xref: /llvm-project/clang/lib/StaticAnalyzer/Checkers/MallocChecker.cpp (revision 903c29347ac721ce28b4e455b30f256de2839ed0)
1 //=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines malloc/free checker, which checks for potential memory
11 // leaks, double free, and use-after-free problems.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "ClangSACheckers.h"
16 #include "InterCheckerAPI.h"
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/ParentMap.h"
19 #include "clang/Basic/SourceManager.h"
20 #include "clang/Basic/TargetInfo.h"
21 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
22 #include "clang/StaticAnalyzer/Core/Checker.h"
23 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
24 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
25 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
26 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
27 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
28 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
29 #include "llvm/ADT/ImmutableMap.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallString.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include <climits>
34 
35 using namespace clang;
36 using namespace ento;
37 
38 namespace {
39 
40 // Used to check correspondence between allocators and deallocators.
41 enum AllocationFamily {
42   AF_None,
43   AF_Malloc,
44   AF_CXXNew,
45   AF_CXXNewArray,
46   AF_IfNameIndex,
47   AF_Alloca
48 };
49 
50 class RefState {
51   enum Kind { // Reference to allocated memory.
52               Allocated,
53               // Reference to zero-allocated memory.
54               AllocatedOfSizeZero,
55               // Reference to released/freed memory.
56               Released,
57               // The responsibility for freeing resources has transferred from
58               // this reference. A relinquished symbol should not be freed.
59               Relinquished,
60               // We are no longer guaranteed to have observed all manipulations
61               // of this pointer/memory. For example, it could have been
62               // passed as a parameter to an opaque function.
63               Escaped
64   };
65 
66   const Stmt *S;
67   unsigned K : 3; // Kind enum, but stored as a bitfield.
68   unsigned Family : 29; // Rest of 32-bit word, currently just an allocation
69                         // family.
70 
71   RefState(Kind k, const Stmt *s, unsigned family)
72     : S(s), K(k), Family(family) {
73     assert(family != AF_None);
74   }
75 public:
76   bool isAllocated() const { return K == Allocated; }
77   bool isAllocatedOfSizeZero() const { return K == AllocatedOfSizeZero; }
78   bool isReleased() const { return K == Released; }
79   bool isRelinquished() const { return K == Relinquished; }
80   bool isEscaped() const { return K == Escaped; }
81   AllocationFamily getAllocationFamily() const {
82     return (AllocationFamily)Family;
83   }
84   const Stmt *getStmt() const { return S; }
85 
86   bool operator==(const RefState &X) const {
87     return K == X.K && S == X.S && Family == X.Family;
88   }
89 
90   static RefState getAllocated(unsigned family, const Stmt *s) {
91     return RefState(Allocated, s, family);
92   }
93   static RefState getAllocatedOfSizeZero(const RefState *RS) {
94     return RefState(AllocatedOfSizeZero, RS->getStmt(),
95                     RS->getAllocationFamily());
96   }
97   static RefState getReleased(unsigned family, const Stmt *s) {
98     return RefState(Released, s, family);
99   }
100   static RefState getRelinquished(unsigned family, const Stmt *s) {
101     return RefState(Relinquished, s, family);
102   }
103   static RefState getEscaped(const RefState *RS) {
104     return RefState(Escaped, RS->getStmt(), RS->getAllocationFamily());
105   }
106 
107   void Profile(llvm::FoldingSetNodeID &ID) const {
108     ID.AddInteger(K);
109     ID.AddPointer(S);
110     ID.AddInteger(Family);
111   }
112 
113   void dump(raw_ostream &OS) const {
114     switch (static_cast<Kind>(K)) {
115 #define CASE(ID) case ID: OS << #ID; break;
116     CASE(Allocated)
117     CASE(AllocatedOfSizeZero)
118     CASE(Released)
119     CASE(Relinquished)
120     CASE(Escaped)
121     }
122   }
123 
124   LLVM_DUMP_METHOD void dump() const { dump(llvm::errs()); }
125 };
126 
127 enum ReallocPairKind {
128   RPToBeFreedAfterFailure,
129   // The symbol has been freed when reallocation failed.
