xref: /llvm-project/clang/lib/StaticAnalyzer/Checkers/MallocChecker.cpp (revision a651c4099d3875dd1a1ef6556ee71c915ae72b29)
1 //=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines malloc/free checker, which checks for potential memory
11 // leaks, double free, and use-after-free problems.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "ClangSACheckers.h"
16 #include "InterCheckerAPI.h"
17 #include "clang/StaticAnalyzer/Core/Checker.h"
18 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
19 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
20 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
21 #include "clang/StaticAnalyzer/Core/PathSensitive/ObjCMessage.h"
22 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
23 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
24 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
25 #include "clang/Basic/SourceManager.h"
26 #include "llvm/ADT/ImmutableMap.h"
27 #include "llvm/ADT/SmallString.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include <climits>
30 
31 using namespace clang;
32 using namespace ento;
33 
34 namespace {
35 
36 class RefState {
37   enum Kind { AllocateUnchecked, AllocateFailed, Released, Escaped,
38               Relinquished } K;
39   const Stmt *S;
40 
41 public:
42   RefState(Kind k, const Stmt *s) : K(k), S(s) {}
43 
44   bool isAllocated() const { return K == AllocateUnchecked; }
45   bool isReleased() const { return K == Released; }
46 
47   const Stmt *getStmt() const { return S; }
48 
49   bool operator==(const RefState &X) const {
50     return K == X.K && S == X.S;
51   }
52 
53   static RefState getAllocateUnchecked(const Stmt *s) {
54     return RefState(AllocateUnchecked, s);
55   }
56   static RefState getAllocateFailed() {
57     return RefState(AllocateFailed, 0);
58   }
59   static RefState getReleased(const Stmt *s) { return RefState(Released, s); }
60   static RefState getEscaped(const Stmt *s) { return RefState(Escaped, s); }
61   static RefState getRelinquished(const Stmt *s) {
62     return RefState(Relinquished, s);
63   }
64 
65   void Profile(llvm::FoldingSetNodeID &ID) const {
66     ID.AddInteger(K);
67     ID.AddPointer(S);
68   }
69 };
70 
71 struct ReallocPair {
72   SymbolRef ReallocatedSym;
73   bool IsFreeOnFailure;
74   ReallocPair(SymbolRef S, bool F) : ReallocatedSym(S), IsFreeOnFailure(F) {}
75   void Profile(llvm::FoldingSetNodeID &ID) const {
76     ID.AddInteger(IsFreeOnFailure);
77     ID.AddPointer(ReallocatedSym);
78   }
79   bool operator==(const ReallocPair &X) const {
80     return ReallocatedSym == X.ReallocatedSym &&
81            IsFreeOnFailure == X.IsFreeOnFailure;
82   }
83 };
84 
85 typedef std::pair<const Stmt*, const MemRegion*> LeakInfo;
86 
87 class MallocChecker : public Checker<check::DeadSymbols,
88                                      check::EndPath,
89                                      check::PreStmt<ReturnStmt>,
90                                      check::PreStmt<CallExpr>,
91                                      check::PostStmt<CallExpr>,
92                                      check::PostStmt<BlockExpr>,
93                                      check::Location,
94                                      check::Bind,
95                                      eval::Assume,
96                                      check::RegionChanges>
97 {
98   mutable OwningPtr<BugType> BT_DoubleFree;
99   mutable OwningPtr<BugType> BT_Leak;
100   mutable OwningPtr<BugType> BT_UseFree;
101   mutable OwningPtr<BugType> BT_BadFree;
102   mutable IdentifierInfo *II_malloc, *II_free, *II_realloc, *II_calloc,
103                          *II_valloc, *II_reallocf, *II_strndup, *II_strdup;
104 
105 public:
106   MallocChecker() : II_malloc(0), II_free(0), II_realloc(0), II_calloc(0),
107                     II_valloc(0), II_reallocf(0), II_strndup(0), II_strdup(0) {}
108 
109   /// In pessimistic mode, the checker assumes that it does not know which
110   /// functions might free the memory.
111   struct ChecksFilter {
112     DefaultBool CMallocPessimistic;
113     DefaultBool CMallocOptimistic;
114   };
115 
116   ChecksFilter Filter;
117 
118   void checkPreStmt(const CallExpr *S, CheckerContext &C) const;
119   void checkPostStmt(const CallExpr *CE, CheckerContext &C) const;
120   void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const;
121   void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const;
122   void checkEndPath(CheckerContext &C) const;
123   void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const;
124   ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond,
125                             bool Assumption) const;
126   void checkLocation(SVal l, bool isLoad, const Stmt *S,
127                      CheckerContext &C) const;
128   void checkBind(SVal location, SVal val, const Stmt*S,
129                  CheckerContext &C) const;
130   ProgramStateRef
131   checkRegionChanges(ProgramStateRef state,
132                      const StoreManager::InvalidatedSymbols *invalidated,
133                      ArrayRef<const MemRegion *> ExplicitRegions,
134                      ArrayRef<const MemRegion *> Regions,
135                      const CallOrObjCMessage *Call) const;
136   bool wantsRegionChangeUpdate(ProgramStateRef state) const {
137     return true;
138   }
139 
140 private:
141   void initIdentifierInfo(ASTContext &C) const;
142 
143   /// Check if this is one of the functions which can allocate/reallocate memory
144   /// pointed to by one of its arguments.
145   bool isMemFunction(const FunctionDecl *FD, ASTContext &C) const;
146 
147   static ProgramStateRef MallocMemReturnsAttr(CheckerContext &C,
148                                               const CallExpr *CE,
149                                               const OwnershipAttr* Att);
150   static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE,
151                                      const Expr *SizeEx, SVal Init,
152                                      ProgramStateRef state) {
153     return MallocMemAux(C, CE,
154                         state->getSVal(SizeEx, C.getLocationContext()),
155                         Init, state);
156   }
157 
158   static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE,
159                                      SVal SizeEx, SVal Init,
160                                      ProgramStateRef state);
161 
162   /// Update the RefState to reflect the new memory allocation.
163   static ProgramStateRef MallocUpdateRefState(CheckerContext &C,
164                                               const CallExpr *CE,
165                                               ProgramStateRef state);
166 
167   ProgramStateRef FreeMemAttr(CheckerContext &C, const CallExpr *CE,
168                               const OwnershipAttr* Att) const;
169   ProgramStateRef FreeMemAux(CheckerContext &C, const CallExpr *CE,
170                                  ProgramStateRef state, unsigned Num,
171                                  bool Hold) const;
172 
173   ProgramStateRef ReallocMem(CheckerContext &C, const CallExpr *CE,
174                              bool FreesMemOnFailure) const;
175   static ProgramStateRef CallocMem(CheckerContext &C, const CallExpr *CE);
176 
177   bool checkEscape(SymbolRef Sym, const Stmt *S, CheckerContext &C) const;
178   bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C,
179                          const Stmt *S = 0) const;
180 
181   /// Check if the function is not known to us. So, for example, we could
182   /// conservatively assume it can free/reallocate it's pointer arguments.
183   bool doesNotFreeMemory(const CallOrObjCMessage *Call,
184                          ProgramStateRef State) const;
185 
186   static bool SummarizeValue(raw_ostream &os, SVal V);
187   static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR);
188   void ReportBadFree(CheckerContext &C, SVal ArgVal, SourceRange range) const;
189 
190   /// Find the location of the allocation for Sym on the path leading to the
191   /// exploded node N.
