1 //=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines a variety of memory management related checkers, such as 11 // leak, double free, and use-after-free. 12 // 13 // The following checkers are defined here: 14 // 15 // * MallocChecker 16 // Despite its name, it models all sorts of memory allocations and 17 // de- or reallocation, including but not limited to malloc, free, 18 // relloc, new, delete. It also reports on a variety of memory misuse 19 // errors. 20 // Many other checkers interact very closely with this checker, in fact, 21 // most are merely options to this one. Other checkers may register 22 // MallocChecker, but do not enable MallocChecker's reports (more details 23 // to follow around its field, ChecksEnabled). 24 // It also has a boolean "Optimistic" checker option, which if set to true 25 // will cause the checker to model user defined memory management related 26 // functions annotated via the attribute ownership_takes, ownership_holds 27 // and ownership_returns. 28 // 29 // * NewDeleteChecker 30 // Enables the modeling of new, new[], delete, delete[] in MallocChecker, 31 // and checks for related double-free and use-after-free errors. 32 // 33 // * NewDeleteLeaksChecker 34 // Checks for leaks related to new, new[], delete, delete[]. 35 // Depends on NewDeleteChecker. 36 // 37 // * MismatchedDeallocatorChecker 38 // Enables checking whether memory is deallocated with the correspending 39 // allocation function in MallocChecker, such as malloc() allocated 40 // regions are only freed by free(), new by delete, new[] by delete[]. 41 // 42 // InnerPointerChecker interacts very closely with MallocChecker, but unlike 43 // the above checkers, it has it's own file, hence the many InnerPointerChecker 44 // related headers and non-static functions. 45 // 46 //===----------------------------------------------------------------------===// 47 48 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" 49 #include "InterCheckerAPI.h" 50 #include "clang/AST/Attr.h" 51 #include "clang/AST/ParentMap.h" 52 #include "clang/Basic/SourceManager.h" 53 #include "clang/Basic/TargetInfo.h" 54 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 55 #include "clang/StaticAnalyzer/Core/BugReporter/CommonBugCategories.h" 56 #include "clang/StaticAnalyzer/Core/Checker.h" 57 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 58 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 59 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 60 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 61 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 62 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" 63 #include "llvm/ADT/STLExtras.h" 64 #include "llvm/ADT/SmallString.h" 65 #include "llvm/ADT/StringExtras.h" 66 #include "AllocationState.h" 67 #include <climits> 68 #include <utility> 69 70 using namespace clang; 71 using namespace ento; 72 73 //===----------------------------------------------------------------------===// 74 // The types of allocation we're modeling. 75 //===----------------------------------------------------------------------===// 76 77 namespace { 78 79 // Used to check correspondence between allocators and deallocators. 80 enum AllocationFamily { 81 AF_None, 82 AF_Malloc, 83 AF_CXXNew, 84 AF_CXXNewArray, 85 AF_IfNameIndex, 86 AF_Alloca, 87 AF_InnerBuffer 88 }; 89 90 struct MemFunctionInfoTy; 91 92 } // end of anonymous namespace 93 94 /// Determine family of a deallocation expression. 95 static AllocationFamily getAllocationFamily( 96 const MemFunctionInfoTy &MemFunctionInfo, CheckerContext &C, const Stmt *S); 97 98 /// Print names of allocators and deallocators. 99 /// 100 /// \returns true on success. 101 static bool printAllocDeallocName(raw_ostream &os, CheckerContext &C, 102 const Expr *E); 103 104 /// Print expected name of an allocator based on the deallocator's 105 /// family derived from the DeallocExpr. 106 static void printExpectedAllocName(raw_ostream &os, 107 const MemFunctionInfoTy &MemFunctionInfo, 108 CheckerContext &C, const Expr *E); 109 110 /// Print expected name of a deallocator based on the allocator's 111 /// family. 112 static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family); 113 114 //===----------------------------------------------------------------------===// 115 // The state of a symbol, in terms of memory management. 116 //===----------------------------------------------------------------------===// 117 118 namespace { 119 120 class RefState { 121 enum Kind { 122 // Reference to allocated memory. 123 Allocated, 124 // Reference to zero-allocated memory. 125 AllocatedOfSizeZero, 126 // Reference to released/freed memory. 127 Released, 128 // The responsibility for freeing resources has transferred from 129 // this reference. A relinquished symbol should not be freed. 130 Relinquished, 131 // We are no longer guaranteed to have observed all manipulations 132 // of this pointer/memory. For example, it could have been 133 // passed as a parameter to an opaque function. 134 Escaped 135 }; 136 137 const Stmt *S; 138 139 Kind K : 3; 140 AllocationFamily Family : 3; 141 142 RefState(Kind k, const Stmt *s, AllocationFamily family) 143 : S(s), K(k), Family(family) { 144 assert(family != AF_None); 145 } 146 public: 147 bool isAllocated() const { return K == Allocated; } 148 bool isAllocatedOfSizeZero() const { return K == AllocatedOfSizeZero; } 149 bool isReleased() const { return K == Released; } 150 bool isRelinquished() const { return K == Relinquished; } 151 bool isEscaped() const { return K == Escaped; } 152 AllocationFamily getAllocationFamily() const { 153 return Family; 154 } 155 const Stmt *getStmt() const { return S; } 156 157 bool operator==(const RefState &X) const { 158 return K == X.K && S == X.S && Family == X.Family; 159 } 160 161 static RefState getAllocated(AllocationFamily family, const Stmt *s) { 162 return RefState(Allocated, s, family); 163 } 164 static RefState getAllocatedOfSizeZero(const RefState *RS) { 165 return RefState(AllocatedOfSizeZero, RS->getStmt(), 166 RS->getAllocationFamily()); 167 } 168 static RefState getReleased(AllocationFamily family, const Stmt *s) { 169 return RefState(Released, s, family); 170 } 171 static RefState getRelinquished(AllocationFamily family, const Stmt *s) { 172 return RefState(Relinquished, s, family); 173 } 174 static RefState getEscaped(const RefState *RS) { 175 return RefState(Escaped, RS->getStmt(), RS->getAllocationFamily()); 176 } 177 178 void Profile(llvm::FoldingSetNodeID &ID) const { 179 ID.AddInteger(K); 180 ID.AddPointer(S); 181 ID.AddInteger(Family); 182 } 183 184 LLVM_DUMP_METHOD void dump(raw_ostream &OS) const { 185 switch (K) { 186 #define CASE(ID) case ID: OS << #ID; break; 187 CASE(Allocated) 188 CASE(AllocatedOfSizeZero) 189 CASE(Released) 190 CASE(Relinquished) 191 CASE(Escaped) 192 } 193 } 194 195 LLVM_DUMP_METHOD void dump() const { dump(llvm::errs()); } 196 }; 197 198 } // end of anonymous namespace 199 200 REGISTER_MAP_WITH_PROGRAMSTATE(RegionState, SymbolRef, RefState) 201 202 /// Check if the memory associated with this symbol was released. 203 static bool isReleased(SymbolRef Sym, CheckerContext &C); 204 205 /// Update the RefState to reflect the new memory allocation. 206 /// The optional \p RetVal parameter specifies the newly allocated pointer 207 /// value; if unspecified, the value of expression \p E is used. 208 static ProgramStateRef 209 MallocUpdateRefState(CheckerContext &C, const Expr *E, ProgramStateRef State, 210 AllocationFamily Family = AF_Malloc, 211 Optional<SVal> RetVal = None); 212 213 //===----------------------------------------------------------------------===// 214 // The modeling of memory reallocation. 215 // 216 // The terminology 'toPtr' and 'fromPtr' will be used: 217 // toPtr = realloc(fromPtr, 20); 218 //===----------------------------------------------------------------------===// 219 220 REGISTER_SET_WITH_PROGRAMSTATE(ReallocSizeZeroSymbols, SymbolRef) 221 222 namespace { 223 224 /// The state of 'fromPtr' after reallocation is known to have failed. 225 enum OwnershipAfterReallocKind { 226 // The symbol needs to be freed (e.g.: realloc) 227 OAR_ToBeFreedAfterFailure, 228 // The symbol has been freed (e.g.: reallocf) 229 OAR_FreeOnFailure, 230 // The symbol doesn't have to freed (e.g.: we aren't sure if, how and where 231 // 'fromPtr' was allocated: 232 // void Haha(int *ptr) { 233 // ptr = realloc(ptr, 67); 234 // // ... 235 // } 236 // ). 237 OAR_DoNotTrackAfterFailure 238 }; 239 240 /// Stores information about the 'fromPtr' symbol after reallocation. 241 /// 242 /// This is important because realloc may fail, and that needs special modeling. 243 /// Whether reallocation failed or not will not be known until later, so we'll 244 /// store whether upon failure 'fromPtr' will be freed, or needs to be freed 245 /// later, etc. 246 struct ReallocPair { 247 248 // The 'fromPtr'. 249 SymbolRef ReallocatedSym; 250 OwnershipAfterReallocKind Kind; 251 252 ReallocPair(SymbolRef S, OwnershipAfterReallocKind K) : 253 ReallocatedSym(S), Kind(K) {} 254 void Profile(llvm::FoldingSetNodeID &ID) const { 255 ID.AddInteger(Kind); 256 ID.AddPointer(ReallocatedSym); 257 } 258 bool operator==(const ReallocPair &X) const { 259 return ReallocatedSym == X.ReallocatedSym && 260 Kind == X.Kind; 261 } 262 }; 263 264 } // end of anonymous namespace 265 266 REGISTER_MAP_WITH_PROGRAMSTATE(ReallocPairs, SymbolRef, ReallocPair) 267 268 //===----------------------------------------------------------------------===// 269 // Kinds of memory operations, information about resource managing functions. 270 //===----------------------------------------------------------------------===// 271 272 namespace { 273 274 enum class MemoryOperationKind { 275 MOK_Allocate, 276 MOK_Free, 277 MOK_Any 278 }; 279 280 struct MemFunctionInfoTy { 281 /// The value of the MallocChecker:Optimistic is stored in this variable. 282 /// 283 /// In pessimistic mode, the checker assumes that it does not know which 284 /// functions might free the memory. 285 /// In optimistic mode, the checker assumes that all user-defined functions 286 /// which might free a pointer are annotated. 287 DefaultBool ShouldIncludeOwnershipAnnotatedFunctions; 288 289 // TODO: Change these to CallDescription, and get rid of lazy initialization. 290 mutable IdentifierInfo *II_alloca = nullptr, *II_win_alloca = nullptr, 291 *II_malloc = nullptr, *II_free = nullptr, 292 *II_realloc = nullptr, *II_calloc = nullptr, 293 *II_valloc = nullptr, *II_reallocf = nullptr, 294 *II_strndup = nullptr, *II_strdup = nullptr, 295 *II_win_strdup = nullptr, *II_kmalloc = nullptr, 296 *II_if_nameindex = nullptr, 297 *II_if_freenameindex = nullptr, *II_wcsdup = nullptr, 298 *II_win_wcsdup = nullptr, *II_g_malloc = nullptr, 299 *II_g_malloc0 = nullptr, *II_g_realloc = nullptr, 300 *II_g_try_malloc = nullptr, 301 *II_g_try_malloc0 = nullptr, 302 *II_g_try_realloc = nullptr, *II_g_free = nullptr, 303 *II_g_memdup = nullptr, *II_g_malloc_n = nullptr, 304 *II_g_malloc0_n = nullptr, *II_g_realloc_n = nullptr, 305 *II_g_try_malloc_n = nullptr, 306 *II_g_try_malloc0_n = nullptr, 307 *II_g_try_realloc_n = nullptr; 308 309 void initIdentifierInfo(ASTContext &C) const; 310 311 ///@{ 312 /// Check if this is one of the functions which can allocate/reallocate 313 /// memory pointed to by one of its arguments. 314 bool isMemFunction(const FunctionDecl *FD, ASTContext &C) const; 315 bool isCMemFunction(const FunctionDecl *FD, 316 ASTContext &C, 317 AllocationFamily Family, 318 MemoryOperationKind MemKind) const; 319 320 /// Tells if the callee is one of the builtin new/delete operators, including 321 /// placement operators and other standard overloads. 322 bool isStandardNewDelete(const FunctionDecl *FD, ASTContext &C) const; 323 ///@} 324 }; 325 326 } // end of anonymous namespace 327 328 //===----------------------------------------------------------------------===// 329 // Definition of the MallocChecker class. 330 //===----------------------------------------------------------------------===// 331 332 namespace { 333 334 class MallocChecker : public Checker<check::DeadSymbols, 335 check::PointerEscape, 336 check::ConstPointerEscape, 337 check::PreStmt<ReturnStmt>, 338 check::EndFunction, 339 check::PreCall, 340 check::PostStmt<CallExpr>, 341 check::PostStmt<CXXNewExpr>, 342 check::NewAllocator, 343 check::PreStmt<CXXDeleteExpr>, 344 check::PostStmt<BlockExpr>, 345 check::PostObjCMessage, 346 check::Location, 347 eval::Assume> { 348 public: 349 MemFunctionInfoTy MemFunctionInfo; 350 351 /// Many checkers are essentially built into this one, so enabling them will 352 /// make MallocChecker perform additional modeling and reporting. 353 enum CheckKind { 354 /// When a subchecker is enabled but MallocChecker isn't, model memory 355 /// management but do not emit warnings emitted with MallocChecker only 356 /// enabled. 357 CK_MallocChecker, 358 CK_NewDeleteChecker, 359 CK_NewDeleteLeaksChecker, 360 CK_MismatchedDeallocatorChecker, 361 CK_InnerPointerChecker, 362 CK_NumCheckKinds 363 }; 364 365 using LeakInfo = std::pair<const ExplodedNode*, const MemRegion*>; 366 367 DefaultBool ChecksEnabled[CK_NumCheckKinds]; 368 CheckName CheckNames[CK_NumCheckKinds]; 369 370 void checkPreCall(const CallEvent &Call, CheckerContext &C) const; 371 void checkPostStmt(const CallExpr *CE, CheckerContext &C) const; 372 void checkPostStmt(const CXXNewExpr *NE, CheckerContext &C) const; 373 void checkNewAllocator(const CXXNewExpr *NE, SVal Target, 374 CheckerContext &C) const; 375 void checkPreStmt(const CXXDeleteExpr *DE, CheckerContext &C) const; 376 void checkPostObjCMessage(const ObjCMethodCall &Call, CheckerContext &C) const; 377 void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const; 378 void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const; 379 void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const; 380 void checkEndFunction(const ReturnStmt *S, CheckerContext &C) const; 381 ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond, 382 bool Assumption) const; 383 void checkLocation(SVal l, bool isLoad, const Stmt *S, 384 CheckerContext &C) const; 385 386 ProgramStateRef checkPointerEscape(ProgramStateRef State, 387 const InvalidatedSymbols &Escaped, 388 const CallEvent *Call, 389 PointerEscapeKind Kind) const; 390 ProgramStateRef checkConstPointerEscape(ProgramStateRef State, 391 const InvalidatedSymbols &Escaped, 392 const CallEvent *Call, 393 PointerEscapeKind Kind) const; 394 395 void printState(raw_ostream &Out, ProgramStateRef State, 396 const char *NL, const char *Sep) const override; 397 398 private: 399 mutable std::unique_ptr<BugType> BT_DoubleFree[CK_NumCheckKinds]; 400 mutable std::unique_ptr<BugType> BT_DoubleDelete; 401 mutable std::unique_ptr<BugType> BT_Leak[CK_NumCheckKinds]; 402 mutable std::unique_ptr<BugType> BT_UseFree[CK_NumCheckKinds]; 403 mutable std::unique_ptr<BugType> BT_BadFree[CK_NumCheckKinds]; 404 mutable std::unique_ptr<BugType> BT_FreeAlloca[CK_NumCheckKinds]; 405 mutable std::unique_ptr<BugType> BT_MismatchedDealloc; 406 mutable std::unique_ptr<BugType> BT_OffsetFree[CK_NumCheckKinds]; 407 mutable std::unique_ptr<BugType> BT_UseZerroAllocated[CK_NumCheckKinds]; 408 409 // TODO: Remove mutable by moving the initializtaion to the registry function. 410 mutable Optional<uint64_t> KernelZeroFlagVal; 411 412 /// Process C++ operator new()'s allocation, which is the part of C++ 413 /// new-expression that goes before the constructor. 