130   RPIsFreeOnFailure,
131   // The symbol does not need to be freed after reallocation fails.
132   RPDoNotTrackAfterFailure
133 };
134 
135 /// \class ReallocPair
136 /// \brief Stores information about the symbol being reallocated by a call to
137 /// 'realloc' to allow modeling failed reallocation later in the path.
138 struct ReallocPair {
139   // \brief The symbol which realloc reallocated.
140   SymbolRef ReallocatedSym;
141   ReallocPairKind Kind;
142 
143   ReallocPair(SymbolRef S, ReallocPairKind K) :
144     ReallocatedSym(S), Kind(K) {}
145   void Profile(llvm::FoldingSetNodeID &ID) const {
146     ID.AddInteger(Kind);
147     ID.AddPointer(ReallocatedSym);
148   }
149   bool operator==(const ReallocPair &X) const {
150     return ReallocatedSym == X.ReallocatedSym &&
151            Kind == X.Kind;
152   }
153 };
154 
155 typedef std::pair<const ExplodedNode*, const MemRegion*> LeakInfo;
156 
157 class MallocChecker : public Checker<check::DeadSymbols,
158                                      check::PointerEscape,
159                                      check::ConstPointerEscape,
160                                      check::PreStmt<ReturnStmt>,
161                                      check::PreCall,
162                                      check::PostStmt<CallExpr>,
163                                      check::PostStmt<CXXNewExpr>,
164                                      check::PreStmt<CXXDeleteExpr>,
165                                      check::PostStmt<BlockExpr>,
166                                      check::PostObjCMessage,
167                                      check::Location,
168                                      eval::Assume>
169 {
170 public:
171   MallocChecker()
172       : II_alloca(nullptr), II_malloc(nullptr), II_free(nullptr),
173         II_realloc(nullptr), II_calloc(nullptr), II_valloc(nullptr),
174         II_reallocf(nullptr), II_strndup(nullptr), II_strdup(nullptr),
175         II_kmalloc(nullptr), II_if_nameindex(nullptr),
176         II_if_freenameindex(nullptr) {}
177 
178   /// In pessimistic mode, the checker assumes that it does not know which
179   /// functions might free the memory.
180   enum CheckKind {
181     CK_MallocChecker,
182     CK_NewDeleteChecker,
183     CK_NewDeleteLeaksChecker,
184     CK_MismatchedDeallocatorChecker,
185     CK_NumCheckKinds
186   };
187 
188   enum class MemoryOperationKind {
189     MOK_Allocate,
190     MOK_Free,
191     MOK_Any
192   };
193 
194   DefaultBool IsOptimistic;
195 
196   DefaultBool ChecksEnabled[CK_NumCheckKinds];
197   CheckName CheckNames[CK_NumCheckKinds];
198 
199   void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
200   void checkPostStmt(const CallExpr *CE, CheckerContext &C) const;
201   void checkPostStmt(const CXXNewExpr *NE, CheckerContext &C) const;
202   void checkPreStmt(const CXXDeleteExpr *DE, CheckerContext &C) const;
203   void checkPostObjCMessage(const ObjCMethodCall &Call, CheckerContext &C) const;
204   void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const;
205   void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const;
206   void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const;
207   ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond,
208                             bool Assumption) const;
209   void checkLocation(SVal l, bool isLoad, const Stmt *S,
210                      CheckerContext &C) const;
211 
212   ProgramStateRef checkPointerEscape(ProgramStateRef State,
213                                     const InvalidatedSymbols &Escaped,
214                                     const CallEvent *Call,
215                                     PointerEscapeKind Kind) const;
216   ProgramStateRef checkConstPointerEscape(ProgramStateRef State,
217                                           const InvalidatedSymbols &Escaped,
218                                           const CallEvent *Call,
219                                           PointerEscapeKind Kind) const;