192   LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym,
193                              CheckerContext &C) const;
194 
195   void reportLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const;
196 
197   /// The bug visitor which allows us to print extra diagnostics along the
198   /// BugReport path. For example, showing the allocation site of the leaked
199   /// region.
200   class MallocBugVisitor : public BugReporterVisitorImpl<MallocBugVisitor> {
201   protected:
202     enum NotificationMode {
203       Normal,
204       ReallocationFailed
205     };
206 
207     // The allocated region symbol tracked by the main analysis.
208     SymbolRef Sym;
209 
210      // The mode we are in, i.e. what kind of diagnostics will be emitted.
211      NotificationMode Mode;
212 
213      // A symbol from when the primary region should have been reallocated.
214      SymbolRef FailedReallocSymbol;
215 
216    public:
217      MallocBugVisitor(SymbolRef S)
218        : Sym(S), Mode(Normal), FailedReallocSymbol(0) {}
219 
220     virtual ~MallocBugVisitor() {}
221 
222     void Profile(llvm::FoldingSetNodeID &ID) const {
223       static int X = 0;
224       ID.AddPointer(&X);
225       ID.AddPointer(Sym);
226     }
227 
228     inline bool isAllocated(const RefState *S, const RefState *SPrev,
229                             const Stmt *Stmt) {
230       // Did not track -> allocated. Other state (released) -> allocated.
231       return (Stmt && isa<CallExpr>(Stmt) &&
232               (S && S->isAllocated()) && (!SPrev || !SPrev->isAllocated()));
233     }
234 
235     inline bool isReleased(const RefState *S, const RefState *SPrev,
236                            const Stmt *Stmt) {
237       // Did not track -> released. Other state (allocated) -> released.
238       return (Stmt && isa<CallExpr>(Stmt) &&
239               (S && S->isReleased()) && (!SPrev || !SPrev->isReleased()));
240     }
241 
242     inline bool isReallocFailedCheck(const RefState *S, const RefState *SPrev,
243                                      const Stmt *Stmt) {
244       // If the expression is not a call, and the state change is
245       // released -> allocated, it must be the realloc return value
246       // check. If we have to handle more cases here, it might be cleaner just
247       // to track this extra bit in the state itself.
248       return ((!Stmt || !isa<CallExpr>(Stmt)) &&
249               (S && S->isAllocated()) && (SPrev && !SPrev->isAllocated()));
250     }
251 
252     PathDiagnosticPiece *VisitNode(const ExplodedNode *N,
253                                    const ExplodedNode *PrevN,
254                                    BugReporterContext &BRC,
255                                    BugReport &BR);
256   private:
257     class StackHintGeneratorForReallocationFailed
258         : public StackHintGeneratorForSymbol {
259     public:
260       StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M)
261         : StackHintGeneratorForSymbol(S, M) {}
262 
263       virtual std::string getMessageForArg(const Expr *ArgE, unsigned ArgIndex) {
264         SmallString<200> buf;
265         llvm::raw_svector_ostream os(buf);
266 
267         os << "Reallocation of ";
268         // Printed parameters start at 1, not 0.
269         printOrdinal(++ArgIndex, os);
270         os << " parameter failed";
271 
272         return os.str();
273       }
274 
275       virtual std::string getMessageForReturn(const CallExpr *CallExpr) {
276         return "Reallocation of returned value failed";
277       }
278     };
279   };
280 };
281 } // end anonymous namespace
282 
283 typedef llvm::ImmutableMap<SymbolRef, RefState> RegionStateTy;
284 typedef llvm::ImmutableMap<SymbolRef, ReallocPair > ReallocMap;
285 class RegionState {};
286 class ReallocPairs {};
287 namespace clang {
288 namespace ento {
289   template <>
290   struct ProgramStateTrait<RegionState>
291     : public ProgramStatePartialTrait<RegionStateTy> {
292     static void *GDMIndex() { static int x; return &x; }
293   };
294 
295   template <>
296   struct ProgramStateTrait<ReallocPairs>
297     : public ProgramStatePartialTrait<ReallocMap> {
298     static void *GDMIndex() { static int x; return &x; }
299   };
300 }
301 }
302 
303 namespace {
304 class StopTrackingCallback : public SymbolVisitor {
305   ProgramStateRef state;
306 public:
307   StopTrackingCallback(ProgramStateRef st) : state(st) {}
308   ProgramStateRef getState() const { return state; }
309 
310   bool VisitSymbol(SymbolRef sym) {
311     state = state->remove<RegionState>(sym);
312     return true;
313   }
314 };
315 } // end anonymous namespace
316 
317 void MallocChecker::initIdentifierInfo(ASTContext &Ctx) const {
318   if (!II_malloc)
319     II_malloc = &Ctx.Idents.get("malloc");
320   if (!II_free)
321     II_free = &Ctx.Idents.get("free");
322   if (!II_realloc)
323     II_realloc = &Ctx.Idents.get("realloc");
324   if (!II_reallocf)
325     II_reallocf = &Ctx.Idents.get("reallocf");
326   if (!II_calloc)
327     II_calloc = &Ctx.Idents.get("calloc");
328   if (!II_valloc)
329     II_valloc = &Ctx.Idents.get("valloc");
330   if (!II_strdup)
331     II_strdup = &Ctx.Idents.get("strdup");
332   if (!II_strndup)
333     II_strndup = &Ctx.Idents.get("strndup");
334 }
335 
336 bool MallocChecker::isMemFunction(const FunctionDecl *FD, ASTContext &C) const {
337   if (!FD)
338     return false;
339   IdentifierInfo *FunI = FD->getIdentifier();
340   if (!FunI)
341     return false;
342 
343   initIdentifierInfo(C);
344 
345   if (FunI == II_malloc || FunI == II_free || FunI == II_realloc ||
346       FunI == II_reallocf || FunI == II_calloc || FunI == II_valloc ||
347       FunI == II_strdup || FunI == II_strndup)
348     return true;
349 
350   if (Filter.CMallocOptimistic && FD->hasAttrs() &&
351       FD->specific_attr_begin<OwnershipAttr>() !=
352           FD->specific_attr_end<OwnershipAttr>())
353     return true;
354 
355 
356   return false;
357 }
358 
359 void MallocChecker::checkPostStmt(const CallExpr *CE, CheckerContext &C) const {
360   const FunctionDecl *FD = C.getCalleeDecl(CE);
361   if (!FD)
362     return;
363 
364   initIdentifierInfo(C.getASTContext());
365   IdentifierInfo *FunI = FD->getIdentifier();
366   if (!FunI)
367     return;
368 
369   ProgramStateRef State = C.getState();
370   if (FunI == II_malloc || FunI == II_valloc) {
371     State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State);
372   } else if (FunI == II_realloc) {
373     State = ReallocMem(C, CE, false);
374   } else if (FunI == II_reallocf) {
375     State = ReallocMem(C, CE, true);
376   } else if (FunI == II_calloc) {
377     State = CallocMem(C, CE);
378   } else if (FunI == II_free) {
379     State = FreeMemAux(C, CE, C.getState(), 0, false);
380   } else if (FunI == II_strdup) {
381     State = MallocUpdateRefState(C, CE, State);
382   } else if (FunI == II_strndup) {
383     State = MallocUpdateRefState(C, CE, State);
384   } else if (Filter.CMallocOptimistic) {
385     // Check all the attributes, if there are any.