414 void processNewAllocation(const CXXNewExpr *NE, CheckerContext &C, 415 SVal Target) const; 416 417 /// Perform a zero-allocation check. 418 /// 419 /// \param [in] E The expression that allocates memory. 420 /// \param [in] IndexOfSizeArg Index of the argument that specifies the size 421 /// of the memory that needs to be allocated. E.g. for malloc, this would be 422 /// 0. 423 /// \param [in] RetVal Specifies the newly allocated pointer value; 424 /// if unspecified, the value of expression \p E is used. 425 static ProgramStateRef ProcessZeroAllocCheck(CheckerContext &C, const Expr *E, 426 const unsigned IndexOfSizeArg, 427 ProgramStateRef State, 428 Optional<SVal> RetVal = None); 429 430 /// Model functions with the ownership_returns attribute. 431 /// 432 /// User-defined function may have the ownership_returns attribute, which 433 /// annotates that the function returns with an object that was allocated on 434 /// the heap, and passes the ownertship to the callee. 435 /// 436 /// void __attribute((ownership_returns(malloc, 1))) *my_malloc(size_t); 437 /// 438 /// It has two parameters: 439 /// - first: name of the resource (e.g. 'malloc') 440 /// - (OPTIONAL) second: size of the allocated region 441 /// 442 /// \param [in] CE The expression that allocates memory. 443 /// \param [in] Att The ownership_returns attribute. 444 /// \param [in] State The \c ProgramState right before allocation. 445 /// \returns The ProgramState right after allocation. 446 ProgramStateRef MallocMemReturnsAttr(CheckerContext &C, 447 const CallExpr *CE, 448 const OwnershipAttr* Att, 449 ProgramStateRef State) const; 450 451 /// Models memory allocation. 452 /// 453 /// \param [in] CE The expression that allocates memory. 454 /// \param [in] SizeEx Size of the memory that needs to be allocated. 455 /// \param [in] Init The value the allocated memory needs to be initialized. 456 /// with. For example, \c calloc initializes the allocated memory to 0, 457 /// malloc leaves it undefined. 458 /// \param [in] State The \c ProgramState right before allocation. 459 /// \returns The ProgramState right after allocation. 460 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE, 461 const Expr *SizeEx, SVal Init, 462 ProgramStateRef State, 463 AllocationFamily Family = AF_Malloc); 464 465 /// Models memory allocation. 466 /// 467 /// \param [in] CE The expression that allocates memory. 468 /// \param [in] Size Size of the memory that needs to be allocated. 469 /// \param [in] Init The value the allocated memory needs to be initialized. 470 /// with. For example, \c calloc initializes the allocated memory to 0, 471 /// malloc leaves it undefined. 472 /// \param [in] State The \c ProgramState right before allocation. 473 /// \returns The ProgramState right after allocation. 474 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE, 475 SVal Size, SVal Init, 476 ProgramStateRef State, 477 AllocationFamily Family = AF_Malloc); 478 479 static ProgramStateRef addExtentSize(CheckerContext &C, const CXXNewExpr *NE, 480 ProgramStateRef State, SVal Target); 481 482 // Check if this malloc() for special flags. At present that means M_ZERO or 483 // __GFP_ZERO (in which case, treat it like calloc). 484 llvm::Optional<ProgramStateRef> 485 performKernelMalloc(const CallExpr *CE, CheckerContext &C, 486 const ProgramStateRef &State) const; 487 488 /// Model functions with the ownership_takes and ownership_holds attributes. 489 /// 490 /// User-defined function may have the ownership_takes and/or ownership_holds 491 /// attributes, which annotates that the function frees the memory passed as a 492 /// parameter. 493 /// 494 /// void __attribute((ownership_takes(malloc, 1))) my_free(void *); 495 /// void __attribute((ownership_holds(malloc, 1))) my_hold(void *); 496 /// 497 /// They have two parameters: 498 /// - first: name of the resource (e.g. 'malloc') 499 /// - second: index of the parameter the attribute applies to 500 /// 501 /// \param [in] CE The expression that frees memory. 502 /// \param [in] Att The ownership_takes or ownership_holds attribute. 503 /// \param [in] State The \c ProgramState right before allocation. 504 /// \returns The ProgramState right after deallocation. 505 ProgramStateRef FreeMemAttr(CheckerContext &C, const CallExpr *CE, 506 const OwnershipAttr* Att, 507 ProgramStateRef State) const; 508 509 /// Models memory deallocation. 510 /// 511 /// \param [in] CE The expression that frees memory. 512 /// \param [in] State The \c ProgramState right before allocation. 513 /// \param [in] Num Index of the argument that needs to be freed. This is 514 /// normally 0, but for custom free functions it may be different. 515 /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds 516 /// attribute. 517 /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known 518 /// to have been allocated, or in other words, the symbol to be freed was 519 /// registered as allocated by this checker. In the following case, \c ptr 520 /// isn't known to be allocated. 521 /// void Haha(int *ptr) { 522 /// ptr = realloc(ptr, 67); 523 /// // ... 524 /// } 525 /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function 526 /// we're modeling returns with Null on failure. 527 /// \returns The ProgramState right after deallocation. 528 ProgramStateRef FreeMemAux(CheckerContext &C, const CallExpr *CE, 529 ProgramStateRef State, unsigned Num, 530 bool Hold, 531 bool &IsKnownToBeAllocated, 532 bool ReturnsNullOnFailure = false) const; 533 534 /// Models memory deallocation. 535 /// 536 /// \param [in] ArgExpr The variable who's pointee needs to be freed. 537 /// \param [in] ParentExpr The expression that frees the memory. 538 /// \param [in] State The \c ProgramState right before allocation. 539 /// normally 0, but for custom free functions it may be different. 540 /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds 541 /// attribute. 542 /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known 543 /// to have been allocated, or in other words, the symbol to be freed was 544 /// registered as allocated by this checker. In the following case, \c ptr 545 /// isn't known to be allocated. 546 /// void Haha(int *ptr) { 547 /// ptr = realloc(ptr, 67); 548 /// // ... 549 /// } 550 /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function 551 /// we're modeling returns with Null on failure. 552 /// \returns The ProgramState right after deallocation. 553 ProgramStateRef FreeMemAux(CheckerContext &C, const Expr *ArgExpr, 554 const Expr *ParentExpr, 555 ProgramStateRef State, 556 bool Hold, 557 bool &IsKnownToBeAllocated, 558 bool ReturnsNullOnFailure = false) const; 559 560 // TODO: Needs some refactoring, as all other deallocation modeling 561 // functions are suffering from out parameters and messy code due to how 562 // realloc is handled. 563 // 564 /// Models memory reallocation. 565 /// 566 /// \param [in] CE The expression that reallocated memory 567 /// \param [in] FreesMemOnFailure Whether if reallocation fails, the supplied 568 /// memory should be freed. 569 /// \param [in] State The \c ProgramState right before reallocation. 570 /// \param [in] SuffixWithN Whether the reallocation function we're modeling 571 /// has an '_n' suffix, such as g_realloc_n. 572 /// \returns The ProgramState right after reallocation. 573 ProgramStateRef ReallocMemAux(CheckerContext &C, const CallExpr *CE, 574 bool ShouldFreeOnFail, 575 ProgramStateRef State, 576 bool SuffixWithN = false) const; 577 578 /// Evaluates the buffer size that needs to be allocated. 579 /// 580 /// \param [in] Blocks The amount of blocks that needs to be allocated. 581 /// \param [in] BlockBytes The size of a block. 582 /// \returns The symbolic value of \p Blocks * \p BlockBytes. 583 static SVal evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, 584 const Expr *BlockBytes); 585 586 /// Models zero initialized array allocation. 587 /// 588 /// \param [in] CE The expression that reallocated memory 589 /// \param [in] State The \c ProgramState right before reallocation. 590 /// \returns The ProgramState right after allocation. 591 static ProgramStateRef CallocMem(CheckerContext &C, const CallExpr *CE, 592 ProgramStateRef State); 593 594 /// If in \p S \p Sym is used, check whether \p Sym was already freed. 595 bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S) const; 596 597 /// If in \p S \p Sym is used, check whether \p Sym was allocated as a zero 598 /// sized memory region. 599 void checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 600 const Stmt *S) const; 601 602 /// If in \p S \p Sym is being freed, check whether \p Sym was already freed. 603 bool checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const; 604 605 /// Check if the function is known to free memory, or if it is 606 /// "interesting" and should be modeled explicitly. 607 /// 608 /// \param [out] EscapingSymbol A function might not free memory in general, 609 /// but could be known to free a particular symbol. In this case, false is 610 /// returned and the single escaping symbol is returned through the out 611 /// parameter. 612 /// 613 /// We assume that pointers do not escape through calls to system functions 614 /// not handled by this checker. 615 bool mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent *Call, 616 ProgramStateRef State, 617 SymbolRef &EscapingSymbol) const; 618 619 /// Implementation of the checkPointerEscape callbacks. 620 ProgramStateRef checkPointerEscapeAux(ProgramStateRef State, 621 const InvalidatedSymbols &Escaped, 622 const CallEvent *Call, 623 PointerEscapeKind Kind, 624 bool IsConstPointerEscape) const; 625 626 // Implementation of the checkPreStmt and checkEndFunction callbacks. 627 void checkEscapeOnReturn(const ReturnStmt *S, CheckerContext &C) const; 628 629 ///@{ 630 /// Tells if a given family/call/symbol is tracked by the current checker. 631 /// Sets CheckKind to the kind of the checker responsible for this 632 /// family/call/symbol. 633 Optional<CheckKind> getCheckIfTracked(AllocationFamily Family, 634 bool IsALeakCheck = false) const; 635 Optional<CheckKind> getCheckIfTracked(CheckerContext &C, 636 const Stmt *AllocDeallocStmt, 637 bool IsALeakCheck = false) const; 638 Optional<CheckKind> getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 639 bool IsALeakCheck = false) const; 640 ///@} 641 static bool SummarizeValue(raw_ostream &os, SVal V); 642 static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR); 643 644 void ReportBadFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 645 const Expr *DeallocExpr) const; 646 void ReportFreeAlloca(CheckerContext &C, SVal ArgVal, 647 SourceRange Range) const; 648 void ReportMismatchedDealloc(CheckerContext &C, SourceRange Range, 649 const Expr *DeallocExpr, const RefState *RS, 650 SymbolRef Sym, bool OwnershipTransferred) const; 651 void ReportOffsetFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 652 const Expr *DeallocExpr, 653 const Expr *AllocExpr = nullptr) const; 654 void ReportUseAfterFree(CheckerContext &C, SourceRange Range, 655 SymbolRef Sym) const; 656 void ReportDoubleFree(CheckerContext &C, SourceRange Range, bool Released, 657 SymbolRef Sym, SymbolRef PrevSym) const; 658 659 void ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const; 660 661 void ReportUseZeroAllocated(CheckerContext &C, SourceRange Range, 662 SymbolRef Sym) const; 663 664 void ReportFunctionPointerFree(CheckerContext &C, SVal ArgVal, 665 SourceRange Range, const Expr *FreeExpr) const; 666 667 /// Find the location of the allocation for Sym on the path leading to the 668 /// exploded node N. 669 static LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym, 670 CheckerContext &C); 671 672 673 void reportLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const; 674 }; 675 676 } // end anonymous namespace 677 678 //===----------------------------------------------------------------------===// 679 // Definition of MallocBugVisitor. 680 //===----------------------------------------------------------------------===// 681 682 /// The bug visitor which allows us to print extra diagnostics along the 683 /// BugReport path. For example, showing the allocation site of the leaked 684 /// region. 685 class MallocBugVisitor final : public BugReporterVisitor { 686 protected: 687 enum NotificationMode { 688 Normal, 689 ReallocationFailed 690 }; 691 692 // The allocated region symbol tracked by the main analysis. 693 SymbolRef Sym; 694 695 // The mode we are in, i.e. what kind of diagnostics will be emitted. 696 NotificationMode Mode; 697 698 // A symbol from when the primary region should have been reallocated. 699 SymbolRef FailedReallocSymbol; 700 701 // A C++ destructor stack frame in which memory was released. Used for 702 // miscellaneous false positive suppression. 703 const StackFrameContext *ReleaseDestructorLC; 704 705 bool IsLeak; 706 707 public: 708 MallocBugVisitor(SymbolRef S, bool isLeak = false) 709 : Sym(S), Mode(Normal), FailedReallocSymbol(nullptr), 710 ReleaseDestructorLC(nullptr), IsLeak(isLeak) {} 711 712 static void *getTag() { 713 static int Tag = 0; 714 return &Tag; 715 } 716 717 void Profile(llvm::FoldingSetNodeID &ID) const override { 718 ID.AddPointer(getTag()); 719 ID.AddPointer(Sym); 720 } 721 722 /// Did not track -> allocated. Other state (released) -> allocated. 723 static inline bool isAllocated(const RefState *RSCurr, const RefState *RSPrev, 724 const Stmt *Stmt) { 725 return (Stmt && (isa<CallExpr>(Stmt) || isa<CXXNewExpr>(Stmt)) && 726 (RSCurr && (RSCurr->isAllocated() || 727 RSCurr->isAllocatedOfSizeZero())) && 728 (!RSPrev || !(RSPrev->isAllocated() || 729 RSPrev->isAllocatedOfSizeZero()))); 730 } 731 732 /// Did not track -> released. Other state (allocated) -> released. 733 /// The statement associated with the release might be missing. 734 static inline bool isReleased(const RefState *RSCurr, const RefState *RSPrev, 735 const Stmt *Stmt) { 736 bool IsReleased = (RSCurr && RSCurr->isReleased()) && 737 (!RSPrev || !RSPrev->isReleased()); 738 assert(!IsReleased || 739 (Stmt && (isa<CallExpr>(Stmt) || isa<CXXDeleteExpr>(Stmt))) || 740 (!Stmt && RSCurr->getAllocationFamily() == AF_InnerBuffer)); 741 return IsReleased; 742 } 743 744 /// Did not track -> relinquished. Other state (allocated) -> relinquished. 745 static inline bool isRelinquished(const RefState *RSCurr, 746 const RefState *RSPrev, 747 const Stmt *Stmt) { 748 return (Stmt && (isa<CallExpr>(Stmt) || isa<ObjCMessageExpr>(Stmt) || 749 isa<ObjCPropertyRefExpr>(Stmt)) && 750 (RSCurr && RSCurr->isRelinquished()) && 751 (!RSPrev || !RSPrev->isRelinquished())); 752 } 753 754 /// If the expression is not a call, and the state change is 755 /// released -> allocated, it must be the realloc return value 756 /// check. If we have to handle more cases here, it might be cleaner just 757 /// to track this extra bit in the state itself. 758 static inline bool hasReallocFailed(const RefState *RSCurr, 759 const RefState *RSPrev, 760 const Stmt *Stmt) { 761 return ((!Stmt || !isa<CallExpr>(Stmt)) && 762 (RSCurr && (RSCurr->isAllocated() || 763 RSCurr->isAllocatedOfSizeZero())) && 764 (RSPrev && !