBeAllocatedMemory); 1171 break; 1172 default: 1173 llvm_unreachable("not a new/delete operator"); 1174 } 1175 } else if (FunI == MemFunctionInfo.II_if_nameindex) { 1176 // Should we model this differently? We can allocate a fixed number of 1177 // elements with zeros in the last one. 1178 State = MallocMemAux(C, CE, UnknownVal(), UnknownVal(), State, 1179 AF_IfNameIndex); 1180 } else if (FunI == MemFunctionInfo.II_if_freenameindex) { 1181 State = FreeMemAux(C, CE, State, 0, false, IsKnownToBeAllocatedMemory); 1182 } else if (FunI == MemFunctionInfo.II_g_malloc0 || 1183 FunI == MemFunctionInfo.II_g_try_malloc0) { 1184 if (CE->getNumArgs() < 1) 1185 return; 1186 SValBuilder &svalBuilder = C.getSValBuilder(); 1187 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 1188 State = MallocMemAux(C, CE, CE->getArg(0), zeroVal, State); 1189 State = ProcessZeroAllocCheck(C, CE, 0, State); 1190 } else if (FunI == MemFunctionInfo.II_g_memdup) { 1191 if (CE->getNumArgs() < 2) 1192 return; 1193 State = MallocMemAux(C, CE, CE->getArg(1), UndefinedVal(), State); 1194 State = ProcessZeroAllocCheck(C, CE, 1, State); 1195 } else if (FunI == MemFunctionInfo.II_g_malloc_n || 1196 FunI == MemFunctionInfo.II_g_try_malloc_n || 1197 FunI == MemFunctionInfo.II_g_malloc0_n || 1198 FunI == MemFunctionInfo.II_g_try_malloc0_n) { 1199 if (CE->getNumArgs() < 2) 1200 return; 1201 SVal Init = UndefinedVal(); 1202 if (FunI == MemFunctionInfo.II_g_malloc0_n || 1203 FunI == MemFunctionInfo.II_g_try_malloc0_n) { 1204 SValBuilder &SB = C.getSValBuilder(); 1205 Init = SB.makeZeroVal(SB.getContext().CharTy); 1206 } 1207 SVal TotalSize = evalMulForBufferSize(C, CE->getArg(0), CE->getArg(1)); 1208 State = MallocMemAux(C, CE, TotalSize, Init, State); 1209 State = ProcessZeroAllocCheck(C, CE, 0, State); 1210 State = ProcessZeroAllocCheck(C, CE, 1, State); 1211 } else if (FunI == MemFunctionInfo.II_g_realloc_n || 1212 FunI == MemFunctionInfo.II_g_try_realloc_n) { 1213 if (CE->getNumArgs() < 3) 1214 return; 1215 State = ReallocMemAux(C, CE, /*ShouldFreeOnFail*/false, State, 1216 /*SuffixWithN*/true); 1217 State = ProcessZeroAllocCheck(C, CE, 1, State); 1218 State = ProcessZeroAllocCheck(C, CE, 2, State); 1219 } 1220 } 1221 1222 if (MemFunctionInfo.ShouldIncludeOwnershipAnnotatedFunctions || 1223 ChecksEnabled[CK_MismatchedDeallocatorChecker]) { 1224 // Check all the attributes, if there are any. 1225 // There can be multiple of these attributes. 1226 if (FD->hasAttrs()) 1227 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { 1228 switch (I->getOwnKind()) { 1229 case OwnershipAttr::Returns: 1230 State = MallocMemReturnsAttr(C, CE, I, State); 1231 break; 1232 case OwnershipAttr::Takes: 1233 case OwnershipAttr::Holds: 1234 State = FreeMemAttr(C, CE, I, State); 1235 break; 1236 } 1237 } 1238 } 1239 C.addTransition(State); 1240 } 1241 1242 // Performs a 0-sized allocations check. 1243 ProgramStateRef MallocChecker::ProcessZeroAllocCheck( 1244 CheckerContext &C, const Expr *E, const unsigned IndexOfSizeArg, 1245 ProgramStateRef State, Optional<SVal> RetVal) { 1246 if (!State) 1247 return nullptr; 1248 1249 if (!RetVal) 1250 RetVal = C.getSVal(E); 1251 1252 const Expr *Arg = nullptr; 1253 1254 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 1255 Arg = CE->getArg(IndexOfSizeArg); 1256 } 1257 else if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { 1258 if (NE->isArray()) 1259 Arg = NE->getArraySize(); 1260 else 1261 return State; 1262 } 1263 else 1264 llvm_unreachable("not a CallExpr or CXXNewExpr"); 1265 1266 assert(Arg); 1267 1268 Optional<DefinedSVal> DefArgVal = C.getSVal(Arg).getAs<DefinedSVal>(); 1269 1270 if (!DefArgVal) 1271 return State; 1272 1273 // Check if the allocation size is 0. 1274 ProgramStateRef TrueState, FalseState; 1275 SValBuilder &SvalBuilder = C.getSValBuilder(); 1276 DefinedSVal Zero = 1277 SvalBuilder.makeZeroVal(Arg->getType()).castAs<DefinedSVal>(); 1278 1279 std::tie(TrueState, FalseState) = 1280 State->assume(SvalBuilder.evalEQ(State, *DefArgVal, Zero)); 1281 1282 if (TrueState && !FalseState) { 1283 SymbolRef Sym = RetVal->getAsLocSymbol(); 1284 if (!Sym) 1285 return State; 1286 1287 const RefState *RS = State->get<RegionState>(Sym); 1288 if (RS) { 1289 if (RS->isAllocated()) 1290 return TrueState->set<RegionState>(Sym, 1291 RefState::getAllocatedOfSizeZero(RS)); 1292 else 1293 return State; 1294 } else { 1295 // Case of zero-size realloc. Historically 'realloc(ptr, 0)' is treated as 1296 // 'free(ptr)' and the returned value from 'realloc(ptr, 0)' is not 1297 // tracked. Add zero-reallocated Sym to the state to catch references 1298 // to zero-allocated memory. 1299 return TrueState->add<ReallocSizeZeroSymbols>(Sym); 1300 } 1301 } 1302 1303 // Assume the value is non-zero going forward. 1304 assert(FalseState); 1305 return FalseState; 1306 } 1307 1308 static QualType getDeepPointeeType(QualType T) { 1309 QualType Result = T, PointeeType = T->getPointeeType(); 1310 while (!PointeeType.isNull()) { 1311 Result = PointeeType; 1312 PointeeType = PointeeType->getPointeeType(); 1313 } 1314 return Result; 1315 } 1316 1317 /// \returns true if the constructor invoked by \p NE has an argument of a 1318 /// pointer/reference to a record type. 1319 static bool hasNonTrivialConstructorCall(const CXXNewExpr *NE) { 1320 1321 const CXXConstructExpr *ConstructE = NE->getConstructExpr(); 1322 if (!ConstructE) 1323 return false; 1324 1325 if (!NE->getAllocatedType()->getAsCXXRecordDecl()) 1326 return false; 1327 1328 const CXXConstructorDecl *CtorD = ConstructE->getConstructor(); 1329 1330 // Iterate over the constructor parameters. 1331 for (const auto *CtorParam : CtorD->parameters()) { 1332 1333 QualType CtorParamPointeeT = CtorParam->getType()->getPointeeType(); 1334 if (CtorParamPointeeT.isNull()) 1335 continue; 1336 1337 CtorParamPointeeT = getDeepPointeeType(CtorParamPointeeT); 1338 1339 if (CtorParamPointeeT->getAsCXXRecordDecl()) 1340 return true; 1341 } 1342 1343 return false; 1344 } 1345 1346 void MallocChecker::processNewAllocation(const CXXNewExpr *NE, 1347 CheckerContext &C, 1348 SVal Target) const { 1349 if (!MemFunctionInfo.isStandardNewDelete(NE->getOperatorNew(), 1350 C.getASTContext())) 1351 return; 1352 1353 ParentMap &PM = C.getLocationContext()->getParentMap(); 1354 1355 // Non-trivial constructors have a chance to escape 'this', but marking all 1356 // invocations of trivial constructors as escaped would cause too great of 1357 // reduction of true positives, so let's just do that for constructors that 1358 // have an argument of a pointer-to-record type. 1359 if (!PM.isConsumedExpr(NE) && hasNonTrivialConstructorCall(NE)) 1360 return; 1361 1362 ProgramStateRef State = C.getState(); 1363 // The return value from operator new is bound to a specified initialization 1364 // value (if any) and we don't want to loose this value. So we call 1365 // MallocUpdateRefState() instead of MallocMemAux() which breaks the 1366 // existing binding. 1367 State = MallocUpdateRefState(C, NE, State, NE->isArray() ? AF_CXXNewArray 1368 : AF_CXXNew, Target); 1369 State = addExtentSize(C, NE, State, Target); 1370 State = ProcessZeroAllocCheck(C, NE, 0, State, Target); 1371 C.addTransition(State); 1372 } 1373 1374 void MallocChecker::checkPostStmt(const CXXNewExpr *NE, 1375 CheckerContext &C) const { 1376 if (!C.getAnalysisManager().getAnalyzerOptions().MayInlineCXXAllocator) 1377 processNewAllocation(NE, C, C.getSVal(NE)); 1378 } 1379 1380 void MallocChecker::checkNewAllocator(const CXXNewExpr *NE, SVal Target, 1381 CheckerContext &C) const { 1382 if (!C.wasInlined) 1383 processNewAllocation(NE, C, Target); 1384 } 1385 1386 // Sets the extent value of the MemRegion allocated by 1387 // new expression NE to its size in Bytes. 1388 // 1389 ProgramStateRef MallocChecker::addExtentSize(CheckerContext &C, 1390 const CXXNewExpr *NE, 1391 ProgramStateRef State, 1392 SVal Target) { 1393 if (!State) 1394 return nullptr; 1395 SValBuilder &svalBuilder = C.getSValBuilder(); 1396 SVal ElementCount; 1397 const SubRegion *Region; 1398 if (NE->isArray()) { 1399 const Expr *SizeExpr = NE->getArraySize(); 1400 ElementCount = C.getSVal(SizeExpr); 1401 // Store the extent size for the (symbolic)region 1402 // containing the elements. 1403 Region = Target.getAsRegion() 1404 ->getAs<SubRegion>() 1405 ->StripCasts() 1406 ->getAs<SubRegion>(); 1407 } else { 1408 ElementCount = svalBuilder.makeIntVal(1, true); 1409 Region = Target.getAsRegion()->getAs<SubRegion>(); 1410 } 1411 assert(Region); 1412 1413 // Set the region's extent equal to the Size in Bytes. 1414 QualType ElementType = NE->getAllocatedType(); 1415 ASTContext &AstContext = C.getASTContext(); 1416 CharUnits TypeSize = AstContext.getTypeSizeInChars(ElementType); 1417 1418 if (ElementCount.getAs<NonLoc>()) { 1419 DefinedOrUnknownSVal Extent = Region->getExtent(svalBuilder); 1420 // size in Bytes = ElementCount*TypeSize 1421 SVal SizeInBytes = svalBuilder.evalBinOpNN( 1422 State, BO_Mul, ElementCount.castAs<NonLoc>(), 1423 svalBuilder.makeArrayIndex(TypeSize.getQuantity()), 1424 svalBuilder.getArrayIndexType()); 1425 DefinedOrUnknownSVal extentMatchesSize = svalBuilder.evalEQ( 1426 State, Extent, SizeInBytes.castAs<DefinedOrUnknownSVal>()); 1427 State = State->assume(extentMatchesSize, true); 1428 } 1429 return State; 1430 } 1431 1432 void MallocChecker::checkPreStmt(const CXXDeleteExpr *DE, 1433 CheckerContext &C) const { 1434 1435 if (!ChecksEnabled[CK_NewDeleteChecker]) 1436 if (SymbolRef Sym = C.getSVal(DE->getArgument()).getAsSymbol()) 1437 checkUseAfterFree(Sym, C, DE->getArgument()); 1438 1439 if (!MemFunctionInfo.isStandardNewDelete(DE->getOperatorDelete(), 1440 C.getASTContext())) 1441 return; 1442 1443 ProgramStateRef State = C.getState(); 1444 bool IsKnownToBeAllocated; 1445 State = FreeMemAux(C, DE->getArgument(), DE, State, 1446 /*Hold*/false, IsKnownToBeAllocated); 1447 1448 C.addTransition(State); 1449 } 1450 1451 static bool isKnownDeallocObjCMethodName(const ObjCMethodCall &Call) { 1452 // If the first selector piece is one of the names below, assume that the 1453 // object takes ownership of the memory, promising to eventually deallocate it 1454 // with free(). 