220 
221   void printState(raw_ostream &Out, ProgramStateRef State,
222                   const char *NL, const char *Sep) const override;
223 
224 private:
225   mutable std::unique_ptr<BugType> BT_DoubleFree[CK_NumCheckKinds];
226   mutable std::unique_ptr<BugType> BT_DoubleDelete;
227   mutable std::unique_ptr<BugType> BT_Leak[CK_NumCheckKinds];
228   mutable std::unique_ptr<BugType> BT_UseFree[CK_NumCheckKinds];
229   mutable std::unique_ptr<BugType> BT_BadFree[CK_NumCheckKinds];
230   mutable std::unique_ptr<BugType> BT_FreeAlloca[CK_NumCheckKinds];
231   mutable std::unique_ptr<BugType> BT_MismatchedDealloc;
232   mutable std::unique_ptr<BugType> BT_OffsetFree[CK_NumCheckKinds];
233   mutable std::unique_ptr<BugType> BT_UseZerroAllocated[CK_NumCheckKinds];
234   mutable IdentifierInfo *II_alloca, *II_malloc, *II_free, *II_realloc,
235                          *II_calloc, *II_valloc, *II_reallocf, *II_strndup,
236                          *II_strdup, *II_kmalloc, *II_if_nameindex,
237                          *II_if_freenameindex;
238   mutable Optional<uint64_t> KernelZeroFlagVal;
239 
240   void initIdentifierInfo(ASTContext &C) const;
241 
242   /// \brief Determine family of a deallocation expression.
243   AllocationFamily getAllocationFamily(CheckerContext &C, const Stmt *S) const;
244 
245   /// \brief Print names of allocators and deallocators.
246   ///
247   /// \returns true on success.
248   bool printAllocDeallocName(raw_ostream &os, CheckerContext &C,
249                              const Expr *E) const;
250 
251   /// \brief Print expected name of an allocator based on the deallocator's
252   /// family derived from the DeallocExpr.
253   void printExpectedAllocName(raw_ostream &os, CheckerContext &C,
254                               const Expr *DeallocExpr) const;
255   /// \brief Print expected name of a deallocator based on the allocator's
256   /// family.
257   void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family) const;
258 
259   ///@{
260   /// Check if this is one of the functions which can allocate/reallocate memory
261   /// pointed to by one of its arguments.
262   bool isMemFunction(const FunctionDecl *FD, ASTContext &C) const;
263   bool isCMemFunction(const FunctionDecl *FD,
264                       ASTContext &C,
265                       AllocationFamily Family,
266                       MemoryOperationKind MemKind) const;
267   bool isStandardNewDelete(const FunctionDecl *FD, ASTContext &C) const;
268   ///@}
269 
270   /// \brief Perform a zero-allocation check.
271   ProgramStateRef ProcessZeroAllocation(CheckerContext &C, const Expr *E,
272                                         const unsigned AllocationSizeArg,
273                                         ProgramStateRef State) const;
274 
275   ProgramStateRef MallocMemReturnsAttr(CheckerContext &C,
276                                        const CallExpr *CE,
277                                        const OwnershipAttr* Att,
278                                        ProgramStateRef State) const;
279   static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE,
280                                       const Expr *SizeEx, SVal Init,
281                                       ProgramStateRef State,
282                                       AllocationFamily Family = AF_Malloc);
283   static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE,
284                                       SVal SizeEx, SVal Init,
285                                       ProgramStateRef State,
286                                       AllocationFamily Family = AF_Malloc);
287 
288   // Check if this malloc() for special flags. At present that means M_ZERO or
289   // __GFP_ZERO (in which case, treat it like calloc).
290   llvm::Optional<ProgramStateRef>
291   performKernelMalloc(const CallExpr *CE, CheckerContext &C,
292                       const ProgramStateRef &State) const;
293 
294   /// Update the RefState to reflect the new memory allocation.