386     // There can be multiple of these attributes.
387     if (FD->hasAttrs())
388       for (specific_attr_iterator<OwnershipAttr>
389           i = FD->specific_attr_begin<OwnershipAttr>(),
390           e = FD->specific_attr_end<OwnershipAttr>();
391           i != e; ++i) {
392         switch ((*i)->getOwnKind()) {
393         case OwnershipAttr::Returns:
394           State = MallocMemReturnsAttr(C, CE, *i);
395           break;
396         case OwnershipAttr::Takes:
397         case OwnershipAttr::Holds:
398           State = FreeMemAttr(C, CE, *i);
399           break;
400         }
401       }
402   }
403   C.addTransition(State);
404 }
405 
406 ProgramStateRef MallocChecker::MallocMemReturnsAttr(CheckerContext &C,
407                                                     const CallExpr *CE,
408                                                     const OwnershipAttr* Att) {
409   if (Att->getModule() != "malloc")
410     return 0;
411 
412   OwnershipAttr::args_iterator I = Att->args_begin(), E = Att->args_end();
413   if (I != E) {
414     return MallocMemAux(C, CE, CE->getArg(*I), UndefinedVal(), C.getState());
415   }
416   return MallocMemAux(C, CE, UnknownVal(), UndefinedVal(), C.getState());
417 }
418 
419 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C,
420                                            const CallExpr *CE,
421                                            SVal Size, SVal Init,
422                                            ProgramStateRef state) {
423   // Get the return value.
424   SVal retVal = state->getSVal(CE, C.getLocationContext());
425 
426   // We expect the malloc functions to return a pointer.
427   if (!isa<Loc>(retVal))
428     return 0;
429 
430   // Fill the region with the initialization value.
431   state = state->bindDefault(retVal, Init);
432 
433   // Set the region's extent equal to the Size parameter.
434   const SymbolicRegion *R =
435       dyn_cast_or_null<SymbolicRegion>(retVal.getAsRegion());
436   if (!R)
437     return 0;
438   if (isa<DefinedOrUnknownSVal>(Size)) {
439     SValBuilder &svalBuilder = C.getSValBuilder();
440     DefinedOrUnknownSVal Extent = R->getExtent(svalBuilder);
441     DefinedOrUnknownSVal DefinedSize = cast<DefinedOrUnknownSVal>(Size);
442     DefinedOrUnknownSVal extentMatchesSize =
443         svalBuilder.evalEQ(state, Extent, DefinedSize);
444 
445     state = state->assume(extentMatchesSize, true);
446     assert(state);
447   }
448 
449   return MallocUpdateRefState(C, CE, state);
450 }
451 
452 ProgramStateRef MallocChecker::MallocUpdateRefState(CheckerContext &C,
453                                                     const CallExpr *CE,
454                                                     ProgramStateRef state) {
455   // Get the return value.
456   SVal retVal = state->getSVal(CE, C.getLocationContext());
457 
458   // We expect the malloc functions to return a pointer.
459   if (!isa<Loc>(retVal))
460     return 0;
461 
462   SymbolRef Sym = retVal.getAsLocSymbol();
463   assert(Sym);
464 
465   // Set the symbol's state to Allocated.
466   return state->set<RegionState>(Sym, RefState::getAllocateUnchecked(CE));
467 
468 }
469 
470 ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C,
471                                            const CallExpr *CE,
472                                            const OwnershipAttr* Att) const {
473   if (Att->getModule() != "malloc")
474     return 0;
475 
476   ProgramStateRef State = C.getState();
477 
478   for (OwnershipAttr::args_iterator I = Att->args_begin(), E = Att->args_end();
479        I != E; ++I) {
480     ProgramStateRef StateI = FreeMemAux(C, CE, State, *I,
481                                Att->getOwnKind() == OwnershipAttr::Holds);
482     if (StateI)
483       State = StateI;
484   }
485   return State;
486 }
487 
488 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C,
489                                           const CallExpr *CE,
490                                           ProgramStateRef state,
491                                           unsigned Num,
492                                           bool Hold) const {
493   const Expr *ArgExpr = CE->getArg(Num);
494   SVal ArgVal = state->getSVal(ArgExpr, C.getLocationContext());
495   if (!isa<DefinedOrUnknownSVal>(ArgVal))
496     return 0;
497   DefinedOrUnknownSVal location = cast<DefinedOrUnknownSVal>(ArgVal);
498 
499   // Check for null dereferences.
500   if (!isa<Loc>(location))
501     return 0;
502 
503   // The explicit NULL case, no operation is performed.
504   ProgramStateRef notNullState, nullState;
505   llvm::tie(notNullState, nullState) = state->assume(location);
506   if (nullState && !notNullState)
507     return 0;
508 
509   // Unknown values could easily be okay
510   // Undefined values are handled elsewhere
511   if (ArgVal.isUnknownOrUndef())
512     return 0;
513 
514   const MemRegion *R = ArgVal.getAsRegion();
515 
516   // Nonlocs can't be freed, of course.
517   // Non-region locations (labels and fixed addresses) also shouldn't be freed.
518   if (!R) {
519     ReportBadFree(C, ArgVal, ArgExpr->getSourceRange());
520     return 0;
521   }
522 
523   R = R->StripCasts();
524 
525   // Blocks might show up as heap data, but should not be free()d
526   if (isa<BlockDataRegion>(R)) {
527     ReportBadFree(C, ArgVal, ArgExpr->getSourceRange());
528     return 0;
529   }
530 
531   const MemSpaceRegion *MS = R->getMemorySpace();
532 
533   // Parameters, locals, statics, and globals shouldn't be freed.
534   if (!(isa<UnknownSpaceRegion>(MS) || isa<HeapSpaceRegion>(MS))) {
535     // FIXME: at the time this code was written, malloc() regions were
536     // represented by conjured symbols, which are all in UnknownSpaceRegion.
537     // This means that there isn't actually anything from HeapSpaceRegion
538     // that should be freed, even though we allow it here.
539     // Of course, free() can work on memory allocated outside the current
540     // function, so UnknownSpaceRegion is always a possibility.
541     // False negatives are better than false positives.
542 
543     ReportBadFree(C, ArgVal, ArgExpr->getSourceRange());
544     return 0;
545   }
546 
547   const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R);
548   // Various cases could lead to non-symbol values here.
549   // For now, ignore them.
550   if (!SR)
551     return 0;
552 
553   SymbolRef Sym = SR->getSymbol();
554   const RefState *RS = state->get<RegionState>(Sym);
555 
556   // If the symbol has not been tracked, return. This is possible when free() is
557   // called on a pointer that does not get its pointee directly from malloc().
558   // Full support of this requires inter-procedural analysis.
559   if (!RS)
560     return 0;
561 
562   // Check double free.
