1 //=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines malloc/free checker, which checks for potential memory 11 // leaks, double free, and use-after-free problems. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ClangSACheckers.h" 16 #include "InterCheckerAPI.h" 17 #include "clang/AST/Attr.h" 18 #include "clang/AST/ParentMap.h" 19 #include "clang/Basic/SourceManager.h" 20 #include "clang/Basic/TargetInfo.h" 21 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 22 #include "clang/StaticAnalyzer/Core/BugReporter/CommonBugCategories.h" 23 #include "clang/StaticAnalyzer/Core/Checker.h" 24 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 25 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 26 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 27 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 28 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 29 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/StringExtras.h" 33 #include <climits> 34 #include <utility> 35 36 using namespace clang; 37 using namespace ento; 38 39 namespace { 40 41 // Used to check correspondence between allocators and deallocators. 42 enum AllocationFamily { 43 AF_None, 44 AF_Malloc, 45 AF_CXXNew, 46 AF_CXXNewArray, 47 AF_IfNameIndex, 48 AF_Alloca 49 }; 50 51 class RefState { 52 enum Kind { // Reference to allocated memory. 53 Allocated, 54 // Reference to zero-allocated memory. 55 AllocatedOfSizeZero, 56 // Reference to released/freed memory. 57 Released, 58 // The responsibility for freeing resources has transferred from 59 // this reference. A relinquished symbol should not be freed. 60 Relinquished, 61 // We are no longer guaranteed to have observed all manipulations 62 // of this pointer/memory. For example, it could have been 63 // passed as a parameter to an opaque function. 64 Escaped 65 }; 66 67 const Stmt *S; 68 unsigned K : 3; // Kind enum, but stored as a bitfield. 69 unsigned Family : 29; // Rest of 32-bit word, currently just an allocation 70 // family. 71 72 RefState(Kind k, const Stmt *s, unsigned family) 73 : S(s), K(k), Family(family) { 74 assert(family != AF_None); 75 } 76 public: 77 bool isAllocated() const { return K == Allocated; } 78 bool isAllocatedOfSizeZero() const { return K == AllocatedOfSizeZero; } 79 bool isReleased() const { return K == Released; } 80 bool isRelinquished() const { return K == Relinquished; } 81 bool isEscaped() const { return K == Escaped; } 82 AllocationFamily getAllocationFamily() const { 83 return (AllocationFamily)Family; 84 } 85 const Stmt *getStmt() const { return S; } 86 87 bool operator==(const RefState &X) const { 88 return K == X.K && S == X.S && Family == X.Family; 89 } 90 91 static RefState getAllocated(unsigned family, const Stmt *s) { 92 return RefState(Allocated, s, family); 93 } 94 static RefState getAllocatedOfSizeZero(const RefState *RS) { 95 return RefState(AllocatedOfSizeZero, RS->getStmt(), 96 RS->getAllocationFamily()); 97 } 98 static RefState getReleased(unsigned family, const Stmt *s) { 99 return RefState(Released, s, family); 100 } 101 static RefState getRelinquished(unsigned family, const Stmt *s) { 102 return RefState(Relinquished, s, family); 103 } 104 static RefState getEscaped(const RefState *RS) { 105 return RefState(Escaped, RS->getStmt(), RS->getAllocationFamily()); 106 } 107 108 void Profile(llvm::FoldingSetNodeID &ID) const { 109 ID.AddInteger(K); 110 ID.AddPointer(S); 111 ID.AddInteger(Family); 112 } 113 114 void dump(raw_ostream &OS) const { 115 switch (static_cast<Kind>(K)) { 116 #define CASE(ID) case ID: OS << #ID; break; 117 CASE(Allocated) 118 CASE(AllocatedOfSizeZero) 119 CASE(Released) 120 CASE(Relinquished) 121 CASE(Escaped) 122 } 123 } 124 125 LLVM_DUMP_METHOD void dump() const { dump(llvm::errs()); } 126 }; 127 128 enum ReallocPairKind { 129 RPToBeFreedAfterFailure, 130 // The symbol has been freed when reallocation failed. 131 RPIsFreeOnFailure, 132 // The symbol does not need to be freed after reallocation fails. 133 RPDoNotTrackAfterFailure 134 }; 135 136 /// \class ReallocPair 137 /// \brief Stores information about the symbol being reallocated by a call to 138 /// 'realloc' to allow modeling failed reallocation later in the path. 139 struct ReallocPair { 140 // \brief The symbol which realloc reallocated. 141 SymbolRef ReallocatedSym; 142 ReallocPairKind Kind; 143 144 ReallocPair(SymbolRef S, ReallocPairKind K) : 145 ReallocatedSym(S), Kind(K) {} 146 void Profile(llvm::FoldingSetNodeID &ID) const { 147 ID.AddInteger(Kind); 148 ID.AddPointer(ReallocatedSym); 149 } 150 bool operator==(const ReallocPair &X) const { 151 return ReallocatedSym == X.ReallocatedSym && 152 Kind == X.Kind; 153 } 154 }; 155 156 typedef std::pair<const ExplodedNode*, const MemRegion*> LeakInfo; 157 158 class MallocChecker : public Checker<check::DeadSymbols, 159 check::PointerEscape, 160 check::ConstPointerEscape, 161 check::PreStmt<ReturnStmt>, 162 check::PreCall, 163 check::PostStmt<CallExpr>, 164 check::PostStmt<CXXNewExpr>, 165 check::NewAllocator, 166 check::PreStmt<CXXDeleteExpr>, 167 check::PostStmt<BlockExpr>, 168 check::PostObjCMessage, 169 check::Location, 170 eval::Assume> 171 { 172 public: 173 MallocChecker() 174 : II_alloca(nullptr), II_win_alloca(nullptr), II_malloc(nullptr), 175 II_free(nullptr), II_realloc(nullptr), II_calloc(nullptr), 176 II_valloc(nullptr), II_reallocf(nullptr), II_strndup(nullptr), 177 II_strdup(nullptr), II_win_strdup(nullptr), II_kmalloc(nullptr), 178 II_if_nameindex(nullptr), II_if_freenameindex(nullptr), 179 II_wcsdup(nullptr), II_win_wcsdup(nullptr), II_g_malloc(nullptr), 180 II_g_malloc0(nullptr), II_g_realloc(nullptr), II_g_try_malloc(nullptr), 181 II_g_try_malloc0(nullptr), II_g_try_realloc(nullptr), 182 II_g_free(nullptr), II_g_memdup(nullptr), II_g_malloc_n(nullptr), 183 II_g_malloc0_n(nullptr), II_g_realloc_n(nullptr), 184 II_g_try_malloc_n(nullptr), II_g_try_malloc0_n(nullptr), 185 II_g_try_realloc_n(nullptr) {} 186 187 /// In pessimistic mode, the checker assumes that it does not know which 188 /// functions might free the memory. 189 enum CheckKind { 190 CK_MallocChecker, 191 CK_NewDeleteChecker, 192 CK_NewDeleteLeaksChecker, 193 CK_MismatchedDeallocatorChecker, 194 CK_NumCheckKinds 195 }; 196 197 enum class MemoryOperationKind { 198 MOK_Allocate, 199 MOK_Free, 200 MOK_Any 201 }; 202 203 DefaultBool IsOptimistic; 204 205 DefaultBool ChecksEnabled[CK_NumCheckKinds]; 206 CheckName CheckNames[CK_NumCheckKinds]; 207 208 void checkPreCall(const CallEvent &Call, CheckerContext &C) const; 209 void checkPostStmt(const CallExpr *CE, CheckerContext &C) const; 210 void checkPostStmt(const CXXNewExpr *NE, CheckerContext &C) const; 211 void checkNewAllocator(const CXXNewExpr *NE, SVal Target, 212 CheckerContext &C) const; 213 void checkPreStmt(const CXXDeleteExpr *DE, CheckerContext &C) const; 214 void checkPostObjCMessage(const ObjCMethodCall &Call, CheckerContext &C) const; 215 void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const; 216 void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const; 217 void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const; 218 ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond, 219 bool Assumption) const; 220 void checkLocation(SVal l, bool isLoad, const Stmt *S, 221 CheckerContext &C) const; 222 223 ProgramStateRef checkPointerEscape(ProgramStateRef State, 224 const InvalidatedSymbols &Escaped, 225 const CallEvent *Call, 226 PointerEscapeKind Kind) const; 227 ProgramStateRef checkConstPointerEscape(ProgramStateRef State, 228 const InvalidatedSymbols &Escaped, 229 const CallEvent *Call, 230 PointerEscapeKind Kind) const; 231 232 void printState(raw_ostream &Out, ProgramStateRef State, 233 const char *NL, const char *Sep) const override; 234 235 private: 236 mutable std::unique_ptr<BugType> BT_DoubleFree[CK_NumCheckKinds]; 237 mutable std::unique_ptr<BugType> BT_DoubleDelete; 238 mutable std::unique_ptr<BugType> BT_Leak[CK_NumCheckKinds]; 239 mutable std::unique_ptr<BugType> BT_UseFree[CK_NumCheckKinds]; 240 mutable std::unique_ptr<BugType> BT_BadFree[CK_NumCheckKinds]; 241 mutable std::unique_ptr<BugType> BT_FreeAlloca[CK_NumCheckKinds]; 242 mutable std::unique_ptr<BugType> BT_MismatchedDealloc; 243 mutable std::unique_ptr<BugType> BT_OffsetFree[CK_NumCheckKinds]; 244 mutable std::unique_ptr<BugType> BT_UseZerroAllocated[CK_NumCheckKinds]; 245 mutable IdentifierInfo *II_alloca, *II_win_alloca, *II_malloc, *II_free, 246 *II_realloc, *II_calloc, *II_valloc, *II_reallocf, 247 *II_strndup, *II_strdup, *II_win_strdup, *II_kmalloc, 248 *II_if_nameindex, *II_if_freenameindex, *II_wcsdup, 249 *II_win_wcsdup, *II_g_malloc, *II_g_malloc0, 250 *II_g_realloc, *II_g_try_malloc, *II_g_try_malloc0, 251 *II_g_try_realloc, *II_g_free, *II_g_memdup, 252 *II_g_malloc_n, *II_g_malloc0_n, *II_g_realloc_n, 253 *II_g_try_malloc_n, *II_g_try_malloc0_n, 254 *II_g_try_realloc_n; 255 mutable Optional<uint64_t> KernelZeroFlagVal; 256 257 void initIdentifierInfo(ASTContext &C) const; 258 259 /// \brief Determine family of a deallocation expression. 260 AllocationFamily getAllocationFamily(CheckerContext &C, const Stmt *S) const; 261 262 /// \brief Print names of allocators and deallocators. 263 /// 264 /// \returns true on success. 265 bool printAllocDeallocName(raw_ostream &os, CheckerContext &C, 266 const Expr *E) const; 267 268 /// \brief Print expected name of an allocator based on the deallocator's 269 /// family derived from the DeallocExpr. 270 void printExpectedAllocName(raw_ostream &os, CheckerContext &C, 271 const Expr *DeallocExpr) const; 272 /// \brief Print expected name of a deallocator based on the allocator's 273 /// family. 274 void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family) const; 275 276 ///@{ 277 /// Check if this is one of the functions which can allocate/reallocate memory 278 /// pointed to by one of its arguments. 279 bool isMemFunction(const FunctionDecl *FD, ASTContext &C) const; 280 bool isCMemFunction(const FunctionDecl *FD, 281 ASTContext &C, 282 AllocationFamily Family, 283 MemoryOperationKind MemKind) const; 284 bool isStandardNewDelete(const FunctionDecl *FD, ASTContext &C) const; 285 ///@} 286 287 /// \brief Process C++ operator new()'s allocation, which is the part of C++ 288 /// new-expression that goes before the constructor. 289 void processNewAllocation(const CXXNewExpr *NE, CheckerContext &C, 290 SVal Target) const; 291 292 /// \brief Perform a zero-allocation check. 293 /// The optional \p RetVal parameter specifies the newly allocated pointer 294 /// value; if unspecified, the value of expression \p E is used. 295 ProgramStateRef ProcessZeroAllocation(CheckerContext &C, const Expr *E, 296 const unsigned AllocationSizeArg, 297 ProgramStateRef State, 298 Optional<SVal> RetVal = None) const; 299 300 ProgramStateRef MallocMemReturnsAttr(CheckerContext &C, 301 const CallExpr *CE, 302 const OwnershipAttr* Att, 303 ProgramStateRef State) const; 304 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE, 305 const Expr *SizeEx, SVal Init, 306 ProgramStateRef State, 307 AllocationFamily Family = AF_Malloc); 308 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE, 309 SVal SizeEx, SVal Init, 310 ProgramStateRef State, 311 AllocationFamily Family = AF_Malloc); 312 313 static ProgramStateRef addExtentSize(CheckerContext &C, const CXXNewExpr *NE, 314 ProgramStateRef State, SVal Target); 315 316 // Check if this malloc() for special flags. At present that means M_ZERO or 317 // __GFP_ZERO (in which case, treat it like calloc). 318 llvm::Optional<ProgramStateRef> 319 performKernelMalloc(const CallExpr *CE, CheckerContext &C, 320 const ProgramStateRef &State) const; 321 322 /// Update the RefState to reflect the new memory allocation. 323 /// The optional \p RetVal parameter specifies the newly allocated pointer 324 /// value; if unspecified, the value of expression \p E is used. 325 static ProgramStateRef 326 MallocUpdateRefState(CheckerContext &C, const Expr *E, ProgramStateRef State, 327 AllocationFamily Family = AF_Malloc, 328 Optional<SVal> RetVal = None); 329 330 ProgramStateRef FreeMemAttr(CheckerContext &C, const CallExpr *CE, 331 const OwnershipAttr* Att, 332 ProgramStateRef State) const; 333 ProgramStateRef FreeMemAux(CheckerContext &C, const CallExpr *CE, 334 ProgramStateRef state, unsigned Num, 335 bool Hold, 336 bool &ReleasedAllocated, 337 bool ReturnsNullOnFailure = false) const; 338 ProgramStateRef FreeMemAux(CheckerContext &C, const Expr *Arg, 339 const Expr *ParentExpr, 340 ProgramStateRef State, 341 bool Hold, 342 bool &ReleasedAllocated, 343 bool ReturnsNullOnFailure = false) const; 344 345 ProgramStateRef ReallocMemAux(CheckerContext &C, const CallExpr *CE, 346 bool FreesMemOnFailure, 347 ProgramStateRef State, 348 bool SuffixWithN = false) const; 349 static SVal evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, 350 const Expr *BlockBytes); 351 static ProgramStateRef CallocMem(CheckerContext &C, const CallExpr *CE, 352 ProgramStateRef State); 353 354 ///\brief Check if the memory associated with this symbol was released. 