295   static ProgramStateRef
296   MallocUpdateRefState(CheckerContext &C, const Expr *E, ProgramStateRef State,
297                        AllocationFamily Family = AF_Malloc);
298 
299   ProgramStateRef FreeMemAttr(CheckerContext &C, const CallExpr *CE,
300                               const OwnershipAttr* Att,
301                               ProgramStateRef State) const;
302   ProgramStateRef FreeMemAux(CheckerContext &C, const CallExpr *CE,
303                              ProgramStateRef state, unsigned Num,
304                              bool Hold,
305                              bool &ReleasedAllocated,
306                              bool ReturnsNullOnFailure = false) const;
307   ProgramStateRef FreeMemAux(CheckerContext &C, const Expr *Arg,
308                              const Expr *ParentExpr,
309                              ProgramStateRef State,
310                              bool Hold,
311                              bool &ReleasedAllocated,
312                              bool ReturnsNullOnFailure = false) const;
313 
314   ProgramStateRef ReallocMem(CheckerContext &C, const CallExpr *CE,
315                              bool FreesMemOnFailure,
316                              ProgramStateRef State) const;
317   static ProgramStateRef CallocMem(CheckerContext &C, const CallExpr *CE,
318                                    ProgramStateRef State);
319 
320   ///\brief Check if the memory associated with this symbol was released.
321   bool isReleased(SymbolRef Sym, CheckerContext &C) const;
322 
323   bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S) const;
324 
325   void checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C,
326                              const Stmt *S) const;
327 
328   bool checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const;
329 
330   /// Check if the function is known free memory, or if it is
331   /// "interesting" and should be modeled explicitly.
332   ///
333   /// \param [out] EscapingSymbol A function might not free memory in general,
334   ///   but could be known to free a particular symbol. In this case, false is
335   ///   returned and the single escaping symbol is returned through the out
336   ///   parameter.
337   ///
338   /// We assume that pointers do not escape through calls to system functions
339   /// not handled by this checker.
340   bool mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent *Call,
341                                    ProgramStateRef State,
342                                    SymbolRef &EscapingSymbol) const;
343 
344   // Implementation of the checkPointerEscape callabcks.
345   ProgramStateRef checkPointerEscapeAux(ProgramStateRef State,
346                                   const InvalidatedSymbols &Escaped,
347                                   const CallEvent *Call,
348                                   PointerEscapeKind Kind,
349                                   bool(*CheckRefState)(const RefState*)) const;
350 
351   ///@{
352   /// Tells if a given family/call/symbol is tracked by the current checker.
353   /// Sets CheckKind to the kind of the checker responsible for this
354   /// family/call/symbol.
355   Optional<CheckKind> getCheckIfTracked(AllocationFamily Family,
356                                         bool IsALeakCheck = false) const;
357   Optional<CheckKind> getCheckIfTracked(CheckerContext &C,
358                                         const Stmt *AllocDeallocStmt,
359                                         bool IsALeakCheck = false) const;
360   Optional<CheckKind> getCheckIfTracked(CheckerContext &C, SymbolRef Sym,
361                                         bool IsALeakCheck = false) const;
362   ///@}
363   static bool SummarizeValue(raw_ostream &os, SVal V);
364   static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR);
365   void ReportBadFree(CheckerContext &C, SVal ArgVal, SourceRange Range,
366                      const Expr *DeallocExpr) const;
367   void ReportFreeAlloca(CheckerContext &C, SVal ArgVal,
368                         SourceRange Range) const;
369   void ReportMismatchedDealloc(CheckerContext &C, SourceRange Range,
370                                const Expr *DeallocExpr, const RefState *RS,
371                                SymbolRef Sym, bool OwnershipTransferred) const;
372   void ReportOffsetFree(CheckerContext &C, SVal ArgVal, SourceRange Range,
373                         const Expr *DeallocExpr,
374                         const Expr *AllocExpr = nullptr) const;
375   void ReportUseAfterFree(CheckerContext &C, SourceRange Range,
376                           SymbolRef Sym) const;
377   void ReportDoubleFree(CheckerContext &C, SourceRange Range, bool Released,
378                         SymbolRef Sym, SymbolRef PrevSym) const;
379 
380   void ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const;
381 
382   void ReportUseZeroAllocated(CheckerContext &C, SourceRange Range,
383                               SymbolRef Sym) const;
384 
385   /// Find the location of the allocation for Sym on the path leading to the
386   /// exploded node N.