563   if (RS->isReleased()) {
564     if (ExplodedNode *N = C.generateSink()) {
565       if (!BT_DoubleFree)
566         BT_DoubleFree.reset(
567           new BugType("Double free", "Memory Error"));
568       BugReport *R = new BugReport(*BT_DoubleFree,
569                         "Attempt to free released memory", N);
570       R->addRange(ArgExpr->getSourceRange());
571       R->markInteresting(Sym);
572       R->addVisitor(new MallocBugVisitor(Sym));
573       C.EmitReport(R);
574     }
575     return 0;
576   }
577 
578   // Normal free.
579   if (Hold)
580     return state->set<RegionState>(Sym, RefState::getRelinquished(CE));
581   return state->set<RegionState>(Sym, RefState::getReleased(CE));
582 }
583 
584 bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) {
585   if (nonloc::ConcreteInt *IntVal = dyn_cast<nonloc::ConcreteInt>(&V))
586     os << "an integer (" << IntVal->getValue() << ")";
587   else if (loc::ConcreteInt *ConstAddr = dyn_cast<loc::ConcreteInt>(&V))
588     os << "a constant address (" << ConstAddr->getValue() << ")";
589   else if (loc::GotoLabel *Label = dyn_cast<loc::GotoLabel>(&V))
590     os << "the address of the label '" << Label->getLabel()->getName() << "'";
591   else
592     return false;
593 
594   return true;
595 }
596 
597 bool MallocChecker::SummarizeRegion(raw_ostream &os,
598                                     const MemRegion *MR) {
599   switch (MR->getKind()) {
600   case MemRegion::FunctionTextRegionKind: {
601     const FunctionDecl *FD = cast<FunctionTextRegion>(MR)->getDecl();
602     if (FD)
603       os << "the address of the function '" << *FD << '\'';
604     else
605       os << "the address of a function";
606     return true;
607   }
608   case MemRegion::BlockTextRegionKind:
609     os << "block text";
610     return true;
611   case MemRegion::BlockDataRegionKind:
612     // FIXME: where the block came from?
613     os << "a block";
614     return true;
615   default: {
616     const MemSpaceRegion *MS = MR->getMemorySpace();
617 
618     if (isa<StackLocalsSpaceRegion>(MS)) {
619       const VarRegion *VR = dyn_cast<VarRegion>(MR);
620       const VarDecl *VD;
621       if (VR)
622         VD = VR->getDecl();
623       else
624         VD = NULL;
625 
626       if (VD)
627         os << "the address of the local variable '" << VD->getName() << "'";
628       else
629         os << "the address of a local stack variable";
630       return true;
631     }
632 
633     if (isa<StackArgumentsSpaceRegion>(MS)) {
634       const VarRegion *VR = dyn_cast<VarRegion>(MR);
635       const VarDecl *VD;
636       if (VR)
637         VD = VR->getDecl();
638       else
639         VD = NULL;
640 
641       if (VD)
642         os << "the address of the parameter '" << VD->getName() << "'";
643       else
644         os << "the address of a parameter";
645       return true;
646     }
647 
648     if (isa<GlobalsSpaceRegion>(MS)) {
649       const VarRegion *VR = dyn_cast<VarRegion>(MR);
650       const VarDecl *VD;
651       if (VR)
652         VD = VR->getDecl();
653       else
654         VD = NULL;
655 
656       if (VD) {
657         if (VD->isStaticLocal())
658           os << "the address of the static variable '" << VD->getName() << "'";
659         else
660           os << "the address of the global variable '" << VD->getName() << "'";
661       } else
662         os << "the address of a global variable";
663       return true;
664     }
665 
666     return false;
667   }
668   }
669 }
670 
671 void MallocChecker::ReportBadFree(CheckerContext &C, SVal ArgVal,
672                                   SourceRange range) const {
673   if (ExplodedNode *N = C.generateSink()) {
674     if (!BT_BadFree)
675       BT_BadFree.reset(new BugType("Bad free", "Memory Error"));
676 
677     SmallString<100> buf;
678     llvm::raw_svector_ostream os(buf);
679 
680     const MemRegion *MR = ArgVal.getAsRegion();
681     if (MR) {
682       while (const ElementRegion *ER = dyn_cast<ElementRegion>(MR))
683         MR = ER->getSuperRegion();
684 
685       // Special case for alloca()
686       if (isa<AllocaRegion>(MR))
687         os << "Argument to free() was allocated by alloca(), not malloc()";
688       else {
689         os << "Argument to free() is ";
690         if (SummarizeRegion(os, MR))
691           os << ", which is not memory allocated by malloc()";
692         else
693           os << "not memory allocated by malloc()";
694       }
695     } else {
696       os << "Argument to free() is ";
697       if (SummarizeValue(os, ArgVal))
698         os << ", which is not memory allocated by malloc()";
699       else
700         os << "not memory allocated by malloc()";
701     }
702 
703     BugReport *R = new BugReport(*BT_BadFree, os.str(), N);
704     R->markInteresting(MR);
705     R->addRange(range);
706     C.EmitReport(R);
707   }
708 }
709 
710 ProgramStateRef MallocChecker::ReallocMem(CheckerContext &C,
711                                           const CallExpr *CE,
712                                           bool FreesOnFail) const {
713   ProgramStateRef state = C.getState();
714   const Expr *arg0Expr = CE->getArg(0);
715   const LocationContext *LCtx = C.getLocationContext();
716   SVal Arg0Val = state->getSVal(arg0Expr, LCtx);
717   if (!isa<DefinedOrUnknownSVal>(Arg0Val))
718     return 0;
719   DefinedOrUnknownSVal arg0Val = cast<DefinedOrUnknownSVal>(Arg0Val);
720 
721   SValBuilder &svalBuilder = C.getSValBuilder();
722 
723   DefinedOrUnknownSVal PtrEQ =
724     svalBuilder.evalEQ(state, arg0Val, svalBuilder.makeNull());
725 
726   // Get the size argument. If there is no size arg then give up.
727   const Expr *Arg1 = CE->getArg(1);
728   if (!Arg1)
729     return 0;
730 
731   // Get the value of the size argument.
732   SVal Arg1ValG = state->getSVal(Arg1, LCtx);
733   if (!isa<DefinedOrUnknownSVal>(Arg1ValG))
734     return 0;
735   DefinedOrUnknownSVal Arg1Val = cast<DefinedOrUnknownSVal>(Arg1ValG);
736 
737   // Compare the size argument to 0.
738   DefinedOrUnknownSVal SizeZero =
739     svalBuilder.evalEQ(state, Arg1Val,
740                        svalBuilder.makeIntValWithPtrWidth(0, false));
741 
742   ProgramStateRef StatePtrIsNull, StatePtrNotNull;
743   llvm::tie(StatePtrIsNull, StatePtrNotNull) = state->assume(PtrEQ);
744   ProgramStateRef StateSizeIsZero, StateSizeNotZero;
745   llvm::tie(StateSizeIsZero, StateSizeNotZero) = state->assume(SizeZero);
746   // We only assume exceptional states if they are definitely true; if the
747   // state is under-constrained, assume regular realloc behavior.
748   bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull;
749   bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero;
750 
751   // If the ptr is NULL and the size is not 0, the call is equivalent to
752   // malloc(size).