(RSPrev->isAllocated() || 765 RSPrev->isAllocatedOfSizeZero()))); 766 } 767 768 std::shared_ptr<PathDiagnosticPiece> VisitNode(const ExplodedNode *N, 769 BugReporterContext &BRC, 770 BugReport &BR) override; 771 772 std::shared_ptr<PathDiagnosticPiece> 773 getEndPath(BugReporterContext &BRC, const ExplodedNode *EndPathNode, 774 BugReport &BR) override { 775 if (!IsLeak) 776 return nullptr; 777 778 PathDiagnosticLocation L = 779 PathDiagnosticLocation::createEndOfPath(EndPathNode, 780 BRC.getSourceManager()); 781 // Do not add the statement itself as a range in case of leak. 782 return std::make_shared<PathDiagnosticEventPiece>(L, BR.getDescription(), 783 false); 784 } 785 786 private: 787 class StackHintGeneratorForReallocationFailed 788 : public StackHintGeneratorForSymbol { 789 public: 790 StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M) 791 : StackHintGeneratorForSymbol(S, M) {} 792 793 std::string getMessageForArg(const Expr *ArgE, 794 unsigned ArgIndex) override { 795 // Printed parameters start at 1, not 0. 796 ++ArgIndex; 797 798 SmallString<200> buf; 799 llvm::raw_svector_ostream os(buf); 800 801 os << "Reallocation of " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex) 802 << " parameter failed"; 803 804 return os.str(); 805 } 806 807 std::string getMessageForReturn(const CallExpr *CallExpr) override { 808 return "Reallocation of returned value failed"; 809 } 810 }; 811 }; 812 813 // A map from the freed symbol to the symbol representing the return value of 814 // the free function. 815 REGISTER_MAP_WITH_PROGRAMSTATE(FreeReturnValue, SymbolRef, SymbolRef) 816 817 namespace { 818 class StopTrackingCallback final : public SymbolVisitor { 819 ProgramStateRef state; 820 public: 821 StopTrackingCallback(ProgramStateRef st) : state(std::move(st)) {} 822 ProgramStateRef getState() const { return state; } 823 824 bool VisitSymbol(SymbolRef sym) override { 825 state = state->remove<RegionState>(sym); 826 return true; 827 } 828 }; 829 } // end anonymous namespace 830 831 //===----------------------------------------------------------------------===// 832 // Methods of MemFunctionInfoTy. 833 //===----------------------------------------------------------------------===// 834 835 void MemFunctionInfoTy::initIdentifierInfo(ASTContext &Ctx) const { 836 if (II_malloc) 837 return; 838 II_alloca = &Ctx.Idents.get("alloca"); 839 II_malloc = &Ctx.Idents.get("malloc"); 840 II_free = &Ctx.Idents.get("free"); 841 II_realloc = &Ctx.Idents.get("realloc"); 842 II_reallocf = &Ctx.Idents.get("reallocf"); 843 II_calloc = &Ctx.Idents.get("calloc"); 844 II_valloc = &Ctx.Idents.get("valloc"); 845 II_strdup = &Ctx.Idents.get("strdup"); 846 II_strndup = &Ctx.Idents.get("strndup"); 847 II_wcsdup = &Ctx.Idents.get("wcsdup"); 848 II_kmalloc = &Ctx.Idents.get("kmalloc"); 849 II_if_nameindex = &Ctx.Idents.get("if_nameindex"); 850 II_if_freenameindex = &Ctx.Idents.get("if_freenameindex"); 851 852 //MSVC uses `_`-prefixed instead, so we check for them too. 853 II_win_strdup = &Ctx.Idents.get("_strdup"); 854 II_win_wcsdup = &Ctx.Idents.get("_wcsdup"); 855 II_win_alloca = &Ctx.Idents.get("_alloca"); 856 857 // Glib 858 II_g_malloc = &Ctx.Idents.get("g_malloc"); 859 II_g_malloc0 = &Ctx.Idents.get("g_malloc0"); 860 II_g_realloc = &Ctx.Idents.get("g_realloc"); 861 II_g_try_malloc = &Ctx.Idents.get("g_try_malloc"); 862 II_g_try_malloc0 = &Ctx.Idents.get("g_try_malloc0"); 863 II_g_try_realloc = &Ctx.Idents.get("g_try_realloc"); 864 II_g_free = &Ctx.Idents.get("g_free"); 865 II_g_memdup = &Ctx.Idents.get("g_memdup"); 866 II_g_malloc_n = &Ctx.Idents.get("g_malloc_n"); 867 II_g_malloc0_n = &Ctx.Idents.get("g_malloc0_n"); 868 II_g_realloc_n = &Ctx.Idents.get("g_realloc_n"); 869 II_g_try_malloc_n = &Ctx.Idents.get("g_try_malloc_n"); 870 II_g_try_malloc0_n = &Ctx.Idents.get("g_try_malloc0_n"); 871 II_g_try_realloc_n = &Ctx.Idents.get("g_try_realloc_n"); 872 } 873 874 bool MemFunctionInfoTy::isMemFunction(const FunctionDecl *FD, 875 ASTContext &C) const { 876 if (isCMemFunction(FD, C, AF_Malloc, MemoryOperationKind::MOK_Any)) 877 return true; 878 879 if (isCMemFunction(FD, C, AF_IfNameIndex, MemoryOperationKind::MOK_Any)) 880 return true; 881 882 if (isCMemFunction(FD, C, AF_Alloca, MemoryOperationKind::MOK_Any)) 883 return true; 884 885 if (isStandardNewDelete(FD, C)) 886 return true; 887 888 return false; 889 } 890 891 bool MemFunctionInfoTy::isCMemFunction(const FunctionDecl *FD, 892 ASTContext &C, 893 AllocationFamily Family, 894 MemoryOperationKind MemKind) const { 895 if (!FD) 896 return false; 897 898 bool CheckFree = (MemKind == MemoryOperationKind::MOK_Any || 899 MemKind == MemoryOperationKind::MOK_Free); 900 bool CheckAlloc = (MemKind == MemoryOperationKind::MOK_Any || 901 MemKind == MemoryOperationKind::MOK_Allocate); 902 903 if (FD->getKind() == Decl::Function) { 904 const IdentifierInfo *FunI = FD->getIdentifier(); 905 initIdentifierInfo(C); 906 907 if (Family == AF_Malloc && CheckFree) { 908 if (FunI == II_free || FunI == II_realloc || FunI == II_reallocf || 909 FunI == II_g_free) 910 return true; 911 } 912 913 if (Family == AF_Malloc && CheckAlloc) { 914 if (FunI == II_malloc || FunI == II_realloc || FunI == II_reallocf || 915 FunI == II_calloc || FunI == II_valloc || FunI == II_strdup || 916 FunI == II_win_strdup || FunI == II_strndup || FunI == II_wcsdup || 917 FunI == II_win_wcsdup || FunI == II_kmalloc || 918 FunI == II_g_malloc || FunI == II_g_malloc0 || 919 FunI == II_g_realloc || FunI == II_g_try_malloc || 920 FunI == II_g_try_malloc0 || FunI == II_g_try_realloc || 921 FunI == II_g_memdup || FunI == II_g_malloc_n || 922 FunI == II_g_malloc0_n || FunI == II_g_realloc_n || 923 FunI == II_g_try_malloc_n || FunI == II_g_try_malloc0_n || 924 FunI == II_g_try_realloc_n) 925 return true; 926 } 927 928 if (Family == AF_IfNameIndex && CheckFree) { 929 if (FunI == II_if_freenameindex) 930 return true; 931 } 932 933 if (Family == AF_IfNameIndex && CheckAlloc) { 934 if (FunI == II_if_nameindex) 935 return true; 936 } 937 938 if (Family == AF_Alloca && CheckAlloc) { 939 if (FunI == II_alloca || FunI == II_win_alloca) 940 return true; 941 } 942 } 943 944 if (Family != AF_Malloc) 945 return false; 946 947 if (ShouldIncludeOwnershipAnnotatedFunctions && FD->hasAttrs()) { 948 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { 949 OwnershipAttr::OwnershipKind OwnKind = I->getOwnKind(); 950 if(OwnKind == OwnershipAttr::Takes || OwnKind == OwnershipAttr::Holds) { 951 if (CheckFree) 952 return true; 953 } else if (OwnKind == OwnershipAttr::Returns) { 954 if (CheckAlloc) 955 return true; 956 } 957 } 958 } 959 960 return false; 961 } 962 bool MemFunctionInfoTy::isStandardNewDelete(const FunctionDecl *FD, 963 ASTContext &C) const { 964 if (!FD) 965 return false; 966 967 OverloadedOperatorKind Kind = FD->getOverloadedOperator(); 968 if (Kind != OO_New && Kind != OO_Array_New && 969 Kind != OO_Delete && Kind != OO_Array_Delete) 970 return false; 971 972 // This is standard if and only if it's not defined in a user file. 973 SourceLocation L = FD->getLocation(); 974 // If the header for operator delete is not included, it's still defined 975 // in an invalid source location. Check to make sure we don't crash. 976 return !L.isValid() || C.getSourceManager().isInSystemHeader(L); 977 } 978 979 //===----------------------------------------------------------------------===// 980 // Methods of MallocChecker and MallocBugVisitor. 981 //===----------------------------------------------------------------------===// 982 983 llvm::Optional<ProgramStateRef> MallocChecker::performKernelMalloc( 984 const CallExpr *CE, CheckerContext &C, const ProgramStateRef &State) const { 985 // 3-argument malloc(), as commonly used in {Free,Net,Open}BSD Kernels: 986 // 987 // void *malloc(unsigned long size, struct malloc_type *mtp, int flags); 988 // 989 // One of the possible flags is M_ZERO, which means 'give me back an 990 // allocation which is already zeroed', like calloc. 991 992 // 2-argument kmalloc(), as used in the Linux kernel: 993 // 994 // void *kmalloc(size_t size, gfp_t flags); 995 // 996 // Has the similar flag value __GFP_ZERO. 997 998 // This logic is largely cloned from O_CREAT in UnixAPIChecker, maybe some 999 // code could be shared. 1000 1001 ASTContext &Ctx = C.getASTContext(); 1002 llvm::Triple::OSType OS = Ctx.getTargetInfo().getTriple().getOS(); 1003 1004 if (!KernelZeroFlagVal.hasValue()) { 1005 if (OS == llvm::Triple::FreeBSD) 1006 KernelZeroFlagVal = 0x0100; 1007 else if (OS == llvm::Triple::NetBSD) 1008 KernelZeroFlagVal = 0x0002; 1009 else if (OS == llvm::Triple::OpenBSD) 1010 KernelZeroFlagVal = 0x0008; 1011 else if (OS == llvm::Triple::Linux) 1012 // __GFP_ZERO 1013 KernelZeroFlagVal = 0x8000; 1014 else 1015 // FIXME: We need a more general way of getting the M_ZERO value. 1016 // See also: O_CREAT in UnixAPIChecker.cpp. 1017 1018 // Fall back to normal malloc behavior on platforms where we don't 1019 // know M_ZERO. 1020 return None; 1021 } 1022 1023 // We treat the last argument as the flags argument, and callers fall-back to 1024 // normal malloc on a None return. This works for the FreeBSD kernel malloc 1025 // as well as Linux kmalloc. 1026 if (CE->getNumArgs() < 2) 1027 return None; 1028 1029 const Expr *FlagsEx = CE->getArg(CE->getNumArgs() - 1); 1030 const SVal V = C.getSVal(FlagsEx); 1031 if (!V.getAs<NonLoc>()) { 1032 // The case where 'V' can be a location can only be due to a bad header, 1033 // so in this case bail out. 1034 return None; 1035 } 1036 1037 NonLoc Flags = V.castAs<NonLoc>(); 1038 NonLoc ZeroFlag = C.getSValBuilder() 1039 .makeIntVal(KernelZeroFlagVal.getValue(), FlagsEx->getType()) 1040 .castAs<NonLoc>(); 1041 SVal MaskedFlagsUC = C.getSValBuilder().evalBinOpNN(State, BO_And, 1042 Flags, ZeroFlag, 1043 FlagsEx->getType()); 1044 if (MaskedFlagsUC.isUnknownOrUndef()) 1045 return None; 1046 DefinedSVal MaskedFlags = MaskedFlagsUC.castAs<DefinedSVal>(); 1047 1048 // Check if maskedFlags is non-zero. 1049 ProgramStateRef TrueState, FalseState; 1050 std::tie(TrueState, FalseState) = State->assume(MaskedFlags); 1051 1052 // If M_ZERO is set, treat this like calloc (initialized). 1053 if (TrueState && !FalseState) { 1054 SVal ZeroVal = C.getSValBuilder().makeZeroVal(Ctx.CharTy); 1055 return MallocMemAux(C, CE, CE->getArg(0), ZeroVal, TrueState); 1056 } 1057 1058 return None; 1059 } 1060 1061 SVal MallocChecker::evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, 1062 const Expr *BlockBytes) { 1063 SValBuilder &SB = C.getSValBuilder(); 1064 SVal BlocksVal = C.getSVal(Blocks); 1065 SVal BlockBytesVal = C.getSVal(BlockBytes); 1066 ProgramStateRef State = C.getState(); 1067 SVal TotalSize = SB.evalBinOp(State, BO_Mul, BlocksVal, BlockBytesVal, 1068 SB.getContext().getSizeType()); 1069 return TotalSize; 1070 } 1071 1072 void MallocChecker::checkPostStmt(const CallExpr *CE, CheckerContext &C) const { 1073 if (C.wasInlined) 1074 return; 1075 1076 const FunctionDecl *FD = C.getCalleeDecl(CE); 1077 if (!FD) 1078 return; 1079 1080 ProgramStateRef State = C.getState(); 1081 bool IsKnownToBeAllocatedMemory = false; 1082 1083 if (FD->getKind() == Decl::Function) { 1084 MemFunctionInfo.initIdentifierInfo(C.getASTContext()); 1085 IdentifierInfo *FunI = FD->getIdentifier(); 1086 1087 if (FunI == MemFunctionInfo.II_malloc || 1088 FunI == MemFunctionInfo.II_g_malloc || 1089 FunI == MemFunctionInfo.II_g_try_malloc) { 1090 switch(CE->getNumArgs()) { 1091 default: 1092 return; 1093 case 1: 1094 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 1095 State = ProcessZeroAllocCheck(C, CE, 0, State); 1096 break; 1097 case 2: 1098 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 1099 break; 1100 case 3: 1101 llvm::Optional<ProgramStateRef> MaybeState = 1102 performKernelMalloc(CE, C, State); 1103 if (MaybeState.hasValue()) 1104 State = MaybeState.getValue(); 1105 else 1106 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 1107 break; 1108 } 1109 } else if (FunI == MemFunctionInfo.II_kmalloc) { 1110 if (CE->getNumArgs() < 1) 1111 return; 1112 llvm::Optional<ProgramStateRef> MaybeState = 1113 performKernelMalloc(CE, C, State); 1114 if (MaybeState.hasValue()) 1115 State = MaybeState.getValue(); 1116 else 1117 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 1118 } else if (FunI == MemFunctionInfo.II_valloc) { 1119 if (CE->getNumArgs() < 1) 1120 return; 1121 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 1122 State = ProcessZeroAllocCheck(C, CE, 0, State); 1123 } else if (FunI == MemFunctionInfo.II_realloc || 1124 FunI == MemFunctionInfo.II_g_realloc || 1125 FunI == MemFunctionInfo.II_g_try_realloc) { 1126 State = ReallocMemAux(C, CE, /*ShouldFreeOnFail*/false, State); 1127 State = ProcessZeroAllocCheck(C, CE, 1, State); 1128 } else if (FunI == MemFunctionInfo.II_reallocf) { 1129 State = ReallocMemAux(C, CE, /*ShouldFreeOnFail*/true, State); 1130 State = ProcessZeroAllocCheck(C, CE, 1, State); 1131 } else if (FunI == MemFunctionInfo.II_calloc) { 1132 State = CallocMem(C, CE, State); 1133 State = ProcessZeroAllocCheck(C, CE, 0, State); 1134 State = ProcessZeroAllocCheck(C, CE, 1, State); 1135 } else if (FunI == MemFunctionInfo.II_free || 1136 FunI == MemFunctionInfo.II_g_free) { 1137 State = FreeMemAux(C, CE, State, 0, false, IsKnownToBeAllocatedMemory); 1138 } else if (FunI == MemFunctionInfo.II_strdup || 1139 FunI == MemFunctionInfo.II_win_strdup || 1140 FunI == MemFunctionInfo.II_wcsdup || 1141 FunI == MemFunctionInfo.II_win_wcsdup) { 1142 State = MallocUpdateRefState(C, CE, State); 1143 } else if (FunI == MemFunctionInfo.II_strndup) { 1144 State = MallocUpdateRefState(C, CE, State); 1145 } else if (FunI == MemFunctionInfo.II_alloca || 1146 FunI == MemFunctionInfo.II_win_alloca) { 1147 if (CE->getNumArgs() < 1) 1148 return; 1149 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, 1150 AF_Alloca); 1151 State = ProcessZeroAllocCheck(C, CE, 0, State); 1152 } else if (MemFunctionInfo.isStandardNewDelete(FD, C.getASTContext())) { 1153 // Process direct calls to operator new/new[]/delete/delete[] functions 1154 // as distinct from new/new[]/delete/delete[] expressions that are 1155 // processed by the checkPostStmt callbacks for CXXNewExpr and 1156 // CXXDeleteExpr. 1157 switch(FD->getOverloadedOperator()) { 1158 case OO_New: 1159 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, 1160 AF_CXXNew); 1161 State = ProcessZeroAllocCheck(C, CE, 0, State); 1162 break; 1163 case OO_Array_New: 1164 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, 1165 AF_CXXNewArray); 1166 State = ProcessZeroAllocCheck(C, CE, 0, State); 1167 break; 1168 case OO_Delete: 1169 case OO_Array_Delete: 1170 State = FreeMemAux(C, CE, State, 0, false, IsKnownToBeAllocatedMemory); 1171 break; 1172 default: 1173 llvm_unreachable("not a new/delete operator"); 1174 } 1175 } else if (FunI == MemFunctionInfo.II_if_nameindex) { 1176 // Should we model this differently? We can allocate a fixed number of 1177 // elements with zeros in the last one. 1178 State = MallocMemAux(C, CE, UnknownVal(), UnknownVal(), State, 1179 AF_IfNameIndex); 1180 } else if (FunI == MemFunctionInfo.II_if_freenameindex) { 1181 State = FreeMemAux(C, CE, State, 0, false, IsKnownToBeAllocatedMemory); 1182 } else if (FunI == MemFunctionInfo.II_g_malloc0 || 1183 FunI == MemFunctionInfo.II_g_try_malloc0) { 1184 if (CE->getNumArgs() < 1) 1185 return; 1186 SValBuilder &svalBuilder = C.getSValBuilder(); 1187 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 1188 State = MallocMemAux(C, CE, CE->getArg(0), zeroVal, State); 1189 State = ProcessZeroAllocCheck(C, CE, 0, State); 1190 } else if (FunI == MemFunctionInfo.II_g_memdup) { 1191 if (CE->getNumArgs() < 2) 1192 return; 1193 State = MallocMemAux(C, CE, CE->getArg(1), UndefinedVal(), State); 1194 State = ProcessZeroAllocCheck(C, CE, 1, State); 1195 } else if (FunI == MemFunctionInfo.II_g_malloc_n || 1196 FunI == MemFunctionInfo.II_g_try_malloc_n || 1197 FunI == MemFunctionInfo.II_g_malloc0_n || 1198 FunI == MemFunctionInfo.II_g_try_malloc0_n) { 1199 if (CE->getNumArgs() < 2) 1200 return; 1201 SVal Init = UndefinedVal(); 1202 if (FunI == MemFunctionInfo.II_g_malloc0_n || 1203 FunI == MemFunctionInfo.II_g_try_malloc0_n) { 1204 SValBuilder &SB = C.getSValBuilder(); 1205 Init = SB.makeZeroVal(SB.getContext().CharTy); 1206 } 1207 SVal TotalSize = evalMulForBufferSize(C, CE->getArg(0), CE->getArg(1)); 1208 State = MallocMemAux(C, CE, TotalSize, Init, State); 1209 State = ProcessZeroAllocCheck(C, CE, 0, State); 1210 State = ProcessZeroAllocCheck(C, CE, 1, State); 1211 } else if (FunI == MemFunctionInfo.II_g_realloc_n || 1212 FunI == MemFunctionInfo.II_g_try_realloc_n) { 1213 if (CE->getNumArgs() < 3) 1214 return; 1215 State = ReallocMemAux(C, CE, /*ShouldFreeOnFail*/false, State, 1216 /*SuffixWithN*/true); 1217 State = ProcessZeroAllocCheck(C, CE, 1, State); 1218 State = ProcessZeroAllocCheck(C, CE, 2, State); 1219 } 1220 } 1221 1222 if (MemFunctionInfo.ShouldIncludeOwnershipAnnotatedFunctions || 1223 ChecksEnabled[CK_MismatchedDeallocatorChecker]) { 1224 // Check all the attributes, if there are any. 1225 // There can be multiple of these attributes. 