1 //=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines malloc/free checker, which checks for potential memory 11 // leaks, double free, and use-after-free problems. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" 16 #include "InterCheckerAPI.h" 17 #include "clang/AST/Attr.h" 18 #include "clang/AST/ParentMap.h" 19 #include "clang/Basic/SourceManager.h" 20 #include "clang/Basic/TargetInfo.h" 21 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 22 #include "clang/StaticAnalyzer/Core/BugReporter/CommonBugCategories.h" 23 #include "clang/StaticAnalyzer/Core/Checker.h" 24 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 25 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 26 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 27 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 28 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 29 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/StringExtras.h" 33 #include "AllocationState.h" 34 #include <climits> 35 #include <utility> 36 37 using namespace clang; 38 using namespace ento; 39 40 namespace { 41 42 // Used to check correspondence between allocators and deallocators. 43 enum AllocationFamily { 44 AF_None, 45 AF_Malloc, 46 AF_CXXNew, 47 AF_CXXNewArray, 48 AF_IfNameIndex, 49 AF_Alloca, 50 AF_InnerBuffer 51 }; 52 53 class RefState { 54 enum Kind { // Reference to allocated memory. 55 Allocated, 56 // Reference to zero-allocated memory. 57 AllocatedOfSizeZero, 58 // Reference to released/freed memory. 59 Released, 60 // The responsibility for freeing resources has transferred from 61 // this reference. A relinquished symbol should not be freed. 62 Relinquished, 63 // We are no longer guaranteed to have observed all manipulations 64 // of this pointer/memory. For example, it could have been 65 // passed as a parameter to an opaque function. 66 Escaped 67 }; 68 69 const Stmt *S; 70 unsigned K : 3; // Kind enum, but stored as a bitfield. 71 unsigned Family : 29; // Rest of 32-bit word, currently just an allocation 72 // family. 73 74 RefState(Kind k, const Stmt *s, unsigned family) 75 : S(s), K(k), Family(family) { 76 assert(family != AF_None); 77 } 78 public: 79 bool isAllocated() const { return K == Allocated; } 80 bool isAllocatedOfSizeZero() const { return K == AllocatedOfSizeZero; } 81 bool isReleased() const { return K == Released; } 82 bool isRelinquished() const { return K == Relinquished; } 83 bool isEscaped() const { return K == Escaped; } 84 AllocationFamily getAllocationFamily() const { 85 return (AllocationFamily)Family; 86 } 87 const Stmt *getStmt() const { return S; } 88 89 bool operator==(const RefState &X) const { 90 return K == X.K && S == X.S && Family == X.Family; 91 } 92 93 static RefState getAllocated(unsigned family, const Stmt *s) { 94 return RefState(Allocated, s, family); 95 } 96 static RefState getAllocatedOfSizeZero(const RefState *RS) { 97 return RefState(AllocatedOfSizeZero, RS->getStmt(), 98 RS->getAllocationFamily()); 99 } 100 static RefState getReleased(unsigned family, const Stmt *s) { 101 return RefState(Released, s, family); 102 } 103 static RefState getRelinquished(unsigned family, const Stmt *s) { 104 return RefState(Relinquished, s, family); 105 } 106 static RefState getEscaped(const RefState *RS) { 107 return RefState(Escaped, RS->getStmt(), RS->getAllocationFamily()); 108 } 109 110 void Profile(llvm::FoldingSetNodeID &ID) const { 111 ID.AddInteger(K); 112 ID.AddPointer(S); 113 ID.AddInteger(Family); 114 } 115 116 void dump(raw_ostream &OS) const { 117 switch (static_cast<Kind>(K)) { 118 #define CASE(ID) case ID: OS << #ID; break; 119 CASE(Allocated) 120 CASE(AllocatedOfSizeZero) 121 CASE(Released) 122 CASE(Relinquished) 123 CASE(Escaped) 124 } 125 } 126 127 LLVM_DUMP_METHOD void dump() const { dump(llvm::errs()); } 128 }; 129 130 enum ReallocPairKind { 131 RPToBeFreedAfterFailure, 132 // The symbol has been freed when reallocation failed. 133 RPIsFreeOnFailure, 134 // The symbol does not need to be freed after reallocation fails. 135 RPDoNotTrackAfterFailure 136 }; 137 138 /// \class ReallocPair 139 /// Stores information about the symbol being reallocated by a call to 140 /// 'realloc' to allow modeling failed reallocation later in the path. 141 struct ReallocPair { 142 // The symbol which realloc reallocated. 143 SymbolRef ReallocatedSym; 144 ReallocPairKind Kind; 145 146 ReallocPair(SymbolRef S, ReallocPairKind K) : 147 ReallocatedSym(S), Kind(K) {} 148 void Profile(llvm::FoldingSetNodeID &ID) const { 149 ID.AddInteger(Kind); 150 ID.AddPointer(ReallocatedSym); 151 } 152 bool operator==(const ReallocPair &X) const { 153 return ReallocatedSym == X.ReallocatedSym && 154 Kind == X.Kind; 155 } 156 }; 157 158 typedef std::pair<const ExplodedNode*, const MemRegion*> LeakInfo; 159 160 class MallocChecker : public Checker<check::DeadSymbols, 161 check::PointerEscape, 162 check::ConstPointerEscape, 163 check::PreStmt<ReturnStmt>, 164 check::EndFunction, 165 check::PreCall, 166 check::PostStmt<CallExpr>, 167 check::PostStmt<CXXNewExpr>, 168 check::NewAllocator, 169 check::PreStmt<CXXDeleteExpr>, 170 check::PostStmt<BlockExpr>, 171 check::PostObjCMessage, 172 check::Location, 173 eval::Assume> 174 { 175 public: 176 MallocChecker() 177 : II_alloca(nullptr), II_win_alloca(nullptr), II_malloc(nullptr), 178 II_free(nullptr), II_realloc(nullptr), II_calloc(nullptr), 179 II_valloc(nullptr), II_reallocf(nullptr), II_strndup(nullptr), 180 II_strdup(nullptr), II_win_strdup(nullptr), II_kmalloc(nullptr), 181 II_if_nameindex(nullptr), II_if_freenameindex(nullptr), 182 II_wcsdup(nullptr), II_win_wcsdup(nullptr), II_g_malloc(nullptr), 183 II_g_malloc0(nullptr), II_g_realloc(nullptr), II_g_try_malloc(nullptr), 184 II_g_try_malloc0(nullptr), II_g_try_realloc(nullptr), 185 II_g_free(nullptr), II_g_memdup(nullptr), II_g_malloc_n(nullptr), 186 II_g_malloc0_n(nullptr), II_g_realloc_n(nullptr), 187 II_g_try_malloc_n(nullptr), II_g_try_malloc0_n(nullptr), 188 II_g_try_realloc_n(nullptr) {} 189 190 /// In pessimistic mode, the checker assumes that it does not know which 191 /// functions might free the memory. 192 enum CheckKind { 193 CK_MallocChecker, 194 CK_NewDeleteChecker, 195 CK_NewDeleteLeaksChecker, 196 CK_MismatchedDeallocatorChecker, 197 CK_InnerPointerChecker, 198 CK_NumCheckKinds 199 }; 200 201 enum class MemoryOperationKind { 202 MOK_Allocate, 203 MOK_Free, 204 MOK_Any 205 }; 206 207 DefaultBool IsOptimistic; 208 209 DefaultBool ChecksEnabled[CK_NumCheckKinds]; 210 CheckName CheckNames[CK_NumCheckKinds]; 211 212 void checkPreCall(const CallEvent &Call, CheckerContext &C) const; 213 void checkPostStmt(const CallExpr *CE, CheckerContext &C) const; 214 void checkPostStmt(const CXXNewExpr *NE, CheckerContext &C) const; 215 void checkNewAllocator(const CXXNewExpr *NE, SVal Target, 216 CheckerContext &C) const; 217 void checkPreStmt(const CXXDeleteExpr *DE, CheckerContext &C) const; 218 void checkPostObjCMessage(const ObjCMethodCall &Call, CheckerContext &C) const; 219 void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const; 220 void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const; 221 void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const; 222 void checkEndFunction(const ReturnStmt *S, CheckerContext &C) const; 223 ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond, 224 bool Assumption) const; 225 void checkLocation(SVal l, bool isLoad, const Stmt *S, 226 CheckerContext &C) const; 227 228 ProgramStateRef checkPointerEscape(ProgramStateRef State, 229 const InvalidatedSymbols &Escaped, 230 const CallEvent *Call, 231 PointerEscapeKind Kind) const; 232 ProgramStateRef checkConstPointerEscape(ProgramStateRef State, 233 const InvalidatedSymbols &Escaped, 234 const CallEvent *Call, 235 PointerEscapeKind Kind) const; 236 237 void printState(raw_ostream &Out, ProgramStateRef State, 238 const char *NL, const char *Sep) const override; 239 240 private: 241 mutable std::unique_ptr<BugType> BT_DoubleFree[CK_NumCheckKinds]; 242 mutable std::unique_ptr<BugType> BT_DoubleDelete; 243 mutable std::unique_ptr<BugType> BT_Leak[CK_NumCheckKinds]; 244 mutable std::unique_ptr<BugType> BT_UseFree[CK_NumCheckKinds]; 245 mutable std::unique_ptr<BugType> BT_BadFree[CK_NumCheckKinds]; 246 mutable std::unique_ptr<BugType> BT_FreeAlloca[CK_NumCheckKinds]; 247 mutable std::unique_ptr<BugType> BT_MismatchedDealloc; 248 mutable std::unique_ptr<BugType> BT_OffsetFree[CK_NumCheckKinds]; 249 mutable std::unique_ptr<BugType> BT_UseZerroAllocated[CK_NumCheckKinds]; 250 mutable IdentifierInfo *II_alloca, *II_win_alloca, *II_malloc, *II_free, 251 *II_realloc, *II_calloc, *II_valloc, *II_reallocf, 252 *II_strndup, *II_strdup, *II_win_strdup, *II_kmalloc, 253 *II_if_nameindex, *II_if_freenameindex, *II_wcsdup, 254 *II_win_wcsdup, *II_g_malloc, *II_g_malloc0, 255 *II_g_realloc, *II_g_try_malloc, *II_g_try_malloc0, 256 *II_g_try_realloc, *II_g_free, *II_g_memdup, 257 *II_g_malloc_n, *II_g_malloc0_n, *II_g_realloc_n, 258 *II_g_try_malloc_n, *II_g_try_malloc0_n, 259 *II_g_try_realloc_n; 260 mutable Optional<uint64_t> KernelZeroFlagVal; 261 262 void initIdentifierInfo(ASTContext &C) const; 263 264 /// Determine family of a deallocation expression. 265 AllocationFamily getAllocationFamily(CheckerContext &C, const Stmt *S) const; 266 267 /// Print names of allocators and deallocators. 268 /// 269 /// \returns true on success. 270 bool printAllocDeallocName(raw_ostream &os, CheckerContext &C, 271 const Expr *E) const; 272 273 /// Print expected name of an allocator based on the deallocator's 274 /// family derived from the DeallocExpr. 275 void printExpectedAllocName(raw_ostream &os, CheckerContext &C, 276 const Expr *DeallocExpr) const; 277 /// Print expected name of a deallocator based on the allocator's 278 /// family. 279 void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family) const; 280 281 ///@{ 282 /// Check if this is one of the functions which can allocate/reallocate memory 283 /// pointed to by one of its arguments. 284 bool isMemFunction(const FunctionDecl *FD, ASTContext &C) const; 285 bool isCMemFunction(const FunctionDecl *FD, 286 ASTContext &C, 287 AllocationFamily Family, 288 MemoryOperationKind MemKind) const; 289 bool isStandardNewDelete(const FunctionDecl *FD, ASTContext &C) const; 290 ///@} 291 292 /// Process C++ operator new()'s allocation, which is the part of C++ 293 /// new-expression that goes before the constructor. 294 void processNewAllocation(const CXXNewExpr *NE, CheckerContext &C, 295 SVal Target) const; 296 297 /// Perform a zero-allocation check. 298 /// The optional \p RetVal parameter specifies the newly allocated pointer 299 /// value; if unspecified, the value of expression \p E is used. 300 ProgramStateRef ProcessZeroAllocation(CheckerContext &C, const Expr *E, 301 const unsigned AllocationSizeArg, 302 ProgramStateRef State, 303 Optional<SVal> RetVal = None) const; 304 305 ProgramStateRef MallocMemReturnsAttr(CheckerContext &C, 306 const CallExpr *CE, 307 const OwnershipAttr* Att, 308 ProgramStateRef State) const; 309 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE, 310 const Expr *SizeEx, SVal Init, 311 ProgramStateRef State, 312 AllocationFamily Family = AF_Malloc); 313 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE, 314 SVal SizeEx, SVal Init, 315 ProgramStateRef State, 316 AllocationFamily Family = AF_Malloc); 317 318 static ProgramStateRef addExtentSize(CheckerContext &C, const CXXNewExpr *NE, 319 ProgramStateRef State, SVal Target); 320 321 // Check if this malloc() for special flags. At present that means M_ZERO or 322 // __GFP_ZERO (in which case, treat it like calloc). 323 llvm::Optional<ProgramStateRef> 324 performKernelMalloc(const CallExpr *CE, CheckerContext &C, 325 const ProgramStateRef &State) const; 326 327 /// Update the RefState to reflect the new memory allocation. 328 /// The optional \p RetVal parameter specifies the newly allocated pointer 329 /// value; if unspecified, the value of expression \p E is used. 330 static ProgramStateRef 331 MallocUpdateRefState(CheckerContext &C, const Expr *E, ProgramStateRef State, 332 AllocationFamily Family = AF_Malloc, 333 Optional<SVal> RetVal = None); 334 335 ProgramStateRef FreeMemAttr(CheckerContext &C, const CallExpr *CE, 336 const OwnershipAttr* Att, 337 ProgramStateRef State) const; 338 ProgramStateRef FreeMemAux(CheckerContext &C, const CallExpr *CE, 339 ProgramStateRef state, unsigned Num, 340 bool Hold, 341 bool &ReleasedAllocated, 342 bool ReturnsNullOnFailure = false) const; 343 ProgramStateRef FreeMemAux(CheckerContext &C, const Expr *Arg, 344 const Expr *ParentExpr, 345 ProgramStateRef State, 346 bool Hold, 347 bool &ReleasedAllocated, 348 bool ReturnsNullOnFailure = false) const; 349 350 ProgramStateRef ReallocMemAux(CheckerContext &C, const CallExpr *CE, 351 bool FreesMemOnFailure, 352 ProgramStateRef State, 353 bool SuffixWithN = false) const; 354 static SVal evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, 355 const Expr *BlockBytes); 356 static ProgramStateRef CallocMem(CheckerContext &C, const CallExpr *CE, 357 ProgramStateRef State); 358 359 /// Check if the memory associated with this symbol was released. 360 bool isReleased(SymbolRef Sym, CheckerContext &C) const; 361 362 bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S) const; 363 364 void checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 365 const Stmt *S) const; 366 367 bool checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const; 368 369 /// Check if the function is known free memory, or if it is 370 /// "interesting" and should be modeled explicitly. 371 /// 372 /// \param [out] EscapingSymbol A function might not free memory in general, 373 /// but could be known to free a particular symbol. In this case, false is 374 /// returned and the single escaping symbol is returned through the out 375 /// parameter. 