753   if ( PrtIsNull && !SizeIsZero) {
754     ProgramStateRef stateMalloc = MallocMemAux(C, CE, CE->getArg(1),
755                                                UndefinedVal(), StatePtrIsNull);
756     return stateMalloc;
757   }
758 
759   if (PrtIsNull && SizeIsZero)
760     return 0;
761 
762   // Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size).
763   assert(!PrtIsNull);
764   SymbolRef FromPtr = arg0Val.getAsSymbol();
765   SVal RetVal = state->getSVal(CE, LCtx);
766   SymbolRef ToPtr = RetVal.getAsSymbol();
767   if (!FromPtr || !ToPtr)
768     return 0;
769 
770   // If the size is 0, free the memory.
771   if (SizeIsZero)
772     if (ProgramStateRef stateFree = FreeMemAux(C, CE, StateSizeIsZero,0,false)){
773       // The semantics of the return value are:
774       // If size was equal to 0, either NULL or a pointer suitable to be passed
775       // to free() is returned.
776       stateFree = stateFree->set<ReallocPairs>(ToPtr,
777                                             ReallocPair(FromPtr, FreesOnFail));
778       C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr);
779       return stateFree;
780     }
781 
782   // Default behavior.
783   if (ProgramStateRef stateFree = FreeMemAux(C, CE, state, 0, false)) {
784     // FIXME: We should copy the content of the original buffer.
785     ProgramStateRef stateRealloc = MallocMemAux(C, CE, CE->getArg(1),
786                                                 UnknownVal(), stateFree);
787     if (!stateRealloc)
788       return 0;
789     stateRealloc = stateRealloc->set<ReallocPairs>(ToPtr,
790                                             ReallocPair(FromPtr, FreesOnFail));
791     C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr);
792     return stateRealloc;
793   }
794   return 0;
795 }
796 
797 ProgramStateRef MallocChecker::CallocMem(CheckerContext &C, const CallExpr *CE){
798   ProgramStateRef state = C.getState();
799   SValBuilder &svalBuilder = C.getSValBuilder();
800   const LocationContext *LCtx = C.getLocationContext();
801   SVal count = state->getSVal(CE->getArg(0), LCtx);
802   SVal elementSize = state->getSVal(CE->getArg(1), LCtx);
803   SVal TotalSize = svalBuilder.evalBinOp(state, BO_Mul, count, elementSize,
804                                         svalBuilder.getContext().getSizeType());
805   SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy);
806 
807   return MallocMemAux(C, CE, TotalSize, zeroVal, state);
808 }
809 
810 LeakInfo
811 MallocChecker::getAllocationSite(const ExplodedNode *N, SymbolRef Sym,
812                                  CheckerContext &C) const {
813   const LocationContext *LeakContext = N->getLocationContext();
814   // Walk the ExplodedGraph backwards and find the first node that referred to
815   // the tracked symbol.
816   const ExplodedNode *AllocNode = N;
817   const MemRegion *ReferenceRegion = 0;
818 
819   while (N) {
820     ProgramStateRef State = N->getState();
821     if (!State->get<RegionState>(Sym))
822       break;
823 
824     // Find the most recent expression bound to the symbol in the current
825     // context.
826     if (!ReferenceRegion) {
827       if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) {
828         SVal Val = State->getSVal(MR);
829         if (Val.getAsLocSymbol() == Sym)
830           ReferenceRegion = MR;
831       }
832     }
833 
834     // Allocation node, is the last node in the current context in which the
835     // symbol was tracked.
836     if (N->getLocationContext() == LeakContext)
837       AllocNode = N;
838     N = N->pred_empty() ? NULL : *(N->pred_begin());
839   }
840 
841   ProgramPoint P = AllocNode->getLocation();
842   const Stmt *AllocationStmt = 0;
843   if (isa<StmtPoint>(P))
844     AllocationStmt = cast<StmtPoint>(P).getStmt();
845 
846   return LeakInfo(AllocationStmt, ReferenceRegion);
847 }
848 
849 void MallocChecker::reportLeak(SymbolRef Sym, ExplodedNode *N,
850                                CheckerContext &C) const {
851   assert(N);
852   if (!BT_Leak) {
853     BT_Leak.reset(new BugType("Memory leak", "Memory Error"));
854     // Leaks should not be reported if they are post-dominated by a sink:
855     // (1) Sinks are higher importance bugs.
856     // (2) NoReturnFunctionChecker uses sink nodes to represent paths ending
857     //     with __noreturn functions such as assert() or exit(). We choose not
858     //     to report leaks on such paths.
859     BT_Leak->setSuppressOnSink(true);
860   }
861 
862   // Most bug reports are cached at the location where they occurred.
863   // With leaks, we want to unique them by the location where they were
864   // allocated, and only report a single path.
865   PathDiagnosticLocation LocUsedForUniqueing;
866   const Stmt *AllocStmt = 0;
867   const MemRegion *Region = 0;
868   llvm::tie(AllocStmt, Region) = getAllocationSite(N, Sym, C);
869   if (AllocStmt)
870     LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocStmt,
871                             C.getSourceManager(), N->getLocationContext());
872 
873   SmallString<200> buf;
874   llvm::raw_svector_ostream os(buf);
875   os << "Memory is never released; potential leak";
876   if (Region) {
877     os << " of memory pointed to by '";
878     Region->dumpPretty(os);
879     os <<'\'';
880   }
881 
882   BugReport *R = new BugReport(*BT_Leak, os.str(), N, LocUsedForUniqueing);
883   R->markInteresting(Sym);
884   R->addVisitor(new MallocBugVisitor(Sym));
885   C.EmitReport(R);
886 }
887 
888 void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper,
889                                      CheckerContext &C) const
890 {
891   if (!SymReaper.hasDeadSymbols())
892     return;
893 
894   ProgramStateRef state = C.getState();
895   RegionStateTy RS = state->get<RegionState>();
896   RegionStateTy::Factory &F = state->get_context<RegionState>();
897 
898   bool generateReport = false;
899   llvm::SmallVector<SymbolRef, 2> Errors;
900   for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) {
901     if (SymReaper.isDead(I->first)) {
902       if (I->second.isAllocated()) {
903         generateReport = true;
904         Errors.push_back(I->first);
905       }
906       // Remove the dead symbol from the map.
907       RS = F.remove(RS, I->first);
908 
909     }
910   }
911 
912   // Cleanup the Realloc Pairs Map.
913   ReallocMap RP = state->get<ReallocPairs>();
914   for (ReallocMap::iterator I = RP.begin(), E = RP.end(); I != E; ++I) {
915     if (SymReaper.isDead(I->first) ||
916         SymReaper.isDead(I->second.ReallocatedSym)) {
917       state = state->remove<ReallocPairs>(I->first);
918     }
919   }
920 
921   // Generate leak node.
922   static SimpleProgramPointTag Tag("MallocChecker : DeadSymbolsLeak");
923   ExplodedNode *N = C.addTransition(C.getState(), C.getPredecessor(), &Tag);
924 
925   if (generateReport) {
926     for (llvm::SmallVector<SymbolRef, 2>::iterator
927          I = Errors.begin(), E = Errors.end(); I != E; ++I) {
928       reportLeak(*I, N, C);
929     }
930   }
931   C.addTransition(state->set<RegionState>(RS), N);
932 }
933 
934 void MallocChecker::checkEndPath(CheckerContext &C) const {
935   ProgramStateRef state = C.getState();
936   RegionStateTy M = state->get<RegionState>();
937 
938   // If inside inlined call, skip it.
