1 //=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines malloc/free checker, which checks for potential memory 11 // leaks, double free, and use-after-free problems. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ClangSACheckers.h" 16 #include "InterCheckerAPI.h" 17 #include "clang/AST/Attr.h" 18 #include "clang/AST/ParentMap.h" 19 #include "clang/Basic/SourceManager.h" 20 #include "clang/Basic/TargetInfo.h" 21 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 22 #include "clang/StaticAnalyzer/Core/Checker.h" 23 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 24 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 25 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 26 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 27 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 28 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" 29 #include "llvm/ADT/ImmutableMap.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/StringExtras.h" 33 #include <climits> 34 35 using namespace clang; 36 using namespace ento; 37 38 namespace { 39 40 // Used to check correspondence between allocators and deallocators. 41 enum AllocationFamily { 42 AF_None, 43 AF_Malloc, 44 AF_CXXNew, 45 AF_CXXNewArray, 46 AF_IfNameIndex, 47 AF_Alloca 48 }; 49 50 class RefState { 51 enum Kind { // Reference to allocated memory. 52 Allocated, 53 // Reference to zero-allocated memory. 54 AllocatedOfSizeZero, 55 // Reference to released/freed memory. 56 Released, 57 // The responsibility for freeing resources has transferred from 58 // this reference. A relinquished symbol should not be freed. 59 Relinquished, 60 // We are no longer guaranteed to have observed all manipulations 61 // of this pointer/memory. For example, it could have been 62 // passed as a parameter to an opaque function. 63 Escaped 64 }; 65 66 const Stmt *S; 67 unsigned K : 3; // Kind enum, but stored as a bitfield. 68 unsigned Family : 29; // Rest of 32-bit word, currently just an allocation 69 // family. 70 71 RefState(Kind k, const Stmt *s, unsigned family) 72 : S(s), K(k), Family(family) { 73 assert(family != AF_None); 74 } 75 public: 76 bool isAllocated() const { return K == Allocated; } 77 bool isAllocatedOfSizeZero() const { return K == AllocatedOfSizeZero; } 78 bool isReleased() const { return K == Released; } 79 bool isRelinquished() const { return K == Relinquished; } 80 bool isEscaped() const { return K == Escaped; } 81 AllocationFamily getAllocationFamily() const { 82 return (AllocationFamily)Family; 83 } 84 const Stmt *getStmt() const { return S; } 85 86 bool operator==(const RefState &X) const { 87 return K == X.K && S == X.S && Family == X.Family; 88 } 89 90 static RefState getAllocated(unsigned family, const Stmt *s) { 91 return RefState(Allocated, s, family); 92 } 93 static RefState getAllocatedOfSizeZero(const RefState *RS) { 94 return RefState(AllocatedOfSizeZero, RS->getStmt(), 95 RS->getAllocationFamily()); 96 } 97 static RefState getReleased(unsigned family, const Stmt *s) { 98 return RefState(Released, s, family); 99 } 100 static RefState getRelinquished(unsigned family, const Stmt *s) { 101 return RefState(Relinquished, s, family); 102 } 103 static RefState getEscaped(const RefState *RS) { 104 return RefState(Escaped, RS->getStmt(), RS->getAllocationFamily()); 105 } 106 107 void Profile(llvm::FoldingSetNodeID &ID) const { 108 ID.AddInteger(K); 109 ID.AddPointer(S); 110 ID.AddInteger(Family); 111 } 112 113 void dump(raw_ostream &OS) const { 114 switch (static_cast<Kind>(K)) { 115 #define CASE(ID) case ID: OS << #ID; break; 116 CASE(Allocated) 117 CASE(AllocatedOfSizeZero) 118 CASE(Released) 119 CASE(Relinquished) 120 CASE(Escaped) 121 } 122 } 123 124 LLVM_DUMP_METHOD void dump() const { dump(llvm::errs()); } 125 }; 126 127 enum ReallocPairKind { 128 RPToBeFreedAfterFailure, 129 // The symbol has been freed when reallocation failed. 130 RPIsFreeOnFailure, 131 // The symbol does not need to be freed after reallocation fails. 132 RPDoNotTrackAfterFailure 133 }; 134 135 /// \class ReallocPair 136 /// \brief Stores information about the symbol being reallocated by a call to 137 /// 'realloc' to allow modeling failed reallocation later in the path. 138 struct ReallocPair { 139 // \brief The symbol which realloc reallocated. 140 SymbolRef ReallocatedSym; 141 ReallocPairKind Kind; 142 143 ReallocPair(SymbolRef S, ReallocPairKind K) : 144 ReallocatedSym(S), Kind(K) {} 145 void Profile(llvm::FoldingSetNodeID &ID) const { 146 ID.AddInteger(Kind); 147 ID.AddPointer(ReallocatedSym); 148 } 149 bool operator==(const ReallocPair &X) const { 150 return ReallocatedSym == X.ReallocatedSym && 151 Kind == X.Kind; 152 } 153 }; 154 155 typedef std::pair<const ExplodedNode*, const MemRegion*> LeakInfo; 156 157 class MallocChecker : public Checker<check::DeadSymbols, 158 check::PointerEscape, 159 check::ConstPointerEscape, 160 check::PreStmt<ReturnStmt>, 161 check::PreCall, 162 check::PostStmt<CallExpr>, 163 check::PostStmt<CXXNewExpr>, 164 check::PreStmt<CXXDeleteExpr>, 165 check::PostStmt<BlockExpr>, 166 check::PostObjCMessage, 167 check::Location, 168 eval::Assume> 169 { 170 public: 171 MallocChecker() 172 : II_alloca(nullptr), II_malloc(nullptr), II_free(nullptr), 173 II_realloc(nullptr), II_calloc(nullptr), II_valloc(nullptr), 174 II_reallocf(nullptr), II_strndup(nullptr), II_strdup(nullptr), 175 II_kmalloc(nullptr), II_if_nameindex(nullptr), 176 II_if_freenameindex(nullptr) {} 177 178 /// In pessimistic mode, the checker assumes that it does not know which 179 /// functions might free the memory. 180 enum CheckKind { 181 CK_MallocChecker, 182 CK_NewDeleteChecker, 183 CK_NewDeleteLeaksChecker, 184 CK_MismatchedDeallocatorChecker, 185 CK_NumCheckKinds 186 }; 187 188 enum class MemoryOperationKind { 189 MOK_Allocate, 190 MOK_Free, 191 MOK_Any 192 }; 193 194 DefaultBool IsOptimistic; 195 196 DefaultBool ChecksEnabled[CK_NumCheckKinds]; 197 CheckName CheckNames[CK_NumCheckKinds]; 198 199 void checkPreCall(const CallEvent &Call, CheckerContext &C) const; 200 void checkPostStmt(const CallExpr *CE, CheckerContext &C) const; 201 void checkPostStmt(const CXXNewExpr *NE, CheckerContext &C) const; 202 void checkPreStmt(const CXXDeleteExpr *DE, CheckerContext &C) const; 203 void checkPostObjCMessage(const ObjCMethodCall &Call, CheckerContext &C) const; 204 void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const; 205 void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const; 206 void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const; 207 ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond, 208 bool Assumption) const; 209 void checkLocation(SVal l, bool isLoad, const Stmt *S, 210 CheckerContext &C) const; 211 212 ProgramStateRef checkPointerEscape(ProgramStateRef State, 213 const InvalidatedSymbols &Escaped, 214 const CallEvent *Call, 215 PointerEscapeKind Kind) const; 216 ProgramStateRef checkConstPointerEscape(ProgramStateRef State, 217 const InvalidatedSymbols &Escaped, 218 const CallEvent *Call, 219 PointerEscapeKind Kind) const; 220 221 void printState(raw_ostream &Out, ProgramStateRef State, 222 const char *NL, const char *Sep) const override; 223 224 private: 225 mutable std::unique_ptr<BugType> BT_DoubleFree[CK_NumCheckKinds]; 226 mutable std::unique_ptr<BugType> BT_DoubleDelete; 227 mutable std::unique_ptr<BugType> BT_Leak[CK_NumCheckKinds]; 228 mutable std::unique_ptr<BugType> BT_UseFree[CK_NumCheckKinds]; 229 mutable std::unique_ptr<BugType> BT_BadFree[CK_NumCheckKinds]; 230 mutable std::unique_ptr<BugType> BT_FreeAlloca[CK_NumCheckKinds]; 231 mutable std::unique_ptr<BugType> BT_MismatchedDealloc; 232 mutable std::unique_ptr<BugType> BT_OffsetFree[CK_NumCheckKinds]; 233 mutable std::unique_ptr<BugType> BT_UseZerroAllocated[CK_NumCheckKinds]; 234 mutable IdentifierInfo *II_alloca, *II_malloc, *II_free, *II_realloc, 235 *II_calloc, *II_valloc, *II_reallocf, *II_strndup, 236 *II_strdup, *II_kmalloc, *II_if_nameindex, 237 *II_if_freenameindex; 238 mutable Optional<uint64_t> KernelZeroFlagVal; 239 240 void initIdentifierInfo(ASTContext &C) const; 241 242 /// \brief Determine family of a deallocation expression. 243 AllocationFamily getAllocationFamily(CheckerContext &C, const Stmt *S) const; 244 245 /// \brief Print names of allocators and deallocators. 246 /// 247 /// \returns true on success. 248 bool printAllocDeallocName(raw_ostream &os, CheckerContext &C, 249 const Expr *E) const; 250 251 /// \brief Print expected name of an allocator based on the deallocator's 252 /// family derived from the DeallocExpr. 253 void printExpectedAllocName(raw_ostream &os, CheckerContext &C, 254 const Expr *DeallocExpr) const; 255 /// \brief Print expected name of a deallocator based on the allocator's 256 /// family. 257 void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family) const; 258 259 ///@{ 260 /// Check if this is one of the functions which can allocate/reallocate memory 261 /// pointed to by one of its arguments. 262 bool isMemFunction(const FunctionDecl *FD, ASTContext &C) const; 263 bool isCMemFunction(const FunctionDecl *FD, 264 ASTContext &C, 265 AllocationFamily Family, 266 MemoryOperationKind MemKind) const; 267 bool isStandardNewDelete(const FunctionDecl *FD, ASTContext &C) const; 268 ///@} 269 270 /// \brief Perform a zero-allocation check. 271 ProgramStateRef ProcessZeroAllocation(CheckerContext &C, const Expr *E, 272 const unsigned AllocationSizeArg, 273 ProgramStateRef State) const; 274 275 ProgramStateRef MallocMemReturnsAttr(CheckerContext &C, 276 const CallExpr *CE, 277 const OwnershipAttr* Att, 278 ProgramStateRef State) const; 279 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE, 280 const Expr *SizeEx, SVal Init, 281 ProgramStateRef State, 282 AllocationFamily Family = AF_Malloc); 283 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE, 284 SVal SizeEx, SVal Init, 285 ProgramStateRef State, 286 AllocationFamily Family = AF_Malloc); 287 288 // Check if this malloc() for special flags. At present that means M_ZERO or 289 // __GFP_ZERO (in which case, treat it like calloc). 290 llvm::Optional<ProgramStateRef> 291 performKernelMalloc(const CallExpr *CE, CheckerContext &C, 292 const ProgramStateRef &State) const; 293 294 /// Update the RefState to reflect the new memory allocation. 295 static ProgramStateRef 296 MallocUpdateRefState(CheckerContext &C, const Expr *E, ProgramStateRef State, 297 AllocationFamily Family = AF_Malloc); 298 299 ProgramStateRef FreeMemAttr(CheckerContext &C, const CallExpr *CE, 300 const OwnershipAttr* Att, 301 ProgramStateRef State) const; 302 ProgramStateRef FreeMemAux(CheckerContext &C, const CallExpr *CE, 303 ProgramStateRef state, unsigned Num, 304 bool Hold, 305 bool &ReleasedAllocated, 306 bool ReturnsNullOnFailure = false) const; 307 ProgramStateRef FreeMemAux(CheckerContext &C, const Expr *Arg, 308 const Expr *ParentExpr, 309 ProgramStateRef State, 310 bool Hold, 311 bool &ReleasedAllocated, 312 bool ReturnsNullOnFailure = false) const; 313 314 ProgramStateRef ReallocMem(CheckerContext &C, const CallExpr *CE, 315 bool FreesMemOnFailure, 316 ProgramStateRef State) const; 317 static ProgramStateRef CallocMem(CheckerContext &C, const CallExpr *CE, 318 ProgramStateRef State); 319 320 ///\brief Check if the memory associated with this symbol was released. 321 bool isReleased(SymbolRef Sym, CheckerContext &C) const; 322 323 bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S) const; 324 325 void checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 326 const Stmt *S) const; 327 328 bool checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const; 329 330 /// Check if the function is known free memory, or if it is 331 /// "interesting" and should be modeled explicitly. 