376 /// 377 /// We assume that pointers do not escape through calls to system functions 378 /// not handled by this checker. 379 bool mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent *Call, 380 ProgramStateRef State, 381 SymbolRef &EscapingSymbol) const; 382 383 // Implementation of the checkPointerEscape callbacks. 384 ProgramStateRef checkPointerEscapeAux(ProgramStateRef State, 385 const InvalidatedSymbols &Escaped, 386 const CallEvent *Call, 387 PointerEscapeKind Kind, 388 bool(*CheckRefState)(const RefState*)) const; 389 390 // Implementation of the checkPreStmt and checkEndFunction callbacks. 391 void checkEscapeOnReturn(const ReturnStmt *S, CheckerContext &C) const; 392 393 ///@{ 394 /// Tells if a given family/call/symbol is tracked by the current checker. 395 /// Sets CheckKind to the kind of the checker responsible for this 396 /// family/call/symbol. 397 Optional<CheckKind> getCheckIfTracked(AllocationFamily Family, 398 bool IsALeakCheck = false) const; 399 Optional<CheckKind> getCheckIfTracked(CheckerContext &C, 400 const Stmt *AllocDeallocStmt, 401 bool IsALeakCheck = false) const; 402 Optional<CheckKind> getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 403 bool IsALeakCheck = false) const; 404 ///@} 405 static bool SummarizeValue(raw_ostream &os, SVal V); 406 static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR); 407 void ReportBadFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 408 const Expr *DeallocExpr) const; 409 void ReportFreeAlloca(CheckerContext &C, SVal ArgVal, 410 SourceRange Range) const; 411 void ReportMismatchedDealloc(CheckerContext &C, SourceRange Range, 412 const Expr *DeallocExpr, const RefState *RS, 413 SymbolRef Sym, bool OwnershipTransferred) const; 414 void ReportOffsetFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 415 const Expr *DeallocExpr, 416 const Expr *AllocExpr = nullptr) const; 417 void ReportUseAfterFree(CheckerContext &C, SourceRange Range, 418 SymbolRef Sym) const; 419 void ReportDoubleFree(CheckerContext &C, SourceRange Range, bool Released, 420 SymbolRef Sym, SymbolRef PrevSym) const; 421 422 void ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const; 423 424 void ReportUseZeroAllocated(CheckerContext &C, SourceRange Range, 425 SymbolRef Sym) const; 426 427 void ReportFunctionPointerFree(CheckerContext &C, SVal ArgVal, 428 SourceRange Range, const Expr *FreeExpr) const; 429 430 /// Find the location of the allocation for Sym on the path leading to the 431 /// exploded node N. 432 LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym, 433 CheckerContext &C) const; 434 435 void reportLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const; 436 437 /// The bug visitor which allows us to print extra diagnostics along the 438 /// BugReport path. For example, showing the allocation site of the leaked 439 /// region. 440 class MallocBugVisitor final : public BugReporterVisitor { 441 protected: 442 enum NotificationMode { 443 Normal, 444 ReallocationFailed 445 }; 446 447 // The allocated region symbol tracked by the main analysis. 448 SymbolRef Sym; 449 450 // The mode we are in, i.e. what kind of diagnostics will be emitted. 451 NotificationMode Mode; 452 453 // A symbol from when the primary region should have been reallocated. 454 SymbolRef FailedReallocSymbol; 455 456 // A C++ destructor stack frame in which memory was released. Used for 457 // miscellaneous false positive suppression. 458 const StackFrameContext *ReleaseDestructorLC; 459 460 bool IsLeak; 461 462 public: 463 MallocBugVisitor(SymbolRef S, bool isLeak = false) 464 : Sym(S), Mode(Normal), FailedReallocSymbol(nullptr), 465 ReleaseDestructorLC(nullptr), IsLeak(isLeak) {} 466 467 static void *getTag() { 468 static int Tag = 0; 469 return &Tag; 470 } 471 472 void Profile(llvm::FoldingSetNodeID &ID) const override { 473 ID.AddPointer(getTag()); 474 ID.AddPointer(Sym); 475 } 476 477 inline bool isAllocated(const RefState *S, const RefState *SPrev, 478 const Stmt *Stmt) { 479 // Did not track -> allocated. Other state (released) -> allocated. 480 return (Stmt && (isa<CallExpr>(Stmt) || isa<CXXNewExpr>(Stmt)) && 481 (S && (S->isAllocated() || S->isAllocatedOfSizeZero())) && 482 (!SPrev || !(SPrev->isAllocated() || 483 SPrev->isAllocatedOfSizeZero()))); 484 } 485 486 inline bool isReleased(const RefState *S, const RefState *SPrev, 487 const Stmt *Stmt) { 488 // Did not track -> released. Other state (allocated) -> released. 489 // The statement associated with the release might be missing. 490 bool IsReleased = (S && S->isReleased()) && 491 (!SPrev || !SPrev->isReleased()); 492 assert(!IsReleased || 493 (Stmt && (isa<CallExpr>(Stmt) || isa<CXXDeleteExpr>(Stmt))) || 494 (!Stmt && S->getAllocationFamily() == AF_InnerBuffer)); 495 return IsReleased; 496 } 497 498 inline bool isRelinquished(const RefState *S, const RefState *SPrev, 499 const Stmt *Stmt) { 500 // Did not track -> relinquished. Other state (allocated) -> relinquished. 501 return (Stmt && (isa<CallExpr>(Stmt) || isa<ObjCMessageExpr>(Stmt) || 502 isa<ObjCPropertyRefExpr>(Stmt)) && 503 (S && S->isRelinquished()) && 504 (!SPrev || !SPrev->isRelinquished())); 505 } 506 507 inline bool isReallocFailedCheck(const RefState *S, const RefState *SPrev, 508 const Stmt *Stmt) { 509 // If the expression is not a call, and the state change is 510 // released -> allocated, it must be the realloc return value 511 // check. If we have to handle more cases here, it might be cleaner just 512 // to track this extra bit in the state itself. 513 return ((!Stmt || !isa<CallExpr>(Stmt)) && 514 (S && (S->isAllocated() || S->isAllocatedOfSizeZero())) && 515 (SPrev && !(SPrev->isAllocated() || 516 SPrev->isAllocatedOfSizeZero()))); 517 } 518 519 std::shared_ptr<PathDiagnosticPiece> VisitNode(const ExplodedNode *N, 520 BugReporterContext &BRC, 521 BugReport &BR) override; 522 523 std::shared_ptr<PathDiagnosticPiece> 524 getEndPath(BugReporterContext &BRC, const ExplodedNode *EndPathNode, 525 BugReport &BR) override { 526 if (!IsLeak) 527 return nullptr; 528 529 PathDiagnosticLocation L = 530 PathDiagnosticLocation::createEndOfPath(EndPathNode, 531 BRC.getSourceManager()); 532 // Do not add the statement itself as a range in case of leak. 533 return std::make_shared<PathDiagnosticEventPiece>(L, BR.getDescription(), 534 false); 535 } 536 537 private: 538 class StackHintGeneratorForReallocationFailed 539 : public StackHintGeneratorForSymbol { 540 public: 541 StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M) 542 : StackHintGeneratorForSymbol(S, M) {} 543 544 std::string getMessageForArg(const Expr *ArgE, 545 unsigned ArgIndex) override { 546 // Printed parameters start at 1, not 0. 547 ++ArgIndex; 548 549 SmallString<200> buf; 550 llvm::raw_svector_ostream os(buf); 551 552 os << "Reallocation of " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex) 553 << " parameter failed"; 554 555 return os.str(); 556 } 557 558 std::string getMessageForReturn(const CallExpr *CallExpr) override { 559 return "Reallocation of returned value failed"; 560 } 561 }; 562 }; 563 }; 564 } // end anonymous namespace 565 566 REGISTER_MAP_WITH_PROGRAMSTATE(RegionState, SymbolRef, RefState) 567 REGISTER_MAP_WITH_PROGRAMSTATE(ReallocPairs, SymbolRef, ReallocPair) 568 REGISTER_SET_WITH_PROGRAMSTATE(ReallocSizeZeroSymbols, SymbolRef) 569 570 // A map from the freed symbol to the symbol representing the return value of 571 // the free function. 572 REGISTER_MAP_WITH_PROGRAMSTATE(FreeReturnValue, SymbolRef, SymbolRef) 573 574 namespace { 575 class StopTrackingCallback final : public SymbolVisitor { 576 ProgramStateRef state; 577 public: 578 StopTrackingCallback(ProgramStateRef st) : state(std::move(st)) {} 579 ProgramStateRef getState() const { return state; } 580 581 bool VisitSymbol(SymbolRef sym) override { 582 state = state->remove<RegionState>(sym); 583 return true; 584 } 585 }; 586 } // end anonymous namespace 587 588 void MallocChecker::initIdentifierInfo(ASTContext &Ctx) const { 589 if (II_malloc) 590 return; 591 II_alloca = &Ctx.Idents.get("alloca"); 592 II_malloc = &Ctx.Idents.get("malloc"); 593 II_free = &Ctx.Idents.get("free"); 594 II_realloc = &Ctx.Idents.get("realloc"); 595 II_reallocf = &Ctx.Idents.get("reallocf"); 596 II_calloc = &Ctx.Idents.get("calloc"); 597 II_valloc = &Ctx.Idents.get("valloc"); 598 II_strdup = &Ctx.Idents.get("strdup"); 599 II_strndup = &Ctx.Idents.get("strndup"); 600 II_wcsdup = &Ctx.Idents.get("wcsdup"); 601 II_kmalloc = &Ctx.Idents.get("kmalloc"); 602 II_if_nameindex = &Ctx.Idents.get("if_nameindex"); 603 II_if_freenameindex = &Ctx.Idents.get("if_freenameindex"); 604 605 //MSVC uses `_`-prefixed instead, so we check for them too. 606 II_win_strdup = &Ctx.Idents.get("_strdup"); 607 II_win_wcsdup = &Ctx.Idents.get("_wcsdup"); 608 II_win_alloca = &Ctx.Idents.get("_alloca"); 609 610 // Glib 611 II_g_malloc = &Ctx.Idents.get("g_malloc"); 612 II_g_malloc0 = &Ctx.Idents.get("g_malloc0"); 613 II_g_realloc = &Ctx.Idents.get("g_realloc"); 614 II_g_try_malloc = &Ctx.Idents.get("g_try_malloc"); 615 II_g_try_malloc0 = &Ctx.Idents.get("g_try_malloc0"); 616 II_g_try_realloc = &Ctx.Idents.get("g_try_realloc"); 617 II_g_free = &Ctx.Idents.get("g_free"); 618 II_g_memdup = &Ctx.Idents.get("g_memdup"); 619 II_g_malloc_n = &Ctx.Idents.get("g_malloc_n"); 620 II_g_malloc0_n = &Ctx.Idents.get("g_malloc0_n"); 621 II_g_realloc_n = &Ctx.Idents.get("g_realloc_n"); 622 II_g_try_malloc_n = &Ctx.Idents.get("g_try_malloc_n"); 623 II_g_try_malloc0_n = &Ctx.Idents.get("g_try_malloc0_n"); 624 II_g_try_realloc_n = &Ctx.Idents.get("g_try_realloc_n"); 625 } 626 627 bool MallocChecker::isMemFunction(const FunctionDecl *FD, ASTContext &C) const { 628 if (isCMemFunction(FD, C, AF_Malloc, MemoryOperationKind::MOK_Any)) 629 return true; 630 631 if (isCMemFunction(FD, C, AF_IfNameIndex, MemoryOperationKind::MOK_Any)) 632 return true; 633 634 if (isCMemFunction(FD, C, AF_Alloca, MemoryOperationKind::MOK_Any)) 635 return true; 636 637 if (isStandardNewDelete(FD, C)) 638 return true; 639 640 return false; 641 } 642 643 bool MallocChecker::isCMemFunction(const FunctionDecl *FD, 644 ASTContext &C, 645 AllocationFamily Family, 646 MemoryOperationKind MemKind) const { 647 if (!FD) 648 return false; 649 650 bool CheckFree = (MemKind == MemoryOperationKind::MOK_Any || 651 MemKind == MemoryOperationKind::MOK_Free); 652 bool CheckAlloc = (MemKind == MemoryOperationKind::MOK_Any || 653 MemKind == MemoryOperationKind::MOK_Allocate); 654 655 if (FD->getKind() == Decl::Function) { 656 const IdentifierInfo *FunI = FD->getIdentifier(); 657 initIdentifierInfo(C); 658 659 if (Family == AF_Malloc && CheckFree) { 660 if (FunI == II_free || FunI == II_realloc || FunI == II_reallocf || 661 FunI == II_g_free) 662 return true; 663 } 664 665 if (Family == AF_Malloc && CheckAlloc) { 666 if (FunI == II_malloc || FunI == II_realloc || FunI == II_reallocf || 667 FunI == II_calloc || FunI == II_valloc || FunI == II_strdup || 668 FunI == II_win_strdup || FunI == II_strndup || FunI == II_wcsdup || 669 FunI == II_win_wcsdup || FunI == II_kmalloc || 670 FunI == II_g_malloc || FunI == II_g_malloc0 || 671 FunI == II_g_realloc || FunI == II_g_try_malloc || 672 FunI == II_g_try_malloc0 || FunI == II_g_try_realloc || 673 FunI == II_g_memdup || FunI == II_g_malloc_n || 674 FunI == II_g_malloc0_n || FunI == II_g_realloc_n || 675 FunI == II_g_try_malloc_n || FunI == II_g_try_malloc0_n || 676 FunI == II_g_try_realloc_n) 677 return true; 678 } 679 680 if (Family == AF_IfNameIndex && CheckFree) { 681 if (FunI == II_if_freenameindex) 682 return true; 683 } 684 685 if (Family == AF_IfNameIndex && CheckAlloc) { 686 if (FunI == II_if_nameindex) 687 return true; 688 } 689 690 if (Family == AF_Alloca && CheckAlloc) { 691 if (FunI == II_alloca || FunI == II_win_alloca) 692 return true; 693 } 694 } 695 696 if (Family != AF_Malloc) 697 return false; 698 699 if (IsOptimistic && FD->hasAttrs()) { 700 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { 701 OwnershipAttr::OwnershipKind OwnKind = I->getOwnKind(); 702 if(OwnKind == OwnershipAttr::Takes || OwnKind == OwnershipAttr::Holds) { 703 if (CheckFree) 704 return true; 705 } else if (OwnKind == OwnershipAttr::Returns) { 706 if (CheckAlloc) 707 return true; 708 } 709 } 710 } 711 712 return false; 713 } 714 715 // Tells if the callee is one of the builtin new/delete operators, including 716 // placement operators and other standard overloads. 717 bool MallocChecker::isStandardNewDelete(const FunctionDecl *FD, 718 ASTContext &C) const { 719 if (!FD) 720 return false; 721 722 OverloadedOperatorKind Kind = FD->getOverloadedOperator(); 723 if (Kind != OO_New && Kind != OO_Array_New && 724 Kind != OO_Delete && Kind != OO_Array_Delete) 725 return false; 726 727 // This is standard if and only if it's not defined in a user file. 728 SourceLocation L = FD->getLocation(); 729 // If the header for operator delete is not included, it's still defined 730 // in an invalid source location. Check to make sure we don't crash. 731 return !L.isValid() || C.getSourceManager().isInSystemHeader(L); 732 } 733 734 llvm::Optional<ProgramStateRef> MallocChecker::performKernelMalloc( 735 const CallExpr *CE, CheckerContext &C, const ProgramStateRef &State) const { 736 // 3-argument malloc(), as commonly used in {Free,Net,Open}BSD Kernels: 737 // 738 // void *malloc(unsigned long size, struct malloc_type *mtp, int flags); 739 // 740 // One of the possible flags is M_ZERO, which means 'give me back an 741 // allocation which is already zeroed', like calloc. 742 743 // 2-argument kmalloc(), as used in the Linux kernel: 744 // 745 // void *kmalloc(size_t size, gfp_t flags); 746 // 747 // Has the similar flag value __GFP_ZERO. 748 749 // This logic is largely cloned from O_CREAT in UnixAPIChecker, maybe some 750 // code could be shared. 