939   if (C.getLocationContext()->getParent() != 0)
940     return;
941 
942   for (RegionStateTy::iterator I = M.begin(), E = M.end(); I != E; ++I) {
943     RefState RS = I->second;
944     if (RS.isAllocated()) {
945       ExplodedNode *N = C.addTransition(state);
946       if (N)
947         reportLeak(I->first, N, C);
948     }
949   }
950 }
951 
952 bool MallocChecker::checkEscape(SymbolRef Sym, const Stmt *S,
953                                 CheckerContext &C) const {
954   ProgramStateRef state = C.getState();
955   const RefState *RS = state->get<RegionState>(Sym);
956   if (!RS)
957     return false;
958 
959   if (RS->isAllocated()) {
960     state = state->set<RegionState>(Sym, RefState::getEscaped(S));
961     C.addTransition(state);
962     return true;
963   }
964   return false;
965 }
966 
967 void MallocChecker::checkPreStmt(const CallExpr *CE, CheckerContext &C) const {
968   if (isMemFunction(C.getCalleeDecl(CE), C.getASTContext()))
969     return;
970 
971   // Check use after free, when a freed pointer is passed to a call.
972   ProgramStateRef State = C.getState();
973   for (CallExpr::const_arg_iterator I = CE->arg_begin(),
974                                     E = CE->arg_end(); I != E; ++I) {
975     const Expr *A = *I;
976     if (A->getType().getTypePtr()->isAnyPointerType()) {
977       SymbolRef Sym = State->getSVal(A, C.getLocationContext()).getAsSymbol();
978       if (!Sym)
979         continue;
980       if (checkUseAfterFree(Sym, C, A))
981         return;
982     }
983   }
984 }
985 
986 void MallocChecker::checkPreStmt(const ReturnStmt *S, CheckerContext &C) const {
987   const Expr *E = S->getRetValue();
988   if (!E)
989     return;
990 
991   // Check if we are returning a symbol.
992   SVal RetVal = C.getState()->getSVal(E, C.getLocationContext());
993   SymbolRef Sym = RetVal.getAsSymbol();
994   if (!Sym)
995     // If we are returning a field of the allocated struct or an array element,
996     // the callee could still free the memory.
997     // TODO: This logic should be a part of generic symbol escape callback.
998     if (const MemRegion *MR = RetVal.getAsRegion())
999       if (isa<FieldRegion>(MR) || isa<ElementRegion>(MR))
1000         if (const SymbolicRegion *BMR =
1001               dyn_cast<SymbolicRegion>(MR->getBaseRegion()))
1002           Sym = BMR->getSymbol();
1003   if (!Sym)
1004     return;
1005 
1006   // Check if we are returning freed memory.
1007   if (checkUseAfterFree(Sym, C, E))
1008     return;
1009 
1010   // If this function body is not inlined, check if the symbol is escaping.
1011   if (C.getLocationContext()->getParent() == 0)
1012     checkEscape(Sym, E, C);
1013 }
1014 
1015 // TODO: Blocks should be either inlined or should call invalidate regions
1016 // upon invocation. After that's in place, special casing here will not be
1017 // needed.
1018 void MallocChecker::checkPostStmt(const BlockExpr *BE,
1019                                   CheckerContext &C) const {
1020 
1021   // Scan the BlockDecRefExprs for any object the retain count checker
1022   // may be tracking.
1023   if (!BE->getBlockDecl()->hasCaptures())
1024     return;
1025 
1026   ProgramStateRef state = C.getState();
1027   const BlockDataRegion *R =
1028     cast<BlockDataRegion>(state->getSVal(BE,
1029                                          C.getLocationContext()).getAsRegion());
1030 
1031   BlockDataRegion::referenced_vars_iterator I = R->referenced_vars_begin(),
1032                                             E = R->referenced_vars_end();
1033 
1034   if (I == E)
1035     return;
1036 
1037   SmallVector<const MemRegion*, 10> Regions;
1038   const LocationContext *LC = C.getLocationContext();
1039   MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager();
1040 
1041   for ( ; I != E; ++I) {
1042     const VarRegion *VR = *I;
1043     if (VR->getSuperRegion() == R) {
1044       VR = MemMgr.getVarRegion(VR->getDecl(), LC);
1045     }
1046     Regions.push_back(VR);
1047   }
1048 
1049   state =
1050     state->scanReachableSymbols<StopTrackingCallback>(Regions.data(),
1051                                     Regions.data() + Regions.size()).getState();
1052   C.addTransition(state);
1053 }
1054 
1055 bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C,
1056                                       const Stmt *S) const {
1057   assert(Sym);
1058   const RefState *RS = C.getState()->get<RegionState>(Sym);
1059   if (RS && RS->isReleased()) {
1060     if (ExplodedNode *N = C.generateSink()) {
1061       if (!BT_UseFree)
1062         BT_UseFree.reset(new BugType("Use-after-free", "Memory Error"));
1063 
1064       BugReport *R = new BugReport(*BT_UseFree,
1065                                    "Use of memory after it is freed",N);
1066       if (S)
1067         R->addRange(S->getSourceRange());
1068       R->markInteresting(Sym);
1069       R->addVisitor(new MallocBugVisitor(Sym));
1070       C.EmitReport(R);
1071       return true;
1072     }
1073   }
1074   return false;
1075 }
1076 
1077 // Check if the location is a freed symbolic region.
1078 void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S,
1079                                   CheckerContext &C) const {
1080   SymbolRef Sym = l.getLocSymbolInBase();
1081   if (Sym)
1082     checkUseAfterFree(Sym, C);
1083 }
1084 
1085 //===----------------------------------------------------------------------===//
1086 // Check various ways a symbol can be invalidated.
1087 // TODO: This logic (the next 3 functions) is copied/similar to the
1088 // RetainRelease checker. We might want to factor this out.
1089 //===----------------------------------------------------------------------===//
1090 
1091 // Stop tracking symbols when a value escapes as a result of checkBind.
1092 // A value escapes in three possible cases:
1093 // (1) we are binding to something that is not a memory region.
1094 // (2) we are binding to a memregion that does not have stack storage
1095 // (3) we are binding to a memregion with stack storage that the store
1096 //     does not understand.
1097 void MallocChecker::checkBind(SVal loc, SVal val, const Stmt *S,
1098                               CheckerContext &C) const {
1099   // Are we storing to something that causes the value to "escape"?
1100   bool escapes = true;
1101   ProgramStateRef state = C.getState();
1102 
1103   if (loc::MemRegionVal *regionLoc = dyn_cast<loc::MemRegionVal>(&loc)) {
1104     escapes = !regionLoc->getRegion()->hasStackStorage();
1105 
1106     if (!escapes) {
1107       // To test (3), generate a new state with the binding added.  If it is
1108       // the same state, then it escapes (since the store cannot represent
1109       // the binding).
1110       escapes = (state == (state->bindLoc(*regionLoc, val)));
1111     }
1112     if (!escapes) {
1113       // Case 4: We do not currently model what happens when a symbol is
1114       // assigned to a struct field, so be conservative here and let the symbol
1115       // go. TODO: This could definitely be improved upon.