332 /// 333 /// \param [out] EscapingSymbol A function might not free memory in general, 334 /// but could be known to free a particular symbol. In this case, false is 335 /// returned and the single escaping symbol is returned through the out 336 /// parameter. 337 /// 338 /// We assume that pointers do not escape through calls to system functions 339 /// not handled by this checker. 340 bool mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent *Call, 341 ProgramStateRef State, 342 SymbolRef &EscapingSymbol) const; 343 344 // Implementation of the checkPointerEscape callabcks. 345 ProgramStateRef checkPointerEscapeAux(ProgramStateRef State, 346 const InvalidatedSymbols &Escaped, 347 const CallEvent *Call, 348 PointerEscapeKind Kind, 349 bool(*CheckRefState)(const RefState*)) const; 350 351 ///@{ 352 /// Tells if a given family/call/symbol is tracked by the current checker. 353 /// Sets CheckKind to the kind of the checker responsible for this 354 /// family/call/symbol. 355 Optional<CheckKind> getCheckIfTracked(AllocationFamily Family, 356 bool IsALeakCheck = false) const; 357 Optional<CheckKind> getCheckIfTracked(CheckerContext &C, 358 const Stmt *AllocDeallocStmt, 359 bool IsALeakCheck = false) const; 360 Optional<CheckKind> getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 361 bool IsALeakCheck = false) const; 362 ///@} 363 static bool SummarizeValue(raw_ostream &os, SVal V); 364 static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR); 365 void ReportBadFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 366 const Expr *DeallocExpr) const; 367 void ReportFreeAlloca(CheckerContext &C, SVal ArgVal, 368 SourceRange Range) const; 369 void ReportMismatchedDealloc(CheckerContext &C, SourceRange Range, 370 const Expr *DeallocExpr, const RefState *RS, 371 SymbolRef Sym, bool OwnershipTransferred) const; 372 void ReportOffsetFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 373 const Expr *DeallocExpr, 374 const Expr *AllocExpr = nullptr) const; 375 void ReportUseAfterFree(CheckerContext &C, SourceRange Range, 376 SymbolRef Sym) const; 377 void ReportDoubleFree(CheckerContext &C, SourceRange Range, bool Released, 378 SymbolRef Sym, SymbolRef PrevSym) const; 379 380 void ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const; 381 382 void ReportUseZeroAllocated(CheckerContext &C, SourceRange Range, 383 SymbolRef Sym) const; 384 385 /// Find the location of the allocation for Sym on the path leading to the 386 /// exploded node N. 387 LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym, 388 CheckerContext &C) const; 389 390 void reportLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const; 391 392 /// The bug visitor which allows us to print extra diagnostics along the 393 /// BugReport path. For example, showing the allocation site of the leaked 394 /// region. 395 class MallocBugVisitor : public BugReporterVisitorImpl<MallocBugVisitor> { 396 protected: 397 enum NotificationMode { 398 Normal, 399 ReallocationFailed 400 }; 401 402 // The allocated region symbol tracked by the main analysis. 403 SymbolRef Sym; 404 405 // The mode we are in, i.e. what kind of diagnostics will be emitted. 406 NotificationMode Mode; 407 408 // A symbol from when the primary region should have been reallocated. 409 SymbolRef FailedReallocSymbol; 410 411 bool IsLeak; 412 413 public: 414 MallocBugVisitor(SymbolRef S, bool isLeak = false) 415 : Sym(S), Mode(Normal), FailedReallocSymbol(nullptr), IsLeak(isLeak) {} 416 417 ~MallocBugVisitor() override {} 418 419 void Profile(llvm::FoldingSetNodeID &ID) const override { 420 static int X = 0; 421 ID.AddPointer(&X); 422 ID.AddPointer(Sym); 423 } 424 425 inline bool isAllocated(const RefState *S, const RefState *SPrev, 426 const Stmt *Stmt) { 427 // Did not track -> allocated. Other state (released) -> allocated. 428 return (Stmt && (isa<CallExpr>(Stmt) || isa<CXXNewExpr>(Stmt)) && 429 (S && (S->isAllocated() || S->isAllocatedOfSizeZero())) && 430 (!SPrev || !(SPrev->isAllocated() || 431 SPrev->isAllocatedOfSizeZero()))); 432 } 433 434 inline bool isReleased(const RefState *S, const RefState *SPrev, 435 const Stmt *Stmt) { 436 // Did not track -> released. Other state (allocated) -> released. 437 return (Stmt && (isa<CallExpr>(Stmt) || isa<CXXDeleteExpr>(Stmt)) && 438 (S && S->isReleased()) && (!SPrev || !SPrev->isReleased())); 439 } 440 441 inline bool isRelinquished(const RefState *S, const RefState *SPrev, 442 const Stmt *Stmt) { 443 // Did not track -> relinquished. Other state (allocated) -> relinquished. 444 return (Stmt && (isa<CallExpr>(Stmt) || isa<ObjCMessageExpr>(Stmt) || 445 isa<ObjCPropertyRefExpr>(Stmt)) && 446 (S && S->isRelinquished()) && 447 (!SPrev || !SPrev->isRelinquished())); 448 } 449 450 inline bool isReallocFailedCheck(const RefState *S, const RefState *SPrev, 451 const Stmt *Stmt) { 452 // If the expression is not a call, and the state change is 453 // released -> allocated, it must be the realloc return value 454 // check. If we have to handle more cases here, it might be cleaner just 455 // to track this extra bit in the state itself. 456 return ((!Stmt || !isa<CallExpr>(Stmt)) && 457 (S && (S->isAllocated() || S->isAllocatedOfSizeZero())) && 458 (SPrev && !(SPrev->isAllocated() || 459 SPrev->isAllocatedOfSizeZero()))); 460 } 461 462 PathDiagnosticPiece *VisitNode(const ExplodedNode *N, 463 const ExplodedNode *PrevN, 464 BugReporterContext &BRC, 465 BugReport &BR) override; 466 467 std::unique_ptr<PathDiagnosticPiece> 468 getEndPath(BugReporterContext &BRC, const ExplodedNode *EndPathNode, 469 BugReport &BR) override { 470 if (!IsLeak) 471 return nullptr; 472 473 PathDiagnosticLocation L = 474 PathDiagnosticLocation::createEndOfPath(EndPathNode, 475 BRC.getSourceManager()); 476 // Do not add the statement itself as a range in case of leak. 477 return llvm::make_unique<PathDiagnosticEventPiece>(L, BR.getDescription(), 478 false); 479 } 480 481 private: 482 class StackHintGeneratorForReallocationFailed 483 : public StackHintGeneratorForSymbol { 484 public: 485 StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M) 486 : StackHintGeneratorForSymbol(S, M) {} 487 488 std::string getMessageForArg(const Expr *ArgE, 489 unsigned ArgIndex) override { 490 // Printed parameters start at 1, not 0. 491 ++ArgIndex; 492 493 SmallString<200> buf; 494 llvm::raw_svector_ostream os(buf); 495 496 os << "Reallocation of " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex) 497 << " parameter failed"; 498 499 return os.str(); 500 } 501 502 std::string getMessageForReturn(const CallExpr *CallExpr) override { 503 return "Reallocation of returned value failed"; 504 } 505 }; 506 }; 507 }; 508 } // end anonymous namespace 509 510 REGISTER_MAP_WITH_PROGRAMSTATE(RegionState, SymbolRef, RefState) 511 REGISTER_MAP_WITH_PROGRAMSTATE(ReallocPairs, SymbolRef, ReallocPair) 512 513 // A map from the freed symbol to the symbol representing the return value of 514 // the free function. 515 REGISTER_MAP_WITH_PROGRAMSTATE(FreeReturnValue, SymbolRef, SymbolRef) 516 517 namespace { 518 class StopTrackingCallback : public SymbolVisitor { 519 ProgramStateRef state; 520 public: 521 StopTrackingCallback(ProgramStateRef st) : state(st) {} 522 ProgramStateRef getState() const { return state; } 523 524 bool VisitSymbol(SymbolRef sym) override { 525 state = state->remove<RegionState>(sym); 526 return true; 527 } 528 }; 529 } // end anonymous namespace 530 531 void MallocChecker::initIdentifierInfo(ASTContext &Ctx) const { 532 if (II_malloc) 533 return; 534 II_alloca = &Ctx.Idents.get("alloca"); 535 II_malloc = &Ctx.Idents.get("malloc"); 536 II_free = &Ctx.Idents.get("free"); 537 II_realloc = &Ctx.Idents.get("realloc"); 538 II_reallocf = &Ctx.Idents.get("reallocf"); 539 II_calloc = &Ctx.Idents.get("calloc"); 540 II_valloc = &Ctx.Idents.get("valloc"); 541 II_strdup = &Ctx.Idents.get("strdup"); 542 II_strndup = &Ctx.Idents.get("strndup"); 543 II_kmalloc = &Ctx.Idents.get("kmalloc"); 544 II_if_nameindex = &Ctx.Idents.get("if_nameindex"); 545 II_if_freenameindex = &Ctx.Idents.get("if_freenameindex"); 546 } 547 548 bool MallocChecker::isMemFunction(const FunctionDecl *FD, ASTContext &C) const { 549 if (isCMemFunction(FD, C, AF_Malloc, MemoryOperationKind::MOK_Any)) 550 return true; 551 552 if (isCMemFunction(FD, C, AF_IfNameIndex, MemoryOperationKind::MOK_Any)) 553 return true; 554 555 if (isCMemFunction(FD, C, AF_Alloca, MemoryOperationKind::MOK_Any)) 556 return true; 557 558 if (isStandardNewDelete(FD, C)) 559 return true; 560 561 return false; 562 } 563 564 bool MallocChecker::isCMemFunction(const FunctionDecl *FD, 565 ASTContext &C, 566 AllocationFamily Family, 567 MemoryOperationKind MemKind) const { 568 if (!FD) 569 return false; 570 571 bool CheckFree = (MemKind == MemoryOperationKind::MOK_Any || 572 MemKind == MemoryOperationKind::MOK_Free); 573 bool CheckAlloc = (MemKind == MemoryOperationKind::MOK_Any || 574 MemKind == MemoryOperationKind::MOK_Allocate); 575 576 if (FD->getKind() == Decl::Function) { 577 const IdentifierInfo *FunI = FD->getIdentifier(); 578 initIdentifierInfo(C); 579 580 if (Family == AF_Malloc && CheckFree) { 581 if (FunI == II_free || FunI == II_realloc || FunI == II_reallocf) 582 return true; 583 } 584 585 if (Family == AF_Malloc && CheckAlloc) { 586 if (FunI == II_malloc || FunI == II_realloc || FunI == II_reallocf || 587 FunI == II_calloc || FunI == II_valloc || FunI == II_strdup || 588 FunI == II_strndup || FunI == II_kmalloc) 589 return true; 590 } 591 592 if (Family == AF_IfNameIndex && CheckFree) { 593 if (FunI == II_if_freenameindex) 594 return true; 595 } 596 597 if (Family == AF_IfNameIndex && CheckAlloc) { 598 if (FunI == II_if_nameindex) 599 return true; 600 } 601 602 if (Family == AF_Alloca && CheckAlloc) { 603 if (FunI == II_alloca) 604 return true; 605 } 606 } 607 608 if (Family != AF_Malloc) 609 return false; 610 611 if (IsOptimistic && FD->hasAttrs()) { 612 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { 613 OwnershipAttr::OwnershipKind OwnKind = I->getOwnKind(); 614 if(OwnKind == OwnershipAttr::Takes || OwnKind == OwnershipAttr::Holds) { 615 if (CheckFree) 616 return true; 617 } else if (OwnKind == OwnershipAttr::Returns) { 618 if (CheckAlloc) 619 return true; 620 } 621 } 622 } 623 624 return false; 625 } 626 627 // Tells if the callee is one of the following: 628 // 1) A global non-placement new/delete operator function. 629 // 2) A global placement operator function with the single placement argument 630 // of type std::nothrow_t. 631 bool MallocChecker::isStandardNewDelete(const FunctionDecl *FD, 632 ASTContext &C) const { 633 if (!FD) 634 return false; 635 636 OverloadedOperatorKind Kind = FD->getOverloadedOperator(); 637 if (Kind != OO_New && Kind != OO_Array_New && 638 Kind != OO_Delete && Kind != OO_Array_Delete) 639 return false; 640 641 // Skip all operator new/delete methods. 642 if (isa<CXXMethodDecl>(FD)) 643 return false; 644 645 // Return true if tested operator is a standard placement nothrow operator. 646 if (FD->getNumParams() == 2) { 647 QualType T = FD->getParamDecl(1)->getType(); 648 if (const IdentifierInfo *II = T.getBaseTypeIdentifier()) 649 return II->getName().equals("nothrow_t"); 650 } 651 652 // Skip placement operators. 653 if (FD->getNumParams() != 1 || FD->isVariadic()) 654 return false; 655 656 // One of the standard new/new[]/delete/delete[] non-placement operators. 657 return true; 658 } 659 660 llvm::Optional<ProgramStateRef> MallocChecker::performKernelMalloc( 661 const CallExpr *CE, CheckerContext &C, const ProgramStateRef &State) const { 662 // 3-argument malloc(), as commonly used in {Free,Net,Open}BSD Kernels: 663 // 664 // void *malloc(unsigned long size, struct malloc_type *mtp, int flags); 665 // 666 // One of the possible flags is M_ZERO, which means 'give me back an 667 // allocation which is already zeroed', like calloc. 