1226 if (FD->hasAttrs()) 1227 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { 1228 switch (I->getOwnKind()) { 1229 case OwnershipAttr::Returns: 1230 State = MallocMemReturnsAttr(C, CE, I, State); 1231 break; 1232 case OwnershipAttr::Takes: 1233 case OwnershipAttr::Holds: 1234 State = FreeMemAttr(C, CE, I, State); 1235 break; 1236 } 1237 } 1238 } 1239 C.addTransition(State); 1240 } 1241 1242 // Performs a 0-sized allocations check. 1243 ProgramStateRef MallocChecker::ProcessZeroAllocCheck( 1244 CheckerContext &C, const Expr *E, const unsigned IndexOfSizeArg, 1245 ProgramStateRef State, Optional<SVal> RetVal) { 1246 if (!State) 1247 return nullptr; 1248 1249 if (!RetVal) 1250 RetVal = C.getSVal(E); 1251 1252 const Expr *Arg = nullptr; 1253 1254 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 1255 Arg = CE->getArg(IndexOfSizeArg); 1256 } 1257 else if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { 1258 if (NE->isArray()) 1259 Arg = NE->getArraySize(); 1260 else 1261 return State; 1262 } 1263 else 1264 llvm_unreachable("not a CallExpr or CXXNewExpr"); 1265 1266 assert(Arg); 1267 1268 Optional<DefinedSVal> DefArgVal = C.getSVal(Arg).getAs<DefinedSVal>(); 1269 1270 if (!DefArgVal) 1271 return State; 1272 1273 // Check if the allocation size is 0. 1274 ProgramStateRef TrueState, FalseState; 1275 SValBuilder &SvalBuilder = C.getSValBuilder(); 1276 DefinedSVal Zero = 1277 SvalBuilder.makeZeroVal(Arg->getType()).castAs<DefinedSVal>(); 1278 1279 std::tie(TrueState, FalseState) = 1280 State->assume(SvalBuilder.evalEQ(State, *DefArgVal, Zero)); 1281 1282 if (TrueState && !FalseState) { 1283 SymbolRef Sym = RetVal->getAsLocSymbol(); 1284 if (!Sym) 1285 return State; 1286 1287 const RefState *RS = State->get<RegionState>(Sym); 1288 if (RS) { 1289 if (RS->isAllocated()) 1290 return TrueState->set<RegionState>(Sym, 1291 RefState::getAllocatedOfSizeZero(RS)); 1292 else 1293 return State; 1294 } else { 1295 // Case of zero-size realloc. Historically 'realloc(ptr, 0)' is treated as 1296 // 'free(ptr)' and the returned value from 'realloc(ptr, 0)' is not 1297 // tracked. Add zero-reallocated Sym to the state to catch references 1298 // to zero-allocated memory. 1299 return TrueState->add<ReallocSizeZeroSymbols>(Sym); 1300 } 1301 } 1302 1303 // Assume the value is non-zero going forward. 1304 assert(FalseState); 1305 return FalseState; 1306 } 1307 1308 static QualType getDeepPointeeType(QualType T) { 1309 QualType Result = T, PointeeType = T->getPointeeType(); 1310 while (!PointeeType.isNull()) { 1311 Result = PointeeType; 1312 PointeeType = PointeeType->getPointeeType(); 1313 } 1314 return Result; 1315 } 1316 1317 /// \returns true if the constructor invoked by \p NE has an argument of a 1318 /// pointer/reference to a record type. 1319 static bool hasNonTrivialConstructorCall(const CXXNewExpr *NE) { 1320 1321 const CXXConstructExpr *ConstructE = NE->getConstructExpr(); 1322 if (!ConstructE) 1323 return false; 1324 1325 if (!NE->getAllocatedType()->getAsCXXRecordDecl()) 1326 return false; 1327 1328 const CXXConstructorDecl *CtorD = ConstructE->getConstructor(); 1329 1330 // Iterate over the constructor parameters. 1331 for (const auto *CtorParam : CtorD->parameters()) { 1332 1333 QualType CtorParamPointeeT = CtorParam->getType()->getPointeeType(); 1334 if (CtorParamPointeeT.isNull()) 1335 continue; 1336 1337 CtorParamPointeeT = getDeepPointeeType(CtorParamPointeeT); 1338 1339 if (CtorParamPointeeT->getAsCXXRecordDecl()) 1340 return true; 1341 } 1342 1343 return false; 1344 } 1345 1346 void MallocChecker::processNewAllocation(const CXXNewExpr *NE, 1347 CheckerContext &C, 1348 SVal Target) const { 1349 if (!MemFunctionInfo.isStandardNewDelete(NE->getOperatorNew(), 1350 C.getASTContext())) 1351 return; 1352 1353 ParentMap &PM = C.getLocationContext()->getParentMap(); 1354 1355 // Non-trivial constructors have a chance to escape 'this', but marking all 1356 // invocations of trivial constructors as escaped would cause too great of 1357 // reduction of true positives, so let's just do that for constructors that 1358 // have an argument of a pointer-to-record type. 1359 if (!PM.isConsumedExpr(NE) && hasNonTrivialConstructorCall(NE)) 1360 return; 1361 1362 ProgramStateRef State = C.getState(); 1363 // The return value from operator new is bound to a specified initialization 1364 // value (if any) and we don't want to loose this value. So we call 1365 // MallocUpdateRefState() instead of MallocMemAux() which breaks the 1366 // existing binding. 1367 State = MallocUpdateRefState(C, NE, State, NE->isArray() ? AF_CXXNewArray 1368 : AF_CXXNew, Target); 1369 State = addExtentSize(C, NE, State, Target); 1370 State = ProcessZeroAllocCheck(C, NE, 0, State, Target); 1371 C.addTransition(State); 1372 } 1373 1374 void MallocChecker::checkPostStmt(const CXXNewExpr *NE, 1375 CheckerContext &C) const { 1376 if (!C.getAnalysisManager().getAnalyzerOptions().MayInlineCXXAllocator) 1377 processNewAllocation(NE, C, C.getSVal(NE)); 1378 } 1379 1380 void MallocChecker::checkNewAllocator(const CXXNewExpr *NE, SVal Target, 1381 CheckerContext &C) const { 1382 if (!C.wasInlined) 1383 processNewAllocation(NE, C, Target); 1384 } 1385 1386 // Sets the extent value of the MemRegion allocated by 1387 // new expression NE to its size in Bytes. 1388 // 1389 ProgramStateRef MallocChecker::addExtentSize(CheckerContext &C, 1390 const CXXNewExpr *NE, 1391 ProgramStateRef State, 1392 SVal Target) { 1393 if (!State) 1394 return nullptr; 1395 SValBuilder &svalBuilder = C.getSValBuilder(); 1396 SVal ElementCount; 1397 const SubRegion *Region; 1398 if (NE->isArray()) { 1399 const Expr *SizeExpr = NE->getArraySize(); 1400 ElementCount = C.getSVal(SizeExpr); 1401 // Store the extent size for the (symbolic)region 1402 // containing the elements. 1403 Region = Target.getAsRegion() 1404 ->getAs<SubRegion>() 1405 ->StripCasts() 1406 ->getAs<SubRegion>(); 1407 } else { 1408 ElementCount = svalBuilder.makeIntVal(1, true); 1409 Region = Target.getAsRegion()->getAs<SubRegion>(); 1410 } 1411 assert(Region); 1412 1413 // Set the region's extent equal to the Size in Bytes. 1414 QualType ElementType = NE->getAllocatedType(); 1415 ASTContext &AstContext = C.getASTContext(); 1416 CharUnits TypeSize = AstContext.getTypeSizeInChars(ElementType); 1417 1418 if (ElementCount.getAs<NonLoc>()) { 1419 DefinedOrUnknownSVal Extent = Region->getExtent(svalBuilder); 1420 // size in Bytes = ElementCount*TypeSize 1421 SVal SizeInBytes = svalBuilder.evalBinOpNN( 1422 State, BO_Mul, ElementCount.castAs<NonLoc>(), 1423 svalBuilder.makeArrayIndex(TypeSize.getQuantity()), 1424 svalBuilder.getArrayIndexType()); 1425 DefinedOrUnknownSVal extentMatchesSize = svalBuilder.evalEQ( 1426 State, Extent, SizeInBytes.castAs<DefinedOrUnknownSVal>()); 1427 State = State->assume(extentMatchesSize, true); 1428 } 1429 return State; 1430 } 1431 1432 void MallocChecker::checkPreStmt(const CXXDeleteExpr *DE, 1433 CheckerContext &C) const { 1434 // This will regard deleting freed() regions as a use-after-free, rather then 1435 // a double-free or double-delete error. 1436 if (!ChecksEnabled[CK_NewDeleteChecker]) 1437 if (SymbolRef Sym = C.getSVal(DE->getArgument()).getAsSymbol()) 1438 checkUseAfterFree(Sym, C, DE->getArgument()); 1439 1440 if (!MemFunctionInfo.isStandardNewDelete(DE->getOperatorDelete(), 1441 C.getASTContext())) 1442 return; 1443 1444 ProgramStateRef State = C.getState(); 1445 bool IsKnownToBeAllocated; 1446 State = FreeMemAux(C, DE->getArgument(), DE, State, 1447 /*Hold*/false, IsKnownToBeAllocated); 1448 1449 C.addTransition(State); 1450 } 1451 1452 static bool isKnownDeallocObjCMethodName(const ObjCMethodCall &Call) { 1453 // If the first selector piece is one of the names below, assume that the 1454 // object takes ownership of the memory, promising to eventually deallocate it 1455 // with free(). 1456 // Ex: [NSData dataWithBytesNoCopy:bytes length:10]; 1457 // (...unless a 'freeWhenDone' parameter is false, but that's checked later.) 1458 StringRef FirstSlot = Call.getSelector().getNameForSlot(0); 1459 return FirstSlot == "dataWithBytesNoCopy" || 1460 FirstSlot == "initWithBytesNoCopy" || 1461 FirstSlot == "initWithCharactersNoCopy"; 1462 } 1463 1464 static Optional<bool> getFreeWhenDoneArg(const ObjCMethodCall &Call) { 1465 Selector S = Call.getSelector(); 1466 1467 // FIXME: We should not rely on fully-constrained symbols being folded. 1468 for (unsigned i = 1; i < S.getNumArgs(); ++i) 1469 if (S.getNameForSlot(i).equals("freeWhenDone")) 1470 return !Call.getArgSVal(i).isZeroConstant(); 1471 1472 return None; 1473 } 1474 1475 void MallocChecker::checkPostObjCMessage(const ObjCMethodCall &Call, 1476 CheckerContext &C) const { 1477 if (C.wasInlined) 1478 return; 1479 1480 if (!isKnownDeallocObjCMethodName(Call)) 1481 return; 1482 1483 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call)) 1484 if (!*FreeWhenDone) 1485 return; 1486 1487 bool IsKnownToBeAllocatedMemory; 1488 ProgramStateRef State = FreeMemAux(C, Call.getArgExpr(0), 1489 Call.getOriginExpr(), C.getState(), 1490 /*Hold=*/true, IsKnownToBeAllocatedMemory, 1491 /*RetNullOnFailure=*/true); 1492 1493 C.addTransition(State); 1494 } 1495 1496 ProgramStateRef 1497 MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallExpr *CE, 1498 const OwnershipAttr *Att, 1499 ProgramStateRef State) const { 1500 if (!State) 1501 return nullptr; 1502 1503 if (Att->getModule() != MemFunctionInfo.II_malloc) 1504 return nullptr; 1505 1506 OwnershipAttr::args_iterator I = Att->args_begin(), E = Att->args_end(); 1507 if (I != E) { 1508 return MallocMemAux(C, CE, CE->getArg(I->getASTIndex()), UndefinedVal(), 1509 State); 1510 } 1511 return MallocMemAux(C, CE, UnknownVal(), UndefinedVal(), State); 1512 } 1513 1514 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1515 const CallExpr *CE, 1516 const Expr *SizeEx, SVal Init, 1517 ProgramStateRef State, 1518 AllocationFamily Family) { 1519 if (!State) 1520 return nullptr; 1521 1522 return MallocMemAux(C, CE, C.getSVal(SizeEx), Init, State, Family); 1523 } 1524 1525 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1526 const CallExpr *CE, 1527 SVal Size, SVal Init, 1528 ProgramStateRef State, 1529 AllocationFamily Family) { 1530 if (!State) 1531 return nullptr; 1532 1533 // We expect the malloc functions to return a pointer. 1534 if (!Loc::isLocType(CE->getType())) 1535 return nullptr; 1536 1537 // Bind the return value to the symbolic value from the heap region. 1538 // TODO: We could rewrite post visit to eval call; 'malloc' does not have 1539 // side effects other than what we model here. 1540 unsigned Count = C.blockCount(); 1541 SValBuilder &svalBuilder = C.getSValBuilder(); 1542 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 1543 DefinedSVal RetVal = svalBuilder.getConjuredHeapSymbolVal(CE, LCtx, Count) 1544 .castAs<DefinedSVal>(); 1545 State = State->BindExpr(CE, C.getLocationContext(), RetVal); 1546 1547 // Fill the region with the initialization value. 1548 State = State->bindDefaultInitial(RetVal, Init, LCtx); 1549 1550 // Set the region's extent equal to the Size parameter. 1551 const SymbolicRegion *R = 1552 dyn_cast_or_null<SymbolicRegion>(RetVal.getAsRegion()); 1553 if (!R) 1554 return nullptr; 1555 if (Optional<DefinedOrUnknownSVal> DefinedSize = 1556 Size.getAs<DefinedOrUnknownSVal>()) { 1557 SValBuilder &svalBuilder = C.getSValBuilder(); 1558 DefinedOrUnknownSVal Extent = R->getExtent(svalBuilder); 1559 DefinedOrUnknownSVal extentMatchesSize = 1560 svalBuilder.evalEQ(State, Extent, *DefinedSize); 1561 1562 State = State->assume(extentMatchesSize, true); 1563 assert(State); 1564 } 1565 1566 return MallocUpdateRefState(C, CE, State, Family); 1567 } 1568 1569 static ProgramStateRef 1570 MallocUpdateRefState(CheckerContext &C, const Expr *E, ProgramStateRef State, 1571 AllocationFamily Family, Optional<SVal> RetVal) { 1572 if (!State) 1573 return nullptr; 1574 1575 // Get the return value. 1576 if (!RetVal) 1577 RetVal = C.getSVal(E); 1578 1579 // We expect the malloc functions to return a pointer. 1580 if (!RetVal->getAs<Loc>()) 1581 return nullptr; 1582 1583 SymbolRef Sym = RetVal->getAsLocSymbol(); 1584 // This is a return value of a function that was not inlined, such as malloc() 1585 // or new(). We've checked that in the caller. Therefore, it must be a symbol. 1586 assert(Sym); 1587 1588 // Set the symbol's state to Allocated. 1589 return State->set<RegionState>(Sym, RefState::getAllocated(Family, E)); 1590 } 1591 1592 ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C, 1593 const CallExpr *CE, 1594 const OwnershipAttr *Att, 1595 ProgramStateRef State) const { 1596 if (!State) 1597 return nullptr; 1598 1599 if (Att->getModule() != MemFunctionInfo.II_malloc) 1600 return nullptr; 1601 1602 bool IsKnownToBeAllocated = false; 1603 1604 for (const auto &Arg : Att->args()) { 1605 ProgramStateRef StateI = FreeMemAux( 1606 C, CE, State, Arg.getASTIndex(), 1607 Att->getOwnKind() == OwnershipAttr::Holds, IsKnownToBeAllocated); 1608 if (StateI) 1609 State = StateI; 1610 } 1611 return State; 1612 } 1613 1614 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, 1615 const CallExpr *CE, 1616 ProgramStateRef State, 1617 unsigned Num, 1618 bool Hold, 1619 bool &IsKnownToBeAllocated, 1620 bool ReturnsNullOnFailure) const { 1621 if (!State) 1622 return nullptr; 1623 1624 if (CE->getNumArgs() < (Num + 1)) 1625 return nullptr; 1626 1627 return FreeMemAux(C, CE->getArg(Num), CE, State, Hold, 1628 IsKnownToBeAllocated, ReturnsNullOnFailure); 1629 } 1630 1631 /// Checks if the previous call to free on the given symbol failed - if free 1632 /// failed, returns true. Also, stores the corresponding return value symbol in 1633 /// \p RetStatusSymbol. 