1116       escapes = !isa<VarRegion>(regionLoc->getRegion());
1117     }
1118   }
1119 
1120   // If our store can represent the binding and we aren't storing to something
1121   // that doesn't have local storage then just return and have the simulation
1122   // state continue as is.
1123   if (!escapes)
1124       return;
1125 
1126   // Otherwise, find all symbols referenced by 'val' that we are tracking
1127   // and stop tracking them.
1128   state = state->scanReachableSymbols<StopTrackingCallback>(val).getState();
1129   C.addTransition(state);
1130 }
1131 
1132 // If a symbolic region is assumed to NULL (or another constant), stop tracking
1133 // it - assuming that allocation failed on this path.
1134 ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state,
1135                                               SVal Cond,
1136                                               bool Assumption) const {
1137   RegionStateTy RS = state->get<RegionState>();
1138   for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) {
1139     // If the symbol is assumed to NULL or another constant, this will
1140     // return an APSInt*.
1141     if (state->getSymVal(I.getKey()))
1142       state = state->remove<RegionState>(I.getKey());
1143   }
1144 
1145   // Realloc returns 0 when reallocation fails, which means that we should
1146   // restore the state of the pointer being reallocated.
1147   ReallocMap RP = state->get<ReallocPairs>();
1148   for (ReallocMap::iterator I = RP.begin(), E = RP.end(); I != E; ++I) {
1149     // If the symbol is assumed to NULL or another constant, this will
1150     // return an APSInt*.
1151     if (state->getSymVal(I.getKey())) {
1152       SymbolRef ReallocSym = I.getData().ReallocatedSym;
1153       const RefState *RS = state->get<RegionState>(ReallocSym);
1154       if (RS) {
1155         if (RS->isReleased() && ! I.getData().IsFreeOnFailure)
1156           state = state->set<RegionState>(ReallocSym,
1157                              RefState::getAllocateUnchecked(RS->getStmt()));
1158       }
1159       state = state->remove<ReallocPairs>(I.getKey());
1160     }
1161   }
1162 
1163   return state;
1164 }
1165 
1166 // Check if the function is known to us. So, for example, we could
1167 // conservatively assume it can free/reallocate it's pointer arguments.
1168 // (We assume that the pointers cannot escape through calls to system
1169 // functions not handled by this checker.)
1170 bool MallocChecker::doesNotFreeMemory(const CallOrObjCMessage *Call,
1171                                       ProgramStateRef State) const {
1172   if (!Call)
1173     return false;
1174 
1175   // For now, assume that any C++ call can free memory.
1176   // TODO: If we want to be more optimistic here, we'll need to make sure that
1177   // regions escape to C++ containers. They seem to do that even now, but for
1178   // mysterious reasons.
1179   if (Call->isCXXCall())
1180     return false;
1181 
1182   const Decl *D = Call->getDecl();
1183   if (!D)
1184     return false;
1185 
1186   ASTContext &ASTC = State->getStateManager().getContext();
1187 
1188   // If it's one of the allocation functions we can reason about, we model
1189   // its behavior explicitly.
1190   if (isa<FunctionDecl>(D) && isMemFunction(cast<FunctionDecl>(D), ASTC)) {
1191     return true;
1192   }
1193 
1194   // If it's not a system call, assume it frees memory.
1195   SourceManager &SM = ASTC.getSourceManager();
1196   if (!SM.isInSystemHeader(D->getLocation()))
1197     return false;
1198 
1199   // Process C/ObjC functions.
1200   if (const FunctionDecl *FD  = dyn_cast<FunctionDecl>(D)) {
1201     // White list the system functions whose arguments escape.
1202     const IdentifierInfo *II = FD->getIdentifier();
1203     if (!II)
1204       return true;
1205     StringRef FName = II->getName();
1206 
1207     // White list thread local storage.
1208     if (FName.equals("pthread_setspecific"))
1209       return false;
1210 
1211     // White list the 'XXXNoCopy' ObjC functions.
1212     if (FName.endswith("NoCopy")) {
1213       // Look for the deallocator argument. We know that the memory ownership
1214       // is not transfered only if the deallocator argument is
1215       // 'kCFAllocatorNull'.
1216       for (unsigned i = 1; i < Call->getNumArgs(); ++i) {
1217         const Expr *ArgE = Call->getArg(i)->IgnoreParenCasts();
1218         if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(ArgE)) {
1219           StringRef DeallocatorName = DE->getFoundDecl()->getName();
1220           if (DeallocatorName == "kCFAllocatorNull")
1221             return true;
1222         }
1223       }
1224       return false;
1225     }
1226 
1227     // PR12101
1228     // Many CoreFoundation and CoreGraphics might allow a tracked object
1229     // to escape.
1230     if (Call->isCFCGAllowingEscape(FName))
1231       return false;
1232 
1233     // Associating streams with malloced buffers. The pointer can escape if
1234     // 'closefn' is specified (and if that function does free memory).
1235     // Currently, we do not inspect the 'closefn' function (PR12101).
1236     if (FName == "funopen")
1237       if (Call->getNumArgs() >= 4 && !Call->getArgSVal(4).isConstant(0))
1238         return false;
1239 
1240     // Do not warn on pointers passed to 'setbuf' when used with std streams,
1241     // these leaks might be intentional when setting the buffer for stdio.
1242     // http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer
1243     if (FName == "setbuf" || FName =="setbuffer" ||
1244         FName == "setlinebuf" || FName == "setvbuf") {
1245       if (Call->getNumArgs() >= 1)
1246         if (const DeclRefExpr *Arg =
1247               dyn_cast<DeclRefExpr>(Call->getArg(0)->IgnoreParenCasts()))
1248           if (const VarDecl *D = dyn_cast<VarDecl>(Arg->getDecl()))
1249               if (D->getCanonicalDecl()->getName().find("std")
1250                                                    != StringRef::npos)
1251                 return false;
1252     }
1253 
1254     // A bunch of other functions, which take ownership of a pointer (See retain
1255     // release checker). Not all the parameters here are invalidated, but the
1256     // Malloc checker cannot differentiate between them. The right way of doing
1257     // this would be to implement a pointer escapes callback.
1258     if (FName == "CVPixelBufferCreateWithBytes" ||
1259         FName == "CGBitmapContextCreateWithData" ||
1260         FName == "CVPixelBufferCreateWithPlanarBytes" ||
1261         FName == "OSAtomicEnqueue") {
1262       return false;
1263     }
1264 
1265     // Otherwise, assume that the function does not free memory.
1266     // Most system calls, do not free the memory.
1267     return true;
1268 
1269   // Process ObjC functions.
1270   } else if (const ObjCMethodDecl * ObjCD = dyn_cast<ObjCMethodDecl>(D)) {
1271     Selector S = ObjCD->getSelector();
1272 
1273     // White list the ObjC functions which do free memory.
1274     // - Anything containing 'freeWhenDone' param set to 1.
1275     //   Ex: dataWithBytesNoCopy:length:freeWhenDone.
1276     for (unsigned i = 1; i < S.getNumArgs(); ++i) {
1277       if (S.getNameForSlot(i).equals("freeWhenDone")) {
1278         if (Call->getArgSVal(i).isConstant(1))
1279           return false;
1280         else
1281           return true;
1282       }
1283     }
1284 
1285     // If the first selector ends with NoCopy, assume that the ownership is
1286     // transfered as well.