668 669 // 2-argument kmalloc(), as used in the Linux kernel: 670 // 671 // void *kmalloc(size_t size, gfp_t flags); 672 // 673 // Has the similar flag value __GFP_ZERO. 674 675 // This logic is largely cloned from O_CREAT in UnixAPIChecker, maybe some 676 // code could be shared. 677 678 ASTContext &Ctx = C.getASTContext(); 679 llvm::Triple::OSType OS = Ctx.getTargetInfo().getTriple().getOS(); 680 681 if (!KernelZeroFlagVal.hasValue()) { 682 if (OS == llvm::Triple::FreeBSD) 683 KernelZeroFlagVal = 0x0100; 684 else if (OS == llvm::Triple::NetBSD) 685 KernelZeroFlagVal = 0x0002; 686 else if (OS == llvm::Triple::OpenBSD) 687 KernelZeroFlagVal = 0x0008; 688 else if (OS == llvm::Triple::Linux) 689 // __GFP_ZERO 690 KernelZeroFlagVal = 0x8000; 691 else 692 // FIXME: We need a more general way of getting the M_ZERO value. 693 // See also: O_CREAT in UnixAPIChecker.cpp. 694 695 // Fall back to normal malloc behavior on platforms where we don't 696 // know M_ZERO. 697 return None; 698 } 699 700 // We treat the last argument as the flags argument, and callers fall-back to 701 // normal malloc on a None return. This works for the FreeBSD kernel malloc 702 // as well as Linux kmalloc. 703 if (CE->getNumArgs() < 2) 704 return None; 705 706 const Expr *FlagsEx = CE->getArg(CE->getNumArgs() - 1); 707 const SVal V = State->getSVal(FlagsEx, C.getLocationContext()); 708 if (!V.getAs<NonLoc>()) { 709 // The case where 'V' can be a location can only be due to a bad header, 710 // so in this case bail out. 711 return None; 712 } 713 714 NonLoc Flags = V.castAs<NonLoc>(); 715 NonLoc ZeroFlag = C.getSValBuilder() 716 .makeIntVal(KernelZeroFlagVal.getValue(), FlagsEx->getType()) 717 .castAs<NonLoc>(); 718 SVal MaskedFlagsUC = C.getSValBuilder().evalBinOpNN(State, BO_And, 719 Flags, ZeroFlag, 720 FlagsEx->getType()); 721 if (MaskedFlagsUC.isUnknownOrUndef()) 722 return None; 723 DefinedSVal MaskedFlags = MaskedFlagsUC.castAs<DefinedSVal>(); 724 725 // Check if maskedFlags is non-zero. 726 ProgramStateRef TrueState, FalseState; 727 std::tie(TrueState, FalseState) = State->assume(MaskedFlags); 728 729 // If M_ZERO is set, treat this like calloc (initialized). 730 if (TrueState && !FalseState) { 731 SVal ZeroVal = C.getSValBuilder().makeZeroVal(Ctx.CharTy); 732 return MallocMemAux(C, CE, CE->getArg(0), ZeroVal, TrueState); 733 } 734 735 return None; 736 } 737 738 void MallocChecker::checkPostStmt(const CallExpr *CE, CheckerContext &C) const { 739 if (C.wasInlined) 740 return; 741 742 const FunctionDecl *FD = C.getCalleeDecl(CE); 743 if (!FD) 744 return; 745 746 ProgramStateRef State = C.getState(); 747 bool ReleasedAllocatedMemory = false; 748 749 if (FD->getKind() == Decl::Function) { 750 initIdentifierInfo(C.getASTContext()); 751 IdentifierInfo *FunI = FD->getIdentifier(); 752 753 if (FunI == II_malloc) { 754 if (CE->getNumArgs() < 1) 755 return; 756 if (CE->getNumArgs() < 3) { 757 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 758 if (CE->getNumArgs() == 1) 759 State = ProcessZeroAllocation(C, CE, 0, State); 760 } else if (CE->getNumArgs() == 3) { 761 llvm::Optional<ProgramStateRef> MaybeState = 762 performKernelMalloc(CE, C, State); 763 if (MaybeState.hasValue()) 764 State = MaybeState.getValue(); 765 else 766 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 767 } 768 } else if (FunI == II_kmalloc) { 769 llvm::Optional<ProgramStateRef> MaybeState = 770 performKernelMalloc(CE, C, State); 771 if (MaybeState.hasValue()) 772 State = MaybeState.getValue(); 773 else 774 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 775 } else if (FunI == II_valloc) { 776 if (CE->getNumArgs() < 1) 777 return; 778 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 779 State = ProcessZeroAllocation(C, CE, 0, State); 780 } else if (FunI == II_realloc) { 781 State = ReallocMem(C, CE, false, State); 782 State = ProcessZeroAllocation(C, CE, 1, State); 783 } else if (FunI == II_reallocf) { 784 State = ReallocMem(C, CE, true, State); 785 State = ProcessZeroAllocation(C, CE, 1, State); 786 } else if (FunI == II_calloc) { 787 State = CallocMem(C, CE, State); 788 State = ProcessZeroAllocation(C, CE, 0, State); 789 State = ProcessZeroAllocation(C, CE, 1, State); 790 } else if (FunI == II_free) { 791 State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory); 792 } else if (FunI == II_strdup) { 793 State = MallocUpdateRefState(C, CE, State); 794 } else if (FunI == II_strndup) { 795 State = MallocUpdateRefState(C, CE, State); 796 } else if (FunI == II_alloca) { 797 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, 798 AF_Alloca); 799 State = ProcessZeroAllocation(C, CE, 0, State); 800 } else if (isStandardNewDelete(FD, C.getASTContext())) { 801 // Process direct calls to operator new/new[]/delete/delete[] functions 802 // as distinct from new/new[]/delete/delete[] expressions that are 803 // processed by the checkPostStmt callbacks for CXXNewExpr and 804 // CXXDeleteExpr. 805 OverloadedOperatorKind K = FD->getOverloadedOperator(); 806 if (K == OO_New) { 807 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, 808 AF_CXXNew); 809 State = ProcessZeroAllocation(C, CE, 0, State); 810 } 811 else if (K == OO_Array_New) { 812 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, 813 AF_CXXNewArray); 814 State = ProcessZeroAllocation(C, CE, 0, State); 815 } 816 else if (K == OO_Delete || K == OO_Array_Delete) 817 State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory); 818 else 819 llvm_unreachable("not a new/delete operator"); 820 } else if (FunI == II_if_nameindex) { 821 // Should we model this differently? We can allocate a fixed number of 822 // elements with zeros in the last one. 823 State = MallocMemAux(C, CE, UnknownVal(), UnknownVal(), State, 824 AF_IfNameIndex); 825 } else if (FunI == II_if_freenameindex) { 826 State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory); 827 } 828 } 829 830 if (IsOptimistic || ChecksEnabled[CK_MismatchedDeallocatorChecker]) { 831 // Check all the attributes, if there are any. 832 // There can be multiple of these attributes. 833 if (FD->hasAttrs()) 834 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { 835 switch (I->getOwnKind()) { 836 case OwnershipAttr::Returns: 837 State = MallocMemReturnsAttr(C, CE, I, State); 838 break; 839 case OwnershipAttr::Takes: 840 case OwnershipAttr::Holds: 841 State = FreeMemAttr(C, CE, I, State); 842 break; 843 } 844 } 845 } 846 C.addTransition(State); 847 } 848 849 // Performs a 0-sized allocations check. 850 ProgramStateRef MallocChecker::ProcessZeroAllocation(CheckerContext &C, 851 const Expr *E, 852 const unsigned AllocationSizeArg, 853 ProgramStateRef State) const { 854 if (!State) 855 return nullptr; 856 857 const Expr *Arg = nullptr; 858 859 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 860 Arg = CE->getArg(AllocationSizeArg); 861 } 862 else if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { 863 if (NE->isArray()) 864 Arg = NE->getArraySize(); 865 else 866 return State; 867 } 868 else 869 llvm_unreachable("not a CallExpr or CXXNewExpr"); 870 871 assert(Arg); 872 873 Optional<DefinedSVal> DefArgVal = 874 State->getSVal(Arg, C.getLocationContext()).getAs<DefinedSVal>(); 875 876 if (!DefArgVal) 877 return State; 878 879 // Check if the allocation size is 0. 880 ProgramStateRef TrueState, FalseState; 881 SValBuilder &SvalBuilder = C.getSValBuilder(); 882 DefinedSVal Zero = 883 SvalBuilder.makeZeroVal(Arg->getType()).castAs<DefinedSVal>(); 884 885 std::tie(TrueState, FalseState) = 886 State->assume(SvalBuilder.evalEQ(State, *DefArgVal, Zero)); 887 888 if (TrueState && !FalseState) { 889 SVal retVal = State->getSVal(E, C.getLocationContext()); 890 SymbolRef Sym = retVal.getAsLocSymbol(); 891 if (!Sym) 892 return State; 893 894 const RefState *RS = State->get<RegionState>(Sym); 895 if (!RS) 896 return State; // TODO: change to assert(RS); after realloc() will 897 // guarantee have a RegionState attached. 898 899 if (!RS->isAllocated()) 900 return State; 901 902 return TrueState->set<RegionState>(Sym, 903 RefState::getAllocatedOfSizeZero(RS)); 904 } 905 906 // Assume the value is non-zero going forward. 907 assert(FalseState); 908 return FalseState; 909 } 910 911 static QualType getDeepPointeeType(QualType T) { 912 QualType Result = T, PointeeType = T->getPointeeType(); 913 while (!PointeeType.isNull()) { 914 Result = PointeeType; 915 PointeeType = PointeeType->getPointeeType(); 916 } 917 return Result; 918 } 919 920 static bool treatUnusedNewEscaped(const CXXNewExpr *NE) { 921 922 const CXXConstructExpr *ConstructE = NE->getConstructExpr(); 923 if (!ConstructE) 924 return false; 925 926 if (!NE->getAllocatedType()->getAsCXXRecordDecl()) 927 return false; 928 929 const CXXConstructorDecl *CtorD = ConstructE->getConstructor(); 930 931 // Iterate over the constructor parameters. 932 for (const auto *CtorParam : CtorD->params()) { 933 934 QualType CtorParamPointeeT = CtorParam->getType()->getPointeeType(); 935 if (CtorParamPointeeT.isNull()) 936 continue; 937 938 CtorParamPointeeT = getDeepPointeeType(CtorParamPointeeT); 939 940 if (CtorParamPointeeT->getAsCXXRecordDecl()) 941 return true; 942 } 943 944 return false; 945 } 946 947 void MallocChecker::checkPostStmt(const CXXNewExpr *NE, 948 CheckerContext &C) const { 949 950 if (NE->getNumPlacementArgs()) 951 for (CXXNewExpr::const_arg_iterator I = NE->placement_arg_begin(), 952 E = NE->placement_arg_end(); I != E; ++I) 953 if (SymbolRef Sym = C.getSVal(*I).getAsSymbol()) 954 checkUseAfterFree(Sym, C, *I); 955 956 if (!isStandardNewDelete(NE->getOperatorNew(), C.getASTContext())) 957 return; 958 959 ParentMap &PM = C.getLocationContext()->getParentMap(); 960 if (!PM.isConsumedExpr(NE) && treatUnusedNewEscaped(NE)) 961 return; 962 963 ProgramStateRef State = C.getState(); 964 // The return value from operator new is bound to a specified initialization 965 // value (if any) and we don't want to loose this value. So we call 966 // MallocUpdateRefState() instead of MallocMemAux() which breakes the 967 // existing binding. 968 State = MallocUpdateRefState(C, NE, State, NE->isArray() ? AF_CXXNewArray 969 : AF_CXXNew); 970 State = ProcessZeroAllocation(C, NE, 0, State); 971 C.addTransition(State); 972 } 973 974 void MallocChecker::checkPreStmt(const CXXDeleteExpr *DE, 975 CheckerContext &C) const { 976 977 if (!ChecksEnabled[CK_NewDeleteChecker]) 978 if (SymbolRef Sym = C.getSVal(DE->getArgument()).getAsSymbol()) 979 checkUseAfterFree(Sym, C, DE->getArgument()); 980 981 if (!isStandardNewDelete(DE->getOperatorDelete(), C.getASTContext())) 982 return; 983 984 ProgramStateRef State = C.getState(); 985 bool ReleasedAllocated; 986 State = FreeMemAux(C, DE->getArgument(), DE, State, 987 /*Hold*/false, ReleasedAllocated); 988 989 C.addTransition(State); 990 } 991 992 static bool isKnownDeallocObjCMethodName(const ObjCMethodCall &Call) { 993 // If the first selector piece is one of the names below, assume that the 994 // object takes ownership of the memory, promising to eventually deallocate it 995 // with free(). 996 // Ex: [NSData dataWithBytesNoCopy:bytes length:10]; 997 // (...unless a 'freeWhenDone' parameter is false, but that's checked later.) 998 StringRef FirstSlot = Call.getSelector().getNameForSlot(0); 999 if (FirstSlot == "dataWithBytesNoCopy" || 1000 FirstSlot == "initWithBytesNoCopy" || 1001 FirstSlot == "initWithCharactersNoCopy") 1002 return true; 1003 1004 return false; 1005 } 1006 1007 static Optional<bool> getFreeWhenDoneArg(const ObjCMethodCall &Call) { 1008 Selector S = Call.getSelector(); 1009 1010 // FIXME: We should not rely on fully-constrained symbols being folded. 