355 bool isReleased(SymbolRef Sym, CheckerContext &C) const; 356 357 bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S) const; 358 359 void checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 360 const Stmt *S) const; 361 362 bool checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const; 363 364 /// Check if the function is known free memory, or if it is 365 /// "interesting" and should be modeled explicitly. 366 /// 367 /// \param [out] EscapingSymbol A function might not free memory in general, 368 /// but could be known to free a particular symbol. In this case, false is 369 /// returned and the single escaping symbol is returned through the out 370 /// parameter. 371 /// 372 /// We assume that pointers do not escape through calls to system functions 373 /// not handled by this checker. 374 bool mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent *Call, 375 ProgramStateRef State, 376 SymbolRef &EscapingSymbol) const; 377 378 // Implementation of the checkPointerEscape callabcks. 379 ProgramStateRef checkPointerEscapeAux(ProgramStateRef State, 380 const InvalidatedSymbols &Escaped, 381 const CallEvent *Call, 382 PointerEscapeKind Kind, 383 bool(*CheckRefState)(const RefState*)) const; 384 385 ///@{ 386 /// Tells if a given family/call/symbol is tracked by the current checker. 387 /// Sets CheckKind to the kind of the checker responsible for this 388 /// family/call/symbol. 389 Optional<CheckKind> getCheckIfTracked(AllocationFamily Family, 390 bool IsALeakCheck = false) const; 391 Optional<CheckKind> getCheckIfTracked(CheckerContext &C, 392 const Stmt *AllocDeallocStmt, 393 bool IsALeakCheck = false) const; 394 Optional<CheckKind> getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 395 bool IsALeakCheck = false) const; 396 ///@} 397 static bool SummarizeValue(raw_ostream &os, SVal V); 398 static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR); 399 void ReportBadFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 400 const Expr *DeallocExpr) const; 401 void ReportFreeAlloca(CheckerContext &C, SVal ArgVal, 402 SourceRange Range) const; 403 void ReportMismatchedDealloc(CheckerContext &C, SourceRange Range, 404 const Expr *DeallocExpr, const RefState *RS, 405 SymbolRef Sym, bool OwnershipTransferred) const; 406 void ReportOffsetFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 407 const Expr *DeallocExpr, 408 const Expr *AllocExpr = nullptr) const; 409 void ReportUseAfterFree(CheckerContext &C, SourceRange Range, 410 SymbolRef Sym) const; 411 void ReportDoubleFree(CheckerContext &C, SourceRange Range, bool Released, 412 SymbolRef Sym, SymbolRef PrevSym) const; 413 414 void ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const; 415 416 void ReportUseZeroAllocated(CheckerContext &C, SourceRange Range, 417 SymbolRef Sym) const; 418 419 void ReportFunctionPointerFree(CheckerContext &C, SVal ArgVal, 420 SourceRange Range, const Expr *FreeExpr) const; 421 422 /// Find the location of the allocation for Sym on the path leading to the 423 /// exploded node N. 424 LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym, 425 CheckerContext &C) const; 426 427 void reportLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const; 428 429 /// The bug visitor which allows us to print extra diagnostics along the 430 /// BugReport path. For example, showing the allocation site of the leaked 431 /// region. 432 class MallocBugVisitor final 433 : public BugReporterVisitorImpl<MallocBugVisitor> { 434 protected: 435 enum NotificationMode { 436 Normal, 437 ReallocationFailed 438 }; 439 440 // The allocated region symbol tracked by the main analysis. 441 SymbolRef Sym; 442 443 // The mode we are in, i.e. what kind of diagnostics will be emitted. 444 NotificationMode Mode; 445 446 // A symbol from when the primary region should have been reallocated. 447 SymbolRef FailedReallocSymbol; 448 449 // A C++ destructor stack frame in which memory was released. Used for 450 // miscellaneous false positive suppression. 451 const StackFrameContext *ReleaseDestructorLC; 452 453 bool IsLeak; 454 455 public: 456 MallocBugVisitor(SymbolRef S, bool isLeak = false) 457 : Sym(S), Mode(Normal), FailedReallocSymbol(nullptr), 458 ReleaseDestructorLC(nullptr), IsLeak(isLeak) {} 459 460 static void *getTag() { 461 static int Tag = 0; 462 return &Tag; 463 } 464 465 void Profile(llvm::FoldingSetNodeID &ID) const override { 466 ID.AddPointer(getTag()); 467 ID.AddPointer(Sym); 468 } 469 470 inline bool isAllocated(const RefState *S, const RefState *SPrev, 471 const Stmt *Stmt) { 472 // Did not track -> allocated. Other state (released) -> allocated. 473 return (Stmt && (isa<CallExpr>(Stmt) || isa<CXXNewExpr>(Stmt)) && 474 (S && (S->isAllocated() || S->isAllocatedOfSizeZero())) && 475 (!SPrev || !(SPrev->isAllocated() || 476 SPrev->isAllocatedOfSizeZero()))); 477 } 478 479 inline bool isReleased(const RefState *S, const RefState *SPrev, 480 const Stmt *Stmt) { 481 // Did not track -> released. Other state (allocated) -> released. 482 return (Stmt && (isa<CallExpr>(Stmt) || isa<CXXDeleteExpr>(Stmt)) && 483 (S && S->isReleased()) && (!SPrev || !SPrev->isReleased())); 484 } 485 486 inline bool isRelinquished(const RefState *S, const RefState *SPrev, 487 const Stmt *Stmt) { 488 // Did not track -> relinquished. Other state (allocated) -> relinquished. 489 return (Stmt && (isa<CallExpr>(Stmt) || isa<ObjCMessageExpr>(Stmt) || 490 isa<ObjCPropertyRefExpr>(Stmt)) && 491 (S && S->isRelinquished()) && 492 (!SPrev || !SPrev->isRelinquished())); 493 } 494 495 inline bool isReallocFailedCheck(const RefState *S, const RefState *SPrev, 496 const Stmt *Stmt) { 497 // If the expression is not a call, and the state change is 498 // released -> allocated, it must be the realloc return value 499 // check. If we have to handle more cases here, it might be cleaner just 500 // to track this extra bit in the state itself. 501 return ((!Stmt || !isa<CallExpr>(Stmt)) && 502 (S && (S->isAllocated() || S->isAllocatedOfSizeZero())) && 503 (SPrev && !(SPrev->isAllocated() || 504 SPrev->isAllocatedOfSizeZero()))); 505 } 506 507 std::shared_ptr<PathDiagnosticPiece> VisitNode(const ExplodedNode *N, 508 const ExplodedNode *PrevN, 509 BugReporterContext &BRC, 510 BugReport &BR) override; 511 512 std::unique_ptr<PathDiagnosticPiece> 513 getEndPath(BugReporterContext &BRC, const ExplodedNode *EndPathNode, 514 BugReport &BR) override { 515 if (!IsLeak) 516 return nullptr; 517 518 PathDiagnosticLocation L = 519 PathDiagnosticLocation::createEndOfPath(EndPathNode, 520 BRC.getSourceManager()); 521 // Do not add the statement itself as a range in case of leak. 522 return llvm::make_unique<PathDiagnosticEventPiece>(L, BR.getDescription(), 523 false); 524 } 525 526 private: 527 class StackHintGeneratorForReallocationFailed 528 : public StackHintGeneratorForSymbol { 529 public: 530 StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M) 531 : StackHintGeneratorForSymbol(S, M) {} 532 533 std::string getMessageForArg(const Expr *ArgE, 534 unsigned ArgIndex) override { 535 // Printed parameters start at 1, not 0. 536 ++ArgIndex; 537 538 SmallString<200> buf; 539 llvm::raw_svector_ostream os(buf); 540 541 os << "Reallocation of " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex) 542 << " parameter failed"; 543 544 return os.str(); 545 } 546 547 std::string getMessageForReturn(const CallExpr *CallExpr) override { 548 return "Reallocation of returned value failed"; 549 } 550 }; 551 }; 552 }; 553 } // end anonymous namespace 554 555 REGISTER_MAP_WITH_PROGRAMSTATE(RegionState, SymbolRef, RefState) 556 REGISTER_MAP_WITH_PROGRAMSTATE(ReallocPairs, SymbolRef, ReallocPair) 557 REGISTER_SET_WITH_PROGRAMSTATE(ReallocSizeZeroSymbols, SymbolRef) 558 559 // A map from the freed symbol to the symbol representing the return value of 560 // the free function. 561 REGISTER_MAP_WITH_PROGRAMSTATE(FreeReturnValue, SymbolRef, SymbolRef) 562 563 namespace { 564 class StopTrackingCallback final : public SymbolVisitor { 565 ProgramStateRef state; 566 public: 567 StopTrackingCallback(ProgramStateRef st) : state(std::move(st)) {} 568 ProgramStateRef getState() const { return state; } 569 570 bool VisitSymbol(SymbolRef sym) override { 571 state = state->remove<RegionState>(sym); 572 return true; 573 } 574 }; 575 } // end anonymous namespace 576 577 void MallocChecker::initIdentifierInfo(ASTContext &Ctx) const { 578 if (II_malloc) 579 return; 580 II_alloca = &Ctx.Idents.get("alloca"); 581 II_malloc = &Ctx.Idents.get("malloc"); 582 II_free = &Ctx.Idents.get("free"); 583 II_realloc = &Ctx.Idents.get("realloc"); 584 II_reallocf = &Ctx.Idents.get("reallocf"); 585 II_calloc = &Ctx.Idents.get("calloc"); 586 II_valloc = &Ctx.Idents.get("valloc"); 587 II_strdup = &Ctx.Idents.get("strdup"); 588 II_strndup = &Ctx.Idents.get("strndup"); 589 II_wcsdup = &Ctx.Idents.get("wcsdup"); 590 II_kmalloc = &Ctx.Idents.get("kmalloc"); 591 II_if_nameindex = &Ctx.Idents.get("if_nameindex"); 592 II_if_freenameindex = &Ctx.Idents.get("if_freenameindex"); 593 594 //MSVC uses `_`-prefixed instead, so we check for them too. 595 II_win_strdup = &Ctx.Idents.get("_strdup"); 596 II_win_wcsdup = &Ctx.Idents.get("_wcsdup"); 597 II_win_alloca = &Ctx.Idents.get("_alloca"); 598 599 // Glib 600 II_g_malloc = &Ctx.Idents.get("g_malloc"); 601 II_g_malloc0 = &Ctx.Idents.get("g_malloc0"); 602 II_g_realloc = &Ctx.Idents.get("g_realloc"); 603 II_g_try_malloc = &Ctx.Idents.get("g_try_malloc"); 604 II_g_try_malloc0 = &Ctx.Idents.get("g_try_malloc0"); 605 II_g_try_realloc = &Ctx.Idents.get("g_try_realloc"); 606 II_g_free = &Ctx.Idents.get("g_free"); 607 II_g_memdup = &Ctx.Idents.get("g_memdup"); 608 II_g_malloc_n = &Ctx.Idents.get("g_malloc_n"); 609 II_g_malloc0_n = &Ctx.Idents.get("g_malloc0_n"); 610 II_g_realloc_n = &Ctx.Idents.get("g_realloc_n"); 611 II_g_try_malloc_n = &Ctx.Idents.get("g_try_malloc_n"); 612 II_g_try_malloc0_n = &Ctx.Idents.get("g_try_malloc0_n"); 613 II_g_try_realloc_n = &Ctx.Idents.get("g_try_realloc_n"); 614 } 615 616 bool MallocChecker::isMemFunction(const FunctionDecl *FD, ASTContext &C) const { 617 if (isCMemFunction(FD, C, AF_Malloc, MemoryOperationKind::MOK_Any)) 618 return true; 619 620 if (isCMemFunction(FD, C, AF_IfNameIndex, MemoryOperationKind::MOK_Any)) 621 return true; 622 623 if (isCMemFunction(FD, C, AF_Alloca, MemoryOperationKind::MOK_Any)) 624 return true; 625 626 if (isStandardNewDelete(FD, C)) 627 return true; 628 629 return false; 630 } 631 632 bool MallocChecker::isCMemFunction(const FunctionDecl *FD, 633 ASTContext &C, 634 AllocationFamily Family, 635 MemoryOperationKind MemKind) const { 636 if (!FD) 637 return false; 638 639 bool CheckFree = (MemKind == MemoryOperationKind::MOK_Any || 640 MemKind == MemoryOperationKind::MOK_Free); 641 bool CheckAlloc = (MemKind == MemoryOperationKind::MOK_Any || 642 MemKind == MemoryOperationKind::MOK_Allocate); 643 644 if (FD->getKind() == Decl::Function) { 645 const IdentifierInfo *FunI = FD->getIdentifier(); 646 initIdentifierInfo(C); 647 648 if (Family == AF_Malloc && CheckFree) { 649 if (FunI == II_free || FunI == II_realloc || FunI == II_reallocf || 650 FunI == II_g_free) 651 return true; 652 } 653 654 if (Family == AF_Malloc && CheckAlloc) { 655 if (FunI == II_malloc || FunI == II_realloc || FunI == II_reallocf || 656 FunI == II_calloc || FunI == II_valloc || FunI == II_strdup || 657 FunI == II_win_strdup || FunI == II_strndup || FunI == II_wcsdup || 658 FunI == II_win_wcsdup || FunI == II_kmalloc || 659 FunI == II_g_malloc || FunI == II_g_malloc0 || 660 FunI == II_g_realloc || FunI == II_g_try_malloc || 661 FunI == II_g_try_malloc0 || FunI == II_g_try_realloc || 662 FunI == II_g_memdup || FunI == II_g_malloc_n || 663 FunI == II_g_malloc0_n || FunI == II_g_realloc_n || 664 FunI == II_g_try_malloc_n || FunI == II_g_try_malloc0_n || 665 FunI == II_g_try_realloc_n) 666 return true; 667 } 668 669 if (Family == AF_IfNameIndex && CheckFree) { 670 if (FunI == II_if_freenameindex) 671 return true; 672 } 673 674 if (Family == AF_IfNameIndex && CheckAlloc) { 675 if (FunI == II_if_nameindex) 676 return true; 677 } 678 679 if (Family == AF_Alloca && CheckAlloc) { 680 if (FunI == II_alloca || FunI == II_win_alloca) 681 return true; 682 } 683 } 684 685 if (Family != AF_Malloc) 686 return false; 687 688 if (IsOptimistic && FD->hasAttrs()) { 689 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { 690 OwnershipAttr::OwnershipKind OwnKind = I->getOwnKind(); 691 if(OwnKind == OwnershipAttr::Takes || OwnKind == OwnershipAttr::Holds) { 692 if (CheckFree) 693 return true; 694 } else if (OwnKind == OwnershipAttr::Returns) { 695 if (CheckAlloc) 696 return true; 697 } 698 } 699 } 700 701 return false; 702 } 703 704 // Tells if the callee is one of the following: 705 // 1) A global non-placement new/delete operator function. 706 // 2) A global placement operator function with the single placement argument 707 // of type std::nothrow_t. 708 bool MallocChecker::isStandardNewDelete(const FunctionDecl *FD, 709 ASTContext &C) const { 710 if (!FD) 711 return false; 712 713 OverloadedOperatorKind Kind = FD->getOverloadedOperator(); 714 if (Kind != OO_New && Kind != OO_Array_New && 715 Kind != OO_Delete && Kind != OO_Array_Delete) 716 return false; 717 718 // Skip all operator new/delete methods. 