1 //=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines a variety of memory management related checkers, such as 10 // leak, double free, and use-after-free. 11 // 12 // The following checkers are defined here: 13 // 14 // * MallocChecker 15 // Despite its name, it models all sorts of memory allocations and 16 // de- or reallocation, including but not limited to malloc, free, 17 // relloc, new, delete. It also reports on a variety of memory misuse 18 // errors. 19 // Many other checkers interact very closely with this checker, in fact, 20 // most are merely options to this one. Other checkers may register 21 // MallocChecker, but do not enable MallocChecker's reports (more details 22 // to follow around its field, ChecksEnabled). 23 // It also has a boolean "Optimistic" checker option, which if set to true 24 // will cause the checker to model user defined memory management related 25 // functions annotated via the attribute ownership_takes, ownership_holds 26 // and ownership_returns. 27 // 28 // * NewDeleteChecker 29 // Enables the modeling of new, new[], delete, delete[] in MallocChecker, 30 // and checks for related double-free and use-after-free errors. 31 // 32 // * NewDeleteLeaksChecker 33 // Checks for leaks related to new, new[], delete, delete[]. 34 // Depends on NewDeleteChecker. 35 // 36 // * MismatchedDeallocatorChecker 37 // Enables checking whether memory is deallocated with the correspending 38 // allocation function in MallocChecker, such as malloc() allocated 39 // regions are only freed by free(), new by delete, new[] by delete[]. 40 // 41 // InnerPointerChecker interacts very closely with MallocChecker, but unlike 42 // the above checkers, it has it's own file, hence the many InnerPointerChecker 43 // related headers and non-static functions. 44 // 45 //===----------------------------------------------------------------------===// 46 47 #include "AllocationState.h" 48 #include "InterCheckerAPI.h" 49 #include "clang/AST/Attr.h" 50 #include "clang/AST/DeclCXX.h" 51 #include "clang/AST/DeclTemplate.h" 52 #include "clang/AST/Expr.h" 53 #include "clang/AST/ExprCXX.h" 54 #include "clang/AST/ParentMap.h" 55 #include "clang/ASTMatchers/ASTMatchFinder.h" 56 #include "clang/ASTMatchers/ASTMatchers.h" 57 #include "clang/Analysis/ProgramPoint.h" 58 #include "clang/Basic/LLVM.h" 59 #include "clang/Basic/SourceManager.h" 60 #include "clang/Basic/TargetInfo.h" 61 #include "clang/Lex/Lexer.h" 62 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" 63 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 64 #include "clang/StaticAnalyzer/Core/BugReporter/CommonBugCategories.h" 65 #include "clang/StaticAnalyzer/Core/Checker.h" 66 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 67 #include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h" 68 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 69 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 70 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h" 71 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h" 72 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h" 73 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 74 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 75 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h" 76 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" 77 #include "clang/StaticAnalyzer/Core/PathSensitive/StoreRef.h" 78 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" 79 #include "llvm/ADT/STLExtras.h" 80 #include "llvm/ADT/SetOperations.h" 81 #include "llvm/ADT/SmallString.h" 82 #include "llvm/ADT/StringExtras.h" 83 #include "llvm/Support/Casting.h" 84 #include "llvm/Support/Compiler.h" 85 #include "llvm/Support/ErrorHandling.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include <climits> 88 #include <functional> 89 #include <utility> 90 91 using namespace clang; 92 using namespace ento; 93 using namespace std::placeholders; 94 95 //===----------------------------------------------------------------------===// 96 // The types of allocation we're modeling. This is used to check whether a 97 // dynamically allocated object is deallocated with the correct function, like 98 // not using operator delete on an object created by malloc(), or alloca regions 99 // aren't ever deallocated manually. 100 //===----------------------------------------------------------------------===// 101 102 namespace { 103 104 // Used to check correspondence between allocators and deallocators. 105 enum AllocationFamily { 106 AF_None, 107 AF_Malloc, 108 AF_CXXNew, 109 AF_CXXNewArray, 110 AF_IfNameIndex, 111 AF_Alloca, 112 AF_InnerBuffer 113 }; 114 115 } // end of anonymous namespace 116 117 /// Print names of allocators and deallocators. 118 /// 119 /// \returns true on success. 120 static bool printMemFnName(raw_ostream &os, CheckerContext &C, const Expr *E); 121 122 /// Print expected name of an allocator based on the deallocator's family 123 /// derived from the DeallocExpr. 124 static void printExpectedAllocName(raw_ostream &os, AllocationFamily Family); 125 126 /// Print expected name of a deallocator based on the allocator's 127 /// family. 128 static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family); 129 130 //===----------------------------------------------------------------------===// 131 // The state of a symbol, in terms of memory management. 132 //===----------------------------------------------------------------------===// 133 134 namespace { 135 136 class RefState { 137 enum Kind { 138 // Reference to allocated memory. 139 Allocated, 140 // Reference to zero-allocated memory. 141 AllocatedOfSizeZero, 142 // Reference to released/freed memory. 143 Released, 144 // The responsibility for freeing resources has transferred from 145 // this reference. A relinquished symbol should not be freed. 146 Relinquished, 147 // We are no longer guaranteed to have observed all manipulations 148 // of this pointer/memory. For example, it could have been 149 // passed as a parameter to an opaque function. 150 Escaped 151 }; 152 153 const Stmt *S; 154 155 Kind K; 156 AllocationFamily Family; 157 158 RefState(Kind k, const Stmt *s, AllocationFamily family) 159 : S(s), K(k), Family(family) { 160 assert(family != AF_None); 161 } 162 163 public: 164 bool isAllocated() const { return K == Allocated; } 165 bool isAllocatedOfSizeZero() const { return K == AllocatedOfSizeZero; } 166 bool isReleased() const { return K == Released; } 167 bool isRelinquished() const { return K == Relinquished; } 168 bool isEscaped() const { return K == Escaped; } 169 AllocationFamily getAllocationFamily() const { return Family; } 170 const Stmt *getStmt() const { return S; } 171 172 bool operator==(const RefState &X) const { 173 return K == X.K && S == X.S && Family == X.Family; 174 } 175 176 static RefState getAllocated(AllocationFamily family, const Stmt *s) { 177 return RefState(Allocated, s, family); 178 } 179 static RefState getAllocatedOfSizeZero(const RefState *RS) { 180 return RefState(AllocatedOfSizeZero, RS->getStmt(), 181 RS->getAllocationFamily()); 182 } 183 static RefState getReleased(AllocationFamily family, const Stmt *s) { 184 return RefState(Released, s, family); 185 } 186 static RefState getRelinquished(AllocationFamily family, const Stmt *s) { 187 return RefState(Relinquished, s, family); 188 } 189 static RefState getEscaped(const RefState *RS) { 190 return RefState(Escaped, RS->getStmt(), RS->getAllocationFamily()); 191 } 192 193 void Profile(llvm::FoldingSetNodeID &ID) const { 194 ID.AddInteger(K); 195 ID.AddPointer(S); 196 ID.AddInteger(Family); 197 } 198 199 LLVM_DUMP_METHOD void dump(raw_ostream &OS) const { 200 switch (K) { 201 #define CASE(ID) case ID: OS << #ID; break; 202 CASE(Allocated) 203 CASE(AllocatedOfSizeZero) 204 CASE(Released) 205 CASE(Relinquished) 206 CASE(Escaped) 207 } 208 } 209 210 LLVM_DUMP_METHOD void dump() const { dump(llvm::errs()); } 211 }; 212 213 } // end of anonymous namespace 214 215 REGISTER_MAP_WITH_PROGRAMSTATE(RegionState, SymbolRef, RefState) 216 217 /// Check if the memory associated with this symbol was released. 218 static bool isReleased(SymbolRef Sym, CheckerContext &C); 219 220 /// Update the RefState to reflect the new memory allocation. 221 /// The optional \p RetVal parameter specifies the newly allocated pointer 222 /// value; if unspecified, the value of expression \p E is used. 223 static ProgramStateRef MallocUpdateRefState(CheckerContext &C, const Expr *E, 224 ProgramStateRef State, 225 AllocationFamily Family, 226 Optional<SVal> RetVal = None); 227 228 //===----------------------------------------------------------------------===// 229 // The modeling of memory reallocation. 230 // 231 // The terminology 'toPtr' and 'fromPtr' will be used: 232 // toPtr = realloc(fromPtr, 20); 233 //===----------------------------------------------------------------------===// 234 235 REGISTER_SET_WITH_PROGRAMSTATE(ReallocSizeZeroSymbols, SymbolRef) 236 237 namespace { 238 239 /// The state of 'fromPtr' after reallocation is known to have failed. 240 enum OwnershipAfterReallocKind { 241 // The symbol needs to be freed (e.g.: realloc) 242 OAR_ToBeFreedAfterFailure, 243 // The symbol has been freed (e.g.: reallocf) 244 OAR_FreeOnFailure, 245 // The symbol doesn't have to freed (e.g.: we aren't sure if, how and where 246 // 'fromPtr' was allocated: 247 // void Haha(int *ptr) { 248 // ptr = realloc(ptr, 67); 249 // // ... 250 // } 251 // ). 252 OAR_DoNotTrackAfterFailure 253 }; 254 255 /// Stores information about the 'fromPtr' symbol after reallocation. 256 /// 257 /// This is important because realloc may fail, and that needs special modeling. 258 /// Whether reallocation failed or not will not be known until later, so we'll 259 /// store whether upon failure 'fromPtr' will be freed, or needs to be freed 260 /// later, etc. 261 struct ReallocPair { 262 263 // The 'fromPtr'. 264 SymbolRef ReallocatedSym; 265 OwnershipAfterReallocKind Kind; 266 267 ReallocPair(SymbolRef S, OwnershipAfterReallocKind K) 268 : ReallocatedSym(S), Kind(K) {} 269 void Profile(llvm::FoldingSetNodeID &ID) const { 270 ID.AddInteger(Kind); 271 ID.AddPointer(ReallocatedSym); 272 } 273 bool operator==(const ReallocPair &X) const { 274 return ReallocatedSym == X.ReallocatedSym && 275 Kind == X.Kind; 276 } 277 }; 278 279 } // end of anonymous namespace 280 281 REGISTER_MAP_WITH_PROGRAMSTATE(ReallocPairs, SymbolRef, ReallocPair) 282 283 /// Tells if the callee is one of the builtin new/delete operators, including 284 /// placement operators and other standard overloads. 285 static bool isStandardNewDelete(const FunctionDecl *FD); 286 static bool isStandardNewDelete(const CallEvent &Call) { 287 if (!Call.getDecl() || !isa<FunctionDecl>(Call.getDecl())) 288 return false; 289 return isStandardNewDelete(cast<FunctionDecl>(Call.getDecl())); 290 } 291 292 //===----------------------------------------------------------------------===// 293 // Definition of the MallocChecker class. 294 //===----------------------------------------------------------------------===// 295 296 namespace { 297 298 class MallocChecker 299 : public Checker<check::DeadSymbols, check::PointerEscape, 300 check::ConstPointerEscape, check::PreStmt<ReturnStmt>, 301 check::EndFunction, check::PreCall, check::PostCall, 302 check::NewAllocator, check::PostStmt<BlockExpr>, 303 check::PostObjCMessage, check::Location, eval::Assume> { 304 public: 305 /// In pessimistic mode, the checker assumes that it does not know which 306 /// functions might free the memory. 307 /// In optimistic mode, the checker assumes that all user-defined functions 308 /// which might free a pointer are annotated. 309 bool ShouldIncludeOwnershipAnnotatedFunctions = false; 310 311 bool ShouldRegisterNoOwnershipChangeVisitor = false; 312 313 /// Many checkers are essentially built into this one, so enabling them will 314 /// make MallocChecker perform additional modeling and reporting. 315 enum CheckKind { 316 /// When a subchecker is enabled but MallocChecker isn't, model memory 317 /// management but do not emit warnings emitted with MallocChecker only 318 /// enabled. 319 CK_MallocChecker, 320 CK_NewDeleteChecker, 321 CK_NewDeleteLeaksChecker, 322 CK_MismatchedDeallocatorChecker, 323 CK_InnerPointerChecker, 324 CK_NumCheckKinds 325 }; 326 327 using LeakInfo = std::pair<const ExplodedNode *, const MemRegion *>; 328 329 bool ChecksEnabled[CK_NumCheckKinds] = {false}; 330 CheckerNameRef CheckNames[CK_NumCheckKinds]; 331 332 void checkPreCall(const CallEvent &Call, CheckerContext &C) const; 333 void checkPostCall(const CallEvent &Call, CheckerContext &C) const; 334 void checkNewAllocator(const CXXAllocatorCall &Call, CheckerContext &C) const; 335 void checkPostObjCMessage(const ObjCMethodCall &Call, CheckerContext &C) const; 336 void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const; 337 void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const; 338 void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const; 339 void checkEndFunction(const ReturnStmt *S, CheckerContext &C) const; 340 ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond, 341 bool Assumption) const; 342 void checkLocation(SVal l, bool isLoad, const Stmt *S, 343 CheckerContext &C) const; 344 345 ProgramStateRef checkPointerEscape(ProgramStateRef State, 346 const InvalidatedSymbols &Escaped, 347 const CallEvent *Call, 348 PointerEscapeKind Kind) const; 349 ProgramStateRef checkConstPointerEscape(ProgramStateRef State, 350 const InvalidatedSymbols &Escaped, 351 const CallEvent *Call, 352 PointerEscapeKind Kind) const; 353 354 void printState(raw_ostream &Out, ProgramStateRef State, 355 const char *NL, const char *Sep) const override; 356 357 private: 358 mutable std::unique_ptr<BugType> BT_DoubleFree[CK_NumCheckKinds]; 359 mutable std::unique_ptr<BugType> BT_DoubleDelete; 360 mutable std::unique_ptr<BugType> BT_Leak[CK_NumCheckKinds]; 361 mutable std::unique_ptr<BugType> BT_UseFree[CK_NumCheckKinds]; 362 mutable std::unique_ptr<BugType> BT_BadFree[CK_NumCheckKinds]; 363 mutable std::unique_ptr<BugType> BT_FreeAlloca[CK_NumCheckKinds]; 364 mutable std::unique_ptr<BugType> BT_MismatchedDealloc; 365 mutable std::unique_ptr<BugType> BT_OffsetFree[CK_NumCheckKinds]; 366 mutable std::unique_ptr<BugType> BT_UseZerroAllocated[CK_NumCheckKinds]; 367 368 #define CHECK_FN(NAME) \ 369 void NAME(const CallEvent &Call, CheckerContext &C) const; 370 371 CHECK_FN(checkFree) 372 CHECK_FN(checkIfNameIndex) 373 CHECK_FN(checkBasicAlloc) 374 CHECK_FN(checkKernelMalloc) 375 CHECK_FN(checkCalloc) 376 CHECK_FN(checkAlloca) 377 CHECK_FN(checkStrdup) 378 CHECK_FN(checkIfFreeNameIndex) 379 CHECK_FN(checkCXXNewOrCXXDelete) 380 CHECK_FN(checkGMalloc0) 381 CHECK_FN(checkGMemdup) 382 CHECK_FN(checkGMallocN) 383 CHECK_FN(checkGMallocN0) 384 CHECK_FN(checkReallocN) 385 CHECK_FN(checkOwnershipAttr) 386 387 void checkRealloc(const CallEvent &Call, CheckerContext &C, 388 bool ShouldFreeOnFail) const; 389 390 using CheckFn = std::function<void(const MallocChecker *, 391 const CallEvent &Call, CheckerContext &C)>; 392 393 const CallDescriptionMap<CheckFn> FreeingMemFnMap{ 394 {{"free", 1}, &MallocChecker::checkFree}, 395 {{"if_freenameindex", 1}, &MallocChecker::checkIfFreeNameIndex}, 396 {{"kfree", 1}, &MallocChecker::checkFree}, 397 {{"g_free", 1}, &MallocChecker::checkFree}, 398 }; 399 400 bool isFreeingCall(const CallEvent &Call) const; 401 static bool isFreeingOwnershipAttrCall(const FunctionDecl *Func); 402 403 friend class NoOwnershipChangeVisitor; 404 405 CallDescriptionMap<CheckFn> AllocatingMemFnMap{ 406 {{"alloca", 1}, &MallocChecker::checkAlloca}, 407 {{"_alloca", 1}, &MallocChecker::checkAlloca}, 408 {{"malloc", 1}, &MallocChecker::checkBasicAlloc}, 409 {{"malloc", 3}, &MallocChecker::checkKernelMalloc}, 410 {{"calloc", 2}, &MallocChecker::checkCalloc}, 411 {{"valloc", 1}, &MallocChecker::checkBasicAlloc}, 412 {{CDF_MaybeBuiltin, "strndup", 2}, &MallocChecker::checkStrdup}, 413 {{CDF_MaybeBuiltin, "strdup", 1}, &MallocChecker::checkStrdup}, 414 {{"_strdup", 1}, &MallocChecker::checkStrdup}, 415 {{"kmalloc", 2}, &MallocChecker::checkKernelMalloc}, 416 {{"if_nameindex", 1}, &MallocChecker::checkIfNameIndex}, 417 {{CDF_MaybeBuiltin, "wcsdup", 1}, &MallocChecker::checkStrdup}, 418 {{CDF_MaybeBuiltin, "_wcsdup", 1}, &MallocChecker::checkStrdup}, 419 {{"g_malloc", 1}, &MallocChecker::checkBasicAlloc}, 420 {{"g_malloc0", 1}, &MallocChecker::checkGMalloc0}, 421 {{"g_try_malloc", 1}, &MallocChecker::checkBasicAlloc}, 422 {{"g_try_malloc0", 1}, &MallocChecker::checkGMalloc0}, 423 {{"g_memdup", 2}, &MallocChecker::checkGMemdup}, 424 {{"g_malloc_n", 2}, &MallocChecker::checkGMallocN}, 425 {{"g_malloc0_n", 2}, &MallocChecker::checkGMallocN0}, 426 {{"g_try_malloc_n", 2}, &MallocChecker::checkGMallocN}, 427 {{"g_try_malloc0_n", 2}, &MallocChecker::checkGMallocN0}, 428 }; 429 430 CallDescriptionMap<CheckFn> ReallocatingMemFnMap{ 431 {{"realloc", 2}, 432 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)}, 433 {{"reallocf", 2}, 434 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, true)}, 435 {{"g_realloc", 2}, 436 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)}, 437 {{"g_try_realloc", 2}, 438 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)}, 439 {{"g_realloc_n", 3}, &MallocChecker::checkReallocN}, 440 {{"g_try_realloc_n", 3}, &MallocChecker::checkReallocN}, 441 }; 442 443 bool isMemCall(const CallEvent &Call) const; 444 445 // TODO: Remove mutable by moving the initializtaion to the registry function. 