387   LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym,
388                              CheckerContext &C) const;
389 
390   void reportLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const;
391 
392   /// The bug visitor which allows us to print extra diagnostics along the
393   /// BugReport path. For example, showing the allocation site of the leaked
394   /// region.
395   class MallocBugVisitor : public BugReporterVisitorImpl<MallocBugVisitor> {
396   protected:
397     enum NotificationMode {
398       Normal,
399       ReallocationFailed
400     };
401 
402     // The allocated region symbol tracked by the main analysis.
403     SymbolRef Sym;
404 
405     // The mode we are in, i.e. what kind of diagnostics will be emitted.
406     NotificationMode Mode;
407 
408     // A symbol from when the primary region should have been reallocated.
409     SymbolRef FailedReallocSymbol;
410 
411     bool IsLeak;
412 
413   public:
414     MallocBugVisitor(SymbolRef S, bool isLeak = false)
415        : Sym(S), Mode(Normal), FailedReallocSymbol(nullptr), IsLeak(isLeak) {}
416 
417     ~MallocBugVisitor() override {}
418 
419     void Profile(llvm::FoldingSetNodeID &ID) const override {
420       static int X = 0;
421       ID.AddPointer(&X);
422       ID.AddPointer(Sym);
423     }
424 
425     inline bool isAllocated(const RefState *S, const RefState *SPrev,
426                             const Stmt *Stmt) {
427       // Did not track -> allocated. Other state (released) -> allocated.
428       return (Stmt && (isa<CallExpr>(Stmt) || isa<CXXNewExpr>(Stmt)) &&
429               (S && (S->isAllocated() || S->isAllocatedOfSizeZero())) &&
430               (!SPrev || !(SPrev->isAllocated() ||
431                            SPrev->isAllocatedOfSizeZero())));
432     }
433 
434     inline bool isReleased(const RefState *S, const RefState *SPrev,
435                            const Stmt *Stmt) {
436       // Did not track -> released. Other state (allocated) -> released.
437       return (Stmt && (isa<CallExpr>(Stmt) || isa<CXXDeleteExpr>(Stmt)) &&
438               (S && S->isReleased()) && (!SPrev || !SPrev->isReleased()));
439     }
440 
441     inline bool isRelinquished(const RefState *S, const RefState *SPrev,
442                                const Stmt *Stmt) {
443       // Did not track -> relinquished. Other state (allocated) -> relinquished.
444       return (Stmt && (isa<CallExpr>(Stmt) || isa<ObjCMessageExpr>(Stmt) ||
445                                               isa<ObjCPropertyRefExpr>(Stmt)) &&
446               (S && S->isRelinquished()) &&
447               (!SPrev || !SPrev->isRelinquished()));
448     }
449 
450     inline bool isReallocFailedCheck(const RefState *S, const RefState *SPrev,
451                                      const Stmt *Stmt) {
452       // If the expression is not a call, and the state change is
453       // released -> allocated, it must be the realloc return value
454       // check. If we have to handle more cases here, it might be cleaner just
455       // to track this extra bit in the state itself.
456       return ((!Stmt || !isa<CallExpr>(Stmt)) &&
457               (S && (S->isAllocated() || S->isAllocatedOfSizeZero())) &&
458               (SPrev && !(SPrev->isAllocated() ||
459                           SPrev->isAllocatedOfSizeZero())));
460     }
461 
462     PathDiagnosticPiece *VisitNode(const ExplodedNode *N,
463                                    const ExplodedNode *PrevN,
464                                    BugReporterContext &BRC,
465                                    BugReport &BR) override;
466 
467     std::unique_ptr<PathDiagnosticPiece>
468     getEndPath(BugReporterContext &BRC, const ExplodedNode *EndPathNode,
469                BugReport &BR) override {
470       if (!IsLeak)
471         return nullptr;
472 
473       PathDiagnosticLocation L =
474         PathDiagnosticLocation::createEndOfPath(EndPathNode,
475                                                 BRC.getSourceManager());
476       // Do not add the statement itself as a range in case of leak.