1634 static bool didPreviousFreeFail(ProgramStateRef State, 1635 SymbolRef Sym, SymbolRef &RetStatusSymbol) { 1636 const SymbolRef *Ret = State->get<FreeReturnValue>(Sym); 1637 if (Ret) { 1638 assert(*Ret && "We should not store the null return symbol"); 1639 ConstraintManager &CMgr = State->getConstraintManager(); 1640 ConditionTruthVal FreeFailed = CMgr.isNull(State, *Ret); 1641 RetStatusSymbol = *Ret; 1642 return FreeFailed.isConstrainedTrue(); 1643 } 1644 return false; 1645 } 1646 1647 static AllocationFamily getAllocationFamily( 1648 const MemFunctionInfoTy &MemFunctionInfo, CheckerContext &C, const Stmt *S) { 1649 1650 if (!S) 1651 return AF_None; 1652 1653 if (const CallExpr *CE = dyn_cast<CallExpr>(S)) { 1654 const FunctionDecl *FD = C.getCalleeDecl(CE); 1655 1656 if (!FD) 1657 FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); 1658 1659 ASTContext &Ctx = C.getASTContext(); 1660 1661 if (MemFunctionInfo.isCMemFunction(FD, Ctx, AF_Malloc, MemoryOperationKind::MOK_Any)) 1662 return AF_Malloc; 1663 1664 if (MemFunctionInfo.isStandardNewDelete(FD, Ctx)) { 1665 OverloadedOperatorKind Kind = FD->getOverloadedOperator(); 1666 if (Kind == OO_New || Kind == OO_Delete) 1667 return AF_CXXNew; 1668 else if (Kind == OO_Array_New || Kind == OO_Array_Delete) 1669 return AF_CXXNewArray; 1670 } 1671 1672 if (MemFunctionInfo.isCMemFunction(FD, Ctx, AF_IfNameIndex, 1673 MemoryOperationKind::MOK_Any)) 1674 return AF_IfNameIndex; 1675 1676 if (MemFunctionInfo.isCMemFunction(FD, Ctx, AF_Alloca, 1677 MemoryOperationKind::MOK_Any)) 1678 return AF_Alloca; 1679 1680 return AF_None; 1681 } 1682 1683 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(S)) 1684 return NE->isArray() ? AF_CXXNewArray : AF_CXXNew; 1685 1686 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(S)) 1687 return DE->isArrayForm() ? AF_CXXNewArray : AF_CXXNew; 1688 1689 if (isa<ObjCMessageExpr>(S)) 1690 return AF_Malloc; 1691 1692 return AF_None; 1693 } 1694 1695 static bool printAllocDeallocName(raw_ostream &os, CheckerContext &C, 1696 const Expr *E) { 1697 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 1698 // FIXME: This doesn't handle indirect calls. 1699 const FunctionDecl *FD = CE->getDirectCallee(); 1700 if (!FD) 1701 return false; 1702 1703 os << *FD; 1704 if (!FD->isOverloadedOperator()) 1705 os << "()"; 1706 return true; 1707 } 1708 1709 if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E)) { 1710 if (Msg->isInstanceMessage()) 1711 os << "-"; 1712 else 1713 os << "+"; 1714 Msg->getSelector().print(os); 1715 return true; 1716 } 1717 1718 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { 1719 os << "'" 1720 << getOperatorSpelling(NE->getOperatorNew()->getOverloadedOperator()) 1721 << "'"; 1722 return true; 1723 } 1724 1725 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(E)) { 1726 os << "'" 1727 << getOperatorSpelling(DE->getOperatorDelete()->getOverloadedOperator()) 1728 << "'"; 1729 return true; 1730 } 1731 1732 return false; 1733 } 1734 1735 static void printExpectedAllocName(raw_ostream &os, 1736 const MemFunctionInfoTy &MemFunctionInfo, 1737 CheckerContext &C, const Expr *E) { 1738 AllocationFamily Family = getAllocationFamily(MemFunctionInfo, C, E); 1739 1740 switch(Family) { 1741 case AF_Malloc: os << "malloc()"; return; 1742 case AF_CXXNew: os << "'new'"; return; 1743 case AF_CXXNewArray: os << "'new[]'"; return; 1744 case AF_IfNameIndex: os << "'if_nameindex()'"; return; 1745 case AF_InnerBuffer: os << "container-specific allocator"; return; 1746 case AF_Alloca: 1747 case AF_None: llvm_unreachable("not a deallocation expression"); 1748 } 1749 } 1750 1751 static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family) { 1752 switch(Family) { 1753 case AF_Malloc: os << "free()"; return; 1754 case AF_CXXNew: os << "'delete'"; return; 1755 case AF_CXXNewArray: os << "'delete[]'"; return; 1756 case AF_IfNameIndex: os << "'if_freenameindex()'"; return; 1757 case AF_InnerBuffer: os << "container-specific deallocator"; return; 1758 case AF_Alloca: 1759 case AF_None: llvm_unreachable("suspicious argument"); 1760 } 1761 } 1762 1763 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, 1764 const Expr *ArgExpr, 1765 const Expr *ParentExpr, 1766 ProgramStateRef State, 1767 bool Hold, 1768 bool &IsKnownToBeAllocated, 1769 bool ReturnsNullOnFailure) const { 1770 1771 if (!State) 1772 return nullptr; 1773 1774 SVal ArgVal = C.getSVal(ArgExpr); 1775 if (!ArgVal.getAs<DefinedOrUnknownSVal>()) 1776 return nullptr; 1777 DefinedOrUnknownSVal location = ArgVal.castAs<DefinedOrUnknownSVal>(); 1778 1779 // Check for null dereferences. 1780 if (!location.getAs<Loc>()) 1781 return nullptr; 1782 1783 // The explicit NULL case, no operation is performed. 1784 ProgramStateRef notNullState, nullState; 1785 std::tie(notNullState, nullState) = State->assume(location); 1786 if (nullState && !notNullState) 1787 return nullptr; 1788 1789 // Unknown values could easily be okay 1790 // Undefined values are handled elsewhere 1791 if (ArgVal.isUnknownOrUndef()) 1792 return nullptr; 1793 1794 const MemRegion *R = ArgVal.getAsRegion(); 1795 1796 // Nonlocs can't be freed, of course. 1797 // Non-region locations (labels and fixed addresses) also shouldn't be freed. 1798 if (!R) { 1799 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1800 return nullptr; 1801 } 1802 1803 R = R->StripCasts(); 1804 1805 // Blocks might show up as heap data, but should not be free()d 1806 if (isa<BlockDataRegion>(R)) { 1807 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1808 return nullptr; 1809 } 1810 1811 const MemSpaceRegion *MS = R->getMemorySpace(); 1812 1813 // Parameters, locals, statics, globals, and memory returned by 1814 // __builtin_alloca() shouldn't be freed. 1815 if (!(isa<UnknownSpaceRegion>(MS) || isa<HeapSpaceRegion>(MS))) { 1816 // FIXME: at the time this code was written, malloc() regions were 1817 // represented by conjured symbols, which are all in UnknownSpaceRegion. 1818 // This means that there isn't actually anything from HeapSpaceRegion 1819 // that should be freed, even though we allow it here. 1820 // Of course, free() can work on memory allocated outside the current 1821 // function, so UnknownSpaceRegion is always a possibility. 1822 // False negatives are better than false positives. 1823 1824 if (isa<AllocaRegion>(R)) 1825 ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1826 else 1827 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1828 1829 return nullptr; 1830 } 1831 1832 const SymbolicRegion *SrBase = dyn_cast<SymbolicRegion>(R->getBaseRegion()); 1833 // Various cases could lead to non-symbol values here. 1834 // For now, ignore them. 1835 if (!SrBase) 1836 return nullptr; 1837 1838 SymbolRef SymBase = SrBase->getSymbol(); 1839 const RefState *RsBase = State->get<RegionState>(SymBase); 1840 SymbolRef PreviousRetStatusSymbol = nullptr; 1841 1842 IsKnownToBeAllocated = RsBase && (RsBase->isAllocated() || 1843 RsBase->isAllocatedOfSizeZero()); 1844 1845 if (RsBase) { 1846 1847 // Memory returned by alloca() shouldn't be freed. 1848 if (RsBase->getAllocationFamily() == AF_Alloca) { 1849 ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1850 return nullptr; 1851 } 1852 1853 // Check for double free first. 1854 if ((RsBase->isReleased() || RsBase->isRelinquished()) && 1855 !didPreviousFreeFail(State, SymBase, PreviousRetStatusSymbol)) { 1856 ReportDoubleFree(C, ParentExpr->getSourceRange(), RsBase->isReleased(), 1857 SymBase, PreviousRetStatusSymbol); 1858 return nullptr; 1859 1860 // If the pointer is allocated or escaped, but we are now trying to free it, 1861 // check that the call to free is proper. 1862 } else if (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero() || 1863 RsBase->isEscaped()) { 1864 1865 // Check if an expected deallocation function matches the real one. 1866 bool DeallocMatchesAlloc = 1867 RsBase->getAllocationFamily() == 1868 getAllocationFamily(MemFunctionInfo, C, ParentExpr); 1869 if (!DeallocMatchesAlloc) { 1870 ReportMismatchedDealloc(C, ArgExpr->getSourceRange(), 1871 ParentExpr, RsBase, SymBase, Hold); 1872 return nullptr; 1873 } 1874 1875 // Check if the memory location being freed is the actual location 1876 // allocated, or an offset. 1877 RegionOffset Offset = R->getAsOffset(); 1878 if (Offset.isValid() && 1879 !Offset.hasSymbolicOffset() && 1880 Offset.getOffset() != 0) { 1881 const Expr *AllocExpr = cast<Expr>(RsBase->getStmt()); 1882 ReportOffsetFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1883 AllocExpr); 1884 return nullptr; 1885 } 1886 } 1887 } 1888 1889 if (SymBase->getType()->isFunctionPointerType()) { 1890 ReportFunctionPointerFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1891 return nullptr; 1892 } 1893 1894 // Clean out the info on previous call to free return info. 1895 State = State->remove<FreeReturnValue>(SymBase); 1896 1897 // Keep track of the return value. If it is NULL, we will know that free 1898 // failed. 1899 if (ReturnsNullOnFailure) { 1900 SVal RetVal = C.getSVal(ParentExpr); 1901 SymbolRef RetStatusSymbol = RetVal.getAsSymbol(); 1902 if (RetStatusSymbol) { 1903 C.getSymbolManager().addSymbolDependency(SymBase, RetStatusSymbol); 1904 State = State->set<FreeReturnValue>(SymBase, RetStatusSymbol); 1905 } 1906 } 1907 1908 AllocationFamily Family = RsBase ? RsBase->getAllocationFamily() 1909 : getAllocationFamily(MemFunctionInfo, C, ParentExpr); 1910 // Normal free. 1911 if (Hold) 1912 return State->set<RegionState>(SymBase, 1913 RefState::getRelinquished(Family, 1914 ParentExpr)); 1915 1916 return State->set<RegionState>(SymBase, 1917 RefState::getReleased(Family, ParentExpr)); 1918 } 1919 1920 Optional<MallocChecker::CheckKind> 1921 MallocChecker::getCheckIfTracked(AllocationFamily Family, 1922 bool IsALeakCheck) const { 1923 switch (Family) { 1924 case AF_Malloc: 1925 case AF_Alloca: 1926 case AF_IfNameIndex: { 1927 if (ChecksEnabled[CK_MallocChecker]) 1928 return CK_MallocChecker; 1929 return None; 1930 } 1931 case AF_CXXNew: 1932 case AF_CXXNewArray: { 1933 if (IsALeakCheck) { 1934 if (ChecksEnabled[CK_NewDeleteLeaksChecker]) 1935 return CK_NewDeleteLeaksChecker; 1936 } 1937 else { 1938 if (ChecksEnabled[CK_NewDeleteChecker]) 1939 return CK_NewDeleteChecker; 1940 } 1941 return None; 1942 } 1943 case AF_InnerBuffer: { 1944 if (ChecksEnabled[CK_InnerPointerChecker]) 1945 return CK_InnerPointerChecker; 1946 return None; 1947 } 1948 case AF_None: { 1949 llvm_unreachable("no family"); 1950 } 1951 } 1952 llvm_unreachable("unhandled family"); 1953 } 1954 1955 Optional<MallocChecker::CheckKind> 1956 MallocChecker::getCheckIfTracked(CheckerContext &C, 1957 const Stmt *AllocDeallocStmt, 1958 bool IsALeakCheck) const { 1959 return getCheckIfTracked( 1960 getAllocationFamily(MemFunctionInfo, C, AllocDeallocStmt), IsALeakCheck); 1961 } 1962 1963 Optional<MallocChecker::CheckKind> 1964 MallocChecker::getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 1965 bool IsALeakCheck) const { 1966 if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) 1967 return CK_MallocChecker; 1968 1969 const RefState *RS = C.getState()->get<RegionState>(Sym); 1970 assert(RS); 1971 return getCheckIfTracked(RS->getAllocationFamily(), IsALeakCheck); 1972 } 1973 1974 bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) { 1975 if (Optional<nonloc::ConcreteInt> IntVal = V.getAs<nonloc::ConcreteInt>()) 1976 os << "an integer (" << IntVal->getValue() << ")"; 1977 else if (Optional<loc::ConcreteInt> ConstAddr = V.getAs<loc::ConcreteInt>()) 1978 os << "a constant address (" << ConstAddr->getValue() << ")"; 1979 else if (Optional<loc::GotoLabel> Label = V.getAs<loc::GotoLabel>()) 1980 os << "the address of the label '" << Label->getLabel()->getName() << "'"; 1981 else 1982 return false; 1983 1984 return true; 1985 } 1986 1987 bool MallocChecker::SummarizeRegion(raw_ostream &os, 1988 const MemRegion *MR) { 1989 switch (MR->getKind()) { 1990 case MemRegion::FunctionCodeRegionKind: { 1991 const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl(); 1992 if (FD) 1993 os << "the address of the function '" << *FD << '\''; 1994 else 1995 os << "the address of a function"; 1996 return true; 1997 } 1998 case MemRegion::BlockCodeRegionKind: 1999 os << "block text"; 2000 return true; 2001 case MemRegion::BlockDataRegionKind: 2002 // FIXME: where the block came from? 2003 os << "a block"; 2004 return true; 2005 default: { 2006 const MemSpaceRegion *MS = MR->getMemorySpace(); 2007 2008 if (isa<StackLocalsSpaceRegion>(MS)) { 2009 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2010 const VarDecl *VD; 2011 if (VR) 2012 VD = VR->getDecl(); 2013 else 2014 VD = nullptr; 2015 2016 if (VD) 2017 os << "the address of the local variable '" << VD->getName() << "'"; 2018 else 2019 os << "the address of a local stack variable"; 2020 return true; 2021 } 2022 2023 if (isa<StackArgumentsSpaceRegion>(MS)) { 2024 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2025 const VarDecl *VD; 2026 if (VR) 2027 VD = VR->getDecl(); 2028 else 2029 VD = nullptr; 2030 2031 if (VD) 2032 os << "the address of the parameter '" << VD->getName() << "'"; 2033 else 2034 os << "the address of a parameter"; 2035 return true; 2036 } 2037 2038 if (isa<GlobalsSpaceRegion>(MS)) { 2039 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2040 const VarDecl *VD; 2041 if (VR) 2042 VD = VR->getDecl(); 2043 else 2044 VD = nullptr; 2045 2046 if (VD) { 2047 if (VD->isStaticLocal()) 2048 os << "the address of the static variable '" << VD->getName() << "'"; 2049 else 2050 os << "the address of the global variable '" << VD->getName() << "'"; 2051 } else 2052 os << "the address of a global variable"; 2053 return true; 2054 } 2055 2056 return false; 2057 } 2058 } 2059 } 2060 2061 void MallocChecker::ReportBadFree(CheckerContext &C, SVal ArgVal, 2062 SourceRange Range, 2063 const Expr *DeallocExpr) const { 2064 2065 if (!ChecksEnabled[CK_MallocChecker] && 2066 !ChecksEnabled[CK_NewDeleteChecker]) 2067 return; 2068 2069 Optional<MallocChecker::CheckKind> CheckKind = 2070 getCheckIfTracked(C, DeallocExpr); 2071 if (!CheckKind.hasValue()) 2072 return; 2073 2074 if (ExplodedNode *N = C.generateErrorNode()) { 2075 if (!BT_BadFree[*CheckKind]) 2076 BT_BadFree[*CheckKind].reset(new BugType( 2077 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 2078 2079 SmallString<100> buf; 2080 llvm::raw_svector_ostream os(buf); 2081 2082 const MemRegion *MR = ArgVal.getAsRegion(); 2083 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 2084 MR = ER->getSuperRegion(); 2085 2086 os << "Argument to "; 2087 if (!printAllocDeallocName(os, C, DeallocExpr)) 2088 os << "deallocator"; 2089 2090 os << " is "; 2091 bool Summarized = MR ? SummarizeRegion(os, MR) 2092 : SummarizeValue(os, ArgVal); 2093 if (Summarized) 2094 os << ", which is not memory allocated by "; 2095 else 2096 os << "not memory allocated by "; 2097 2098 printExpectedAllocName(os, MemFunctionInfo, C, DeallocExpr); 2099 2100 auto R = llvm::make_unique<BugReport>(*BT_BadFree[*CheckKind], os.str(), N); 2101 R->markInteresting(MR); 2102 R->addRange(Range); 2103 C.emitReport(std::move(R)); 2104 } 2105 } 2106 2107 void MallocChecker::ReportFreeAlloca(CheckerContext &C, SVal ArgVal, 2108 SourceRange Range) const { 2109 2110 Optional<MallocChecker::CheckKind> CheckKind; 2111 2112 if (ChecksEnabled[CK_MallocChecker]) 2113 CheckKind = CK_MallocChecker; 2114 else if (ChecksEnabled[CK_MismatchedDeallocatorChecker]) 2115 CheckKind = CK_MismatchedDeallocatorChecker; 2116 else 2117 return; 2118 2119 if (ExplodedNode *N = C.generateErrorNode()) { 2120 if (!BT_FreeAlloca[*CheckKind]) 2121 BT_FreeAlloca[*CheckKind].reset(new BugType( 2122 CheckNames[*CheckKind], "Free alloca()", categories::MemoryError)); 2123 2124 auto R = llvm::make_unique<BugReport>( 2125 *BT_FreeAlloca[*CheckKind], 2126 "Memory allocated by alloca() should not be deallocated", N); 2127 R->markInteresting(ArgVal.getAsRegion()); 2128 R->addRange(Range); 2129 C.emitReport(std::move(R)); 2130 } 2131 } 2132 2133 void MallocChecker::ReportMismatchedDealloc(CheckerContext &C, 2134 SourceRange Range, 2135 const Expr *DeallocExpr, 2136 const RefState *RS, 2137 SymbolRef Sym, 2138 bool OwnershipTransferred) const { 2139 2140 if (!ChecksEnabled[CK_MismatchedDeallocatorChecker]) 2141 return; 2142 2143 if (ExplodedNode *N = C.generateErrorNode()) { 2144 if (!BT_MismatchedDealloc) 2145 BT_MismatchedDealloc.reset( 2146 new BugType(CheckNames[CK_MismatchedDeallocatorChecker], 2147 "Bad deallocator", categories::MemoryError)); 2148 2149 SmallString<100> buf; 2150 llvm::raw_svector_ostream os(buf); 2151 2152 const Expr *AllocExpr = cast<Expr>(RS->getStmt()); 2153 SmallString<20> AllocBuf; 2154 llvm::raw_svector_ostream AllocOs(AllocBuf); 2155 SmallString<20> DeallocBuf; 2156 llvm::raw_svector_ostream DeallocOs(DeallocBuf); 2157 2158 if (OwnershipTransferred) { 2159 if (printAllocDeallocName(DeallocOs, C, DeallocExpr)) 2160 os << DeallocOs.str() << " cannot"; 2161 else 2162 os << "Cannot"; 2163 2164 os << " take ownership of memory"; 2165 2166 if (printAllocDeallocName(AllocOs, C, AllocExpr)) 2167 os << " allocated by " << AllocOs.str(); 2168 } else { 2169 os << "Memory"; 2170 if (printAllocDeallocName(AllocOs, C, AllocExpr)) 2171 os << " allocated by " << AllocOs.str(); 2172 2173 os << " should be deallocated by "; 2174 printExpectedDeallocName(os, RS->getAllocationFamily()); 2175 2176 if (printAllocDeallocName(DeallocOs, C, DeallocExpr)) 2177 os << ", not " << DeallocOs.str(); 2178 } 2179 2180 auto R = llvm::make_unique<BugReport>(*BT_MismatchedDealloc, os.str(), N); 2181 R->markInteresting(Sym); 2182 R->addRange(Range); 2183 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 2184 C.emitReport(std::move(R)); 2185 } 2186 } 2187 2188 void MallocChecker::ReportOffsetFree(CheckerContext &C, SVal ArgVal, 2189 SourceRange Range, const Expr *DeallocExpr, 2190 const Expr *AllocExpr) const { 2191 2192 2193 if (!ChecksEnabled[CK_MallocChecker] && 2194 !ChecksEnabled[CK_NewDeleteChecker]) 2195 return; 2196 2197 Optional<MallocChecker::CheckKind> CheckKind = 2198 getCheckIfTracked(C, AllocExpr); 2199 if (!CheckKind.hasValue()) 2200 return; 2201 2202 ExplodedNode *N = C.generateErrorNode(); 2203 if (!N) 2204 return; 2205 2206 if (!BT_OffsetFree[*CheckKind]) 2207 BT_OffsetFree[*CheckKind].reset(new BugType( 2208 CheckNames[*CheckKind], "Offset free", categories::MemoryError)); 2209 2210 SmallString<100> buf; 2211 llvm::raw_svector_ostream os(buf); 2212 SmallString<20> AllocNameBuf; 2213 llvm::raw_svector_ostream AllocNameOs(AllocNameBuf); 2214 2215 const MemRegion *MR = ArgVal.getAsRegion(); 2216 assert(MR && "Only MemRegion based symbols can have offset free errors"); 2217 2218 RegionOffset Offset = MR->getAsOffset(); 2219 assert((Offset.isValid() && 2220 !Offset.hasSymbolicOffset() && 2221 Offset.getOffset() != 0) && 2222 "Only symbols with a valid offset can have offset free errors"); 2223 2224 int offsetBytes = Offset.getOffset() / C.getASTContext().getCharWidth(); 2225 2226 os << "Argument to "; 2227 if (!printAllocDeallocName(os, C, DeallocExpr)) 2228 os << "deallocator"; 2229 os << " is offset by " 2230 << offsetBytes 2231 << " " 2232 << ((abs(offsetBytes) > 1) ? "bytes" : "byte") 2233 << " from the start of "; 2234 if (AllocExpr && printAllocDeallocName(AllocNameOs, C, AllocExpr)) 2235 os << "memory allocated by " << AllocNameOs.str(); 2236 else 2237 os << "allocated memory"; 2238 2239 auto R = llvm::make_unique<BugReport>(*BT_OffsetFree[*CheckKind], os.str(), N); 2240 R->markInteresting(MR->getBaseRegion()); 2241 R->addRange(Range); 2242 C.emitReport(std::move(R)); 2243 } 2244 2245 void MallocChecker::ReportUseAfterFree(CheckerContext &C, SourceRange Range, 2246 SymbolRef Sym) const { 2247 2248 if (!ChecksEnabled[CK_MallocChecker] && 2249 !ChecksEnabled[CK_NewDeleteChecker] && 2250 !ChecksEnabled[CK_InnerPointerChecker]) 2251 return; 2252 2253 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2254 if (!CheckKind.hasValue()) 2255 return; 2256 2257 if (ExplodedNode *N = C.generateErrorNode()) { 2258 if (!BT_UseFree[*CheckKind]) 2259 BT_UseFree[*CheckKind].reset(new BugType( 2260 CheckNames[*CheckKind], "Use-after-free", categories::MemoryError)); 2261 2262 AllocationFamily AF = 2263 C.getState()->get<RegionState>(Sym)->getAllocationFamily(); 2264 2265 auto R = llvm::make_unique<BugReport>(*BT_UseFree[*CheckKind], 2266 AF == AF_InnerBuffer 2267 ? "Inner pointer of container used after re/deallocation" 2268 : "Use of memory after it is freed", 2269 N); 2270 2271 R->markInteresting(Sym); 2272 R->addRange(Range); 2273 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 2274 2275 if (AF == AF_InnerBuffer) 2276 R->addVisitor(allocation_state::getInnerPointerBRVisitor(Sym)); 2277 2278 C.emitReport(std::move(R)); 2279 } 2280 } 2281 2282 void MallocChecker::ReportDoubleFree(CheckerContext &C, SourceRange Range, 2283 bool Released, SymbolRef Sym, 2284 SymbolRef PrevSym) const { 2285 2286 if (!ChecksEnabled[CK_MallocChecker] && 2287 !ChecksEnabled[CK_NewDeleteChecker]) 2288 return; 2289 2290 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2291 if (!CheckKind.hasValue()) 2292 return; 2293 2294 // If this is a double delete error, print the appropiate warning message. 2295 if (CheckKind == CK_NewDeleteChecker) { 2296 ReportDoubleDelete(C, Sym); 2297 return; 2298 } 2299 2300 if (ExplodedNode *N = C.generateErrorNode()) { 2301 if (!BT_DoubleFree[*CheckKind]) 2302 BT_DoubleFree[*CheckKind].reset(new BugType( 2303 CheckNames[*CheckKind], "Double free", categories::MemoryError)); 2304 2305 auto R = llvm::make_unique<BugReport>( 2306 *BT_DoubleFree[*CheckKind], 2307 (Released ? "Attempt to free released memory" 2308 : "Attempt to free non-owned memory"), 2309 N); 2310 R->addRange(Range); 2311 R->markInteresting(Sym); 2312 if (PrevSym) 2313 R->markInteresting(PrevSym); 2314 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 2315 C.emitReport(std::move(R)); 2316 } 2317 } 2318 2319 void MallocChecker::ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const { 2320 2321 if (!ChecksEnabled[CK_NewDeleteChecker]) 2322 return; 2323 2324 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2325 if (!CheckKind.hasValue()) 2326 return; 2327 2328 if (ExplodedNode *N = C.generateErrorNode()) { 2329 if (!BT_DoubleDelete) 2330 BT_DoubleDelete.reset(new BugType(CheckNames[CK_NewDeleteChecker], 2331 "Double delete", 2332 categories::MemoryError)); 2333 2334 auto R = llvm::make_unique<BugReport>( 2335 *BT_DoubleDelete, "Attempt to delete released memory", N); 2336 2337 R->markInteresting(Sym); 2338 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 2339 C.emitReport(std::move(R)); 2340 } 2341 } 2342 2343 void MallocChecker::ReportUseZeroAllocated(CheckerContext &C, 2344 SourceRange Range, 2345 SymbolRef Sym) const { 2346 2347 if (!ChecksEnabled[CK_MallocChecker] && 2348 !ChecksEnabled[CK_NewDeleteChecker]) 2349 return; 2350 2351 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2352 2353 if (!CheckKind.hasValue()) 2354 return; 2355 2356 if (ExplodedNode *N = C.generateErrorNode()) { 2357 if (!BT_UseZerroAllocated[*CheckKind]) 2358 BT_UseZerroAllocated[*CheckKind].reset( 2359 new BugType(CheckNames[*CheckKind], "Use of zero allocated", 2360 categories::MemoryError)); 2361 2362 auto R = llvm::make_unique<BugReport>(*BT_UseZerroAllocated[*CheckKind], 2363 "Use of zero-allocated memory", N); 2364 2365 R->addRange(Range); 2366 if (Sym) { 2367 R->markInteresting(Sym); 2368 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 2369 } 2370 C.emitReport(std::move(R)); 2371 } 2372 } 2373 2374 void MallocChecker::ReportFunctionPointerFree(CheckerContext &C, SVal ArgVal, 2375 SourceRange Range, 2376 const Expr *FreeExpr) const { 2377 if (!ChecksEnabled[CK_MallocChecker]) 2378 return; 2379 2380 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, FreeExpr); 2381 if (!CheckKind.hasValue()) 2382 return; 2383 2384 if (ExplodedNode *N = C.generateErrorNode()) { 2385 if (!BT_BadFree[*CheckKind]) 2386 BT_BadFree[*CheckKind].reset(new BugType( 2387 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 2388 2389 SmallString<100> Buf; 2390 llvm::raw_svector_ostream Os(Buf); 2391 2392 const MemRegion *MR = ArgVal.getAsRegion(); 2393 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 2394 MR = ER->getSuperRegion(); 2395 2396 Os << "Argument to "; 2397 if (!printAllocDeallocName(Os, C, FreeExpr)) 2398 Os << "deallocator"; 2399 2400 Os << " is a function pointer"; 2401 2402 auto R = llvm::make_unique<BugReport>(*BT_BadFree[*CheckKind], Os.str(), N); 2403 R->markInteresting(MR); 2404 R->addRange(Range); 2405 C.emitReport(std::move(R)); 2406 } 2407 } 2408 2409 ProgramStateRef MallocChecker::ReallocMemAux(CheckerContext &C, 2410 const CallExpr *CE, 2411 bool ShouldFreeOnFail, 2412 ProgramStateRef State, 2413 bool SuffixWithN) const { 2414 if (!State) 2415 return nullptr; 2416 2417 if (SuffixWithN && CE->getNumArgs() < 3) 2418 return nullptr; 2419 else if (CE->getNumArgs() < 2) 2420 return nullptr; 2421 2422 const Expr *arg0Expr = CE->getArg(0); 2423 SVal Arg0Val = C.getSVal(arg0Expr); 2424 if (!Arg0Val.getAs<DefinedOrUnknownSVal>()) 2425 return nullptr; 2426 DefinedOrUnknownSVal arg0Val = Arg0Val.castAs<DefinedOrUnknownSVal>(); 2427 2428 SValBuilder &svalBuilder = C.getSValBuilder(); 2429 2430 DefinedOrUnknownSVal PtrEQ = 2431 svalBuilder.evalEQ(State, arg0Val, svalBuilder.makeNull()); 2432 2433 // Get the size argument. 2434 const Expr *Arg1 = CE->getArg(1); 2435 2436 // Get the value of the size argument. 2437 SVal TotalSize = C.getSVal(Arg1); 2438 if (SuffixWithN) 2439 TotalSize = evalMulForBufferSize(C, Arg1, CE->getArg(2)); 2440 if (!TotalSize.getAs<DefinedOrUnknownSVal>()) 2441 return nullptr; 2442 2443 // Compare the size argument to 0. 2444 DefinedOrUnknownSVal SizeZero = 2445 svalBuilder.evalEQ(State, TotalSize.castAs<DefinedOrUnknownSVal>(), 2446 svalBuilder.makeIntValWithPtrWidth(0, false)); 2447 2448 ProgramStateRef StatePtrIsNull, StatePtrNotNull; 2449 std::tie(StatePtrIsNull, StatePtrNotNull) = State->assume(PtrEQ); 2450 ProgramStateRef StateSizeIsZero, StateSizeNotZero; 2451 std::tie(StateSizeIsZero, StateSizeNotZero) = State->assume(SizeZero); 2452 // We only assume exceptional states if they are definitely true; if the 2453 // state is under-constrained, assume regular realloc behavior. 2454 bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull; 2455 bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero; 2456 2457 // If the ptr is NULL and the size is not 0, the call is equivalent to 2458 // malloc(size). 2459 if (PrtIsNull && !SizeIsZero) { 2460 ProgramStateRef stateMalloc = MallocMemAux(C, CE, TotalSize, 2461 UndefinedVal(), StatePtrIsNull); 2462 return stateMalloc; 2463 } 2464 2465 if (PrtIsNull && SizeIsZero) 2466 return State; 2467 2468 // Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size). 2469 assert(!PrtIsNull); 2470 SymbolRef FromPtr = arg0Val.getAsSymbol(); 2471 SVal RetVal = C.getSVal(CE); 2472 SymbolRef ToPtr = RetVal.getAsSymbol(); 2473 if (!FromPtr || !ToPtr) 2474 return nullptr; 2475 2476 bool IsKnownToBeAllocated = false; 2477 2478 // If the size is 0, free the memory. 2479 if (SizeIsZero) 2480 // The semantics of the return value are: 2481 // If size was equal to 0, either NULL or a pointer suitable to be passed 2482 // to free() is returned. We just free the input pointer and do not add 2483 // any constrains on the output pointer. 2484 if (ProgramStateRef stateFree = FreeMemAux(C, CE, StateSizeIsZero, 0, 2485 false, IsKnownToBeAllocated)) 2486 return stateFree; 2487 2488 // Default behavior. 2489 if (ProgramStateRef stateFree = 2490 FreeMemAux(C, CE, State, 0, false, IsKnownToBeAllocated)) { 2491 2492 ProgramStateRef stateRealloc = MallocMemAux(C, CE, TotalSize, 2493 UnknownVal(), stateFree); 2494 if (!stateRealloc) 2495 return nullptr; 2496 2497 OwnershipAfterReallocKind Kind = OAR_ToBeFreedAfterFailure; 2498 if (ShouldFreeOnFail) 2499 Kind = OAR_FreeOnFailure; 2500 else if (!IsKnownToBeAllocated) 2501 Kind = OAR_DoNotTrackAfterFailure; 2502 2503 // Record the info about the reallocated symbol so that we could properly 2504 // process failed reallocation. 2505 stateRealloc = stateRealloc->set<ReallocPairs>(ToPtr, 2506 ReallocPair(FromPtr, Kind)); 2507 // The reallocated symbol should stay alive for as long as the new symbol. 2508 C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr); 2509 return stateRealloc; 2510 } 2511 return nullptr; 2512 } 2513 2514 ProgramStateRef MallocChecker::CallocMem(CheckerContext &C, const CallExpr *CE, 2515 ProgramStateRef State) { 2516 if (!State) 2517 return nullptr; 2518 2519 if (CE->getNumArgs() < 2) 2520 return nullptr; 2521 2522 SValBuilder &svalBuilder = C.getSValBuilder(); 2523 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 2524 SVal TotalSize = evalMulForBufferSize(C, CE->getArg(0), CE->getArg(1)); 2525 2526 return MallocMemAux(C, CE, TotalSize, zeroVal, State); 2527 } 2528 2529 MallocChecker::LeakInfo 2530 MallocChecker::getAllocationSite(const ExplodedNode *N, SymbolRef Sym, 2531 CheckerContext &C) { 2532 const LocationContext *LeakContext = N->getLocationContext(); 2533 // Walk the ExplodedGraph backwards and find the first node that referred to 2534 // the tracked symbol. 2535 const ExplodedNode *AllocNode = N; 2536 const MemRegion *ReferenceRegion = nullptr; 2537 2538 while (N) { 2539 ProgramStateRef State = N->getState(); 2540 if (!State->get<RegionState>(Sym)) 2541 break; 2542 2543 // Find the most recent expression bound to the symbol in the current 2544 // context. 2545 if (!ReferenceRegion) { 2546 if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) { 2547 SVal Val = State->getSVal(MR); 2548 if (Val.getAsLocSymbol() == Sym) { 2549 const VarRegion* VR = MR->getBaseRegion()->getAs<VarRegion>(); 2550 // Do not show local variables belonging to a function other than 2551 // where the error is reported. 2552 if (!VR || 2553 (VR->getStackFrame() == LeakContext->getStackFrame())) 2554 ReferenceRegion = MR; 2555 } 2556 } 2557 } 2558 2559 // Allocation node, is the last node in the current or parent context in 2560 // which the symbol was tracked. 2561 const LocationContext *NContext = N->getLocationContext(); 2562 if (NContext == LeakContext || 2563 NContext->isParentOf(LeakContext)) 2564 AllocNode = N; 2565 N = N->pred_empty() ? nullptr : *(N->pred_begin()); 2566 } 2567 2568 return LeakInfo(AllocNode, ReferenceRegion); 2569 } 2570 2571 void MallocChecker::reportLeak(SymbolRef Sym, ExplodedNode *N, 2572 CheckerContext &C) const { 2573 2574 if (!ChecksEnabled[CK_MallocChecker] && 2575 !ChecksEnabled[CK_NewDeleteLeaksChecker]) 2576 return; 2577 2578 const RefState *RS = C.getState()->get<RegionState>(Sym); 2579 assert(RS && "cannot leak an untracked symbol"); 2580 AllocationFamily Family = RS->getAllocationFamily(); 2581 2582 if (Family == AF_Alloca) 2583 return; 2584 2585 Optional<MallocChecker::CheckKind> 2586 CheckKind = getCheckIfTracked(Family, true); 2587 2588 if (!CheckKind.hasValue()) 2589 return; 2590 2591 assert(N); 2592 if (!BT_Leak[*CheckKind]) { 2593 BT_Leak[*CheckKind].reset(new BugType(CheckNames[*CheckKind], "Memory leak", 2594 categories::MemoryError)); 2595 // Leaks should not be reported if they are post-dominated by a sink: 2596 // (1) Sinks are higher importance bugs. 2597 // (2) NoReturnFunctionChecker uses sink nodes to represent paths ending 2598 // with __noreturn functions such as assert() or exit(). We choose not 2599 // to report leaks on such paths. 2600 BT_Leak[*CheckKind]->setSuppressOnSink(true); 2601 } 2602 2603 // Most bug reports are cached at the location where they occurred. 