1455 // Ex: [NSData dataWithBytesNoCopy:bytes length:10]; 1456 // (...unless a 'freeWhenDone' parameter is false, but that's checked later.) 1457 StringRef FirstSlot = Call.getSelector().getNameForSlot(0); 1458 return FirstSlot == "dataWithBytesNoCopy" || 1459 FirstSlot == "initWithBytesNoCopy" || 1460 FirstSlot == "initWithCharactersNoCopy"; 1461 } 1462 1463 static Optional<bool> getFreeWhenDoneArg(const ObjCMethodCall &Call) { 1464 Selector S = Call.getSelector(); 1465 1466 // FIXME: We should not rely on fully-constrained symbols being folded. 1467 for (unsigned i = 1; i < S.getNumArgs(); ++i) 1468 if (S.getNameForSlot(i).equals("freeWhenDone")) 1469 return !Call.getArgSVal(i).isZeroConstant(); 1470 1471 return None; 1472 } 1473 1474 void MallocChecker::checkPostObjCMessage(const ObjCMethodCall &Call, 1475 CheckerContext &C) const { 1476 if (C.wasInlined) 1477 return; 1478 1479 if (!isKnownDeallocObjCMethodName(Call)) 1480 return; 1481 1482 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call)) 1483 if (!*FreeWhenDone) 1484 return; 1485 1486 bool IsKnownToBeAllocatedMemory; 1487 ProgramStateRef State = FreeMemAux(C, Call.getArgExpr(0), 1488 Call.getOriginExpr(), C.getState(), 1489 /*Hold=*/true, IsKnownToBeAllocatedMemory, 1490 /*RetNullOnFailure=*/true); 1491 1492 C.addTransition(State); 1493 } 1494 1495 ProgramStateRef 1496 MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallExpr *CE, 1497 const OwnershipAttr *Att, 1498 ProgramStateRef State) const { 1499 if (!State) 1500 return nullptr; 1501 1502 if (Att->getModule() != MemFunctionInfo.II_malloc) 1503 return nullptr; 1504 1505 OwnershipAttr::args_iterator I = Att->args_begin(), E = Att->args_end(); 1506 if (I != E) { 1507 return MallocMemAux(C, CE, CE->getArg(I->getASTIndex()), UndefinedVal(), 1508 State); 1509 } 1510 return MallocMemAux(C, CE, UnknownVal(), UndefinedVal(), State); 1511 } 1512 1513 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1514 const CallExpr *CE, 1515 const Expr *SizeEx, SVal Init, 1516 ProgramStateRef State, 1517 AllocationFamily Family) { 1518 if (!State) 1519 return nullptr; 1520 1521 return MallocMemAux(C, CE, C.getSVal(SizeEx), Init, State, Family); 1522 } 1523 1524 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1525 const CallExpr *CE, 1526 SVal Size, SVal Init, 1527 ProgramStateRef State, 1528 AllocationFamily Family) { 1529 if (!State) 1530 return nullptr; 1531 1532 // We expect the malloc functions to return a pointer. 1533 if (!Loc::isLocType(CE->getType())) 1534 return nullptr; 1535 1536 // Bind the return value to the symbolic value from the heap region. 1537 // TODO: We could rewrite post visit to eval call; 'malloc' does not have 1538 // side effects other than what we model here. 1539 unsigned Count = C.blockCount(); 1540 SValBuilder &svalBuilder = C.getSValBuilder(); 1541 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 1542 DefinedSVal RetVal = svalBuilder.getConjuredHeapSymbolVal(CE, LCtx, Count) 1543 .castAs<DefinedSVal>(); 1544 State = State->BindExpr(CE, C.getLocationContext(), RetVal); 1545 1546 // Fill the region with the initialization value. 1547 State = State->bindDefaultInitial(RetVal, Init, LCtx); 1548 1549 // Set the region's extent equal to the Size parameter. 1550 const SymbolicRegion *R = 1551 dyn_cast_or_null<SymbolicRegion>(RetVal.getAsRegion()); 1552 if (!R) 1553 return nullptr; 1554 if (Optional<DefinedOrUnknownSVal> DefinedSize = 1555 Size.getAs<DefinedOrUnknownSVal>()) { 1556 SValBuilder &svalBuilder = C.getSValBuilder(); 1557 DefinedOrUnknownSVal Extent = R->getExtent(svalBuilder); 1558 DefinedOrUnknownSVal extentMatchesSize = 1559 svalBuilder.evalEQ(State, Extent, *DefinedSize); 1560 1561 State = State->assume(extentMatchesSize, true); 1562 assert(State); 1563 } 1564 1565 return MallocUpdateRefState(C, CE, State, Family); 1566 } 1567 1568 static ProgramStateRef 1569 MallocUpdateRefState(CheckerContext &C, const Expr *E, ProgramStateRef State, 1570 AllocationFamily Family, Optional<SVal> RetVal) { 1571 if (!State) 1572 return nullptr; 1573 1574 // Get the return value. 1575 if (!RetVal) 1576 RetVal = C.getSVal(E); 1577 1578 // We expect the malloc functions to return a pointer. 1579 if (!RetVal->getAs<Loc>()) 1580 return nullptr; 1581 1582 SymbolRef Sym = RetVal->getAsLocSymbol(); 1583 // This is a return value of a function that was not inlined, such as malloc() 1584 // or new(). We've checked that in the caller. Therefore, it must be a symbol. 1585 assert(Sym); 1586 1587 // Set the symbol's state to Allocated. 1588 return State->set<RegionState>(Sym, RefState::getAllocated(Family, E)); 1589 } 1590 1591 ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C, 1592 const CallExpr *CE, 1593 const OwnershipAttr *Att, 1594 ProgramStateRef State) const { 1595 if (!State) 1596 return nullptr; 1597 1598 if (Att->getModule() != MemFunctionInfo.II_malloc) 1599 return nullptr; 1600 1601 bool IsKnownToBeAllocated = false; 1602 1603 for (const auto &Arg : Att->args()) { 1604 ProgramStateRef StateI = FreeMemAux( 1605 C, CE, State, Arg.getASTIndex(), 1606 Att->getOwnKind() == OwnershipAttr::Holds, IsKnownToBeAllocated); 1607 if (StateI) 1608 State = StateI; 1609 } 1610 return State; 1611 } 1612 1613 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, 1614 const CallExpr *CE, 1615 ProgramStateRef State, 1616 unsigned Num, 1617 bool Hold, 1618 bool &IsKnownToBeAllocated, 1619 bool ReturnsNullOnFailure) const { 1620 if (!State) 1621 return nullptr; 1622 1623 if (CE->getNumArgs() < (Num + 1)) 1624 return nullptr; 1625 1626 return FreeMemAux(C, CE->getArg(Num), CE, State, Hold, 1627 IsKnownToBeAllocated, ReturnsNullOnFailure); 1628 } 1629 1630 /// Checks if the previous call to free on the given symbol failed - if free 1631 /// failed, returns true. Also, returns the corresponding return value symbol. 1632 static bool didPreviousFreeFail(ProgramStateRef State, 1633 SymbolRef Sym, SymbolRef &RetStatusSymbol) { 1634 const SymbolRef *Ret = State->get<FreeReturnValue>(Sym); 1635 if (Ret) { 1636 assert(*Ret && "We should not store the null return symbol"); 1637 ConstraintManager &CMgr = State->getConstraintManager(); 1638 ConditionTruthVal FreeFailed = CMgr.isNull(State, *Ret); 1639 RetStatusSymbol = *Ret; 1640 return FreeFailed.isConstrainedTrue(); 1641 } 1642 return false; 1643 } 1644 1645 static AllocationFamily getAllocationFamily( 1646 const MemFunctionInfoTy &MemFunctionInfo, CheckerContext &C, const Stmt *S) { 1647 1648 if (!S) 1649 return AF_None; 1650 1651 if (const CallExpr *CE = dyn_cast<CallExpr>(S)) { 1652 const FunctionDecl *FD = C.getCalleeDecl(CE); 1653 1654 if (!FD) 1655 FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); 1656 1657 ASTContext &Ctx = C.getASTContext(); 1658 1659 if (MemFunctionInfo.isCMemFunction(FD, Ctx, AF_Malloc, MemoryOperationKind::MOK_Any)) 1660 return AF_Malloc; 1661 1662 if (MemFunctionInfo.isStandardNewDelete(FD, Ctx)) { 1663 OverloadedOperatorKind Kind = FD->getOverloadedOperator(); 1664 if (Kind == OO_New || Kind == OO_Delete) 1665 return AF_CXXNew; 1666 else if (Kind == OO_Array_New || Kind == OO_Array_Delete) 1667 return AF_CXXNewArray; 1668 } 1669 1670 if (MemFunctionInfo.isCMemFunction(FD, Ctx, AF_IfNameIndex, 1671 MemoryOperationKind::MOK_Any)) 1672 return AF_IfNameIndex; 1673 1674 if (MemFunctionInfo.isCMemFunction(FD, Ctx, AF_Alloca, 1675 MemoryOperationKind::MOK_Any)) 1676 return AF_Alloca; 1677 1678 return AF_None; 1679 } 1680 1681 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(S)) 1682 return NE->isArray() ? AF_CXXNewArray : AF_CXXNew; 1683 1684 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(S)) 1685 return DE->isArrayForm() ? AF_CXXNewArray : AF_CXXNew; 1686 1687 if (isa<ObjCMessageExpr>(S)) 1688 return AF_Malloc; 1689 1690 return AF_None; 1691 } 1692 1693 static bool printAllocDeallocName(raw_ostream &os, CheckerContext &C, 1694 const Expr *E) { 1695 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 1696 // FIXME: This doesn't handle indirect calls. 1697 const FunctionDecl *FD = CE->getDirectCallee(); 1698 if (!FD) 1699 return false; 1700 1701 os << *FD; 1702 if (!FD->isOverloadedOperator()) 1703 os << "()"; 1704 return true; 1705 } 1706 1707 if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E)) { 1708 if (Msg->isInstanceMessage()) 1709 os << "-"; 1710 else 1711 os << "+"; 1712 Msg->getSelector().print(os); 1713 return true; 1714 } 1715 1716 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { 1717 os << "'" 1718 << getOperatorSpelling(NE->getOperatorNew()->getOverloadedOperator()) 1719 << "'"; 1720 return true; 1721 } 1722 1723 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(E)) { 1724 os << "'" 1725 << getOperatorSpelling(DE->getOperatorDelete()->getOverloadedOperator()) 1726 << "'"; 1727 return true; 1728 } 1729 1730 return false; 1731 } 1732 1733 static void printExpectedAllocName(raw_ostream &os, 1734 const MemFunctionInfoTy &MemFunctionInfo, 1735 CheckerContext &C, const Expr *E) { 1736 AllocationFamily Family = getAllocationFamily(MemFunctionInfo, C, E); 1737 1738 switch(Family) { 1739 case AF_Malloc: os << "malloc()"; return; 1740 case AF_CXXNew: os << "'new'"; return; 1741 case AF_CXXNewArray: os << "'new[]'"; return; 1742 case AF_IfNameIndex: os << "'if_nameindex()'"; return; 1743 case AF_InnerBuffer: os << "container-specific allocator"; return; 1744 case AF_Alloca: 1745 case AF_None: llvm_unreachable("not a deallocation expression"); 1746 } 1747 } 1748 1749 static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family) { 1750 switch(Family) { 1751 case AF_Malloc: os << "free()"; return; 1752 case AF_CXXNew: os << "'delete'"; return; 1753 case AF_CXXNewArray: os << "'delete[]'"; return; 1754 case AF_IfNameIndex: os << "'if_freenameindex()'"; return; 1755 case AF_InnerBuffer: os << "container-specific deallocator"; return; 1756 case AF_Alloca: 1757 case AF_None: llvm_unreachable("suspicious argument"); 1758 } 1759 } 1760 1761 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, 1762 const Expr *ArgExpr, 1763 const Expr *ParentExpr, 1764 ProgramStateRef State, 1765 bool Hold, 1766 bool &IsKnownToBeAllocated, 1767 bool ReturnsNullOnFailure) const { 1768 1769 if (!State) 1770 return nullptr; 1771 1772 SVal ArgVal = C.getSVal(ArgExpr); 1773 if (!ArgVal.getAs<DefinedOrUnknownSVal>()) 1774 return nullptr; 1775 DefinedOrUnknownSVal location = ArgVal.castAs<DefinedOrUnknownSVal>(); 1776 1777 // Check for null dereferences. 