477       return llvm::make_unique<PathDiagnosticEventPiece>(L, BR.getDescription(),
478                                                          false);
479     }
480 
481   private:
482     class StackHintGeneratorForReallocationFailed
483         : public StackHintGeneratorForSymbol {
484     public:
485       StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M)
486         : StackHintGeneratorForSymbol(S, M) {}
487 
488       std::string getMessageForArg(const Expr *ArgE,
489                                    unsigned ArgIndex) override {
490         // Printed parameters start at 1, not 0.
491         ++ArgIndex;
492 
493         SmallString<200> buf;
494         llvm::raw_svector_ostream os(buf);
495 
496         os << "Reallocation of " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex)
497            << " parameter failed";
498 
499         return os.str();
500       }
501 
502       std::string getMessageForReturn(const CallExpr *CallExpr) override {
503         return "Reallocation of returned value failed";
504       }
505     };
506   };
507 };
508 } // end anonymous namespace
509 
510 REGISTER_MAP_WITH_PROGRAMSTATE(RegionState, SymbolRef, RefState)
511 REGISTER_MAP_WITH_PROGRAMSTATE(ReallocPairs, SymbolRef, ReallocPair)
512 
513 // A map from the freed symbol to the symbol representing the return value of
514 // the free function.
515 REGISTER_MAP_WITH_PROGRAMSTATE(FreeReturnValue, SymbolRef, SymbolRef)
516 
517 namespace {
518 class StopTrackingCallback final : public SymbolVisitor {
519   ProgramStateRef state;
520 public:
521   StopTrackingCallback(ProgramStateRef st) : state(st) {}
522   ProgramStateRef getState() const { return state; }
523 
524   bool VisitSymbol(SymbolRef sym) override {
525     state = state->remove<RegionState>(sym);
526     return true;
527   }
528 };
529 } // end anonymous namespace
530 
531 void MallocChecker::initIdentifierInfo(ASTContext &Ctx) const {
532   if (II_malloc)
533     return;
534   II_alloca = &Ctx.Idents.get("alloca");
535   II_malloc = &Ctx.Idents.get("malloc");
536   II_free = &Ctx.Idents.get("free");
537   II_realloc = &Ctx.Idents.get("realloc");
538   II_reallocf = &Ctx.Idents.get("reallocf");
539   II_calloc = &Ctx.Idents.get("calloc");
540   II_valloc = &Ctx.Idents.get("valloc");
541   II_strdup = &Ctx.Idents.get("strdup");
542   II_strndup = &Ctx.Idents.get("strndup");
543   II_kmalloc = &Ctx.Idents.get("kmalloc");
544   II_if_nameindex = &Ctx.Idents.get("if_nameindex");
545   II_if_freenameindex = &Ctx.Idents.get("if_freenameindex");
546 }
547 
548 bool MallocChecker::isMemFunction(const FunctionDecl *FD, ASTContext &C) const {
549   if (isCMemFunction(FD, C, AF_Malloc, MemoryOperationKind::MOK_Any))
550     return true;
551 
552   if (isCMemFunction(FD, C, AF_IfNameIndex, MemoryOperationKind::MOK_Any))
553     return true;
554 
555   if (isCMemFunction(FD, C, AF_Alloca, MemoryOperationKind::MOK_Any))
556     return true;
557 
558   if (isStandardNewDelete(FD, C))
559     return true;
560 
561   return false;
562 }
563 
564 bool MallocChecker::isCMemFunction(const FunctionDecl *FD,
565                                    ASTContext &C,
566                                    AllocationFamily Family,
567                                    MemoryOperationKind MemKind) const {
568   if (!FD)
569     return false;
570 
571   bool CheckFree = (MemKind == MemoryOperationKind::MOK_Any ||
572                     MemKind == MemoryOperationKind::MOK_Free);
573   bool CheckAlloc = (MemKind == MemoryOperationKind::MOK_Any ||
574                      MemKind == MemoryOperationKind::MOK_Allocate);