446 mutable Optional<uint64_t> KernelZeroFlagVal; 447 448 using KernelZeroSizePtrValueTy = Optional<int>; 449 /// Store the value of macro called `ZERO_SIZE_PTR`. 450 /// The value is initialized at first use, before first use the outer 451 /// Optional is empty, afterwards it contains another Optional that indicates 452 /// if the macro value could be determined, and if yes the value itself. 453 mutable Optional<KernelZeroSizePtrValueTy> KernelZeroSizePtrValue; 454 455 /// Process C++ operator new()'s allocation, which is the part of C++ 456 /// new-expression that goes before the constructor. 457 [[nodiscard]] ProgramStateRef 458 processNewAllocation(const CXXAllocatorCall &Call, CheckerContext &C, 459 AllocationFamily Family) const; 460 461 /// Perform a zero-allocation check. 462 /// 463 /// \param [in] Call The expression that allocates memory. 464 /// \param [in] IndexOfSizeArg Index of the argument that specifies the size 465 /// of the memory that needs to be allocated. E.g. for malloc, this would be 466 /// 0. 467 /// \param [in] RetVal Specifies the newly allocated pointer value; 468 /// if unspecified, the value of expression \p E is used. 469 [[nodiscard]] static ProgramStateRef 470 ProcessZeroAllocCheck(const CallEvent &Call, const unsigned IndexOfSizeArg, 471 ProgramStateRef State, Optional<SVal> RetVal = None); 472 473 /// Model functions with the ownership_returns attribute. 474 /// 475 /// User-defined function may have the ownership_returns attribute, which 476 /// annotates that the function returns with an object that was allocated on 477 /// the heap, and passes the ownertship to the callee. 478 /// 479 /// void __attribute((ownership_returns(malloc, 1))) *my_malloc(size_t); 480 /// 481 /// It has two parameters: 482 /// - first: name of the resource (e.g. 'malloc') 483 /// - (OPTIONAL) second: size of the allocated region 484 /// 485 /// \param [in] Call The expression that allocates memory. 486 /// \param [in] Att The ownership_returns attribute. 487 /// \param [in] State The \c ProgramState right before allocation. 488 /// \returns The ProgramState right after allocation. 489 [[nodiscard]] ProgramStateRef 490 MallocMemReturnsAttr(CheckerContext &C, const CallEvent &Call, 491 const OwnershipAttr *Att, ProgramStateRef State) const; 492 493 /// Models memory allocation. 494 /// 495 /// \param [in] Call The expression that allocates memory. 496 /// \param [in] SizeEx Size of the memory that needs to be allocated. 497 /// \param [in] Init The value the allocated memory needs to be initialized. 498 /// with. For example, \c calloc initializes the allocated memory to 0, 499 /// malloc leaves it undefined. 500 /// \param [in] State The \c ProgramState right before allocation. 501 /// \returns The ProgramState right after allocation. 502 [[nodiscard]] static ProgramStateRef 503 MallocMemAux(CheckerContext &C, const CallEvent &Call, const Expr *SizeEx, 504 SVal Init, ProgramStateRef State, AllocationFamily Family); 505 506 /// Models memory allocation. 507 /// 508 /// \param [in] Call The expression that allocates memory. 509 /// \param [in] Size Size of the memory that needs to be allocated. 510 /// \param [in] Init The value the allocated memory needs to be initialized. 511 /// with. For example, \c calloc initializes the allocated memory to 0, 512 /// malloc leaves it undefined. 513 /// \param [in] State The \c ProgramState right before allocation. 514 /// \returns The ProgramState right after allocation. 515 [[nodiscard]] static ProgramStateRef 516 MallocMemAux(CheckerContext &C, const CallEvent &Call, SVal Size, SVal Init, 517 ProgramStateRef State, AllocationFamily Family); 518 519 // Check if this malloc() for special flags. At present that means M_ZERO or 520 // __GFP_ZERO (in which case, treat it like calloc). 521 [[nodiscard]] llvm::Optional<ProgramStateRef> 522 performKernelMalloc(const CallEvent &Call, CheckerContext &C, 523 const ProgramStateRef &State) const; 524 525 /// Model functions with the ownership_takes and ownership_holds attributes. 526 /// 527 /// User-defined function may have the ownership_takes and/or ownership_holds 528 /// attributes, which annotates that the function frees the memory passed as a 529 /// parameter. 530 /// 531 /// void __attribute((ownership_takes(malloc, 1))) my_free(void *); 532 /// void __attribute((ownership_holds(malloc, 1))) my_hold(void *); 533 /// 534 /// They have two parameters: 535 /// - first: name of the resource (e.g. 'malloc') 536 /// - second: index of the parameter the attribute applies to 537 /// 538 /// \param [in] Call The expression that frees memory. 539 /// \param [in] Att The ownership_takes or ownership_holds attribute. 540 /// \param [in] State The \c ProgramState right before allocation. 541 /// \returns The ProgramState right after deallocation. 542 [[nodiscard]] ProgramStateRef FreeMemAttr(CheckerContext &C, 543 const CallEvent &Call, 544 const OwnershipAttr *Att, 545 ProgramStateRef State) const; 546 547 /// Models memory deallocation. 548 /// 549 /// \param [in] Call The expression that frees memory. 550 /// \param [in] State The \c ProgramState right before allocation. 551 /// \param [in] Num Index of the argument that needs to be freed. This is 552 /// normally 0, but for custom free functions it may be different. 553 /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds 554 /// attribute. 555 /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known 556 /// to have been allocated, or in other words, the symbol to be freed was 557 /// registered as allocated by this checker. In the following case, \c ptr 558 /// isn't known to be allocated. 559 /// void Haha(int *ptr) { 560 /// ptr = realloc(ptr, 67); 561 /// // ... 562 /// } 563 /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function 564 /// we're modeling returns with Null on failure. 565 /// \returns The ProgramState right after deallocation. 566 [[nodiscard]] ProgramStateRef 567 FreeMemAux(CheckerContext &C, const CallEvent &Call, ProgramStateRef State, 568 unsigned Num, bool Hold, bool &IsKnownToBeAllocated, 569 AllocationFamily Family, bool ReturnsNullOnFailure = false) const; 570 571 /// Models memory deallocation. 572 /// 573 /// \param [in] ArgExpr The variable who's pointee needs to be freed. 574 /// \param [in] Call The expression that frees the memory. 575 /// \param [in] State The \c ProgramState right before allocation. 576 /// normally 0, but for custom free functions it may be different. 577 /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds 578 /// attribute. 579 /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known 580 /// to have been allocated, or in other words, the symbol to be freed was 581 /// registered as allocated by this checker. In the following case, \c ptr 582 /// isn't known to be allocated. 583 /// void Haha(int *ptr) { 584 /// ptr = realloc(ptr, 67); 585 /// // ... 586 /// } 587 /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function 588 /// we're modeling returns with Null on failure. 589 /// \returns The ProgramState right after deallocation. 590 [[nodiscard]] ProgramStateRef 591 FreeMemAux(CheckerContext &C, const Expr *ArgExpr, const CallEvent &Call, 592 ProgramStateRef State, bool Hold, bool &IsKnownToBeAllocated, 593 AllocationFamily Family, bool ReturnsNullOnFailure = false) const; 594 595 // TODO: Needs some refactoring, as all other deallocation modeling 596 // functions are suffering from out parameters and messy code due to how 597 // realloc is handled. 598 // 599 /// Models memory reallocation. 600 /// 601 /// \param [in] Call The expression that reallocated memory 602 /// \param [in] ShouldFreeOnFail Whether if reallocation fails, the supplied 603 /// memory should be freed. 604 /// \param [in] State The \c ProgramState right before reallocation. 605 /// \param [in] SuffixWithN Whether the reallocation function we're modeling 606 /// has an '_n' suffix, such as g_realloc_n. 607 /// \returns The ProgramState right after reallocation. 608 [[nodiscard]] ProgramStateRef 609 ReallocMemAux(CheckerContext &C, const CallEvent &Call, bool ShouldFreeOnFail, 610 ProgramStateRef State, AllocationFamily Family, 611 bool SuffixWithN = false) const; 612 613 /// Evaluates the buffer size that needs to be allocated. 614 /// 615 /// \param [in] Blocks The amount of blocks that needs to be allocated. 616 /// \param [in] BlockBytes The size of a block. 617 /// \returns The symbolic value of \p Blocks * \p BlockBytes. 618 [[nodiscard]] static SVal evalMulForBufferSize(CheckerContext &C, 619 const Expr *Blocks, 620 const Expr *BlockBytes); 621 622 /// Models zero initialized array allocation. 623 /// 624 /// \param [in] Call The expression that reallocated memory 625 /// \param [in] State The \c ProgramState right before reallocation. 626 /// \returns The ProgramState right after allocation. 627 [[nodiscard]] static ProgramStateRef 628 CallocMem(CheckerContext &C, const CallEvent &Call, ProgramStateRef State); 629 630 /// See if deallocation happens in a suspicious context. If so, escape the 631 /// pointers that otherwise would have been deallocated and return true. 632 bool suppressDeallocationsInSuspiciousContexts(const CallEvent &Call, 633 CheckerContext &C) const; 634 635 /// If in \p S \p Sym is used, check whether \p Sym was already freed. 636 bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S) const; 637 638 /// If in \p S \p Sym is used, check whether \p Sym was allocated as a zero 639 /// sized memory region. 640 void checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 641 const Stmt *S) const; 642 643 /// If in \p S \p Sym is being freed, check whether \p Sym was already freed. 644 bool checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const; 645 646 /// Check if the function is known to free memory, or if it is 647 /// "interesting" and should be modeled explicitly. 648 /// 649 /// \param [out] EscapingSymbol A function might not free memory in general, 650 /// but could be known to free a particular symbol. In this case, false is 651 /// returned and the single escaping symbol is returned through the out 652 /// parameter. 653 /// 654 /// We assume that pointers do not escape through calls to system functions 655 /// not handled by this checker. 656 bool mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent *Call, 657 ProgramStateRef State, 658 SymbolRef &EscapingSymbol) const; 659 660 /// Implementation of the checkPointerEscape callbacks. 661 [[nodiscard]] ProgramStateRef 662 checkPointerEscapeAux(ProgramStateRef State, 663 const InvalidatedSymbols &Escaped, 664 const CallEvent *Call, PointerEscapeKind Kind, 665 bool IsConstPointerEscape) const; 666 667 // Implementation of the checkPreStmt and checkEndFunction callbacks. 668 void checkEscapeOnReturn(const ReturnStmt *S, CheckerContext &C) const; 669 670 ///@{ 671 /// Tells if a given family/call/symbol is tracked by the current checker. 672 /// Sets CheckKind to the kind of the checker responsible for this 673 /// family/call/symbol. 674 Optional<CheckKind> getCheckIfTracked(AllocationFamily Family, 675 bool IsALeakCheck = false) const; 676 677 Optional<CheckKind> getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 678 bool IsALeakCheck = false) const; 679 ///@} 680 static bool SummarizeValue(raw_ostream &os, SVal V); 681 static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR); 682 683 void HandleNonHeapDealloc(CheckerContext &C, SVal ArgVal, SourceRange Range, 684 const Expr *DeallocExpr, 685 AllocationFamily Family) const; 686 687 void HandleFreeAlloca(CheckerContext &C, SVal ArgVal, 688 SourceRange Range) const; 689 690 void HandleMismatchedDealloc(CheckerContext &C, SourceRange Range, 691 const Expr *DeallocExpr, const RefState *RS, 692 SymbolRef Sym, bool OwnershipTransferred) const; 693 694 void HandleOffsetFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 695 const Expr *DeallocExpr, AllocationFamily Family, 696 const Expr *AllocExpr = nullptr) const; 697 698 void HandleUseAfterFree(CheckerContext &C, SourceRange Range, 699 SymbolRef Sym) const; 700 701 void HandleDoubleFree(CheckerContext &C, SourceRange Range, bool Released, 702 SymbolRef Sym, SymbolRef PrevSym) const; 703 704 void HandleDoubleDelete(CheckerContext &C, SymbolRef Sym) const; 705 706 void HandleUseZeroAlloc(CheckerContext &C, SourceRange Range, 707 SymbolRef Sym) const; 708 709 void HandleFunctionPtrFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 710 const Expr *FreeExpr, 711 AllocationFamily Family) const; 712 713 /// Find the location of the allocation for Sym on the path leading to the 714 /// exploded node N. 715 static LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym, 716 CheckerContext &C); 717 718 void HandleLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const; 719 720 /// Test if value in ArgVal equals to value in macro `ZERO_SIZE_PTR`. 721 bool isArgZERO_SIZE_PTR(ProgramStateRef State, CheckerContext &C, 722 SVal ArgVal) const; 723 }; 724 } // end anonymous namespace 725 726 //===----------------------------------------------------------------------===// 727 // Definition of NoOwnershipChangeVisitor. 728 //===----------------------------------------------------------------------===// 729 730 namespace { 731 class NoOwnershipChangeVisitor final : public NoStateChangeFuncVisitor { 732 // The symbol whose (lack of) ownership change we are interested in. 733 SymbolRef Sym; 734 const MallocChecker &Checker; 735 using OwnerSet = llvm::SmallPtrSet<const MemRegion *, 8>; 736 737 // Collect which entities point to the allocated memory, and could be 738 // responsible for deallocating it. 739 class OwnershipBindingsHandler : public StoreManager::BindingsHandler { 740 SymbolRef Sym; 741 OwnerSet &Owners; 742 743 public: 744 OwnershipBindingsHandler(SymbolRef Sym, OwnerSet &Owners) 745 : Sym(Sym), Owners(Owners) {} 746 747 bool HandleBinding(StoreManager &SMgr, Store Store, const MemRegion *Region, 748 SVal Val) override { 749 if (Val.getAsSymbol() == Sym) 750 Owners.insert(Region); 751 return true; 752 } 753 754 LLVM_DUMP_METHOD void dump() const { dumpToStream(llvm::errs()); } 755 LLVM_DUMP_METHOD void dumpToStream(llvm::raw_ostream &out) const { 756 out << "Owners: {\n"; 757 for (const MemRegion *Owner : Owners) { 758 out << " "; 759 Owner->dumpToStream(out); 760 out << ",\n"; 761 } 762 out << "}\n"; 763 } 764 }; 765 766 protected: 767 OwnerSet getOwnersAtNode(const ExplodedNode *N) { 768 OwnerSet Ret; 769 770 ProgramStateRef State = N->getState(); 771 OwnershipBindingsHandler Handler{Sym, Ret}; 772 State->getStateManager().getStoreManager().iterBindings(State->getStore(), 773 Handler); 774 return Ret; 775 } 776 777 LLVM_DUMP_METHOD static std::string 778 getFunctionName(const ExplodedNode *CallEnterN) { 779 if (const CallExpr *CE = llvm::dyn_cast_or_null<CallExpr>( 780 CallEnterN->getLocationAs<CallEnter>()->getCallExpr())) 781 if (const FunctionDecl *FD = CE->getDirectCallee()) 782 return FD->getQualifiedNameAsString(); 783 return ""; 784 } 785 786 /// Syntactically checks whether the callee is a deallocating function. Since 787 /// we have no path-sensitive information on this call (we would need a 788 /// CallEvent instead of a CallExpr for that), its possible that a 789 /// deallocation function was called indirectly through a function pointer, 790 /// but we are not able to tell, so this is a best effort analysis. 