719 if (isa<CXXMethodDecl>(FD)) 720 return false; 721 722 // Return true if tested operator is a standard placement nothrow operator. 723 if (FD->getNumParams() == 2) { 724 QualType T = FD->getParamDecl(1)->getType(); 725 if (const IdentifierInfo *II = T.getBaseTypeIdentifier()) 726 return II->getName().equals("nothrow_t"); 727 } 728 729 // Skip placement operators. 730 if (FD->getNumParams() != 1 || FD->isVariadic()) 731 return false; 732 733 // One of the standard new/new[]/delete/delete[] non-placement operators. 734 return true; 735 } 736 737 llvm::Optional<ProgramStateRef> MallocChecker::performKernelMalloc( 738 const CallExpr *CE, CheckerContext &C, const ProgramStateRef &State) const { 739 // 3-argument malloc(), as commonly used in {Free,Net,Open}BSD Kernels: 740 // 741 // void *malloc(unsigned long size, struct malloc_type *mtp, int flags); 742 // 743 // One of the possible flags is M_ZERO, which means 'give me back an 744 // allocation which is already zeroed', like calloc. 745 746 // 2-argument kmalloc(), as used in the Linux kernel: 747 // 748 // void *kmalloc(size_t size, gfp_t flags); 749 // 750 // Has the similar flag value __GFP_ZERO. 751 752 // This logic is largely cloned from O_CREAT in UnixAPIChecker, maybe some 753 // code could be shared. 754 755 ASTContext &Ctx = C.getASTContext(); 756 llvm::Triple::OSType OS = Ctx.getTargetInfo().getTriple().getOS(); 757 758 if (!KernelZeroFlagVal.hasValue()) { 759 if (OS == llvm::Triple::FreeBSD) 760 KernelZeroFlagVal = 0x0100; 761 else if (OS == llvm::Triple::NetBSD) 762 KernelZeroFlagVal = 0x0002; 763 else if (OS == llvm::Triple::OpenBSD) 764 KernelZeroFlagVal = 0x0008; 765 else if (OS == llvm::Triple::Linux) 766 // __GFP_ZERO 767 KernelZeroFlagVal = 0x8000; 768 else 769 // FIXME: We need a more general way of getting the M_ZERO value. 770 // See also: O_CREAT in UnixAPIChecker.cpp. 771 772 // Fall back to normal malloc behavior on platforms where we don't 773 // know M_ZERO. 774 return None; 775 } 776 777 // We treat the last argument as the flags argument, and callers fall-back to 778 // normal malloc on a None return. This works for the FreeBSD kernel malloc 779 // as well as Linux kmalloc. 780 if (CE->getNumArgs() < 2) 781 return None; 782 783 const Expr *FlagsEx = CE->getArg(CE->getNumArgs() - 1); 784 const SVal V = C.getSVal(FlagsEx); 785 if (!V.getAs<NonLoc>()) { 786 // The case where 'V' can be a location can only be due to a bad header, 787 // so in this case bail out. 788 return None; 789 } 790 791 NonLoc Flags = V.castAs<NonLoc>(); 792 NonLoc ZeroFlag = C.getSValBuilder() 793 .makeIntVal(KernelZeroFlagVal.getValue(), FlagsEx->getType()) 794 .castAs<NonLoc>(); 795 SVal MaskedFlagsUC = C.getSValBuilder().evalBinOpNN(State, BO_And, 796 Flags, ZeroFlag, 797 FlagsEx->getType()); 798 if (MaskedFlagsUC.isUnknownOrUndef()) 799 return None; 800 DefinedSVal MaskedFlags = MaskedFlagsUC.castAs<DefinedSVal>(); 801 802 // Check if maskedFlags is non-zero. 803 ProgramStateRef TrueState, FalseState; 804 std::tie(TrueState, FalseState) = State->assume(MaskedFlags); 805 806 // If M_ZERO is set, treat this like calloc (initialized). 807 if (TrueState && !FalseState) { 808 SVal ZeroVal = C.getSValBuilder().makeZeroVal(Ctx.CharTy); 809 return MallocMemAux(C, CE, CE->getArg(0), ZeroVal, TrueState); 810 } 811 812 return None; 813 } 814 815 SVal MallocChecker::evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, 816 const Expr *BlockBytes) { 817 SValBuilder &SB = C.getSValBuilder(); 818 SVal BlocksVal = C.getSVal(Blocks); 819 SVal BlockBytesVal = C.getSVal(BlockBytes); 820 ProgramStateRef State = C.getState(); 821 SVal TotalSize = SB.evalBinOp(State, BO_Mul, BlocksVal, BlockBytesVal, 822 SB.getContext().getSizeType()); 823 return TotalSize; 824 } 825 826 void MallocChecker::checkPostStmt(const CallExpr *CE, CheckerContext &C) const { 827 if (C.wasInlined) 828 return; 829 830 const FunctionDecl *FD = C.getCalleeDecl(CE); 831 if (!FD) 832 return; 833 834 ProgramStateRef State = C.getState(); 835 bool ReleasedAllocatedMemory = false; 836 837 if (FD->getKind() == Decl::Function) { 838 initIdentifierInfo(C.getASTContext()); 839 IdentifierInfo *FunI = FD->getIdentifier(); 840 841 if (FunI == II_malloc || FunI == II_g_malloc || FunI == II_g_try_malloc) { 842 if (CE->getNumArgs() < 1) 843 return; 844 if (CE->getNumArgs() < 3) { 845 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 846 if (CE->getNumArgs() == 1) 847 State = ProcessZeroAllocation(C, CE, 0, State); 848 } else if (CE->getNumArgs() == 3) { 849 llvm::Optional<ProgramStateRef> MaybeState = 850 performKernelMalloc(CE, C, State); 851 if (MaybeState.hasValue()) 852 State = MaybeState.getValue(); 853 else 854 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 855 } 856 } else if (FunI == II_kmalloc) { 857 if (CE->getNumArgs() < 1) 858 return; 859 llvm::Optional<ProgramStateRef> MaybeState = 860 performKernelMalloc(CE, C, State); 861 if (MaybeState.hasValue()) 862 State = MaybeState.getValue(); 863 else 864 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 865 } else if (FunI == II_valloc) { 866 if (CE->getNumArgs() < 1) 867 return; 868 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 869 State = ProcessZeroAllocation(C, CE, 0, State); 870 } else if (FunI == II_realloc || FunI == II_g_realloc || 871 FunI == II_g_try_realloc) { 872 State = ReallocMemAux(C, CE, false, State); 873 State = ProcessZeroAllocation(C, CE, 1, State); 874 } else if (FunI == II_reallocf) { 875 State = ReallocMemAux(C, CE, true, State); 876 State = ProcessZeroAllocation(C, CE, 1, State); 877 } else if (FunI == II_calloc) { 878 State = CallocMem(C, CE, State); 879 State = ProcessZeroAllocation(C, CE, 0, State); 880 State = ProcessZeroAllocation(C, CE, 1, State); 881 } else if (FunI == II_free || FunI == II_g_free) { 882 State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory); 883 } else if (FunI == II_strdup || FunI == II_win_strdup || 884 FunI == II_wcsdup || FunI == II_win_wcsdup) { 885 State = MallocUpdateRefState(C, CE, State); 886 } else if (FunI == II_strndup) { 887 State = MallocUpdateRefState(C, CE, State); 888 } else if (FunI == II_alloca || FunI == II_win_alloca) { 889 if (CE->getNumArgs() < 1) 890 return; 891 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, 892 AF_Alloca); 893 State = ProcessZeroAllocation(C, CE, 0, State); 894 } else if (isStandardNewDelete(FD, C.getASTContext())) { 895 // Process direct calls to operator new/new[]/delete/delete[] functions 896 // as distinct from new/new[]/delete/delete[] expressions that are 897 // processed by the checkPostStmt callbacks for CXXNewExpr and 898 // CXXDeleteExpr. 899 OverloadedOperatorKind K = FD->getOverloadedOperator(); 900 if (K == OO_New) { 901 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, 902 AF_CXXNew); 903 State = ProcessZeroAllocation(C, CE, 0, State); 904 } 905 else if (K == OO_Array_New) { 906 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, 907 AF_CXXNewArray); 908 State = ProcessZeroAllocation(C, CE, 0, State); 909 } 910 else if (K == OO_Delete || K == OO_Array_Delete) 911 State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory); 912 else 913 llvm_unreachable("not a new/delete operator"); 914 } else if (FunI == II_if_nameindex) { 915 // Should we model this differently? We can allocate a fixed number of 916 // elements with zeros in the last one. 917 State = MallocMemAux(C, CE, UnknownVal(), UnknownVal(), State, 918 AF_IfNameIndex); 919 } else if (FunI == II_if_freenameindex) { 920 State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory); 921 } else if (FunI == II_g_malloc0 || FunI == II_g_try_malloc0) { 922 if (CE->getNumArgs() < 1) 923 return; 924 SValBuilder &svalBuilder = C.getSValBuilder(); 925 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 926 State = MallocMemAux(C, CE, CE->getArg(0), zeroVal, State); 927 State = ProcessZeroAllocation(C, CE, 0, State); 928 } else if (FunI == II_g_memdup) { 929 if (CE->getNumArgs() < 2) 930 return; 931 State = MallocMemAux(C, CE, CE->getArg(1), UndefinedVal(), State); 932 State = ProcessZeroAllocation(C, CE, 1, State); 933 } else if (FunI == II_g_malloc_n || FunI == II_g_try_malloc_n || 934 FunI == II_g_malloc0_n || FunI == II_g_try_malloc0_n) { 935 if (CE->getNumArgs() < 2) 936 return; 937 SVal Init = UndefinedVal(); 938 if (FunI == II_g_malloc0_n || FunI == II_g_try_malloc0_n) { 939 SValBuilder &SB = C.getSValBuilder(); 940 Init = SB.makeZeroVal(SB.getContext().CharTy); 941 } 942 SVal TotalSize = evalMulForBufferSize(C, CE->getArg(0), CE->getArg(1)); 943 State = MallocMemAux(C, CE, TotalSize, Init, State); 944 State = ProcessZeroAllocation(C, CE, 0, State); 945 State = ProcessZeroAllocation(C, CE, 1, State); 946 } else if (FunI == II_g_realloc_n || FunI == II_g_try_realloc_n) { 947 if (CE->getNumArgs() < 3) 948 return; 949 State = ReallocMemAux(C, CE, false, State, true); 950 State = ProcessZeroAllocation(C, CE, 1, State); 951 State = ProcessZeroAllocation(C, CE, 2, State); 952 } 953 } 954 955 if (IsOptimistic || ChecksEnabled[CK_MismatchedDeallocatorChecker]) { 956 // Check all the attributes, if there are any. 957 // There can be multiple of these attributes. 958 if (FD->hasAttrs()) 959 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { 960 switch (I->getOwnKind()) { 961 case OwnershipAttr::Returns: 962 State = MallocMemReturnsAttr(C, CE, I, State); 963 break; 964 case OwnershipAttr::Takes: 965 case OwnershipAttr::Holds: 966 State = FreeMemAttr(C, CE, I, State); 967 break; 968 } 969 } 970 } 971 C.addTransition(State); 972 } 973 974 // Performs a 0-sized allocations check. 975 ProgramStateRef MallocChecker::ProcessZeroAllocation( 976 CheckerContext &C, const Expr *E, const unsigned AllocationSizeArg, 977 ProgramStateRef State, Optional<SVal> RetVal) const { 978 if (!State) 979 return nullptr; 980 981 if (!RetVal) 982 RetVal = C.getSVal(E); 983 984 const Expr *Arg = nullptr; 985 986 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 987 Arg = CE->getArg(AllocationSizeArg); 988 } 989 else if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { 990 if (NE->isArray()) 991 Arg = NE->getArraySize(); 992 else 993 return State; 994 } 995 else 996 llvm_unreachable("not a CallExpr or CXXNewExpr"); 997 998 assert(Arg); 999 1000 Optional<DefinedSVal> DefArgVal = C.getSVal(Arg).getAs<DefinedSVal>(); 1001 1002 if (!DefArgVal) 1003 return State; 1004 1005 // Check if the allocation size is 0. 1006 ProgramStateRef TrueState, FalseState; 1007 SValBuilder &SvalBuilder = C.getSValBuilder(); 1008 DefinedSVal Zero = 1009 SvalBuilder.makeZeroVal(Arg->getType()).castAs<DefinedSVal>(); 1010 1011 std::tie(TrueState, FalseState) = 1012 State->assume(SvalBuilder.evalEQ(State, *DefArgVal, Zero)); 1013 1014 if (TrueState && !FalseState) { 1015 SymbolRef Sym = RetVal->getAsLocSymbol(); 1016 if (!Sym) 1017 return State; 1018 1019 const RefState *RS = State->get<RegionState>(Sym); 1020 if (RS) { 1021 if (RS->isAllocated()) 1022 return TrueState->set<RegionState>(Sym, 1023 RefState::getAllocatedOfSizeZero(RS)); 1024 else 1025 return State; 1026 } else { 1027 // Case of zero-size realloc. Historically 'realloc(ptr, 0)' is treated as 1028 // 'free(ptr)' and the returned value from 'realloc(ptr, 0)' is not 1029 // tracked. Add zero-reallocated Sym to the state to catch references 1030 // to zero-allocated memory. 1031 return TrueState->add<ReallocSizeZeroSymbols>(Sym); 1032 } 1033 } 1034 1035 // Assume the value is non-zero going forward. 1036 assert(FalseState); 1037 return FalseState; 1038 } 1039 1040 static QualType getDeepPointeeType(QualType T) { 1041 QualType Result = T, PointeeType = T->getPointeeType(); 1042 while (!PointeeType.isNull()) { 1043 Result = PointeeType; 1044 PointeeType = PointeeType->getPointeeType(); 1045 } 1046 return Result; 1047 } 1048 1049 static bool treatUnusedNewEscaped(const CXXNewExpr *NE) { 1050 1051 const CXXConstructExpr *ConstructE = NE->getConstructExpr(); 1052 if (!ConstructE) 1053 return false; 1054 1055 if (!NE->getAllocatedType()->getAsCXXRecordDecl()) 1056 return false; 1057 1058 const CXXConstructorDecl *CtorD = ConstructE->getConstructor(); 1059 1060 // Iterate over the constructor parameters. 1061 for (const auto *CtorParam : CtorD->parameters()) { 1062 1063 QualType CtorParamPointeeT = CtorParam->getType()->getPointeeType(); 1064 if (CtorParamPointeeT.isNull()) 1065 continue; 1066 1067 CtorParamPointeeT = getDeepPointeeType(CtorParamPointeeT); 1068 1069 if (CtorParamPointeeT->getAsCXXRecordDecl()) 1070 return true; 1071 } 1072 1073 return false; 1074 } 1075 1076 void MallocChecker::processNewAllocation(const CXXNewExpr *NE, 1077 CheckerContext &C, 1078 SVal Target) const { 1079 if (NE->getNumPlacementArgs()) 1080 for (CXXNewExpr::const_arg_iterator I = NE->placement_arg_begin(), 1081 E = NE->placement_arg_end(); I != E; ++I) 1082 if (SymbolRef Sym = C.getSVal(*I).getAsSymbol()) 1083 checkUseAfterFree(Sym, C, *I); 1084 1085 if (!isStandardNewDelete(NE->getOperatorNew(), C.getASTContext())) 1086 return; 1087 1088 ParentMap &PM = C.getLocationContext()->getParentMap(); 1089 if (!PM.isConsumedExpr(NE) && treatUnusedNewEscaped(NE)) 1090 return; 1091 1092 ProgramStateRef State = C.getState(); 1093 // The return value from operator new is bound to a specified initialization 1094 // value (if any) and we don't want to loose this value. So we call 1095 // MallocUpdateRefState() instead of MallocMemAux() which breakes the 1096 // existing binding. 