575 
576   if (FD->getKind() == Decl::Function) {
577     const IdentifierInfo *FunI = FD->getIdentifier();
578     initIdentifierInfo(C);
579 
580     if (Family == AF_Malloc && CheckFree) {
581       if (FunI == II_free || FunI == II_realloc || FunI == II_reallocf)
582         return true;
583     }
584 
585     if (Family == AF_Malloc && CheckAlloc) {
586       if (FunI == II_malloc || FunI == II_realloc || FunI == II_reallocf ||
587           FunI == II_calloc || FunI == II_valloc || FunI == II_strdup ||
588           FunI == II_strndup || FunI == II_kmalloc)
589         return true;
590     }
591 
592     if (Family == AF_IfNameIndex && CheckFree) {
593       if (FunI == II_if_freenameindex)
594         return true;
595     }
596 
597     if (Family == AF_IfNameIndex && CheckAlloc) {
598       if (FunI == II_if_nameindex)
599         return true;
600     }
601 
602     if (Family == AF_Alloca && CheckAlloc) {
603       if (FunI == II_alloca)
604         return true;
605     }
606   }
607 
608   if (Family != AF_Malloc)
609     return false;
610 
611   if (IsOptimistic && FD->hasAttrs()) {
612     for (const auto *I : FD->specific_attrs<OwnershipAttr>()) {
613       OwnershipAttr::OwnershipKind OwnKind = I->getOwnKind();
614       if(OwnKind == OwnershipAttr::Takes || OwnKind == OwnershipAttr::Holds) {
615         if (CheckFree)
616           return true;
617       } else if (OwnKind == OwnershipAttr::Returns) {
618         if (CheckAlloc)
619           return true;
620       }
621     }
622   }
623 
624   return false;
625 }
626 
627 // Tells if the callee is one of the following:
628 // 1) A global non-placement new/delete operator function.
629 // 2) A global placement operator function with the single placement argument
630 //    of type std::nothrow_t.
631 bool MallocChecker::isStandardNewDelete(const FunctionDecl *FD,
632                                         ASTContext &C) const {
633   if (!FD)
634     return false;
635 
636   OverloadedOperatorKind Kind = FD->getOverloadedOperator();
637   if (Kind != OO_New && Kind != OO_Array_New &&
638       Kind != OO_Delete && Kind != OO_Array_Delete)
639     return false;
640 
641   // Skip all operator new/delete methods.
642   if (isa<CXXMethodDecl>(FD))
643     return false;
644 
645   // Return true if tested operator is a standard placement nothrow operator.
646   if (FD->getNumParams() == 2) {
647     QualType T = FD->getParamDecl(1)->getType();
648     if (const IdentifierInfo *II = T.getBaseTypeIdentifier())
649       return II->getName().equals("nothrow_t");
650   }
651 
652   // Skip placement operators.
653   if (FD->getNumParams() != 1 || FD->isVariadic())
654     return false;
655 
656   // One of the standard new/new[]/delete/delete[] non-placement operators.
657   return true;
658 }
659 
660 llvm::Optional<ProgramStateRef> MallocChecker::performKernelMalloc(
661   const CallExpr *CE, CheckerContext &C, const ProgramStateRef &State) const {
662   // 3-argument malloc(), as commonly used in {Free,Net,Open}BSD Kernels:
663   //
664   // void *malloc(unsigned long size, struct malloc_type *mtp, int flags);
665   //
666   // One of the possible flags is M_ZERO, which means 'give me back an
667   // allocation which is already zeroed', like calloc.
668 
669   // 2-argument kmalloc(), as used in the Linux kernel:
670   //
671   // void *kmalloc(size_t size, gfp_t flags);
672   //
673   // Has the similar flag value __GFP_ZERO.
674 
675   // This logic is largely cloned from O_CREAT in UnixAPIChecker, maybe some
676   // code could be shared.