791 /// See namespace `memory_passed_to_fn_call_free_through_fn_ptr` in 792 /// clang/test/Analysis/NewDeleteLeaks.cpp. 793 bool isFreeingCallAsWritten(const CallExpr &Call) const { 794 if (Checker.FreeingMemFnMap.lookupAsWritten(Call) || 795 Checker.ReallocatingMemFnMap.lookupAsWritten(Call)) 796 return true; 797 798 if (const auto *Func = 799 llvm::dyn_cast_or_null<FunctionDecl>(Call.getCalleeDecl())) 800 return MallocChecker::isFreeingOwnershipAttrCall(Func); 801 802 return false; 803 } 804 805 /// Heuristically guess whether the callee intended to free memory. This is 806 /// done syntactically, because we are trying to argue about alternative 807 /// paths of execution, and as a consequence we don't have path-sensitive 808 /// information. 809 bool doesFnIntendToHandleOwnership(const Decl *Callee, ASTContext &ACtx) { 810 using namespace clang::ast_matchers; 811 const FunctionDecl *FD = dyn_cast<FunctionDecl>(Callee); 812 813 // Given that the stack frame was entered, the body should always be 814 // theoretically obtainable. In case of body farms, the synthesized body 815 // is not attached to declaration, thus triggering the '!FD->hasBody()' 816 // branch. That said, would a synthesized body ever intend to handle 817 // ownership? As of today they don't. And if they did, how would we 818 // put notes inside it, given that it doesn't match any source locations? 819 if (!FD || !FD->hasBody()) 820 return false; 821 822 auto Matches = match(findAll(stmt(anyOf(cxxDeleteExpr().bind("delete"), 823 callExpr().bind("call")))), 824 *FD->getBody(), ACtx); 825 for (BoundNodes Match : Matches) { 826 if (Match.getNodeAs<CXXDeleteExpr>("delete")) 827 return true; 828 829 if (const auto *Call = Match.getNodeAs<CallExpr>("call")) 830 if (isFreeingCallAsWritten(*Call)) 831 return true; 832 } 833 // TODO: Ownership might change with an attempt to store the allocated 834 // memory, not only through deallocation. Check for attempted stores as 835 // well. 836 return false; 837 } 838 839 bool wasModifiedInFunction(const ExplodedNode *CallEnterN, 840 const ExplodedNode *CallExitEndN) override { 841 if (!doesFnIntendToHandleOwnership( 842 CallExitEndN->getFirstPred()->getLocationContext()->getDecl(), 843 CallExitEndN->getState()->getAnalysisManager().getASTContext())) 844 return true; 845 846 if (CallEnterN->getState()->get<RegionState>(Sym) != 847 CallExitEndN->getState()->get<RegionState>(Sym)) 848 return true; 849 850 OwnerSet CurrOwners = getOwnersAtNode(CallEnterN); 851 OwnerSet ExitOwners = getOwnersAtNode(CallExitEndN); 852 853 // Owners in the current set may be purged from the analyzer later on. 854 // If a variable is dead (is not referenced directly or indirectly after 855 // some point), it will be removed from the Store before the end of its 856 // actual lifetime. 857 // This means that if the ownership status didn't change, CurrOwners 858 // must be a superset of, but not necessarily equal to ExitOwners. 859 return !llvm::set_is_subset(ExitOwners, CurrOwners); 860 } 861 862 static PathDiagnosticPieceRef emitNote(const ExplodedNode *N) { 863 PathDiagnosticLocation L = PathDiagnosticLocation::create( 864 N->getLocation(), 865 N->getState()->getStateManager().getContext().getSourceManager()); 866 return std::make_shared<PathDiagnosticEventPiece>( 867 L, "Returning without deallocating memory or storing the pointer for " 868 "later deallocation"); 869 } 870 871 PathDiagnosticPieceRef 872 maybeEmitNoteForObjCSelf(PathSensitiveBugReport &R, 873 const ObjCMethodCall &Call, 874 const ExplodedNode *N) override { 875 // TODO: Implement. 876 return nullptr; 877 } 878 879 PathDiagnosticPieceRef 880 maybeEmitNoteForCXXThis(PathSensitiveBugReport &R, 881 const CXXConstructorCall &Call, 882 const ExplodedNode *N) override { 883 // TODO: Implement. 884 return nullptr; 885 } 886 887 PathDiagnosticPieceRef 888 maybeEmitNoteForParameters(PathSensitiveBugReport &R, const CallEvent &Call, 889 const ExplodedNode *N) override { 890 // TODO: Factor the logic of "what constitutes as an entity being passed 891 // into a function call" out by reusing the code in 892 // NoStoreFuncVisitor::maybeEmitNoteForParameters, maybe by incorporating 893 // the printing technology in UninitializedObject's FieldChainInfo. 894 ArrayRef<ParmVarDecl *> Parameters = Call.parameters(); 895 for (unsigned I = 0; I < Call.getNumArgs() && I < Parameters.size(); ++I) { 896 SVal V = Call.getArgSVal(I); 897 if (V.getAsSymbol() == Sym) 898 return emitNote(N); 899 } 900 return nullptr; 901 } 902 903 public: 904 NoOwnershipChangeVisitor(SymbolRef Sym, const MallocChecker *Checker) 905 : NoStateChangeFuncVisitor(bugreporter::TrackingKind::Thorough), Sym(Sym), 906 Checker(*Checker) {} 907 908 void Profile(llvm::FoldingSetNodeID &ID) const override { 909 static int Tag = 0; 910 ID.AddPointer(&Tag); 911 ID.AddPointer(Sym); 912 } 913 }; 914 915 } // end anonymous namespace 916 917 //===----------------------------------------------------------------------===// 918 // Definition of MallocBugVisitor. 919 //===----------------------------------------------------------------------===// 920 921 namespace { 922 /// The bug visitor which allows us to print extra diagnostics along the 923 /// BugReport path. For example, showing the allocation site of the leaked 924 /// region. 925 class MallocBugVisitor final : public BugReporterVisitor { 926 protected: 927 enum NotificationMode { Normal, ReallocationFailed }; 928 929 // The allocated region symbol tracked by the main analysis. 930 SymbolRef Sym; 931 932 // The mode we are in, i.e. what kind of diagnostics will be emitted. 933 NotificationMode Mode; 934 935 // A symbol from when the primary region should have been reallocated. 936 SymbolRef FailedReallocSymbol; 937 938 // A C++ destructor stack frame in which memory was released. Used for 939 // miscellaneous false positive suppression. 940 const StackFrameContext *ReleaseDestructorLC; 941 942 bool IsLeak; 943 944 public: 945 MallocBugVisitor(SymbolRef S, bool isLeak = false) 946 : Sym(S), Mode(Normal), FailedReallocSymbol(nullptr), 947 ReleaseDestructorLC(nullptr), IsLeak(isLeak) {} 948 949 static void *getTag() { 950 static int Tag = 0; 951 return &Tag; 952 } 953 954 void Profile(llvm::FoldingSetNodeID &ID) const override { 955 ID.AddPointer(getTag()); 956 ID.AddPointer(Sym); 957 } 958 959 /// Did not track -> allocated. Other state (released) -> allocated. 960 static inline bool isAllocated(const RefState *RSCurr, const RefState *RSPrev, 961 const Stmt *Stmt) { 962 return (isa_and_nonnull<CallExpr, CXXNewExpr>(Stmt) && 963 (RSCurr && 964 (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) && 965 (!RSPrev || 966 !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero()))); 967 } 968 969 /// Did not track -> released. Other state (allocated) -> released. 970 /// The statement associated with the release might be missing. 971 static inline bool isReleased(const RefState *RSCurr, const RefState *RSPrev, 972 const Stmt *Stmt) { 973 bool IsReleased = 974 (RSCurr && RSCurr->isReleased()) && (!RSPrev || !RSPrev->isReleased()); 975 assert(!IsReleased || (isa_and_nonnull<CallExpr, CXXDeleteExpr>(Stmt)) || 976 (!Stmt && RSCurr->getAllocationFamily() == AF_InnerBuffer)); 977 return IsReleased; 978 } 979 980 /// Did not track -> relinquished. Other state (allocated) -> relinquished. 981 static inline bool isRelinquished(const RefState *RSCurr, 982 const RefState *RSPrev, const Stmt *Stmt) { 983 return ( 984 isa_and_nonnull<CallExpr, ObjCMessageExpr, ObjCPropertyRefExpr>(Stmt) && 985 (RSCurr && RSCurr->isRelinquished()) && 986 (!RSPrev || !RSPrev->isRelinquished())); 987 } 988 989 /// If the expression is not a call, and the state change is 990 /// released -> allocated, it must be the realloc return value 991 /// check. If we have to handle more cases here, it might be cleaner just 992 /// to track this extra bit in the state itself. 993 static inline bool hasReallocFailed(const RefState *RSCurr, 994 const RefState *RSPrev, 995 const Stmt *Stmt) { 996 return ((!isa_and_nonnull<CallExpr>(Stmt)) && 997 (RSCurr && 998 (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) && 999 (RSPrev && 1000 !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero()))); 1001 } 1002 1003 PathDiagnosticPieceRef VisitNode(const ExplodedNode *N, 1004 BugReporterContext &BRC, 1005 PathSensitiveBugReport &BR) override; 1006 1007 PathDiagnosticPieceRef getEndPath(BugReporterContext &BRC, 1008 const ExplodedNode *EndPathNode, 1009 PathSensitiveBugReport &BR) override { 1010 if (!IsLeak) 1011 return nullptr; 1012 1013 PathDiagnosticLocation L = BR.getLocation(); 1014 // Do not add the statement itself as a range in case of leak. 1015 return std::make_shared<PathDiagnosticEventPiece>(L, BR.getDescription(), 1016 false); 1017 } 1018 1019 private: 1020 class StackHintGeneratorForReallocationFailed 1021 : public StackHintGeneratorForSymbol { 1022 public: 1023 StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M) 1024 : StackHintGeneratorForSymbol(S, M) {} 1025 1026 std::string getMessageForArg(const Expr *ArgE, unsigned ArgIndex) override { 1027 // Printed parameters start at 1, not 0. 1028 ++ArgIndex; 1029 1030 SmallString<200> buf; 1031 llvm::raw_svector_ostream os(buf); 1032 1033 os << "Reallocation of " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex) 1034 << " parameter failed"; 1035 1036 return std::string(os.str()); 1037 } 1038 1039 std::string getMessageForReturn(const CallExpr *CallExpr) override { 1040 return "Reallocation of returned value failed"; 1041 } 1042 }; 1043 }; 1044 } // end anonymous namespace 1045 1046 // A map from the freed symbol to the symbol representing the return value of 1047 // the free function. 1048 REGISTER_MAP_WITH_PROGRAMSTATE(FreeReturnValue, SymbolRef, SymbolRef) 1049 1050 namespace { 1051 class StopTrackingCallback final : public SymbolVisitor { 1052 ProgramStateRef state; 1053 1054 public: 1055 StopTrackingCallback(ProgramStateRef st) : state(std::move(st)) {} 1056 ProgramStateRef getState() const { return state; } 1057 1058 bool VisitSymbol(SymbolRef sym) override { 1059 state = state->remove<RegionState>(sym); 1060 return true; 1061 } 1062 }; 1063 } // end anonymous namespace 1064 1065 static bool isStandardNewDelete(const FunctionDecl *FD) { 1066 if (!FD) 1067 return false; 1068 1069 OverloadedOperatorKind Kind = FD->getOverloadedOperator(); 1070 if (Kind != OO_New && Kind != OO_Array_New && Kind != OO_Delete && 1071 Kind != OO_Array_Delete) 1072 return false; 1073 1074 // This is standard if and only if it's not defined in a user file. 1075 SourceLocation L = FD->getLocation(); 1076 // If the header for operator delete is not included, it's still defined 1077 // in an invalid source location. Check to make sure we don't crash. 1078 return !L.isValid() || 1079 FD->getASTContext().getSourceManager().isInSystemHeader(L); 1080 } 1081 1082 //===----------------------------------------------------------------------===// 1083 // Methods of MallocChecker and MallocBugVisitor. 1084 //===----------------------------------------------------------------------===// 1085 1086 bool MallocChecker::isFreeingOwnershipAttrCall(const FunctionDecl *Func) { 1087 if (Func->hasAttrs()) { 1088 for (const auto *I : Func->specific_attrs<OwnershipAttr>()) { 1089 OwnershipAttr::OwnershipKind OwnKind = I->getOwnKind(); 1090 if (OwnKind == OwnershipAttr::Takes || OwnKind == OwnershipAttr::Holds) 1091 return true; 1092 } 1093 } 1094 return false; 1095 } 1096 1097 bool MallocChecker::isFreeingCall(const CallEvent &Call) const { 1098 if (FreeingMemFnMap.lookup(Call) || ReallocatingMemFnMap.lookup(Call)) 1099 return true; 1100 1101 if (const auto *Func = dyn_cast_or_null<FunctionDecl>(Call.getDecl())) 1102 return isFreeingOwnershipAttrCall(Func); 1103 1104 return false; 1105 } 1106 1107 bool MallocChecker::isMemCall(const CallEvent &Call) const { 1108 if (FreeingMemFnMap.lookup(Call) || AllocatingMemFnMap.lookup(Call) || 1109 ReallocatingMemFnMap.lookup(Call)) 1110 return true; 1111 1112 if (!ShouldIncludeOwnershipAnnotatedFunctions) 1113 return false; 1114 1115 const auto *Func = dyn_cast<FunctionDecl>(Call.getDecl()); 1116 return Func && Func->hasAttr<OwnershipAttr>(); 1117 } 1118 1119 llvm::Optional<ProgramStateRef> 1120 MallocChecker::performKernelMalloc(const CallEvent &Call, CheckerContext &C, 1121 const ProgramStateRef &State) const { 1122 // 3-argument malloc(), as commonly used in {Free,Net,Open}BSD Kernels: 1123 // 1124 // void *malloc(unsigned long size, struct malloc_type *mtp, int flags); 1125 // 1126 // One of the possible flags is M_ZERO, which means 'give me back an 1127 // allocation which is already zeroed', like calloc. 1128 1129 // 2-argument kmalloc(), as used in the Linux kernel: 1130 // 1131 // void *kmalloc(size_t size, gfp_t flags); 1132 // 1133 // Has the similar flag value __GFP_ZERO. 1134 1135 // This logic is largely cloned from O_CREAT in UnixAPIChecker, maybe some 1136 // code could be shared. 1137 1138 ASTContext &Ctx = C.getASTContext(); 1139 llvm::Triple::OSType OS = Ctx.getTargetInfo().getTriple().getOS(); 1140 1141 if (!KernelZeroFlagVal) { 1142 if (OS == llvm::Triple::FreeBSD) 1143 KernelZeroFlagVal = 0x0100; 1144 else if (OS == llvm::Triple::NetBSD) 1145 KernelZeroFlagVal = 0x0002; 1146 else if (OS == llvm::Triple::OpenBSD) 1147 KernelZeroFlagVal = 0x0008; 1148 else if (OS == llvm::Triple::Linux) 1149 // __GFP_ZERO 1150 KernelZeroFlagVal = 0x8000; 1151 else 1152 // FIXME: We need a more general way of getting the M_ZERO value. 1153 // See also: O_CREAT in UnixAPIChecker.cpp. 1154 1155 // Fall back to normal malloc behavior on platforms where we don't 1156 // know M_ZERO. 1157 return None; 1158 } 1159 1160 // We treat the last argument as the flags argument, and callers fall-back to 1161 // normal malloc on a None return. This works for the FreeBSD kernel malloc 1162 // as well as Linux kmalloc. 1163 if (Call.getNumArgs() < 2) 1164 return None; 1165 1166 const Expr *FlagsEx = Call.getArgExpr(Call.getNumArgs() - 1); 1167 const SVal V = C.getSVal(FlagsEx); 1168 if (!isa<NonLoc>(V)) { 1169 // The case where 'V' can be a location can only be due to a bad header, 1170 // so in this case bail out. 1171 return None; 1172 } 1173 1174 NonLoc Flags = V.castAs<NonLoc>(); 1175 NonLoc ZeroFlag = 1176 C.getSValBuilder() 1177 .makeIntVal(KernelZeroFlagVal.value(), FlagsEx->getType()) 1178 .castAs<NonLoc>(); 1179 SVal MaskedFlagsUC = C.getSValBuilder().evalBinOpNN(State, BO_And, 1180 Flags, ZeroFlag, 1181 FlagsEx->getType()); 1182 if (MaskedFlagsUC.isUnknownOrUndef()) 1183 return None; 1184 DefinedSVal MaskedFlags = MaskedFlagsUC.castAs<DefinedSVal>(); 1185 1186 // Check if maskedFlags is non-zero. 1187 ProgramStateRef TrueState, FalseState; 1188 std::tie(TrueState, FalseState) = State->assume(MaskedFlags); 1189 1190 // If M_ZERO is set, treat this like calloc (initialized). 1191 if (TrueState && !FalseState) { 1192 SVal ZeroVal = C.getSValBuilder().makeZeroVal(Ctx.CharTy); 1193 return MallocMemAux(C, Call, Call.getArgExpr(0), ZeroVal, TrueState, 1194 AF_Malloc); 1195 } 1196 1197 return None; 1198 } 1199 1200 SVal MallocChecker::evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, 1201 const Expr *BlockBytes) { 1202 SValBuilder &SB = C.getSValBuilder(); 1203 SVal BlocksVal = C.getSVal(Blocks); 1204 SVal BlockBytesVal = C.getSVal(BlockBytes); 1205 ProgramStateRef State = C.getState(); 1206 SVal TotalSize = SB.evalBinOp(State, BO_Mul, BlocksVal, BlockBytesVal, 1207 SB.getContext().getSizeType()); 1208 return TotalSize; 1209 } 1210 1211 void MallocChecker::checkBasicAlloc(const CallEvent &Call, 1212 CheckerContext &C) const { 1213 ProgramStateRef State = C.getState(); 1214 State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State, 1215 AF_Malloc); 1216 State = ProcessZeroAllocCheck(Call, 0, State); 1217 C.addTransition(State); 1218 } 1219 1220 void MallocChecker::checkKernelMalloc(const CallEvent &Call, 1221 CheckerContext &C) const { 1222 ProgramStateRef State = C.getState(); 1223 llvm::Optional<ProgramStateRef> MaybeState = 1224 performKernelMalloc(Call, C, State); 1225 if (MaybeState) 1226 State = MaybeState.value(); 1227 else 1228 State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State, 1229 AF_Malloc); 1230 C.addTransition(State); 1231 } 1232 1233 static bool isStandardRealloc(const CallEvent &Call) { 1234 const FunctionDecl *FD = dyn_cast<FunctionDecl>(Call.getDecl()); 1235 assert(FD); 1236 ASTContext &AC = FD->getASTContext(); 1237 1238 if (isa<CXXMethodDecl>(FD)) 1239 return false; 1240 1241 return FD->getDeclaredReturnType().getDesugaredType(AC) == AC.VoidPtrTy && 1242 FD->getParamDecl(0)->getType().getDesugaredType(AC) == AC.VoidPtrTy && 1243 FD->getParamDecl(1)->getType().getDesugaredType(AC) == 1244 AC.getSizeType(); 1245 } 1246 1247 static bool isGRealloc(const CallEvent &Call) { 1248 const FunctionDecl *FD = dyn_cast<FunctionDecl>(Call.getDecl()); 1249 assert(FD); 1250 ASTContext &AC = FD->getASTContext(); 1251 1252 if (isa<CXXMethodDecl>(FD)) 1253 return false; 1254 1255 return FD->getDeclaredReturnType().getDesugaredType(AC) == AC.VoidPtrTy && 1256 FD->getParamDecl(0)->getType().getDesugaredType(AC) == AC.VoidPtrTy && 1257 FD->getParamDecl(1)->getType().getDesugaredType(AC) == 1258 AC.UnsignedLongTy; 1259 } 1260 1261 void MallocChecker::checkRealloc(const CallEvent &Call, CheckerContext &C, 1262 bool ShouldFreeOnFail) const { 1263 // HACK: CallDescription currently recognizes non-standard realloc functions 1264 // as standard because it doesn't check the type, or wether its a non-method 1265 // function. This should be solved by making CallDescription smarter. 