1011 for (unsigned i = 1; i < S.getNumArgs(); ++i) 1012 if (S.getNameForSlot(i).equals("freeWhenDone")) 1013 return !Call.getArgSVal(i).isZeroConstant(); 1014 1015 return None; 1016 } 1017 1018 void MallocChecker::checkPostObjCMessage(const ObjCMethodCall &Call, 1019 CheckerContext &C) const { 1020 if (C.wasInlined) 1021 return; 1022 1023 if (!isKnownDeallocObjCMethodName(Call)) 1024 return; 1025 1026 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call)) 1027 if (!*FreeWhenDone) 1028 return; 1029 1030 bool ReleasedAllocatedMemory; 1031 ProgramStateRef State = FreeMemAux(C, Call.getArgExpr(0), 1032 Call.getOriginExpr(), C.getState(), 1033 /*Hold=*/true, ReleasedAllocatedMemory, 1034 /*RetNullOnFailure=*/true); 1035 1036 C.addTransition(State); 1037 } 1038 1039 ProgramStateRef 1040 MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallExpr *CE, 1041 const OwnershipAttr *Att, 1042 ProgramStateRef State) const { 1043 if (!State) 1044 return nullptr; 1045 1046 if (Att->getModule() != II_malloc) 1047 return nullptr; 1048 1049 OwnershipAttr::args_iterator I = Att->args_begin(), E = Att->args_end(); 1050 if (I != E) { 1051 return MallocMemAux(C, CE, CE->getArg(*I), UndefinedVal(), State); 1052 } 1053 return MallocMemAux(C, CE, UnknownVal(), UndefinedVal(), State); 1054 } 1055 1056 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1057 const CallExpr *CE, 1058 const Expr *SizeEx, SVal Init, 1059 ProgramStateRef State, 1060 AllocationFamily Family) { 1061 if (!State) 1062 return nullptr; 1063 1064 return MallocMemAux(C, CE, State->getSVal(SizeEx, C.getLocationContext()), 1065 Init, State, Family); 1066 } 1067 1068 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1069 const CallExpr *CE, 1070 SVal Size, SVal Init, 1071 ProgramStateRef State, 1072 AllocationFamily Family) { 1073 if (!State) 1074 return nullptr; 1075 1076 // We expect the malloc functions to return a pointer. 1077 if (!Loc::isLocType(CE->getType())) 1078 return nullptr; 1079 1080 // Bind the return value to the symbolic value from the heap region. 1081 // TODO: We could rewrite post visit to eval call; 'malloc' does not have 1082 // side effects other than what we model here. 1083 unsigned Count = C.blockCount(); 1084 SValBuilder &svalBuilder = C.getSValBuilder(); 1085 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 1086 DefinedSVal RetVal = svalBuilder.getConjuredHeapSymbolVal(CE, LCtx, Count) 1087 .castAs<DefinedSVal>(); 1088 State = State->BindExpr(CE, C.getLocationContext(), RetVal); 1089 1090 // Fill the region with the initialization value. 1091 State = State->bindDefault(RetVal, Init); 1092 1093 // Set the region's extent equal to the Size parameter. 1094 const SymbolicRegion *R = 1095 dyn_cast_or_null<SymbolicRegion>(RetVal.getAsRegion()); 1096 if (!R) 1097 return nullptr; 1098 if (Optional<DefinedOrUnknownSVal> DefinedSize = 1099 Size.getAs<DefinedOrUnknownSVal>()) { 1100 SValBuilder &svalBuilder = C.getSValBuilder(); 1101 DefinedOrUnknownSVal Extent = R->getExtent(svalBuilder); 1102 DefinedOrUnknownSVal extentMatchesSize = 1103 svalBuilder.evalEQ(State, Extent, *DefinedSize); 1104 1105 State = State->assume(extentMatchesSize, true); 1106 assert(State); 1107 } 1108 1109 return MallocUpdateRefState(C, CE, State, Family); 1110 } 1111 1112 ProgramStateRef MallocChecker::MallocUpdateRefState(CheckerContext &C, 1113 const Expr *E, 1114 ProgramStateRef State, 1115 AllocationFamily Family) { 1116 if (!State) 1117 return nullptr; 1118 1119 // Get the return value. 1120 SVal retVal = State->getSVal(E, C.getLocationContext()); 1121 1122 // We expect the malloc functions to return a pointer. 1123 if (!retVal.getAs<Loc>()) 1124 return nullptr; 1125 1126 SymbolRef Sym = retVal.getAsLocSymbol(); 1127 assert(Sym); 1128 1129 // Set the symbol's state to Allocated. 1130 return State->set<RegionState>(Sym, RefState::getAllocated(Family, E)); 1131 } 1132 1133 ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C, 1134 const CallExpr *CE, 1135 const OwnershipAttr *Att, 1136 ProgramStateRef State) const { 1137 if (!State) 1138 return nullptr; 1139 1140 if (Att->getModule() != II_malloc) 1141 return nullptr; 1142 1143 bool ReleasedAllocated = false; 1144 1145 for (const auto &Arg : Att->args()) { 1146 ProgramStateRef StateI = FreeMemAux(C, CE, State, Arg, 1147 Att->getOwnKind() == OwnershipAttr::Holds, 1148 ReleasedAllocated); 1149 if (StateI) 1150 State = StateI; 1151 } 1152 return State; 1153 } 1154 1155 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, 1156 const CallExpr *CE, 1157 ProgramStateRef State, 1158 unsigned Num, 1159 bool Hold, 1160 bool &ReleasedAllocated, 1161 bool ReturnsNullOnFailure) const { 1162 if (!State) 1163 return nullptr; 1164 1165 if (CE->getNumArgs() < (Num + 1)) 1166 return nullptr; 1167 1168 return FreeMemAux(C, CE->getArg(Num), CE, State, Hold, 1169 ReleasedAllocated, ReturnsNullOnFailure); 1170 } 1171 1172 /// Checks if the previous call to free on the given symbol failed - if free 1173 /// failed, returns true. Also, returns the corresponding return value symbol. 1174 static bool didPreviousFreeFail(ProgramStateRef State, 1175 SymbolRef Sym, SymbolRef &RetStatusSymbol) { 1176 const SymbolRef *Ret = State->get<FreeReturnValue>(Sym); 1177 if (Ret) { 1178 assert(*Ret && "We should not store the null return symbol"); 1179 ConstraintManager &CMgr = State->getConstraintManager(); 1180 ConditionTruthVal FreeFailed = CMgr.isNull(State, *Ret); 1181 RetStatusSymbol = *Ret; 1182 return FreeFailed.isConstrainedTrue(); 1183 } 1184 return false; 1185 } 1186 1187 AllocationFamily MallocChecker::getAllocationFamily(CheckerContext &C, 1188 const Stmt *S) const { 1189 if (!S) 1190 return AF_None; 1191 1192 if (const CallExpr *CE = dyn_cast<CallExpr>(S)) { 1193 const FunctionDecl *FD = C.getCalleeDecl(CE); 1194 1195 if (!FD) 1196 FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); 1197 1198 ASTContext &Ctx = C.getASTContext(); 1199 1200 if (isCMemFunction(FD, Ctx, AF_Malloc, MemoryOperationKind::MOK_Any)) 1201 return AF_Malloc; 1202 1203 if (isStandardNewDelete(FD, Ctx)) { 1204 OverloadedOperatorKind Kind = FD->getOverloadedOperator(); 1205 if (Kind == OO_New || Kind == OO_Delete) 1206 return AF_CXXNew; 1207 else if (Kind == OO_Array_New || Kind == OO_Array_Delete) 1208 return AF_CXXNewArray; 1209 } 1210 1211 if (isCMemFunction(FD, Ctx, AF_IfNameIndex, MemoryOperationKind::MOK_Any)) 1212 return AF_IfNameIndex; 1213 1214 if (isCMemFunction(FD, Ctx, AF_Alloca, MemoryOperationKind::MOK_Any)) 1215 return AF_Alloca; 1216 1217 return AF_None; 1218 } 1219 1220 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(S)) 1221 return NE->isArray() ? AF_CXXNewArray : AF_CXXNew; 1222 1223 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(S)) 1224 return DE->isArrayForm() ? AF_CXXNewArray : AF_CXXNew; 1225 1226 if (isa<ObjCMessageExpr>(S)) 1227 return AF_Malloc; 1228 1229 return AF_None; 1230 } 1231 1232 bool MallocChecker::printAllocDeallocName(raw_ostream &os, CheckerContext &C, 1233 const Expr *E) const { 1234 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 1235 // FIXME: This doesn't handle indirect calls. 1236 const FunctionDecl *FD = CE->getDirectCallee(); 1237 if (!FD) 1238 return false; 1239 1240 os << *FD; 1241 if (!FD->isOverloadedOperator()) 1242 os << "()"; 1243 return true; 1244 } 1245 1246 if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E)) { 1247 if (Msg->isInstanceMessage()) 1248 os << "-"; 1249 else 1250 os << "+"; 1251 Msg->getSelector().print(os); 1252 return true; 1253 } 1254 1255 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { 1256 os << "'" 1257 << getOperatorSpelling(NE->getOperatorNew()->getOverloadedOperator()) 1258 << "'"; 1259 return true; 1260 } 1261 1262 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(E)) { 1263 os << "'" 1264 << getOperatorSpelling(DE->getOperatorDelete()->getOverloadedOperator()) 1265 << "'"; 1266 return true; 1267 } 1268 1269 return false; 1270 } 1271 1272 void MallocChecker::printExpectedAllocName(raw_ostream &os, CheckerContext &C, 1273 const Expr *E) const { 1274 AllocationFamily Family = getAllocationFamily(C, E); 1275 1276 switch(Family) { 1277 case AF_Malloc: os << "malloc()"; return; 1278 case AF_CXXNew: os << "'new'"; return; 1279 case AF_CXXNewArray: os << "'new[]'"; return; 1280 case AF_IfNameIndex: os << "'if_nameindex()'"; return; 1281 case AF_Alloca: 1282 case AF_None: llvm_unreachable("not a deallocation expression"); 1283 } 1284 } 1285 1286 void MallocChecker::printExpectedDeallocName(raw_ostream &os, 1287 AllocationFamily Family) const { 1288 switch(Family) { 1289 case AF_Malloc: os << "free()"; return; 1290 case AF_CXXNew: os << "'delete'"; return; 1291 case AF_CXXNewArray: os << "'delete[]'"; return; 1292 case AF_IfNameIndex: os << "'if_freenameindex()'"; return; 1293 case AF_Alloca: 1294 case AF_None: llvm_unreachable("suspicious argument"); 1295 } 1296 } 1297 1298 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, 1299 const Expr *ArgExpr, 1300 const Expr *ParentExpr, 1301 ProgramStateRef State, 1302 bool Hold, 1303 bool &ReleasedAllocated, 1304 bool ReturnsNullOnFailure) const { 1305 1306 if (!State) 1307 return nullptr; 1308 1309 SVal ArgVal = State->getSVal(ArgExpr, C.getLocationContext()); 1310 if (!ArgVal.getAs<DefinedOrUnknownSVal>()) 1311 return nullptr; 1312 DefinedOrUnknownSVal location = ArgVal.castAs<DefinedOrUnknownSVal>(); 1313 1314 // Check for null dereferences. 1315 if (!location.getAs<Loc>()) 1316 return nullptr; 1317 1318 // The explicit NULL case, no operation is performed. 1319 ProgramStateRef notNullState, nullState; 1320 std::tie(notNullState, nullState) = State->assume(location); 1321 if (nullState && !notNullState) 1322 return nullptr; 1323 1324 // Unknown values could easily be okay 1325 // Undefined values are handled elsewhere 1326 if (ArgVal.isUnknownOrUndef()) 1327 return nullptr; 1328 1329 const MemRegion *R = ArgVal.getAsRegion(); 1330 1331 // Nonlocs can't be freed, of course. 1332 // Non-region locations (labels and fixed addresses) also shouldn't be freed. 1333 if (!R) { 1334 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1335 return nullptr; 1336 } 1337 1338 R = R->StripCasts(); 1339 1340 // Blocks might show up as heap data, but should not be free()d 1341 if (isa<BlockDataRegion>(R)) { 1342 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1343 return nullptr; 1344 } 1345 1346 const MemSpaceRegion *MS = R->getMemorySpace(); 1347 1348 // Parameters, locals, statics, globals, and memory returned by 1349 // __builtin_alloca() shouldn't be freed. 1350 if (!(isa<UnknownSpaceRegion>(MS) || isa<HeapSpaceRegion>(MS))) { 1351 // FIXME: at the time this code was written, malloc() regions were 1352 // represented by conjured symbols, which are all in UnknownSpaceRegion. 1353 // This means that there isn't actually anything from HeapSpaceRegion 1354 // that should be freed, even though we allow it here. 1355 // Of course, free() can work on memory allocated outside the current 1356 // function, so UnknownSpaceRegion is always a possibility. 1357 // False negatives are better than false positives. 1358 1359 if (isa<AllocaRegion>(R)) 1360 ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1361 else 1362 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1363 1364 return nullptr; 1365 } 1366 1367 const SymbolicRegion *SrBase = dyn_cast<SymbolicRegion>(R->getBaseRegion()); 1368 // Various cases could lead to non-symbol values here. 1369 // For now, ignore them. 1370 if (!SrBase) 1371 return nullptr; 1372 1373 SymbolRef SymBase = SrBase->getSymbol(); 1374 const RefState *RsBase = State->get<RegionState>(SymBase); 1375 SymbolRef PreviousRetStatusSymbol = nullptr; 1376 1377 if (RsBase) { 1378 1379 // Memory returned by alloca() shouldn't be freed. 