1287     // Ex:  [NSData dataWithBytesNoCopy:bytes length:10];
1288     if (S.getNameForSlot(0).endswith("NoCopy")) {
1289       return false;
1290     }
1291 
1292     // Otherwise, assume that the function does not free memory.
1293     // Most system calls, do not free the memory.
1294     return true;
1295   }
1296 
1297   // Otherwise, assume that the function can free memory.
1298   return false;
1299 
1300 }
1301 
1302 // If the symbol we are tracking is invalidated, but not explicitly (ex: the &p
1303 // escapes, when we are tracking p), do not track the symbol as we cannot reason
1304 // about it anymore.
1305 ProgramStateRef
1306 MallocChecker::checkRegionChanges(ProgramStateRef State,
1307                             const StoreManager::InvalidatedSymbols *invalidated,
1308                                     ArrayRef<const MemRegion *> ExplicitRegions,
1309                                     ArrayRef<const MemRegion *> Regions,
1310                                     const CallOrObjCMessage *Call) const {
1311   if (!invalidated || invalidated->empty())
1312     return State;
1313   llvm::SmallPtrSet<SymbolRef, 8> WhitelistedSymbols;
1314 
1315   // If it's a call which might free or reallocate memory, we assume that all
1316   // regions (explicit and implicit) escaped.
1317 
1318   // Otherwise, whitelist explicit pointers; we still can track them.
1319   if (!Call || doesNotFreeMemory(Call, State)) {
1320     for (ArrayRef<const MemRegion *>::iterator I = ExplicitRegions.begin(),
1321         E = ExplicitRegions.end(); I != E; ++I) {
1322       if (const SymbolicRegion *R = (*I)->StripCasts()->getAs<SymbolicRegion>())
1323         WhitelistedSymbols.insert(R->getSymbol());
1324     }
1325   }
1326 
1327   for (StoreManager::InvalidatedSymbols::const_iterator I=invalidated->begin(),
1328        E = invalidated->end(); I!=E; ++I) {
1329     SymbolRef sym = *I;
1330     if (WhitelistedSymbols.count(sym))
1331       continue;
1332     // The symbol escaped.
1333     if (const RefState *RS = State->get<RegionState>(sym))
1334       State = State->set<RegionState>(sym, RefState::getEscaped(RS->getStmt()));
1335   }
1336   return State;
1337 }
1338 
1339 static SymbolRef findFailedReallocSymbol(ProgramStateRef currState,
1340                                          ProgramStateRef prevState) {
1341   ReallocMap currMap = currState->get<ReallocPairs>();
1342   ReallocMap prevMap = prevState->get<ReallocPairs>();
1343 
1344   for (ReallocMap::iterator I = prevMap.begin(), E = prevMap.end();
1345        I != E; ++I) {
1346     SymbolRef sym = I.getKey();
1347     if (!currMap.lookup(sym))
1348       return sym;
1349   }
1350 
1351   return NULL;
1352 }
1353 
1354 PathDiagnosticPiece *
1355 MallocChecker::MallocBugVisitor::VisitNode(const ExplodedNode *N,
1356                                            const ExplodedNode *PrevN,
1357                                            BugReporterContext &BRC,
1358                                            BugReport &BR) {
1359   ProgramStateRef state = N->getState();
1360   ProgramStateRef statePrev = PrevN->getState();
1361 
1362   const RefState *RS = state->get<RegionState>(Sym);
1363   const RefState *RSPrev = statePrev->get<RegionState>(Sym);
1364   if (!RS && !RSPrev)
1365     return 0;
1366 
1367   const Stmt *S = 0;
1368   const char *Msg = 0;
1369   StackHintGeneratorForSymbol *StackHint = 0;
1370 
1371   // Retrieve the associated statement.
1372   ProgramPoint ProgLoc = N->getLocation();
1373   if (isa<StmtPoint>(ProgLoc))
1374     S = cast<StmtPoint>(ProgLoc).getStmt();
1375   // If an assumption was made on a branch, it should be caught
1376   // here by looking at the state transition.
1377   if (isa<BlockEdge>(ProgLoc)) {
1378     const CFGBlock *srcBlk = cast<BlockEdge>(ProgLoc).getSrc();
1379     S = srcBlk->getTerminator();
1380   }
1381   if (!S)
1382     return 0;
1383 
1384   // Find out if this is an interesting point and what is the kind.
1385   if (Mode == Normal) {
1386     if (isAllocated(RS, RSPrev, S)) {
1387       Msg = "Memory is allocated";
1388       StackHint = new StackHintGeneratorForSymbol(Sym,
1389                                                   "Returned allocated memory");
1390     } else if (isReleased(RS, RSPrev, S)) {
1391       Msg = "Memory is released";
1392       StackHint = new StackHintGeneratorForSymbol(Sym,
1393                                                   "Returned released memory");
1394     } else if (isReallocFailedCheck(RS, RSPrev, S)) {
1395       Mode = ReallocationFailed;
1396       Msg = "Reallocation failed";
1397       StackHint = new StackHintGeneratorForReallocationFailed(Sym,
1398                                                        "Reallocation failed");
1399 
1400       if (SymbolRef sym = findFailedReallocSymbol(state, statePrev)) {
1401         // Is it possible to fail two reallocs WITHOUT testing in between?
1402         assert((!FailedReallocSymbol || FailedReallocSymbol == sym) &&
1403           "We only support one failed realloc at a time.");
1404         BR.markInteresting(sym);
1405         FailedReallocSymbol = sym;
1406       }
1407     }
1408 
1409   // We are in a special mode if a reallocation failed later in the path.
1410   } else if (Mode == ReallocationFailed) {
1411     assert(FailedReallocSymbol && "No symbol to look for.");
1412 
1413     // Is this is the first appearance of the reallocated symbol?
1414     if (!statePrev->get<RegionState>(FailedReallocSymbol)) {
1415       // If we ever hit this assert, that means BugReporter has decided to skip
1416       // node pairs or visit them out of order.
1417       assert(state->get<RegionState>(FailedReallocSymbol) &&
1418         "Missed the reallocation point");
1419 
1420       // We're at the reallocation point.
1421       Msg = "Attempt to reallocate memory";
1422       StackHint = new StackHintGeneratorForSymbol(Sym,
1423                                                  "Returned reallocated memory");
1424       FailedReallocSymbol = NULL;
1425       Mode = Normal;
1426     }
1427   }
1428 
1429   if (!Msg)
1430     return 0;
1431   assert(StackHint);
1432 
1433   // Generate the extra diagnostic.
1434   PathDiagnosticLocation Pos(S, BRC.getSourceManager(),
1435                              N->getLocationContext());
1436   return new PathDiagnosticEventPiece(Pos, Msg, true, StackHint);
1437 }
1438 
1439 
1440 #define REGISTER_CHECKER(name) \
1441 void ento::register##name(CheckerManager &mgr) {\
1442   registerCStringCheckerBasic(mgr); \
1443   mgr.registerChecker<MallocChecker>()->Filter.C##name = true;\
1444 }
1445 
1446 REGISTER_CHECKER(MallocPessimistic)
1447 REGISTER_CHECKER(MallocOptimistic)
1448