1266 // Mind that this came from a bug report, and all other functions suffer from 1267 // this. 1268 // https://bugs.llvm.org/show_bug.cgi?id=46253 1269 if (!isStandardRealloc(Call) && !isGRealloc(Call)) 1270 return; 1271 ProgramStateRef State = C.getState(); 1272 State = ReallocMemAux(C, Call, ShouldFreeOnFail, State, AF_Malloc); 1273 State = ProcessZeroAllocCheck(Call, 1, State); 1274 C.addTransition(State); 1275 } 1276 1277 void MallocChecker::checkCalloc(const CallEvent &Call, 1278 CheckerContext &C) const { 1279 ProgramStateRef State = C.getState(); 1280 State = CallocMem(C, Call, State); 1281 State = ProcessZeroAllocCheck(Call, 0, State); 1282 State = ProcessZeroAllocCheck(Call, 1, State); 1283 C.addTransition(State); 1284 } 1285 1286 void MallocChecker::checkFree(const CallEvent &Call, CheckerContext &C) const { 1287 ProgramStateRef State = C.getState(); 1288 bool IsKnownToBeAllocatedMemory = false; 1289 if (suppressDeallocationsInSuspiciousContexts(Call, C)) 1290 return; 1291 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1292 AF_Malloc); 1293 C.addTransition(State); 1294 } 1295 1296 void MallocChecker::checkAlloca(const CallEvent &Call, 1297 CheckerContext &C) const { 1298 ProgramStateRef State = C.getState(); 1299 State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State, 1300 AF_Alloca); 1301 State = ProcessZeroAllocCheck(Call, 0, State); 1302 C.addTransition(State); 1303 } 1304 1305 void MallocChecker::checkStrdup(const CallEvent &Call, 1306 CheckerContext &C) const { 1307 ProgramStateRef State = C.getState(); 1308 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1309 if (!CE) 1310 return; 1311 State = MallocUpdateRefState(C, CE, State, AF_Malloc); 1312 1313 C.addTransition(State); 1314 } 1315 1316 void MallocChecker::checkIfNameIndex(const CallEvent &Call, 1317 CheckerContext &C) const { 1318 ProgramStateRef State = C.getState(); 1319 // Should we model this differently? We can allocate a fixed number of 1320 // elements with zeros in the last one. 1321 State = 1322 MallocMemAux(C, Call, UnknownVal(), UnknownVal(), State, AF_IfNameIndex); 1323 1324 C.addTransition(State); 1325 } 1326 1327 void MallocChecker::checkIfFreeNameIndex(const CallEvent &Call, 1328 CheckerContext &C) const { 1329 ProgramStateRef State = C.getState(); 1330 bool IsKnownToBeAllocatedMemory = false; 1331 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1332 AF_IfNameIndex); 1333 C.addTransition(State); 1334 } 1335 1336 void MallocChecker::checkCXXNewOrCXXDelete(const CallEvent &Call, 1337 CheckerContext &C) const { 1338 ProgramStateRef State = C.getState(); 1339 bool IsKnownToBeAllocatedMemory = false; 1340 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1341 if (!CE) 1342 return; 1343 1344 assert(isStandardNewDelete(Call)); 1345 1346 // Process direct calls to operator new/new[]/delete/delete[] functions 1347 // as distinct from new/new[]/delete/delete[] expressions that are 1348 // processed by the checkPostStmt callbacks for CXXNewExpr and 1349 // CXXDeleteExpr. 1350 const FunctionDecl *FD = C.getCalleeDecl(CE); 1351 switch (FD->getOverloadedOperator()) { 1352 case OO_New: 1353 State = 1354 MallocMemAux(C, Call, CE->getArg(0), UndefinedVal(), State, AF_CXXNew); 1355 State = ProcessZeroAllocCheck(Call, 0, State); 1356 break; 1357 case OO_Array_New: 1358 State = MallocMemAux(C, Call, CE->getArg(0), UndefinedVal(), State, 1359 AF_CXXNewArray); 1360 State = ProcessZeroAllocCheck(Call, 0, State); 1361 break; 1362 case OO_Delete: 1363 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1364 AF_CXXNew); 1365 break; 1366 case OO_Array_Delete: 1367 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1368 AF_CXXNewArray); 1369 break; 1370 default: 1371 llvm_unreachable("not a new/delete operator"); 1372 } 1373 1374 C.addTransition(State); 1375 } 1376 1377 void MallocChecker::checkGMalloc0(const CallEvent &Call, 1378 CheckerContext &C) const { 1379 ProgramStateRef State = C.getState(); 1380 SValBuilder &svalBuilder = C.getSValBuilder(); 1381 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 1382 State = MallocMemAux(C, Call, Call.getArgExpr(0), zeroVal, State, AF_Malloc); 1383 State = ProcessZeroAllocCheck(Call, 0, State); 1384 C.addTransition(State); 1385 } 1386 1387 void MallocChecker::checkGMemdup(const CallEvent &Call, 1388 CheckerContext &C) const { 1389 ProgramStateRef State = C.getState(); 1390 State = 1391 MallocMemAux(C, Call, Call.getArgExpr(1), UnknownVal(), State, AF_Malloc); 1392 State = ProcessZeroAllocCheck(Call, 1, State); 1393 C.addTransition(State); 1394 } 1395 1396 void MallocChecker::checkGMallocN(const CallEvent &Call, 1397 CheckerContext &C) const { 1398 ProgramStateRef State = C.getState(); 1399 SVal Init = UndefinedVal(); 1400 SVal TotalSize = evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1)); 1401 State = MallocMemAux(C, Call, TotalSize, Init, State, AF_Malloc); 1402 State = ProcessZeroAllocCheck(Call, 0, State); 1403 State = ProcessZeroAllocCheck(Call, 1, State); 1404 C.addTransition(State); 1405 } 1406 1407 void MallocChecker::checkGMallocN0(const CallEvent &Call, 1408 CheckerContext &C) const { 1409 ProgramStateRef State = C.getState(); 1410 SValBuilder &SB = C.getSValBuilder(); 1411 SVal Init = SB.makeZeroVal(SB.getContext().CharTy); 1412 SVal TotalSize = evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1)); 1413 State = MallocMemAux(C, Call, TotalSize, Init, State, AF_Malloc); 1414 State = ProcessZeroAllocCheck(Call, 0, State); 1415 State = ProcessZeroAllocCheck(Call, 1, State); 1416 C.addTransition(State); 1417 } 1418 1419 void MallocChecker::checkReallocN(const CallEvent &Call, 1420 CheckerContext &C) const { 1421 ProgramStateRef State = C.getState(); 1422 State = ReallocMemAux(C, Call, /*ShouldFreeOnFail=*/false, State, AF_Malloc, 1423 /*SuffixWithN=*/true); 1424 State = ProcessZeroAllocCheck(Call, 1, State); 1425 State = ProcessZeroAllocCheck(Call, 2, State); 1426 C.addTransition(State); 1427 } 1428 1429 void MallocChecker::checkOwnershipAttr(const CallEvent &Call, 1430 CheckerContext &C) const { 1431 ProgramStateRef State = C.getState(); 1432 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1433 if (!CE) 1434 return; 1435 const FunctionDecl *FD = C.getCalleeDecl(CE); 1436 if (!FD) 1437 return; 1438 if (ShouldIncludeOwnershipAnnotatedFunctions || 1439 ChecksEnabled[CK_MismatchedDeallocatorChecker]) { 1440 // Check all the attributes, if there are any. 1441 // There can be multiple of these attributes. 1442 if (FD->hasAttrs()) 1443 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { 1444 switch (I->getOwnKind()) { 1445 case OwnershipAttr::Returns: 1446 State = MallocMemReturnsAttr(C, Call, I, State); 1447 break; 1448 case OwnershipAttr::Takes: 1449 case OwnershipAttr::Holds: 1450 State = FreeMemAttr(C, Call, I, State); 1451 break; 1452 } 1453 } 1454 } 1455 C.addTransition(State); 1456 } 1457 1458 void MallocChecker::checkPostCall(const CallEvent &Call, 1459 CheckerContext &C) const { 1460 if (C.wasInlined) 1461 return; 1462 if (!Call.getOriginExpr()) 1463 return; 1464 1465 ProgramStateRef State = C.getState(); 1466 1467 if (const CheckFn *Callback = FreeingMemFnMap.lookup(Call)) { 1468 (*Callback)(this, Call, C); 1469 return; 1470 } 1471 1472 if (const CheckFn *Callback = AllocatingMemFnMap.lookup(Call)) { 1473 (*Callback)(this, Call, C); 1474 return; 1475 } 1476 1477 if (const CheckFn *Callback = ReallocatingMemFnMap.lookup(Call)) { 1478 (*Callback)(this, Call, C); 1479 return; 1480 } 1481 1482 if (isStandardNewDelete(Call)) { 1483 checkCXXNewOrCXXDelete(Call, C); 1484 return; 1485 } 1486 1487 checkOwnershipAttr(Call, C); 1488 } 1489 1490 // Performs a 0-sized allocations check. 1491 ProgramStateRef MallocChecker::ProcessZeroAllocCheck( 1492 const CallEvent &Call, const unsigned IndexOfSizeArg, ProgramStateRef State, 1493 Optional<SVal> RetVal) { 1494 if (!State) 1495 return nullptr; 1496 1497 if (!RetVal) 1498 RetVal = Call.getReturnValue(); 1499 1500 const Expr *Arg = nullptr; 1501 1502 if (const CallExpr *CE = dyn_cast<CallExpr>(Call.getOriginExpr())) { 1503 Arg = CE->getArg(IndexOfSizeArg); 1504 } else if (const CXXNewExpr *NE = 1505 dyn_cast<CXXNewExpr>(Call.getOriginExpr())) { 1506 if (NE->isArray()) { 1507 Arg = *NE->getArraySize(); 1508 } else { 1509 return State; 1510 } 1511 } else 1512 llvm_unreachable("not a CallExpr or CXXNewExpr"); 1513 1514 assert(Arg); 1515 1516 auto DefArgVal = 1517 State->getSVal(Arg, Call.getLocationContext()).getAs<DefinedSVal>(); 1518 1519 if (!DefArgVal) 1520 return State; 1521 1522 // Check if the allocation size is 0. 1523 ProgramStateRef TrueState, FalseState; 1524 SValBuilder &SvalBuilder = State->getStateManager().getSValBuilder(); 1525 DefinedSVal Zero = 1526 SvalBuilder.makeZeroVal(Arg->getType()).castAs<DefinedSVal>(); 1527 1528 std::tie(TrueState, FalseState) = 1529 State->assume(SvalBuilder.evalEQ(State, *DefArgVal, Zero)); 1530 1531 if (TrueState && !FalseState) { 1532 SymbolRef Sym = RetVal->getAsLocSymbol(); 1533 if (!Sym) 1534 return State; 1535 1536 const RefState *RS = State->get<RegionState>(Sym); 1537 if (RS) { 1538 if (RS->isAllocated()) 1539 return TrueState->set<RegionState>(Sym, 1540 RefState::getAllocatedOfSizeZero(RS)); 1541 else 1542 return State; 1543 } else { 1544 // Case of zero-size realloc. Historically 'realloc(ptr, 0)' is treated as 1545 // 'free(ptr)' and the returned value from 'realloc(ptr, 0)' is not 1546 // tracked. Add zero-reallocated Sym to the state to catch references 1547 // to zero-allocated memory. 1548 return TrueState->add<ReallocSizeZeroSymbols>(Sym); 1549 } 1550 } 1551 1552 // Assume the value is non-zero going forward. 1553 assert(FalseState); 1554 return FalseState; 1555 } 1556 1557 static QualType getDeepPointeeType(QualType T) { 1558 QualType Result = T, PointeeType = T->getPointeeType(); 1559 while (!PointeeType.isNull()) { 1560 Result = PointeeType; 1561 PointeeType = PointeeType->getPointeeType(); 1562 } 1563 return Result; 1564 } 1565 1566 /// \returns true if the constructor invoked by \p NE has an argument of a 1567 /// pointer/reference to a record type. 1568 static bool hasNonTrivialConstructorCall(const CXXNewExpr *NE) { 1569 1570 const CXXConstructExpr *ConstructE = NE->getConstructExpr(); 1571 if (!ConstructE) 1572 return false; 1573 1574 if (!NE->getAllocatedType()->getAsCXXRecordDecl()) 1575 return false; 1576 1577 const CXXConstructorDecl *CtorD = ConstructE->getConstructor(); 1578 1579 // Iterate over the constructor parameters. 1580 for (const auto *CtorParam : CtorD->parameters()) { 1581 1582 QualType CtorParamPointeeT = CtorParam->getType()->getPointeeType(); 1583 if (CtorParamPointeeT.isNull()) 1584 continue; 1585 1586 CtorParamPointeeT = getDeepPointeeType(CtorParamPointeeT); 1587 1588 if (CtorParamPointeeT->getAsCXXRecordDecl()) 1589 return true; 1590 } 1591 1592 return false; 1593 } 1594 1595 ProgramStateRef 1596 MallocChecker::processNewAllocation(const CXXAllocatorCall &Call, 1597 CheckerContext &C, 1598 AllocationFamily Family) const { 1599 if (!isStandardNewDelete(Call)) 1600 return nullptr; 1601 1602 const CXXNewExpr *NE = Call.getOriginExpr(); 1603 const ParentMap &PM = C.getLocationContext()->getParentMap(); 1604 ProgramStateRef State = C.getState(); 1605 1606 // Non-trivial constructors have a chance to escape 'this', but marking all 1607 // invocations of trivial constructors as escaped would cause too great of 1608 // reduction of true positives, so let's just do that for constructors that 1609 // have an argument of a pointer-to-record type. 1610 if (!PM.isConsumedExpr(NE) && hasNonTrivialConstructorCall(NE)) 1611 return State; 1612 1613 // The return value from operator new is bound to a specified initialization 1614 // value (if any) and we don't want to loose this value. So we call 1615 // MallocUpdateRefState() instead of MallocMemAux() which breaks the 1616 // existing binding. 1617 SVal Target = Call.getObjectUnderConstruction(); 1618 State = MallocUpdateRefState(C, NE, State, Family, Target); 1619 State = ProcessZeroAllocCheck(Call, 0, State, Target); 1620 return State; 1621 } 1622 1623 void MallocChecker::checkNewAllocator(const CXXAllocatorCall &Call, 1624 CheckerContext &C) const { 1625 if (!C.wasInlined) { 1626 ProgramStateRef State = processNewAllocation( 1627 Call, C, 1628 (Call.getOriginExpr()->isArray() ? AF_CXXNewArray : AF_CXXNew)); 1629 C.addTransition(State); 1630 } 1631 } 1632 1633 static bool isKnownDeallocObjCMethodName(const ObjCMethodCall &Call) { 1634 // If the first selector piece is one of the names below, assume that the 1635 // object takes ownership of the memory, promising to eventually deallocate it 1636 // with free(). 1637 // Ex: [NSData dataWithBytesNoCopy:bytes length:10]; 1638 // (...unless a 'freeWhenDone' parameter is false, but that's checked later.) 1639 StringRef FirstSlot = Call.getSelector().getNameForSlot(0); 1640 return FirstSlot == "dataWithBytesNoCopy" || 1641 FirstSlot == "initWithBytesNoCopy" || 1642 FirstSlot == "initWithCharactersNoCopy"; 1643 } 1644 1645 static Optional<bool> getFreeWhenDoneArg(const ObjCMethodCall &Call) { 1646 Selector S = Call.getSelector(); 1647 1648 // FIXME: We should not rely on fully-constrained symbols being folded. 1649 for (unsigned i = 1; i < S.getNumArgs(); ++i) 1650 if (S.getNameForSlot(i).equals("freeWhenDone")) 1651 return !Call.getArgSVal(i).isZeroConstant(); 1652 1653 return None; 1654 } 1655 1656 void MallocChecker::checkPostObjCMessage(const ObjCMethodCall &Call, 1657 CheckerContext &C) const { 1658 if (C.wasInlined) 1659 return; 1660 1661 if (!isKnownDeallocObjCMethodName(Call)) 1662 return; 1663 1664 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call)) 1665 if (!*FreeWhenDone) 1666 return; 1667 1668 if (Call.hasNonZeroCallbackArg()) 1669 return; 1670 1671 bool IsKnownToBeAllocatedMemory; 1672 ProgramStateRef State = 1673 FreeMemAux(C, Call.getArgExpr(0), Call, C.getState(), 1674 /*Hold=*/true, IsKnownToBeAllocatedMemory, AF_Malloc, 1675 /*ReturnsNullOnFailure=*/true); 1676 1677 C.addTransition(State); 1678 } 1679 1680 ProgramStateRef 1681 MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallEvent &Call, 1682 const OwnershipAttr *Att, 1683 ProgramStateRef State) const { 1684 if (!State) 1685 return nullptr; 1686 1687 if (Att->getModule()->getName() != "malloc") 1688 return nullptr; 1689 1690 OwnershipAttr::args_iterator I = Att->args_begin(), E = Att->args_end(); 1691 if (I != E) { 1692 return MallocMemAux(C, Call, Call.getArgExpr(I->getASTIndex()), 1693 UndefinedVal(), State, AF_Malloc); 1694 } 1695 return MallocMemAux(C, Call, UnknownVal(), UndefinedVal(), State, AF_Malloc); 1696 } 1697 1698 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1699 const CallEvent &Call, 1700 const Expr *SizeEx, SVal Init, 1701 ProgramStateRef State, 1702 AllocationFamily Family) { 1703 if (!State) 1704 return nullptr; 1705 1706 assert(SizeEx); 1707 return MallocMemAux(C, Call, C.getSVal(SizeEx), Init, State, Family); 1708 } 1709 1710 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1711 const CallEvent &Call, SVal Size, 1712 SVal Init, ProgramStateRef State, 1713 AllocationFamily Family) { 1714 if (!State) 1715 return nullptr; 1716 1717 const Expr *CE = Call.getOriginExpr(); 1718 1719 // We expect the malloc functions to return a pointer. 1720 if (!Loc::isLocType(CE->getType())) 1721 return nullptr; 1722 1723 // Bind the return value to the symbolic value from the heap region. 