751 752 ASTContext &Ctx = C.getASTContext(); 753 llvm::Triple::OSType OS = Ctx.getTargetInfo().getTriple().getOS(); 754 755 if (!KernelZeroFlagVal.hasValue()) { 756 if (OS == llvm::Triple::FreeBSD) 757 KernelZeroFlagVal = 0x0100; 758 else if (OS == llvm::Triple::NetBSD) 759 KernelZeroFlagVal = 0x0002; 760 else if (OS == llvm::Triple::OpenBSD) 761 KernelZeroFlagVal = 0x0008; 762 else if (OS == llvm::Triple::Linux) 763 // __GFP_ZERO 764 KernelZeroFlagVal = 0x8000; 765 else 766 // FIXME: We need a more general way of getting the M_ZERO value. 767 // See also: O_CREAT in UnixAPIChecker.cpp. 768 769 // Fall back to normal malloc behavior on platforms where we don't 770 // know M_ZERO. 771 return None; 772 } 773 774 // We treat the last argument as the flags argument, and callers fall-back to 775 // normal malloc on a None return. This works for the FreeBSD kernel malloc 776 // as well as Linux kmalloc. 777 if (CE->getNumArgs() < 2) 778 return None; 779 780 const Expr *FlagsEx = CE->getArg(CE->getNumArgs() - 1); 781 const SVal V = C.getSVal(FlagsEx); 782 if (!V.getAs<NonLoc>()) { 783 // The case where 'V' can be a location can only be due to a bad header, 784 // so in this case bail out. 785 return None; 786 } 787 788 NonLoc Flags = V.castAs<NonLoc>(); 789 NonLoc ZeroFlag = C.getSValBuilder() 790 .makeIntVal(KernelZeroFlagVal.getValue(), FlagsEx->getType()) 791 .castAs<NonLoc>(); 792 SVal MaskedFlagsUC = C.getSValBuilder().evalBinOpNN(State, BO_And, 793 Flags, ZeroFlag, 794 FlagsEx->getType()); 795 if (MaskedFlagsUC.isUnknownOrUndef()) 796 return None; 797 DefinedSVal MaskedFlags = MaskedFlagsUC.castAs<DefinedSVal>(); 798 799 // Check if maskedFlags is non-zero. 800 ProgramStateRef TrueState, FalseState; 801 std::tie(TrueState, FalseState) = State->assume(MaskedFlags); 802 803 // If M_ZERO is set, treat this like calloc (initialized). 804 if (TrueState && !FalseState) { 805 SVal ZeroVal = C.getSValBuilder().makeZeroVal(Ctx.CharTy); 806 return MallocMemAux(C, CE, CE->getArg(0), ZeroVal, TrueState); 807 } 808 809 return None; 810 } 811 812 SVal MallocChecker::evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, 813 const Expr *BlockBytes) { 814 SValBuilder &SB = C.getSValBuilder(); 815 SVal BlocksVal = C.getSVal(Blocks); 816 SVal BlockBytesVal = C.getSVal(BlockBytes); 817 ProgramStateRef State = C.getState(); 818 SVal TotalSize = SB.evalBinOp(State, BO_Mul, BlocksVal, BlockBytesVal, 819 SB.getContext().getSizeType()); 820 return TotalSize; 821 } 822 823 void MallocChecker::checkPostStmt(const CallExpr *CE, CheckerContext &C) const { 824 if (C.wasInlined) 825 return; 826 827 const FunctionDecl *FD = C.getCalleeDecl(CE); 828 if (!FD) 829 return; 830 831 ProgramStateRef State = C.getState(); 832 bool ReleasedAllocatedMemory = false; 833 834 if (FD->getKind() == Decl::Function) { 835 initIdentifierInfo(C.getASTContext()); 836 IdentifierInfo *FunI = FD->getIdentifier(); 837 838 if (FunI == II_malloc || FunI == II_g_malloc || FunI == II_g_try_malloc) { 839 if (CE->getNumArgs() < 1) 840 return; 841 if (CE->getNumArgs() < 3) { 842 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 843 if (CE->getNumArgs() == 1) 844 State = ProcessZeroAllocation(C, CE, 0, State); 845 } else if (CE->getNumArgs() == 3) { 846 llvm::Optional<ProgramStateRef> MaybeState = 847 performKernelMalloc(CE, C, State); 848 if (MaybeState.hasValue()) 849 State = MaybeState.getValue(); 850 else 851 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 852 } 853 } else if (FunI == II_kmalloc) { 854 if (CE->getNumArgs() < 1) 855 return; 856 llvm::Optional<ProgramStateRef> MaybeState = 857 performKernelMalloc(CE, C, State); 858 if (MaybeState.hasValue()) 859 State = MaybeState.getValue(); 860 else 861 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 862 } else if (FunI == II_valloc) { 863 if (CE->getNumArgs() < 1) 864 return; 865 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 866 State = ProcessZeroAllocation(C, CE, 0, State); 867 } else if (FunI == II_realloc || FunI == II_g_realloc || 868 FunI == II_g_try_realloc) { 869 State = ReallocMemAux(C, CE, false, State); 870 State = ProcessZeroAllocation(C, CE, 1, State); 871 } else if (FunI == II_reallocf) { 872 State = ReallocMemAux(C, CE, true, State); 873 State = ProcessZeroAllocation(C, CE, 1, State); 874 } else if (FunI == II_calloc) { 875 State = CallocMem(C, CE, State); 876 State = ProcessZeroAllocation(C, CE, 0, State); 877 State = ProcessZeroAllocation(C, CE, 1, State); 878 } else if (FunI == II_free || FunI == II_g_free) { 879 State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory); 880 } else if (FunI == II_strdup || FunI == II_win_strdup || 881 FunI == II_wcsdup || FunI == II_win_wcsdup) { 882 State = MallocUpdateRefState(C, CE, State); 883 } else if (FunI == II_strndup) { 884 State = MallocUpdateRefState(C, CE, State); 885 } else if (FunI == II_alloca || FunI == II_win_alloca) { 886 if (CE->getNumArgs() < 1) 887 return; 888 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, 889 AF_Alloca); 890 State = ProcessZeroAllocation(C, CE, 0, State); 891 } else if (isStandardNewDelete(FD, C.getASTContext())) { 892 // Process direct calls to operator new/new[]/delete/delete[] functions 893 // as distinct from new/new[]/delete/delete[] expressions that are 894 // processed by the checkPostStmt callbacks for CXXNewExpr and 895 // CXXDeleteExpr. 896 OverloadedOperatorKind K = FD->getOverloadedOperator(); 897 if (K == OO_New) { 898 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, 899 AF_CXXNew); 900 State = ProcessZeroAllocation(C, CE, 0, State); 901 } 902 else if (K == OO_Array_New) { 903 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, 904 AF_CXXNewArray); 905 State = ProcessZeroAllocation(C, CE, 0, State); 906 } 907 else if (K == OO_Delete || K == OO_Array_Delete) 908 State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory); 909 else 910 llvm_unreachable("not a new/delete operator"); 911 } else if (FunI == II_if_nameindex) { 912 // Should we model this differently? We can allocate a fixed number of 913 // elements with zeros in the last one. 914 State = MallocMemAux(C, CE, UnknownVal(), UnknownVal(), State, 915 AF_IfNameIndex); 916 } else if (FunI == II_if_freenameindex) { 917 State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory); 918 } else if (FunI == II_g_malloc0 || FunI == II_g_try_malloc0) { 919 if (CE->getNumArgs() < 1) 920 return; 921 SValBuilder &svalBuilder = C.getSValBuilder(); 922 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 923 State = MallocMemAux(C, CE, CE->getArg(0), zeroVal, State); 924 State = ProcessZeroAllocation(C, CE, 0, State); 925 } else if (FunI == II_g_memdup) { 926 if (CE->getNumArgs() < 2) 927 return; 928 State = MallocMemAux(C, CE, CE->getArg(1), UndefinedVal(), State); 929 State = ProcessZeroAllocation(C, CE, 1, State); 930 } else if (FunI == II_g_malloc_n || FunI == II_g_try_malloc_n || 931 FunI == II_g_malloc0_n || FunI == II_g_try_malloc0_n) { 932 if (CE->getNumArgs() < 2) 933 return; 934 SVal Init = UndefinedVal(); 935 if (FunI == II_g_malloc0_n || FunI == II_g_try_malloc0_n) { 936 SValBuilder &SB = C.getSValBuilder(); 937 Init = SB.makeZeroVal(SB.getContext().CharTy); 938 } 939 SVal TotalSize = evalMulForBufferSize(C, CE->getArg(0), CE->getArg(1)); 940 State = MallocMemAux(C, CE, TotalSize, Init, State); 941 State = ProcessZeroAllocation(C, CE, 0, State); 942 State = ProcessZeroAllocation(C, CE, 1, State); 943 } else if (FunI == II_g_realloc_n || FunI == II_g_try_realloc_n) { 944 if (CE->getNumArgs() < 3) 945 return; 946 State = ReallocMemAux(C, CE, false, State, true); 947 State = ProcessZeroAllocation(C, CE, 1, State); 948 State = ProcessZeroAllocation(C, CE, 2, State); 949 } 950 } 951 952 if (IsOptimistic || ChecksEnabled[CK_MismatchedDeallocatorChecker]) { 953 // Check all the attributes, if there are any. 954 // There can be multiple of these attributes. 955 if (FD->hasAttrs()) 956 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { 957 switch (I->getOwnKind()) { 958 case OwnershipAttr::Returns: 959 State = MallocMemReturnsAttr(C, CE, I, State); 960 break; 961 case OwnershipAttr::Takes: 962 case OwnershipAttr::Holds: 963 State = FreeMemAttr(C, CE, I, State); 964 break; 965 } 966 } 967 } 968 C.addTransition(State); 969 } 970 971 // Performs a 0-sized allocations check. 972 ProgramStateRef MallocChecker::ProcessZeroAllocation( 973 CheckerContext &C, const Expr *E, const unsigned AllocationSizeArg, 974 ProgramStateRef State, Optional<SVal> RetVal) const { 975 if (!State) 976 return nullptr; 977 978 if (!RetVal) 979 RetVal = C.getSVal(E); 980 981 const Expr *Arg = nullptr; 982 983 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 984 Arg = CE->getArg(AllocationSizeArg); 985 } 986 else if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { 987 if (NE->isArray()) 988 Arg = NE->getArraySize(); 989 else 990 return State; 991 } 992 else 993 llvm_unreachable("not a CallExpr or CXXNewExpr"); 994 995 assert(Arg); 996 997 Optional<DefinedSVal> DefArgVal = C.getSVal(Arg).getAs<DefinedSVal>(); 998 999 if (!DefArgVal) 1000 return State; 1001 1002 // Check if the allocation size is 0. 1003 ProgramStateRef TrueState, FalseState; 1004 SValBuilder &SvalBuilder = C.getSValBuilder(); 1005 DefinedSVal Zero = 1006 SvalBuilder.makeZeroVal(Arg->getType()).castAs<DefinedSVal>(); 1007 1008 std::tie(TrueState, FalseState) = 1009 State->assume(SvalBuilder.evalEQ(State, *DefArgVal, Zero)); 1010 1011 if (TrueState && !FalseState) { 1012 SymbolRef Sym = RetVal->getAsLocSymbol(); 1013 if (!Sym) 1014 return State; 1015 1016 const RefState *RS = State->get<RegionState>(Sym); 1017 if (RS) { 1018 if (RS->isAllocated()) 1019 return TrueState->set<RegionState>(Sym, 1020 RefState::getAllocatedOfSizeZero(RS)); 1021 else 1022 return State; 1023 } else { 1024 // Case of zero-size realloc. Historically 'realloc(ptr, 0)' is treated as 1025 // 'free(ptr)' and the returned value from 'realloc(ptr, 0)' is not 1026 // tracked. Add zero-reallocated Sym to the state to catch references 1027 // to zero-allocated memory. 1028 return TrueState->add<ReallocSizeZeroSymbols>(Sym); 1029 } 1030 } 1031 1032 // Assume the value is non-zero going forward. 1033 assert(FalseState); 1034 return FalseState; 1035 } 1036 1037 static QualType getDeepPointeeType(QualType T) { 1038 QualType Result = T, PointeeType = T->getPointeeType(); 1039 while (!PointeeType.isNull()) { 1040 Result = PointeeType; 1041 PointeeType = PointeeType->getPointeeType(); 1042 } 1043 return Result; 1044 } 1045 1046 static bool treatUnusedNewEscaped(const CXXNewExpr *NE) { 1047 1048 const CXXConstructExpr *ConstructE = NE->getConstructExpr(); 1049 if (!ConstructE) 1050 return false; 1051 1052 if (!NE->getAllocatedType()->getAsCXXRecordDecl()) 1053 return false; 1054 1055 const CXXConstructorDecl *CtorD = ConstructE->getConstructor(); 1056 1057 // Iterate over the constructor parameters. 1058 for (const auto *CtorParam : CtorD->parameters()) { 1059 1060 QualType CtorParamPointeeT = CtorParam->getType()->getPointeeType(); 1061 if (CtorParamPointeeT.isNull()) 1062 continue; 1063 1064 CtorParamPointeeT = getDeepPointeeType(CtorParamPointeeT); 1065 1066 if (CtorParamPointeeT->getAsCXXRecordDecl()) 1067 return true; 1068 } 1069 1070 return false; 1071 } 1072 1073 void MallocChecker::processNewAllocation(const CXXNewExpr *NE, 1074 CheckerContext &C, 1075 SVal Target) const { 1076 if (!isStandardNewDelete(NE->getOperatorNew(), C.getASTContext())) 1077 return; 1078 1079 ParentMap &PM = C.getLocationContext()->getParentMap(); 1080 if (!PM.isConsumedExpr(NE) && treatUnusedNewEscaped(NE)) 1081 return; 1082 1083 ProgramStateRef State = C.getState(); 1084 // The return value from operator new is bound to a specified initialization 1085 // value (if any) and we don't want to loose this value. So we call 1086 // MallocUpdateRefState() instead of MallocMemAux() which breaks the 1087 // existing binding. 1088 State = MallocUpdateRefState(C, NE, State, NE->isArray() ? AF_CXXNewArray 1089 : AF_CXXNew, Target); 1090 State = addExtentSize(C, NE, State, Target); 1091 State = ProcessZeroAllocation(C, NE, 0, State, Target); 1092 C.addTransition(State); 1093 } 1094 1095 void MallocChecker::checkPostStmt(const CXXNewExpr *NE, 1096 CheckerContext &C) const { 1097 if (!C.getAnalysisManager().getAnalyzerOptions().MayInlineCXXAllocator) 1098 processNewAllocation(NE, C, C.getSVal(NE)); 1099 } 1100 1101 void MallocChecker::checkNewAllocator(const CXXNewExpr *NE, SVal Target, 1102 CheckerContext &C) const { 1103 if (!C.wasInlined) 1104 processNewAllocation(NE, C, Target); 1105 } 1106 1107 // Sets the extent value of the MemRegion allocated by 1108 // new expression NE to its size in Bytes. 1109 // 1110 ProgramStateRef MallocChecker::addExtentSize(CheckerContext &C, 1111 const CXXNewExpr *NE, 1112 ProgramStateRef State, 1113 SVal Target) { 1114 if (!State) 1115 return nullptr; 1116 SValBuilder &svalBuilder = C.getSValBuilder(); 1117 SVal ElementCount; 1118 const SubRegion *Region; 1119 if (NE->isArray()) { 1120 const Expr *SizeExpr = NE->getArraySize(); 1121 ElementCount = C.getSVal(SizeExpr); 1122 // Store the extent size for the (symbolic)region 1123 // containing the elements. 1124 Region = Target.getAsRegion() 1125 ->getAs<SubRegion>() 1126 ->StripCasts() 1127 ->getAs<SubRegion>(); 1128 } else { 1129 ElementCount = svalBuilder.makeIntVal(1, true); 1130 Region = Target.getAsRegion()->getAs<SubRegion>(); 1131 } 1132 assert(Region); 1133 1134 // Set the region's extent equal to the Size in Bytes. 