1380 if (RsBase->getAllocationFamily() == AF_Alloca) { 1381 ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1382 return nullptr; 1383 } 1384 1385 // Check for double free first. 1386 if ((RsBase->isReleased() || RsBase->isRelinquished()) && 1387 !didPreviousFreeFail(State, SymBase, PreviousRetStatusSymbol)) { 1388 ReportDoubleFree(C, ParentExpr->getSourceRange(), RsBase->isReleased(), 1389 SymBase, PreviousRetStatusSymbol); 1390 return nullptr; 1391 1392 // If the pointer is allocated or escaped, but we are now trying to free it, 1393 // check that the call to free is proper. 1394 } else if (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero() || 1395 RsBase->isEscaped()) { 1396 1397 // Check if an expected deallocation function matches the real one. 1398 bool DeallocMatchesAlloc = 1399 RsBase->getAllocationFamily() == getAllocationFamily(C, ParentExpr); 1400 if (!DeallocMatchesAlloc) { 1401 ReportMismatchedDealloc(C, ArgExpr->getSourceRange(), 1402 ParentExpr, RsBase, SymBase, Hold); 1403 return nullptr; 1404 } 1405 1406 // Check if the memory location being freed is the actual location 1407 // allocated, or an offset. 1408 RegionOffset Offset = R->getAsOffset(); 1409 if (Offset.isValid() && 1410 !Offset.hasSymbolicOffset() && 1411 Offset.getOffset() != 0) { 1412 const Expr *AllocExpr = cast<Expr>(RsBase->getStmt()); 1413 ReportOffsetFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1414 AllocExpr); 1415 return nullptr; 1416 } 1417 } 1418 } 1419 1420 ReleasedAllocated = (RsBase != nullptr) && (RsBase->isAllocated() || 1421 RsBase->isAllocatedOfSizeZero()); 1422 1423 // Clean out the info on previous call to free return info. 1424 State = State->remove<FreeReturnValue>(SymBase); 1425 1426 // Keep track of the return value. If it is NULL, we will know that free 1427 // failed. 1428 if (ReturnsNullOnFailure) { 1429 SVal RetVal = C.getSVal(ParentExpr); 1430 SymbolRef RetStatusSymbol = RetVal.getAsSymbol(); 1431 if (RetStatusSymbol) { 1432 C.getSymbolManager().addSymbolDependency(SymBase, RetStatusSymbol); 1433 State = State->set<FreeReturnValue>(SymBase, RetStatusSymbol); 1434 } 1435 } 1436 1437 AllocationFamily Family = RsBase ? RsBase->getAllocationFamily() 1438 : getAllocationFamily(C, ParentExpr); 1439 // Normal free. 1440 if (Hold) 1441 return State->set<RegionState>(SymBase, 1442 RefState::getRelinquished(Family, 1443 ParentExpr)); 1444 1445 return State->set<RegionState>(SymBase, 1446 RefState::getReleased(Family, ParentExpr)); 1447 } 1448 1449 Optional<MallocChecker::CheckKind> 1450 MallocChecker::getCheckIfTracked(AllocationFamily Family, 1451 bool IsALeakCheck) const { 1452 switch (Family) { 1453 case AF_Malloc: 1454 case AF_Alloca: 1455 case AF_IfNameIndex: { 1456 if (ChecksEnabled[CK_MallocChecker]) 1457 return CK_MallocChecker; 1458 1459 return Optional<MallocChecker::CheckKind>(); 1460 } 1461 case AF_CXXNew: 1462 case AF_CXXNewArray: { 1463 if (IsALeakCheck) { 1464 if (ChecksEnabled[CK_NewDeleteLeaksChecker]) 1465 return CK_NewDeleteLeaksChecker; 1466 } 1467 else { 1468 if (ChecksEnabled[CK_NewDeleteChecker]) 1469 return CK_NewDeleteChecker; 1470 } 1471 return Optional<MallocChecker::CheckKind>(); 1472 } 1473 case AF_None: { 1474 llvm_unreachable("no family"); 1475 } 1476 } 1477 llvm_unreachable("unhandled family"); 1478 } 1479 1480 Optional<MallocChecker::CheckKind> 1481 MallocChecker::getCheckIfTracked(CheckerContext &C, 1482 const Stmt *AllocDeallocStmt, 1483 bool IsALeakCheck) const { 1484 return getCheckIfTracked(getAllocationFamily(C, AllocDeallocStmt), 1485 IsALeakCheck); 1486 } 1487 1488 Optional<MallocChecker::CheckKind> 1489 MallocChecker::getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 1490 bool IsALeakCheck) const { 1491 const RefState *RS = C.getState()->get<RegionState>(Sym); 1492 assert(RS); 1493 return getCheckIfTracked(RS->getAllocationFamily(), IsALeakCheck); 1494 } 1495 1496 bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) { 1497 if (Optional<nonloc::ConcreteInt> IntVal = V.getAs<nonloc::ConcreteInt>()) 1498 os << "an integer (" << IntVal->getValue() << ")"; 1499 else if (Optional<loc::ConcreteInt> ConstAddr = V.getAs<loc::ConcreteInt>()) 1500 os << "a constant address (" << ConstAddr->getValue() << ")"; 1501 else if (Optional<loc::GotoLabel> Label = V.getAs<loc::GotoLabel>()) 1502 os << "the address of the label '" << Label->getLabel()->getName() << "'"; 1503 else 1504 return false; 1505 1506 return true; 1507 } 1508 1509 bool MallocChecker::SummarizeRegion(raw_ostream &os, 1510 const MemRegion *MR) { 1511 switch (MR->getKind()) { 1512 case MemRegion::FunctionTextRegionKind: { 1513 const NamedDecl *FD = cast<FunctionTextRegion>(MR)->getDecl(); 1514 if (FD) 1515 os << "the address of the function '" << *FD << '\''; 1516 else 1517 os << "the address of a function"; 1518 return true; 1519 } 1520 case MemRegion::BlockTextRegionKind: 1521 os << "block text"; 1522 return true; 1523 case MemRegion::BlockDataRegionKind: 1524 // FIXME: where the block came from? 1525 os << "a block"; 1526 return true; 1527 default: { 1528 const MemSpaceRegion *MS = MR->getMemorySpace(); 1529 1530 if (isa<StackLocalsSpaceRegion>(MS)) { 1531 const VarRegion *VR = dyn_cast<VarRegion>(MR); 1532 const VarDecl *VD; 1533 if (VR) 1534 VD = VR->getDecl(); 1535 else 1536 VD = nullptr; 1537 1538 if (VD) 1539 os << "the address of the local variable '" << VD->getName() << "'"; 1540 else 1541 os << "the address of a local stack variable"; 1542 return true; 1543 } 1544 1545 if (isa<StackArgumentsSpaceRegion>(MS)) { 1546 const VarRegion *VR = dyn_cast<VarRegion>(MR); 1547 const VarDecl *VD; 1548 if (VR) 1549 VD = VR->getDecl(); 1550 else 1551 VD = nullptr; 1552 1553 if (VD) 1554 os << "the address of the parameter '" << VD->getName() << "'"; 1555 else 1556 os << "the address of a parameter"; 1557 return true; 1558 } 1559 1560 if (isa<GlobalsSpaceRegion>(MS)) { 1561 const VarRegion *VR = dyn_cast<VarRegion>(MR); 1562 const VarDecl *VD; 1563 if (VR) 1564 VD = VR->getDecl(); 1565 else 1566 VD = nullptr; 1567 1568 if (VD) { 1569 if (VD->isStaticLocal()) 1570 os << "the address of the static variable '" << VD->getName() << "'"; 1571 else 1572 os << "the address of the global variable '" << VD->getName() << "'"; 1573 } else 1574 os << "the address of a global variable"; 1575 return true; 1576 } 1577 1578 return false; 1579 } 1580 } 1581 } 1582 1583 void MallocChecker::ReportBadFree(CheckerContext &C, SVal ArgVal, 1584 SourceRange Range, 1585 const Expr *DeallocExpr) const { 1586 1587 if (!ChecksEnabled[CK_MallocChecker] && 1588 !ChecksEnabled[CK_NewDeleteChecker]) 1589 return; 1590 1591 Optional<MallocChecker::CheckKind> CheckKind = 1592 getCheckIfTracked(C, DeallocExpr); 1593 if (!CheckKind.hasValue()) 1594 return; 1595 1596 if (ExplodedNode *N = C.generateSink()) { 1597 if (!BT_BadFree[*CheckKind]) 1598 BT_BadFree[*CheckKind].reset( 1599 new BugType(CheckNames[*CheckKind], "Bad free", "Memory Error")); 1600 1601 SmallString<100> buf; 1602 llvm::raw_svector_ostream os(buf); 1603 1604 const MemRegion *MR = ArgVal.getAsRegion(); 1605 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 1606 MR = ER->getSuperRegion(); 1607 1608 os << "Argument to "; 1609 if (!printAllocDeallocName(os, C, DeallocExpr)) 1610 os << "deallocator"; 1611 1612 os << " is "; 1613 bool Summarized = MR ? SummarizeRegion(os, MR) 1614 : SummarizeValue(os, ArgVal); 1615 if (Summarized) 1616 os << ", which is not memory allocated by "; 1617 else 1618 os << "not memory allocated by "; 1619 1620 printExpectedAllocName(os, C, DeallocExpr); 1621 1622 BugReport *R = new BugReport(*BT_BadFree[*CheckKind], os.str(), N); 1623 R->markInteresting(MR); 1624 R->addRange(Range); 1625 C.emitReport(R); 1626 } 1627 } 1628 1629 void MallocChecker::ReportFreeAlloca(CheckerContext &C, SVal ArgVal, 1630 SourceRange Range) const { 1631 1632 Optional<MallocChecker::CheckKind> CheckKind; 1633 1634 if (ChecksEnabled[CK_MallocChecker]) 1635 CheckKind = CK_MallocChecker; 1636 else if (ChecksEnabled[CK_MismatchedDeallocatorChecker]) 1637 CheckKind = CK_MismatchedDeallocatorChecker; 1638 else 1639 return; 1640 1641 if (ExplodedNode *N = C.generateSink()) { 1642 if (!BT_FreeAlloca[*CheckKind]) 1643 BT_FreeAlloca[*CheckKind].reset( 1644 new BugType(CheckNames[*CheckKind], "Free alloca()", "Memory Error")); 1645 1646 BugReport *R = new BugReport(*BT_FreeAlloca[*CheckKind], 1647 "Memory allocated by alloca() should not be deallocated", N); 1648 R->markInteresting(ArgVal.getAsRegion()); 1649 R->addRange(Range); 1650 C.emitReport(R); 1651 } 1652 } 1653 1654 void MallocChecker::ReportMismatchedDealloc(CheckerContext &C, 1655 SourceRange Range, 1656 const Expr *DeallocExpr, 1657 const RefState *RS, 1658 SymbolRef Sym, 1659 bool OwnershipTransferred) const { 1660 1661 if (!ChecksEnabled[CK_MismatchedDeallocatorChecker]) 1662 return; 1663 1664 if (ExplodedNode *N = C.generateSink()) { 1665 if (!BT_MismatchedDealloc) 1666 BT_MismatchedDealloc.reset( 1667 new BugType(CheckNames[CK_MismatchedDeallocatorChecker], 1668 "Bad deallocator", "Memory Error")); 1669 1670 SmallString<100> buf; 1671 llvm::raw_svector_ostream os(buf); 1672 1673 const Expr *AllocExpr = cast<Expr>(RS->getStmt()); 1674 SmallString<20> AllocBuf; 1675 llvm::raw_svector_ostream AllocOs(AllocBuf); 1676 SmallString<20> DeallocBuf; 1677 llvm::raw_svector_ostream DeallocOs(DeallocBuf); 1678 1679 if (OwnershipTransferred) { 1680 if (printAllocDeallocName(DeallocOs, C, DeallocExpr)) 1681 os << DeallocOs.str() << " cannot"; 1682 else 1683 os << "Cannot"; 1684 1685 os << " take ownership of memory"; 1686 1687 if (printAllocDeallocName(AllocOs, C, AllocExpr)) 1688 os << " allocated by " << AllocOs.str(); 1689 } else { 1690 os << "Memory"; 1691 if (printAllocDeallocName(AllocOs, C, AllocExpr)) 1692 os << " allocated by " << AllocOs.str(); 1693 1694 os << " should be deallocated by "; 1695 printExpectedDeallocName(os, RS->getAllocationFamily()); 1696 1697 if (printAllocDeallocName(DeallocOs, C, DeallocExpr)) 1698 os << ", not " << DeallocOs.str(); 1699 } 1700 1701 BugReport *R = new BugReport(*BT_MismatchedDealloc, os.str(), N); 1702 R->markInteresting(Sym); 1703 R->addRange(Range); 1704 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 1705 C.emitReport(R); 1706 } 1707 } 1708 1709 void MallocChecker::ReportOffsetFree(CheckerContext &C, SVal ArgVal, 1710 SourceRange Range, const Expr *DeallocExpr, 1711 const Expr *AllocExpr) const { 1712 1713 1714 if (!ChecksEnabled[CK_MallocChecker] && 1715 !ChecksEnabled[CK_NewDeleteChecker]) 1716 return; 1717 1718 Optional<MallocChecker::CheckKind> CheckKind = 1719 getCheckIfTracked(C, AllocExpr); 1720 if (!CheckKind.hasValue()) 1721 return; 1722 1723 ExplodedNode *N = C.generateSink(); 1724 if (!N) 1725 return; 1726 1727 if (!BT_OffsetFree[*CheckKind]) 1728 BT_OffsetFree[*CheckKind].reset( 1729 new BugType(CheckNames[*CheckKind], "Offset free", "Memory Error")); 1730 1731 SmallString<100> buf; 1732 llvm::raw_svector_ostream os(buf); 1733 SmallString<20> AllocNameBuf; 1734 llvm::raw_svector_ostream AllocNameOs(AllocNameBuf); 1735 1736 const MemRegion *MR = ArgVal.getAsRegion(); 1737 assert(MR && "Only MemRegion based symbols can have offset free errors"); 1738 1739 RegionOffset Offset = MR->getAsOffset(); 1740 assert((Offset.isValid() && 1741 !Offset.hasSymbolicOffset() && 1742 Offset.getOffset() != 0) && 1743 "Only symbols with a valid offset can have offset free errors"); 1744 1745 int offsetBytes = Offset.getOffset() / C.getASTContext().getCharWidth(); 1746 1747 os << "Argument to "; 1748 if (!printAllocDeallocName(os, C, DeallocExpr)) 1749 os << "deallocator"; 1750 os << " is offset