1724 // TODO: We could rewrite post visit to eval call; 'malloc' does not have 1725 // side effects other than what we model here. 1726 unsigned Count = C.blockCount(); 1727 SValBuilder &svalBuilder = C.getSValBuilder(); 1728 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 1729 DefinedSVal RetVal = svalBuilder.getConjuredHeapSymbolVal(CE, LCtx, Count) 1730 .castAs<DefinedSVal>(); 1731 State = State->BindExpr(CE, C.getLocationContext(), RetVal); 1732 1733 // Fill the region with the initialization value. 1734 State = State->bindDefaultInitial(RetVal, Init, LCtx); 1735 1736 // If Size is somehow undefined at this point, this line prevents a crash. 1737 if (Size.isUndef()) 1738 Size = UnknownVal(); 1739 1740 // Set the region's extent. 1741 State = setDynamicExtent(State, RetVal.getAsRegion(), 1742 Size.castAs<DefinedOrUnknownSVal>(), svalBuilder); 1743 1744 return MallocUpdateRefState(C, CE, State, Family); 1745 } 1746 1747 static ProgramStateRef MallocUpdateRefState(CheckerContext &C, const Expr *E, 1748 ProgramStateRef State, 1749 AllocationFamily Family, 1750 Optional<SVal> RetVal) { 1751 if (!State) 1752 return nullptr; 1753 1754 // Get the return value. 1755 if (!RetVal) 1756 RetVal = C.getSVal(E); 1757 1758 // We expect the malloc functions to return a pointer. 1759 if (!RetVal->getAs<Loc>()) 1760 return nullptr; 1761 1762 SymbolRef Sym = RetVal->getAsLocSymbol(); 1763 // This is a return value of a function that was not inlined, such as malloc() 1764 // or new(). We've checked that in the caller. Therefore, it must be a symbol. 1765 assert(Sym); 1766 1767 // Set the symbol's state to Allocated. 1768 return State->set<RegionState>(Sym, RefState::getAllocated(Family, E)); 1769 } 1770 1771 ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C, 1772 const CallEvent &Call, 1773 const OwnershipAttr *Att, 1774 ProgramStateRef State) const { 1775 if (!State) 1776 return nullptr; 1777 1778 if (Att->getModule()->getName() != "malloc") 1779 return nullptr; 1780 1781 bool IsKnownToBeAllocated = false; 1782 1783 for (const auto &Arg : Att->args()) { 1784 ProgramStateRef StateI = 1785 FreeMemAux(C, Call, State, Arg.getASTIndex(), 1786 Att->getOwnKind() == OwnershipAttr::Holds, 1787 IsKnownToBeAllocated, AF_Malloc); 1788 if (StateI) 1789 State = StateI; 1790 } 1791 return State; 1792 } 1793 1794 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, 1795 const CallEvent &Call, 1796 ProgramStateRef State, unsigned Num, 1797 bool Hold, bool &IsKnownToBeAllocated, 1798 AllocationFamily Family, 1799 bool ReturnsNullOnFailure) const { 1800 if (!State) 1801 return nullptr; 1802 1803 if (Call.getNumArgs() < (Num + 1)) 1804 return nullptr; 1805 1806 return FreeMemAux(C, Call.getArgExpr(Num), Call, State, Hold, 1807 IsKnownToBeAllocated, Family, ReturnsNullOnFailure); 1808 } 1809 1810 /// Checks if the previous call to free on the given symbol failed - if free 1811 /// failed, returns true. Also, returns the corresponding return value symbol. 1812 static bool didPreviousFreeFail(ProgramStateRef State, 1813 SymbolRef Sym, SymbolRef &RetStatusSymbol) { 1814 const SymbolRef *Ret = State->get<FreeReturnValue>(Sym); 1815 if (Ret) { 1816 assert(*Ret && "We should not store the null return symbol"); 1817 ConstraintManager &CMgr = State->getConstraintManager(); 1818 ConditionTruthVal FreeFailed = CMgr.isNull(State, *Ret); 1819 RetStatusSymbol = *Ret; 1820 return FreeFailed.isConstrainedTrue(); 1821 } 1822 return false; 1823 } 1824 1825 static bool printMemFnName(raw_ostream &os, CheckerContext &C, const Expr *E) { 1826 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 1827 // FIXME: This doesn't handle indirect calls. 1828 const FunctionDecl *FD = CE->getDirectCallee(); 1829 if (!FD) 1830 return false; 1831 1832 os << *FD; 1833 if (!FD->isOverloadedOperator()) 1834 os << "()"; 1835 return true; 1836 } 1837 1838 if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E)) { 1839 if (Msg->isInstanceMessage()) 1840 os << "-"; 1841 else 1842 os << "+"; 1843 Msg->getSelector().print(os); 1844 return true; 1845 } 1846 1847 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { 1848 os << "'" 1849 << getOperatorSpelling(NE->getOperatorNew()->getOverloadedOperator()) 1850 << "'"; 1851 return true; 1852 } 1853 1854 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(E)) { 1855 os << "'" 1856 << getOperatorSpelling(DE->getOperatorDelete()->getOverloadedOperator()) 1857 << "'"; 1858 return true; 1859 } 1860 1861 return false; 1862 } 1863 1864 static void printExpectedAllocName(raw_ostream &os, AllocationFamily Family) { 1865 1866 switch(Family) { 1867 case AF_Malloc: os << "malloc()"; return; 1868 case AF_CXXNew: os << "'new'"; return; 1869 case AF_CXXNewArray: os << "'new[]'"; return; 1870 case AF_IfNameIndex: os << "'if_nameindex()'"; return; 1871 case AF_InnerBuffer: os << "container-specific allocator"; return; 1872 case AF_Alloca: 1873 case AF_None: llvm_unreachable("not a deallocation expression"); 1874 } 1875 } 1876 1877 static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family) { 1878 switch(Family) { 1879 case AF_Malloc: os << "free()"; return; 1880 case AF_CXXNew: os << "'delete'"; return; 1881 case AF_CXXNewArray: os << "'delete[]'"; return; 1882 case AF_IfNameIndex: os << "'if_freenameindex()'"; return; 1883 case AF_InnerBuffer: os << "container-specific deallocator"; return; 1884 case AF_Alloca: 1885 case AF_None: llvm_unreachable("suspicious argument"); 1886 } 1887 } 1888 1889 ProgramStateRef MallocChecker::FreeMemAux( 1890 CheckerContext &C, const Expr *ArgExpr, const CallEvent &Call, 1891 ProgramStateRef State, bool Hold, bool &IsKnownToBeAllocated, 1892 AllocationFamily Family, bool ReturnsNullOnFailure) const { 1893 1894 if (!State) 1895 return nullptr; 1896 1897 SVal ArgVal = C.getSVal(ArgExpr); 1898 if (!isa<DefinedOrUnknownSVal>(ArgVal)) 1899 return nullptr; 1900 DefinedOrUnknownSVal location = ArgVal.castAs<DefinedOrUnknownSVal>(); 1901 1902 // Check for null dereferences. 1903 if (!isa<Loc>(location)) 1904 return nullptr; 1905 1906 // The explicit NULL case, no operation is performed. 1907 ProgramStateRef notNullState, nullState; 1908 std::tie(notNullState, nullState) = State->assume(location); 1909 if (nullState && !notNullState) 1910 return nullptr; 1911 1912 // Unknown values could easily be okay 1913 // Undefined values are handled elsewhere 1914 if (ArgVal.isUnknownOrUndef()) 1915 return nullptr; 1916 1917 const MemRegion *R = ArgVal.getAsRegion(); 1918 const Expr *ParentExpr = Call.getOriginExpr(); 1919 1920 // NOTE: We detected a bug, but the checker under whose name we would emit the 1921 // error could be disabled. Generally speaking, the MallocChecker family is an 1922 // integral part of the Static Analyzer, and disabling any part of it should 1923 // only be done under exceptional circumstances, such as frequent false 1924 // positives. If this is the case, we can reasonably believe that there are 1925 // serious faults in our understanding of the source code, and even if we 1926 // don't emit an warning, we should terminate further analysis with a sink 1927 // node. 1928 1929 // Nonlocs can't be freed, of course. 1930 // Non-region locations (labels and fixed addresses) also shouldn't be freed. 1931 if (!R) { 1932 // Exception: 1933 // If the macro ZERO_SIZE_PTR is defined, this could be a kernel source 1934 // code. In that case, the ZERO_SIZE_PTR defines a special value used for a 1935 // zero-sized memory block which is allowed to be freed, despite not being a 1936 // null pointer. 1937 if (Family != AF_Malloc || !isArgZERO_SIZE_PTR(State, C, ArgVal)) 1938 HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1939 Family); 1940 return nullptr; 1941 } 1942 1943 R = R->StripCasts(); 1944 1945 // Blocks might show up as heap data, but should not be free()d 1946 if (isa<BlockDataRegion>(R)) { 1947 HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1948 Family); 1949 return nullptr; 1950 } 1951 1952 const MemSpaceRegion *MS = R->getMemorySpace(); 1953 1954 // Parameters, locals, statics, globals, and memory returned by 1955 // __builtin_alloca() shouldn't be freed. 1956 if (!isa<UnknownSpaceRegion, HeapSpaceRegion>(MS)) { 1957 // FIXME: at the time this code was written, malloc() regions were 1958 // represented by conjured symbols, which are all in UnknownSpaceRegion. 1959 // This means that there isn't actually anything from HeapSpaceRegion 1960 // that should be freed, even though we allow it here. 1961 // Of course, free() can work on memory allocated outside the current 1962 // function, so UnknownSpaceRegion is always a possibility. 1963 // False negatives are better than false positives. 1964 1965 if (isa<AllocaRegion>(R)) 1966 HandleFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1967 else 1968 HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1969 Family); 1970 1971 return nullptr; 1972 } 1973 1974 const SymbolicRegion *SrBase = dyn_cast<SymbolicRegion>(R->getBaseRegion()); 1975 // Various cases could lead to non-symbol values here. 1976 // For now, ignore them. 1977 if (!SrBase) 1978 return nullptr; 1979 1980 SymbolRef SymBase = SrBase->getSymbol(); 1981 const RefState *RsBase = State->get<RegionState>(SymBase); 1982 SymbolRef PreviousRetStatusSymbol = nullptr; 1983 1984 IsKnownToBeAllocated = 1985 RsBase && (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero()); 1986 1987 if (RsBase) { 1988 1989 // Memory returned by alloca() shouldn't be freed. 1990 if (RsBase->getAllocationFamily() == AF_Alloca) { 1991 HandleFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1992 return nullptr; 1993 } 1994 1995 // Check for double free first. 1996 if ((RsBase->isReleased() || RsBase->isRelinquished()) && 1997 !didPreviousFreeFail(State, SymBase, PreviousRetStatusSymbol)) { 1998 HandleDoubleFree(C, ParentExpr->getSourceRange(), RsBase->isReleased(), 1999 SymBase, PreviousRetStatusSymbol); 2000 return nullptr; 2001 2002 // If the pointer is allocated or escaped, but we are now trying to free it, 2003 // check that the call to free is proper. 2004 } else if (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero() || 2005 RsBase->isEscaped()) { 2006 2007 // Check if an expected deallocation function matches the real one. 2008 bool DeallocMatchesAlloc = RsBase->getAllocationFamily() == Family; 2009 if (!DeallocMatchesAlloc) { 2010 HandleMismatchedDealloc(C, ArgExpr->getSourceRange(), ParentExpr, 2011 RsBase, SymBase, Hold); 2012 return nullptr; 2013 } 2014 2015 // Check if the memory location being freed is the actual location 2016 // allocated, or an offset. 2017 RegionOffset Offset = R->getAsOffset(); 2018 if (Offset.isValid() && 2019 !Offset.hasSymbolicOffset() && 2020 Offset.getOffset() != 0) { 2021 const Expr *AllocExpr = cast<Expr>(RsBase->getStmt()); 2022 HandleOffsetFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 2023 Family, AllocExpr); 2024 return nullptr; 2025 } 2026 } 2027 } 2028 2029 if (SymBase->getType()->isFunctionPointerType()) { 2030 HandleFunctionPtrFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 2031 Family); 2032 return nullptr; 2033 } 2034 2035 // Clean out the info on previous call to free return info. 2036 State = State->remove<FreeReturnValue>(SymBase); 2037 2038 // Keep track of the return value. If it is NULL, we will know that free 2039 // failed. 2040 if (ReturnsNullOnFailure) { 2041 SVal RetVal = C.getSVal(ParentExpr); 2042 SymbolRef RetStatusSymbol = RetVal.getAsSymbol(); 2043 if (RetStatusSymbol) { 2044 C.getSymbolManager().addSymbolDependency(SymBase, RetStatusSymbol); 2045 State = State->set<FreeReturnValue>(SymBase, RetStatusSymbol); 2046 } 2047 } 2048 2049 // If we don't know anything about this symbol, a free on it may be totally 2050 // valid. If this is the case, lets assume that the allocation family of the 2051 // freeing function is the same as the symbols allocation family, and go with 2052 // that. 2053 assert(!RsBase || (RsBase && RsBase->getAllocationFamily() == Family)); 2054 2055 // Normal free. 2056 if (Hold) 2057 return State->set<RegionState>(SymBase, 2058 RefState::getRelinquished(Family, 2059 ParentExpr)); 2060 2061 return State->set<RegionState>(SymBase, 2062 RefState::getReleased(Family, ParentExpr)); 2063 } 2064 2065 Optional<MallocChecker::CheckKind> 2066 MallocChecker::getCheckIfTracked(AllocationFamily Family, 2067 bool IsALeakCheck) const { 2068 switch (Family) { 2069 case AF_Malloc: 2070 case AF_Alloca: 2071 case AF_IfNameIndex: { 2072 if (ChecksEnabled[CK_MallocChecker]) 2073 return CK_MallocChecker; 2074 return None; 2075 } 2076 case AF_CXXNew: 2077 case AF_CXXNewArray: { 2078 if (IsALeakCheck) { 2079 if (ChecksEnabled[CK_NewDeleteLeaksChecker]) 2080 return CK_NewDeleteLeaksChecker; 2081 } 2082 else { 2083 if (ChecksEnabled[CK_NewDeleteChecker]) 2084 return CK_NewDeleteChecker; 2085 } 2086 return None; 2087 } 2088 case AF_InnerBuffer: { 2089 if (ChecksEnabled[CK_InnerPointerChecker]) 2090 return CK_InnerPointerChecker; 2091 return None; 2092 } 2093 case AF_None: { 2094 llvm_unreachable("no family"); 2095 } 2096 } 2097 llvm_unreachable("unhandled family"); 2098 } 2099 2100 Optional<MallocChecker::CheckKind> 2101 MallocChecker::getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 2102 bool IsALeakCheck) const { 2103 if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) 2104 return CK_MallocChecker; 2105 2106 const RefState *RS = C.getState()->get<RegionState>(Sym); 2107 assert(RS); 2108 return getCheckIfTracked(RS->getAllocationFamily(), IsALeakCheck); 2109 } 2110 2111 bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) { 2112 if (Optional<nonloc::ConcreteInt> IntVal = V.getAs<nonloc::ConcreteInt>()) 2113 os << "an integer (" << IntVal->getValue() << ")"; 2114 else if (Optional<loc::ConcreteInt> ConstAddr = V.getAs<loc::ConcreteInt>()) 2115 os << "a constant address (" << ConstAddr->getValue() << ")"; 2116 else if (Optional<loc::GotoLabel> Label = V.getAs<loc::GotoLabel>()) 2117 os << "the address of the label '" << Label->getLabel()->getName() << "'"; 2118 else 2119 return false; 2120 2121 return true; 2122 } 2123 2124 bool MallocChecker::SummarizeRegion(raw_ostream &os, 2125 const MemRegion *MR) { 2126 switch (MR->getKind()) { 2127 case MemRegion::FunctionCodeRegionKind: { 2128 const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl(); 2129 if (FD) 2130 os << "the address of the function '" << *FD << '\''; 2131 else 2132 os << "the address of a function"; 2133 return true; 2134 } 2135 case MemRegion::BlockCodeRegionKind: 2136 os << "block text"; 2137 return true; 2138 case MemRegion::BlockDataRegionKind: 2139 // FIXME: where the block came from? 2140 os << "a block"; 2141 return true; 2142 default: { 2143 const MemSpaceRegion *MS = MR->getMemorySpace(); 2144 2145 if (isa<StackLocalsSpaceRegion>(MS)) { 2146 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2147 const VarDecl *VD; 2148 if (VR) 2149 VD = VR->getDecl(); 2150 else 2151 VD = nullptr; 2152 2153 if (VD) 2154 os << "the address of the local variable '" << VD->getName() << "'"; 2155 else 2156 os << "the address of a local stack variable"; 2157 return true; 2158 } 2159 2160 if (isa<StackArgumentsSpaceRegion>(MS)) { 2161 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2162 const VarDecl *VD; 2163 if (VR) 2164 VD = VR->getDecl(); 2165 else 2166 VD = nullptr; 2167 2168 if (VD) 2169 os << "the address of the parameter '" << VD->getName() << "'"; 2170 else 2171 os << "the address of a parameter"; 2172 return true; 2173 } 2174 2175 if (isa<GlobalsSpaceRegion>(MS)) { 2176 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2177 const VarDecl *VD; 2178 if (VR) 2179 VD = VR->getDecl(); 2180 else 2181 VD = nullptr; 2182 2183 if (VD) { 2184 if (VD->isStaticLocal()) 2185 os << "the address of the static variable '" << VD->getName() << "'"; 2186 else 2187 os << "the address of the global variable '" << VD->getName() << "'"; 2188 } else 2189 os << "the address of a global variable"; 2190 return true; 2191 } 2192 2193 return false; 2194 } 2195 } 2196 } 2197 2198 void MallocChecker::HandleNonHeapDealloc(CheckerContext &C, SVal ArgVal, 2199 SourceRange Range, 2200 const Expr *DeallocExpr, 2201 AllocationFamily Family) const { 2202 2203 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2204 C.addSink(); 2205 return; 2206 } 2207 2208 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2209 if (!CheckKind) 2210 return; 2211 2212 if (ExplodedNode *N = C.generateErrorNode()) { 2213 if (!BT_BadFree[*CheckKind]) 2214 BT_BadFree[*CheckKind].reset(new BugType( 2215 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 2216 2217 SmallString<100> buf; 2218 llvm::raw_svector_ostream os(buf); 2219 2220 const MemRegion *MR = ArgVal.getAsRegion(); 