1135 QualType ElementType = NE->getAllocatedType(); 1136 ASTContext &AstContext = C.getASTContext(); 1137 CharUnits TypeSize = AstContext.getTypeSizeInChars(ElementType); 1138 1139 if (ElementCount.getAs<NonLoc>()) { 1140 DefinedOrUnknownSVal Extent = Region->getExtent(svalBuilder); 1141 // size in Bytes = ElementCount*TypeSize 1142 SVal SizeInBytes = svalBuilder.evalBinOpNN( 1143 State, BO_Mul, ElementCount.castAs<NonLoc>(), 1144 svalBuilder.makeArrayIndex(TypeSize.getQuantity()), 1145 svalBuilder.getArrayIndexType()); 1146 DefinedOrUnknownSVal extentMatchesSize = svalBuilder.evalEQ( 1147 State, Extent, SizeInBytes.castAs<DefinedOrUnknownSVal>()); 1148 State = State->assume(extentMatchesSize, true); 1149 } 1150 return State; 1151 } 1152 1153 void MallocChecker::checkPreStmt(const CXXDeleteExpr *DE, 1154 CheckerContext &C) const { 1155 1156 if (!ChecksEnabled[CK_NewDeleteChecker]) 1157 if (SymbolRef Sym = C.getSVal(DE->getArgument()).getAsSymbol()) 1158 checkUseAfterFree(Sym, C, DE->getArgument()); 1159 1160 if (!isStandardNewDelete(DE->getOperatorDelete(), C.getASTContext())) 1161 return; 1162 1163 ProgramStateRef State = C.getState(); 1164 bool ReleasedAllocated; 1165 State = FreeMemAux(C, DE->getArgument(), DE, State, 1166 /*Hold*/false, ReleasedAllocated); 1167 1168 C.addTransition(State); 1169 } 1170 1171 static bool isKnownDeallocObjCMethodName(const ObjCMethodCall &Call) { 1172 // If the first selector piece is one of the names below, assume that the 1173 // object takes ownership of the memory, promising to eventually deallocate it 1174 // with free(). 1175 // Ex: [NSData dataWithBytesNoCopy:bytes length:10]; 1176 // (...unless a 'freeWhenDone' parameter is false, but that's checked later.) 1177 StringRef FirstSlot = Call.getSelector().getNameForSlot(0); 1178 return FirstSlot == "dataWithBytesNoCopy" || 1179 FirstSlot == "initWithBytesNoCopy" || 1180 FirstSlot == "initWithCharactersNoCopy"; 1181 } 1182 1183 static Optional<bool> getFreeWhenDoneArg(const ObjCMethodCall &Call) { 1184 Selector S = Call.getSelector(); 1185 1186 // FIXME: We should not rely on fully-constrained symbols being folded. 1187 for (unsigned i = 1; i < S.getNumArgs(); ++i) 1188 if (S.getNameForSlot(i).equals("freeWhenDone")) 1189 return !Call.getArgSVal(i).isZeroConstant(); 1190 1191 return None; 1192 } 1193 1194 void MallocChecker::checkPostObjCMessage(const ObjCMethodCall &Call, 1195 CheckerContext &C) const { 1196 if (C.wasInlined) 1197 return; 1198 1199 if (!isKnownDeallocObjCMethodName(Call)) 1200 return; 1201 1202 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call)) 1203 if (!*FreeWhenDone) 1204 return; 1205 1206 bool ReleasedAllocatedMemory; 1207 ProgramStateRef State = FreeMemAux(C, Call.getArgExpr(0), 1208 Call.getOriginExpr(), C.getState(), 1209 /*Hold=*/true, ReleasedAllocatedMemory, 1210 /*RetNullOnFailure=*/true); 1211 1212 C.addTransition(State); 1213 } 1214 1215 ProgramStateRef 1216 MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallExpr *CE, 1217 const OwnershipAttr *Att, 1218 ProgramStateRef State) const { 1219 if (!State) 1220 return nullptr; 1221 1222 if (Att->getModule() != II_malloc) 1223 return nullptr; 1224 1225 OwnershipAttr::args_iterator I = Att->args_begin(), E = Att->args_end(); 1226 if (I != E) { 1227 return MallocMemAux(C, CE, CE->getArg(I->getASTIndex()), UndefinedVal(), 1228 State); 1229 } 1230 return MallocMemAux(C, CE, UnknownVal(), UndefinedVal(), State); 1231 } 1232 1233 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1234 const CallExpr *CE, 1235 const Expr *SizeEx, SVal Init, 1236 ProgramStateRef State, 1237 AllocationFamily Family) { 1238 if (!State) 1239 return nullptr; 1240 1241 return MallocMemAux(C, CE, C.getSVal(SizeEx), Init, State, Family); 1242 } 1243 1244 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1245 const CallExpr *CE, 1246 SVal Size, SVal Init, 1247 ProgramStateRef State, 1248 AllocationFamily Family) { 1249 if (!State) 1250 return nullptr; 1251 1252 // We expect the malloc functions to return a pointer. 1253 if (!Loc::isLocType(CE->getType())) 1254 return nullptr; 1255 1256 // Bind the return value to the symbolic value from the heap region. 1257 // TODO: We could rewrite post visit to eval call; 'malloc' does not have 1258 // side effects other than what we model here. 1259 unsigned Count = C.blockCount(); 1260 SValBuilder &svalBuilder = C.getSValBuilder(); 1261 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 1262 DefinedSVal RetVal = svalBuilder.getConjuredHeapSymbolVal(CE, LCtx, Count) 1263 .castAs<DefinedSVal>(); 1264 State = State->BindExpr(CE, C.getLocationContext(), RetVal); 1265 1266 // Fill the region with the initialization value. 1267 State = State->bindDefaultInitial(RetVal, Init, LCtx); 1268 1269 // Set the region's extent equal to the Size parameter. 1270 const SymbolicRegion *R = 1271 dyn_cast_or_null<SymbolicRegion>(RetVal.getAsRegion()); 1272 if (!R) 1273 return nullptr; 1274 if (Optional<DefinedOrUnknownSVal> DefinedSize = 1275 Size.getAs<DefinedOrUnknownSVal>()) { 1276 SValBuilder &svalBuilder = C.getSValBuilder(); 1277 DefinedOrUnknownSVal Extent = R->getExtent(svalBuilder); 1278 DefinedOrUnknownSVal extentMatchesSize = 1279 svalBuilder.evalEQ(State, Extent, *DefinedSize); 1280 1281 State = State->assume(extentMatchesSize, true); 1282 assert(State); 1283 } 1284 1285 return MallocUpdateRefState(C, CE, State, Family); 1286 } 1287 1288 ProgramStateRef MallocChecker::MallocUpdateRefState(CheckerContext &C, 1289 const Expr *E, 1290 ProgramStateRef State, 1291 AllocationFamily Family, 1292 Optional<SVal> RetVal) { 1293 if (!State) 1294 return nullptr; 1295 1296 // Get the return value. 1297 if (!RetVal) 1298 RetVal = C.getSVal(E); 1299 1300 // We expect the malloc functions to return a pointer. 1301 if (!RetVal->getAs<Loc>()) 1302 return nullptr; 1303 1304 SymbolRef Sym = RetVal->getAsLocSymbol(); 1305 // This is a return value of a function that was not inlined, such as malloc() 1306 // or new(). We've checked that in the caller. Therefore, it must be a symbol. 1307 assert(Sym); 1308 1309 // Set the symbol's state to Allocated. 1310 return State->set<RegionState>(Sym, RefState::getAllocated(Family, E)); 1311 } 1312 1313 ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C, 1314 const CallExpr *CE, 1315 const OwnershipAttr *Att, 1316 ProgramStateRef State) const { 1317 if (!State) 1318 return nullptr; 1319 1320 if (Att->getModule() != II_malloc) 1321 return nullptr; 1322 1323 bool ReleasedAllocated = false; 1324 1325 for (const auto &Arg : Att->args()) { 1326 ProgramStateRef StateI = FreeMemAux( 1327 C, CE, State, Arg.getASTIndex(), 1328 Att->getOwnKind() == OwnershipAttr::Holds, ReleasedAllocated); 1329 if (StateI) 1330 State = StateI; 1331 } 1332 return State; 1333 } 1334 1335 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, 1336 const CallExpr *CE, 1337 ProgramStateRef State, 1338 unsigned Num, 1339 bool Hold, 1340 bool &ReleasedAllocated, 1341 bool ReturnsNullOnFailure) const { 1342 if (!State) 1343 return nullptr; 1344 1345 if (CE->getNumArgs() < (Num + 1)) 1346 return nullptr; 1347 1348 return FreeMemAux(C, CE->getArg(Num), CE, State, Hold, 1349 ReleasedAllocated, ReturnsNullOnFailure); 1350 } 1351 1352 /// Checks if the previous call to free on the given symbol failed - if free 1353 /// failed, returns true. Also, returns the corresponding return value symbol. 1354 static bool didPreviousFreeFail(ProgramStateRef State, 1355 SymbolRef Sym, SymbolRef &RetStatusSymbol) { 1356 const SymbolRef *Ret = State->get<FreeReturnValue>(Sym); 1357 if (Ret) { 1358 assert(*Ret && "We should not store the null return symbol"); 1359 ConstraintManager &CMgr = State->getConstraintManager(); 1360 ConditionTruthVal FreeFailed = CMgr.isNull(State, *Ret); 1361 RetStatusSymbol = *Ret; 1362 return FreeFailed.isConstrainedTrue(); 1363 } 1364 return false; 1365 } 1366 1367 AllocationFamily MallocChecker::getAllocationFamily(CheckerContext &C, 1368 const Stmt *S) const { 1369 if (!S) 1370 return AF_None; 1371 1372 if (const CallExpr *CE = dyn_cast<CallExpr>(S)) { 1373 const FunctionDecl *FD = C.getCalleeDecl(CE); 1374 1375 if (!FD) 1376 FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); 1377 1378 ASTContext &Ctx = C.getASTContext(); 1379 1380 if (isCMemFunction(FD, Ctx, AF_Malloc, MemoryOperationKind::MOK_Any)) 1381 return AF_Malloc; 1382 1383 if (isStandardNewDelete(FD, Ctx)) { 1384 OverloadedOperatorKind Kind = FD->getOverloadedOperator(); 1385 if (Kind == OO_New || Kind == OO_Delete) 1386 return AF_CXXNew; 1387 else if (Kind == OO_Array_New || Kind == OO_Array_Delete) 1388 return AF_CXXNewArray; 1389 } 1390 1391 if (isCMemFunction(FD, Ctx, AF_IfNameIndex, MemoryOperationKind::MOK_Any)) 1392 return AF_IfNameIndex; 1393 1394 if (isCMemFunction(FD, Ctx, AF_Alloca, MemoryOperationKind::MOK_Any)) 1395 return AF_Alloca; 1396 1397 return AF_None; 1398 } 1399 1400 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(S)) 1401 return NE->isArray() ? AF_CXXNewArray : AF_CXXNew; 1402 1403 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(S)) 1404 return DE->isArrayForm() ? AF_CXXNewArray : AF_CXXNew; 1405 1406 if (isa<ObjCMessageExpr>(S)) 1407 return AF_Malloc; 1408 1409 return AF_None; 1410 } 1411 1412 bool MallocChecker::printAllocDeallocName(raw_ostream &os, CheckerContext &C, 1413 const Expr *E) const { 1414 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 1415 // FIXME: This doesn't handle indirect calls. 1416 const FunctionDecl *FD = CE->getDirectCallee(); 1417 if (!FD) 1418 return false; 1419 1420 os << *FD; 1421 if (!FD->isOverloadedOperator()) 1422 os << "()"; 1423 return true; 1424 } 1425 1426 if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E)) { 1427 if (Msg->isInstanceMessage()) 1428 os << "-"; 1429 else 1430 os << "+"; 1431 Msg->getSelector().print(os); 1432 return true; 1433 } 1434 1435 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { 1436 os << "'" 1437 << getOperatorSpelling(NE->getOperatorNew()->getOverloadedOperator()) 1438 << "'"; 1439 return true; 1440 } 1441 1442 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(E)) { 1443 os << "'" 1444 << getOperatorSpelling(DE->getOperatorDelete()->getOverloadedOperator()) 1445 << "'"; 1446 return true; 1447 } 1448 1449 return false; 1450 } 1451 1452 void MallocChecker::printExpectedAllocName(raw_ostream &os, CheckerContext &C, 1453 const Expr *E) const { 1454 AllocationFamily Family = getAllocationFamily(C, E); 1455 1456 switch(Family) { 1457 case AF_Malloc: os << "malloc()"; return; 1458 case AF_CXXNew: os << "'new'"; return; 1459 case AF_CXXNewArray: os << "'new[]'"; return; 1460 case AF_IfNameIndex: os << "'if_nameindex()'"; return; 1461 case AF_InnerBuffer: os << "container-specific allocator"; return; 1462 case AF_Alloca: 1463 case AF_None: llvm_unreachable("not a deallocation expression"); 1464 } 1465 } 1466 1467 void MallocChecker::printExpectedDeallocName(raw_ostream &os, 1468 AllocationFamily Family) const { 1469 switch(Family) { 1470 case AF_Malloc: os << "free()"; return; 1471 case AF_CXXNew: os << "'delete'"; return; 1472 case AF_CXXNewArray: os << "'delete[]'"; return; 1473 case AF_IfNameIndex: os << "'if_freenameindex()'"; return; 1474 case AF_InnerBuffer: os << "container-specific deallocator"; return; 1475 case AF_Alloca: 1476 case AF_None: llvm_unreachable("suspicious argument"); 1477 } 1478 } 1479 1480 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, 1481 const Expr *ArgExpr, 1482 const Expr *ParentExpr, 1483 ProgramStateRef State, 1484 bool Hold, 1485 bool &ReleasedAllocated, 1486 bool ReturnsNullOnFailure) const { 1487 1488 if (!State) 1489 return nullptr; 1490 1491 SVal ArgVal = C.getSVal(ArgExpr); 1492 if (!ArgVal.getAs<DefinedOrUnknownSVal>()) 1493 return nullptr; 1494 DefinedOrUnknownSVal location = ArgVal.castAs<DefinedOrUnknownSVal>(); 1495 1496 // Check for null dereferences. 1497 if (!location.getAs<Loc>()) 1498 return nullptr; 1499 1500 // The explicit NULL case, no operation is performed. 1501 ProgramStateRef notNullState, nullState; 1502 std::tie(notNullState, nullState) = State->assume(location); 1503 if (nullState && !notNullState) 1504 return nullptr; 1505 1506 // Unknown values could easily be okay 1507 // Undefined values are handled elsewhere 1508 if (ArgVal.isUnknownOrUndef()) 1509 return nullptr; 1510 1511 const MemRegion *R = ArgVal.getAsRegion(); 1512 1513 // Nonlocs can't be freed, of course. 1514 // Non-region locations (labels and fixed addresses) also shouldn't be freed. 1515 if (!R) { 1516 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1517 return nullptr; 1518 } 1519 1520 R = R->StripCasts(); 1521 1522 // Blocks might show up as heap data, but should not be free()d 1523 if (isa<BlockDataRegion>(R)) { 1524 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1525 return nullptr; 1526 } 1527 1528 const MemSpaceRegion *MS = R->getMemorySpace(); 1529 1530 // Parameters, locals, statics, globals, and memory returned by 1531 // __builtin_alloca() shouldn't be freed. 1532 if (!(isa<UnknownSpaceRegion>(MS) || isa<HeapSpaceRegion>(MS))) { 1533 // FIXME: at the time this code was written, malloc() regions were 1534 // represented by conjured symbols, which are all in UnknownSpaceRegion. 1535 // This means that there isn't actually anything from HeapSpaceRegion 1536 // that should be freed, even though we allow it here. 1537 // Of course, free() can work on memory allocated outside the current 1538 // function, so UnknownSpaceRegion is always a possibility. 1539 // False negatives are better than false positives. 1540 1541 if (isa<AllocaRegion>(R)) 1542 ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1543 else 1544 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1545 1546 return nullptr; 1547 } 1548 1549 const SymbolicRegion *SrBase = dyn_cast<SymbolicRegion>(R->getBaseRegion()); 1550 // Various cases could lead to non-symbol values here. 1551 // For now, ignore them. 1552 if (!SrBase) 1553 return nullptr; 1554 1555 SymbolRef SymBase = SrBase->getSymbol(); 1556 const RefState *RsBase = State->get<RegionState>(SymBase); 1557 SymbolRef PreviousRetStatusSymbol = nullptr; 1558 1559 if (RsBase) { 1560 1561 // Memory returned by alloca() shouldn't be freed. 