1778 if (!location.getAs<Loc>()) 1779 return nullptr; 1780 1781 // The explicit NULL case, no operation is performed. 1782 ProgramStateRef notNullState, nullState; 1783 std::tie(notNullState, nullState) = State->assume(location); 1784 if (nullState && !notNullState) 1785 return nullptr; 1786 1787 // Unknown values could easily be okay 1788 // Undefined values are handled elsewhere 1789 if (ArgVal.isUnknownOrUndef()) 1790 return nullptr; 1791 1792 const MemRegion *R = ArgVal.getAsRegion(); 1793 1794 // Nonlocs can't be freed, of course. 1795 // Non-region locations (labels and fixed addresses) also shouldn't be freed. 1796 if (!R) { 1797 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1798 return nullptr; 1799 } 1800 1801 R = R->StripCasts(); 1802 1803 // Blocks might show up as heap data, but should not be free()d 1804 if (isa<BlockDataRegion>(R)) { 1805 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1806 return nullptr; 1807 } 1808 1809 const MemSpaceRegion *MS = R->getMemorySpace(); 1810 1811 // Parameters, locals, statics, globals, and memory returned by 1812 // __builtin_alloca() shouldn't be freed. 1813 if (!(isa<UnknownSpaceRegion>(MS) || isa<HeapSpaceRegion>(MS))) { 1814 // FIXME: at the time this code was written, malloc() regions were 1815 // represented by conjured symbols, which are all in UnknownSpaceRegion. 1816 // This means that there isn't actually anything from HeapSpaceRegion 1817 // that should be freed, even though we allow it here. 1818 // Of course, free() can work on memory allocated outside the current 1819 // function, so UnknownSpaceRegion is always a possibility. 1820 // False negatives are better than false positives. 1821 1822 if (isa<AllocaRegion>(R)) 1823 ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1824 else 1825 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1826 1827 return nullptr; 1828 } 1829 1830 const SymbolicRegion *SrBase = dyn_cast<SymbolicRegion>(R->getBaseRegion()); 1831 // Various cases could lead to non-symbol values here. 1832 // For now, ignore them. 1833 if (!SrBase) 1834 return nullptr; 1835 1836 SymbolRef SymBase = SrBase->getSymbol(); 1837 const RefState *RsBase = State->get<RegionState>(SymBase); 1838 SymbolRef PreviousRetStatusSymbol = nullptr; 1839 1840 IsKnownToBeAllocated = RsBase && (RsBase->isAllocated() || 1841 RsBase->isAllocatedOfSizeZero()); 1842 1843 if (RsBase) { 1844 1845 // Memory returned by alloca() shouldn't be freed. 1846 if (RsBase->getAllocationFamily() == AF_Alloca) { 1847 ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1848 return nullptr; 1849 } 1850 1851 // Check for double free first. 1852 if ((RsBase->isReleased() || RsBase->isRelinquished()) && 1853 !didPreviousFreeFail(State, SymBase, PreviousRetStatusSymbol)) { 1854 ReportDoubleFree(C, ParentExpr->getSourceRange(), RsBase->isReleased(), 1855 SymBase, PreviousRetStatusSymbol); 1856 return nullptr; 1857 1858 // If the pointer is allocated or escaped, but we are now trying to free it, 1859 // check that the call to free is proper. 1860 } else if (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero() || 1861 RsBase->isEscaped()) { 1862 1863 // Check if an expected deallocation function matches the real one. 1864 bool DeallocMatchesAlloc = 1865 RsBase->getAllocationFamily() == 1866 getAllocationFamily(MemFunctionInfo, C, ParentExpr); 1867 if (!DeallocMatchesAlloc) { 1868 ReportMismatchedDealloc(C, ArgExpr->getSourceRange(), 1869 ParentExpr, RsBase, SymBase, Hold); 1870 return nullptr; 1871 } 1872 1873 // Check if the memory location being freed is the actual location 1874 // allocated, or an offset. 1875 RegionOffset Offset = R->getAsOffset(); 1876 if (Offset.isValid() && 1877 !Offset.hasSymbolicOffset() && 1878 Offset.getOffset() != 0) { 1879 const Expr *AllocExpr = cast<Expr>(RsBase->getStmt()); 1880 ReportOffsetFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1881 AllocExpr); 1882 return nullptr; 1883 } 1884 } 1885 } 1886 1887 if (SymBase->getType()->isFunctionPointerType()) { 1888 ReportFunctionPointerFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1889 return nullptr; 1890 } 1891 1892 // Clean out the info on previous call to free return info. 1893 State = State->remove<FreeReturnValue>(SymBase); 1894 1895 // Keep track of the return value. If it is NULL, we will know that free 1896 // failed. 1897 if (ReturnsNullOnFailure) { 1898 SVal RetVal = C.getSVal(ParentExpr); 1899 SymbolRef RetStatusSymbol = RetVal.getAsSymbol(); 1900 if (RetStatusSymbol) { 1901 C.getSymbolManager().addSymbolDependency(SymBase, RetStatusSymbol); 1902 State = State->set<FreeReturnValue>(SymBase, RetStatusSymbol); 1903 } 1904 } 1905 1906 AllocationFamily Family = RsBase ? RsBase->getAllocationFamily() 1907 : getAllocationFamily(MemFunctionInfo, C, ParentExpr); 1908 // Normal free. 1909 if (Hold) 1910 return State->set<RegionState>(SymBase, 1911 RefState::getRelinquished(Family, 1912 ParentExpr)); 1913 1914 return State->set<RegionState>(SymBase, 1915 RefState::getReleased(Family, ParentExpr)); 1916 } 1917 1918 Optional<MallocChecker::CheckKind> 1919 MallocChecker::getCheckIfTracked(AllocationFamily Family, 1920 bool IsALeakCheck) const { 1921 switch (Family) { 1922 case AF_Malloc: 1923 case AF_Alloca: 1924 case AF_IfNameIndex: { 1925 if (ChecksEnabled[CK_MallocChecker]) 1926 return CK_MallocChecker; 1927 return None; 1928 } 1929 case AF_CXXNew: 1930 case AF_CXXNewArray: { 1931 if (IsALeakCheck) { 1932 if (ChecksEnabled[CK_NewDeleteLeaksChecker]) 1933 return CK_NewDeleteLeaksChecker; 1934 } 1935 else { 1936 if (ChecksEnabled[CK_NewDeleteChecker]) 1937 return CK_NewDeleteChecker; 1938 } 1939 return None; 1940 } 1941 case AF_InnerBuffer: { 1942 if (ChecksEnabled[CK_InnerPointerChecker]) 1943 return CK_InnerPointerChecker; 1944 return None; 1945 } 1946 case AF_None: { 1947 llvm_unreachable("no family"); 1948 } 1949 } 1950 llvm_unreachable("unhandled family"); 1951 } 1952 1953 Optional<MallocChecker::CheckKind> 1954 MallocChecker::getCheckIfTracked(CheckerContext &C, 1955 const Stmt *AllocDeallocStmt, 1956 bool IsALeakCheck) const { 1957 return getCheckIfTracked( 1958 getAllocationFamily(MemFunctionInfo, C, AllocDeallocStmt), IsALeakCheck); 1959 } 1960 1961 Optional<MallocChecker::CheckKind> 1962 MallocChecker::getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 1963 bool IsALeakCheck) const { 1964 if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) 1965 return CK_MallocChecker; 1966 1967 const RefState *RS = C.getState()->get<RegionState>(Sym); 1968 assert(RS); 1969 return getCheckIfTracked(RS->getAllocationFamily(), IsALeakCheck); 1970 } 1971 1972 bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) { 1973 if (Optional<nonloc::ConcreteInt> IntVal = V.getAs<nonloc::ConcreteInt>()) 1974 os << "an integer (" << IntVal->getValue() << ")"; 1975 else if (Optional<loc::ConcreteInt> ConstAddr = V.getAs<loc::ConcreteInt>()) 1976 os << "a constant address (" << ConstAddr->getValue() << ")"; 1977 else if (Optional<loc::GotoLabel> Label = V.getAs<loc::GotoLabel>()) 1978 os << "the address of the label '" << Label->getLabel()->getName() << "'"; 1979 else 1980 return false; 1981 1982 return true; 1983 } 1984 1985 bool MallocChecker::SummarizeRegion(raw_ostream &os, 1986 const MemRegion *MR) { 1987 switch (MR->getKind()) { 1988 case MemRegion::FunctionCodeRegionKind: { 1989 const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl(); 1990 if (FD) 1991 os << "the address of the function '" << *FD << '\''; 1992 else 1993 os << "the address of a function"; 1994 return true; 1995 } 1996 case MemRegion::BlockCodeRegionKind: 1997 os << "block text"; 1998 return true; 1999 case MemRegion::BlockDataRegionKind: 2000 // FIXME: where the block came from? 2001 os << "a block"; 2002 return true; 2003 default: { 2004 const MemSpaceRegion *MS = MR->getMemorySpace(); 2005 2006 if (isa<StackLocalsSpaceRegion>(MS)) { 2007 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2008 const VarDecl *VD; 2009 if (VR) 2010 VD = VR->getDecl(); 2011 else 2012 VD = nullptr; 2013 2014 if (VD) 2015 os << "the address of the local variable '" << VD->getName() << "'"; 2016 else 2017 os << "the address of a local stack variable"; 2018 return true; 2019 } 2020 2021 if (isa<StackArgumentsSpaceRegion>(MS)) { 2022 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2023 const VarDecl *VD; 2024 if (VR) 2025 VD = VR->getDecl(); 2026 else 2027 VD = nullptr; 2028 2029 if (VD) 2030 os << "the address of the parameter '" << VD->getName() << "'"; 2031 else 2032 os << "the address of a parameter"; 2033 return true; 2034 } 2035 2036 if (isa<GlobalsSpaceRegion>(MS)) { 2037 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2038 const VarDecl *VD; 2039 if (VR) 2040 VD = VR->getDecl(); 2041 else 2042 VD = nullptr; 2043 2044 if (VD) { 2045 if (VD->isStaticLocal()) 2046 os << "the address of the static variable '" << VD->getName() << "'"; 2047 else 2048 os << "the address of the global variable '" << VD->getName() << "'"; 2049 } else 2050 os << "the address of a global variable"; 2051 return true; 2052 } 2053 2054 return false; 2055 } 2056 } 2057 } 2058 2059 void MallocChecker::ReportBadFree(CheckerContext &C, SVal ArgVal, 2060 SourceRange Range, 2061 const Expr *DeallocExpr) const { 2062 2063 if (!ChecksEnabled[CK_MallocChecker] && 2064 !ChecksEnabled[CK_NewDeleteChecker]) 2065 return; 2066 2067 Optional<MallocChecker::CheckKind> CheckKind = 2068 getCheckIfTracked(C, DeallocExpr); 2069 if (!CheckKind.hasValue()) 2070 return; 2071 2072 if (ExplodedNode *N = C.generateErrorNode()) { 2073 if (!BT_BadFree[*CheckKind]) 2074 BT_BadFree[*CheckKind].reset(new BugType( 2075 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 2076 2077 SmallString<100> buf; 2078 llvm::raw_svector_ostream os(buf); 2079 2080 const MemRegion *MR = ArgVal.getAsRegion(); 2081 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 2082 MR = ER->getSuperRegion(); 2083 2084 os << "Argument to "; 2085 if (!printAllocDeallocName(os, C, DeallocExpr)) 2086 os << "deallocator"; 2087 2088 os << " is "; 2089 bool Summarized = MR ? SummarizeRegion(os, MR) 2090 : SummarizeValue(os, ArgVal); 2091 if (Summarized) 2092 os << ", which is not memory allocated by "; 2093 else 2094 os << "not memory allocated by "; 2095 2096 printExpectedAllocName(os, MemFunctionInfo, C, DeallocExpr); 2097 2098 auto R = llvm::make_unique<BugReport>(*BT_BadFree[*CheckKind], os.str(), N); 2099 R->markInteresting(MR); 2100 R->addRange(Range); 2101 C.emitReport(std::move(R)); 2102 } 2103 } 2104 2105 void MallocChecker::ReportFreeAlloca(CheckerContext &C, SVal ArgVal, 2106 SourceRange Range) const { 2107 2108 Optional<MallocChecker::CheckKind> CheckKind; 2109 2110 if (ChecksEnabled[CK_MallocChecker]) 2111 CheckKind = CK_MallocChecker; 2112 else if (ChecksEnabled[CK_MismatchedDeallocatorChecker]) 2113 CheckKind = CK_MismatchedDeallocatorChecker; 2114 else 2115 return; 2116 2117 if (ExplodedNode *N = C.generateErrorNode()) { 2118 if (!BT_FreeAlloca[*CheckKind]) 2119 BT_FreeAlloca[*CheckKind].reset(new BugType( 2120 CheckNames[*CheckKind], "Free alloca()", categories::MemoryError)); 2121 2122 auto R = llvm::make_unique<BugReport>( 2123 *BT_FreeAlloca[*CheckKind], 2124 "Memory allocated by alloca() should not be deallocated", N); 2125 R->markInteresting(ArgVal.getAsRegion()); 2126 R->addRange(Range); 2127 C.emitReport(std::move(R)); 2128 } 2129 } 2130 2131 void MallocChecker::ReportMismatchedDealloc(CheckerContext &C, 2132 SourceRange Range, 2133 const Expr *DeallocExpr, 2134 const RefState *RS, 2135 SymbolRef Sym, 2136 bool OwnershipTransferred) const { 2137 2138 if (!ChecksEnabled[CK_MismatchedDeallocatorChecker]) 2139 return; 2140 2141 if (ExplodedNode *N = C.generateErrorNode()) { 2142 if (!BT_MismatchedDealloc) 2143 BT_MismatchedDealloc.reset( 2144 new BugType(CheckNames[CK_MismatchedDeallocatorChecker], 2145 "Bad deallocator", categories::MemoryError)); 2146 2147 SmallString<100> buf; 2148 llvm::raw_svector_ostream os(buf); 2149 2150 const Expr *AllocExpr = cast<Expr>(RS->getStmt()); 2151 SmallString<20> AllocBuf; 2152 llvm::raw_svector_ostream AllocOs(AllocBuf); 2153 SmallString<20> DeallocBuf; 2154 llvm::raw_svector_ostream DeallocOs(DeallocBuf); 2155 2156 if (OwnershipTransferred) { 2157 if (printAllocDeallocName(DeallocOs, C, DeallocExpr)) 2158 os << DeallocOs.str() << " cannot"; 2159 else 2160 os << "Cannot"; 2161 2162 os << " take ownership of memory"; 2163 2164 if (printAllocDeallocName(AllocOs, C, AllocExpr)) 2165 os << " allocated by " << AllocOs.str(); 2166 } else { 2167 os << "Memory"; 2168 if (printAllocDeallocName(AllocOs, C, AllocExpr)) 2169 os << " allocated by " << AllocOs.str(); 2170 2171 os << " should be deallocated by "; 2172 printExpectedDeallocName(os, RS->getAllocationFamily()); 2173 2174 if (printAllocDeallocName(DeallocOs, C, DeallocExpr)) 2175 os << ", not " << DeallocOs.str(); 2176 } 2177 2178 auto R = llvm::make_unique<BugReport>(*BT_MismatchedDealloc, os.str(), N); 2179 R->markInteresting(Sym); 2180 R->addRange(Range); 2181 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 2182 C.emitReport(std::move(R)); 2183 } 2184 } 2185 2186 void MallocChecker::ReportOffsetFree(CheckerContext &C, SVal ArgVal, 2187 SourceRange Range, const Expr *DeallocExpr, 2188 const Expr *AllocExpr) const { 2189 2190 2191 if (!ChecksEnabled[CK_MallocChecker] && 2192 !ChecksEnabled[CK_NewDeleteChecker]) 2193 return; 2194 2195 Optional<MallocChecker::CheckKind> CheckKind = 2196 getCheckIfTracked(C, AllocExpr); 2197 if (!CheckKind.hasValue()) 2198 return; 2199 2200 ExplodedNode *N = C.generateErrorNode(); 2201 if (!N) 2202 return; 2203 2204 if (!BT_OffsetFree[*CheckKind]) 2205 BT_OffsetFree[*CheckKind].reset(new BugType( 2206 CheckNames[*CheckKind], "Offset free", categories::MemoryError)); 2207 2208 SmallString<100> buf; 2209 llvm::raw_svector_ostream os(buf); 2210 SmallString<20> AllocNameBuf; 2211 llvm::raw_svector_ostream AllocNameOs(AllocNameBuf); 2212 2213 const MemRegion *MR = ArgVal.getAsRegion(); 2214 assert(MR && "Only MemRegion based symbols can have offset free errors"); 2215 2216 RegionOffset Offset = MR->getAsOffset(); 2217 assert((Offset.isValid() && 2218 !Offset.hasSymbolicOffset() && 2219 Offset.getOffset() != 0) && 2220 "Only symbols with a valid offset can have offset free errors"); 2221 2222 int offsetBytes = Offset.getOffset() / C.getASTContext().getCharWidth(); 2223 2224 os << "Argument to "; 2225 if (!printAllocDeallocName(os, C, DeallocExpr)) 2226 os << "deallocator"; 2227 os << " is offset by " 2228 << offsetBytes 2229 << " " 2230 << ((abs(offsetBytes) > 1) ? "bytes" : "byte") 2231 << " from the start of "; 2232 if (AllocExpr && printAllocDeallocName(AllocNameOs, C, AllocExpr)) 2233 os << "memory allocated by " << AllocNameOs.str(); 2234 else 2235 os << "allocated memory"; 2236 2237 auto R = llvm::make_unique<BugReport>(*BT_OffsetFree[*CheckKind], os.str(), N); 2238 R->markInteresting(MR->getBaseRegion()); 2239 R->addRange(Range); 2240 C.emitReport(std::move(R)); 2241 } 2242 2243 void MallocChecker::ReportUseAfterFree(CheckerContext &C, SourceRange Range, 2244 SymbolRef Sym) const { 2245 2246 if (!ChecksEnabled[CK_MallocChecker] && 2247 !ChecksEnabled[CK_NewDeleteChecker] && 2248 !ChecksEnabled[CK_InnerPointerChecker]) 2249 return; 2250 2251 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2252 if (!CheckKind.hasValue()) 2253 return; 2254 2255 if (ExplodedNode *N = C.generateErrorNode()) { 2256 if (!BT_UseFree[*CheckKind]) 2257 BT_UseFree[*CheckKind].reset(new BugType( 2258 CheckNames[*CheckKind], "Use-after-free", categories::MemoryError)); 2259 2260 AllocationFamily AF = 2261 C.getState()->get<RegionState>(Sym)->getAllocationFamily(); 2262 2263 auto R = llvm::make_unique<BugReport>(*BT_UseFree[*CheckKind], 2264 AF == AF_InnerBuffer 2265 ? "Inner pointer of container used after re/deallocation" 2266 : "Use of memory after it is freed", 2267 N); 2268 2269 R->markInteresting(Sym); 2270 R->addRange(Range); 2271 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 2272 2273 if (AF == AF_InnerBuffer) 2274 R->addVisitor(allocation_state::getInnerPointerBRVisitor(Sym)); 2275 2276 C.emitReport(std::move(R)); 2277 } 2278 } 2279 2280 void MallocChecker::ReportDoubleFree(CheckerContext &C, SourceRange Range, 2281 bool Released, SymbolRef Sym, 2282 SymbolRef PrevSym) const { 2283 2284 if (!ChecksEnabled[CK_MallocChecker] && 2285 !ChecksEnabled[CK_NewDeleteChecker]) 2286 return; 2287 2288 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2289 if (!CheckKind.hasValue()) 2290 return; 2291 2292 if (ExplodedNode *N = C.generateErrorNode()) { 2293 if (!BT_DoubleFree[*CheckKind]) 2294 BT_DoubleFree[*CheckKind].reset(new BugType( 2295 CheckNames[*CheckKind], "Double free", categories::MemoryError)); 2296 2297 auto R = llvm::make_unique<BugReport>( 2298 *BT_DoubleFree[*CheckKind], 2299 (Released ? "Attempt to free released memory" 2300 : "Attempt to free non-owned memory"), 2301 N); 2302 R->addRange(Range); 2303 R->markInteresting(Sym); 2304 if (PrevSym) 2305 R->markInteresting(PrevSym); 2306 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 2307 C.emitReport(std::move(R)); 2308 } 2309 } 2310 2311 void MallocChecker::ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const { 2312 2313 if (!ChecksEnabled[CK_NewDeleteChecker]) 2314 return; 2315 2316 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2317 if (!CheckKind.hasValue()) 2318 return; 2319 2320 if (ExplodedNode *N = C.generateErrorNode()) { 2321 if (!BT_DoubleDelete) 2322 BT_DoubleDelete.reset(new BugType(CheckNames[CK_NewDeleteChecker], 2323 "Double delete", 2324 categories::MemoryError)); 2325 2326 auto R = llvm::make_unique<BugReport>( 2327 *BT_DoubleDelete, "Attempt to delete released memory", N); 2328 2329 R->markInteresting(Sym); 2330 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 2331 C.emitReport(std::move(R)); 2332 } 2333 } 2334 2335 void MallocChecker::ReportUseZeroAllocated(CheckerContext &C, 2336 SourceRange Range, 2337 SymbolRef Sym) const { 2338 2339 if (!ChecksEnabled[CK_MallocChecker] && 2340 !ChecksEnabled[CK_NewDeleteChecker]) 2341 return; 2342 2343 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2344 2345 if (!CheckKind.hasValue()) 2346 return; 2347 2348 if (ExplodedNode *N = C.generateErrorNode()) { 2349 if (!BT_UseZerroAllocated[*CheckKind]) 2350 BT_UseZerroAllocated[*CheckKind].reset( 2351 new BugType(CheckNames[*CheckKind], "Use of zero allocated", 2352 categories::MemoryError)); 2353 2354 auto R = llvm::make_unique<BugReport>(*BT_UseZerroAllocated[*CheckKind], 2355 "Use of zero-allocated memory", N); 2356 2357 R->addRange(Range); 2358 if (Sym) { 2359 R->markInteresting(Sym); 2360 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 