by " 1751 << offsetBytes 1752 << " " 1753 << ((abs(offsetBytes) > 1) ? "bytes" : "byte") 1754 << " from the start of "; 1755 if (AllocExpr && printAllocDeallocName(AllocNameOs, C, AllocExpr)) 1756 os << "memory allocated by " << AllocNameOs.str(); 1757 else 1758 os << "allocated memory"; 1759 1760 BugReport *R = new BugReport(*BT_OffsetFree[*CheckKind], os.str(), N); 1761 R->markInteresting(MR->getBaseRegion()); 1762 R->addRange(Range); 1763 C.emitReport(R); 1764 } 1765 1766 void MallocChecker::ReportUseAfterFree(CheckerContext &C, SourceRange Range, 1767 SymbolRef Sym) const { 1768 1769 if (!ChecksEnabled[CK_MallocChecker] && 1770 !ChecksEnabled[CK_NewDeleteChecker]) 1771 return; 1772 1773 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 1774 if (!CheckKind.hasValue()) 1775 return; 1776 1777 if (ExplodedNode *N = C.generateSink()) { 1778 if (!BT_UseFree[*CheckKind]) 1779 BT_UseFree[*CheckKind].reset(new BugType( 1780 CheckNames[*CheckKind], "Use-after-free", "Memory Error")); 1781 1782 BugReport *R = new BugReport(*BT_UseFree[*CheckKind], 1783 "Use of memory after it is freed", N); 1784 1785 R->markInteresting(Sym); 1786 R->addRange(Range); 1787 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 1788 C.emitReport(R); 1789 } 1790 } 1791 1792 void MallocChecker::ReportDoubleFree(CheckerContext &C, SourceRange Range, 1793 bool Released, SymbolRef Sym, 1794 SymbolRef PrevSym) const { 1795 1796 if (!ChecksEnabled[CK_MallocChecker] && 1797 !ChecksEnabled[CK_NewDeleteChecker]) 1798 return; 1799 1800 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 1801 if (!CheckKind.hasValue()) 1802 return; 1803 1804 if (ExplodedNode *N = C.generateSink()) { 1805 if (!BT_DoubleFree[*CheckKind]) 1806 BT_DoubleFree[*CheckKind].reset( 1807 new BugType(CheckNames[*CheckKind], "Double free", "Memory Error")); 1808 1809 BugReport *R = 1810 new BugReport(*BT_DoubleFree[*CheckKind], 1811 (Released ? "Attempt to free released memory" 1812 : "Attempt to free non-owned memory"), 1813 N); 1814 R->addRange(Range); 1815 R->markInteresting(Sym); 1816 if (PrevSym) 1817 R->markInteresting(PrevSym); 1818 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 1819 C.emitReport(R); 1820 } 1821 } 1822 1823 void MallocChecker::ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const { 1824 1825 if (!ChecksEnabled[CK_NewDeleteChecker]) 1826 return; 1827 1828 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 1829 if (!CheckKind.hasValue()) 1830 return; 1831 1832 if (ExplodedNode *N = C.generateSink()) { 1833 if (!BT_DoubleDelete) 1834 BT_DoubleDelete.reset(new BugType(CheckNames[CK_NewDeleteChecker], 1835 "Double delete", "Memory Error")); 1836 1837 BugReport *R = new BugReport(*BT_DoubleDelete, 1838 "Attempt to delete released memory", N); 1839 1840 R->markInteresting(Sym); 1841 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 1842 C.emitReport(R); 1843 } 1844 } 1845 1846 void MallocChecker::ReportUseZeroAllocated(CheckerContext &C, 1847 SourceRange Range, 1848 SymbolRef Sym) const { 1849 1850 if (!ChecksEnabled[CK_MallocChecker] && 1851 !ChecksEnabled[CK_NewDeleteChecker]) 1852 return; 1853 1854 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 1855 1856 if (!CheckKind.hasValue()) 1857 return; 1858 1859 if (ExplodedNode *N = C.generateSink()) { 1860 if (!BT_UseZerroAllocated[*CheckKind]) 1861 BT_UseZerroAllocated[*CheckKind].reset(new BugType( 1862 CheckNames[*CheckKind], "Use of zero allocated", "Memory Error")); 1863 1864 BugReport *R = new BugReport(*BT_UseZerroAllocated[*CheckKind], 1865 "Use of zero-allocated memory", N); 1866 1867 R->addRange(Range); 1868 if (Sym) { 1869 R->markInteresting(Sym); 1870 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 1871 } 1872 C.emitReport(R); 1873 } 1874 } 1875 1876 ProgramStateRef MallocChecker::ReallocMem(CheckerContext &C, 1877 const CallExpr *CE, 1878 bool FreesOnFail, 1879 ProgramStateRef State) const { 1880 if (!State) 1881 return nullptr; 1882 1883 if (CE->getNumArgs() < 2) 1884 return nullptr; 1885 1886 const Expr *arg0Expr = CE->getArg(0); 1887 const LocationContext *LCtx = C.getLocationContext(); 1888 SVal Arg0Val = State->getSVal(arg0Expr, LCtx); 1889 if (!Arg0Val.getAs<DefinedOrUnknownSVal>()) 1890 return nullptr; 1891 DefinedOrUnknownSVal arg0Val = Arg0Val.castAs<DefinedOrUnknownSVal>(); 1892 1893 SValBuilder &svalBuilder = C.getSValBuilder(); 1894 1895 DefinedOrUnknownSVal PtrEQ = 1896 svalBuilder.evalEQ(State, arg0Val, svalBuilder.makeNull()); 1897 1898 // Get the size argument. If there is no size arg then give up. 1899 const Expr *Arg1 = CE->getArg(1); 1900 if (!Arg1) 1901 return nullptr; 1902 1903 // Get the value of the size argument. 1904 SVal Arg1ValG = State->getSVal(Arg1, LCtx); 1905 if (!Arg1ValG.getAs<DefinedOrUnknownSVal>()) 1906 return nullptr; 1907 DefinedOrUnknownSVal Arg1Val = Arg1ValG.castAs<DefinedOrUnknownSVal>(); 1908 1909 // Compare the size argument to 0. 1910 DefinedOrUnknownSVal SizeZero = 1911 svalBuilder.evalEQ(State, Arg1Val, 1912 svalBuilder.makeIntValWithPtrWidth(0, false)); 1913 1914 ProgramStateRef StatePtrIsNull, StatePtrNotNull; 1915 std::tie(StatePtrIsNull, StatePtrNotNull) = State->assume(PtrEQ); 1916 ProgramStateRef StateSizeIsZero, StateSizeNotZero; 1917 std::tie(StateSizeIsZero, StateSizeNotZero) = State->assume(SizeZero); 1918 // We only assume exceptional states if they are definitely true; if the 1919 // state is under-constrained, assume regular realloc behavior. 1920 bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull; 1921 bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero; 1922 1923 // If the ptr is NULL and the size is not 0, the call is equivalent to 1924 // malloc(size). 1925 if ( PrtIsNull && !SizeIsZero) { 1926 ProgramStateRef stateMalloc = MallocMemAux(C, CE, CE->getArg(1), 1927 UndefinedVal(), StatePtrIsNull); 1928 return stateMalloc; 1929 } 1930 1931 if (PrtIsNull && SizeIsZero) 1932 return nullptr; 1933 1934 // Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size). 1935 assert(!PrtIsNull); 1936 SymbolRef FromPtr = arg0Val.getAsSymbol(); 1937 SVal RetVal = State->getSVal(CE, LCtx); 1938 SymbolRef ToPtr = RetVal.getAsSymbol(); 1939 if (!FromPtr || !ToPtr) 1940 return nullptr; 1941 1942 bool ReleasedAllocated = false; 1943 1944 // If the size is 0, free the memory. 1945 if (SizeIsZero) 1946 if (ProgramStateRef stateFree = FreeMemAux(C, CE, StateSizeIsZero, 0, 1947 false, ReleasedAllocated)){ 1948 // The semantics of the return value are: 1949 // If size was equal to 0, either NULL or a pointer suitable to be passed 1950 // to free() is returned. We just free the input pointer and do not add 1951 // any constrains on the output pointer. 1952 return stateFree; 1953 } 1954 1955 // Default behavior. 1956 if (ProgramStateRef stateFree = 1957 FreeMemAux(C, CE, State, 0, false, ReleasedAllocated)) { 1958 1959 ProgramStateRef stateRealloc = MallocMemAux(C, CE, CE->getArg(1), 1960 UnknownVal(), stateFree); 1961 if (!stateRealloc) 1962 return nullptr; 1963 1964 ReallocPairKind Kind = RPToBeFreedAfterFailure; 1965 if (FreesOnFail) 1966 Kind = RPIsFreeOnFailure; 1967 else if (!ReleasedAllocated) 1968 Kind = RPDoNotTrackAfterFailure; 1969 1970 // Record the info about the reallocated symbol so that we could properly 1971 // process failed reallocation. 1972 stateRealloc = stateRealloc->set<ReallocPairs>(ToPtr, 1973 ReallocPair(FromPtr, Kind)); 1974 // The reallocated symbol should stay alive for as long as the new symbol. 1975 C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr); 1976 return stateRealloc; 1977 } 1978 return nullptr; 1979 } 1980 1981 ProgramStateRef MallocChecker::CallocMem(CheckerContext &C, const CallExpr *CE, 1982 ProgramStateRef State) { 1983 if (!State) 1984 return nullptr; 1985 1986 if (CE->getNumArgs() < 2) 1987 return nullptr; 1988 1989 SValBuilder &svalBuilder = C.getSValBuilder(); 1990 const LocationContext *LCtx = C.getLocationContext(); 1991 SVal count = State->getSVal(CE->getArg(0), LCtx); 1992 SVal elementSize = State->getSVal(CE->getArg(1), LCtx); 1993 SVal TotalSize = svalBuilder.evalBinOp(State, BO_Mul, count, elementSize, 1994 svalBuilder.getContext().getSizeType()); 1995 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 1996 1997 return MallocMemAux(C, CE, TotalSize, zeroVal, State); 1998 } 1999 2000 LeakInfo 2001 MallocChecker::getAllocationSite(const ExplodedNode *N, SymbolRef Sym, 2002 CheckerContext &C) const { 2003 const LocationContext *LeakContext = N->getLocationContext(); 2004 // Walk the ExplodedGraph backwards and find the first node that referred to 2005 // the tracked symbol. 2006 const ExplodedNode *AllocNode = N; 2007 const MemRegion *ReferenceRegion = nullptr; 2008 2009 while (N) { 2010 ProgramStateRef State = N->getState(); 2011 if (!State->get<RegionState>(Sym)) 2012 break; 2013 2014 // Find the most recent expression bound to the symbol in the current 2015 // context. 2016 if (!ReferenceRegion) { 2017 if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) { 2018 SVal Val = State->getSVal(MR); 2019 if (Val.getAsLocSymbol() == Sym) { 2020 const VarRegion* VR = MR->getBaseRegion()->getAs<VarRegion>(); 2021 // Do not show local variables belonging to a function other than 2022 // where the error is reported. 2023 if (!VR || 2024 (VR->getStackFrame() == LeakContext->getCurrentStackFrame())) 2025 ReferenceRegion = MR; 2026 } 2027 } 2028 } 2029 2030 // Allocation node, is the last node in the current or parent context in 2031 // which the symbol was tracked. 2032 const LocationContext *NContext = N->getLocationContext(); 2033 if (NContext == LeakContext || 2034 NContext->isParentOf(LeakContext)) 2035 AllocNode = N; 2036 N = N->pred_empty() ? nullptr : *(N->pred_begin()); 2037 } 2038 2039 return LeakInfo(AllocNode, ReferenceRegion); 2040 } 2041 2042 void MallocChecker::reportLeak(SymbolRef Sym, ExplodedNode *N, 2043 CheckerContext &C) const { 2044 2045 if (!ChecksEnabled[CK_MallocChecker] && 2046 !ChecksEnabled[CK_NewDeleteLeaksChecker]) 2047 return; 2048 2049 const RefState *RS = C.getState()->get<RegionState>(Sym); 2050 assert(RS && "cannot leak an untracked symbol"); 2051 AllocationFamily Family = RS->getAllocationFamily(); 2052 2053 if (Family == AF_Alloca) 2054 return; 2055 2056 Optional<MallocChecker::CheckKind> 2057 CheckKind = getCheckIfTracked(Family, true); 2058 2059 if (!CheckKind.hasValue()) 2060 return; 2061 2062 assert(N); 2063 if (!BT_Leak[*CheckKind]) { 2064 BT_Leak[*CheckKind].reset( 2065 new BugType(CheckNames[*CheckKind], "Memory leak", "Memory Error")); 2066 // Leaks should not be reported if they are post-dominated by a sink: 2067 // (1) Sinks are higher importance bugs. 2068 // (2) NoReturnFunctionChecker uses sink nodes to represent paths ending 2069 // with __noreturn functions such as assert() or exit(). We choose not 2070 // to report leaks on such paths. 2071 BT_Leak[*CheckKind]->setSuppressOnSink(true); 2072 } 2073 2074 // Most bug reports are cached at the location where they occurred. 