1562 if (RsBase->getAllocationFamily() == AF_Alloca) { 1563 ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1564 return nullptr; 1565 } 1566 1567 // Check for double free first. 1568 if ((RsBase->isReleased() || RsBase->isRelinquished()) && 1569 !didPreviousFreeFail(State, SymBase, PreviousRetStatusSymbol)) { 1570 ReportDoubleFree(C, ParentExpr->getSourceRange(), RsBase->isReleased(), 1571 SymBase, PreviousRetStatusSymbol); 1572 return nullptr; 1573 1574 // If the pointer is allocated or escaped, but we are now trying to free it, 1575 // check that the call to free is proper. 1576 } else if (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero() || 1577 RsBase->isEscaped()) { 1578 1579 // Check if an expected deallocation function matches the real one. 1580 bool DeallocMatchesAlloc = 1581 RsBase->getAllocationFamily() == getAllocationFamily(C, ParentExpr); 1582 if (!DeallocMatchesAlloc) { 1583 ReportMismatchedDealloc(C, ArgExpr->getSourceRange(), 1584 ParentExpr, RsBase, SymBase, Hold); 1585 return nullptr; 1586 } 1587 1588 // Check if the memory location being freed is the actual location 1589 // allocated, or an offset. 1590 RegionOffset Offset = R->getAsOffset(); 1591 if (Offset.isValid() && 1592 !Offset.hasSymbolicOffset() && 1593 Offset.getOffset() != 0) { 1594 const Expr *AllocExpr = cast<Expr>(RsBase->getStmt()); 1595 ReportOffsetFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1596 AllocExpr); 1597 return nullptr; 1598 } 1599 } 1600 } 1601 1602 if (SymBase->getType()->isFunctionPointerType()) { 1603 ReportFunctionPointerFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1604 return nullptr; 1605 } 1606 1607 ReleasedAllocated = (RsBase != nullptr) && (RsBase->isAllocated() || 1608 RsBase->isAllocatedOfSizeZero()); 1609 1610 // Clean out the info on previous call to free return info. 1611 State = State->remove<FreeReturnValue>(SymBase); 1612 1613 // Keep track of the return value. If it is NULL, we will know that free 1614 // failed. 1615 if (ReturnsNullOnFailure) { 1616 SVal RetVal = C.getSVal(ParentExpr); 1617 SymbolRef RetStatusSymbol = RetVal.getAsSymbol(); 1618 if (RetStatusSymbol) { 1619 C.getSymbolManager().addSymbolDependency(SymBase, RetStatusSymbol); 1620 State = State->set<FreeReturnValue>(SymBase, RetStatusSymbol); 1621 } 1622 } 1623 1624 AllocationFamily Family = RsBase ? RsBase->getAllocationFamily() 1625 : getAllocationFamily(C, ParentExpr); 1626 // Normal free. 1627 if (Hold) 1628 return State->set<RegionState>(SymBase, 1629 RefState::getRelinquished(Family, 1630 ParentExpr)); 1631 1632 return State->set<RegionState>(SymBase, 1633 RefState::getReleased(Family, ParentExpr)); 1634 } 1635 1636 Optional<MallocChecker::CheckKind> 1637 MallocChecker::getCheckIfTracked(AllocationFamily Family, 1638 bool IsALeakCheck) const { 1639 switch (Family) { 1640 case AF_Malloc: 1641 case AF_Alloca: 1642 case AF_IfNameIndex: { 1643 if (ChecksEnabled[CK_MallocChecker]) 1644 return CK_MallocChecker; 1645 return None; 1646 } 1647 case AF_CXXNew: 1648 case AF_CXXNewArray: { 1649 if (IsALeakCheck) { 1650 if (ChecksEnabled[CK_NewDeleteLeaksChecker]) 1651 return CK_NewDeleteLeaksChecker; 1652 } 1653 else { 1654 if (ChecksEnabled[CK_NewDeleteChecker]) 1655 return CK_NewDeleteChecker; 1656 } 1657 return None; 1658 } 1659 case AF_InnerBuffer: { 1660 if (ChecksEnabled[CK_InnerPointerChecker]) 1661 return CK_InnerPointerChecker; 1662 return None; 1663 } 1664 case AF_None: { 1665 llvm_unreachable("no family"); 1666 } 1667 } 1668 llvm_unreachable("unhandled family"); 1669 } 1670 1671 Optional<MallocChecker::CheckKind> 1672 MallocChecker::getCheckIfTracked(CheckerContext &C, 1673 const Stmt *AllocDeallocStmt, 1674 bool IsALeakCheck) const { 1675 return getCheckIfTracked(getAllocationFamily(C, AllocDeallocStmt), 1676 IsALeakCheck); 1677 } 1678 1679 Optional<MallocChecker::CheckKind> 1680 MallocChecker::getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 1681 bool IsALeakCheck) const { 1682 if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) 1683 return CK_MallocChecker; 1684 1685 const RefState *RS = C.getState()->get<RegionState>(Sym); 1686 assert(RS); 1687 return getCheckIfTracked(RS->getAllocationFamily(), IsALeakCheck); 1688 } 1689 1690 bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) { 1691 if (Optional<nonloc::ConcreteInt> IntVal = V.getAs<nonloc::ConcreteInt>()) 1692 os << "an integer (" << IntVal->getValue() << ")"; 1693 else if (Optional<loc::ConcreteInt> ConstAddr = V.getAs<loc::ConcreteInt>()) 1694 os << "a constant address (" << ConstAddr->getValue() << ")"; 1695 else if (Optional<loc::GotoLabel> Label = V.getAs<loc::GotoLabel>()) 1696 os << "the address of the label '" << Label->getLabel()->getName() << "'"; 1697 else 1698 return false; 1699 1700 return true; 1701 } 1702 1703 bool MallocChecker::SummarizeRegion(raw_ostream &os, 1704 const MemRegion *MR) { 1705 switch (MR->getKind()) { 1706 case MemRegion::FunctionCodeRegionKind: { 1707 const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl(); 1708 if (FD) 1709 os << "the address of the function '" << *FD << '\''; 1710 else 1711 os << "the address of a function"; 1712 return true; 1713 } 1714 case MemRegion::BlockCodeRegionKind: 1715 os << "block text"; 1716 return true; 1717 case MemRegion::BlockDataRegionKind: 1718 // FIXME: where the block came from? 1719 os << "a block"; 1720 return true; 1721 default: { 1722 const MemSpaceRegion *MS = MR->getMemorySpace(); 1723 1724 if (isa<StackLocalsSpaceRegion>(MS)) { 1725 const VarRegion *VR = dyn_cast<VarRegion>(MR); 1726 const VarDecl *VD; 1727 if (VR) 1728 VD = VR->getDecl(); 1729 else 1730 VD = nullptr; 1731 1732 if (VD) 1733 os << "the address of the local variable '" << VD->getName() << "'"; 1734 else 1735 os << "the address of a local stack variable"; 1736 return true; 1737 } 1738 1739 if (isa<StackArgumentsSpaceRegion>(MS)) { 1740 const VarRegion *VR = dyn_cast<VarRegion>(MR); 1741 const VarDecl *VD; 1742 if (VR) 1743 VD = VR->getDecl(); 1744 else 1745 VD = nullptr; 1746 1747 if (VD) 1748 os << "the address of the parameter '" << VD->getName() << "'"; 1749 else 1750 os << "the address of a parameter"; 1751 return true; 1752 } 1753 1754 if (isa<GlobalsSpaceRegion>(MS)) { 1755 const VarRegion *VR = dyn_cast<VarRegion>(MR); 1756 const VarDecl *VD; 1757 if (VR) 1758 VD = VR->getDecl(); 1759 else 1760 VD = nullptr; 1761 1762 if (VD) { 1763 if (VD->isStaticLocal()) 1764 os << "the address of the static variable '" << VD->getName() << "'"; 1765 else 1766 os << "the address of the global variable '" << VD->getName() << "'"; 1767 } else 1768 os << "the address of a global variable"; 1769 return true; 1770 } 1771 1772 return false; 1773 } 1774 } 1775 } 1776 1777 void MallocChecker::ReportBadFree(CheckerContext &C, SVal ArgVal, 1778 SourceRange Range, 1779 const Expr *DeallocExpr) const { 1780 1781 if (!ChecksEnabled[CK_MallocChecker] && 1782 !ChecksEnabled[CK_NewDeleteChecker]) 1783 return; 1784 1785 Optional<MallocChecker::CheckKind> CheckKind = 1786 getCheckIfTracked(C, DeallocExpr); 1787 if (!CheckKind.hasValue()) 1788 return; 1789 1790 if (ExplodedNode *N = C.generateErrorNode()) { 1791 if (!BT_BadFree[*CheckKind]) 1792 BT_BadFree[*CheckKind].reset(new BugType( 1793 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 1794 1795 SmallString<100> buf; 1796 llvm::raw_svector_ostream os(buf); 1797 1798 const MemRegion *MR = ArgVal.getAsRegion(); 1799 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 1800 MR = ER->getSuperRegion(); 1801 1802 os << "Argument to "; 1803 if (!printAllocDeallocName(os, C, DeallocExpr)) 1804 os << "deallocator"; 1805 1806 os << " is "; 1807 bool Summarized = MR ? SummarizeRegion(os, MR) 1808 : SummarizeValue(os, ArgVal); 1809 if (Summarized) 1810 os << ", which is not memory allocated by "; 1811 else 1812 os << "not memory allocated by "; 1813 1814 printExpectedAllocName(os, C, DeallocExpr); 1815 1816 auto R = llvm::make_unique<BugReport>(*BT_BadFree[*CheckKind], os.str(), N); 1817 R->markInteresting(MR); 1818 R->addRange(Range); 1819 C.emitReport(std::move(R)); 1820 } 1821 } 1822 1823 void MallocChecker::ReportFreeAlloca(CheckerContext &C, SVal ArgVal, 1824 SourceRange Range) const { 1825 1826 Optional<MallocChecker::CheckKind> CheckKind; 1827 1828 if (ChecksEnabled[CK_MallocChecker]) 1829 CheckKind = CK_MallocChecker; 1830 else if (ChecksEnabled[CK_MismatchedDeallocatorChecker]) 1831 CheckKind = CK_MismatchedDeallocatorChecker; 1832 else 1833 return; 1834 1835 if (ExplodedNode *N = C.generateErrorNode()) { 1836 if (!BT_FreeAlloca[*CheckKind]) 1837 BT_FreeAlloca[*CheckKind].reset(new BugType( 1838 CheckNames[*CheckKind], "Free alloca()", categories::MemoryError)); 1839 1840 auto R = llvm::make_unique<BugReport>( 1841 *BT_FreeAlloca[*CheckKind], 1842 "Memory allocated by alloca() should not be deallocated", N); 1843 R->markInteresting(ArgVal.getAsRegion()); 1844 R->addRange(Range); 1845 C.emitReport(std::move(R)); 1846 } 1847 } 1848 1849 void MallocChecker::ReportMismatchedDealloc(CheckerContext &C, 1850 SourceRange Range, 1851 const Expr *DeallocExpr, 1852 const RefState *RS, 1853 SymbolRef Sym, 1854 bool OwnershipTransferred) const { 1855 1856 if (!ChecksEnabled[CK_MismatchedDeallocatorChecker]) 1857 return; 1858 1859 if (ExplodedNode *N = C.generateErrorNode()) { 1860 if (!BT_MismatchedDealloc) 1861 BT_MismatchedDealloc.reset( 1862 new BugType(CheckNames[CK_MismatchedDeallocatorChecker], 1863 "Bad deallocator", categories::MemoryError)); 1864 1865 SmallString<100> buf; 1866 llvm::raw_svector_ostream os(buf); 1867 1868 const Expr *AllocExpr = cast<Expr>(RS->getStmt()); 1869 SmallString<20> AllocBuf; 1870 llvm::raw_svector_ostream AllocOs(AllocBuf); 1871 SmallString<20> DeallocBuf; 1872 llvm::raw_svector_ostream DeallocOs(DeallocBuf); 1873 1874 if (OwnershipTransferred) { 1875 if (printAllocDeallocName(DeallocOs, C, DeallocExpr)) 1876 os << DeallocOs.str() << " cannot"; 1877 else 1878 os << "Cannot"; 1879 1880 os << " take ownership of memory"; 1881 1882 if (printAllocDeallocName(AllocOs, C, AllocExpr)) 1883 os << " allocated by " << AllocOs.str(); 1884 } else { 1885 os << "Memory"; 1886 if (printAllocDeallocName(AllocOs, C, AllocExpr)) 1887 os << " allocated by " << AllocOs.str(); 1888 1889 os << " should be deallocated by "; 1890 printExpectedDeallocName(os, RS->getAllocationFamily()); 1891 1892 if (printAllocDeallocName(DeallocOs, C, DeallocExpr)) 1893 os << ", not " << DeallocOs.str(); 1894 } 1895 1896 auto R = llvm::make_unique<BugReport>(*BT_MismatchedDealloc, os.str(), N); 1897 R->markInteresting(Sym); 1898 R->addRange(Range); 1899 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 1900 C.emitReport(std::move(R)); 1901 } 1902 } 1903 1904 void MallocChecker::ReportOffsetFree(CheckerContext &C, SVal ArgVal, 1905 SourceRange Range, const Expr *DeallocExpr, 1906 const Expr *AllocExpr) const { 1907 1908 1909 if (!ChecksEnabled[CK_MallocChecker] && 1910 !ChecksEnabled[CK_NewDeleteChecker]) 1911 return; 1912 1913 Optional<MallocChecker::CheckKind> CheckKind = 1914 getCheckIfTracked(C, AllocExpr); 1915 if (!CheckKind.hasValue()) 1916 return; 1917 1918 ExplodedNode *N = C.generateErrorNode(); 1919 if (!N) 1920 return; 1921 1922 if (!BT_OffsetFree[*CheckKind]) 1923 BT_OffsetFree[*CheckKind].reset(new BugType( 1924 CheckNames[*CheckKind], "Offset free", categories::MemoryError)); 1925 1926 SmallString<100> buf; 1927 llvm::raw_svector_ostream os(buf); 1928 SmallString<20> AllocNameBuf; 1929 llvm::raw_svector_ostream AllocNameOs(AllocNameBuf); 1930 1931 const MemRegion *MR = ArgVal.getAsRegion(); 1932 assert(MR && "Only MemRegion based symbols can have offset free errors"); 1933 1934 RegionOffset Offset = MR->getAsOffset(); 1935 assert((Offset.isValid() && 1936 !Offset.hasSymbolicOffset() && 1937 Offset.getOffset() != 0) && 1938 "Only symbols with a valid offset can have offset free errors"); 1939 1940 int offsetBytes = Offset.getOffset() / C.getASTContext().getCharWidth(); 1941 1942 os << "Argument to "; 1943 if (!printAllocDeallocName(os, C, DeallocExpr)) 1944 os << "deallocator"; 1945 os << " is offset by " 1946 << offsetBytes 1947 << " " 1948 << ((abs(offsetBytes) > 1) ? "bytes" : "byte") 1949 << " from the start of "; 1950 if (AllocExpr && printAllocDeallocName(AllocNameOs, C, AllocExpr)) 1951 os << "memory allocated by " << AllocNameOs.str(); 1952 else 1953 os << "allocated memory"; 1954 1955 auto R = llvm::make_unique<BugReport>(*BT_OffsetFree[*CheckKind], os.str(), N); 1956 R->markInteresting(MR->getBaseRegion()); 1957 R->addRange(Range); 1958 C.emitReport(std::move(R)); 1959 } 1960 1961 void MallocChecker::ReportUseAfterFree(CheckerContext &C, SourceRange Range, 1962 SymbolRef Sym) const { 1963 1964 if (!ChecksEnabled[CK_MallocChecker] && 1965 !ChecksEnabled[CK_NewDeleteChecker] && 1966 !ChecksEnabled[CK_InnerPointerChecker]) 1967 return; 1968 1969 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 1970 if (!CheckKind.hasValue()) 1971 return; 1972 1973 if (ExplodedNode *N = C.generateErrorNode()) { 1974 if (!BT_UseFree[*CheckKind]) 1975 BT_UseFree[*CheckKind].reset(new BugType( 1976 CheckNames[*CheckKind], "Use-after-free", categories::MemoryError)); 1977 1978 AllocationFamily AF = 1979 C.getState()->get<RegionState>(Sym)->getAllocationFamily(); 1980 1981 auto R = llvm::make_unique<BugReport>(*BT_UseFree[*CheckKind], 1982 AF == AF_InnerBuffer 1983 ? "Inner pointer of container used after re/deallocation" 1984 : "Use of memory after it is freed", 1985 N); 1986 1987 R->markInteresting(Sym); 1988 R->addRange(Range); 1989 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 1990 1991 if (AF == AF_InnerBuffer) 1992 R->addVisitor(allocation_state::getInnerPointerBRVisitor(Sym)); 1993 1994 C.emitReport(std::move(R)); 1995 } 1996 } 1997 1998 