2361 } 2362 C.emitReport(std::move(R)); 2363 } 2364 } 2365 2366 void MallocChecker::ReportFunctionPointerFree(CheckerContext &C, SVal ArgVal, 2367 SourceRange Range, 2368 const Expr *FreeExpr) const { 2369 if (!ChecksEnabled[CK_MallocChecker]) 2370 return; 2371 2372 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, FreeExpr); 2373 if (!CheckKind.hasValue()) 2374 return; 2375 2376 if (ExplodedNode *N = C.generateErrorNode()) { 2377 if (!BT_BadFree[*CheckKind]) 2378 BT_BadFree[*CheckKind].reset(new BugType( 2379 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 2380 2381 SmallString<100> Buf; 2382 llvm::raw_svector_ostream Os(Buf); 2383 2384 const MemRegion *MR = ArgVal.getAsRegion(); 2385 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 2386 MR = ER->getSuperRegion(); 2387 2388 Os << "Argument to "; 2389 if (!printAllocDeallocName(Os, C, FreeExpr)) 2390 Os << "deallocator"; 2391 2392 Os << " is a function pointer"; 2393 2394 auto R = llvm::make_unique<BugReport>(*BT_BadFree[*CheckKind], Os.str(), N); 2395 R->markInteresting(MR); 2396 R->addRange(Range); 2397 C.emitReport(std::move(R)); 2398 } 2399 } 2400 2401 ProgramStateRef MallocChecker::ReallocMemAux(CheckerContext &C, 2402 const CallExpr *CE, 2403 bool ShouldFreeOnFail, 2404 ProgramStateRef State, 2405 bool SuffixWithN) const { 2406 if (!State) 2407 return nullptr; 2408 2409 if (SuffixWithN && CE->getNumArgs() < 3) 2410 return nullptr; 2411 else if (CE->getNumArgs() < 2) 2412 return nullptr; 2413 2414 const Expr *arg0Expr = CE->getArg(0); 2415 SVal Arg0Val = C.getSVal(arg0Expr); 2416 if (!Arg0Val.getAs<DefinedOrUnknownSVal>()) 2417 return nullptr; 2418 DefinedOrUnknownSVal arg0Val = Arg0Val.castAs<DefinedOrUnknownSVal>(); 2419 2420 SValBuilder &svalBuilder = C.getSValBuilder(); 2421 2422 DefinedOrUnknownSVal PtrEQ = 2423 svalBuilder.evalEQ(State, arg0Val, svalBuilder.makeNull()); 2424 2425 // Get the size argument. 2426 const Expr *Arg1 = CE->getArg(1); 2427 2428 // Get the value of the size argument. 2429 SVal TotalSize = C.getSVal(Arg1); 2430 if (SuffixWithN) 2431 TotalSize = evalMulForBufferSize(C, Arg1, CE->getArg(2)); 2432 if (!TotalSize.getAs<DefinedOrUnknownSVal>()) 2433 return nullptr; 2434 2435 // Compare the size argument to 0. 2436 DefinedOrUnknownSVal SizeZero = 2437 svalBuilder.evalEQ(State, TotalSize.castAs<DefinedOrUnknownSVal>(), 2438 svalBuilder.makeIntValWithPtrWidth(0, false)); 2439 2440 ProgramStateRef StatePtrIsNull, StatePtrNotNull; 2441 std::tie(StatePtrIsNull, StatePtrNotNull) = State->assume(PtrEQ); 2442 ProgramStateRef StateSizeIsZero, StateSizeNotZero; 2443 std::tie(StateSizeIsZero, StateSizeNotZero) = State->assume(SizeZero); 2444 // We only assume exceptional states if they are definitely true; if the 2445 // state is under-constrained, assume regular realloc behavior. 2446 bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull; 2447 bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero; 2448 2449 // If the ptr is NULL and the size is not 0, the call is equivalent to 2450 // malloc(size). 2451 if (PrtIsNull && !SizeIsZero) { 2452 ProgramStateRef stateMalloc = MallocMemAux(C, CE, TotalSize, 2453 UndefinedVal(), StatePtrIsNull); 2454 return stateMalloc; 2455 } 2456 2457 if (PrtIsNull && SizeIsZero) 2458 return State; 2459 2460 // Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size). 2461 assert(!PrtIsNull); 2462 SymbolRef FromPtr = arg0Val.getAsSymbol(); 2463 SVal RetVal = C.getSVal(CE); 2464 SymbolRef ToPtr = RetVal.getAsSymbol(); 2465 if (!FromPtr || !ToPtr) 2466 return nullptr; 2467 2468 bool IsKnownToBeAllocated = false; 2469 2470 // If the size is 0, free the memory. 2471 if (SizeIsZero) 2472 // The semantics of the return value are: 2473 // If size was equal to 0, either NULL or a pointer suitable to be passed 2474 // to free() is returned. We just free the input pointer and do not add 2475 // any constrains on the output pointer. 2476 if (ProgramStateRef stateFree = FreeMemAux(C, CE, StateSizeIsZero, 0, 2477 false, IsKnownToBeAllocated)) 2478 return stateFree; 2479 2480 // Default behavior. 2481 if (ProgramStateRef stateFree = 2482 FreeMemAux(C, CE, State, 0, false, IsKnownToBeAllocated)) { 2483 2484 ProgramStateRef stateRealloc = MallocMemAux(C, CE, TotalSize, 2485 UnknownVal(), stateFree); 2486 if (!stateRealloc) 2487 return nullptr; 2488 2489 OwnershipAfterReallocKind Kind = OAR_ToBeFreedAfterFailure; 2490 if (ShouldFreeOnFail) 2491 Kind = OAR_FreeOnFailure; 2492 else if (!IsKnownToBeAllocated) 2493 Kind = OAR_DoNotTrackAfterFailure; 2494 2495 // Record the info about the reallocated symbol so that we could properly 2496 // process failed reallocation. 2497 stateRealloc = stateRealloc->set<ReallocPairs>(ToPtr, 2498 ReallocPair(FromPtr, Kind)); 2499 // The reallocated symbol should stay alive for as long as the new symbol. 2500 C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr); 2501 return stateRealloc; 2502 } 2503 return nullptr; 2504 } 2505 2506 ProgramStateRef MallocChecker::CallocMem(CheckerContext &C, const CallExpr *CE, 2507 ProgramStateRef State) { 2508 if (!State) 2509 return nullptr; 2510 2511 if (CE->getNumArgs() < 2) 2512 return nullptr; 2513 2514 SValBuilder &svalBuilder = C.getSValBuilder(); 2515 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 2516 SVal TotalSize = evalMulForBufferSize(C, CE->getArg(0), CE->getArg(1)); 2517 2518 return MallocMemAux(C, CE, TotalSize, zeroVal, State); 2519 } 2520 2521 MallocChecker::LeakInfo 2522 MallocChecker::getAllocationSite(const ExplodedNode *N, SymbolRef Sym, 2523 CheckerContext &C) { 2524 const LocationContext *LeakContext = N->getLocationContext(); 2525 // Walk the ExplodedGraph backwards and find the first node that referred to 2526 // the tracked symbol. 2527 const ExplodedNode *AllocNode = N; 2528 const MemRegion *ReferenceRegion = nullptr; 2529 2530 while (N) { 2531 ProgramStateRef State = N->getState(); 2532 if (!State->get<RegionState>(Sym)) 2533 break; 2534 2535 // Find the most recent expression bound to the symbol in the current 2536 // context. 2537 if (!ReferenceRegion) { 2538 if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) { 2539 SVal Val = State->getSVal(MR); 2540 if (Val.getAsLocSymbol() == Sym) { 2541 const VarRegion* VR = MR->getBaseRegion()->getAs<VarRegion>(); 2542 // Do not show local variables belonging to a function other than 2543 // where the error is reported. 2544 if (!VR || 2545 (VR->getStackFrame() == LeakContext->getStackFrame())) 2546 ReferenceRegion = MR; 2547 } 2548 } 2549 } 2550 2551 // Allocation node, is the last node in the current or parent context in 2552 // which the symbol was tracked. 2553 const LocationContext *NContext = N->getLocationContext(); 2554 if (NContext == LeakContext || 2555 NContext->isParentOf(LeakContext)) 2556 AllocNode = N; 2557 N = N->pred_empty() ? nullptr : *(N->pred_begin()); 2558 } 2559 2560 return LeakInfo(AllocNode, ReferenceRegion); 2561 } 2562 2563 void MallocChecker::reportLeak(SymbolRef Sym, ExplodedNode *N, 2564 CheckerContext &C) const { 2565 2566 if (!ChecksEnabled[CK_MallocChecker] && 2567 !ChecksEnabled[CK_NewDeleteLeaksChecker]) 2568 return; 2569 2570 const RefState *RS = C.getState()->get<RegionState>(Sym); 2571 assert(RS && "cannot leak an untracked symbol"); 2572 AllocationFamily Family = RS->getAllocationFamily(); 2573 2574 if (Family == AF_Alloca) 2575 return; 2576 2577 Optional<MallocChecker::CheckKind> 2578 CheckKind = getCheckIfTracked(Family, true); 2579 2580 if (!CheckKind.hasValue()) 2581 return; 2582 2583 assert(N); 2584 if (!BT_Leak[*CheckKind]) { 2585 BT_Leak[*CheckKind].reset(new BugType(CheckNames[*CheckKind], "Memory leak", 2586 categories::MemoryError)); 2587 // Leaks should not be reported if they are post-dominated by a sink: 2588 // (1) Sinks are higher importance bugs. 2589 // (2) NoReturnFunctionChecker uses sink nodes to represent paths ending 2590 // with __noreturn functions such as assert() or exit(). We choose not 2591 // to report leaks on such paths. 2592 BT_Leak[*CheckKind]->setSuppressOnSink(true); 2593 } 2594 2595 // Most bug reports are cached at the location where they occurred. 2596 // With leaks, we want to unique them by the location where they were 2597 // allocated, and only report a single path. 2598 PathDiagnosticLocation LocUsedForUniqueing; 2599 const ExplodedNode *AllocNode = nullptr; 2600 const MemRegion *Region = nullptr; 2601 std::tie(AllocNode, Region) = getAllocationSite(N, Sym, C); 2602 2603 const Stmt *AllocationStmt = PathDiagnosticLocation::getStmt(AllocNode); 2604 if (AllocationStmt) 2605 LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocationStmt, 2606 C.getSourceManager(), 2607 AllocNode->getLocationContext()); 2608 2609 SmallString<200> buf; 2610 llvm::raw_svector_ostream os(buf); 2611 if (Region && Region->canPrintPretty()) { 2612 os << "Potential leak of memory pointed to by "; 2613 Region->printPretty(os); 2614 } else { 2615 os << "Potential memory leak"; 2616 } 2617 2618 auto R = llvm::make_unique<BugReport>( 2619 *BT_Leak[*CheckKind], os.str(), N, LocUsedForUniqueing, 2620 AllocNode->getLocationContext()->getDecl()); 2621 R->markInteresting(Sym); 2622 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym, true)); 2623 C.emitReport(std::move(R)); 2624 } 2625 2626 void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper, 2627 CheckerContext &C) const 2628 { 2629 ProgramStateRef state = C.getState(); 2630 RegionStateTy OldRS = state->get<RegionState>(); 2631 RegionStateTy::Factory &F = state->get_context<RegionState>(); 2632 2633 RegionStateTy RS = OldRS; 2634 SmallVector<SymbolRef, 2> Errors; 2635 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2636 if (SymReaper.isDead(I->first)) { 2637 if (I->second.isAllocated() || I->second.isAllocatedOfSizeZero()) 2638 Errors.push_back(I->first); 2639 // Remove