2221 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 2222 MR = ER->getSuperRegion(); 2223 2224 os << "Argument to "; 2225 if (!printMemFnName(os, C, DeallocExpr)) 2226 os << "deallocator"; 2227 2228 os << " is "; 2229 bool Summarized = MR ? SummarizeRegion(os, MR) 2230 : SummarizeValue(os, ArgVal); 2231 if (Summarized) 2232 os << ", which is not memory allocated by "; 2233 else 2234 os << "not memory allocated by "; 2235 2236 printExpectedAllocName(os, Family); 2237 2238 auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind], 2239 os.str(), N); 2240 R->markInteresting(MR); 2241 R->addRange(Range); 2242 C.emitReport(std::move(R)); 2243 } 2244 } 2245 2246 void MallocChecker::HandleFreeAlloca(CheckerContext &C, SVal ArgVal, 2247 SourceRange Range) const { 2248 2249 Optional<MallocChecker::CheckKind> CheckKind; 2250 2251 if (ChecksEnabled[CK_MallocChecker]) 2252 CheckKind = CK_MallocChecker; 2253 else if (ChecksEnabled[CK_MismatchedDeallocatorChecker]) 2254 CheckKind = CK_MismatchedDeallocatorChecker; 2255 else { 2256 C.addSink(); 2257 return; 2258 } 2259 2260 if (ExplodedNode *N = C.generateErrorNode()) { 2261 if (!BT_FreeAlloca[*CheckKind]) 2262 BT_FreeAlloca[*CheckKind].reset(new BugType( 2263 CheckNames[*CheckKind], "Free alloca()", categories::MemoryError)); 2264 2265 auto R = std::make_unique<PathSensitiveBugReport>( 2266 *BT_FreeAlloca[*CheckKind], 2267 "Memory allocated by alloca() should not be deallocated", N); 2268 R->markInteresting(ArgVal.getAsRegion()); 2269 R->addRange(Range); 2270 C.emitReport(std::move(R)); 2271 } 2272 } 2273 2274 void MallocChecker::HandleMismatchedDealloc(CheckerContext &C, 2275 SourceRange Range, 2276 const Expr *DeallocExpr, 2277 const RefState *RS, SymbolRef Sym, 2278 bool OwnershipTransferred) const { 2279 2280 if (!ChecksEnabled[CK_MismatchedDeallocatorChecker]) { 2281 C.addSink(); 2282 return; 2283 } 2284 2285 if (ExplodedNode *N = C.generateErrorNode()) { 2286 if (!BT_MismatchedDealloc) 2287 BT_MismatchedDealloc.reset( 2288 new BugType(CheckNames[CK_MismatchedDeallocatorChecker], 2289 "Bad deallocator", categories::MemoryError)); 2290 2291 SmallString<100> buf; 2292 llvm::raw_svector_ostream os(buf); 2293 2294 const Expr *AllocExpr = cast<Expr>(RS->getStmt()); 2295 SmallString<20> AllocBuf; 2296 llvm::raw_svector_ostream AllocOs(AllocBuf); 2297 SmallString<20> DeallocBuf; 2298 llvm::raw_svector_ostream DeallocOs(DeallocBuf); 2299 2300 if (OwnershipTransferred) { 2301 if (printMemFnName(DeallocOs, C, DeallocExpr)) 2302 os << DeallocOs.str() << " cannot"; 2303 else 2304 os << "Cannot"; 2305 2306 os << " take ownership of memory"; 2307 2308 if (printMemFnName(AllocOs, C, AllocExpr)) 2309 os << " allocated by " << AllocOs.str(); 2310 } else { 2311 os << "Memory"; 2312 if (printMemFnName(AllocOs, C, AllocExpr)) 2313 os << " allocated by " << AllocOs.str(); 2314 2315 os << " should be deallocated by "; 2316 printExpectedDeallocName(os, RS->getAllocationFamily()); 2317 2318 if (printMemFnName(DeallocOs, C, DeallocExpr)) 2319 os << ", not " << DeallocOs.str(); 2320 } 2321 2322 auto R = std::make_unique<PathSensitiveBugReport>(*BT_MismatchedDealloc, 2323 os.str(), N); 2324 R->markInteresting(Sym); 2325 R->addRange(Range); 2326 R->addVisitor<MallocBugVisitor>(Sym); 2327 C.emitReport(std::move(R)); 2328 } 2329 } 2330 2331 void MallocChecker::HandleOffsetFree(CheckerContext &C, SVal ArgVal, 2332 SourceRange Range, const Expr *DeallocExpr, 2333 AllocationFamily Family, 2334 const Expr *AllocExpr) const { 2335 2336 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2337 C.addSink(); 2338 return; 2339 } 2340 2341 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2342 if (!CheckKind) 2343 return; 2344 2345 ExplodedNode *N = C.generateErrorNode(); 2346 if (!N) 2347 return; 2348 2349 if (!BT_OffsetFree[*CheckKind]) 2350 BT_OffsetFree[*CheckKind].reset(new BugType( 2351 CheckNames[*CheckKind], "Offset free", categories::MemoryError)); 2352 2353 SmallString<100> buf; 2354 llvm::raw_svector_ostream os(buf); 2355 SmallString<20> AllocNameBuf; 2356 llvm::raw_svector_ostream AllocNameOs(AllocNameBuf); 2357 2358 const MemRegion *MR = ArgVal.getAsRegion(); 2359 assert(MR && "Only MemRegion based symbols can have offset free errors"); 2360 2361 RegionOffset Offset = MR->getAsOffset(); 2362 assert((Offset.isValid() && 2363 !Offset.hasSymbolicOffset() && 2364 Offset.getOffset() != 0) && 2365 "Only symbols with a valid offset can have offset free errors"); 2366 2367 int offsetBytes = Offset.getOffset() / C.getASTContext().getCharWidth(); 2368 2369 os << "Argument to "; 2370 if (!printMemFnName(os, C, DeallocExpr)) 2371 os << "deallocator"; 2372 os << " is offset by " 2373 << offsetBytes 2374 << " " 2375 << ((abs(offsetBytes) > 1) ? "bytes" : "byte") 2376 << " from the start of "; 2377 if (AllocExpr && printMemFnName(AllocNameOs, C, AllocExpr)) 2378 os << "memory allocated by " << AllocNameOs.str(); 2379 else 2380 os << "allocated memory"; 2381 2382 auto R = std::make_unique<PathSensitiveBugReport>(*BT_OffsetFree[*CheckKind], 2383 os.str(), N); 2384 R->markInteresting(MR->getBaseRegion()); 2385 R->addRange(Range); 2386 C.emitReport(std::move(R)); 2387 } 2388 2389 void MallocChecker::HandleUseAfterFree(CheckerContext &C, SourceRange Range, 2390 SymbolRef Sym) const { 2391 2392 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker] && 2393 !ChecksEnabled[CK_InnerPointerChecker]) { 2394 C.addSink(); 2395 return; 2396 } 2397 2398 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2399 if (!CheckKind) 2400 return; 2401 2402 if (ExplodedNode *N = C.generateErrorNode()) { 2403 if (!BT_UseFree[*CheckKind]) 2404 BT_UseFree[*CheckKind].reset(new BugType( 2405 CheckNames[*CheckKind], "Use-after-free", categories::MemoryError)); 2406 2407 AllocationFamily AF = 2408 C.getState()->get<RegionState>(Sym)->getAllocationFamily(); 2409 2410 auto R = std::make_unique<PathSensitiveBugReport>( 2411 *BT_UseFree[*CheckKind], 2412 AF == AF_InnerBuffer 2413 ? "Inner pointer of container used after re/deallocation" 2414 : "Use of memory after it is freed", 2415 N); 2416 2417 R->markInteresting(Sym); 2418 R->addRange(Range); 2419 R->addVisitor<MallocBugVisitor>(Sym); 2420 2421 if (AF == AF_InnerBuffer) 2422 R->addVisitor(allocation_state::getInnerPointerBRVisitor(Sym)); 2423 2424 C.emitReport(std::move(R)); 2425 } 2426 } 2427 2428 void MallocChecker::HandleDoubleFree(CheckerContext &C, SourceRange Range, 2429 bool Released, SymbolRef Sym, 2430 SymbolRef PrevSym) const { 2431 2432 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2433 C.addSink(); 2434 return; 2435 } 2436 2437 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2438 if (!CheckKind) 2439 return; 2440 2441 if (ExplodedNode *N = C.generateErrorNode()) { 2442 if (!BT_DoubleFree[*CheckKind]) 2443 BT_DoubleFree[*CheckKind].reset(new BugType( 2444 CheckNames[*CheckKind], "Double free", categories::MemoryError)); 2445 2446 auto R = std::make_unique<PathSensitiveBugReport>( 2447 *BT_DoubleFree[*CheckKind], 2448 (Released ? "Attempt to free released memory" 2449 : "Attempt to free non-owned memory"), 2450 N); 2451 R->addRange(Range); 2452 R->markInteresting(Sym); 2453 if (PrevSym) 2454 R->markInteresting(PrevSym); 2455 R->addVisitor<MallocBugVisitor>(Sym); 2456 C.emitReport(std::move(R)); 2457 } 2458 } 2459 2460 void MallocChecker::HandleDoubleDelete(CheckerContext &C, SymbolRef Sym) const { 2461 2462 if (!ChecksEnabled[CK_NewDeleteChecker]) { 2463 C.addSink(); 2464 return; 2465 } 2466 2467 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2468 if (!CheckKind) 2469 return; 2470 2471 if (ExplodedNode *N = C.generateErrorNode()) { 2472 if (!BT_DoubleDelete) 2473 BT_DoubleDelete.reset(new BugType(CheckNames[CK_NewDeleteChecker], 2474 "Double delete", 2475 categories::MemoryError)); 2476 2477 auto R = std::make_unique<PathSensitiveBugReport>( 2478 *BT_DoubleDelete, "Attempt to delete released memory", N); 2479 2480 R->markInteresting(Sym); 2481 R->addVisitor<MallocBugVisitor>(Sym); 2482 C.emitReport(std::move(R)); 2483 } 2484 } 2485 2486 void MallocChecker::HandleUseZeroAlloc(CheckerContext &C, SourceRange Range, 2487 SymbolRef Sym) const { 2488 2489 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2490 C.addSink(); 2491 return; 2492 } 2493 2494 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2495 2496 if (!CheckKind) 2497 return; 2498 2499 if (ExplodedNode *N = C.generateErrorNode()) { 2500 if (!BT_UseZerroAllocated[*CheckKind]) 2501 BT_UseZerroAllocated[*CheckKind].reset( 2502 new BugType(CheckNames[*CheckKind], "Use of zero allocated", 2503 categories::MemoryError)); 2504 2505 auto R = std::make_unique<PathSensitiveBugReport>( 2506 *BT_UseZerroAllocated[*CheckKind], 2507 "Use of memory allocated with size zero", N); 2508 2509 R->addRange(Range); 2510 if (Sym) { 2511 R->markInteresting(Sym); 2512 R->addVisitor<MallocBugVisitor>(Sym); 2513 } 2514 C.emitReport(std::move(R)); 2515 } 2516 } 2517 2518 void MallocChecker::HandleFunctionPtrFree(CheckerContext &C, SVal ArgVal, 2519 SourceRange Range, 2520 const Expr *FreeExpr, 2521 AllocationFamily Family) const { 2522 if (!ChecksEnabled[CK_MallocChecker]) { 2523 C.addSink(); 2524 return; 2525 } 2526 2527 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2528 if (!CheckKind) 2529 return; 2530 2531 if (ExplodedNode *N = C.generateErrorNode()) { 2532 if (!BT_BadFree[*CheckKind]) 2533 BT_BadFree[*CheckKind].reset(new BugType( 2534 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 2535 2536 SmallString<100> Buf; 2537 llvm::raw_svector_ostream Os(Buf); 2538 2539 const MemRegion *MR = ArgVal.getAsRegion(); 2540 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 2541 MR = ER->getSuperRegion(); 2542 2543 Os << "Argument to "; 2544 if (!printMemFnName(Os, C, FreeExpr)) 2545 Os << "deallocator"; 2546 2547 Os << " is a function pointer"; 2548 2549 auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind], 2550 Os.str(), N); 2551 R->markInteresting(MR); 2552 R->addRange(Range); 2553 C.emitReport(std::move(R)); 2554 } 2555 } 2556 2557 ProgramStateRef 2558 MallocChecker::ReallocMemAux(CheckerContext &C, const CallEvent &Call, 2559 bool ShouldFreeOnFail, ProgramStateRef State, 2560 AllocationFamily Family, bool SuffixWithN) const { 2561 if (!State) 2562 return nullptr; 2563 2564 const CallExpr *CE = cast<CallExpr>(Call.getOriginExpr()); 2565 2566 if (SuffixWithN && CE->getNumArgs() < 3) 2567 return nullptr; 2568 else if (CE->getNumArgs() < 2) 2569 return nullptr; 2570 2571 const Expr *arg0Expr = CE->getArg(0); 2572 SVal Arg0Val = C.getSVal(arg0Expr); 2573 if (!isa<DefinedOrUnknownSVal>(Arg0Val)) 2574 return nullptr; 2575 DefinedOrUnknownSVal arg0Val = Arg0Val.castAs<DefinedOrUnknownSVal>(); 2576 2577 SValBuilder &svalBuilder = C.getSValBuilder(); 2578 2579 DefinedOrUnknownSVal PtrEQ = svalBuilder.evalEQ( 2580 State, arg0Val, svalBuilder.makeNullWithType(arg0Expr->getType())); 2581 2582 // Get the size argument. 2583 const Expr *Arg1 = CE->getArg(1); 2584 2585 // Get the value of the size argument. 2586 SVal TotalSize = C.getSVal(Arg1); 2587 if (SuffixWithN) 2588 TotalSize = evalMulForBufferSize(C, Arg1, CE->getArg(2)); 2589 if (!isa<DefinedOrUnknownSVal>(TotalSize)) 2590 return nullptr; 2591 2592 // Compare the size argument to 0. 2593 DefinedOrUnknownSVal SizeZero = 2594 svalBuilder.evalEQ(State, TotalSize.castAs<DefinedOrUnknownSVal>(), 2595 svalBuilder.makeIntValWithWidth( 2596 svalBuilder.getContext().getSizeType(), 0)); 2597 2598 ProgramStateRef StatePtrIsNull, StatePtrNotNull; 2599 std::tie(StatePtrIsNull, StatePtrNotNull) = State->assume(PtrEQ); 2600 ProgramStateRef StateSizeIsZero, StateSizeNotZero; 2601 std::tie(StateSizeIsZero, StateSizeNotZero) = State->assume(SizeZero); 2602 // We only assume exceptional states if they are definitely true; if the 2603 // state is under-constrained, assume regular realloc behavior. 2604 bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull; 2605 bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero; 2606 2607 // If the ptr is NULL and the size is not 0, the call is equivalent to 2608 // malloc(size). 2609 if (PrtIsNull && !SizeIsZero) { 2610 ProgramStateRef stateMalloc = MallocMemAux( 2611 C, Call, TotalSize, UndefinedVal(), StatePtrIsNull, Family); 2612 return stateMalloc; 2613 } 2614 2615 if (PrtIsNull && SizeIsZero) 2616 return State; 2617 2618 assert(!PrtIsNull); 2619 2620 bool IsKnownToBeAllocated = false; 2621 2622 // If the size is 0, free the memory. 2623 if (SizeIsZero) 2624 // The semantics of the return value are: 2625 // If size was equal to 0, either NULL or a pointer suitable to be passed 2626 // to free() is returned. We just free the input pointer and do not add 2627 // any constrains on the output pointer. 2628 if (ProgramStateRef stateFree = FreeMemAux( 2629 C, Call, StateSizeIsZero, 0, false, IsKnownToBeAllocated, Family)) 2630 return stateFree; 2631 2632 // Default behavior. 2633 if (ProgramStateRef stateFree = 2634 FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocated, Family)) { 2635 2636 ProgramStateRef stateRealloc = 2637 MallocMemAux(C, Call, TotalSize, UnknownVal(), stateFree, Family); 2638 if (!stateRealloc) 2639 return nullptr; 2640 2641 OwnershipAfterReallocKind Kind = OAR_ToBeFreedAfterFailure; 2642 if (ShouldFreeOnFail) 2643 Kind = OAR_FreeOnFailure; 2644 else if (!IsKnownToBeAllocated) 2645 Kind = OAR_DoNotTrackAfterFailure; 2646 2647 // Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size). 2648 SymbolRef FromPtr = arg0Val.getLocSymbolInBase(); 2649 SVal RetVal = C.getSVal(CE); 2650 SymbolRef ToPtr = RetVal.getAsSymbol(); 2651 assert(FromPtr && ToPtr && 2652 "By this point, FreeMemAux and MallocMemAux should have checked " 2653 "whether the argument or the return value is symbolic!"); 2654 2655 // Record the info about the reallocated symbol so that we could properly 2656 // process failed reallocation. 2657 stateRealloc = stateRealloc->set<ReallocPairs>(ToPtr, 2658 ReallocPair(FromPtr, Kind)); 2659 // The reallocated symbol should stay alive for as long as the new symbol. 2660 C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr); 2661 return stateRealloc; 2662 } 2663 return nullptr; 2664 } 2665 2666 ProgramStateRef MallocChecker::CallocMem(CheckerContext &C, 2667 const CallEvent &Call, 2668 ProgramStateRef State) { 2669 if (!State) 2670 return nullptr; 2671 2672 if (Call.getNumArgs() < 2) 2673 return nullptr; 2674 2675 SValBuilder &svalBuilder = C.getSValBuilder(); 2676 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 2677 SVal TotalSize = 2678 evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1)); 2679 2680 return MallocMemAux(C, Call, TotalSize, zeroVal, State, AF_Malloc); 2681 } 2682 2683 MallocChecker::LeakInfo MallocChecker::getAllocationSite(const ExplodedNode *N, 2684 SymbolRef Sym, 2685 CheckerContext &C) { 2686 const LocationContext *LeakContext = N->getLocationContext(); 2687 // Walk the ExplodedGraph backwards and find the first node that referred to 2688 // the tracked symbol. 2689 const ExplodedNode *AllocNode = N; 2690 const MemRegion *ReferenceRegion = nullptr; 2691 2692 while (N) { 2693 ProgramStateRef State = N->getState(); 2694 if (!State->get<RegionState>(Sym)) 2695 break; 2696 2697 // Find the most recent expression bound to the symbol in the current 2698 // context. 2699 if (!ReferenceRegion) { 2700 if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) { 2701 SVal Val = State->getSVal(MR); 2702 if (Val.getAsLocSymbol() == Sym) { 2703 const VarRegion *VR = MR->getBaseRegion()->getAs<VarRegion>(); 2704 // Do not show local variables belonging to a function other than 2705 // where the error is reported. 2706 if (!VR || (VR->getStackFrame() == LeakContext->getStackFrame())) 2707 ReferenceRegion = MR; 2708 } 2709 } 2710 } 2711 2712 // Allocation node, is the last node in the current or parent context in 2713 // which the symbol was tracked. 2714 const LocationContext *NContext = N->getLocationContext(); 2715 if (NContext == LeakContext || 2716 NContext->isParentOf(LeakContext)) 2717 AllocNode = N; 2718 N = N->pred_empty() ? nullptr : *(N->pred_begin()); 2719 } 2720 2721 return LeakInfo(AllocNode, ReferenceRegion); 2722 } 2723 2724 void MallocChecker::HandleLeak(SymbolRef Sym, ExplodedNode *N, 2725 CheckerContext &C) const { 2726 2727 if (!ChecksEnabled[CK_MallocChecker] && 2728 !ChecksEnabled[CK_NewDeleteLeaksChecker]) 2729 return; 2730 2731 const RefState *RS = C.getState()->get<RegionState>(Sym); 2732 assert(RS && "cannot leak an untracked symbol"); 2733 AllocationFamily Family = RS->getAllocationFamily(); 2734 2735 if (Family == AF_Alloca) 2736 return; 2737 2738 Optional<MallocChecker::CheckKind> 2739 CheckKind = getCheckIfTracked(Family, true); 2740 2741 if (!CheckKind) 2742 return; 2743 2744 assert(N); 2745 if (!BT_Leak[*CheckKind]) { 2746 // Leaks should not be reported if they are post-dominated by a sink: 2747 // (1) Sinks are higher importance bugs. 2748 // (2) NoReturnFunctionChecker uses sink nodes to represent paths ending 2749 // with __noreturn functions such as assert() or exit(). We choose not 2750 // to report leaks on such paths. 