1097 State = MallocUpdateRefState(C, NE, State, NE->isArray() ? AF_CXXNewArray 1098 : AF_CXXNew, Target); 1099 State = addExtentSize(C, NE, State, Target); 1100 State = ProcessZeroAllocation(C, NE, 0, State, Target); 1101 C.addTransition(State); 1102 } 1103 1104 void MallocChecker::checkPostStmt(const CXXNewExpr *NE, 1105 CheckerContext &C) const { 1106 if (!C.getAnalysisManager().getAnalyzerOptions().mayInlineCXXAllocator()) 1107 processNewAllocation(NE, C, C.getSVal(NE)); 1108 } 1109 1110 void MallocChecker::checkNewAllocator(const CXXNewExpr *NE, SVal Target, 1111 CheckerContext &C) const { 1112 if (!C.wasInlined) 1113 processNewAllocation(NE, C, Target); 1114 } 1115 1116 // Sets the extent value of the MemRegion allocated by 1117 // new expression NE to its size in Bytes. 1118 // 1119 ProgramStateRef MallocChecker::addExtentSize(CheckerContext &C, 1120 const CXXNewExpr *NE, 1121 ProgramStateRef State, 1122 SVal Target) { 1123 if (!State) 1124 return nullptr; 1125 SValBuilder &svalBuilder = C.getSValBuilder(); 1126 SVal ElementCount; 1127 const SubRegion *Region; 1128 if (NE->isArray()) { 1129 const Expr *SizeExpr = NE->getArraySize(); 1130 ElementCount = C.getSVal(SizeExpr); 1131 // Store the extent size for the (symbolic)region 1132 // containing the elements. 1133 Region = Target.getAsRegion() 1134 ->getAs<SubRegion>() 1135 ->StripCasts() 1136 ->getAs<SubRegion>(); 1137 } else { 1138 ElementCount = svalBuilder.makeIntVal(1, true); 1139 Region = Target.getAsRegion()->getAs<SubRegion>(); 1140 } 1141 assert(Region); 1142 1143 // Set the region's extent equal to the Size in Bytes. 1144 QualType ElementType = NE->getAllocatedType(); 1145 ASTContext &AstContext = C.getASTContext(); 1146 CharUnits TypeSize = AstContext.getTypeSizeInChars(ElementType); 1147 1148 if (ElementCount.getAs<NonLoc>()) { 1149 DefinedOrUnknownSVal Extent = Region->getExtent(svalBuilder); 1150 // size in Bytes = ElementCount*TypeSize 1151 SVal SizeInBytes = svalBuilder.evalBinOpNN( 1152 State, BO_Mul, ElementCount.castAs<NonLoc>(), 1153 svalBuilder.makeArrayIndex(TypeSize.getQuantity()), 1154 svalBuilder.getArrayIndexType()); 1155 DefinedOrUnknownSVal extentMatchesSize = svalBuilder.evalEQ( 1156 State, Extent, SizeInBytes.castAs<DefinedOrUnknownSVal>()); 1157 State = State->assume(extentMatchesSize, true); 1158 } 1159 return State; 1160 } 1161 1162 void MallocChecker::checkPreStmt(const CXXDeleteExpr *DE, 1163 CheckerContext &C) const { 1164 1165 if (!ChecksEnabled[CK_NewDeleteChecker]) 1166 if (SymbolRef Sym = C.getSVal(DE->getArgument()).getAsSymbol()) 1167 checkUseAfterFree(Sym, C, DE->getArgument()); 1168 1169 if (!isStandardNewDelete(DE->getOperatorDelete(), C.getASTContext())) 1170 return; 1171 1172 ProgramStateRef State = C.getState(); 1173 bool ReleasedAllocated; 1174 State = FreeMemAux(C, DE->getArgument(), DE, State, 1175 /*Hold*/false, ReleasedAllocated); 1176 1177 C.addTransition(State); 1178 } 1179 1180 static bool isKnownDeallocObjCMethodName(const ObjCMethodCall &Call) { 1181 // If the first selector piece is one of the names below, assume that the 1182 // object takes ownership of the memory, promising to eventually deallocate it 1183 // with free(). 1184 // Ex: [NSData dataWithBytesNoCopy:bytes length:10]; 1185 // (...unless a 'freeWhenDone' parameter is false, but that's checked later.) 1186 StringRef FirstSlot = Call.getSelector().getNameForSlot(0); 1187 return FirstSlot == "dataWithBytesNoCopy" || 1188 FirstSlot == "initWithBytesNoCopy" || 1189 FirstSlot == "initWithCharactersNoCopy"; 1190 } 1191 1192 static Optional<bool> getFreeWhenDoneArg(const ObjCMethodCall &Call) { 1193 Selector S = Call.getSelector(); 1194 1195 // FIXME: We should not rely on fully-constrained symbols being folded. 1196 for (unsigned i = 1; i < S.getNumArgs(); ++i) 1197 if (S.getNameForSlot(i).equals("freeWhenDone")) 1198 return !Call.getArgSVal(i).isZeroConstant(); 1199 1200 return None; 1201 } 1202 1203 void MallocChecker::checkPostObjCMessage(const ObjCMethodCall &Call, 1204 CheckerContext &C) const { 1205 if (C.wasInlined) 1206 return; 1207 1208 if (!isKnownDeallocObjCMethodName(Call)) 1209 return; 1210 1211 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call)) 1212 if (!*FreeWhenDone) 1213 return; 1214 1215 bool ReleasedAllocatedMemory; 1216 ProgramStateRef State = FreeMemAux(C, Call.getArgExpr(0), 1217 Call.getOriginExpr(), C.getState(), 1218 /*Hold=*/true, ReleasedAllocatedMemory, 1219 /*RetNullOnFailure=*/true); 1220 1221 C.addTransition(State); 1222 } 1223 1224 ProgramStateRef 1225 MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallExpr *CE, 1226 const OwnershipAttr *Att, 1227 ProgramStateRef State) const { 1228 if (!State) 1229 return nullptr; 1230 1231 if (Att->getModule() != II_malloc) 1232 return nullptr; 1233 1234 OwnershipAttr::args_iterator I = Att->args_begin(), E = Att->args_end(); 1235 if (I != E) { 1236 return MallocMemAux(C, CE, CE->getArg(*I), UndefinedVal(), State); 1237 } 1238 return MallocMemAux(C, CE, UnknownVal(), UndefinedVal(), State); 1239 } 1240 1241 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1242 const CallExpr *CE, 1243 const Expr *SizeEx, SVal Init, 1244 ProgramStateRef State, 1245 AllocationFamily Family) { 1246 if (!State) 1247 return nullptr; 1248 1249 return MallocMemAux(C, CE, C.getSVal(SizeEx), Init, State, Family); 1250 } 1251 1252 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1253 const CallExpr *CE, 1254 SVal Size, SVal Init, 1255 ProgramStateRef State, 1256 AllocationFamily Family) { 1257 if (!State) 1258 return nullptr; 1259 1260 // We expect the malloc functions to return a pointer. 1261 if (!Loc::isLocType(CE->getType())) 1262 return nullptr; 1263 1264 // Bind the return value to the symbolic value from the heap region. 1265 // TODO: We could rewrite post visit to eval call; 'malloc' does not have 1266 // side effects other than what we model here. 1267 unsigned Count = C.blockCount(); 1268 SValBuilder &svalBuilder = C.getSValBuilder(); 1269 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 1270 DefinedSVal RetVal = svalBuilder.getConjuredHeapSymbolVal(CE, LCtx, Count) 1271 .castAs<DefinedSVal>(); 1272 State = State->BindExpr(CE, C.getLocationContext(), RetVal); 1273 1274 // Fill the region with the initialization value. 1275 State = State->bindDefault(RetVal, Init, LCtx); 1276 1277 // Set the region's extent equal to the Size parameter. 1278 const SymbolicRegion *R = 1279 dyn_cast_or_null<SymbolicRegion>(RetVal.getAsRegion()); 1280 if (!R) 1281 return nullptr; 1282 if (Optional<DefinedOrUnknownSVal> DefinedSize = 1283 Size.getAs<DefinedOrUnknownSVal>()) { 1284 SValBuilder &svalBuilder = C.getSValBuilder(); 1285 DefinedOrUnknownSVal Extent = R->getExtent(svalBuilder); 1286 DefinedOrUnknownSVal extentMatchesSize = 1287 svalBuilder.evalEQ(State, Extent, *DefinedSize); 1288 1289 State = State->assume(extentMatchesSize, true); 1290 assert(State); 1291 } 1292 1293 return MallocUpdateRefState(C, CE, State, Family); 1294 } 1295 1296 ProgramStateRef MallocChecker::MallocUpdateRefState(CheckerContext &C, 1297 const Expr *E, 1298 ProgramStateRef State, 1299 AllocationFamily Family, 1300 Optional<SVal> RetVal) { 1301 if (!State) 1302 return nullptr; 1303 1304 // Get the return value. 1305 if (!RetVal) 1306 RetVal = C.getSVal(E); 1307 1308 // We expect the malloc functions to return a pointer. 1309 if (!RetVal->getAs<Loc>()) 1310 return nullptr; 1311 1312 SymbolRef Sym = RetVal->getAsLocSymbol(); 1313 // This is a return value of a function that was not inlined, such as malloc() 1314 // or new(). We've checked that in the caller. Therefore, it must be a symbol. 1315 assert(Sym); 1316 1317 // Set the symbol's state to Allocated. 1318 return State->set<RegionState>(Sym, RefState::getAllocated(Family, E)); 1319 } 1320 1321 ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C, 1322 const CallExpr *CE, 1323 const OwnershipAttr *Att, 1324 ProgramStateRef State) const { 1325 if (!State) 1326 return nullptr; 1327 1328 if (Att->getModule() != II_malloc) 1329 return nullptr; 1330 1331 bool ReleasedAllocated = false; 1332 1333 for (const auto &Arg : Att->args()) { 1334 ProgramStateRef StateI = FreeMemAux(C, CE, State, Arg, 1335 Att->getOwnKind() == OwnershipAttr::Holds, 1336 ReleasedAllocated); 1337 if (StateI) 1338 State = StateI; 1339 } 1340 return State; 1341 } 1342 1343 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, 1344 const CallExpr *CE, 1345 ProgramStateRef State, 1346 unsigned Num, 1347 bool Hold, 1348 bool &ReleasedAllocated, 1349 bool ReturnsNullOnFailure) const { 1350 if (!State) 1351 return nullptr; 1352 1353 if (CE->getNumArgs() < (Num + 1)) 1354 return nullptr; 1355 1356 return FreeMemAux(C, CE->getArg(Num), CE, State, Hold, 1357 ReleasedAllocated, ReturnsNullOnFailure); 1358 } 1359 1360 /// Checks if the previous call to free on the given symbol failed - if free 1361 /// failed, returns true. Also, returns the corresponding return value symbol. 1362 static bool didPreviousFreeFail(ProgramStateRef State, 1363 SymbolRef Sym, SymbolRef &RetStatusSymbol) { 1364 const SymbolRef *Ret = State->get<FreeReturnValue>(Sym); 1365 if (Ret) { 1366 assert(*Ret && "We should not store the null return symbol"); 1367 ConstraintManager &CMgr = State->getConstraintManager(); 1368 ConditionTruthVal FreeFailed = CMgr.isNull(State, *Ret); 1369 RetStatusSymbol = *Ret; 1370 return FreeFailed.isConstrainedTrue(); 1371 } 1372 return false; 1373 } 1374 1375 AllocationFamily MallocChecker::getAllocationFamily(CheckerContext &C, 1376 const Stmt *S) const { 1377 if (!S) 1378 return AF_None; 1379 1380 if (const CallExpr *CE = dyn_cast<CallExpr>(S)) { 1381 const FunctionDecl *FD = C.getCalleeDecl(CE); 1382 1383 if (!FD) 1384 FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); 1385 1386 ASTContext &Ctx = C.getASTContext(); 1387 1388 if (isCMemFunction(FD, Ctx, AF_Malloc, MemoryOperationKind::MOK_Any)) 1389 return AF_Malloc; 1390 1391 if (isStandardNewDelete(FD, Ctx)) { 1392 OverloadedOperatorKind Kind = FD->getOverloadedOperator(); 1393 if (Kind == OO_New || Kind == OO_Delete) 1394 return AF_CXXNew; 1395 else if (Kind == OO_Array_New || Kind == OO_Array_Delete) 1396 return AF_CXXNewArray; 1397 } 1398 1399 if (isCMemFunction(FD, Ctx, AF_IfNameIndex, MemoryOperationKind::MOK_Any)) 1400 return AF_IfNameIndex; 1401 1402 if (isCMemFunction(FD, Ctx, AF_Alloca, MemoryOperationKind::MOK_Any)) 1403 return AF_Alloca; 1404 1405 return AF_None; 1406 } 1407 1408 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(S)) 1409 return NE->isArray() ? AF_CXXNewArray : AF_CXXNew; 1410 1411 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(S)) 1412 return DE->isArrayForm() ? AF_CXXNewArray : AF_CXXNew; 1413 1414 if (isa<ObjCMessageExpr>(S)) 1415 return AF_Malloc; 1416 1417 return AF_None; 1418 } 1419 1420 bool MallocChecker::printAllocDeallocName(raw_ostream &os, CheckerContext &C, 1421 const Expr *E) const { 1422 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 1423 // FIXME: This doesn't handle indirect calls. 1424 const FunctionDecl *FD = CE->getDirectCallee(); 1425 if (!FD) 1426 return false; 1427 1428 os << *FD; 1429 if (!FD->isOverloadedOperator()) 1430 os << "()"; 1431 return true; 1432 } 1433 1434 if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E)) { 1435 if (Msg->isInstanceMessage()) 1436 os << "-"; 1437 else 1438 os << "+"; 1439 Msg->getSelector().print(os); 1440 return true; 1441 } 1442 1443 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { 1444 os << "'" 1445 << getOperatorSpelling(NE->getOperatorNew()->getOverloadedOperator()) 1446 << "'"; 1447 return true; 1448 } 1449 1450 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(E)) { 1451 os << "'" 1452 << getOperatorSpelling(DE->getOperatorDelete()->getOverloadedOperator()) 1453 << "'"; 1454 return true; 1455 } 1456 1457 return false; 1458 } 1459 1460 void MallocChecker::printExpectedAllocName(raw_ostream &os, CheckerContext &C, 1461 const Expr *E) const { 1462 AllocationFamily Family = getAllocationFamily(C, E); 1463 1464 switch(Family) { 1465 case AF_Malloc: os << "malloc()"; return; 1466 case AF_CXXNew: os << "'new'"; return; 1467 case AF_CXXNewArray: os << "'new[]'"; return; 1468 case AF_IfNameIndex: os << "'if_nameindex()'"; return; 1469 case AF_Alloca: 1470 case AF_None: llvm_unreachable("not a deallocation expression"); 1471 } 1472 } 1473 1474 void MallocChecker::printExpectedDeallocName(raw_ostream &os, 1475 AllocationFamily Family) const { 1476 switch(Family) { 1477 case AF_Malloc: os << "free()"; return; 1478 case AF_CXXNew: os << "'delete'"; return; 1479 case AF_CXXNewArray: os << "'delete[]'"; return; 1480 case AF_IfNameIndex: os << "'if_freenameindex()'"; return; 1481 case AF_Alloca: 1482 case AF_None: llvm_unreachable("suspicious argument"); 1483 } 1484 } 1485 1486 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, 1487 const Expr *ArgExpr, 1488 const Expr *ParentExpr, 1489 ProgramStateRef State, 1490 bool Hold, 1491 bool &ReleasedAllocated, 1492 bool ReturnsNullOnFailure) const { 1493 1494 if (!State) 1495 return nullptr; 1496 1497 SVal ArgVal = C.getSVal(ArgExpr); 1498 if (!ArgVal.getAs<DefinedOrUnknownSVal>()) 1499 return nullptr; 1500 DefinedOrUnknownSVal location = ArgVal.castAs<DefinedOrUnknownSVal>(); 1501 1502 // Check for null dereferences. 