2075 // With leaks, we want to unique them by the location where they were 2076 // allocated, and only report a single path. 2077 PathDiagnosticLocation LocUsedForUniqueing; 2078 const ExplodedNode *AllocNode = nullptr; 2079 const MemRegion *Region = nullptr; 2080 std::tie(AllocNode, Region) = getAllocationSite(N, Sym, C); 2081 2082 ProgramPoint P = AllocNode->getLocation(); 2083 const Stmt *AllocationStmt = nullptr; 2084 if (Optional<CallExitEnd> Exit = P.getAs<CallExitEnd>()) 2085 AllocationStmt = Exit->getCalleeContext()->getCallSite(); 2086 else if (Optional<StmtPoint> SP = P.getAs<StmtPoint>()) 2087 AllocationStmt = SP->getStmt(); 2088 if (AllocationStmt) 2089 LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocationStmt, 2090 C.getSourceManager(), 2091 AllocNode->getLocationContext()); 2092 2093 SmallString<200> buf; 2094 llvm::raw_svector_ostream os(buf); 2095 if (Region && Region->canPrintPretty()) { 2096 os << "Potential leak of memory pointed to by "; 2097 Region->printPretty(os); 2098 } else { 2099 os << "Potential memory leak"; 2100 } 2101 2102 BugReport *R = 2103 new BugReport(*BT_Leak[*CheckKind], os.str(), N, LocUsedForUniqueing, 2104 AllocNode->getLocationContext()->getDecl()); 2105 R->markInteresting(Sym); 2106 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym, true)); 2107 C.emitReport(R); 2108 } 2109 2110 void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper, 2111 CheckerContext &C) const 2112 { 2113 if (!SymReaper.hasDeadSymbols()) 2114 return; 2115 2116 ProgramStateRef state = C.getState(); 2117 RegionStateTy RS = state->get<RegionState>(); 2118 RegionStateTy::Factory &F = state->get_context<RegionState>(); 2119 2120 SmallVector<SymbolRef, 2> Errors; 2121 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2122 if (SymReaper.isDead(I->first)) { 2123 if (I->second.isAllocated() || I->second.isAllocatedOfSizeZero()) 2124 Errors.push_back(I->first); 2125 // Remove the dead symbol from the map. 2126 RS = F.remove(RS, I->first); 2127 2128 } 2129 } 2130 2131 // Cleanup the Realloc Pairs Map. 2132 ReallocPairsTy RP = state->get<ReallocPairs>(); 2133 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 2134 if (SymReaper.isDead(I->first) || 2135 SymReaper.isDead(I->second.ReallocatedSym)) { 2136 state = state->remove<ReallocPairs>(I->first); 2137 } 2138 } 2139 2140 // Cleanup the FreeReturnValue Map. 2141 FreeReturnValueTy FR = state->get<FreeReturnValue>(); 2142 for (FreeReturnValueTy::iterator I = FR.begin(), E = FR.end(); I != E; ++I) { 2143 if (SymReaper.isDead(I->first) || 2144 SymReaper.isDead(I->second)) { 2145 state = state->remove<FreeReturnValue>(I->first); 2146 } 2147 } 2148 2149 // Generate leak node. 2150 ExplodedNode *N = C.getPredecessor(); 2151 if (!Errors.empty()) { 2152 static CheckerProgramPointTag Tag("MallocChecker", "DeadSymbolsLeak"); 2153 N = C.addTransition(C.getState(), C.getPredecessor(), &Tag); 2154 for (SmallVectorImpl<SymbolRef>::iterator 2155 I = Errors.begin(), E = Errors.end(); I != E; ++I) { 2156 reportLeak(*I, N, C); 2157 } 2158 } 2159 2160 C.addTransition(state->set<RegionState>(RS), N); 2161 } 2162 2163 void MallocChecker::checkPreCall(const CallEvent &Call, 2164 CheckerContext &C) const { 2165 2166 if (const CXXDestructorCall *DC = dyn_cast<CXXDestructorCall>(&Call)) { 2167 SymbolRef Sym = DC->getCXXThisVal().getAsSymbol(); 2168 if (!Sym || checkDoubleDelete(Sym, C)) 2169 return; 2170 } 2171 2172 // We will check for double free in the post visit. 2173 if (const AnyFunctionCall *FC = dyn_cast<AnyFunctionCall>(&Call)) { 2174 const FunctionDecl *FD = FC->getDecl(); 2175 if (!FD) 2176 return; 2177 2178 ASTContext &Ctx = C.getASTContext(); 2179 if (ChecksEnabled[CK_MallocChecker] && 2180 (isCMemFunction(FD, Ctx, AF_Malloc, MemoryOperationKind::MOK_Free) || 2181 isCMemFunction(FD, Ctx, AF_IfNameIndex, 2182 MemoryOperationKind::MOK_Free))) 2183 return; 2184 2185 if (ChecksEnabled[CK_NewDeleteChecker] && 2186 isStandardNewDelete(FD, Ctx)) 2187 return; 2188 } 2189 2190 // Check if the callee of a method is deleted. 2191 if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(&Call)) { 2192 SymbolRef Sym = CC->getCXXThisVal().getAsSymbol(); 2193 if (!Sym || checkUseAfterFree(Sym, C, CC->getCXXThisExpr())) 2194 return; 2195 } 2196 2197 // Check arguments for being used after free. 2198 for (unsigned I = 0, E = Call.getNumArgs(); I != E; ++I) { 2199 SVal ArgSVal = Call.getArgSVal(I); 2200 if (ArgSVal.getAs<Loc>()) { 2201 SymbolRef Sym = ArgSVal.getAsSymbol(); 2202 if (!Sym) 2203 continue; 2204 if (checkUseAfterFree(Sym, C, Call.getArgExpr(I))) 2205 return; 2206 } 2207 } 2208 } 2209 2210 void MallocChecker::checkPreStmt(const ReturnStmt *S, CheckerContext &C) const { 2211 const Expr *E = S->getRetValue(); 2212 if (!E) 2213 return; 2214 2215 // Check if we are returning a symbol. 2216 ProgramStateRef State = C.getState(); 2217 SVal RetVal = State->getSVal(E, C.getLocationContext()); 2218 SymbolRef Sym = RetVal.getAsSymbol(); 2219 if (!Sym) 2220 // If we are returning a field of the allocated struct or an array element, 2221 // the callee could still free the memory. 2222 // TODO: This logic should be a part of generic symbol escape callback. 2223 if (const MemRegion *MR = RetVal.getAsRegion()) 2224 if (isa<FieldRegion>(MR) || isa<ElementRegion>(MR)) 2225 if (const SymbolicRegion *BMR = 2226 dyn_cast<SymbolicRegion>(MR->getBaseRegion())) 2227 Sym = BMR->getSymbol(); 2228 2229 // Check if we are returning freed memory. 2230 if (Sym) 2231 checkUseAfterFree(Sym, C, E); 2232 } 2233 2234 // TODO: Blocks should be either inlined or should call invalidate regions 2235 // upon invocation. After that's in place, special casing here will not be 2236 // needed. 2237 void MallocChecker::checkPostStmt(const BlockExpr *BE, 2238 CheckerContext &C) const { 2239 2240 // Scan the BlockDecRefExprs for any object the retain count checker 2241 // may be tracking. 2242 if (!BE->getBlockDecl()->hasCaptures()) 2243 return; 2244 2245 ProgramStateRef state = C.getState(); 2246 const BlockDataRegion *R = 2247 cast<BlockDataRegion>(state->getSVal(BE, 2248 C.getLocationContext()).getAsRegion()); 2249 2250 BlockDataRegion::referenced_vars_iterator I = R->referenced_vars_begin(), 2251 E = R->referenced_vars_end(); 2252 2253 if (I == E) 2254 return; 2255 2256 SmallVector<const MemRegion*, 10> Regions; 2257 const LocationContext *LC = C.getLocationContext(); 2258 MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager(); 2259 2260 for ( ; I != E; ++I) { 2261 const VarRegion *VR = I.getCapturedRegion(); 2262 if (VR->getSuperRegion() == R) { 2263 VR = MemMgr.getVarRegion(VR->getDecl(), LC); 2264 } 2265 Regions.push_back(VR); 2266 } 2267 2268 state = 2269 state->scanReachableSymbols<StopTrackingCallback>(Regions.data(), 2270 Regions.data() + Regions.size()).getState(); 2271 C.addTransition(state); 2272 } 2273 2274 bool MallocChecker::isReleased(SymbolRef Sym, CheckerContext &C) const { 2275 assert(Sym); 2276 const RefState *RS = C.getState()->get<RegionState>(Sym); 2277 return (RS && RS->isReleased()); 2278 } 2279 2280 bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C, 2281 const Stmt *S) const { 2282 2283 if (isReleased(Sym, C)) { 2284 ReportUseAfterFree(C, S->getSourceRange(), Sym); 2285 return true; 2286 } 2287 2288 return false; 2289 } 2290 2291 void MallocChecker::checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 2292 const Stmt *S) const { 2293 assert(Sym); 2294 const RefState *RS = C.getState()->get<RegionState>(Sym); 2295 2296 if (RS && RS->isAllocatedOfSizeZero()) 2297 ReportUseZeroAllocated(C, RS->getStmt()->getSourceRange(), Sym); 2298 } 2299 2300 bool MallocChecker::checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const { 2301 2302 if (isReleased(Sym, C)) { 2303 ReportDoubleDelete(C, Sym); 2304 return true; 2305 } 2306 return false; 2307 } 2308 2309 // Check if the location is a freed symbolic region. 2310 void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S, 2311 CheckerContext &C) const { 2312 SymbolRef Sym = l.getLocSymbolInBase(); 2313 if (Sym) { 2314 checkUseAfterFree(Sym, C, S); 2315 checkUseZeroAllocated(Sym, C, S); 2316 } 2317 } 2318 2319 // If a symbolic region is assumed to NULL (or another constant), stop tracking 2320 // it - assuming that allocation failed on this path. 2321 ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state, 2322 SVal Cond, 2323 bool Assumption) const { 2324 RegionStateTy RS = state->get<RegionState>(); 2325 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2326 // If the symbol is assumed to be NULL, remove it from consideration. 2327 ConstraintManager &CMgr = state->getConstraintManager(); 2328 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 2329 if (AllocFailed.isConstrainedTrue()) 2330 state = state->remove<RegionState>(I.getKey()); 2331 } 2332 2333 // Realloc returns 0 when reallocation fails, which means that we should 2334 // restore the state of the pointer being reallocated. 2335 ReallocPairsTy RP = state->get<ReallocPairs>(); 2336 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 2337 // If the symbol is assumed to be NULL, remove it from consideration. 2338 ConstraintManager &CMgr = state->getConstraintManager(); 2339 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 2340 if (!AllocFailed.isConstrainedTrue()) 2341 continue; 2342 2343 SymbolRef ReallocSym = I.getData().ReallocatedSym; 2344 if (const RefState *RS = state->get<RegionState>(ReallocSym)) { 2345 if (RS->isReleased()) { 2346 if (I.getData().Kind == RPToBeFreedAfterFailure) 2347 state = state->set<RegionState>(ReallocSym, 2348 RefState::getAllocated(RS->getAllocationFamily(), RS->getStmt())); 2349 else if (I.getData().Kind == RPDoNotTrackAfterFailure) 2350 state = state->remove<RegionState>(ReallocSym); 2351 else 2352 assert(I.getData().Kind == RPIsFreeOnFailure); 2353 } 2354 } 2355 state = state->remove<ReallocPairs>(I.getKey()); 2356 } 2357 2358 return state; 2359 } 2360 2361 bool MallocChecker::mayFreeAnyEscapedMemoryOrIsModeledExplicitly( 2362 const CallEvent *Call, 2363 ProgramStateRef State, 2364 SymbolRef &EscapingSymbol) const { 2365 assert(Call); 2366 EscapingSymbol = nullptr; 2367 2368 // For now, assume that any C++ or block call can free memory. 2369 // TODO: If we want to be more optimistic here, we'll need to make sure that 2370 // regions escape to C++ containers. They seem to do that even now, but for 2371 // mysterious reasons. 2372 if (!(isa<SimpleFunctionCall>(Call) || isa<ObjCMethodCall>(Call))) 2373 return true; 2374 2375 // Check Objective-C messages by selector name. 2376 if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) { 2377 // If it's not a framework call, or if it takes a callback, assume it 2378 // can free memory. 2379 if (!Call->isInSystemHeader() || Call->hasNonZeroCallbackArg()) 2380 return true; 2381 2382 // If it's a method we know about, handle it explicitly post-call. 2383 // This should happen before the "freeWhenDone" check below. 2384 if (isKnownDeallocObjCMethodName(*Msg)) 2385 return false; 2386 2387 // If there's a "freeWhenDone" parameter, but the method isn't one we know 2388 // about, we can't be sure that the object will use free() to deallocate the 2389 // memory, so we can't model it explicitly. The best we can do is use it to 2390 // decide whether the pointer escapes. 2391 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(*Msg)) 2392 return *FreeWhenDone; 2393 2394 // If the first selector piece ends with "NoCopy", and there is no 2395 // "freeWhenDone" parameter set to zero, we know ownership is being 2396 // transferred. Again, though, we can't be sure that the object will use 2397 // free() to deallocate the memory, so we can't model it explicitly. 2398 StringRef FirstSlot = Msg->getSelector().getNameForSlot(0); 2399 if (FirstSlot.endswith("NoCopy")) 2400 return true; 2401 2402 // If the first selector starts with addPointer, insertPointer, 2403 // or replacePointer, assume we are dealing with NSPointerArray or similar. 2404 // This is similar to C++ containers (vector); we still might want to check 2405 // that the pointers get freed by following the container itself. 2406 if (FirstSlot.startswith("addPointer") || 2407 FirstSlot.startswith("insertPointer") || 2408 FirstSlot.startswith("replacePointer") || 2409 FirstSlot.equals("valueWithPointer")) { 2410 return true; 2411 } 2412 2413 // We should escape receiver on call to 'init'. This is especially relevant 2414 // to the receiver, as the corresponding symbol is usually not referenced 2415 // after the call. 2416 if (Msg->getMethodFamily() == OMF_init) { 2417 EscapingSymbol = Msg->getReceiverSVal().getAsSymbol(); 2418 return true; 2419 } 2420 2421 // Otherwise, assume that the method does not free memory. 