void MallocChecker::ReportDoubleFree(CheckerContext &C, SourceRange Range, 1999 bool Released, SymbolRef Sym, 2000 SymbolRef PrevSym) const { 2001 2002 if (!ChecksEnabled[CK_MallocChecker] && 2003 !ChecksEnabled[CK_NewDeleteChecker]) 2004 return; 2005 2006 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2007 if (!CheckKind.hasValue()) 2008 return; 2009 2010 if (ExplodedNode *N = C.generateErrorNode()) { 2011 if (!BT_DoubleFree[*CheckKind]) 2012 BT_DoubleFree[*CheckKind].reset(new BugType( 2013 CheckNames[*CheckKind], "Double free", categories::MemoryError)); 2014 2015 auto R = llvm::make_unique<BugReport>( 2016 *BT_DoubleFree[*CheckKind], 2017 (Released ? "Attempt to free released memory" 2018 : "Attempt to free non-owned memory"), 2019 N); 2020 R->addRange(Range); 2021 R->markInteresting(Sym); 2022 if (PrevSym) 2023 R->markInteresting(PrevSym); 2024 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 2025 C.emitReport(std::move(R)); 2026 } 2027 } 2028 2029 void MallocChecker::ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const { 2030 2031 if (!ChecksEnabled[CK_NewDeleteChecker]) 2032 return; 2033 2034 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2035 if (!CheckKind.hasValue()) 2036 return; 2037 2038 if (ExplodedNode *N = C.generateErrorNode()) { 2039 if (!BT_DoubleDelete) 2040 BT_DoubleDelete.reset(new BugType(CheckNames[CK_NewDeleteChecker], 2041 "Double delete", 2042 categories::MemoryError)); 2043 2044 auto R = llvm::make_unique<BugReport>( 2045 *BT_DoubleDelete, "Attempt to delete released memory", N); 2046 2047 R->markInteresting(Sym); 2048 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 2049 C.emitReport(std::move(R)); 2050 } 2051 } 2052 2053 void MallocChecker::ReportUseZeroAllocated(CheckerContext &C, 2054 SourceRange Range, 2055 SymbolRef Sym) const { 2056 2057 if (!ChecksEnabled[CK_MallocChecker] && 2058 !ChecksEnabled[CK_NewDeleteChecker]) 2059 return; 2060 2061 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2062 2063 if (!CheckKind.hasValue()) 2064 return; 2065 2066 if (ExplodedNode *N = C.generateErrorNode()) { 2067 if (!BT_UseZerroAllocated[*CheckKind]) 2068 BT_UseZerroAllocated[*CheckKind].reset( 2069 new BugType(CheckNames[*CheckKind], "Use of zero allocated", 2070 categories::MemoryError)); 2071 2072 auto R = llvm::make_unique<BugReport>(*BT_UseZerroAllocated[*CheckKind], 2073 "Use of zero-allocated memory", N); 2074 2075 R->addRange(Range); 2076 if (Sym) { 2077 R->markInteresting(Sym); 2078 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 2079 } 2080 C.emitReport(std::move(R)); 2081 } 2082 } 2083 2084 void MallocChecker::ReportFunctionPointerFree(CheckerContext &C, SVal ArgVal, 2085 SourceRange Range, 2086 const Expr *FreeExpr) const { 2087 if (!ChecksEnabled[CK_MallocChecker]) 2088 return; 2089 2090 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, FreeExpr); 2091 if (!CheckKind.hasValue()) 2092 return; 2093 2094 if (ExplodedNode *N = C.generateErrorNode()) { 2095 if (!BT_BadFree[*CheckKind]) 2096 BT_BadFree[*CheckKind].reset(new BugType( 2097 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 2098 2099 SmallString<100> Buf; 2100 llvm::raw_svector_ostream Os(Buf); 2101 2102 const MemRegion *MR = ArgVal.getAsRegion(); 2103 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 2104 MR = ER->getSuperRegion(); 2105 2106 Os << "Argument to "; 2107 if (!printAllocDeallocName(Os, C, FreeExpr)) 2108 Os << "deallocator"; 2109 2110 Os << " is a function pointer"; 2111 2112 auto R = llvm::make_unique<BugReport>(*BT_BadFree[*CheckKind], Os.str(), N); 2113 R->markInteresting(MR); 2114 R->addRange(Range); 2115 C.emitReport(std::move(R)); 2116 } 2117 } 2118 2119 ProgramStateRef MallocChecker::ReallocMemAux(CheckerContext &C, 2120 const CallExpr *CE, 2121 bool FreesOnFail, 2122 ProgramStateRef State, 2123 bool SuffixWithN) const { 2124 if (!State) 2125 return nullptr; 2126 2127 if (SuffixWithN && CE->getNumArgs() < 3) 2128 return nullptr; 2129 else if (CE->getNumArgs() < 2) 2130 return nullptr; 2131 2132 const Expr *arg0Expr = CE->getArg(0); 2133 SVal Arg0Val = C.getSVal(arg0Expr); 2134 if (!Arg0Val.getAs<DefinedOrUnknownSVal>()) 2135 return nullptr; 2136 DefinedOrUnknownSVal arg0Val = Arg0Val.castAs<DefinedOrUnknownSVal>(); 2137 2138 SValBuilder &svalBuilder = C.getSValBuilder(); 2139 2140 DefinedOrUnknownSVal PtrEQ = 2141 svalBuilder.evalEQ(State, arg0Val, svalBuilder.makeNull()); 2142 2143 // Get the size argument. 2144 const Expr *Arg1 = CE->getArg(1); 2145 2146 // Get the value of the size argument. 2147 SVal TotalSize = C.getSVal(Arg1); 2148 if (SuffixWithN) 2149 TotalSize = evalMulForBufferSize(C, Arg1, CE->getArg(2)); 2150 if (!TotalSize.getAs<DefinedOrUnknownSVal>()) 2151 return nullptr; 2152 2153 // Compare the size argument to 0. 2154 DefinedOrUnknownSVal SizeZero = 2155 svalBuilder.evalEQ(State, TotalSize.castAs<DefinedOrUnknownSVal>(), 2156 svalBuilder.makeIntValWithPtrWidth(0, false)); 2157 2158 ProgramStateRef StatePtrIsNull, StatePtrNotNull; 2159 std::tie(StatePtrIsNull, StatePtrNotNull) = State->assume(PtrEQ); 2160 ProgramStateRef StateSizeIsZero, StateSizeNotZero; 2161 std::tie(StateSizeIsZero, StateSizeNotZero) = State->assume(SizeZero); 2162 // We only assume exceptional states if they are definitely true; if the 2163 // state is under-constrained, assume regular realloc behavior. 2164 bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull; 2165 bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero; 2166 2167 // If the ptr is NULL and the size is not 0, the call is equivalent to 2168 // malloc(size). 2169 if (PrtIsNull && !SizeIsZero) { 2170 ProgramStateRef stateMalloc = MallocMemAux(C, CE, TotalSize, 2171 UndefinedVal(), StatePtrIsNull); 2172 return stateMalloc; 2173 } 2174 2175 if (PrtIsNull && SizeIsZero) 2176 return State; 2177 2178 // Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size). 2179 assert(!PrtIsNull); 2180 SymbolRef FromPtr = arg0Val.getAsSymbol(); 2181 SVal RetVal = C.getSVal(CE); 2182 SymbolRef ToPtr = RetVal.getAsSymbol(); 2183 if (!FromPtr || !ToPtr) 2184 return nullptr; 2185 2186 bool ReleasedAllocated = false; 2187 2188 // If the size is 0, free the memory. 2189 if (SizeIsZero) 2190 if (ProgramStateRef stateFree = FreeMemAux(C, CE, StateSizeIsZero, 0, 2191 false, ReleasedAllocated)){ 2192 // The semantics of the return value are: 2193 // If size was equal to 0, either NULL or a pointer suitable to be passed 2194 // to free() is returned. We just free the input pointer and do not add 2195 // any constrains on the output pointer. 2196 return stateFree; 2197 } 2198 2199 // Default behavior. 2200 if (ProgramStateRef stateFree = 2201 FreeMemAux(C, CE, State, 0, false, ReleasedAllocated)) { 2202 2203 ProgramStateRef stateRealloc = MallocMemAux(C, CE, TotalSize, 2204 UnknownVal(), stateFree); 2205 if (!stateRealloc) 2206 return nullptr; 2207 2208 ReallocPairKind Kind = RPToBeFreedAfterFailure; 2209 if (FreesOnFail) 2210 Kind = RPIsFreeOnFailure; 2211 else if (!ReleasedAllocated) 2212 Kind = RPDoNotTrackAfterFailure; 2213 2214 // Record the info about the reallocated symbol so that we could properly 2215 // process failed reallocation. 2216 stateRealloc = stateRealloc->set<ReallocPairs>(ToPtr, 2217 ReallocPair(FromPtr, Kind)); 2218 // The reallocated symbol should stay alive for as long as the new symbol. 2219 C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr); 2220 return stateRealloc; 2221 } 2222 return nullptr; 2223 } 2224 2225 ProgramStateRef MallocChecker::CallocMem(CheckerContext &C, const CallExpr *CE, 2226 ProgramStateRef State) { 2227 if (!State) 2228 return nullptr; 2229 2230 if (CE->getNumArgs() < 2) 2231 return nullptr; 2232 2233 SValBuilder &svalBuilder = C.getSValBuilder(); 2234 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 2235 SVal TotalSize = evalMulForBufferSize(C, CE->getArg(0), CE->getArg(1)); 2236 2237 return MallocMemAux(C, CE, TotalSize, zeroVal, State); 2238 } 2239 2240 LeakInfo 2241 MallocChecker::getAllocationSite(const ExplodedNode *N, SymbolRef Sym, 2242 CheckerContext &C) const { 2243 const LocationContext *LeakContext = N->getLocationContext(); 2244 // Walk the ExplodedGraph backwards and find the first node that referred to 2245 // the tracked symbol. 2246 const ExplodedNode *AllocNode = N; 2247 const MemRegion *ReferenceRegion = nullptr; 2248 2249 while (N) { 2250 ProgramStateRef State = N->getState(); 2251 if (!State->get<RegionState>(Sym)) 2252 break; 2253 2254 // Find the most recent expression bound to the symbol in the current 2255 // context. 2256 if (!ReferenceRegion) { 2257 if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) { 2258 SVal Val = State->getSVal(MR); 2259 if (Val.getAsLocSymbol() == Sym) { 2260 const VarRegion* VR = MR->getBaseRegion()->getAs<VarRegion>(); 2261 // Do not show local variables belonging to a function other than 2262 // where the error is reported. 2263 if (!VR || 2264 (VR->getStackFrame() == LeakContext->getStackFrame())) 2265 ReferenceRegion = MR; 2266 } 2267 } 2268 } 2269 2270 // Allocation node, is the last node in the current or parent context in 2271 // which the symbol was tracked. 2272 const LocationContext *NContext = N->getLocationContext(); 2273 if (NContext == LeakContext || 2274 NContext->isParentOf(LeakContext)) 2275 AllocNode = N; 2276 N = N->pred_empty() ? nullptr : *(N->pred_begin()); 2277 } 2278 2279 return LeakInfo(AllocNode, ReferenceRegion); 2280 } 2281 2282 void MallocChecker::reportLeak(SymbolRef Sym, ExplodedNode *N, 2283 CheckerContext &C) const { 2284 2285 if (!ChecksEnabled[CK_MallocChecker] && 2286 !ChecksEnabled[CK_NewDeleteLeaksChecker]) 2287 return; 2288 2289 const RefState *RS = C.getState()->get<RegionState>(Sym); 2290 assert(RS && "cannot leak an untracked symbol"); 2291 AllocationFamily Family = RS->getAllocationFamily(); 2292 2293 if (Family == AF_Alloca) 2294 return; 2295 2296 Optional<MallocChecker::CheckKind> 2297 CheckKind = getCheckIfTracked(Family, true); 2298 2299 if (!CheckKind.hasValue()) 2300 return; 2301 2302 assert(N); 2303 if (!BT_Leak[*CheckKind]) { 2304 BT_Leak[*CheckKind].reset(new BugType(CheckNames[*CheckKind], "Memory leak", 2305 categories::MemoryError)); 2306 // Leaks should not be reported if they are post-dominated by a sink: 2307 // (1) Sinks are higher importance bugs. 2308 // (2) NoReturnFunctionChecker uses sink nodes to represent paths ending 2309 // with __noreturn functions such as assert() or exit(). We choose not 2310 // to report leaks on such paths. 2311 BT_Leak[*CheckKind]->setSuppressOnSink(true); 2312 } 2313 2314 // Most bug reports are cached at the location where they occurred. 2315 // With leaks, we want to unique them by the location where they were 2316 // allocated, and only report a single path. 2317 PathDiagnosticLocation LocUsedForUniqueing; 2318 const ExplodedNode *AllocNode = nullptr; 2319 const MemRegion *Region = nullptr; 2320 std::tie(AllocNode, Region) = getAllocationSite(N, Sym, C); 2321 2322 const Stmt *AllocationStmt = PathDiagnosticLocation::getStmt(AllocNode); 2323 if (AllocationStmt) 2324 LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocationStmt, 2325 C.getSourceManager(), 2326 AllocNode->getLocationContext()); 2327 2328 SmallString<200> buf; 2329 llvm::raw_svector_ostream os(buf); 2330 if (Region && Region->canPrintPretty()) { 2331 os << "Potential leak of memory pointed to by "; 2332 Region->printPretty(os); 2333 } else { 2334 os << "Potential memory leak"; 2335 } 2336 2337 auto R = llvm::make_unique<BugReport>( 2338 *BT_Leak[*CheckKind], os.str(), N, LocUsedForUniqueing, 2339 AllocNode->getLocationContext()->getDecl()); 2340 R->markInteresting(Sym); 2341 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym, true)); 2342 C.emitReport(std::move(R)); 2343 } 2344 2345 void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper, 2346 CheckerContext &C) const 2347 { 2348 ProgramStateRef state = C.getState(); 2349 RegionStateTy OldRS = state->get<RegionState>(); 2350 RegionStateTy::Factory &F = state->get_context<RegionState>(); 2351 2352 RegionStateTy RS = OldRS; 2353 SmallVector<SymbolRef, 2> Errors; 2354 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2355 if (SymReaper.isDead(I->first)) { 2356 if (I->second.isAllocated() || I->second.isAllocatedOfSizeZero()) 2357 Errors.push_back(I->first); 2358 // Remove the dead symbol from the map. 2359 RS = F.remove(RS, I->first); 2360 } 2361 } 2362 2363 if (RS == OldRS) { 2364 // We shouldn't have touched other maps yet. 2365 assert(state->get<ReallocPairs>() == 2366 C.getState()->get<ReallocPairs>()); 2367 assert(state->get<FreeReturnValue>() == 2368 C.getState()->get<FreeReturnValue>()); 2369 return; 2370 } 2371 2372 // Cleanup the Realloc Pairs Map. 2373 ReallocPairsTy RP = state->get<ReallocPairs>(); 2374 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 2375 if (SymReaper.isDead(I->first) || 2376 SymReaper.isDead(I->second.ReallocatedSym)) { 2377 state = state->remove<ReallocPairs>(I->first); 2378 } 2379 } 2380 2381 // Cleanup the FreeReturnValue Map. 2382 FreeReturnValueTy FR = state->get<FreeReturnValue>(); 2383 for (FreeReturnValueTy::iterator I = FR.begin(), E = FR.end(); I != E; ++I) { 2384 if (SymReaper.isDead(I->first) || 2385 SymReaper.isDead(I->second)) { 2386 state = state->remove<FreeReturnValue>(I->first); 2387 } 2388 } 2389 2390 // Generate leak node. 2391 ExplodedNode *N = C.getPredecessor(); 2392 if (!Errors.empty()) { 2393 static CheckerProgramPointTag Tag("MallocChecker", "DeadSymbolsLeak"); 2394 N = C.generateNonFatalErrorNode(C.getState(), &Tag); 2395 if (N) { 2396 for (SmallVectorImpl<SymbolRef>::iterator 2397 I = Errors.begin(), E = Errors.end(); I != E; ++I) { 2398 reportLeak(*I, N, C); 2399 } 2400 } 2401 } 2402 2403 C.addTransition(state->set<RegionState>(RS), N); 2404 } 2405 2406 void MallocChecker::checkPreCall(const CallEvent &Call, 2407 CheckerContext &C) const { 2408 2409 if (const CXXDestructorCall *DC = dyn_cast<CXXDestructorCall>(&Call)) { 2410 SymbolRef Sym = DC->getCXXThisVal().getAsSymbol(); 2411 if (!Sym || checkDoubleDelete(Sym, C)) 2412 return; 2413 } 2414 2415 // We will check for double free in the post visit. 