1503 if (!location.getAs<Loc>()) 1504 return nullptr; 1505 1506 // The explicit NULL case, no operation is performed. 1507 ProgramStateRef notNullState, nullState; 1508 std::tie(notNullState, nullState) = State->assume(location); 1509 if (nullState && !notNullState) 1510 return nullptr; 1511 1512 // Unknown values could easily be okay 1513 // Undefined values are handled elsewhere 1514 if (ArgVal.isUnknownOrUndef()) 1515 return nullptr; 1516 1517 const MemRegion *R = ArgVal.getAsRegion(); 1518 1519 // Nonlocs can't be freed, of course. 1520 // Non-region locations (labels and fixed addresses) also shouldn't be freed. 1521 if (!R) { 1522 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1523 return nullptr; 1524 } 1525 1526 R = R->StripCasts(); 1527 1528 // Blocks might show up as heap data, but should not be free()d 1529 if (isa<BlockDataRegion>(R)) { 1530 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1531 return nullptr; 1532 } 1533 1534 const MemSpaceRegion *MS = R->getMemorySpace(); 1535 1536 // Parameters, locals, statics, globals, and memory returned by 1537 // __builtin_alloca() shouldn't be freed. 1538 if (!(isa<UnknownSpaceRegion>(MS) || isa<HeapSpaceRegion>(MS))) { 1539 // FIXME: at the time this code was written, malloc() regions were 1540 // represented by conjured symbols, which are all in UnknownSpaceRegion. 1541 // This means that there isn't actually anything from HeapSpaceRegion 1542 // that should be freed, even though we allow it here. 1543 // Of course, free() can work on memory allocated outside the current 1544 // function, so UnknownSpaceRegion is always a possibility. 1545 // False negatives are better than false positives. 1546 1547 if (isa<AllocaRegion>(R)) 1548 ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1549 else 1550 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1551 1552 return nullptr; 1553 } 1554 1555 const SymbolicRegion *SrBase = dyn_cast<SymbolicRegion>(R->getBaseRegion()); 1556 // Various cases could lead to non-symbol values here. 1557 // For now, ignore them. 1558 if (!SrBase) 1559 return nullptr; 1560 1561 SymbolRef SymBase = SrBase->getSymbol(); 1562 const RefState *RsBase = State->get<RegionState>(SymBase); 1563 SymbolRef PreviousRetStatusSymbol = nullptr; 1564 1565 if (RsBase) { 1566 1567 // Memory returned by alloca() shouldn't be freed. 1568 if (RsBase->getAllocationFamily() == AF_Alloca) { 1569 ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1570 return nullptr; 1571 } 1572 1573 // Check for double free first. 1574 if ((RsBase->isReleased() || RsBase->isRelinquished()) && 1575 !didPreviousFreeFail(State, SymBase, PreviousRetStatusSymbol)) { 1576 ReportDoubleFree(C, ParentExpr->getSourceRange(), RsBase->isReleased(), 1577 SymBase, PreviousRetStatusSymbol); 1578 return nullptr; 1579 1580 // If the pointer is allocated or escaped, but we are now trying to free it, 1581 // check that the call to free is proper. 1582 } else if (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero() || 1583 RsBase->isEscaped()) { 1584 1585 // Check if an expected deallocation function matches the real one. 1586 bool DeallocMatchesAlloc = 1587 RsBase->getAllocationFamily() == getAllocationFamily(C, ParentExpr); 1588 if (!DeallocMatchesAlloc) { 1589 ReportMismatchedDealloc(C, ArgExpr->getSourceRange(), 1590 ParentExpr, RsBase, SymBase, Hold); 1591 return nullptr; 1592 } 1593 1594 // Check if the memory location being freed is the actual location 1595 // allocated, or an offset. 1596 RegionOffset Offset = R->getAsOffset(); 1597 if (Offset.isValid() && 1598 !Offset.hasSymbolicOffset() && 1599 Offset.getOffset() != 0) { 1600 const Expr *AllocExpr = cast<Expr>(RsBase->getStmt()); 1601 ReportOffsetFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1602 AllocExpr); 1603 return nullptr; 1604 } 1605 } 1606 } 1607 1608 if (SymBase->getType()->isFunctionPointerType()) { 1609 ReportFunctionPointerFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1610 return nullptr; 1611 } 1612 1613 ReleasedAllocated = (RsBase != nullptr) && (RsBase->isAllocated() || 1614 RsBase->isAllocatedOfSizeZero()); 1615 1616 // Clean out the info on previous call to free return info. 1617 State = State->remove<FreeReturnValue>(SymBase); 1618 1619 // Keep track of the return value. If it is NULL, we will know that free 1620 // failed. 1621 if (ReturnsNullOnFailure) { 1622 SVal RetVal = C.getSVal(ParentExpr); 1623 SymbolRef RetStatusSymbol = RetVal.getAsSymbol(); 1624 if (RetStatusSymbol) { 1625 C.getSymbolManager().addSymbolDependency(SymBase, RetStatusSymbol); 1626 State = State->set<FreeReturnValue>(SymBase, RetStatusSymbol); 1627 } 1628 } 1629 1630 AllocationFamily Family = RsBase ? RsBase->getAllocationFamily() 1631 : getAllocationFamily(C, ParentExpr); 1632 // Normal free. 1633 if (Hold) 1634 return State->set<RegionState>(SymBase, 1635 RefState::getRelinquished(Family, 1636 ParentExpr)); 1637 1638 return State->set<RegionState>(SymBase, 1639 RefState::getReleased(Family, ParentExpr)); 1640 } 1641 1642 Optional<MallocChecker::CheckKind> 1643 MallocChecker::getCheckIfTracked(AllocationFamily Family, 1644 bool IsALeakCheck) const { 1645 switch (Family) { 1646 case AF_Malloc: 1647 case AF_Alloca: 1648 case AF_IfNameIndex: { 1649 if (ChecksEnabled[CK_MallocChecker]) 1650 return CK_MallocChecker; 1651 1652 return Optional<MallocChecker::CheckKind>(); 1653 } 1654 case AF_CXXNew: 1655 case AF_CXXNewArray: { 1656 if (IsALeakCheck) { 1657 if (ChecksEnabled[CK_NewDeleteLeaksChecker]) 1658 return CK_NewDeleteLeaksChecker; 1659 } 1660 else { 1661 if (ChecksEnabled[CK_NewDeleteChecker]) 1662 return CK_NewDeleteChecker; 1663 } 1664 return Optional<MallocChecker::CheckKind>(); 1665 } 1666 case AF_None: { 1667 llvm_unreachable("no family"); 1668 } 1669 } 1670 llvm_unreachable("unhandled family"); 1671 } 1672 1673 Optional<MallocChecker::CheckKind> 1674 MallocChecker::getCheckIfTracked(CheckerContext &C, 1675 const Stmt *AllocDeallocStmt, 1676 bool IsALeakCheck) const { 1677 return getCheckIfTracked(getAllocationFamily(C, AllocDeallocStmt), 1678 IsALeakCheck); 1679 } 1680 1681 Optional<MallocChecker::CheckKind> 1682 MallocChecker::getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 1683 bool IsALeakCheck) const { 1684 if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) 1685 return CK_MallocChecker; 1686 1687 const RefState *RS = C.getState()->get<RegionState>(Sym); 1688 assert(RS); 1689 return getCheckIfTracked(RS->getAllocationFamily(), IsALeakCheck); 1690 } 1691 1692 bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) { 1693 if (Optional<nonloc::ConcreteInt> IntVal = V.getAs<nonloc::ConcreteInt>()) 1694 os << "an integer (" << IntVal->getValue() << ")"; 1695 else if (Optional<loc::ConcreteInt> ConstAddr = V.getAs<loc::ConcreteInt>()) 1696 os << "a constant address (" << ConstAddr->getValue() << ")"; 1697 else if (Optional<loc::GotoLabel> Label = V.getAs<loc::GotoLabel>()) 1698 os << "the address of the label '" << Label->getLabel()->getName() << "'"; 1699 else 1700 return false; 1701 1702 return true; 1703 } 1704 1705 bool MallocChecker::SummarizeRegion(raw_ostream &os, 1706 const MemRegion *MR) { 1707 switch (MR->getKind()) { 1708 case MemRegion::FunctionCodeRegionKind: { 1709 const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl(); 1710 if (FD) 1711 os << "the address of the function '" << *FD << '\''; 1712 else 1713 os << "the address of a function"; 1714 return true; 1715 } 1716 case MemRegion::BlockCodeRegionKind: 1717 os << "block text"; 1718 return true; 1719 case MemRegion::BlockDataRegionKind: 1720 // FIXME: where the block came from? 1721 os << "a block"; 1722 return true; 1723 default: { 1724 const MemSpaceRegion *MS = MR->getMemorySpace(); 1725 1726 if (isa<StackLocalsSpaceRegion>(MS)) { 1727 const VarRegion *VR = dyn_cast<VarRegion>(MR); 1728 const VarDecl *VD; 1729 if (VR) 1730 VD = VR->getDecl(); 1731 else 1732 VD = nullptr; 1733 1734 if (VD) 1735 os << "the address of the local variable '" << VD->getName() << "'"; 1736 else 1737 os << "the address of a local stack variable"; 1738 return true; 1739 } 1740 1741 if (isa<StackArgumentsSpaceRegion>(MS)) { 1742 const VarRegion *VR = dyn_cast<VarRegion>(MR); 1743 const VarDecl *VD; 1744 if (VR) 1745 VD = VR->getDecl(); 1746 else 1747 VD = nullptr; 1748 1749 if (VD) 1750 os << "the address of the parameter '" << VD->getName() << "'"; 1751 else 1752 os << "the address of a parameter"; 1753 return true; 1754 } 1755 1756 if (isa<GlobalsSpaceRegion>(MS)) { 1757 const VarRegion *VR = dyn_cast<VarRegion>(MR); 1758 const VarDecl *VD; 1759 if (VR) 1760 VD = VR->getDecl(); 1761 else 1762 VD = nullptr; 1763 1764 if (VD) { 1765 if (VD->isStaticLocal()) 1766 os << "the address of the static variable '" << VD->getName() << "'"; 1767 else 1768 os << "the address of the global variable '" << VD->getName() << "'"; 1769 } else 1770 os << "the address of a global variable"; 1771 return true; 1772 } 1773 1774 return false; 1775 } 1776 } 1777 } 1778 1779 void MallocChecker::ReportBadFree(CheckerContext &C, SVal ArgVal, 1780 SourceRange Range, 1781 const Expr *DeallocExpr) const { 1782 1783 if (!ChecksEnabled[CK_MallocChecker] && 1784 !ChecksEnabled[CK_NewDeleteChecker]) 1785 return; 1786 1787 Optional<MallocChecker::CheckKind> CheckKind = 1788 getCheckIfTracked(C, DeallocExpr); 1789 if (!CheckKind.hasValue()) 1790 return; 1791 1792 if (ExplodedNode *N = C.generateErrorNode()) { 1793 if (!BT_BadFree[*CheckKind]) 1794 BT_BadFree[*CheckKind].reset(new BugType( 1795 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 1796 1797 SmallString<100> buf; 1798 llvm::raw_svector_ostream os(buf); 1799 1800 const MemRegion *MR = ArgVal.getAsRegion(); 1801 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 1802 MR = ER->getSuperRegion(); 1803 1804 os << "Argument to "; 1805 if (!printAllocDeallocName(os, C, DeallocExpr)) 1806 os << "deallocator"; 1807 1808 os << " is "; 1809 bool Summarized = MR ? SummarizeRegion(os, MR) 1810 : SummarizeValue(os, ArgVal); 1811 if (Summarized) 1812 os << ", which is not memory allocated by "; 1813 else 1814 os << "not memory allocated by "; 1815 1816 printExpectedAllocName(os, C, DeallocExpr); 1817 1818 auto R = llvm::make_unique<BugReport>(*BT_BadFree[*CheckKind], os.str(), N); 1819 R->markInteresting(MR); 1820 R->addRange(Range); 1821 C.emitReport(std::move(R)); 1822 } 1823 } 1824 1825 void MallocChecker::ReportFreeAlloca(CheckerContext &C, SVal ArgVal, 1826 SourceRange Range) const { 1827 1828 Optional<MallocChecker::CheckKind> CheckKind; 1829 1830 if (ChecksEnabled[CK_MallocChecker]) 1831 CheckKind = CK_MallocChecker; 1832 else if (ChecksEnabled[CK_MismatchedDeallocatorChecker]) 1833 CheckKind = CK_MismatchedDeallocatorChecker; 1834 else 1835 return; 1836 1837 if (ExplodedNode *N = C.generateErrorNode()) { 1838 if (!BT_FreeAlloca[*CheckKind]) 1839 BT_FreeAlloca[*CheckKind].reset(new BugType( 1840 CheckNames[*CheckKind], "Free alloca()", categories::MemoryError)); 1841 1842 auto R = llvm::make_unique<BugReport>( 1843 *BT_FreeAlloca[*CheckKind], 1844 "Memory allocated by alloca() should not be deallocated", N); 1845 R->markInteresting(ArgVal.getAsRegion()); 1846 R->addRange(Range); 1847 C.emitReport(std::move(R)); 1848 } 1849 } 1850 1851 void MallocChecker::ReportMismatchedDealloc(CheckerContext &C, 1852 SourceRange Range, 1853 const Expr *DeallocExpr, 1854 const RefState *RS, 1855 SymbolRef Sym, 1856 bool OwnershipTransferred) const { 1857 1858 if (!ChecksEnabled[CK_MismatchedDeallocatorChecker]) 1859 return; 1860 1861 if (ExplodedNode *N = C.generateErrorNode()) { 1862 if (!BT_MismatchedDealloc) 1863 BT_MismatchedDealloc.reset( 1864 new BugType(CheckNames[CK_MismatchedDeallocatorChecker], 1865 "Bad deallocator", categories::MemoryError)); 1866 1867 SmallString<100> buf; 1868 llvm::raw_svector_ostream os(buf); 1869 1870 const Expr *AllocExpr = cast<Expr>(RS->getStmt()); 1871 SmallString<20> AllocBuf; 1872 llvm::raw_svector_ostream AllocOs(AllocBuf); 1873 SmallString<20> DeallocBuf; 1874 llvm::raw_svector_ostream DeallocOs(DeallocBuf); 1875 1876 if (OwnershipTransferred) { 1877 if (printAllocDeallocName(DeallocOs, C, DeallocExpr)) 1878 os << DeallocOs.str() << " cannot"; 1879 else 1880 os << "Cannot"; 1881 1882 os << " take ownership of memory"; 1883 1884 if (printAllocDeallocName(AllocOs, C, AllocExpr)) 1885 os << " allocated by " << AllocOs.str(); 1886 } else { 1887 os << "Memory"; 1888 if (printAllocDeallocName(AllocOs, C, AllocExpr)) 1889 os << " allocated by " << AllocOs.str(); 1890 1891 os << " should be deallocated by "; 1892 printExpectedDeallocName(os, RS->getAllocationFamily()); 1893 1894 if (printAllocDeallocName(DeallocOs, C, DeallocExpr)) 1895 os << ", not " << DeallocOs.str(); 1896 } 1897 1898 auto R = llvm::make_unique<BugReport>(*BT_MismatchedDealloc, os.str(), N); 