2604 // With leaks, we want to unique them by the location where they were 2605 // allocated, and only report a single path. 2606 PathDiagnosticLocation LocUsedForUniqueing; 2607 const ExplodedNode *AllocNode = nullptr; 2608 const MemRegion *Region = nullptr; 2609 std::tie(AllocNode, Region) = getAllocationSite(N, Sym, C); 2610 2611 const Stmt *AllocationStmt = PathDiagnosticLocation::getStmt(AllocNode); 2612 if (AllocationStmt) 2613 LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocationStmt, 2614 C.getSourceManager(), 2615 AllocNode->getLocationContext()); 2616 2617 SmallString<200> buf; 2618 llvm::raw_svector_ostream os(buf); 2619 if (Region && Region->canPrintPretty()) { 2620 os << "Potential leak of memory pointed to by "; 2621 Region->printPretty(os); 2622 } else { 2623 os << "Potential memory leak"; 2624 } 2625 2626 auto R = llvm::make_unique<BugReport>( 2627 *BT_Leak[*CheckKind], os.str(), N, LocUsedForUniqueing, 2628 AllocNode->getLocationContext()->getDecl()); 2629 R->markInteresting(Sym); 2630 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym, true)); 2631 C.emitReport(std::move(R)); 2632 } 2633 2634 void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper, 2635 CheckerContext &C) const 2636 { 2637 ProgramStateRef state = C.getState(); 2638 RegionStateTy OldRS = state->get<RegionState>(); 2639 RegionStateTy::Factory &F = state->get_context<RegionState>(); 2640 2641 RegionStateTy RS = OldRS; 2642 SmallVector<SymbolRef, 2> Errors; 2643 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2644 if (SymReaper.isDead(I->first)) { 2645 if (I->second.isAllocated() || I->second.isAllocatedOfSizeZero()) 2646 Errors.push_back(I->first); 2647 // Remove the dead symbol from the map. 2648 RS = F.remove(RS, I->first); 2649 } 2650 } 2651 2652 if (RS == OldRS) { 2653 // We shouldn't have touched other maps yet. 2654 assert(state->get<ReallocPairs>() == 2655 C.getState()->get<ReallocPairs>()); 2656 assert(state->get<FreeReturnValue>() == 2657 C.getState()->get<FreeReturnValue>()); 2658 return; 2659 } 2660 2661 // Cleanup the Realloc Pairs Map. 2662 ReallocPairsTy RP = state->get<ReallocPairs>(); 2663 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 2664 if (SymReaper.isDead(I->first) || 2665 SymReaper.isDead(I->second.ReallocatedSym)) { 2666 state = state->remove<ReallocPairs>(I->first); 2667 } 2668 } 2669 2670 // Cleanup the FreeReturnValue Map. 2671 FreeReturnValueTy FR = state->get<FreeReturnValue>(); 2672 for (FreeReturnValueTy::iterator I = FR.begin(), E = FR.end(); I != E; ++I) { 2673 if (SymReaper.isDead(I->first) || 2674 SymReaper.isDead(I->second)) { 2675 state = state->remove<FreeReturnValue>(I->first); 2676 } 2677 } 2678 2679 // Generate leak node. 2680 ExplodedNode *N = C.getPredecessor(); 2681 if (!Errors.empty()) { 2682 static CheckerProgramPointTag Tag("MallocChecker", "DeadSymbolsLeak"); 2683 N = C.generateNonFatalErrorNode(C.getState(), &Tag); 2684 if (N) { 2685 for (SmallVectorImpl<SymbolRef>::iterator 2686 I = Errors.begin(), E = Errors.end(); I != E; ++I) { 2687 reportLeak(*I, N, C); 2688 } 2689 } 2690 } 2691 2692 C.addTransition(state->set<RegionState>(RS), N); 2693 } 2694 2695 void MallocChecker::checkPreCall(const CallEvent &Call, 2696 CheckerContext &C) const { 2697 2698 if (const CXXDestructorCall *DC = dyn_cast<CXXDestructorCall>(&Call)) { 2699 SymbolRef Sym = DC->getCXXThisVal().getAsSymbol(); 2700 if (!Sym || checkDoubleDelete(Sym, C)) 2701 return; 2702 } 2703 2704 // We will check for double free in the post visit. 2705 if (const AnyFunctionCall *FC = dyn_cast<AnyFunctionCall>(&Call)) { 2706 const FunctionDecl *FD = FC->getDecl(); 2707 if (!FD) 2708 return; 2709 2710 ASTContext &Ctx = C.getASTContext(); 2711 if (ChecksEnabled[CK_MallocChecker] && 2712 (MemFunctionInfo.isCMemFunction(FD, Ctx, AF_Malloc, 2713 MemoryOperationKind::MOK_Free) || 2714 MemFunctionInfo.isCMemFunction(FD, Ctx, AF_IfNameIndex, 2715 MemoryOperationKind::MOK_Free))) 2716 return; 2717 } 2718 2719 // Check if the callee of a method is deleted. 2720 if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(&Call)) { 2721 SymbolRef Sym = CC->getCXXThisVal().getAsSymbol(); 2722 if (!Sym || checkUseAfterFree(Sym, C, CC->getCXXThisExpr())) 2723 return; 2724 } 2725 2726 // Check arguments for being used after free. 2727 for (unsigned I = 0, E = Call.getNumArgs(); I != E; ++I) { 2728 SVal ArgSVal = Call.getArgSVal(I); 2729 if (ArgSVal.getAs<Loc>()) { 2730 SymbolRef Sym = ArgSVal.getAsSymbol(); 2731 if (!Sym) 2732 continue; 2733 if (checkUseAfterFree(Sym, C, Call.getArgExpr(I))) 2734 return; 2735 } 2736 } 2737 } 2738 2739 void MallocChecker::checkPreStmt(const ReturnStmt *S, 2740 CheckerContext &C) const { 2741 checkEscapeOnReturn(S, C); 2742 } 2743 2744 // In the CFG, automatic destructors come after the return statement. 2745 // This callback checks for returning memory that is freed by automatic 2746 // destructors, as those cannot be reached in checkPreStmt(). 2747 void MallocChecker::checkEndFunction(const ReturnStmt *S, 2748 CheckerContext &C) const { 2749 checkEscapeOnReturn(S, C); 2750 } 2751 2752 void MallocChecker::checkEscapeOnReturn(const ReturnStmt *S, 2753 CheckerContext &C) const { 2754 if (!S) 2755 return; 2756 2757 const Expr *E = S->getRetValue(); 2758 if (!E) 2759 return; 2760 2761 // Check if we are returning a symbol. 2762 ProgramStateRef State = C.getState(); 2763 SVal RetVal = C.getSVal(E); 2764 SymbolRef Sym = RetVal.getAsSymbol(); 2765 if (!Sym) 2766 // If we are returning a field of the allocated struct or an array element, 2767 // the callee could still free the memory. 2768 // TODO: This logic should be a part of generic symbol escape callback. 2769 if (const MemRegion *MR = RetVal.getAsRegion()) 2770 if (isa<FieldRegion>(MR) || isa<ElementRegion>(MR)) 2771 if (const SymbolicRegion *BMR = 2772 dyn_cast<SymbolicRegion>(MR->getBaseRegion())) 2773 Sym = BMR->getSymbol(); 2774 2775 // Check if we are returning freed memory. 2776 if (Sym) 2777 checkUseAfterFree(Sym, C, E); 2778 } 2779 2780 // TODO: Blocks should be either inlined or should call invalidate regions 2781 // upon invocation. After that's in place, special casing here will not be 2782 // needed. 2783 void MallocChecker::checkPostStmt(const BlockExpr *BE, 2784 CheckerContext &C) const { 2785 2786 // Scan the BlockDecRefExprs for any object the retain count checker 2787 // may be tracking. 2788 if (!BE->getBlockDecl()->hasCaptures()) 2789 return; 2790 2791 ProgramStateRef state = C.getState(); 2792 const BlockDataRegion *R = 2793 cast<BlockDataRegion>(C.getSVal(BE).getAsRegion()); 2794 2795 BlockDataRegion::referenced_vars_iterator I = R->referenced_vars_begin(), 2796 E = R->referenced_vars_end(); 2797 2798 if (I == E) 2799 return; 2800 2801 SmallVector<const MemRegion*, 10> Regions; 2802 const LocationContext *LC = C.getLocationContext(); 2803 MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager(); 2804 2805 for ( ; I != E; ++I) { 2806 const VarRegion *VR = I.getCapturedRegion(); 2807 if (VR->getSuperRegion() == R) { 2808 VR = MemMgr.getVarRegion(VR->getDecl(), LC); 2809 } 2810 Regions.push_back(VR); 2811 } 2812 2813 state = 2814 state->scanReachableSymbols<StopTrackingCallback>(Regions).getState(); 2815 C.addTransition(state); 2816 } 2817 2818 static bool isReleased(SymbolRef Sym, CheckerContext &C) { 2819 assert(Sym); 2820 const RefState *RS = C.getState()->get<RegionState>(Sym); 2821 return (RS && RS->isReleased()); 2822 } 2823 2824 bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C, 2825 const Stmt *S) const { 2826 2827 if (isReleased(Sym, C)) { 2828 ReportUseAfterFree(C, S->getSourceRange(), Sym); 2829 return true; 2830 } 2831 2832 return false; 2833 } 2834 2835 void MallocChecker::checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 2836 const Stmt *S) const { 2837 assert(Sym); 2838 2839 if (const RefState *RS = C.getState()->get<RegionState>(Sym)) { 2840 if (RS->isAllocatedOfSizeZero()) 2841 ReportUseZeroAllocated(C, RS->getStmt()->getSourceRange(), Sym); 2842 } 2843 else if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) { 2844 ReportUseZeroAllocated(C, S->getSourceRange(), Sym); 2845 } 2846 } 2847 2848 bool MallocChecker::checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const { 2849 2850 if (isReleased(Sym, C)) { 2851 ReportDoubleDelete(C, Sym); 2852 return true; 2853 } 2854 return false; 2855 } 2856 2857 // Check if the location is a freed symbolic region. 2858 void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S, 2859 CheckerContext &C) const { 2860 SymbolRef Sym = l.getLocSymbolInBase(); 2861 if (Sym) { 2862 checkUseAfterFree(Sym, C, S); 2863 checkUseZeroAllocated(Sym, C, S); 2864 } 2865 } 2866 2867 // If a symbolic region is assumed to NULL (or another constant), stop tracking 2868 // it - assuming that allocation failed on this path. 2869 ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state, 2870 SVal Cond, 2871 bool Assumption) const { 2872 RegionStateTy RS = state->get<RegionState>(); 2873 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2874 // If the symbol is assumed to be NULL, remove it from consideration. 2875 ConstraintManager &CMgr = state->getConstraintManager(); 2876 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 2877 if (AllocFailed.isConstrainedTrue()) 2878 state = state->remove<RegionState>(I.getKey()); 2879 } 2880 2881 // Realloc returns 0 when reallocation fails, which means that we should 2882 // restore the state of the pointer being reallocated. 2883 ReallocPairsTy RP = state->get<ReallocPairs>(); 2884 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 2885 // If the symbol is assumed to be NULL, remove it from consideration. 2886 ConstraintManager &CMgr = state->getConstraintManager(); 2887 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 2888 if (!AllocFailed.isConstrainedTrue()) 2889 continue; 2890 2891 SymbolRef ReallocSym = I.getData().ReallocatedSym; 2892 if (const RefState *RS = state->get<RegionState>(ReallocSym)) { 2893 if (RS->isReleased()) { 2894 switch(I.getData().Kind) { 2895 case OAR_ToBeFreedAfterFailure: 2896 state = state->set<RegionState>(ReallocSym, 2897 RefState::getAllocated(RS->getAllocationFamily(), RS->getStmt())); 2898 break; 2899 case OAR_DoNotTrackAfterFailure: 2900 state = state->remove<RegionState>(ReallocSym); 2901 break; 2902 default: 2903 assert(I.getData().Kind == OAR_FreeOnFailure); 2904 } 2905 } 2906 } 2907 state = state->remove<ReallocPairs>(I.getKey()); 2908 } 2909 2910 return state; 2911 } 2912 2913 bool MallocChecker::mayFreeAnyEscapedMemoryOrIsModeledExplicitly( 2914 const CallEvent *Call, 2915 ProgramStateRef State, 2916 SymbolRef &EscapingSymbol) const { 2917 assert(Call); 2918 EscapingSymbol = nullptr; 2919 2920 // For now, assume that any C++ or block call can free memory. 2921 // TODO: If we want to be more optimistic here, we'll need to make sure that 2922 // regions escape to C++ containers. They seem to do that even now, but for 2923 // mysterious reasons. 2924 if (!(isa<SimpleFunctionCall>(Call) || isa<ObjCMethodCall>(Call))) 2925 return true; 2926 2927 // Check Objective-C messages by selector name. 2928 if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) { 2929 // If it's not a framework call, or if it takes a callback, assume it 2930 // can free memory. 2931 if (!Call->isInSystemHeader() || Call->argumentsMayEscape()) 2932 return true; 2933 2934 // If it's a method we know about, handle it explicitly post-call. 2935 // This should happen before the "freeWhenDone" check below. 2936 if (isKnownDeallocObjCMethodName(*Msg)) 2937 return false; 2938 2939 // If there's a "freeWhenDone" parameter, but the method isn't one we know 2940 // about, we can't be sure that the object will use free() to deallocate the 2941 // memory, so we can't model it explicitly. The best we can do is use it to 2942 // decide whether the pointer escapes. 2943 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(*Msg)) 2944 return *FreeWhenDone; 2945 2946 // If the first selector piece ends with "NoCopy", and there is no 2947 // "freeWhenDone" parameter set to zero, we know ownership is being 2948 // transferred. Again, though, we can't be sure that the object will use 2949 // free() to deallocate the memory, so we can't model it explicitly. 2950 StringRef FirstSlot = Msg->getSelector().getNameForSlot(0); 2951 if (FirstSlot.endswith("NoCopy")) 2952 return true; 2953 2954 // If the first selector starts with addPointer, insertPointer, 2955 // or replacePointer, assume we are dealing with NSPointerArray or similar. 2956 // This is similar to C++ containers (vector); we still might want to check 2957 // that the pointers get freed by following the container itself. 2958 if (FirstSlot.startswith("addPointer") || 2959 FirstSlot.startswith("insertPointer") || 2960 FirstSlot.startswith("replacePointer") || 2961 FirstSlot.equals("valueWithPointer")) { 2962 return true; 2963 } 2964 2965 // We should escape receiver on call to 'init'. This is especially relevant 2966 // to the receiver, as the corresponding symbol is usually not referenced 2967 // after the call. 2968 if (Msg->getMethodFamily() == OMF_init) { 2969 EscapingSymbol = Msg->getReceiverSVal().getAsSymbol(); 2970 return true; 2971 } 2972 2973 // Otherwise, assume that the method does not free memory. 2974 // Most framework methods do not free memory. 2975 return false; 2976 } 2977 2978 // At this point the only thing left to handle is straight function calls. 2979 const FunctionDecl *FD = cast<SimpleFunctionCall>(Call)->getDecl(); 2980 if (!FD) 2981 return true; 2982 2983 ASTContext &ASTC = State->getStateManager().getContext(); 2984 2985 // If it's one of the allocation functions we can reason about, we model 2986 // its behavior explicitly. 2987 if (MemFunctionInfo.isMemFunction(FD, ASTC)) 2988 return false; 2989 2990 // If it's not a system call, assume it frees memory. 2991 if (!Call->isInSystemHeader()) 2992 return true; 2993 2994 // White list the system functions whose arguments escape. 2995 const IdentifierInfo *II = FD->getIdentifier(); 2996 if (!II) 2997 return true; 2998 StringRef FName = II->getName(); 2999 3000 // White list the 'XXXNoCopy' CoreFoundation functions. 3001 // We specifically check these before 3002 if (FName.endswith("NoCopy")) { 3003 // Look for the deallocator argument. We know that the memory ownership 3004 // is not transferred only if the deallocator argument is 3005 // 'kCFAllocatorNull'. 3006 for (unsigned i = 1; i < Call->getNumArgs(); ++i) { 3007 const Expr *ArgE = Call->getArgExpr(i)->IgnoreParenCasts(); 3008 if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(ArgE)) { 3009 StringRef DeallocatorName = DE->getFoundDecl()->getName(); 3010 if (DeallocatorName == "kCFAllocatorNull") 3011 return false; 3012 } 3013 } 3014 return true; 3015 } 3016 3017 // Associating streams with malloced buffers. The pointer can escape if 3018 // 'closefn' is specified (and if that function does free memory), 3019 // but it will not if closefn is not specified. 3020 // Currently, we do not inspect the 'closefn' function (PR12101). 3021 if (FName == "funopen") 3022 if (Call->getNumArgs() >= 4 && Call->getArgSVal(4).isConstant(0)) 3023 return false; 3024 3025 // Do not warn on pointers passed to 'setbuf' when used with std streams, 3026 // these leaks might be intentional when setting the buffer for stdio. 