the dead symbol from the map. 2640 RS = F.remove(RS, I->first); 2641 } 2642 } 2643 2644 if (RS == OldRS) { 2645 // We shouldn't have touched other maps yet. 2646 assert(state->get<ReallocPairs>() == 2647 C.getState()->get<ReallocPairs>()); 2648 assert(state->get<FreeReturnValue>() == 2649 C.getState()->get<FreeReturnValue>()); 2650 return; 2651 } 2652 2653 // Cleanup the Realloc Pairs Map. 2654 ReallocPairsTy RP = state->get<ReallocPairs>(); 2655 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 2656 if (SymReaper.isDead(I->first) || 2657 SymReaper.isDead(I->second.ReallocatedSym)) { 2658 state = state->remove<ReallocPairs>(I->first); 2659 } 2660 } 2661 2662 // Cleanup the FreeReturnValue Map. 2663 FreeReturnValueTy FR = state->get<FreeReturnValue>(); 2664 for (FreeReturnValueTy::iterator I = FR.begin(), E = FR.end(); I != E; ++I) { 2665 if (SymReaper.isDead(I->first) || 2666 SymReaper.isDead(I->second)) { 2667 state = state->remove<FreeReturnValue>(I->first); 2668 } 2669 } 2670 2671 // Generate leak node. 2672 ExplodedNode *N = C.getPredecessor(); 2673 if (!Errors.empty()) { 2674 static CheckerProgramPointTag Tag("MallocChecker", "DeadSymbolsLeak"); 2675 N = C.generateNonFatalErrorNode(C.getState(), &Tag); 2676 if (N) { 2677 for (SmallVectorImpl<SymbolRef>::iterator 2678 I = Errors.begin(), E = Errors.end(); I != E; ++I) { 2679 reportLeak(*I, N, C); 2680 } 2681 } 2682 } 2683 2684 C.addTransition(state->set<RegionState>(RS), N); 2685 } 2686 2687 void MallocChecker::checkPreCall(const CallEvent &Call, 2688 CheckerContext &C) const { 2689 2690 if (const CXXDestructorCall *DC = dyn_cast<CXXDestructorCall>(&Call)) { 2691 SymbolRef Sym = DC->getCXXThisVal().getAsSymbol(); 2692 if (!Sym || checkDoubleDelete(Sym, C)) 2693 return; 2694 } 2695 2696 // We will check for double free in the post visit. 2697 if (const AnyFunctionCall *FC = dyn_cast<AnyFunctionCall>(&Call)) { 2698 const FunctionDecl *FD = FC->getDecl(); 2699 if (!FD) 2700 return; 2701 2702 ASTContext &Ctx = C.getASTContext(); 2703 if (ChecksEnabled[CK_MallocChecker] && 2704 (MemFunctionInfo.isCMemFunction(FD, Ctx, AF_Malloc, 2705 MemoryOperationKind::MOK_Free) || 2706 MemFunctionInfo.isCMemFunction(FD, Ctx, AF_IfNameIndex, 2707 MemoryOperationKind::MOK_Free))) 2708 return; 2709 } 2710 2711 // Check if the callee of a method is deleted. 2712 if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(&Call)) { 2713 SymbolRef Sym = CC->getCXXThisVal().getAsSymbol(); 2714 if (!Sym || checkUseAfterFree(Sym, C, CC->getCXXThisExpr())) 2715 return; 2716 } 2717 2718 // Check arguments for being used after free. 2719 for (unsigned I = 0, E = Call.getNumArgs(); I != E; ++I) { 2720 SVal ArgSVal = Call.getArgSVal(I); 2721 if (ArgSVal.getAs<Loc>()) { 2722 SymbolRef Sym = ArgSVal.getAsSymbol(); 2723 if (!Sym) 2724 continue; 2725 if (checkUseAfterFree(Sym, C, Call.getArgExpr(I))) 2726 return; 2727 } 2728 } 2729 } 2730 2731 void MallocChecker::checkPreStmt(const ReturnStmt *S, 2732 CheckerContext &C) const { 2733 checkEscapeOnReturn(S, C); 2734 } 2735 2736 // In the CFG, automatic destructors come after the return statement. 2737 // This callback checks for returning memory that is freed by automatic 2738 // destructors, as those cannot be reached in checkPreStmt(). 2739 void MallocChecker::checkEndFunction(const ReturnStmt *S, 2740 CheckerContext &C) const { 2741 checkEscapeOnReturn(S, C); 2742 } 2743 2744 void MallocChecker::checkEscapeOnReturn(const ReturnStmt *S, 2745 CheckerContext &C) const { 2746 if (!S) 2747 return; 2748 2749 const Expr *E = S->getRetValue(); 2750 if (!E) 2751 return; 2752 2753 // Check if we are returning a symbol. 2754 ProgramStateRef State = C.getState(); 2755 SVal RetVal = C.getSVal(E); 2756 SymbolRef Sym = RetVal.getAsSymbol(); 2757 if (!Sym) 2758 // If we are returning a field of the allocated struct or an array element, 2759 // the callee could still free the memory. 2760 // TODO: This logic should be a part of generic symbol escape callback. 2761 if (const MemRegion *MR = RetVal.getAsRegion()) 2762 if (isa<FieldRegion>(MR) || isa<ElementRegion>(MR)) 2763 if (const SymbolicRegion *BMR = 2764 dyn_cast<SymbolicRegion>(MR->getBaseRegion())) 2765 Sym = BMR->getSymbol(); 2766 2767 // Check if we are returning freed memory. 2768 if (Sym) 2769 checkUseAfterFree(Sym, C, E); 2770 } 2771 2772 // TODO: Blocks should be either inlined or should call invalidate regions 2773 // upon invocation. After that's in place, special casing here will not be 2774 // needed. 2775 void MallocChecker::checkPostStmt(const BlockExpr *BE, 2776 CheckerContext &C) const { 2777 2778 // Scan the BlockDecRefExprs for any object the retain count checker 2779 // may be tracking. 2780 if (!BE->getBlockDecl()->hasCaptures()) 2781 return; 2782 2783 ProgramStateRef state = C.getState(); 2784 const BlockDataRegion *R = 2785 cast<BlockDataRegion>(C.getSVal(BE).getAsRegion()); 2786 2787 BlockDataRegion::referenced_vars_iterator I = R->referenced_vars_begin(), 2788 E = R->referenced_vars_end(); 2789 2790 if (I == E) 2791 return; 2792 2793 SmallVector<const MemRegion*, 10> Regions; 2794 const LocationContext *LC = C.getLocationContext(); 2795 MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager(); 2796 2797 for ( ; I != E; ++I) { 2798 const VarRegion *VR = I.getCapturedRegion(); 2799 if (VR->getSuperRegion() == R) { 2800 VR = MemMgr.getVarRegion(VR->getDecl(), LC); 2801 } 2802 Regions.push_back(VR); 2803 } 2804 2805 state = 2806 state->scanReachableSymbols<StopTrackingCallback>(Regions).getState(); 2807 C.addTransition(state); 2808 } 2809 2810 static bool isReleased(SymbolRef Sym, CheckerContext &C) { 2811 assert(Sym); 2812 const RefState *RS = C.getState()->get<RegionState>(Sym); 2813 return (RS && RS->isReleased()); 2814 } 2815 2816 bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C, 2817 const Stmt *S) const { 2818 2819 if (isReleased(Sym, C)) { 2820 ReportUseAfterFree(C, S->getSourceRange(), Sym); 2821 return true; 2822 } 2823 2824 return false; 2825 } 2826 2827 void MallocChecker::checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 2828 const Stmt *S) const { 2829 assert(Sym); 2830 2831 if (const RefState *RS = C.getState()->get<RegionState>(Sym)) { 2832 if (RS->isAllocatedOfSizeZero()) 2833 ReportUseZeroAllocated(C, RS->getStmt()->getSourceRange(), Sym); 2834 } 2835 else if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) { 2836 ReportUseZeroAllocated(C, S->getSourceRange(), Sym); 2837 } 2838 } 2839 2840 bool MallocChecker::checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const { 2841 2842 if (isReleased(Sym, C)) { 2843 ReportDoubleDelete(C, Sym); 2844 return true; 2845 } 2846 return false; 2847 } 2848 2849 // Check if the location is a freed symbolic region. 2850 void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S, 2851 CheckerContext &C) const { 2852 SymbolRef Sym = l.getLocSymbolInBase(); 2853 if (Sym) { 2854 checkUseAfterFree(Sym, C, S); 2855 checkUseZeroAllocated(Sym, C, S); 2856 } 2857 } 2858 2859 // If a symbolic region is assumed to NULL (or another constant), stop tracking 2860 // it - assuming that allocation failed on this path. 2861 ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state, 2862 SVal Cond, 2863 bool Assumption) const { 2864 RegionStateTy RS = state->get<RegionState>(); 2865 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2866 // If the symbol is assumed to be NULL, remove it from consideration. 2867 ConstraintManager &CMgr = state->getConstraintManager(); 2868 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 2869 if (AllocFailed.isConstrainedTrue()) 2870 state = state->remove<RegionState>(I.getKey()); 2871 } 2872 2873 // Realloc returns 0 when reallocation fails, which means that we should 2874 // restore the state of the pointer being reallocated. 2875 ReallocPairsTy RP = state->get<ReallocPairs>(); 2876 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 2877 // If the symbol is assumed to be NULL, remove it from consideration. 2878 ConstraintManager &CMgr = state->getConstraintManager(); 2879 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 2880 if (!AllocFailed.isConstrainedTrue()) 2881 continue; 2882 2883 SymbolRef ReallocSym = I.getData().ReallocatedSym; 2884 if (const RefState *RS = state->get<RegionState>(ReallocSym)) { 2885 if (RS->isReleased()) { 2886 switch(I.getData().Kind) { 2887 case OAR_ToBeFreedAfterFailure: 2888 state = state->set<RegionState>(ReallocSym, 2889 RefState::getAllocated(RS->getAllocationFamily(), RS->getStmt())); 2890 break; 2891 case OAR_DoNotTrackAfterFailure: 2892 state = state->remove<RegionState>(ReallocSym); 2893 break; 2894 default: 2895 assert(I.getData().Kind == OAR_FreeOnFailure); 2896 } 2897 } 2898 } 2899 state = state->remove<ReallocPairs>(I.getKey()); 2900 } 2901 2902 return state; 2903 } 2904 2905 bool MallocChecker::mayFreeAnyEscapedMemoryOrIsModeledExplicitly( 2906 const CallEvent *Call, 2907 ProgramStateRef State, 2908 SymbolRef &EscapingSymbol) const { 2909 assert(Call); 2910 EscapingSymbol = nullptr; 2911 2912 // For now, assume that any C++ or block call can free memory. 2913 // TODO: If we want to be more optimistic here, we'll need to make sure that 2914 // regions escape to C++ containers. They seem to do that even now, but for 2915 // mysterious reasons. 2916 if (!(isa<SimpleFunctionCall>(Call) || isa<ObjCMethodCall>(Call))) 2917 return true; 2918 2919 // Check Objective-C messages by selector name. 2920 if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) { 2921 // If it's not a framework call, or if it takes a callback, assume it 2922 // can free memory. 2923 if (!Call->isInSystemHeader() || Call->argumentsMayEscape()) 2924 return true; 2925 2926 // If it's a method we know about, handle it explicitly post-call. 2927 // This should happen before the "freeWhenDone" check below. 