2422 // Most framework methods do not free memory. 2423 return false; 2424 } 2425 2426 // At this point the only thing left to handle is straight function calls. 2427 const FunctionDecl *FD = cast<SimpleFunctionCall>(Call)->getDecl(); 2428 if (!FD) 2429 return true; 2430 2431 ASTContext &ASTC = State->getStateManager().getContext(); 2432 2433 // If it's one of the allocation functions we can reason about, we model 2434 // its behavior explicitly. 2435 if (isMemFunction(FD, ASTC)) 2436 return false; 2437 2438 // If it's not a system call, assume it frees memory. 2439 if (!Call->isInSystemHeader()) 2440 return true; 2441 2442 // White list the system functions whose arguments escape. 2443 const IdentifierInfo *II = FD->getIdentifier(); 2444 if (!II) 2445 return true; 2446 StringRef FName = II->getName(); 2447 2448 // White list the 'XXXNoCopy' CoreFoundation functions. 2449 // We specifically check these before 2450 if (FName.endswith("NoCopy")) { 2451 // Look for the deallocator argument. We know that the memory ownership 2452 // is not transferred only if the deallocator argument is 2453 // 'kCFAllocatorNull'. 2454 for (unsigned i = 1; i < Call->getNumArgs(); ++i) { 2455 const Expr *ArgE = Call->getArgExpr(i)->IgnoreParenCasts(); 2456 if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(ArgE)) { 2457 StringRef DeallocatorName = DE->getFoundDecl()->getName(); 2458 if (DeallocatorName == "kCFAllocatorNull") 2459 return false; 2460 } 2461 } 2462 return true; 2463 } 2464 2465 // Associating streams with malloced buffers. The pointer can escape if 2466 // 'closefn' is specified (and if that function does free memory), 2467 // but it will not if closefn is not specified. 2468 // Currently, we do not inspect the 'closefn' function (PR12101). 2469 if (FName == "funopen") 2470 if (Call->getNumArgs() >= 4 && Call->getArgSVal(4).isConstant(0)) 2471 return false; 2472 2473 // Do not warn on pointers passed to 'setbuf' when used with std streams, 2474 // these leaks might be intentional when setting the buffer for stdio. 2475 // http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer 2476 if (FName == "setbuf" || FName =="setbuffer" || 2477 FName == "setlinebuf" || FName == "setvbuf") { 2478 if (Call->getNumArgs() >= 1) { 2479 const Expr *ArgE = Call->getArgExpr(0)->IgnoreParenCasts(); 2480 if (const DeclRefExpr *ArgDRE = dyn_cast<DeclRefExpr>(ArgE)) 2481 if (const VarDecl *D = dyn_cast<VarDecl>(ArgDRE->getDecl())) 2482 if (D->getCanonicalDecl()->getName().find("std") != StringRef::npos) 2483 return true; 2484 } 2485 } 2486 2487 // A bunch of other functions which either take ownership of a pointer or 2488 // wrap the result up in a struct or object, meaning it can be freed later. 2489 // (See RetainCountChecker.) Not all the parameters here are invalidated, 2490 // but the Malloc checker cannot differentiate between them. The right way 2491 // of doing this would be to implement a pointer escapes callback. 2492 if (FName == "CGBitmapContextCreate" || 2493 FName == "CGBitmapContextCreateWithData" || 2494 FName == "CVPixelBufferCreateWithBytes" || 2495 FName == "CVPixelBufferCreateWithPlanarBytes" || 2496 FName == "OSAtomicEnqueue") { 2497 return true; 2498 } 2499 2500 // Handle cases where we know a buffer's /address/ can escape. 2501 // Note that the above checks handle some special cases where we know that 2502 // even though the address escapes, it's still our responsibility to free the 2503 // buffer. 2504 if (Call->argumentsMayEscape()) 2505 return true; 2506 2507 // Otherwise, assume that the function does not free memory. 2508 // Most system calls do not free the memory. 2509 return false; 2510 } 2511 2512 static bool retTrue(const RefState *RS) { 2513 return true; 2514 } 2515 2516 static bool checkIfNewOrNewArrayFamily(const RefState *RS) { 2517 return (RS->getAllocationFamily() == AF_CXXNewArray || 2518 RS->getAllocationFamily() == AF_CXXNew); 2519 } 2520 2521 ProgramStateRef MallocChecker::checkPointerEscape(ProgramStateRef State, 2522 const InvalidatedSymbols &Escaped, 2523 const CallEvent *Call, 2524 PointerEscapeKind Kind) const { 2525 return checkPointerEscapeAux(State, Escaped, Call, Kind, &retTrue); 2526 } 2527 2528 ProgramStateRef MallocChecker::checkConstPointerEscape(ProgramStateRef State, 2529 const InvalidatedSymbols &Escaped, 2530 const CallEvent *Call, 2531 PointerEscapeKind Kind) const { 2532 return checkPointerEscapeAux(State, Escaped, Call, Kind, 2533 &checkIfNewOrNewArrayFamily); 2534 } 2535 2536 ProgramStateRef MallocChecker::checkPointerEscapeAux(ProgramStateRef State, 2537 const InvalidatedSymbols &Escaped, 2538 const CallEvent *Call, 2539 PointerEscapeKind Kind, 2540 bool(*CheckRefState)(const RefState*)) const { 2541 // If we know that the call does not free memory, or we want to process the 2542 // call later, keep tracking the top level arguments. 2543 SymbolRef EscapingSymbol = nullptr; 2544 if (Kind == PSK_DirectEscapeOnCall && 2545 !mayFreeAnyEscapedMemoryOrIsModeledExplicitly(Call, State, 2546 EscapingSymbol) && 2547 !EscapingSymbol) { 2548 return State; 2549 } 2550 2551 for (InvalidatedSymbols::const_iterator I = Escaped.begin(), 2552 E = Escaped.end(); 2553 I != E; ++I) { 2554 SymbolRef sym = *I; 2555 2556 if (EscapingSymbol && EscapingSymbol != sym) 2557 continue; 2558 2559 if (const RefState *RS = State->get<RegionState>(sym)) { 2560 if ((RS->isAllocated() || RS->isAllocatedOfSizeZero()) && 2561 CheckRefState(RS)) { 2562 State = State->remove<RegionState>(sym); 2563 State = State->set<RegionState>(sym, RefState::getEscaped(RS)); 2564 } 2565 } 2566 } 2567 return State; 2568 } 2569 2570 static SymbolRef findFailedReallocSymbol(ProgramStateRef currState, 2571 ProgramStateRef prevState) { 2572 ReallocPairsTy currMap = currState->get<ReallocPairs>(); 2573 ReallocPairsTy prevMap = prevState->get<ReallocPairs>(); 2574 2575 for (ReallocPairsTy::iterator I = prevMap.begin(), E = prevMap.end(); 2576 I != E; ++I) { 2577 SymbolRef sym = I.getKey(); 2578 if (!currMap.lookup(sym)) 2579 return sym; 2580 } 2581 2582 return nullptr; 2583 } 2584 2585 PathDiagnosticPiece * 2586 MallocChecker::MallocBugVisitor::VisitNode(const ExplodedNode *N, 2587 const ExplodedNode *PrevN, 2588 BugReporterContext &BRC, 2589 BugReport &BR) { 2590 ProgramStateRef state = N->getState(); 2591 ProgramStateRef statePrev = PrevN->getState(); 2592 2593 const RefState *RS = state->get<RegionState>(Sym); 2594 const RefState *RSPrev = statePrev->get<RegionState>(Sym); 2595 if (!RS) 2596 return nullptr; 2597 2598 const Stmt *S = nullptr; 2599 const char *Msg = nullptr; 2600 StackHintGeneratorForSymbol *StackHint = nullptr; 2601 2602 // Retrieve the associated statement. 2603 ProgramPoint ProgLoc = N->getLocation(); 2604 if (Optional<StmtPoint> SP = ProgLoc.getAs<StmtPoint>()) { 2605 S = SP->getStmt(); 2606 } else if (Optional<CallExitEnd> Exit = ProgLoc.getAs<CallExitEnd>()) { 2607 S = Exit->getCalleeContext()->getCallSite(); 2608 } else if (Optional<BlockEdge> Edge = ProgLoc.getAs<BlockEdge>()) { 2609 // If an assumption was made on a branch, it should be caught 2610 // here by looking at the state transition. 2611 S = Edge->getSrc()->getTerminator(); 2612 } 2613 2614 if (!S) 2615 return nullptr; 2616 2617 // FIXME: We will eventually need to handle non-statement-based events 2618 // (__attribute__((cleanup))). 2619 2620 // Find out if this is an interesting point and what is the kind. 2621 if (Mode == Normal) { 2622 if (isAllocated(RS, RSPrev, S)) { 2623 Msg = "Memory is allocated"; 2624 StackHint = new StackHintGeneratorForSymbol(Sym, 2625 "Returned allocated memory"); 2626 } else if (isReleased(RS, RSPrev, S)) { 2627 Msg = "Memory is released"; 2628 StackHint = new StackHintGeneratorForSymbol(Sym, 2629 "Returning; memory was released"); 2630 } else if (isRelinquished(RS, RSPrev, S)) { 2631 Msg = "Memory ownership is transferred"; 2632 StackHint = new StackHintGeneratorForSymbol(Sym, ""); 2633 } else if (isReallocFailedCheck(RS, RSPrev, S)) { 2634 Mode = ReallocationFailed; 2635 Msg = "Reallocation failed"; 2636 StackHint = new StackHintGeneratorForReallocationFailed(Sym, 2637 "Reallocation failed"); 2638 2639 if (SymbolRef sym = findFailedReallocSymbol(state, statePrev)) { 2640 // Is it possible to fail two reallocs WITHOUT testing in between? 2641 assert((!FailedReallocSymbol || FailedReallocSymbol == sym) && 2642 "We only support one failed realloc at a time."); 2643 BR.markInteresting(sym); 2644 FailedReallocSymbol = sym; 2645 } 2646 } 2647 2648 // We are in a special mode if a reallocation failed later in the path. 2649 } else if (Mode == ReallocationFailed) { 2650 assert(FailedReallocSymbol && "No symbol to look for."); 2651 2652 // Is this is the first appearance of the reallocated symbol? 2653 if (!statePrev->get<RegionState>(FailedReallocSymbol)) { 2654 // We're at the reallocation point. 2655 Msg = "Attempt to reallocate memory"; 2656 StackHint = new StackHintGeneratorForSymbol(Sym, 2657 "Returned reallocated memory"); 2658 FailedReallocSymbol = nullptr; 2659 Mode = Normal; 2660 } 2661 } 2662 2663 if (!Msg) 2664 return nullptr; 2665 assert(StackHint); 2666 2667 // Generate the extra diagnostic. 2668 PathDiagnosticLocation Pos(S, BRC.getSourceManager(), 2669 N->getLocationContext()); 2670 return new PathDiagnosticEventPiece(Pos, Msg, true, StackHint); 2671 } 2672 2673 void MallocChecker::printState(raw_ostream &Out, ProgramStateRef State, 2674 const char *NL, const char *Sep) const { 2675 2676 RegionStateTy RS = State->get<RegionState>(); 2677 2678 if (!RS.isEmpty()) { 2679 Out << Sep << "MallocChecker :" << NL; 2680 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2681 const RefState *RefS = State->get<RegionState>(I.getKey()); 2682 AllocationFamily Family = RefS->getAllocationFamily(); 2683 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2684 if (!CheckKind.hasValue()) 2685 CheckKind = getCheckIfTracked(Family, true); 2686 2687 I.getKey()->dumpToStream(Out); 2688 Out << " : "; 2689 I.getData().dump(Out); 2690 if (CheckKind.hasValue()) 2691 Out << " (" << CheckNames[*CheckKind].getName() << ")"; 2692 Out << NL; 2693 } 2694 } 2695 } 2696 2697 void ento::registerNewDeleteLeaksChecker(CheckerManager &mgr) { 2698 registerCStringCheckerBasic(mgr); 2699 MallocChecker *checker = mgr.registerChecker<MallocChecker>(); 2700 checker->IsOptimistic = mgr.getAnalyzerOptions().getBooleanOption( 2701 "Optimistic", false, checker); 2702 checker->ChecksEnabled[MallocChecker::CK_NewDeleteLeaksChecker] = true; 2703 checker->CheckNames[MallocChecker::CK_NewDeleteLeaksChecker] = 2704 mgr.getCurrentCheckName(); 2705 // We currently treat NewDeleteLeaks checker as a subchecker of NewDelete 2706 // checker. 2707 if (!checker->ChecksEnabled[MallocChecker::CK_NewDeleteChecker]) 2708 checker->ChecksEnabled[MallocChecker::CK_NewDeleteChecker] = true; 2709 } 2710 2711 #define REGISTER_CHECKER(name) \ 2712 void ento::register##name(CheckerManager &mgr) { \ 2713 registerCStringCheckerBasic(mgr); \ 2714 MallocChecker *checker = mgr.registerChecker<MallocChecker>(); \ 2715 checker->IsOptimistic = mgr.getAnalyzerOptions().getBooleanOption( \ 2716 "Optimistic", false, checker); \ 2717 checker->ChecksEnabled[MallocChecker::CK_##name] = true; \ 2718 checker->CheckNames[MallocChecker::CK_##name] = mgr.getCurrentCheckName(); \ 2719 } 2720 2721 REGISTER_CHECKER(MallocChecker) 2722 REGISTER_CHECKER(NewDeleteChecker) 2723 REGISTER_CHECKER(MismatchedDeallocatorChecker) 2724