1899 R->markInteresting(Sym); 1900 R->addRange(Range); 1901 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 1902 C.emitReport(std::move(R)); 1903 } 1904 } 1905 1906 void MallocChecker::ReportOffsetFree(CheckerContext &C, SVal ArgVal, 1907 SourceRange Range, const Expr *DeallocExpr, 1908 const Expr *AllocExpr) const { 1909 1910 1911 if (!ChecksEnabled[CK_MallocChecker] && 1912 !ChecksEnabled[CK_NewDeleteChecker]) 1913 return; 1914 1915 Optional<MallocChecker::CheckKind> CheckKind = 1916 getCheckIfTracked(C, AllocExpr); 1917 if (!CheckKind.hasValue()) 1918 return; 1919 1920 ExplodedNode *N = C.generateErrorNode(); 1921 if (!N) 1922 return; 1923 1924 if (!BT_OffsetFree[*CheckKind]) 1925 BT_OffsetFree[*CheckKind].reset(new BugType( 1926 CheckNames[*CheckKind], "Offset free", categories::MemoryError)); 1927 1928 SmallString<100> buf; 1929 llvm::raw_svector_ostream os(buf); 1930 SmallString<20> AllocNameBuf; 1931 llvm::raw_svector_ostream AllocNameOs(AllocNameBuf); 1932 1933 const MemRegion *MR = ArgVal.getAsRegion(); 1934 assert(MR && "Only MemRegion based symbols can have offset free errors"); 1935 1936 RegionOffset Offset = MR->getAsOffset(); 1937 assert((Offset.isValid() && 1938 !Offset.hasSymbolicOffset() && 1939 Offset.getOffset() != 0) && 1940 "Only symbols with a valid offset can have offset free errors"); 1941 1942 int offsetBytes = Offset.getOffset() / C.getASTContext().getCharWidth(); 1943 1944 os << "Argument to "; 1945 if (!printAllocDeallocName(os, C, DeallocExpr)) 1946 os << "deallocator"; 1947 os << " is offset by " 1948 << offsetBytes 1949 << " " 1950 << ((abs(offsetBytes) > 1) ? "bytes" : "byte") 1951 << " from the start of "; 1952 if (AllocExpr && printAllocDeallocName(AllocNameOs, C, AllocExpr)) 1953 os << "memory allocated by " << AllocNameOs.str(); 1954 else 1955 os << "allocated memory"; 1956 1957 auto R = llvm::make_unique<BugReport>(*BT_OffsetFree[*CheckKind], os.str(), N); 1958 R->markInteresting(MR->getBaseRegion()); 1959 R->addRange(Range); 1960 C.emitReport(std::move(R)); 1961 } 1962 1963 void MallocChecker::ReportUseAfterFree(CheckerContext &C, SourceRange Range, 1964 SymbolRef Sym) const { 1965 1966 if (!ChecksEnabled[CK_MallocChecker] && 1967 !ChecksEnabled[CK_NewDeleteChecker]) 1968 return; 1969 1970 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 1971 if (!CheckKind.hasValue()) 1972 return; 1973 1974 if (ExplodedNode *N = C.generateErrorNode()) { 1975 if (!BT_UseFree[*CheckKind]) 1976 BT_UseFree[*CheckKind].reset(new BugType( 1977 CheckNames[*CheckKind], "Use-after-free", categories::MemoryError)); 1978 1979 auto R = llvm::make_unique<BugReport>(*BT_UseFree[*CheckKind], 1980 "Use of memory after it is freed", N); 1981 1982 R->markInteresting(Sym); 1983 R->addRange(Range); 1984 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 1985 C.emitReport(std::move(R)); 1986 } 1987 } 1988 1989 void MallocChecker::ReportDoubleFree(CheckerContext &C, SourceRange Range, 1990 bool Released, SymbolRef Sym, 1991 SymbolRef PrevSym) const { 1992 1993 if (!ChecksEnabled[CK_MallocChecker] && 1994 !ChecksEnabled[CK_NewDeleteChecker]) 1995 return; 1996 1997 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 1998 if (!CheckKind.hasValue()) 1999 return; 2000 2001 if (ExplodedNode *N = C.generateErrorNode()) { 2002 if (!BT_DoubleFree[*CheckKind]) 2003 BT_DoubleFree[*CheckKind].reset(new BugType( 2004 CheckNames[*CheckKind], "Double free", categories::MemoryError)); 2005 2006 auto R = llvm::make_unique<BugReport>( 2007 *BT_DoubleFree[*CheckKind], 2008 (Released ? "Attempt to free released memory" 2009 : "Attempt to free non-owned memory"), 2010 N); 2011 R->addRange(Range); 2012 R->markInteresting(Sym); 2013 if (PrevSym) 2014 R->markInteresting(PrevSym); 2015 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 2016 C.emitReport(std::move(R)); 2017 } 2018 } 2019 2020 void MallocChecker::ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const { 2021 2022 if (!ChecksEnabled[CK_NewDeleteChecker]) 2023 return; 2024 2025 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2026 if (!CheckKind.hasValue()) 2027 return; 2028 2029 if (ExplodedNode *N = C.generateErrorNode()) { 2030 if (!BT_DoubleDelete) 2031 BT_DoubleDelete.reset(new BugType(CheckNames[CK_NewDeleteChecker], 2032 "Double delete", 2033 categories::MemoryError)); 2034 2035 auto R = llvm::make_unique<BugReport>( 2036 *BT_DoubleDelete, "Attempt to delete released memory", N); 2037 2038 R->markInteresting(Sym); 2039 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 2040 C.emitReport(std::move(R)); 2041 } 2042 } 2043 2044 void MallocChecker::ReportUseZeroAllocated(CheckerContext &C, 2045 SourceRange Range, 2046 SymbolRef Sym) const { 2047 2048 if (!ChecksEnabled[CK_MallocChecker] && 2049 !ChecksEnabled[CK_NewDeleteChecker]) 2050 return; 2051 2052 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2053 2054 if (!CheckKind.hasValue()) 2055 return; 2056 2057 if (ExplodedNode *N = C.generateErrorNode()) { 2058 if (!BT_UseZerroAllocated[*CheckKind]) 2059 BT_UseZerroAllocated[*CheckKind].reset( 2060 new BugType(CheckNames[*CheckKind], "Use of zero allocated", 2061 categories::MemoryError)); 2062 2063 auto R = llvm::make_unique<BugReport>(*BT_UseZerroAllocated[*CheckKind], 2064 "Use of zero-allocated memory", N); 2065 2066 R->addRange(Range); 2067 if (Sym) { 2068 R->markInteresting(Sym); 2069 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 2070 } 2071 C.emitReport(std::move(R)); 2072 } 2073 } 2074 2075 void MallocChecker::ReportFunctionPointerFree(CheckerContext &C, SVal ArgVal, 2076 SourceRange Range, 2077 const Expr *FreeExpr) const { 2078 if (!ChecksEnabled[CK_MallocChecker]) 2079 return; 2080 2081 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, FreeExpr); 2082 if (!CheckKind.hasValue()) 2083 return; 2084 2085 if (ExplodedNode *N = C.generateErrorNode()) { 2086 if (!BT_BadFree[*CheckKind]) 2087 BT_BadFree[*CheckKind].reset(new BugType( 2088 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 2089 2090 SmallString<100> Buf; 2091 llvm::raw_svector_ostream Os(Buf); 2092 2093 const MemRegion *MR = ArgVal.getAsRegion(); 2094 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 2095 MR = ER->getSuperRegion(); 2096 2097 Os << "Argument to "; 2098 if (!printAllocDeallocName(Os, C, FreeExpr)) 2099 Os << "deallocator"; 2100 2101 Os << " is a function pointer"; 2102 2103 auto R = llvm::make_unique<BugReport>(*BT_BadFree[*CheckKind], Os.str(), N); 2104 R->markInteresting(MR); 2105 R->addRange(Range); 2106 C.emitReport(std::move(R)); 2107 } 2108 } 2109 2110 ProgramStateRef MallocChecker::ReallocMemAux(CheckerContext &C, 2111 const CallExpr *CE, 2112 bool FreesOnFail, 2113 ProgramStateRef State, 2114 bool SuffixWithN) const { 2115 if (!State) 2116 return nullptr; 2117 2118 if (SuffixWithN && CE->getNumArgs() < 3) 2119 return nullptr; 2120 else if (CE->getNumArgs() < 2) 2121 return nullptr; 2122 2123 const Expr *arg0Expr = CE->getArg(0); 2124 SVal Arg0Val = C.getSVal(arg0Expr); 2125 if (!Arg0Val.getAs<DefinedOrUnknownSVal>()) 2126 return nullptr; 2127 DefinedOrUnknownSVal arg0Val = Arg0Val.castAs<DefinedOrUnknownSVal>(); 2128 2129 SValBuilder &svalBuilder = C.getSValBuilder(); 2130 2131 DefinedOrUnknownSVal PtrEQ = 2132 svalBuilder.evalEQ(State, arg0Val, svalBuilder.makeNull()); 2133 2134 // Get the size argument. 2135 const Expr *Arg1 = CE->getArg(1); 2136 2137 // Get the value of the size argument. 2138 SVal TotalSize = C.getSVal(Arg1); 2139 if (SuffixWithN) 2140 TotalSize = evalMulForBufferSize(C, Arg1, CE->getArg(2)); 2141 if (!TotalSize.getAs<DefinedOrUnknownSVal>()) 2142 return nullptr; 2143 2144 // Compare the size argument to 0. 2145 DefinedOrUnknownSVal SizeZero = 2146 svalBuilder.evalEQ(State, TotalSize.castAs<DefinedOrUnknownSVal>(), 2147 svalBuilder.makeIntValWithPtrWidth(0, false)); 2148 2149 ProgramStateRef StatePtrIsNull, StatePtrNotNull; 2150 std::tie(StatePtrIsNull, StatePtrNotNull) = State->assume(PtrEQ); 2151 ProgramStateRef StateSizeIsZero, StateSizeNotZero; 2152 std::tie(StateSizeIsZero, StateSizeNotZero) = State->assume(SizeZero); 2153 // We only assume exceptional states if they are definitely true; if the 2154 // state is under-constrained, assume regular realloc behavior. 2155 bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull; 2156 bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero; 2157 2158 // If the ptr is NULL and the size is not 0, the call is equivalent to 2159 // malloc(size). 2160 if (PrtIsNull && !SizeIsZero) { 2161 ProgramStateRef stateMalloc = MallocMemAux(C, CE, TotalSize, 2162 UndefinedVal(), StatePtrIsNull); 2163 return stateMalloc; 2164 } 2165 2166 if (PrtIsNull && SizeIsZero) 2167 return State; 2168 2169 // Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size). 2170 assert(!PrtIsNull); 2171 SymbolRef FromPtr = arg0Val.getAsSymbol(); 2172 SVal RetVal = C.getSVal(CE); 2173 SymbolRef ToPtr = RetVal.getAsSymbol(); 2174 if (!FromPtr || !ToPtr) 2175 return nullptr; 2176 2177 bool ReleasedAllocated = false; 2178 2179 // If the size is 0, free the memory. 2180 if (SizeIsZero) 2181 if (ProgramStateRef stateFree = FreeMemAux(C, CE, StateSizeIsZero, 0, 2182 false, ReleasedAllocated)){ 2183 // The semantics of the return value are: 2184 // If size was equal to 0, either NULL or a pointer suitable to be passed 2185 // to free() is returned. We just free the input pointer and do not add 2186 // any constrains on the output pointer. 2187 return stateFree; 2188 } 2189 2190 // Default behavior. 2191 if (ProgramStateRef stateFree = 2192 FreeMemAux(C, CE, State, 0, false, ReleasedAllocated)) { 2193 2194 ProgramStateRef stateRealloc = MallocMemAux(C, CE, TotalSize, 2195 UnknownVal(), stateFree); 2196 if (!stateRealloc) 2197 return nullptr; 2198 2199 ReallocPairKind Kind = RPToBeFreedAfterFailure; 2200 if (FreesOnFail) 2201 Kind = RPIsFreeOnFailure; 2202 else if (!ReleasedAllocated) 2203 Kind = RPDoNotTrackAfterFailure; 2204 2205 // Record the info about the reallocated symbol so that we could properly 2206 // process failed reallocation. 2207 stateRealloc = stateRealloc->set<ReallocPairs>(ToPtr, 2208 ReallocPair(FromPtr, Kind)); 2209 // The reallocated symbol should stay alive for as long as the new symbol. 2210 C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr); 2211 return stateRealloc; 2212 } 2213 return nullptr; 2214 } 2215 2216 ProgramStateRef MallocChecker::CallocMem(CheckerContext &C, const CallExpr *CE, 2217 ProgramStateRef State) { 2218 if (!State) 2219 return nullptr; 2220 2221 if (CE->getNumArgs() < 2) 2222 return nullptr; 2223 2224 SValBuilder &svalBuilder = C.getSValBuilder(); 2225 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 2226 SVal TotalSize = evalMulForBufferSize(C, CE->getArg(0), CE->getArg(1)); 2227 2228 return MallocMemAux(C, CE, TotalSize, zeroVal, State); 2229 } 2230 2231 LeakInfo 2232 MallocChecker::getAllocationSite(const ExplodedNode *N, SymbolRef Sym, 2233 CheckerContext &C) const { 2234 const LocationContext *LeakContext = N->getLocationContext(); 2235 // Walk the ExplodedGraph backwards and find the first node that referred to 2236 // the tracked symbol. 2237 const ExplodedNode *AllocNode = N; 2238 const MemRegion *ReferenceRegion = nullptr; 2239 2240 while (N) { 2241 ProgramStateRef State = N->getState(); 2242 if (!State->get<RegionState>(Sym)) 2243 break; 2244 2245 // Find the most recent expression bound to the symbol in the current 2246 // context. 2247 if (!ReferenceRegion) { 2248 if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) { 2249 SVal Val = State->getSVal(MR); 2250 if (Val.getAsLocSymbol() == Sym) { 2251 const VarRegion* VR = MR->getBaseRegion()->getAs<VarRegion>(); 2252 // Do not show local variables belonging to a function other than 2253 // where the error is reported. 2254 if (!VR || 2255 (VR->getStackFrame() == LeakContext->getCurrentStackFrame())) 2256 ReferenceRegion = MR; 2257 } 2258 } 2259 } 2260 2261 // Allocation node, is the last node in the current or parent context in 2262 // which the symbol was tracked. 2263 const LocationContext *NContext = N->getLocationContext(); 2264 if (NContext == LeakContext || 2265 NContext->isParentOf(LeakContext)) 2266 AllocNode = N; 2267 N = N->pred_empty() ? nullptr : *(N->pred_begin()); 2268 } 2269 2270 return LeakInfo(AllocNode, ReferenceRegion); 2271 } 2272 2273 void MallocChecker::reportLeak(SymbolRef Sym, ExplodedNode *N, 2274 CheckerContext &C) const { 2275 2276 if (!ChecksEnabled[CK_MallocChecker] && 2277 !ChecksEnabled[CK_NewDeleteLeaksChecker]) 2278 return; 2279 2280 const RefState *RS = C.getState()->get<RegionState>(Sym); 2281 assert(RS && "cannot leak an untracked symbol"); 2282 AllocationFamily Family = RS->getAllocationFamily(); 2283 2284 if (Family == AF_Alloca) 2285 return; 2286 2287 Optional<MallocChecker::CheckKind> 2288 CheckKind = getCheckIfTracked(Family, true); 2289 2290 if (!CheckKind.hasValue()) 2291 return; 2292 2293 assert(N); 2294 if (!BT_Leak[*CheckKind]) { 2295 BT_Leak[*CheckKind].reset(new BugType(CheckNames[*CheckKind], "Memory leak", 2296 categories::MemoryError)); 2297 // Leaks should not be reported if they are post-dominated by a sink: 2298 // (1) Sinks are higher importance bugs. 2299 // (2) NoReturnFunctionChecker uses sink nodes to represent paths ending 2300 // with __noreturn functions such as assert() or exit(). We choose not 2301 // to report leaks on such paths. 