2416 if (const AnyFunctionCall *FC = dyn_cast<AnyFunctionCall>(&Call)) { 2417 const FunctionDecl *FD = FC->getDecl(); 2418 if (!FD) 2419 return; 2420 2421 ASTContext &Ctx = C.getASTContext(); 2422 if (ChecksEnabled[CK_MallocChecker] && 2423 (isCMemFunction(FD, Ctx, AF_Malloc, MemoryOperationKind::MOK_Free) || 2424 isCMemFunction(FD, Ctx, AF_IfNameIndex, 2425 MemoryOperationKind::MOK_Free))) 2426 return; 2427 } 2428 2429 // Check if the callee of a method is deleted. 2430 if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(&Call)) { 2431 SymbolRef Sym = CC->getCXXThisVal().getAsSymbol(); 2432 if (!Sym || checkUseAfterFree(Sym, C, CC->getCXXThisExpr())) 2433 return; 2434 } 2435 2436 // Check arguments for being used after free. 2437 for (unsigned I = 0, E = Call.getNumArgs(); I != E; ++I) { 2438 SVal ArgSVal = Call.getArgSVal(I); 2439 if (ArgSVal.getAs<Loc>()) { 2440 SymbolRef Sym = ArgSVal.getAsSymbol(); 2441 if (!Sym) 2442 continue; 2443 if (checkUseAfterFree(Sym, C, Call.getArgExpr(I))) 2444 return; 2445 } 2446 } 2447 } 2448 2449 void MallocChecker::checkPreStmt(const ReturnStmt *S, 2450 CheckerContext &C) const { 2451 checkEscapeOnReturn(S, C); 2452 } 2453 2454 // In the CFG, automatic destructors come after the return statement. 2455 // This callback checks for returning memory that is freed by automatic 2456 // destructors, as those cannot be reached in checkPreStmt(). 2457 void MallocChecker::checkEndFunction(const ReturnStmt *S, 2458 CheckerContext &C) const { 2459 checkEscapeOnReturn(S, C); 2460 } 2461 2462 void MallocChecker::checkEscapeOnReturn(const ReturnStmt *S, 2463 CheckerContext &C) const { 2464 if (!S) 2465 return; 2466 2467 const Expr *E = S->getRetValue(); 2468 if (!E) 2469 return; 2470 2471 // Check if we are returning a symbol. 2472 ProgramStateRef State = C.getState(); 2473 SVal RetVal = C.getSVal(E); 2474 SymbolRef Sym = RetVal.getAsSymbol(); 2475 if (!Sym) 2476 // If we are returning a field of the allocated struct or an array element, 2477 // the callee could still free the memory. 2478 // TODO: This logic should be a part of generic symbol escape callback. 2479 if (const MemRegion *MR = RetVal.getAsRegion()) 2480 if (isa<FieldRegion>(MR) || isa<ElementRegion>(MR)) 2481 if (const SymbolicRegion *BMR = 2482 dyn_cast<SymbolicRegion>(MR->getBaseRegion())) 2483 Sym = BMR->getSymbol(); 2484 2485 // Check if we are returning freed memory. 2486 if (Sym) 2487 checkUseAfterFree(Sym, C, E); 2488 } 2489 2490 // TODO: Blocks should be either inlined or should call invalidate regions 2491 // upon invocation. After that's in place, special casing here will not be 2492 // needed. 2493 void MallocChecker::checkPostStmt(const BlockExpr *BE, 2494 CheckerContext &C) const { 2495 2496 // Scan the BlockDecRefExprs for any object the retain count checker 2497 // may be tracking. 2498 if (!BE->getBlockDecl()->hasCaptures()) 2499 return; 2500 2501 ProgramStateRef state = C.getState(); 2502 const BlockDataRegion *R = 2503 cast<BlockDataRegion>(C.getSVal(BE).getAsRegion()); 2504 2505 BlockDataRegion::referenced_vars_iterator I = R->referenced_vars_begin(), 2506 E = R->referenced_vars_end(); 2507 2508 if (I == E) 2509 return; 2510 2511 SmallVector<const MemRegion*, 10> Regions; 2512 const LocationContext *LC = C.getLocationContext(); 2513 MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager(); 2514 2515 for ( ; I != E; ++I) { 2516 const VarRegion *VR = I.getCapturedRegion(); 2517 if (VR->getSuperRegion() == R) { 2518 VR = MemMgr.getVarRegion(VR->getDecl(), LC); 2519 } 2520 Regions.push_back(VR); 2521 } 2522 2523 state = 2524 state->scanReachableSymbols<StopTrackingCallback>(Regions).getState(); 2525 C.addTransition(state); 2526 } 2527 2528 bool MallocChecker::isReleased(SymbolRef Sym, CheckerContext &C) const { 2529 assert(Sym); 2530 const RefState *RS = C.getState()->get<RegionState>(Sym); 2531 return (RS && RS->isReleased()); 2532 } 2533 2534 bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C, 2535 const Stmt *S) const { 2536 2537 if (isReleased(Sym, C)) { 2538 ReportUseAfterFree(C, S->getSourceRange(), Sym); 2539 return true; 2540 } 2541 2542 return false; 2543 } 2544 2545 void MallocChecker::checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 2546 const Stmt *S) const { 2547 assert(Sym); 2548 2549 if (const RefState *RS = C.getState()->get<RegionState>(Sym)) { 2550 if (RS->isAllocatedOfSizeZero()) 2551 ReportUseZeroAllocated(C, RS->getStmt()->getSourceRange(), Sym); 2552 } 2553 else if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) { 2554 ReportUseZeroAllocated(C, S->getSourceRange(), Sym); 2555 } 2556 } 2557 2558 bool MallocChecker::checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const { 2559 2560 if (isReleased(Sym, C)) { 2561 ReportDoubleDelete(C, Sym); 2562 return true; 2563 } 2564 return false; 2565 } 2566 2567 // Check if the location is a freed symbolic region. 2568 void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S, 2569 CheckerContext &C) const { 2570 SymbolRef Sym = l.getLocSymbolInBase(); 2571 if (Sym) { 2572 checkUseAfterFree(Sym, C, S); 2573 checkUseZeroAllocated(Sym, C, S); 2574 } 2575 } 2576 2577 // If a symbolic region is assumed to NULL (or another constant), stop tracking 2578 // it - assuming that allocation failed on this path. 2579 ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state, 2580 SVal Cond, 2581 bool Assumption) const { 2582 RegionStateTy RS = state->get<RegionState>(); 2583 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2584 // If the symbol is assumed to be NULL, remove it from consideration. 2585 ConstraintManager &CMgr = state->getConstraintManager(); 2586 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 2587 if (AllocFailed.isConstrainedTrue()) 2588 state = state->remove<RegionState>(I.getKey()); 2589 } 2590 2591 // Realloc returns 0 when reallocation fails, which means that we should 2592 // restore the state of the pointer being reallocated. 2593 ReallocPairsTy RP = state->get<ReallocPairs>(); 2594 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 2595 // If the symbol is assumed to be NULL, remove it from consideration. 2596 ConstraintManager &CMgr = state->getConstraintManager(); 2597 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 2598 if (!AllocFailed.isConstrainedTrue()) 2599 continue; 2600 2601 SymbolRef ReallocSym = I.getData().ReallocatedSym; 2602 if (const RefState *RS = state->get<RegionState>(ReallocSym)) { 2603 if (RS->isReleased()) { 2604 if (I.getData().Kind == RPToBeFreedAfterFailure) 2605 state = state->set<RegionState>(ReallocSym, 2606 RefState::getAllocated(RS->getAllocationFamily(), RS->getStmt())); 2607 else if (I.getData().Kind == RPDoNotTrackAfterFailure) 2608 state = state->remove<RegionState>(ReallocSym); 2609 else 2610 assert(I.getData().Kind == RPIsFreeOnFailure); 2611 } 2612 } 2613 state = state->remove<ReallocPairs>(I.getKey()); 2614 } 2615 2616 return state; 2617 } 2618 2619 bool MallocChecker::mayFreeAnyEscapedMemoryOrIsModeledExplicitly( 2620 const CallEvent *Call, 2621 ProgramStateRef State, 2622 SymbolRef &EscapingSymbol) const { 2623 assert(Call); 2624 EscapingSymbol = nullptr; 2625 2626 // For now, assume that any C++ or block call can free memory. 2627 // TODO: If we want to be more optimistic here, we'll need to make sure that 2628 // regions escape to C++ containers. They seem to do that even now, but for 2629 // mysterious reasons. 2630 if (!(isa<SimpleFunctionCall>(Call) || isa<ObjCMethodCall>(Call))) 2631 return true; 2632 2633 // Check Objective-C messages by selector name. 2634 if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) { 2635 // If it's not a framework call, or if it takes a callback, assume it 2636 // can free memory. 2637 if (!Call->isInSystemHeader() || Call->argumentsMayEscape()) 2638 return true; 2639 2640 // If it's a method we know about, handle it explicitly post-call. 2641 // This should happen before the "freeWhenDone" check below. 2642 if (isKnownDeallocObjCMethodName(*Msg)) 2643 return false; 2644 2645 // If there's a "freeWhenDone" parameter, but the method isn't one we know 2646 // about, we can't be sure that the object will use free() to deallocate the 2647 // memory, so we can't model it explicitly. The best we can do is use it to 2648 // decide whether the pointer escapes. 2649 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(*Msg)) 2650 return *FreeWhenDone; 2651 2652 // If the first selector piece ends with "NoCopy", and there is no 2653 // "freeWhenDone" parameter set to zero, we know ownership is being 2654 // transferred. Again, though, we can't be sure that the object will use 2655 // free() to deallocate the memory, so we can't model it explicitly. 2656 StringRef FirstSlot = Msg->getSelector().getNameForSlot(0); 2657 if (FirstSlot.endswith("NoCopy")) 2658 return true; 2659 2660 // If the first selector starts with addPointer, insertPointer, 2661 // or replacePointer, assume we are dealing with NSPointerArray or similar. 2662 // This is similar to C++ containers (vector); we still might want to check 2663 // that the pointers get freed by following the container itself. 2664 if (FirstSlot.startswith("addPointer") || 2665 FirstSlot.startswith("insertPointer") || 2666 FirstSlot.startswith("replacePointer") || 2667 FirstSlot.equals("valueWithPointer")) { 2668 return true; 2669 } 2670 2671 // We should escape receiver on call to 'init'. This is especially relevant 2672 // to the receiver, as the corresponding symbol is usually not referenced 2673 // after the call. 2674 if (Msg->getMethodFamily() == OMF_init) { 2675 EscapingSymbol = Msg->getReceiverSVal().getAsSymbol(); 2676 return true; 2677 } 2678 2679 // Otherwise, assume that the method does not free memory. 2680 // Most framework methods do not free memory. 2681 return false; 2682 } 2683 2684 // At this point the only thing left to handle is straight function calls. 2685 const FunctionDecl *FD = cast<SimpleFunctionCall>(Call)->getDecl(); 2686 if (!FD) 2687 return true; 2688 2689 ASTContext &ASTC = State->getStateManager().getContext(); 2690 2691 // If it's one of the allocation functions we can reason about, we model 2692 // its behavior explicitly. 2693 if (isMemFunction(FD, ASTC)) 2694 return false; 2695 2696 // If it's not a system call, assume it frees memory. 2697 if (!Call->isInSystemHeader()) 2698 return true; 2699 2700 // White list the system functions whose arguments escape. 2701 const IdentifierInfo *II = FD->getIdentifier(); 2702 if (!II) 2703 return true; 2704 StringRef FName = II->getName(); 2705 2706 // White list the 'XXXNoCopy' CoreFoundation functions. 2707 // We specifically check these before 2708 if (FName.endswith("NoCopy")) { 2709 // Look for the deallocator argument. We know that the memory ownership 2710 // is not transferred only if the deallocator argument is 2711 // 'kCFAllocatorNull'. 2712 for (unsigned i = 1; i < Call->getNumArgs(); ++i) { 2713 const Expr *ArgE = Call->getArgExpr(i)->IgnoreParenCasts(); 2714 if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(ArgE)) { 2715 StringRef DeallocatorName = DE->getFoundDecl()->getName(); 2716 if (DeallocatorName == "kCFAllocatorNull") 2717 return false; 2718 } 2719 } 2720 return true; 2721 } 2722 2723 // Associating streams with malloced buffers. The pointer can escape if 2724 // 'closefn' is specified (and if that function does free memory), 2725 // but it will not if closefn is not specified. 2726 // Currently, we do not inspect the 'closefn' function (PR12101). 2727 if (FName == "funopen") 2728 if (Call->getNumArgs() >= 4 && Call->getArgSVal(4).isConstant(0)) 2729 return false; 2730 2731 // Do not warn on pointers passed to 'setbuf' when used with std streams, 2732 // these leaks might be intentional when setting the buffer for stdio. 2733 // http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer 2734 if (FName == "setbuf" || FName =="setbuffer" || 2735 FName == "setlinebuf" || FName == "setvbuf") { 2736 if (Call->getNumArgs() >= 1) { 2737 const Expr *ArgE = Call->getArgExpr(0)->IgnoreParenCasts(); 2738 if (const DeclRefExpr *ArgDRE = dyn_cast<DeclRefExpr>(ArgE)) 2739 if (const VarDecl *D = dyn_cast<VarDecl>(ArgDRE->getDecl())) 2740 if (D->getCanonicalDecl()->getName().find("std") != StringRef::npos) 2741 return true; 2742 } 2743 } 2744 2745 // A bunch of other functions which either take ownership of a pointer or 2746 // wrap the result up in a struct or object, meaning it can be freed later. 2747 // (See RetainCountChecker.) Not all the parameters here are invalidated, 2748 // but the Malloc checker cannot differentiate between them. The right way 2749 // of doing this would be to implement a pointer escapes callback. 2750 if (FName == "CGBitmapContextCreate" || 2751 FName == "CGBitmapContextCreateWithData" || 2752 FName == "CVPixelBufferCreateWithBytes" || 2753 FName == "CVPixelBufferCreateWithPlanarBytes" || 2754 FName == "OSAtomicEnqueue") { 2755 return true; 2756 } 2757 2758 if (FName == "postEvent" && 2759 FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") { 2760 return true; 2761 } 2762 2763 if (FName == "postEvent" && 2764 FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") { 2765 return true; 2766 } 2767 2768 if (FName == "connectImpl" && 2769 FD->getQualifiedNameAsString() == "QObject::connectImpl") { 2770 return true; 2771 } 2772 2773 // Handle cases where we know a buffer's /address/ can escape. 2774 // Note that the above checks handle some special cases where we know that 2775 // even though the address escapes, it's still our responsibility to free the 2776 // buffer. 