2928 if (isKnownDeallocObjCMethodName(*Msg)) 2929 return false; 2930 2931 // If there's a "freeWhenDone" parameter, but the method isn't one we know 2932 // about, we can't be sure that the object will use free() to deallocate the 2933 // memory, so we can't model it explicitly. The best we can do is use it to 2934 // decide whether the pointer escapes. 2935 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(*Msg)) 2936 return *FreeWhenDone; 2937 2938 // If the first selector piece ends with "NoCopy", and there is no 2939 // "freeWhenDone" parameter set to zero, we know ownership is being 2940 // transferred. Again, though, we can't be sure that the object will use 2941 // free() to deallocate the memory, so we can't model it explicitly. 2942 StringRef FirstSlot = Msg->getSelector().getNameForSlot(0); 2943 if (FirstSlot.endswith("NoCopy")) 2944 return true; 2945 2946 // If the first selector starts with addPointer, insertPointer, 2947 // or replacePointer, assume we are dealing with NSPointerArray or similar. 2948 // This is similar to C++ containers (vector); we still might want to check 2949 // that the pointers get freed by following the container itself. 2950 if (FirstSlot.startswith("addPointer") || 2951 FirstSlot.startswith("insertPointer") || 2952 FirstSlot.startswith("replacePointer") || 2953 FirstSlot.equals("valueWithPointer")) { 2954 return true; 2955 } 2956 2957 // We should escape receiver on call to 'init'. This is especially relevant 2958 // to the receiver, as the corresponding symbol is usually not referenced 2959 // after the call. 2960 if (Msg->getMethodFamily() == OMF_init) { 2961 EscapingSymbol = Msg->getReceiverSVal().getAsSymbol(); 2962 return true; 2963 } 2964 2965 // Otherwise, assume that the method does not free memory. 2966 // Most framework methods do not free memory. 2967 return false; 2968 } 2969 2970 // At this point the only thing left to handle is straight function calls. 2971 const FunctionDecl *FD = cast<SimpleFunctionCall>(Call)->getDecl(); 2972 if (!FD) 2973 return true; 2974 2975 ASTContext &ASTC = State->getStateManager().getContext(); 2976 2977 // If it's one of the allocation functions we can reason about, we model 2978 // its behavior explicitly. 2979 if (MemFunctionInfo.isMemFunction(FD, ASTC)) 2980 return false; 2981 2982 // If it's not a system call, assume it frees memory. 2983 if (!Call->isInSystemHeader()) 2984 return true; 2985 2986 // White list the system functions whose arguments escape. 2987 const IdentifierInfo *II = FD->getIdentifier(); 2988 if (!II) 2989 return true; 2990 StringRef FName = II->getName(); 2991 2992 // White list the 'XXXNoCopy' CoreFoundation functions. 2993 // We specifically check these before 2994 if (FName.endswith("NoCopy")) { 2995 // Look for the deallocator argument. We know that the memory ownership 2996 // is not transferred only if the deallocator argument is 2997 // 'kCFAllocatorNull'. 2998 for (unsigned i = 1; i < Call->getNumArgs(); ++i) { 2999 const Expr *ArgE = Call->getArgExpr(i)->IgnoreParenCasts(); 3000 if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(ArgE)) { 3001 StringRef DeallocatorName = DE->getFoundDecl()->getName(); 3002 if (DeallocatorName == "kCFAllocatorNull") 3003 return false; 3004 } 3005 } 3006 return true; 3007 } 3008 3009 // Associating streams with malloced buffers. The pointer can escape if 3010 // 'closefn' is specified (and if that function does free memory), 3011 // but it will not if closefn is not specified. 3012 // Currently, we do not inspect the 'closefn' function (PR12101). 3013 if (FName == "funopen") 3014 if (Call->getNumArgs() >= 4 && Call->getArgSVal(4).isConstant(0)) 3015 return false; 3016 3017 // Do not warn on pointers passed to 'setbuf' when used with std streams, 3018 // these leaks might be intentional when setting the buffer for stdio. 3019 // http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer 3020 if (FName == "setbuf" || FName =="setbuffer" || 3021 FName == "setlinebuf" || FName == "setvbuf") { 3022 if (Call->getNumArgs() >= 1) { 3023 const Expr *ArgE = Call->getArgExpr(0)->IgnoreParenCasts(); 3024 if (const DeclRefExpr *ArgDRE = dyn_cast<DeclRefExpr>(ArgE)) 3025 if (const VarDecl *D = dyn_cast<VarDecl>(ArgDRE->getDecl())) 3026 if (D->getCanonicalDecl()->getName().find("std") != StringRef::npos) 3027 return true; 3028 } 3029 } 3030 3031 // A bunch of other functions which either take ownership of a pointer or 3032 // wrap the result up in a struct or object, meaning it can be freed later. 3033 // (See RetainCountChecker.) Not all the parameters here are invalidated, 3034 // but the Malloc checker cannot differentiate between them. The right way 3035 // of doing this would be to implement a pointer escapes callback. 3036 if (FName == "CGBitmapContextCreate" || 3037 FName == "CGBitmapContextCreateWithData" || 3038 FName == "CVPixelBufferCreateWithBytes" || 3039 FName == "CVPixelBufferCreateWithPlanarBytes" || 3040 FName == "OSAtomicEnqueue") { 3041 return true; 3042 } 3043 3044 if (FName == "postEvent" && 3045 FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") { 3046 return true; 3047 } 3048 3049 if (FName == "postEvent" && 3050 FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") { 3051 return true; 3052 } 3053 3054 if (FName == "connectImpl" && 3055 FD->getQualifiedNameAsString() == "QObject::connectImpl") { 3056 return true; 3057 } 3058 3059 // Handle cases where we know a buffer's /address/ can escape. 3060 // Note that the above checks handle some special cases where we know that 3061 // even though the address escapes, it's still our responsibility to free the 3062 // buffer. 3063 if (Call->argumentsMayEscape()) 3064 return true; 3065 3066 // Otherwise, assume that the function does not free memory. 3067 // Most system calls do not free the memory. 3068 return false; 3069 } 3070 3071 static bool checkIfNewOrNewArrayFamily(const RefState *RS) { 3072 return (RS->getAllocationFamily() == AF_CXXNewArray || 3073 RS->getAllocationFamily() == AF_CXXNew); 3074 } 3075 3076 ProgramStateRef MallocChecker::checkPointerEscape(ProgramStateRef State, 3077 const InvalidatedSymbols &Escaped, 3078 const CallEvent *Call, 3079 PointerEscapeKind Kind) const { 3080 return checkPointerEscapeAux(State, Escaped, Call, Kind, 3081 /*IsConstPointerEscape*/ false); 3082 } 3083 3084 ProgramStateRef MallocChecker::checkConstPointerEscape(ProgramStateRef State, 3085 const InvalidatedSymbols &Escaped, 3086 const CallEvent *Call, 3087 PointerEscapeKind Kind) const { 3088 // If a const pointer escapes, it may not be freed(), but it could be deleted. 3089 return checkPointerEscapeAux(State, Escaped, Call, Kind, 3090 /*IsConstPointerEscape*/ true); 3091 } 3092 3093 ProgramStateRef MallocChecker::checkPointerEscapeAux( 3094 ProgramStateRef State, 3095 const InvalidatedSymbols &Escaped, 3096 const CallEvent *Call, 3097 PointerEscapeKind Kind, 3098 bool IsConstPointerEscape) const { 3099 // If we know that the call does not free memory, or we want to process the 3100 // call later, keep tracking the top level arguments. 3101 SymbolRef EscapingSymbol = nullptr; 3102 if (Kind == PSK_DirectEscapeOnCall && 3103 !mayFreeAnyEscapedMemoryOrIsModeledExplicitly(Call, State, 3104 EscapingSymbol) && 3105 !EscapingSymbol) { 3106 return State; 3107 } 3108 3109 for (InvalidatedSymbols::const_iterator I = Escaped.begin(), 3110 E = Escaped.end(); 3111 I != E; ++I) { 3112 SymbolRef sym = *I; 3113 3114 if (EscapingSymbol && EscapingSymbol != sym) 3115 continue; 3116 3117 if (const RefState *RS = State->get<RegionState>(sym)) { 3118 if ((RS->isAllocated() || RS->isAllocatedOfSizeZero())) { 3119 if (!IsConstPointerEscape || checkIfNewOrNewArrayFamily(RS)) { 3120 State = State->remove<RegionState>(sym); 3121 State = State->set<RegionState>(sym, RefState::getEscaped(RS)); 3122 } 3123 } 3124 } 3125 } 3126 return State; 3127 } 3128 3129 static SymbolRef findFailedReallocSymbol(ProgramStateRef currState, 3130 ProgramStateRef prevState) { 3131 ReallocPairsTy currMap = currState->get<ReallocPairs>(); 3132 ReallocPairsTy prevMap = prevState->get<ReallocPairs>(); 3133 3134 for (const ReallocPairsTy::value_type &Pair : prevMap) { 3135 SymbolRef sym = Pair.first; 3136 if (!currMap.lookup(sym)) 3137 return sym; 3138 } 3139 3140 return nullptr; 3141 } 3142 3143 static bool isReferenceCountingPointerDestructor(const CXXDestructorDecl *DD) { 3144 if (const IdentifierInfo *II = DD->getParent()->getIdentifier()) { 3145 StringRef N = II->getName(); 3146 if (N.contains_lower("ptr") || N.contains_lower("pointer")) { 3147 if (N.contains_lower("ref") || N.contains_lower("cnt") || 3148 N.contains_lower("intrusive") || N.contains_lower("shared")) { 3149 return true; 3150 } 3151 } 3152 } 3153 return false; 3154 } 3155 3156 std::shared_ptr<PathDiagnosticPiece> MallocBugVisitor::VisitNode( 3157 const ExplodedNode *N, BugReporterContext &BRC, BugReport &BR) { 3158 3159 ProgramStateRef state = N->getState(); 3160 ProgramStateRef statePrev = N->getFirstPred()->getState(); 3161 3162 const RefState *RSCurr = state->get<RegionState>(Sym); 3163 const RefState *RSPrev = statePrev->get<RegionState>(Sym); 3164 3165 const Stmt *S = PathDiagnosticLocation::getStmt(N); 3166 // When dealing with containers, we sometimes want to give a note 3167 // even if the statement is missing. 3168 if (!S && (!RSCurr || RSCurr->getAllocationFamily() != AF_InnerBuffer)) 3169 return nullptr; 3170 3171 const LocationContext *CurrentLC = N->getLocationContext(); 3172 3173 // If we find an atomic fetch_add or fetch_sub within the destructor in which 3174 // the pointer was released (before the release), this is likely a destructor 3175 // of a shared pointer. 3176 // Because we don't model atomics, and also because we don't know that the 3177 // original reference count is positive, we should not report use-after-frees 3178 // on objects deleted in such destructors. This can probably be improved 3179 // through better shared pointer modeling. 