2302 BT_Leak[*CheckKind]->setSuppressOnSink(true); 2303 } 2304 2305 // Most bug reports are cached at the location where they occurred. 2306 // With leaks, we want to unique them by the location where they were 2307 // allocated, and only report a single path. 2308 PathDiagnosticLocation LocUsedForUniqueing; 2309 const ExplodedNode *AllocNode = nullptr; 2310 const MemRegion *Region = nullptr; 2311 std::tie(AllocNode, Region) = getAllocationSite(N, Sym, C); 2312 2313 const Stmt *AllocationStmt = PathDiagnosticLocation::getStmt(AllocNode); 2314 if (AllocationStmt) 2315 LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocationStmt, 2316 C.getSourceManager(), 2317 AllocNode->getLocationContext()); 2318 2319 SmallString<200> buf; 2320 llvm::raw_svector_ostream os(buf); 2321 if (Region && Region->canPrintPretty()) { 2322 os << "Potential leak of memory pointed to by "; 2323 Region->printPretty(os); 2324 } else { 2325 os << "Potential memory leak"; 2326 } 2327 2328 auto R = llvm::make_unique<BugReport>( 2329 *BT_Leak[*CheckKind], os.str(), N, LocUsedForUniqueing, 2330 AllocNode->getLocationContext()->getDecl()); 2331 R->markInteresting(Sym); 2332 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym, true)); 2333 C.emitReport(std::move(R)); 2334 } 2335 2336 void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper, 2337 CheckerContext &C) const 2338 { 2339 if (!SymReaper.hasDeadSymbols()) 2340 return; 2341 2342 ProgramStateRef state = C.getState(); 2343 RegionStateTy RS = state->get<RegionState>(); 2344 RegionStateTy::Factory &F = state->get_context<RegionState>(); 2345 2346 SmallVector<SymbolRef, 2> Errors; 2347 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2348 if (SymReaper.isDead(I->first)) { 2349 if (I->second.isAllocated() || I->second.isAllocatedOfSizeZero()) 2350 Errors.push_back(I->first); 2351 // Remove the dead symbol from the map. 2352 RS = F.remove(RS, I->first); 2353 2354 } 2355 } 2356 2357 // Cleanup the Realloc Pairs Map. 2358 ReallocPairsTy RP = state->get<ReallocPairs>(); 2359 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 2360 if (SymReaper.isDead(I->first) || 2361 SymReaper.isDead(I->second.ReallocatedSym)) { 2362 state = state->remove<ReallocPairs>(I->first); 2363 } 2364 } 2365 2366 // Cleanup the FreeReturnValue Map. 2367 FreeReturnValueTy FR = state->get<FreeReturnValue>(); 2368 for (FreeReturnValueTy::iterator I = FR.begin(), E = FR.end(); I != E; ++I) { 2369 if (SymReaper.isDead(I->first) || 2370 SymReaper.isDead(I->second)) { 2371 state = state->remove<FreeReturnValue>(I->first); 2372 } 2373 } 2374 2375 // Generate leak node. 2376 ExplodedNode *N = C.getPredecessor(); 2377 if (!Errors.empty()) { 2378 static CheckerProgramPointTag Tag("MallocChecker", "DeadSymbolsLeak"); 2379 N = C.generateNonFatalErrorNode(C.getState(), &Tag); 2380 if (N) { 2381 for (SmallVectorImpl<SymbolRef>::iterator 2382 I = Errors.begin(), E = Errors.end(); I != E; ++I) { 2383 reportLeak(*I, N, C); 2384 } 2385 } 2386 } 2387 2388 C.addTransition(state->set<RegionState>(RS), N); 2389 } 2390 2391 void MallocChecker::checkPreCall(const CallEvent &Call, 2392 CheckerContext &C) const { 2393 2394 if (const CXXDestructorCall *DC = dyn_cast<CXXDestructorCall>(&Call)) { 2395 SymbolRef Sym = DC->getCXXThisVal().getAsSymbol(); 2396 if (!Sym || checkDoubleDelete(Sym, C)) 2397 return; 2398 } 2399 2400 // We will check for double free in the post visit. 2401 if (const AnyFunctionCall *FC = dyn_cast<AnyFunctionCall>(&Call)) { 2402 const FunctionDecl *FD = FC->getDecl(); 2403 if (!FD) 2404 return; 2405 2406 ASTContext &Ctx = C.getASTContext(); 2407 if (ChecksEnabled[CK_MallocChecker] && 2408 (isCMemFunction(FD, Ctx, AF_Malloc, MemoryOperationKind::MOK_Free) || 2409 isCMemFunction(FD, Ctx, AF_IfNameIndex, 2410 MemoryOperationKind::MOK_Free))) 2411 return; 2412 2413 if (ChecksEnabled[CK_NewDeleteChecker] && 2414 isStandardNewDelete(FD, Ctx)) 2415 return; 2416 } 2417 2418 // Check if the callee of a method is deleted. 2419 if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(&Call)) { 2420 SymbolRef Sym = CC->getCXXThisVal().getAsSymbol(); 2421 if (!Sym || checkUseAfterFree(Sym, C, CC->getCXXThisExpr())) 2422 return; 2423 } 2424 2425 // Check arguments for being used after free. 2426 for (unsigned I = 0, E = Call.getNumArgs(); I != E; ++I) { 2427 SVal ArgSVal = Call.getArgSVal(I); 2428 if (ArgSVal.getAs<Loc>()) { 2429 SymbolRef Sym = ArgSVal.getAsSymbol(); 2430 if (!Sym) 2431 continue; 2432 if (checkUseAfterFree(Sym, C, Call.getArgExpr(I))) 2433 return; 2434 } 2435 } 2436 } 2437 2438 void MallocChecker::checkPreStmt(const ReturnStmt *S, CheckerContext &C) const { 2439 const Expr *E = S->getRetValue(); 2440 if (!E) 2441 return; 2442 2443 // Check if we are returning a symbol. 2444 ProgramStateRef State = C.getState(); 2445 SVal RetVal = C.getSVal(E); 2446 SymbolRef Sym = RetVal.getAsSymbol(); 2447 if (!Sym) 2448 // If we are returning a field of the allocated struct or an array element, 2449 // the callee could still free the memory. 2450 // TODO: This logic should be a part of generic symbol escape callback. 2451 if (const MemRegion *MR = RetVal.getAsRegion()) 2452 if (isa<FieldRegion>(MR) || isa<ElementRegion>(MR)) 2453 if (const SymbolicRegion *BMR = 2454 dyn_cast<SymbolicRegion>(MR->getBaseRegion())) 2455 Sym = BMR->getSymbol(); 2456 2457 // Check if we are returning freed memory. 2458 if (Sym) 2459 checkUseAfterFree(Sym, C, E); 2460 } 2461 2462 // TODO: Blocks should be either inlined or should call invalidate regions 2463 // upon invocation. After that's in place, special casing here will not be 2464 // needed. 2465 void MallocChecker::checkPostStmt(const BlockExpr *BE, 2466 CheckerContext &C) const { 2467 2468 // Scan the BlockDecRefExprs for any object the retain count checker 2469 // may be tracking. 2470 if (!BE->getBlockDecl()->hasCaptures()) 2471 return; 2472 2473 ProgramStateRef state = C.getState(); 2474 const BlockDataRegion *R = 2475 cast<BlockDataRegion>(C.getSVal(BE).getAsRegion()); 2476 2477 BlockDataRegion::referenced_vars_iterator I = R->referenced_vars_begin(), 2478 E = R->referenced_vars_end(); 2479 2480 if (I == E) 2481 return; 2482 2483 SmallVector<const MemRegion*, 10> Regions; 2484 const LocationContext *LC = C.getLocationContext(); 2485 MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager(); 2486 2487 for ( ; I != E; ++I) { 2488 const VarRegion *VR = I.getCapturedRegion(); 2489 if (VR->getSuperRegion() == R) { 2490 VR = MemMgr.getVarRegion(VR->getDecl(), LC); 2491 } 2492 Regions.push_back(VR); 2493 } 2494 2495 state = 2496 state->scanReachableSymbols<StopTrackingCallback>(Regions.data(), 2497 Regions.data() + Regions.size()).getState(); 2498 C.addTransition(state); 2499 } 2500 2501 bool MallocChecker::isReleased(SymbolRef Sym, CheckerContext &C) const { 2502 assert(Sym); 2503 const RefState *RS = C.getState()->get<RegionState>(Sym); 2504 return (RS && RS->isReleased()); 2505 } 2506 2507 bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C, 2508 const Stmt *S) const { 2509 2510 if (isReleased(Sym, C)) { 2511 ReportUseAfterFree(C, S->getSourceRange(), Sym); 2512 return true; 2513 } 2514 2515 return false; 2516 } 2517 2518 void MallocChecker::checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 2519 const Stmt *S) const { 2520 assert(Sym); 2521 2522 if (const RefState *RS = C.getState()->get<RegionState>(Sym)) { 2523 if (RS->isAllocatedOfSizeZero()) 2524 ReportUseZeroAllocated(C, RS->getStmt()->getSourceRange(), Sym); 2525 } 2526 else if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) { 2527 ReportUseZeroAllocated(C, S->getSourceRange(), Sym); 2528 } 2529 } 2530 2531 bool MallocChecker::checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const { 2532 2533 if (isReleased(Sym, C)) { 2534 ReportDoubleDelete(C, Sym); 2535 return true; 2536 } 2537 return false; 2538 } 2539 2540 // Check if the location is a freed symbolic region. 2541 void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S, 2542 CheckerContext &C) const { 2543 SymbolRef Sym = l.getLocSymbolInBase(); 2544 if (Sym) { 2545 checkUseAfterFree(Sym, C, S); 2546 checkUseZeroAllocated(Sym, C, S); 2547 } 2548 } 2549 2550 // If a symbolic region is assumed to NULL (or another constant), stop tracking 2551 // it - assuming that allocation failed on this path. 2552 ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state, 2553 SVal Cond, 2554 bool Assumption) const { 2555 RegionStateTy RS = state->get<RegionState>(); 2556 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2557 // If the symbol is assumed to be NULL, remove it from consideration. 2558 ConstraintManager &CMgr = state->getConstraintManager(); 2559 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 2560 if (AllocFailed.isConstrainedTrue()) 2561 state = state->remove<RegionState>(I.getKey()); 2562 } 2563 2564 // Realloc returns 0 when reallocation fails, which means that we should 2565 // restore the state of the pointer being reallocated. 2566 ReallocPairsTy RP = state->get<ReallocPairs>(); 2567 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 2568 // If the symbol is assumed to be NULL, remove it from consideration. 2569 ConstraintManager &CMgr = state->getConstraintManager(); 2570 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 2571 if (!AllocFailed.isConstrainedTrue()) 2572 continue; 2573 2574 SymbolRef ReallocSym = I.getData().ReallocatedSym; 2575 if (const RefState *RS = state->get<RegionState>(ReallocSym)) { 2576 if (RS->isReleased()) { 2577 if (I.getData().Kind == RPToBeFreedAfterFailure) 2578 state = state->set<RegionState>(ReallocSym, 2579 RefState::getAllocated(RS->getAllocationFamily(), RS->getStmt())); 2580 else if (I.getData().Kind == RPDoNotTrackAfterFailure) 2581 state = state->remove<RegionState>(ReallocSym); 2582 else 2583 assert(I.getData().Kind == RPIsFreeOnFailure); 2584 } 2585 } 2586 state = state->remove<ReallocPairs>(I.getKey()); 2587 } 2588 2589 return state; 2590 } 2591 2592 bool MallocChecker::mayFreeAnyEscapedMemoryOrIsModeledExplicitly( 2593 const CallEvent *Call, 2594 ProgramStateRef State, 2595 SymbolRef &EscapingSymbol) const { 2596 assert(Call); 2597 EscapingSymbol = nullptr; 2598 2599 // For now, assume that any C++ or block call can free memory. 2600 // TODO: If we want to be more optimistic here, we'll need to make sure that 2601 // regions escape to C++ containers. They seem to do that even now, but for 2602 // mysterious reasons. 2603 if (!(isa<SimpleFunctionCall>(Call) || isa<ObjCMethodCall>(Call))) 2604 return true; 2605 2606 // Check Objective-C messages by selector name. 2607 if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) { 2608 // If it's not a framework call, or if it takes a callback, assume it 2609 // can free memory. 2610 if (!Call->isInSystemHeader() || Call->argumentsMayEscape()) 2611 return true; 2612 2613 // If it's a method we know about, handle it explicitly post-call. 2614 // This should happen before the "freeWhenDone" check below. 2615 if (isKnownDeallocObjCMethodName(*Msg)) 2616 return false; 2617 2618 // If there's a "freeWhenDone" parameter, but the method isn't one we know 2619 // about, we can't be sure that the object will use free() to deallocate the 2620 // memory, so we can't model it explicitly. The best we can do is use it to 2621 // decide whether the pointer escapes. 2622 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(*Msg)) 2623 return *FreeWhenDone; 2624 2625 // If the first selector piece ends with "NoCopy", and there is no 2626 // "freeWhenDone" parameter set to zero, we know ownership is being 2627 // transferred. Again, though, we can't be sure that the object will use 2628 // free() to deallocate the memory, so we can't model it explicitly. 2629 StringRef FirstSlot = Msg->getSelector().getNameForSlot(0); 2630 if (FirstSlot.endswith("NoCopy")) 2631 return true; 2632 2633 // If the first selector starts with addPointer, insertPointer, 2634 // or replacePointer, assume we are dealing with NSPointerArray or similar. 2635 // This is similar to C++ containers (vector); we still might want to check 2636 // that the pointers get freed by following the container itself. 2637 if (FirstSlot.startswith("addPointer") || 2638 FirstSlot.startswith("insertPointer") || 2639 FirstSlot.startswith("replacePointer") || 2640 FirstSlot.equals("valueWithPointer")) { 2641 return true; 2642 } 2643 2644 // We should escape receiver on call to 'init'. This is especially relevant 2645 // to the receiver, as the corresponding symbol is usually not referenced 2646 // after the call. 2647 if (Msg->getMethodFamily() == OMF_init) { 2648 EscapingSymbol = Msg->getReceiverSVal().getAsSymbol(); 2649 return true; 2650 } 2651 2652 // Otherwise, assume that the method does not free memory. 2653 // Most framework methods do not free memory. 2654 return false; 2655 } 2656 2657 // At this point the only thing left to handle is straight function calls. 