2751 BT_Leak[*CheckKind].reset(new BugType(CheckNames[*CheckKind], "Memory leak", 2752 categories::MemoryError, 2753 /*SuppressOnSink=*/true)); 2754 } 2755 2756 // Most bug reports are cached at the location where they occurred. 2757 // With leaks, we want to unique them by the location where they were 2758 // allocated, and only report a single path. 2759 PathDiagnosticLocation LocUsedForUniqueing; 2760 const ExplodedNode *AllocNode = nullptr; 2761 const MemRegion *Region = nullptr; 2762 std::tie(AllocNode, Region) = getAllocationSite(N, Sym, C); 2763 2764 const Stmt *AllocationStmt = AllocNode->getStmtForDiagnostics(); 2765 if (AllocationStmt) 2766 LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocationStmt, 2767 C.getSourceManager(), 2768 AllocNode->getLocationContext()); 2769 2770 SmallString<200> buf; 2771 llvm::raw_svector_ostream os(buf); 2772 if (Region && Region->canPrintPretty()) { 2773 os << "Potential leak of memory pointed to by "; 2774 Region->printPretty(os); 2775 } else { 2776 os << "Potential memory leak"; 2777 } 2778 2779 auto R = std::make_unique<PathSensitiveBugReport>( 2780 *BT_Leak[*CheckKind], os.str(), N, LocUsedForUniqueing, 2781 AllocNode->getLocationContext()->getDecl()); 2782 R->markInteresting(Sym); 2783 R->addVisitor<MallocBugVisitor>(Sym, true); 2784 if (ShouldRegisterNoOwnershipChangeVisitor) 2785 R->addVisitor<NoOwnershipChangeVisitor>(Sym, this); 2786 C.emitReport(std::move(R)); 2787 } 2788 2789 void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper, 2790 CheckerContext &C) const 2791 { 2792 ProgramStateRef state = C.getState(); 2793 RegionStateTy OldRS = state->get<RegionState>(); 2794 RegionStateTy::Factory &F = state->get_context<RegionState>(); 2795 2796 RegionStateTy RS = OldRS; 2797 SmallVector<SymbolRef, 2> Errors; 2798 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2799 if (SymReaper.isDead(I->first)) { 2800 if (I->second.isAllocated() || I->second.isAllocatedOfSizeZero()) 2801 Errors.push_back(I->first); 2802 // Remove the dead symbol from the map. 2803 RS = F.remove(RS, I->first); 2804 } 2805 } 2806 2807 if (RS == OldRS) { 2808 // We shouldn't have touched other maps yet. 2809 assert(state->get<ReallocPairs>() == 2810 C.getState()->get<ReallocPairs>()); 2811 assert(state->get<FreeReturnValue>() == 2812 C.getState()->get<FreeReturnValue>()); 2813 return; 2814 } 2815 2816 // Cleanup the Realloc Pairs Map. 2817 ReallocPairsTy RP = state->get<ReallocPairs>(); 2818 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 2819 if (SymReaper.isDead(I->first) || 2820 SymReaper.isDead(I->second.ReallocatedSym)) { 2821 state = state->remove<ReallocPairs>(I->first); 2822 } 2823 } 2824 2825 // Cleanup the FreeReturnValue Map. 2826 FreeReturnValueTy FR = state->get<FreeReturnValue>(); 2827 for (FreeReturnValueTy::iterator I = FR.begin(), E = FR.end(); I != E; ++I) { 2828 if (SymReaper.isDead(I->first) || 2829 SymReaper.isDead(I->second)) { 2830 state = state->remove<FreeReturnValue>(I->first); 2831 } 2832 } 2833 2834 // Generate leak node. 2835 ExplodedNode *N = C.getPredecessor(); 2836 if (!Errors.empty()) { 2837 static CheckerProgramPointTag Tag("MallocChecker", "DeadSymbolsLeak"); 2838 N = C.generateNonFatalErrorNode(C.getState(), &Tag); 2839 if (N) { 2840 for (SmallVectorImpl<SymbolRef>::iterator 2841 I = Errors.begin(), E = Errors.end(); I != E; ++I) { 2842 HandleLeak(*I, N, C); 2843 } 2844 } 2845 } 2846 2847 C.addTransition(state->set<RegionState>(RS), N); 2848 } 2849 2850 void MallocChecker::checkPreCall(const CallEvent &Call, 2851 CheckerContext &C) const { 2852 2853 if (const auto *DC = dyn_cast<CXXDeallocatorCall>(&Call)) { 2854 const CXXDeleteExpr *DE = DC->getOriginExpr(); 2855 2856 if (!ChecksEnabled[CK_NewDeleteChecker]) 2857 if (SymbolRef Sym = C.getSVal(DE->getArgument()).getAsSymbol()) 2858 checkUseAfterFree(Sym, C, DE->getArgument()); 2859 2860 if (!isStandardNewDelete(DC->getDecl())) 2861 return; 2862 2863 ProgramStateRef State = C.getState(); 2864 bool IsKnownToBeAllocated; 2865 State = FreeMemAux(C, DE->getArgument(), Call, State, 2866 /*Hold*/ false, IsKnownToBeAllocated, 2867 (DE->isArrayForm() ? AF_CXXNewArray : AF_CXXNew)); 2868 2869 C.addTransition(State); 2870 return; 2871 } 2872 2873 if (const auto *DC = dyn_cast<CXXDestructorCall>(&Call)) { 2874 SymbolRef Sym = DC->getCXXThisVal().getAsSymbol(); 2875 if (!Sym || checkDoubleDelete(Sym, C)) 2876 return; 2877 } 2878 2879 // We will check for double free in the post visit. 2880 if (const AnyFunctionCall *FC = dyn_cast<AnyFunctionCall>(&Call)) { 2881 const FunctionDecl *FD = FC->getDecl(); 2882 if (!FD) 2883 return; 2884 2885 if (ChecksEnabled[CK_MallocChecker] && isFreeingCall(Call)) 2886 return; 2887 } 2888 2889 // Check if the callee of a method is deleted. 2890 if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(&Call)) { 2891 SymbolRef Sym = CC->getCXXThisVal().getAsSymbol(); 2892 if (!Sym || checkUseAfterFree(Sym, C, CC->getCXXThisExpr())) 2893 return; 2894 } 2895 2896 // Check arguments for being used after free. 2897 for (unsigned I = 0, E = Call.getNumArgs(); I != E; ++I) { 2898 SVal ArgSVal = Call.getArgSVal(I); 2899 if (isa<Loc>(ArgSVal)) { 2900 SymbolRef Sym = ArgSVal.getAsSymbol(); 2901 if (!Sym) 2902 continue; 2903 if (checkUseAfterFree(Sym, C, Call.getArgExpr(I))) 2904 return; 2905 } 2906 } 2907 } 2908 2909 void MallocChecker::checkPreStmt(const ReturnStmt *S, 2910 CheckerContext &C) const { 2911 checkEscapeOnReturn(S, C); 2912 } 2913 2914 // In the CFG, automatic destructors come after the return statement. 2915 // This callback checks for returning memory that is freed by automatic 2916 // destructors, as those cannot be reached in checkPreStmt(). 2917 void MallocChecker::checkEndFunction(const ReturnStmt *S, 2918 CheckerContext &C) const { 2919 checkEscapeOnReturn(S, C); 2920 } 2921 2922 void MallocChecker::checkEscapeOnReturn(const ReturnStmt *S, 2923 CheckerContext &C) const { 2924 if (!S) 2925 return; 2926 2927 const Expr *E = S->getRetValue(); 2928 if (!E) 2929 return; 2930 2931 // Check if we are returning a symbol. 2932 ProgramStateRef State = C.getState(); 2933 SVal RetVal = C.getSVal(E); 2934 SymbolRef Sym = RetVal.getAsSymbol(); 2935 if (!Sym) 2936 // If we are returning a field of the allocated struct or an array element, 2937 // the callee could still free the memory. 2938 // TODO: This logic should be a part of generic symbol escape callback. 2939 if (const MemRegion *MR = RetVal.getAsRegion()) 2940 if (isa<FieldRegion, ElementRegion>(MR)) 2941 if (const SymbolicRegion *BMR = 2942 dyn_cast<SymbolicRegion>(MR->getBaseRegion())) 2943 Sym = BMR->getSymbol(); 2944 2945 // Check if we are returning freed memory. 2946 if (Sym) 2947 checkUseAfterFree(Sym, C, E); 2948 } 2949 2950 // TODO: Blocks should be either inlined or should call invalidate regions 2951 // upon invocation. After that's in place, special casing here will not be 2952 // needed. 2953 void MallocChecker::checkPostStmt(const BlockExpr *BE, 2954 CheckerContext &C) const { 2955 2956 // Scan the BlockDecRefExprs for any object the retain count checker 2957 // may be tracking. 2958 if (!BE->getBlockDecl()->hasCaptures()) 2959 return; 2960 2961 ProgramStateRef state = C.getState(); 2962 const BlockDataRegion *R = 2963 cast<BlockDataRegion>(C.getSVal(BE).getAsRegion()); 2964 2965 BlockDataRegion::referenced_vars_iterator I = R->referenced_vars_begin(), 2966 E = R->referenced_vars_end(); 2967 2968 if (I == E) 2969 return; 2970 2971 SmallVector<const MemRegion*, 10> Regions; 2972 const LocationContext *LC = C.getLocationContext(); 2973 MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager(); 2974 2975 for ( ; I != E; ++I) { 2976 const VarRegion *VR = I.getCapturedRegion(); 2977 if (VR->getSuperRegion() == R) { 2978 VR = MemMgr.getVarRegion(VR->getDecl(), LC); 2979 } 2980 Regions.push_back(VR); 2981 } 2982 2983 state = 2984 state->scanReachableSymbols<StopTrackingCallback>(Regions).getState(); 2985 C.addTransition(state); 2986 } 2987 2988 static bool isReleased(SymbolRef Sym, CheckerContext &C) { 2989 assert(Sym); 2990 const RefState *RS = C.getState()->get<RegionState>(Sym); 2991 return (RS && RS->isReleased()); 2992 } 2993 2994 bool MallocChecker::suppressDeallocationsInSuspiciousContexts( 2995 const CallEvent &Call, CheckerContext &C) const { 2996 if (Call.getNumArgs() == 0) 2997 return false; 2998 2999 StringRef FunctionStr = ""; 3000 if (const auto *FD = dyn_cast<FunctionDecl>(C.getStackFrame()->getDecl())) 3001 if (const Stmt *Body = FD->getBody()) 3002 if (Body->getBeginLoc().isValid()) 3003 FunctionStr = 3004 Lexer::getSourceText(CharSourceRange::getTokenRange( 3005 {FD->getBeginLoc(), Body->getBeginLoc()}), 3006 C.getSourceManager(), C.getLangOpts()); 3007 3008 // We do not model the Integer Set Library's retain-count based allocation. 3009 if (!FunctionStr.contains("__isl_")) 3010 return false; 3011 3012 ProgramStateRef State = C.getState(); 3013 3014 for (const Expr *Arg : cast<CallExpr>(Call.getOriginExpr())->arguments()) 3015 if (SymbolRef Sym = C.getSVal(Arg).getAsSymbol()) 3016 if (const RefState *RS = State->get<RegionState>(Sym)) 3017 State = State->set<RegionState>(Sym, RefState::getEscaped(RS)); 3018 3019 C.addTransition(State); 3020 return true; 3021 } 3022 3023 bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C, 3024 const Stmt *S) const { 3025 3026 if (isReleased(Sym, C)) { 3027 HandleUseAfterFree(C, S->getSourceRange(), Sym); 3028 return true; 3029 } 3030 3031 return false; 3032 } 3033 3034 void MallocChecker::checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 3035 const Stmt *S) const { 3036 assert(Sym); 3037 3038 if (const RefState *RS = C.getState()->get<RegionState>(Sym)) { 3039 if (RS->isAllocatedOfSizeZero()) 3040 HandleUseZeroAlloc(C, RS->getStmt()->getSourceRange(), Sym); 3041 } 3042 else if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) { 3043 HandleUseZeroAlloc(C, S->getSourceRange(), Sym); 3044 } 3045 } 3046 3047 bool MallocChecker::checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const { 3048 3049 if (isReleased(Sym, C)) { 3050 HandleDoubleDelete(C, Sym); 3051 return true; 3052 } 3053 return false; 3054 } 3055 3056 // Check if the location is a freed symbolic region. 3057 void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S, 3058 CheckerContext &C) const { 3059 SymbolRef Sym = l.getLocSymbolInBase(); 3060 if (Sym) { 3061 checkUseAfterFree(Sym, C, S); 3062 checkUseZeroAllocated(Sym, C, S); 3063 } 3064 } 3065 3066 // If a symbolic region is assumed to NULL (or another constant), stop tracking 3067 // it - assuming that allocation failed on this path. 3068 ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state, 3069 SVal Cond, 3070 bool Assumption) const { 3071 RegionStateTy RS = state->get<RegionState>(); 3072 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 3073 // If the symbol is assumed to be NULL, remove it from consideration. 3074 ConstraintManager &CMgr = state->getConstraintManager(); 3075 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 3076 if (AllocFailed.isConstrainedTrue()) 3077 state = state->remove<RegionState>(I.getKey()); 3078 } 3079 3080 // Realloc returns 0 when reallocation fails, which means that we should 3081 // restore the state of the pointer being reallocated. 3082 ReallocPairsTy RP = state->get<ReallocPairs>(); 3083 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 3084 // If the symbol is assumed to be NULL, remove it from consideration. 3085 ConstraintManager &CMgr = state->getConstraintManager(); 3086 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 3087 if (!AllocFailed.isConstrainedTrue()) 3088 continue; 3089 3090 SymbolRef ReallocSym = I.getData().ReallocatedSym; 3091 if (const RefState *RS = state->get<RegionState>(ReallocSym)) { 3092 if (RS->isReleased()) { 3093 switch (I.getData().Kind) { 3094 case OAR_ToBeFreedAfterFailure: 3095 state = state->set<RegionState>(ReallocSym, 3096 RefState::getAllocated(RS->getAllocationFamily(), RS->getStmt())); 3097 break; 3098 case OAR_DoNotTrackAfterFailure: 3099 state = state->remove<RegionState>(ReallocSym); 3100 break; 3101 default: 3102 assert(I.getData().Kind == OAR_FreeOnFailure); 3103 } 3104 } 3105 } 3106 state = state->remove<ReallocPairs>(I.getKey()); 3107 } 3108 3109 return state; 3110 } 3111 3112 bool MallocChecker::mayFreeAnyEscapedMemoryOrIsModeledExplicitly( 3113 const CallEvent *Call, 3114 ProgramStateRef State, 3115 SymbolRef &EscapingSymbol) const { 3116 assert(Call); 3117 EscapingSymbol = nullptr; 3118 3119 // For now, assume that any C++ or block call can free memory. 3120 // TODO: If we want to be more optimistic here, we'll need to make sure that 3121 // regions escape to C++ containers. They seem to do that even now, but for 3122 // mysterious reasons. 3123 if (!isa<SimpleFunctionCall, ObjCMethodCall>(Call)) 3124 return true; 3125 3126 // Check Objective-C messages by selector name. 3127 if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) { 3128 // If it's not a framework call, or if it takes a callback, assume it 3129 // can free memory. 3130 if (!Call->isInSystemHeader() || Call->argumentsMayEscape()) 3131 return true; 3132 3133 // If it's a method we know about, handle it explicitly post-call. 3134 // This should happen before the "freeWhenDone" check below. 3135 if (isKnownDeallocObjCMethodName(*Msg)) 3136 return false; 3137 3138 // If there's a "freeWhenDone" parameter, but the method isn't one we know 3139 // about, we can't be sure that the object will use free() to deallocate the 3140 // memory, so we can't model it explicitly. The best we can do is use it to 3141 // decide whether the pointer escapes. 3142 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(*Msg)) 3143 return *FreeWhenDone; 3144 3145 // If the first selector piece ends with "NoCopy", and there is no 3146 // "freeWhenDone" parameter set to zero, we know ownership is being 3147 // transferred. Again, though, we can't be sure that the object will use 3148 // free() to deallocate the memory, so we can't model it explicitly. 3149 StringRef FirstSlot = Msg->getSelector().getNameForSlot(0); 3150 if (FirstSlot.endswith("NoCopy")) 3151 return true; 3152 3153 // If the first selector starts with addPointer, insertPointer, 3154 // or replacePointer, assume we are dealing with NSPointerArray or similar. 3155 // This is similar to C++ containers (vector); we still might want to check 3156 // that the pointers get freed by following the container itself. 3157 if (FirstSlot.startswith("addPointer") || 3158 FirstSlot.startswith("insertPointer") || 3159 FirstSlot.startswith("replacePointer") || 3160 FirstSlot.equals("valueWithPointer")) { 3161 return true; 3162 } 3163 3164 // We should escape receiver on call to 'init'. This is especially relevant 3165 // to the receiver, as the corresponding symbol is usually not referenced 3166 // after the call. 3167 if (Msg->getMethodFamily() == OMF_init) { 3168 EscapingSymbol = Msg->getReceiverSVal().getAsSymbol(); 3169 return true; 3170 } 3171 3172 // Otherwise, assume that the method does not free memory. 3173 // Most framework methods do not free memory. 3174 return false; 3175 } 3176 3177 // At this point the only thing left to handle is straight function calls. 3178 const FunctionDecl *FD = cast<SimpleFunctionCall>(Call)->getDecl(); 3179 if (!FD) 3180 return true; 3181 3182 // If it's one of the allocation functions we can reason about, we model 3183 // its behavior explicitly. 3184 if (isMemCall(*Call)) 3185 return false; 3186 3187 // If it's not a system call, assume it frees memory. 3188 if (!Call->isInSystemHeader()) 3189 return true; 3190 3191 // White list the system functions whose arguments escape. 3192 const IdentifierInfo *II = FD->getIdentifier(); 3193 if (!II) 3194 return true; 3195 StringRef FName = II->getName(); 3196 3197 // White list the 'XXXNoCopy' CoreFoundation functions. 