2777 if (Call->argumentsMayEscape()) 2778 return true; 2779 2780 // Otherwise, assume that the function does not free memory. 2781 // Most system calls do not free the memory. 2782 return false; 2783 } 2784 2785 static bool retTrue(const RefState *RS) { 2786 return true; 2787 } 2788 2789 static bool checkIfNewOrNewArrayFamily(const RefState *RS) { 2790 return (RS->getAllocationFamily() == AF_CXXNewArray || 2791 RS->getAllocationFamily() == AF_CXXNew); 2792 } 2793 2794 ProgramStateRef MallocChecker::checkPointerEscape(ProgramStateRef State, 2795 const InvalidatedSymbols &Escaped, 2796 const CallEvent *Call, 2797 PointerEscapeKind Kind) const { 2798 return checkPointerEscapeAux(State, Escaped, Call, Kind, &retTrue); 2799 } 2800 2801 ProgramStateRef MallocChecker::checkConstPointerEscape(ProgramStateRef State, 2802 const InvalidatedSymbols &Escaped, 2803 const CallEvent *Call, 2804 PointerEscapeKind Kind) const { 2805 return checkPointerEscapeAux(State, Escaped, Call, Kind, 2806 &checkIfNewOrNewArrayFamily); 2807 } 2808 2809 ProgramStateRef MallocChecker::checkPointerEscapeAux(ProgramStateRef State, 2810 const InvalidatedSymbols &Escaped, 2811 const CallEvent *Call, 2812 PointerEscapeKind Kind, 2813 bool(*CheckRefState)(const RefState*)) const { 2814 // If we know that the call does not free memory, or we want to process the 2815 // call later, keep tracking the top level arguments. 2816 SymbolRef EscapingSymbol = nullptr; 2817 if (Kind == PSK_DirectEscapeOnCall && 2818 !mayFreeAnyEscapedMemoryOrIsModeledExplicitly(Call, State, 2819 EscapingSymbol) && 2820 !EscapingSymbol) { 2821 return State; 2822 } 2823 2824 for (InvalidatedSymbols::const_iterator I = Escaped.begin(), 2825 E = Escaped.end(); 2826 I != E; ++I) { 2827 SymbolRef sym = *I; 2828 2829 if (EscapingSymbol && EscapingSymbol != sym) 2830 continue; 2831 2832 if (const RefState *RS = State->get<RegionState>(sym)) { 2833 if ((RS->isAllocated() || RS->isAllocatedOfSizeZero()) && 2834 CheckRefState(RS)) { 2835 State = State->remove<RegionState>(sym); 2836 State = State->set<RegionState>(sym, RefState::getEscaped(RS)); 2837 } 2838 } 2839 } 2840 return State; 2841 } 2842 2843 static SymbolRef findFailedReallocSymbol(ProgramStateRef currState, 2844 ProgramStateRef prevState) { 2845 ReallocPairsTy currMap = currState->get<ReallocPairs>(); 2846 ReallocPairsTy prevMap = prevState->get<ReallocPairs>(); 2847 2848 for (ReallocPairsTy::iterator I = prevMap.begin(), E = prevMap.end(); 2849 I != E; ++I) { 2850 SymbolRef sym = I.getKey(); 2851 if (!currMap.lookup(sym)) 2852 return sym; 2853 } 2854 2855 return nullptr; 2856 } 2857 2858 static bool isReferenceCountingPointerDestructor(const CXXDestructorDecl *DD) { 2859 if (const IdentifierInfo *II = DD->getParent()->getIdentifier()) { 2860 StringRef N = II->getName(); 2861 if (N.contains_lower("ptr") || N.contains_lower("pointer")) { 2862 if (N.contains_lower("ref") || N.contains_lower("cnt") || 2863 N.contains_lower("intrusive") || N.contains_lower("shared")) { 2864 return true; 2865 } 2866 } 2867 } 2868 return false; 2869 } 2870 2871 std::shared_ptr<PathDiagnosticPiece> MallocChecker::MallocBugVisitor::VisitNode( 2872 const ExplodedNode *N, BugReporterContext &BRC, BugReport &BR) { 2873 2874 ProgramStateRef state = N->getState(); 2875 ProgramStateRef statePrev = N->getFirstPred()->getState(); 2876 2877 const RefState *RS = state->get<RegionState>(Sym); 2878 const RefState *RSPrev = statePrev->get<RegionState>(Sym); 2879 2880 const Stmt *S = PathDiagnosticLocation::getStmt(N); 2881 // When dealing with containers, we sometimes want to give a note 2882 // even if the statement is missing. 2883 if (!S && (!RS || RS->getAllocationFamily() != AF_InnerBuffer)) 2884 return nullptr; 2885 2886 const LocationContext *CurrentLC = N->getLocationContext(); 2887 2888 // If we find an atomic fetch_add or fetch_sub within the destructor in which 2889 // the pointer was released (before the release), this is likely a destructor 2890 // of a shared pointer. 2891 // Because we don't model atomics, and also because we don't know that the 2892 // original reference count is positive, we should not report use-after-frees 2893 // on objects deleted in such destructors. This can probably be improved 2894 // through better shared pointer modeling. 2895 if (ReleaseDestructorLC) { 2896 if (const auto *AE = dyn_cast<AtomicExpr>(S)) { 2897 AtomicExpr::AtomicOp Op = AE->getOp(); 2898 if (Op == AtomicExpr::AO__c11_atomic_fetch_add || 2899 Op == AtomicExpr::AO__c11_atomic_fetch_sub) { 2900 if (ReleaseDestructorLC == CurrentLC || 2901 ReleaseDestructorLC->isParentOf(CurrentLC)) { 2902 BR.markInvalid(getTag(), S); 2903 } 2904 } 2905 } 2906 } 2907 2908 // FIXME: We will eventually need to handle non-statement-based events 2909 // (__attribute__((cleanup))). 2910 2911 // Find out if this is an interesting point and what is the kind. 2912 StringRef Msg; 2913 StackHintGeneratorForSymbol *StackHint = nullptr; 2914 SmallString<256> Buf; 2915 llvm::raw_svector_ostream OS(Buf); 2916 2917 if (Mode == Normal) { 2918 if (isAllocated(RS, RSPrev, S)) { 2919 Msg = "Memory is allocated"; 2920 StackHint = new StackHintGeneratorForSymbol(Sym, 2921 "Returned allocated memory"); 2922 } else if (isReleased(RS, RSPrev, S)) { 2923 const auto Family = RS->getAllocationFamily(); 2924 switch (Family) { 2925 case AF_Alloca: 2926 case AF_Malloc: 2927 case AF_CXXNew: 2928 case AF_CXXNewArray: 2929 case AF_IfNameIndex: 2930 Msg = "Memory is released"; 2931 StackHint = new StackHintGeneratorForSymbol(Sym, 2932 "Returning; memory was released"); 2933 break; 2934 case AF_InnerBuffer: { 2935 const MemRegion *ObjRegion = 2936 allocation_state::getContainerObjRegion(statePrev, Sym); 2937 const auto *TypedRegion = cast<TypedValueRegion>(ObjRegion); 2938 QualType ObjTy = TypedRegion->getValueType(); 2939 OS << "Inner buffer of '" << ObjTy.getAsString() << "' "; 2940 2941 if (N->getLocation().getKind() == ProgramPoint::PostImplicitCallKind) { 2942 OS << "deallocated by call to destructor"; 2943 StackHint = new StackHintGeneratorForSymbol(Sym, 2944 "Returning; inner buffer was deallocated"); 2945 } else { 2946 OS << "reallocated by call to '"; 2947 const Stmt *S = RS->getStmt(); 2948 if (const auto *MemCallE = dyn_cast<CXXMemberCallExpr>(S)) { 2949 OS << MemCallE->getMethodDecl()->getNameAsString(); 2950 } else if (const auto *OpCallE = dyn_cast<CXXOperatorCallExpr>(S)) { 2951 OS << OpCallE->getDirectCallee()->getNameAsString(); 2952 } else if (const auto *CallE = dyn_cast<CallExpr>(S)) { 2953 auto &CEMgr = BRC.getStateManager().getCallEventManager(); 2954 CallEventRef<> Call = CEMgr.getSimpleCall(CallE, state, CurrentLC); 2955 const auto *D = dyn_cast_or_null<NamedDecl>(Call->getDecl()); 2956 OS << (D ? D->getNameAsString() : "unknown"); 2957 } 2958 OS << "'"; 2959 StackHint = new StackHintGeneratorForSymbol(Sym, 2960 "Returning; inner buffer was reallocated"); 2961 } 2962 Msg = OS.str(); 2963 break; 2964 } 2965 case AF_None: 2966 llvm_unreachable("Unhandled allocation family!"); 2967 } 2968 2969 // See if we're releasing memory while inlining a destructor 2970 // (or one of its callees). This turns on various common 2971 // false positive suppressions. 2972 bool FoundAnyDestructor = false; 2973 for (const LocationContext *LC = CurrentLC; LC; LC = LC->getParent()) { 2974 if (const auto *DD = dyn_cast<CXXDestructorDecl>(LC->getDecl())) { 2975 if (isReferenceCountingPointerDestructor(DD)) { 2976 // This immediately looks like a reference-counting destructor. 2977 // We're bad at guessing the original reference count of the object, 2978 // so suppress the report for now. 2979 BR.markInvalid(getTag(), DD); 2980 } else if (!FoundAnyDestructor) { 2981 assert(!ReleaseDestructorLC && 2982 "There can be only one release point!"); 2983 // Suspect that it's a reference counting pointer destructor. 2984 // On one of the next nodes might find out that it has atomic 2985 // reference counting operations within it (see the code above), 2986 // and if so, we'd conclude that it likely is a reference counting 2987 // pointer destructor. 2988 ReleaseDestructorLC = LC->getStackFrame(); 2989 // It is unlikely that releasing memory is delegated to a destructor 2990 // inside a destructor of a shared pointer, because it's fairly hard 2991 // to pass the information that the pointer indeed needs to be 2992 // released into it. So we're only interested in the innermost 2993 // destructor. 2994 FoundAnyDestructor = true; 2995 } 2996 } 2997 } 2998 } else if (isRelinquished(RS, RSPrev, S)) { 2999 Msg = "Memory ownership is transferred"; 3000 StackHint = new StackHintGeneratorForSymbol(Sym, ""); 3001 } else if (isReallocFailedCheck(RS, RSPrev, S)) { 3002 Mode = ReallocationFailed; 3003 Msg = "Reallocation failed"; 3004 StackHint = new StackHintGeneratorForReallocationFailed(Sym, 3005 "Reallocation failed"); 3006 3007 if (SymbolRef sym = findFailedReallocSymbol(state, statePrev)) { 3008 // Is it possible to fail two reallocs WITHOUT testing in between? 3009 assert((!FailedReallocSymbol || FailedReallocSymbol == sym) && 3010 "We only support one failed realloc at a time."); 3011 BR.markInteresting(sym); 3012 FailedReallocSymbol = sym; 3013 } 3014 } 3015 3016 // We are in a special mode if a reallocation failed later in the path. 3017 } else if (Mode == ReallocationFailed) { 3018 assert(FailedReallocSymbol && "No symbol to look for."); 3019 3020 // Is this is the first appearance of the reallocated symbol? 3021 if (!statePrev->get<RegionState>(FailedReallocSymbol)) { 3022 // We're at the reallocation point. 3023 Msg = "Attempt to reallocate memory"; 3024 StackHint = new StackHintGeneratorForSymbol(Sym, 3025 "Returned reallocated memory"); 3026 FailedReallocSymbol = nullptr; 3027 Mode = Normal; 3028 } 3029 } 3030 3031 if (Msg.empty()) 3032 return nullptr; 3033 assert(StackHint); 3034 3035 // Generate the extra diagnostic. 3036 PathDiagnosticLocation Pos; 3037 if (!S) { 3038 assert(RS->getAllocationFamily() == AF_InnerBuffer); 3039 auto PostImplCall = N->getLocation().getAs<PostImplicitCall>(); 3040 if (!PostImplCall) 3041 return nullptr; 3042 Pos = PathDiagnosticLocation(PostImplCall->getLocation(), 3043 BRC.getSourceManager()); 3044 } else { 3045 Pos = PathDiagnosticLocation(S, BRC.getSourceManager(), 3046 N->getLocationContext()); 3047 } 3048 3049 return std::make_shared<PathDiagnosticEventPiece>(Pos, Msg, true, StackHint); 3050 } 3051 3052 void MallocChecker::printState(raw_ostream &Out, ProgramStateRef State, 3053 const char *NL, const char *Sep) const { 3054 3055 RegionStateTy RS = State->get<RegionState>(); 3056 3057 if (!RS.isEmpty()) { 3058 Out << Sep << "MallocChecker :" << NL; 3059 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 3060 const RefState *RefS = State->get<RegionState>(I.getKey()); 3061 AllocationFamily Family = RefS->getAllocationFamily(); 3062 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 3063 if (!CheckKind.hasValue()) 3064 CheckKind = getCheckIfTracked(Family, true); 3065 3066 I.getKey()->dumpToStream(Out); 3067 Out << " : "; 3068 I.getData().dump(Out); 3069 if (CheckKind.hasValue()) 3070 Out << " (" << CheckNames[*CheckKind].getName() << ")"; 3071 Out << NL; 3072 } 3073 } 3074 } 3075 3076 namespace clang { 3077 namespace ento { 3078 namespace allocation_state { 3079 3080 ProgramStateRef 3081 markReleased(ProgramStateRef State, SymbolRef Sym, const Expr *Origin) { 3082 AllocationFamily Family = AF_InnerBuffer; 3083 return State->set<RegionState>(Sym, RefState::getReleased(Family, Origin)); 3084 } 3085 3086 } // end namespace allocation_state 3087 } // end namespace ento 3088 } // end namespace clang 3089 3090 void ento::registerNewDeleteLeaksChecker(CheckerManager &mgr) { 3091 registerCStringCheckerBasic(mgr); 3092 MallocChecker *checker = mgr.registerChecker<MallocChecker>(); 3093 checker->IsOptimistic = mgr.getAnalyzerOptions().getCheckerBooleanOption( 3094 "Optimistic", false, checker); 3095 checker->ChecksEnabled[MallocChecker::CK_NewDeleteLeaksChecker] = true; 3096 checker->CheckNames[MallocChecker::CK_NewDeleteLeaksChecker] = 3097 mgr.getCurrentCheckName(); 3098 // We currently treat NewDeleteLeaks checker as a subchecker of NewDelete 3099 // checker. 3100 if (!checker->ChecksEnabled[MallocChecker::CK_NewDeleteChecker]) { 3101 checker->ChecksEnabled[MallocChecker::CK_NewDeleteChecker] = true; 3102 // FIXME: This does not set the correct name, but without this workaround 3103 // no name will be set at all. 3104 checker->CheckNames[MallocChecker::CK_NewDeleteChecker] = 3105 mgr.getCurrentCheckName(); 3106 } 3107 } 3108 3109 // Intended to be used in InnerPointerChecker to register the part of 3110 // MallocChecker connected to it. 3111 void ento::registerInnerPointerCheckerAux(CheckerManager &mgr) { 3112 registerCStringCheckerBasic(mgr); 3113 MallocChecker *checker = mgr.registerChecker<MallocChecker>(); 3114 checker->IsOptimistic = mgr.getAnalyzerOptions().getCheckerBooleanOption( 3115 "Optimistic", false, checker); 3116 checker->ChecksEnabled[MallocChecker::CK_InnerPointerChecker] = true; 3117 checker->CheckNames[MallocChecker::CK_InnerPointerChecker] = 3118 mgr.getCurrentCheckName(); 3119 } 3120 3121 #define REGISTER_CHECKER(name) \ 3122 void ento::register##name(CheckerManager &mgr) { \ 3123 registerCStringCheckerBasic(mgr); \ 3124 MallocChecker *checker = mgr.registerChecker<MallocChecker>(); \ 3125 checker->IsOptimistic = mgr.getAnalyzerOptions().getCheckerBooleanOption( \ 3126 "Optimistic", false, checker); \ 3127 checker->ChecksEnabled[MallocChecker::CK_##name] = true; \ 3128 checker->CheckNames[MallocChecker::CK_##name] = mgr.getCurrentCheckName(); \ 3129 } 3130 3131 REGISTER_CHECKER(MallocChecker) 3132 REGISTER_CHECKER(NewDeleteChecker) 3133 REGISTER_CHECKER(MismatchedDeallocatorChecker) 3134