3180 if (ReleaseDestructorLC) { 3181 if (const auto *AE = dyn_cast<AtomicExpr>(S)) { 3182 AtomicExpr::AtomicOp Op = AE->getOp(); 3183 if (Op == AtomicExpr::AO__c11_atomic_fetch_add || 3184 Op == AtomicExpr::AO__c11_atomic_fetch_sub) { 3185 if (ReleaseDestructorLC == CurrentLC || 3186 ReleaseDestructorLC->isParentOf(CurrentLC)) { 3187 BR.markInvalid(getTag(), S); 3188 } 3189 } 3190 } 3191 } 3192 3193 // FIXME: We will eventually need to handle non-statement-based events 3194 // (__attribute__((cleanup))). 3195 3196 // Find out if this is an interesting point and what is the kind. 3197 StringRef Msg; 3198 StackHintGeneratorForSymbol *StackHint = nullptr; 3199 SmallString<256> Buf; 3200 llvm::raw_svector_ostream OS(Buf); 3201 3202 if (Mode == Normal) { 3203 if (isAllocated(RSCurr, RSPrev, S)) { 3204 Msg = "Memory is allocated"; 3205 StackHint = new StackHintGeneratorForSymbol(Sym, 3206 "Returned allocated memory"); 3207 } else if (isReleased(RSCurr, RSPrev, S)) { 3208 const auto Family = RSCurr->getAllocationFamily(); 3209 switch (Family) { 3210 case AF_Alloca: 3211 case AF_Malloc: 3212 case AF_CXXNew: 3213 case AF_CXXNewArray: 3214 case AF_IfNameIndex: 3215 Msg = "Memory is released"; 3216 StackHint = new StackHintGeneratorForSymbol(Sym, 3217 "Returning; memory was released"); 3218 break; 3219 case AF_InnerBuffer: { 3220 const MemRegion *ObjRegion = 3221 allocation_state::getContainerObjRegion(statePrev, Sym); 3222 const auto *TypedRegion = cast<TypedValueRegion>(ObjRegion); 3223 QualType ObjTy = TypedRegion->getValueType(); 3224 OS << "Inner buffer of '" << ObjTy.getAsString() << "' "; 3225 3226 if (N->getLocation().getKind() == ProgramPoint::PostImplicitCallKind) { 3227 OS << "deallocated by call to destructor"; 3228 StackHint = new StackHintGeneratorForSymbol(Sym, 3229 "Returning; inner buffer was deallocated"); 3230 } else { 3231 OS << "reallocated by call to '"; 3232 const Stmt *S = RSCurr->getStmt(); 3233 if (const auto *MemCallE = dyn_cast<CXXMemberCallExpr>(S)) { 3234 OS << MemCallE->getMethodDecl()->getNameAsString(); 3235 } else if (const auto *OpCallE = dyn_cast<CXXOperatorCallExpr>(S)) { 3236 OS << OpCallE->getDirectCallee()->getNameAsString(); 3237 } else if (const auto *CallE = dyn_cast<CallExpr>(S)) { 3238 auto &CEMgr = BRC.getStateManager().getCallEventManager(); 3239 CallEventRef<> Call = CEMgr.getSimpleCall(CallE, state, CurrentLC); 3240 const auto *D = dyn_cast_or_null<NamedDecl>(Call->getDecl()); 3241 OS << (D ? D->getNameAsString() : "unknown"); 3242 } 3243 OS << "'"; 3244 StackHint = new StackHintGeneratorForSymbol(Sym, 3245 "Returning; inner buffer was reallocated"); 3246 } 3247 Msg = OS.str(); 3248 break; 3249 } 3250 case AF_None: 3251 llvm_unreachable("Unhandled allocation family!"); 3252 } 3253 3254 // See if we're releasing memory while inlining a destructor 3255 // (or one of its callees). This turns on various common 3256 // false positive suppressions. 3257 bool FoundAnyDestructor = false; 3258 for (const LocationContext *LC = CurrentLC; LC; LC = LC->getParent()) { 3259 if (const auto *DD = dyn_cast<CXXDestructorDecl>(LC->getDecl())) { 3260 if (isReferenceCountingPointerDestructor(DD)) { 3261 // This immediately looks like a reference-counting destructor. 3262 // We're bad at guessing the original reference count of the object, 3263 // so suppress the report for now. 3264 BR.markInvalid(getTag(), DD); 3265 } else if (!FoundAnyDestructor) { 3266 assert(!ReleaseDestructorLC && 3267 "There can be only one release point!"); 3268 // Suspect that it's a reference counting pointer destructor. 3269 // On one of the next nodes might find out that it has atomic 3270 // reference counting operations within it (see the code above), 3271 // and if so, we'd conclude that it likely is a reference counting 3272 // pointer destructor. 3273 ReleaseDestructorLC = LC->getStackFrame(); 3274 // It is unlikely that releasing memory is delegated to a destructor 3275 // inside a destructor of a shared pointer, because it's fairly hard 3276 // to pass the information that the pointer indeed needs to be 3277 // released into it. So we're only interested in the innermost 3278 // destructor. 3279 FoundAnyDestructor = true; 3280 } 3281 } 3282 } 3283 } else if (isRelinquished(RSCurr, RSPrev, S)) { 3284 Msg = "Memory ownership is transferred"; 3285 StackHint = new StackHintGeneratorForSymbol(Sym, ""); 3286 } else if (hasReallocFailed(RSCurr, RSPrev, S)) { 3287 Mode = ReallocationFailed; 3288 Msg = "Reallocation failed"; 3289 StackHint = new StackHintGeneratorForReallocationFailed(Sym, 3290 "Reallocation failed"); 3291 3292 if (SymbolRef sym = findFailedReallocSymbol(state, statePrev)) { 3293 // Is it possible to fail two reallocs WITHOUT testing in between? 3294 assert((!FailedReallocSymbol || FailedReallocSymbol == sym) && 3295 "We only support one failed realloc at a time."); 3296 BR.markInteresting(sym); 3297 FailedReallocSymbol = sym; 3298 } 3299 } 3300 3301 // We are in a special mode if a reallocation failed later in the path. 3302 } else if (Mode == ReallocationFailed) { 3303 assert(FailedReallocSymbol && "No symbol to look for."); 3304 3305 // Is this is the first appearance of the reallocated symbol? 3306 if (!statePrev->get<RegionState>(FailedReallocSymbol)) { 3307 // We're at the reallocation point. 3308 Msg = "Attempt to reallocate memory"; 3309 StackHint = new StackHintGeneratorForSymbol(Sym, 3310 "Returned reallocated memory"); 3311 FailedReallocSymbol = nullptr; 3312 Mode = Normal; 3313 } 3314 } 3315 3316 if (Msg.empty()) 3317 return nullptr; 3318 assert(StackHint); 3319 3320 // Generate the extra diagnostic. 3321 PathDiagnosticLocation Pos; 3322 if (!S) { 3323 assert(RSCurr->getAllocationFamily() == AF_InnerBuffer); 3324 auto PostImplCall = N->getLocation().getAs<PostImplicitCall>(); 3325 if (!PostImplCall) 3326 return nullptr; 3327 Pos = PathDiagnosticLocation(PostImplCall->getLocation(), 3328 BRC.getSourceManager()); 3329 } else { 3330 Pos = PathDiagnosticLocation(S, BRC.getSourceManager(), 3331 N->getLocationContext()); 3332 } 3333 3334 return std::make_shared<PathDiagnosticEventPiece>(Pos, Msg, true, StackHint); 3335 } 3336 3337 void MallocChecker::printState(raw_ostream &Out, ProgramStateRef State, 3338 const char *NL, const char *Sep) const { 3339 3340 RegionStateTy RS = State->get<RegionState>(); 3341 3342 if (!RS.isEmpty()) { 3343 Out << Sep << "MallocChecker :" << NL; 3344 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 3345 const RefState *RefS = State->get<RegionState>(I.getKey()); 3346 AllocationFamily Family = RefS->getAllocationFamily(); 3347 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 3348 if (!CheckKind.hasValue()) 3349 CheckKind = getCheckIfTracked(Family, true); 3350 3351 I.getKey()->dumpToStream(Out); 3352 Out << " : "; 3353 I.getData().dump(Out); 3354 if (CheckKind.hasValue()) 3355 Out << " (" << CheckNames[*CheckKind].getName() << ")"; 3356 Out << NL; 3357 } 3358 } 3359 } 3360 3361 namespace clang { 3362 namespace ento { 3363 namespace allocation_state { 3364 3365 ProgramStateRef 3366 markReleased(ProgramStateRef State, SymbolRef Sym, const Expr *Origin) { 3367 AllocationFamily Family = AF_InnerBuffer; 3368 return State->set<RegionState>(Sym, RefState::getReleased(Family, Origin)); 3369 } 3370 3371 } // end namespace allocation_state 3372 } // end namespace ento 3373 } // end namespace clang 3374 3375 void ento::registerNewDeleteLeaksChecker(CheckerManager &mgr) { 3376 registerCStringCheckerBasic(mgr); 3377 MallocChecker *checker = mgr.registerChecker<MallocChecker>(); 3378 3379 checker->MemFunctionInfo.ShouldIncludeOwnershipAnnotatedFunctions = 3380 mgr.getAnalyzerOptions().getCheckerBooleanOption( 3381 "Optimistic", false, checker); 3382 3383 checker->ChecksEnabled[MallocChecker::CK_NewDeleteLeaksChecker] = true; 3384 checker->CheckNames[MallocChecker::CK_NewDeleteLeaksChecker] = 3385 mgr.getCurrentCheckName(); 3386 // We currently treat NewDeleteLeaks checker as a subchecker of NewDelete 3387 // checker. 3388 if (!checker->ChecksEnabled[MallocChecker::CK_NewDeleteChecker]) { 3389 checker->ChecksEnabled[MallocChecker::CK_NewDeleteChecker] = true; 3390 // FIXME: This does not set the correct name, but without this workaround 3391 // no name will be set at all. 3392 checker->CheckNames[MallocChecker::CK_NewDeleteChecker] = 3393 mgr.getCurrentCheckName(); 3394 } 3395 } 3396 3397 // Intended to be used in InnerPointerChecker to register the part of 3398 // MallocChecker connected to it. 3399 void ento::registerInnerPointerCheckerAux(CheckerManager &mgr) { 3400 registerCStringCheckerBasic(mgr); 3401 MallocChecker *checker = mgr.registerChecker<MallocChecker>(); 3402 3403 checker->MemFunctionInfo.ShouldIncludeOwnershipAnnotatedFunctions = 3404 mgr.getAnalyzerOptions().getCheckerBooleanOption( 3405 "Optimistic", false, checker); 3406 3407 checker->ChecksEnabled[MallocChecker::CK_InnerPointerChecker] = true; 3408 checker->CheckNames[MallocChecker::CK_InnerPointerChecker] = 3409 mgr.getCurrentCheckName(); 3410 } 3411 3412 #define REGISTER_CHECKER(name) \ 3413 void ento::register##name(CheckerManager &mgr) { \ 3414 registerCStringCheckerBasic(mgr); \ 3415 MallocChecker *checker = mgr.registerChecker<MallocChecker>(); \ 3416 checker->MemFunctionInfo.ShouldIncludeOwnershipAnnotatedFunctions = \ 3417 mgr.getAnalyzerOptions().getCheckerBooleanOption( \ 3418 "Optimistic", false, checker);\ 3419 checker->ChecksEnabled[MallocChecker::CK_##name] = true; \ 3420 checker->CheckNames[MallocChecker::CK_##name] = mgr.getCurrentCheckName(); \ 3421 } 3422 3423 REGISTER_CHECKER(MallocChecker) 3424 REGISTER_CHECKER(NewDeleteChecker) 3425 REGISTER_CHECKER(MismatchedDeallocatorChecker) 3426