3198 // We specifically check these before 3199 if (FName.endswith("NoCopy")) { 3200 // Look for the deallocator argument. We know that the memory ownership 3201 // is not transferred only if the deallocator argument is 3202 // 'kCFAllocatorNull'. 3203 for (unsigned i = 1; i < Call->getNumArgs(); ++i) { 3204 const Expr *ArgE = Call->getArgExpr(i)->IgnoreParenCasts(); 3205 if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(ArgE)) { 3206 StringRef DeallocatorName = DE->getFoundDecl()->getName(); 3207 if (DeallocatorName == "kCFAllocatorNull") 3208 return false; 3209 } 3210 } 3211 return true; 3212 } 3213 3214 // Associating streams with malloced buffers. The pointer can escape if 3215 // 'closefn' is specified (and if that function does free memory), 3216 // but it will not if closefn is not specified. 3217 // Currently, we do not inspect the 'closefn' function (PR12101). 3218 if (FName == "funopen") 3219 if (Call->getNumArgs() >= 4 && Call->getArgSVal(4).isConstant(0)) 3220 return false; 3221 3222 // Do not warn on pointers passed to 'setbuf' when used with std streams, 3223 // these leaks might be intentional when setting the buffer for stdio. 3224 // http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer 3225 if (FName == "setbuf" || FName =="setbuffer" || 3226 FName == "setlinebuf" || FName == "setvbuf") { 3227 if (Call->getNumArgs() >= 1) { 3228 const Expr *ArgE = Call->getArgExpr(0)->IgnoreParenCasts(); 3229 if (const DeclRefExpr *ArgDRE = dyn_cast<DeclRefExpr>(ArgE)) 3230 if (const VarDecl *D = dyn_cast<VarDecl>(ArgDRE->getDecl())) 3231 if (D->getCanonicalDecl()->getName().contains("std")) 3232 return true; 3233 } 3234 } 3235 3236 // A bunch of other functions which either take ownership of a pointer or 3237 // wrap the result up in a struct or object, meaning it can be freed later. 3238 // (See RetainCountChecker.) Not all the parameters here are invalidated, 3239 // but the Malloc checker cannot differentiate between them. The right way 3240 // of doing this would be to implement a pointer escapes callback. 3241 if (FName == "CGBitmapContextCreate" || 3242 FName == "CGBitmapContextCreateWithData" || 3243 FName == "CVPixelBufferCreateWithBytes" || 3244 FName == "CVPixelBufferCreateWithPlanarBytes" || 3245 FName == "OSAtomicEnqueue") { 3246 return true; 3247 } 3248 3249 if (FName == "postEvent" && 3250 FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") { 3251 return true; 3252 } 3253 3254 if (FName == "connectImpl" && 3255 FD->getQualifiedNameAsString() == "QObject::connectImpl") { 3256 return true; 3257 } 3258 3259 // Handle cases where we know a buffer's /address/ can escape. 3260 // Note that the above checks handle some special cases where we know that 3261 // even though the address escapes, it's still our responsibility to free the 3262 // buffer. 3263 if (Call->argumentsMayEscape()) 3264 return true; 3265 3266 // Otherwise, assume that the function does not free memory. 3267 // Most system calls do not free the memory. 3268 return false; 3269 } 3270 3271 ProgramStateRef MallocChecker::checkPointerEscape(ProgramStateRef State, 3272 const InvalidatedSymbols &Escaped, 3273 const CallEvent *Call, 3274 PointerEscapeKind Kind) const { 3275 return checkPointerEscapeAux(State, Escaped, Call, Kind, 3276 /*IsConstPointerEscape*/ false); 3277 } 3278 3279 ProgramStateRef MallocChecker::checkConstPointerEscape(ProgramStateRef State, 3280 const InvalidatedSymbols &Escaped, 3281 const CallEvent *Call, 3282 PointerEscapeKind Kind) const { 3283 // If a const pointer escapes, it may not be freed(), but it could be deleted. 3284 return checkPointerEscapeAux(State, Escaped, Call, Kind, 3285 /*IsConstPointerEscape*/ true); 3286 } 3287 3288 static bool checkIfNewOrNewArrayFamily(const RefState *RS) { 3289 return (RS->getAllocationFamily() == AF_CXXNewArray || 3290 RS->getAllocationFamily() == AF_CXXNew); 3291 } 3292 3293 ProgramStateRef MallocChecker::checkPointerEscapeAux( 3294 ProgramStateRef State, const InvalidatedSymbols &Escaped, 3295 const CallEvent *Call, PointerEscapeKind Kind, 3296 bool IsConstPointerEscape) const { 3297 // If we know that the call does not free memory, or we want to process the 3298 // call later, keep tracking the top level arguments. 3299 SymbolRef EscapingSymbol = nullptr; 3300 if (Kind == PSK_DirectEscapeOnCall && 3301 !mayFreeAnyEscapedMemoryOrIsModeledExplicitly(Call, State, 3302 EscapingSymbol) && 3303 !EscapingSymbol) { 3304 return State; 3305 } 3306 3307 for (InvalidatedSymbols::const_iterator I = Escaped.begin(), 3308 E = Escaped.end(); 3309 I != E; ++I) { 3310 SymbolRef sym = *I; 3311 3312 if (EscapingSymbol && EscapingSymbol != sym) 3313 continue; 3314 3315 if (const RefState *RS = State->get<RegionState>(sym)) 3316 if (RS->isAllocated() || RS->isAllocatedOfSizeZero()) 3317 if (!IsConstPointerEscape || checkIfNewOrNewArrayFamily(RS)) 3318 State = State->set<RegionState>(sym, RefState::getEscaped(RS)); 3319 } 3320 return State; 3321 } 3322 3323 bool MallocChecker::isArgZERO_SIZE_PTR(ProgramStateRef State, CheckerContext &C, 3324 SVal ArgVal) const { 3325 if (!KernelZeroSizePtrValue) 3326 KernelZeroSizePtrValue = 3327 tryExpandAsInteger("ZERO_SIZE_PTR", C.getPreprocessor()); 3328 3329 const llvm::APSInt *ArgValKnown = 3330 C.getSValBuilder().getKnownValue(State, ArgVal); 3331 return ArgValKnown && *KernelZeroSizePtrValue && 3332 ArgValKnown->getSExtValue() == **KernelZeroSizePtrValue; 3333 } 3334 3335 static SymbolRef findFailedReallocSymbol(ProgramStateRef currState, 3336 ProgramStateRef prevState) { 3337 ReallocPairsTy currMap = currState->get<ReallocPairs>(); 3338 ReallocPairsTy prevMap = prevState->get<ReallocPairs>(); 3339 3340 for (const ReallocPairsTy::value_type &Pair : prevMap) { 3341 SymbolRef sym = Pair.first; 3342 if (!currMap.lookup(sym)) 3343 return sym; 3344 } 3345 3346 return nullptr; 3347 } 3348 3349 static bool isReferenceCountingPointerDestructor(const CXXDestructorDecl *DD) { 3350 if (const IdentifierInfo *II = DD->getParent()->getIdentifier()) { 3351 StringRef N = II->getName(); 3352 if (N.contains_insensitive("ptr") || N.contains_insensitive("pointer")) { 3353 if (N.contains_insensitive("ref") || N.contains_insensitive("cnt") || 3354 N.contains_insensitive("intrusive") || 3355 N.contains_insensitive("shared")) { 3356 return true; 3357 } 3358 } 3359 } 3360 return false; 3361 } 3362 3363 PathDiagnosticPieceRef MallocBugVisitor::VisitNode(const ExplodedNode *N, 3364 BugReporterContext &BRC, 3365 PathSensitiveBugReport &BR) { 3366 ProgramStateRef state = N->getState(); 3367 ProgramStateRef statePrev = N->getFirstPred()->getState(); 3368 3369 const RefState *RSCurr = state->get<RegionState>(Sym); 3370 const RefState *RSPrev = statePrev->get<RegionState>(Sym); 3371 3372 const Stmt *S = N->getStmtForDiagnostics(); 3373 // When dealing with containers, we sometimes want to give a note 3374 // even if the statement is missing. 3375 if (!S && (!RSCurr || RSCurr->getAllocationFamily() != AF_InnerBuffer)) 3376 return nullptr; 3377 3378 const LocationContext *CurrentLC = N->getLocationContext(); 3379 3380 // If we find an atomic fetch_add or fetch_sub within the destructor in which 3381 // the pointer was released (before the release), this is likely a destructor 3382 // of a shared pointer. 3383 // Because we don't model atomics, and also because we don't know that the 3384 // original reference count is positive, we should not report use-after-frees 3385 // on objects deleted in such destructors. This can probably be improved 3386 // through better shared pointer modeling. 3387 if (ReleaseDestructorLC) { 3388 if (const auto *AE = dyn_cast<AtomicExpr>(S)) { 3389 AtomicExpr::AtomicOp Op = AE->getOp(); 3390 if (Op == AtomicExpr::AO__c11_atomic_fetch_add || 3391 Op == AtomicExpr::AO__c11_atomic_fetch_sub) { 3392 if (ReleaseDestructorLC == CurrentLC || 3393 ReleaseDestructorLC->isParentOf(CurrentLC)) { 3394 BR.markInvalid(getTag(), S); 3395 } 3396 } 3397 } 3398 } 3399 3400 // FIXME: We will eventually need to handle non-statement-based events 3401 // (__attribute__((cleanup))). 3402 3403 // Find out if this is an interesting point and what is the kind. 3404 StringRef Msg; 3405 std::unique_ptr<StackHintGeneratorForSymbol> StackHint = nullptr; 3406 SmallString<256> Buf; 3407 llvm::raw_svector_ostream OS(Buf); 3408 3409 if (Mode == Normal) { 3410 if (isAllocated(RSCurr, RSPrev, S)) { 3411 Msg = "Memory is allocated"; 3412 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3413 Sym, "Returned allocated memory"); 3414 } else if (isReleased(RSCurr, RSPrev, S)) { 3415 const auto Family = RSCurr->getAllocationFamily(); 3416 switch (Family) { 3417 case AF_Alloca: 3418 case AF_Malloc: 3419 case AF_CXXNew: 3420 case AF_CXXNewArray: 3421 case AF_IfNameIndex: 3422 Msg = "Memory is released"; 3423 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3424 Sym, "Returning; memory was released"); 3425 break; 3426 case AF_InnerBuffer: { 3427 const MemRegion *ObjRegion = 3428 allocation_state::getContainerObjRegion(statePrev, Sym); 3429 const auto *TypedRegion = cast<TypedValueRegion>(ObjRegion); 3430 QualType ObjTy = TypedRegion->getValueType(); 3431 OS << "Inner buffer of '" << ObjTy << "' "; 3432 3433 if (N->getLocation().getKind() == ProgramPoint::PostImplicitCallKind) { 3434 OS << "deallocated by call to destructor"; 3435 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3436 Sym, "Returning; inner buffer was deallocated"); 3437 } else { 3438 OS << "reallocated by call to '"; 3439 const Stmt *S = RSCurr->getStmt(); 3440 if (const auto *MemCallE = dyn_cast<CXXMemberCallExpr>(S)) { 3441 OS << MemCallE->getMethodDecl()->getDeclName(); 3442 } else if (const auto *OpCallE = dyn_cast<CXXOperatorCallExpr>(S)) { 3443 OS << OpCallE->getDirectCallee()->getDeclName(); 3444 } else if (const auto *CallE = dyn_cast<CallExpr>(S)) { 3445 auto &CEMgr = BRC.getStateManager().getCallEventManager(); 3446 CallEventRef<> Call = CEMgr.getSimpleCall(CallE, state, CurrentLC); 3447 if (const auto *D = dyn_cast_or_null<NamedDecl>(Call->getDecl())) 3448 OS << D->getDeclName(); 3449 else 3450 OS << "unknown"; 3451 } 3452 OS << "'"; 3453 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3454 Sym, "Returning; inner buffer was reallocated"); 3455 } 3456 Msg = OS.str(); 3457 break; 3458 } 3459 case AF_None: 3460 llvm_unreachable("Unhandled allocation family!"); 3461 } 3462 3463 // See if we're releasing memory while inlining a destructor 3464 // (or one of its callees). This turns on various common 3465 // false positive suppressions. 3466 bool FoundAnyDestructor = false; 3467 for (const LocationContext *LC = CurrentLC; LC; LC = LC->getParent()) { 3468 if (const auto *DD = dyn_cast<CXXDestructorDecl>(LC->getDecl())) { 3469 if (isReferenceCountingPointerDestructor(DD)) { 3470 // This immediately looks like a reference-counting destructor. 3471 // We're bad at guessing the original reference count of the object, 3472 // so suppress the report for now. 3473 BR.markInvalid(getTag(), DD); 3474 } else if (!FoundAnyDestructor) { 3475 assert(!ReleaseDestructorLC && 3476 "There can be only one release point!"); 3477 // Suspect that it's a reference counting pointer destructor. 3478 // On one of the next nodes might find out that it has atomic 3479 // reference counting operations within it (see the code above), 3480 // and if so, we'd conclude that it likely is a reference counting 3481 // pointer destructor. 3482 ReleaseDestructorLC = LC->getStackFrame(); 3483 // It is unlikely that releasing memory is delegated to a destructor 3484 // inside a destructor of a shared pointer, because it's fairly hard 3485 // to pass the information that the pointer indeed needs to be 3486 // released into it. So we're only interested in the innermost 3487 // destructor. 3488 FoundAnyDestructor = true; 3489 } 3490 } 3491 } 3492 } else if (isRelinquished(RSCurr, RSPrev, S)) { 3493 Msg = "Memory ownership is transferred"; 3494 StackHint = std::make_unique<StackHintGeneratorForSymbol>(Sym, ""); 3495 } else if (hasReallocFailed(RSCurr, RSPrev, S)) { 3496 Mode = ReallocationFailed; 3497 Msg = "Reallocation failed"; 3498 StackHint = std::make_unique<StackHintGeneratorForReallocationFailed>( 3499 Sym, "Reallocation failed"); 3500 3501 if (SymbolRef sym = findFailedReallocSymbol(state, statePrev)) { 3502 // Is it possible to fail two reallocs WITHOUT testing in between? 3503 assert((!FailedReallocSymbol || FailedReallocSymbol == sym) && 3504 "We only support one failed realloc at a time."); 3505 BR.markInteresting(sym); 3506 FailedReallocSymbol = sym; 3507 } 3508 } 3509 3510 // We are in a special mode if a reallocation failed later in the path. 3511 } else if (Mode == ReallocationFailed) { 3512 assert(FailedReallocSymbol && "No symbol to look for."); 3513 3514 // Is this is the first appearance of the reallocated symbol? 3515 if (!statePrev->get<RegionState>(FailedReallocSymbol)) { 3516 // We're at the reallocation point. 3517 Msg = "Attempt to reallocate memory"; 3518 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3519 Sym, "Returned reallocated memory"); 3520 FailedReallocSymbol = nullptr; 3521 Mode = Normal; 3522 } 3523 } 3524 3525 if (Msg.empty()) { 3526 assert(!StackHint); 3527 return nullptr; 3528 } 3529 3530 assert(StackHint); 3531 3532 // Generate the extra diagnostic. 3533 PathDiagnosticLocation Pos; 3534 if (!S) { 3535 assert(RSCurr->getAllocationFamily() == AF_InnerBuffer); 3536 auto PostImplCall = N->getLocation().getAs<PostImplicitCall>(); 3537 if (!PostImplCall) 3538 return nullptr; 3539 Pos = PathDiagnosticLocation(PostImplCall->getLocation(), 3540 BRC.getSourceManager()); 3541 } else { 3542 Pos = PathDiagnosticLocation(S, BRC.getSourceManager(), 3543 N->getLocationContext()); 3544 } 3545 3546 auto P = std::make_shared<PathDiagnosticEventPiece>(Pos, Msg, true); 3547 BR.addCallStackHint(P, std::move(StackHint)); 3548 return P; 3549 } 3550 3551 void MallocChecker::printState(raw_ostream &Out, ProgramStateRef State, 3552 const char *NL, const char *Sep) const { 3553 3554 RegionStateTy RS = State->get<RegionState>(); 3555 3556 if (!RS.isEmpty()) { 3557 Out << Sep << "MallocChecker :" << NL; 3558 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 3559 const RefState *RefS = State->get<RegionState>(I.getKey()); 3560 AllocationFamily Family = RefS->getAllocationFamily(); 3561 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 3562 if (!CheckKind) 3563 CheckKind = getCheckIfTracked(Family, true); 3564 3565 I.getKey()->dumpToStream(Out); 3566 Out << " : "; 3567 I.getData().dump(Out); 3568 if (CheckKind) 3569 Out << " (" << CheckNames[*CheckKind].getName() << ")"; 3570 Out << NL; 3571 } 3572 } 3573 } 3574 3575 namespace clang { 3576 namespace ento { 3577 namespace allocation_state { 3578 3579 ProgramStateRef 3580 markReleased(ProgramStateRef State, SymbolRef Sym, const Expr *Origin) { 3581 AllocationFamily Family = AF_InnerBuffer; 3582 return State->set<RegionState>(Sym, RefState::getReleased(Family, Origin)); 3583 } 3584 3585 } // end namespace allocation_state 3586 } // end namespace ento 3587 } // end namespace clang 3588 3589 // Intended to be used in InnerPointerChecker to register the part of 3590 // MallocChecker connected to it. 3591 void ento::registerInnerPointerCheckerAux(CheckerManager &mgr) { 3592 MallocChecker *checker = mgr.getChecker<MallocChecker>(); 3593 checker->ChecksEnabled[MallocChecker::CK_InnerPointerChecker] = true; 3594 checker->CheckNames[MallocChecker::CK_InnerPointerChecker] = 3595 mgr.getCurrentCheckerName(); 3596 } 3597 3598 void ento::registerDynamicMemoryModeling(CheckerManager &mgr) { 3599 auto *checker = mgr.registerChecker<MallocChecker>(); 3600 checker->ShouldIncludeOwnershipAnnotatedFunctions = 3601 mgr.getAnalyzerOptions().getCheckerBooleanOption(checker, "Optimistic"); 3602 checker->ShouldRegisterNoOwnershipChangeVisitor = 3603 mgr.getAnalyzerOptions().getCheckerBooleanOption( 3604 checker, "AddNoOwnershipChangeNotes"); 3605 } 3606 3607 bool ento::shouldRegisterDynamicMemoryModeling(const CheckerManager &mgr) { 3608 return true; 3609 } 3610 3611 #define REGISTER_CHECKER(name) \ 3612 void ento::register##name(CheckerManager &mgr) { \ 3613 MallocChecker *checker = mgr.getChecker<MallocChecker>(); \ 3614 checker->ChecksEnabled[MallocChecker::CK_##name] = true; \ 3615 checker->CheckNames[MallocChecker::CK_##name] = \ 3616 mgr.getCurrentCheckerName(); \ 3617 } \ 3618 \ 3619 bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; } 3620 3621 REGISTER_CHECKER(MallocChecker) 3622 REGISTER_CHECKER(NewDeleteChecker) 3623 REGISTER_CHECKER(NewDeleteLeaksChecker) 3624 REGISTER_CHECKER(MismatchedDeallocatorChecker) 3625