2658 const FunctionDecl *FD = cast<SimpleFunctionCall>(Call)->getDecl(); 2659 if (!FD) 2660 return true; 2661 2662 ASTContext &ASTC = State->getStateManager().getContext(); 2663 2664 // If it's one of the allocation functions we can reason about, we model 2665 // its behavior explicitly. 2666 if (isMemFunction(FD, ASTC)) 2667 return false; 2668 2669 // If it's not a system call, assume it frees memory. 2670 if (!Call->isInSystemHeader()) 2671 return true; 2672 2673 // White list the system functions whose arguments escape. 2674 const IdentifierInfo *II = FD->getIdentifier(); 2675 if (!II) 2676 return true; 2677 StringRef FName = II->getName(); 2678 2679 // White list the 'XXXNoCopy' CoreFoundation functions. 2680 // We specifically check these before 2681 if (FName.endswith("NoCopy")) { 2682 // Look for the deallocator argument. We know that the memory ownership 2683 // is not transferred only if the deallocator argument is 2684 // 'kCFAllocatorNull'. 2685 for (unsigned i = 1; i < Call->getNumArgs(); ++i) { 2686 const Expr *ArgE = Call->getArgExpr(i)->IgnoreParenCasts(); 2687 if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(ArgE)) { 2688 StringRef DeallocatorName = DE->getFoundDecl()->getName(); 2689 if (DeallocatorName == "kCFAllocatorNull") 2690 return false; 2691 } 2692 } 2693 return true; 2694 } 2695 2696 // Associating streams with malloced buffers. The pointer can escape if 2697 // 'closefn' is specified (and if that function does free memory), 2698 // but it will not if closefn is not specified. 2699 // Currently, we do not inspect the 'closefn' function (PR12101). 2700 if (FName == "funopen") 2701 if (Call->getNumArgs() >= 4 && Call->getArgSVal(4).isConstant(0)) 2702 return false; 2703 2704 // Do not warn on pointers passed to 'setbuf' when used with std streams, 2705 // these leaks might be intentional when setting the buffer for stdio. 2706 // http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer 2707 if (FName == "setbuf" || FName =="setbuffer" || 2708 FName == "setlinebuf" || FName == "setvbuf") { 2709 if (Call->getNumArgs() >= 1) { 2710 const Expr *ArgE = Call->getArgExpr(0)->IgnoreParenCasts(); 2711 if (const DeclRefExpr *ArgDRE = dyn_cast<DeclRefExpr>(ArgE)) 2712 if (const VarDecl *D = dyn_cast<VarDecl>(ArgDRE->getDecl())) 2713 if (D->getCanonicalDecl()->getName().find("std") != StringRef::npos) 2714 return true; 2715 } 2716 } 2717 2718 // A bunch of other functions which either take ownership of a pointer or 2719 // wrap the result up in a struct or object, meaning it can be freed later. 2720 // (See RetainCountChecker.) Not all the parameters here are invalidated, 2721 // but the Malloc checker cannot differentiate between them. The right way 2722 // of doing this would be to implement a pointer escapes callback. 2723 if (FName == "CGBitmapContextCreate" || 2724 FName == "CGBitmapContextCreateWithData" || 2725 FName == "CVPixelBufferCreateWithBytes" || 2726 FName == "CVPixelBufferCreateWithPlanarBytes" || 2727 FName == "OSAtomicEnqueue") { 2728 return true; 2729 } 2730 2731 if (FName == "postEvent" && 2732 FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") { 2733 return true; 2734 } 2735 2736 if (FName == "postEvent" && 2737 FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") { 2738 return true; 2739 } 2740 2741 if (FName == "connectImpl" && 2742 FD->getQualifiedNameAsString() == "QObject::connectImpl") { 2743 return true; 2744 } 2745 2746 // Handle cases where we know a buffer's /address/ can escape. 2747 // Note that the above checks handle some special cases where we know that 2748 // even though the address escapes, it's still our responsibility to free the 2749 // buffer. 2750 if (Call->argumentsMayEscape()) 2751 return true; 2752 2753 // Otherwise, assume that the function does not free memory. 2754 // Most system calls do not free the memory. 2755 return false; 2756 } 2757 2758 static bool retTrue(const RefState *RS) { 2759 return true; 2760 } 2761 2762 static bool checkIfNewOrNewArrayFamily(const RefState *RS) { 2763 return (RS->getAllocationFamily() == AF_CXXNewArray || 2764 RS->getAllocationFamily() == AF_CXXNew); 2765 } 2766 2767 ProgramStateRef MallocChecker::checkPointerEscape(ProgramStateRef State, 2768 const InvalidatedSymbols &Escaped, 2769 const CallEvent *Call, 2770 PointerEscapeKind Kind) const { 2771 return checkPointerEscapeAux(State, Escaped, Call, Kind, &retTrue); 2772 } 2773 2774 ProgramStateRef MallocChecker::checkConstPointerEscape(ProgramStateRef State, 2775 const InvalidatedSymbols &Escaped, 2776 const CallEvent *Call, 2777 PointerEscapeKind Kind) const { 2778 return checkPointerEscapeAux(State, Escaped, Call, Kind, 2779 &checkIfNewOrNewArrayFamily); 2780 } 2781 2782 ProgramStateRef MallocChecker::checkPointerEscapeAux(ProgramStateRef State, 2783 const InvalidatedSymbols &Escaped, 2784 const CallEvent *Call, 2785 PointerEscapeKind Kind, 2786 bool(*CheckRefState)(const RefState*)) const { 2787 // If we know that the call does not free memory, or we want to process the 2788 // call later, keep tracking the top level arguments. 2789 SymbolRef EscapingSymbol = nullptr; 2790 if (Kind == PSK_DirectEscapeOnCall && 2791 !mayFreeAnyEscapedMemoryOrIsModeledExplicitly(Call, State, 2792 EscapingSymbol) && 2793 !EscapingSymbol) { 2794 return State; 2795 } 2796 2797 for (InvalidatedSymbols::const_iterator I = Escaped.begin(), 2798 E = Escaped.end(); 2799 I != E; ++I) { 2800 SymbolRef sym = *I; 2801 2802 if (EscapingSymbol && EscapingSymbol != sym) 2803 continue; 2804 2805 if (const RefState *RS = State->get<RegionState>(sym)) { 2806 if ((RS->isAllocated() || RS->isAllocatedOfSizeZero()) && 2807 CheckRefState(RS)) { 2808 State = State->remove<RegionState>(sym); 2809 State = State->set<RegionState>(sym, RefState::getEscaped(RS)); 2810 } 2811 } 2812 } 2813 return State; 2814 } 2815 2816 static SymbolRef findFailedReallocSymbol(ProgramStateRef currState, 2817 ProgramStateRef prevState) { 2818 ReallocPairsTy currMap = currState->get<ReallocPairs>(); 2819 ReallocPairsTy prevMap = prevState->get<ReallocPairs>(); 2820 2821 for (ReallocPairsTy::iterator I = prevMap.begin(), E = prevMap.end(); 2822 I != E; ++I) { 2823 SymbolRef sym = I.getKey(); 2824 if (!currMap.lookup(sym)) 2825 return sym; 2826 } 2827 2828 return nullptr; 2829 } 2830 2831 std::shared_ptr<PathDiagnosticPiece> MallocChecker::MallocBugVisitor::VisitNode( 2832 const ExplodedNode *N, const ExplodedNode *PrevN, BugReporterContext &BRC, 2833 BugReport &BR) { 2834 const Stmt *S = PathDiagnosticLocation::getStmt(N); 2835 if (!S) 2836 return nullptr; 2837 2838 const LocationContext *CurrentLC = N->getLocationContext(); 2839 2840 // If we find an atomic fetch_add or fetch_sub within the destructor in which 2841 // the pointer was released (before the release), this is likely a destructor 2842 // of a shared pointer. 2843 // Because we don't model atomics, and also because we don't know that the 2844 // original reference count is positive, we should not report use-after-frees 2845 // on objects deleted in such destructors. This can probably be improved 2846 // through better shared pointer modeling. 2847 if (ReleaseDestructorLC) { 2848 if (const auto *AE = dyn_cast<AtomicExpr>(S)) { 2849 AtomicExpr::AtomicOp Op = AE->getOp(); 2850 if (Op == AtomicExpr::AO__c11_atomic_fetch_add || 2851 Op == AtomicExpr::AO__c11_atomic_fetch_sub) { 2852 if (ReleaseDestructorLC == CurrentLC || 2853 ReleaseDestructorLC->isParentOf(CurrentLC)) { 2854 BR.markInvalid(getTag(), S); 2855 } 2856 } 2857 } 2858 } 2859 2860 ProgramStateRef state = N->getState(); 2861 ProgramStateRef statePrev = PrevN->getState(); 2862 2863 const RefState *RS = state->get<RegionState>(Sym); 2864 const RefState *RSPrev = statePrev->get<RegionState>(Sym); 2865 if (!RS) 2866 return nullptr; 2867 2868 // FIXME: We will eventually need to handle non-statement-based events 2869 // (__attribute__((cleanup))). 2870 2871 // Find out if this is an interesting point and what is the kind. 2872 const char *Msg = nullptr; 2873 StackHintGeneratorForSymbol *StackHint = nullptr; 2874 if (Mode == Normal) { 2875 if (isAllocated(RS, RSPrev, S)) { 2876 Msg = "Memory is allocated"; 2877 StackHint = new StackHintGeneratorForSymbol(Sym, 2878 "Returned allocated memory"); 2879 } else if (isReleased(RS, RSPrev, S)) { 2880 Msg = "Memory is released"; 2881 StackHint = new StackHintGeneratorForSymbol(Sym, 2882 "Returning; memory was released"); 2883 2884 // See if we're releasing memory while inlining a destructor (or one of 2885 // its callees). If so, enable the atomic-related suppression within that 2886 // destructor (and all of its callees), which would kick in while visiting 2887 // other nodes (the visit order is from the bug to the graph root). 2888 for (const LocationContext *LC = CurrentLC; LC; LC = LC->getParent()) { 2889 if (isa<CXXDestructorDecl>(LC->getDecl())) { 2890 assert(!ReleaseDestructorLC && 2891 "There can be only one release point!"); 2892 ReleaseDestructorLC = LC->getCurrentStackFrame(); 2893 // It is unlikely that releasing memory is delegated to a destructor 2894 // inside a destructor of a shared pointer, because it's fairly hard 2895 // to pass the information that the pointer indeed needs to be 2896 // released into it. So we're only interested in the innermost 2897 // destructor. 2898 break; 2899 } 2900 } 2901 } else if (isRelinquished(RS, RSPrev, S)) { 2902 Msg = "Memory ownership is transferred"; 2903 StackHint = new StackHintGeneratorForSymbol(Sym, ""); 2904 } else if (isReallocFailedCheck(RS, RSPrev, S)) { 2905 Mode = ReallocationFailed; 2906 Msg = "Reallocation failed"; 2907 StackHint = new StackHintGeneratorForReallocationFailed(Sym, 2908 "Reallocation failed"); 2909 2910 if (SymbolRef sym = findFailedReallocSymbol(state, statePrev)) { 2911 // Is it possible to fail two reallocs WITHOUT testing in between? 2912 assert((!FailedReallocSymbol || FailedReallocSymbol == sym) && 2913 "We only support one failed realloc at a time."); 2914 BR.markInteresting(sym); 2915 FailedReallocSymbol = sym; 2916 } 2917 } 2918 2919 // We are in a special mode if a reallocation failed later in the path. 2920 } else if (Mode == ReallocationFailed) { 2921 assert(FailedReallocSymbol && "No symbol to look for."); 2922 2923 // Is this is the first appearance of the reallocated symbol? 2924 if (!statePrev->get<RegionState>(FailedReallocSymbol)) { 2925 // We're at the reallocation point. 2926 Msg = "Attempt to reallocate memory"; 2927 StackHint = new StackHintGeneratorForSymbol(Sym, 2928 "Returned reallocated memory"); 2929 FailedReallocSymbol = nullptr; 2930 Mode = Normal; 2931 } 2932 } 2933 2934 if (!Msg) 2935 return nullptr; 2936 assert(StackHint); 2937 2938 // Generate the extra diagnostic. 2939 PathDiagnosticLocation Pos(S, BRC.getSourceManager(), 2940 N->getLocationContext()); 2941 return std::make_shared<PathDiagnosticEventPiece>(Pos, Msg, true, StackHint); 2942 } 2943 2944 void MallocChecker::printState(raw_ostream &Out, ProgramStateRef State, 2945 const char *NL, const char *Sep) const { 2946 2947 RegionStateTy RS = State->get<RegionState>(); 2948 2949 if (!RS.isEmpty()) { 2950 Out << Sep << "MallocChecker :" << NL; 2951 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2952 const RefState *RefS = State->get<RegionState>(I.getKey()); 2953 AllocationFamily Family = RefS->getAllocationFamily(); 2954 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2955 if (!CheckKind.hasValue()) 2956 CheckKind = getCheckIfTracked(Family, true); 2957 2958 I.getKey()->dumpToStream(Out); 2959 Out << " : "; 2960 I.getData().dump(Out); 2961 if (CheckKind.hasValue()) 2962 Out << " (" << CheckNames[*CheckKind].getName() << ")"; 2963 Out << NL; 2964 } 2965 } 2966 } 2967 2968 void ento::registerNewDeleteLeaksChecker(CheckerManager &mgr) { 2969 registerCStringCheckerBasic(mgr); 2970 MallocChecker *checker = mgr.registerChecker<MallocChecker>(); 2971 checker->IsOptimistic = mgr.getAnalyzerOptions().getBooleanOption( 2972 "Optimistic", false, checker); 2973 checker->ChecksEnabled[MallocChecker::CK_NewDeleteLeaksChecker] = true; 2974 checker->CheckNames[MallocChecker::CK_NewDeleteLeaksChecker] = 2975 mgr.getCurrentCheckName(); 2976 // We currently treat NewDeleteLeaks checker as a subchecker of NewDelete 2977 // checker. 2978 if (!checker->ChecksEnabled[MallocChecker::CK_NewDeleteChecker]) { 2979 checker->ChecksEnabled[MallocChecker::CK_NewDeleteChecker] = true; 2980 // FIXME: This does not set the correct name, but without this workaround 2981 // no name will be set at all. 2982 checker->CheckNames[MallocChecker::CK_NewDeleteChecker] = 2983 mgr.getCurrentCheckName(); 2984 } 2985 } 2986 2987 #define REGISTER_CHECKER(name) \ 2988 void ento::register##name(CheckerManager &mgr) { \ 2989 registerCStringCheckerBasic(mgr); \ 2990 MallocChecker *checker = mgr.registerChecker<MallocChecker>(); \ 2991 checker->IsOptimistic = mgr.getAnalyzerOptions().getBooleanOption( \ 2992 "Optimistic", false, checker); \ 2993 checker->ChecksEnabled[MallocChecker::CK_##name] = true; \ 2994 checker->CheckNames[MallocChecker::CK_##name] = mgr.getCurrentCheckName(); \ 2995 } 2996 2997 REGISTER_CHECKER(MallocChecker) 2998 REGISTER_CHECKER(NewDeleteChecker) 2999 REGISTER_CHECKER(MismatchedDeallocatorChecker) 3000