3027 // http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer 3028 if (FName == "setbuf" || FName =="setbuffer" || 3029 FName == "setlinebuf" || FName == "setvbuf") { 3030 if (Call->getNumArgs() >= 1) { 3031 const Expr *ArgE = Call->getArgExpr(0)->IgnoreParenCasts(); 3032 if (const DeclRefExpr *ArgDRE = dyn_cast<DeclRefExpr>(ArgE)) 3033 if (const VarDecl *D = dyn_cast<VarDecl>(ArgDRE->getDecl())) 3034 if (D->getCanonicalDecl()->getName().find("std") != StringRef::npos) 3035 return true; 3036 } 3037 } 3038 3039 // A bunch of other functions which either take ownership of a pointer or 3040 // wrap the result up in a struct or object, meaning it can be freed later. 3041 // (See RetainCountChecker.) Not all the parameters here are invalidated, 3042 // but the Malloc checker cannot differentiate between them. The right way 3043 // of doing this would be to implement a pointer escapes callback. 3044 if (FName == "CGBitmapContextCreate" || 3045 FName == "CGBitmapContextCreateWithData" || 3046 FName == "CVPixelBufferCreateWithBytes" || 3047 FName == "CVPixelBufferCreateWithPlanarBytes" || 3048 FName == "OSAtomicEnqueue") { 3049 return true; 3050 } 3051 3052 if (FName == "postEvent" && 3053 FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") { 3054 return true; 3055 } 3056 3057 if (FName == "postEvent" && 3058 FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") { 3059 return true; 3060 } 3061 3062 if (FName == "connectImpl" && 3063 FD->getQualifiedNameAsString() == "QObject::connectImpl") { 3064 return true; 3065 } 3066 3067 // Handle cases where we know a buffer's /address/ can escape. 3068 // Note that the above checks handle some special cases where we know that 3069 // even though the address escapes, it's still our responsibility to free the 3070 // buffer. 3071 if (Call->argumentsMayEscape()) 3072 return true; 3073 3074 // Otherwise, assume that the function does not free memory. 3075 // Most system calls do not free the memory. 3076 return false; 3077 } 3078 3079 static bool checkIfNewOrNewArrayFamily(const RefState *RS) { 3080 return (RS->getAllocationFamily() == AF_CXXNewArray || 3081 RS->getAllocationFamily() == AF_CXXNew); 3082 } 3083 3084 ProgramStateRef MallocChecker::checkPointerEscape(ProgramStateRef State, 3085 const InvalidatedSymbols &Escaped, 3086 const CallEvent *Call, 3087 PointerEscapeKind Kind) const { 3088 return checkPointerEscapeAux(State, Escaped, Call, Kind, 3089 /*IsConstPointerEscape*/ false); 3090 } 3091 3092 ProgramStateRef MallocChecker::checkConstPointerEscape(ProgramStateRef State, 3093 const InvalidatedSymbols &Escaped, 3094 const CallEvent *Call, 3095 PointerEscapeKind Kind) const { 3096 // If a const pointer escapes, it may not be freed(), but it could be deleted. 3097 return checkPointerEscapeAux(State, Escaped, Call, Kind, 3098 /*IsConstPointerEscape*/ true); 3099 } 3100 3101 ProgramStateRef MallocChecker::checkPointerEscapeAux( 3102 ProgramStateRef State, 3103 const InvalidatedSymbols &Escaped, 3104 const CallEvent *Call, 3105 PointerEscapeKind Kind, 3106 bool IsConstPointerEscape) const { 3107 // If we know that the call does not free memory, or we want to process the 3108 // call later, keep tracking the top level arguments. 3109 SymbolRef EscapingSymbol = nullptr; 3110 if (Kind == PSK_DirectEscapeOnCall && 3111 !mayFreeAnyEscapedMemoryOrIsModeledExplicitly(Call, State, 3112 EscapingSymbol) && 3113 !EscapingSymbol) { 3114 return State; 3115 } 3116 3117 for (InvalidatedSymbols::const_iterator I = Escaped.begin(), 3118 E = Escaped.end(); 3119 I != E; ++I) { 3120 SymbolRef sym = *I; 3121 3122 if (EscapingSymbol && EscapingSymbol != sym) 3123 continue; 3124 3125 if (const RefState *RS = State->get<RegionState>(sym)) { 3126 if ((RS->isAllocated() || RS->isAllocatedOfSizeZero())) { 3127 if (!IsConstPointerEscape || checkIfNewOrNewArrayFamily(RS)) { 3128 State = State->remove<RegionState>(sym); 3129 State = State->set<RegionState>(sym, RefState::getEscaped(RS)); 3130 } 3131 } 3132 } 3133 } 3134 return State; 3135 } 3136 3137 static SymbolRef findFailedReallocSymbol(ProgramStateRef currState, 3138 ProgramStateRef prevState) { 3139 ReallocPairsTy currMap = currState->get<ReallocPairs>(); 3140 ReallocPairsTy prevMap = prevState->get<ReallocPairs>(); 3141 3142 for (const ReallocPairsTy::value_type &Pair : prevMap) { 3143 SymbolRef sym = Pair.first; 3144 if (!currMap.lookup(sym)) 3145 return sym; 3146 } 3147 3148 return nullptr; 3149 } 3150 3151 static bool isReferenceCountingPointerDestructor(const CXXDestructorDecl *DD) { 3152 if (const IdentifierInfo *II = DD->getParent()->getIdentifier()) { 3153 StringRef N = II->getName(); 3154 if (N.contains_lower("ptr") || N.contains_lower("pointer")) { 3155 if (N.contains_lower("ref") || N.contains_lower("cnt") || 3156 N.contains_lower("intrusive") || N.contains_lower("shared")) { 3157 return true; 3158 } 3159 } 3160 } 3161 return false; 3162 } 3163 3164 std::shared_ptr<PathDiagnosticPiece> MallocBugVisitor::VisitNode( 3165 const ExplodedNode *N, BugReporterContext &BRC, BugReport &BR) { 3166 3167 ProgramStateRef state = N->getState(); 3168 ProgramStateRef statePrev = N->getFirstPred()->getState(); 3169 3170 const RefState *RSCurr = state->get<RegionState>(Sym); 3171 const RefState *RSPrev = statePrev->get<RegionState>(Sym); 3172 3173 const Stmt *S = PathDiagnosticLocation::getStmt(N); 3174 // When dealing with containers, we sometimes want to give a note 3175 // even if the statement is missing. 3176 if (!S && (!RSCurr || RSCurr->getAllocationFamily() != AF_InnerBuffer)) 3177 return nullptr; 3178 3179 const LocationContext *CurrentLC = N->getLocationContext(); 3180 3181 // If we find an atomic fetch_add or fetch_sub within the destructor in which 3182 // the pointer was released (before the release), this is likely a destructor 3183 // of a shared pointer. 3184 // Because we don't model atomics, and also because we don't know that the 3185 // original reference count is positive, we should not report use-after-frees 3186 // on objects deleted in such destructors. This can probably be improved 3187 // through better shared pointer modeling. 3188 if (ReleaseDestructorLC) { 3189 if (const auto *AE = dyn_cast<AtomicExpr>(S)) { 3190 AtomicExpr::AtomicOp Op = AE->getOp(); 3191 if (Op == AtomicExpr::AO__c11_atomic_fetch_add || 3192 Op == AtomicExpr::AO__c11_atomic_fetch_sub) { 3193 if (ReleaseDestructorLC == CurrentLC || 3194 ReleaseDestructorLC->isParentOf(CurrentLC)) { 3195 BR.markInvalid(getTag(), S); 3196 } 3197 } 3198 } 3199 } 3200 3201 // FIXME: We will eventually need to handle non-statement-based events 3202 // (__attribute__((cleanup))). 3203 3204 // Find out if this is an interesting point and what is the kind. 3205 StringRef Msg; 3206 StackHintGeneratorForSymbol *StackHint = nullptr; 3207 SmallString<256> Buf; 3208 llvm::raw_svector_ostream OS(Buf); 3209 3210 if (Mode == Normal) { 3211 if (isAllocated(RSCurr, RSPrev, S)) { 3212 Msg = "Memory is allocated"; 3213 StackHint = new StackHintGeneratorForSymbol(Sym, 3214 "Returned allocated memory"); 3215 } else if (isReleased(RSCurr, RSPrev, S)) { 3216 const auto Family = RSCurr->getAllocationFamily(); 3217 switch (Family) { 3218 case AF_Alloca: 3219 case AF_Malloc: 3220 case AF_CXXNew: 3221 case AF_CXXNewArray: 3222 case AF_IfNameIndex: 3223 Msg = "Memory is released"; 3224 StackHint = new StackHintGeneratorForSymbol(Sym, 3225 "Returning; memory was released"); 3226 break; 3227 case AF_InnerBuffer: { 3228 const MemRegion *ObjRegion = 3229 allocation_state::getContainerObjRegion(statePrev, Sym); 3230 const auto *TypedRegion = cast<TypedValueRegion>(ObjRegion); 3231 QualType ObjTy = TypedRegion->getValueType(); 3232 OS << "Inner buffer of '" << ObjTy.getAsString() << "' "; 3233 3234 if (N->getLocation().getKind() == ProgramPoint::PostImplicitCallKind) { 3235 OS << "deallocated by call to destructor"; 3236 StackHint = new StackHintGeneratorForSymbol(Sym, 3237 "Returning; inner buffer was deallocated"); 3238 } else { 3239 OS << "reallocated by call to '"; 3240 const Stmt *S = RSCurr->getStmt(); 3241 if (const auto *MemCallE = dyn_cast<CXXMemberCallExpr>(S)) { 3242 OS << MemCallE->getMethodDecl()->getNameAsString(); 3243 } else if (const auto *OpCallE = dyn_cast<CXXOperatorCallExpr>(S)) { 3244 OS << OpCallE->getDirectCallee()->getNameAsString(); 3245 } else if (const auto *CallE = dyn_cast<CallExpr>(S)) { 3246 auto &CEMgr = BRC.getStateManager().getCallEventManager(); 3247 CallEventRef<> Call = CEMgr.getSimpleCall(CallE, state, CurrentLC); 3248 const auto *D = dyn_cast_or_null<NamedDecl>(Call->getDecl()); 3249 OS << (D ? D->getNameAsString() : "unknown"); 3250 } 3251 OS << "'"; 3252 StackHint = new StackHintGeneratorForSymbol(Sym, 3253 "Returning; inner buffer was reallocated"); 3254 } 3255 Msg = OS.str(); 3256 break; 3257 } 3258 case AF_None: 3259 llvm_unreachable("Unhandled allocation family!"); 3260 } 3261 3262 // See if we're releasing memory while inlining a destructor 3263 // (or one of its callees). This turns on various common 3264 // false positive suppressions. 3265 bool FoundAnyDestructor = false; 3266 for (const LocationContext *LC = CurrentLC; LC; LC = LC->getParent()) { 3267 if (const auto *DD = dyn_cast<CXXDestructorDecl>(LC->getDecl())) { 3268 if (isReferenceCountingPointerDestructor(DD)) { 3269 // This immediately looks like a reference-counting destructor. 3270 // We're bad at guessing the original reference count of the object, 3271 // so suppress the report for now. 3272 BR.markInvalid(getTag(), DD); 3273 } else if (!FoundAnyDestructor) { 3274 assert(!ReleaseDestructorLC && 3275 "There can be only one release point!"); 3276 // Suspect that it's a reference counting pointer destructor. 3277 // On one of the next nodes might find out that it has atomic 3278 // reference counting operations within it (see the code above), 3279 // and if so, we'd conclude that it likely is a reference counting 3280 // pointer destructor. 3281 ReleaseDestructorLC = LC->getStackFrame(); 3282 // It is unlikely that releasing memory is delegated to a destructor 3283 // inside a destructor of a shared pointer, because it's fairly hard 3284 // to pass the information that the pointer indeed needs to be 3285 // released into it. So we're only interested in the innermost 3286 // destructor. 3287 FoundAnyDestructor = true; 3288 } 3289 } 3290 } 3291 } else if (isRelinquished(RSCurr, RSPrev, S)) { 3292 Msg = "Memory ownership is transferred"; 3293 StackHint = new StackHintGeneratorForSymbol(Sym, ""); 3294 } else if (hasReallocFailed(RSCurr, RSPrev, S)) { 3295 Mode = ReallocationFailed; 3296 Msg = "Reallocation failed"; 3297 StackHint = new StackHintGeneratorForReallocationFailed(Sym, 3298 "Reallocation failed"); 3299 3300 if (SymbolRef sym = findFailedReallocSymbol(state, statePrev)) { 3301 // Is it possible to fail two reallocs WITHOUT testing in between? 3302 assert((!FailedReallocSymbol || FailedReallocSymbol == sym) && 3303 "We only support one failed realloc at a time."); 3304 BR.markInteresting(sym); 3305 FailedReallocSymbol = sym; 3306 } 3307 } 3308 3309 // We are in a special mode if a reallocation failed later in the path. 3310 } else if (Mode == ReallocationFailed) { 3311 assert(FailedReallocSymbol && "No symbol to look for."); 3312 3313 // Is this is the first appearance of the reallocated symbol? 3314 if (!statePrev->get<RegionState>(FailedReallocSymbol)) { 3315 // We're at the reallocation point. 3316 Msg = "Attempt to reallocate memory"; 3317 StackHint = new StackHintGeneratorForSymbol(Sym, 3318 "Returned reallocated memory"); 3319 FailedReallocSymbol = nullptr; 3320 Mode = Normal; 3321 } 3322 } 3323 3324 if (Msg.empty()) 3325 return nullptr; 3326 assert(StackHint); 3327 3328 // Generate the extra diagnostic. 3329 PathDiagnosticLocation Pos; 3330 if (!S) { 3331 assert(RSCurr->getAllocationFamily() == AF_InnerBuffer); 3332 auto PostImplCall = N->getLocation().getAs<PostImplicitCall>(); 3333 if (!PostImplCall) 3334 return nullptr; 3335 Pos = PathDiagnosticLocation(PostImplCall->getLocation(), 3336 BRC.getSourceManager()); 3337 } else { 3338 Pos = PathDiagnosticLocation(S, BRC.getSourceManager(), 3339 N->getLocationContext()); 3340 } 3341 3342 return std::make_shared<PathDiagnosticEventPiece>(Pos, Msg, true, StackHint); 3343 } 3344 3345 void MallocChecker::printState(raw_ostream &Out, ProgramStateRef State, 3346 const char *NL, const char *Sep) const { 3347 3348 RegionStateTy RS = State->get<RegionState>(); 3349 3350 if (!RS.isEmpty()) { 3351 Out << Sep << "MallocChecker :" << NL; 3352 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 3353 const RefState *RefS = State->get<RegionState>(I.getKey()); 3354 AllocationFamily Family = RefS->getAllocationFamily(); 3355 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 3356 if (!CheckKind.hasValue()) 3357 CheckKind = getCheckIfTracked(Family, true); 3358 3359 I.getKey()->dumpToStream(Out); 3360 Out << " : "; 3361 I.getData().dump(Out); 3362 if (CheckKind.hasValue()) 3363 Out << " (" << CheckNames[*CheckKind].getName() << ")"; 3364 Out << NL; 3365 } 3366 } 3367 } 3368 3369 namespace clang { 3370 namespace ento { 3371 namespace allocation_state { 3372 3373 ProgramStateRef 3374 markReleased(ProgramStateRef State, SymbolRef Sym, const Expr *Origin) { 3375 AllocationFamily Family = AF_InnerBuffer; 3376 return State->set<RegionState>(Sym, RefState::getReleased(Family, Origin)); 3377 } 3378 3379 } // end namespace allocation_state 3380 } // end namespace ento 3381 } // end namespace clang 3382 3383 void ento::registerNewDeleteLeaksChecker(CheckerManager &mgr) { 3384 registerCStringCheckerBasic(mgr); 3385 MallocChecker *checker = mgr.registerChecker<MallocChecker>(); 3386 3387 checker->MemFunctionInfo.ShouldIncludeOwnershipAnnotatedFunctions = 3388 mgr.getAnalyzerOptions().getCheckerBooleanOption( 3389 "Optimistic", false, checker); 3390 3391 checker->ChecksEnabled[MallocChecker::CK_NewDeleteLeaksChecker] = true; 3392 checker->CheckNames[MallocChecker::CK_NewDeleteLeaksChecker] = 3393 mgr.getCurrentCheckName(); 3394 // We currently treat NewDeleteLeaks checker as a subchecker of NewDelete 3395 // checker. 3396 if (!checker->ChecksEnabled[MallocChecker::CK_NewDeleteChecker]) { 3397 checker->ChecksEnabled[MallocChecker::CK_NewDeleteChecker] = true; 3398 // FIXME: This does not set the correct name, but without this workaround 3399 // no name will be set at all. 3400 checker->CheckNames[MallocChecker::CK_NewDeleteChecker] = 3401 mgr.getCurrentCheckName(); 3402 } 3403 } 3404 3405 // Intended to be used in InnerPointerChecker to register the part of 3406 // MallocChecker connected to it. 3407 void ento::registerInnerPointerCheckerAux(CheckerManager &mgr) { 3408 registerCStringCheckerBasic(mgr); 3409 MallocChecker *checker = mgr.registerChecker<MallocChecker>(); 3410 3411 checker->MemFunctionInfo.ShouldIncludeOwnershipAnnotatedFunctions = 3412 mgr.getAnalyzerOptions().getCheckerBooleanOption( 3413 "Optimistic", false, checker); 3414 3415 checker->ChecksEnabled[MallocChecker::CK_InnerPointerChecker] = true; 3416 checker->CheckNames[MallocChecker::CK_InnerPointerChecker] = 3417 mgr.getCurrentCheckName(); 3418 } 3419 3420 #define REGISTER_CHECKER(name) \ 3421 void ento::register##name(CheckerManager &mgr) { \ 3422 registerCStringCheckerBasic(mgr); \ 3423 MallocChecker *checker = mgr.registerChecker<MallocChecker>(); \ 3424 checker->MemFunctionInfo.ShouldIncludeOwnershipAnnotatedFunctions = \ 3425 mgr.getAnalyzerOptions().getCheckerBooleanOption( \ 3426 "Optimistic", false, checker);\ 3427 checker->ChecksEnabled[MallocChecker::CK_##name] = true; \ 3428 checker->CheckNames[MallocChecker::CK_##name] = mgr.getCurrentCheckName(); \ 3429 } 3430 3431 REGISTER_CHECKER(MallocChecker) 3432 REGISTER_CHECKER(NewDeleteChecker) 3433 REGISTER_CHECKER(MismatchedDeallocatorChecker) 3434