677 
678   ASTContext &Ctx = C.getASTContext();
679   llvm::Triple::OSType OS = Ctx.getTargetInfo().getTriple().getOS();
680 
681   if (!KernelZeroFlagVal.hasValue()) {
682     if (OS == llvm::Triple::FreeBSD)
683       KernelZeroFlagVal = 0x0100;
684     else if (OS == llvm::Triple::NetBSD)
685       KernelZeroFlagVal = 0x0002;
686     else if (OS == llvm::Triple::OpenBSD)
687       KernelZeroFlagVal = 0x0008;
688     else if (OS == llvm::Triple::Linux)
689       // __GFP_ZERO
690       KernelZeroFlagVal = 0x8000;
691     else
692       // FIXME: We need a more general way of getting the M_ZERO value.
693       // See also: O_CREAT in UnixAPIChecker.cpp.
694 
695       // Fall back to normal malloc behavior on platforms where we don't
696       // know M_ZERO.
697       return None;
698   }
699 
700   // We treat the last argument as the flags argument, and callers fall-back to
701   // normal malloc on a None return. This works for the FreeBSD kernel malloc
702   // as well as Linux kmalloc.
703   if (CE->getNumArgs() < 2)
704     return None;
705 
706   const Expr *FlagsEx = CE->getArg(CE->getNumArgs() - 1);
707   const SVal V = State->getSVal(FlagsEx, C.getLocationContext());
708   if (!V.getAs<NonLoc>()) {
709     // The case where 'V' can be a location can only be due to a bad header,
710     // so in this case bail out.
711     return None;
712   }
713 
714   NonLoc Flags = V.castAs<NonLoc>();
715   NonLoc ZeroFlag = C.getSValBuilder()
716       .makeIntVal(KernelZeroFlagVal.getValue(), FlagsEx->getType())
717       .castAs<NonLoc>();
718   SVal MaskedFlagsUC = C.getSValBuilder().evalBinOpNN(State, BO_And,
719                                                       Flags, ZeroFlag,
720                                                       FlagsEx->getType());
721   if (MaskedFlagsUC.isUnknownOrUndef())
722     return None;
723   DefinedSVal MaskedFlags = MaskedFlagsUC.castAs<DefinedSVal>();
724 
725   // Check if maskedFlags is non-zero.
726   ProgramStateRef TrueState, FalseState;
727   std::tie(TrueState, FalseState) = State->assume(MaskedFlags);
728 
729   // If M_ZERO is set, treat this like calloc (initialized).
730   if (TrueState && !FalseState) {
731     SVal ZeroVal = C.getSValBuilder().makeZeroVal(Ctx.CharTy);
732     return MallocMemAux(C, CE, CE->getArg(0), ZeroVal, TrueState);
733   }
734 
735   return None;
736 }
737 
738 void MallocChecker::checkPostStmt(const CallExpr *CE, CheckerContext &C) const {
739   if (C.wasInlined)
740     return;
741 
742   const FunctionDecl *FD = C.getCalleeDecl(CE);
743   if (!FD)
744     return;
745 
746   ProgramStateRef State = C.getState();
747   bool ReleasedAllocatedMemory = false;
748 
749   if (FD->getKind() == Decl::Function) {
750     initIdentifierInfo(C.getASTContext());
751     IdentifierInfo *FunI = FD->getIdentifier();
752 
753     if (FunI == II_malloc) {
754       if (CE->getNumArgs() < 1)
755         return;
756       if (CE->getNumArgs() < 3) {
757         State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State);
758         if (CE->getNumArgs() == 1)
759           State = ProcessZeroAllocation(C, CE, 0, State);
760       } else if (CE->getNumArgs() == 3) {
761         llvm::Optional<ProgramStateRef> MaybeState =
762           performKernelMalloc(CE, C, State);
763         if (MaybeState.hasValue())
764           State = MaybeState.getValue();
765         else
766           State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State);
767       }
768     } else if (FunI == II_kmalloc) {
769       llvm::Optional<ProgramStateRef> MaybeState =
770         performKernelMalloc(CE, C, State);
771       if (MaybeState.hasValue())
772         State = MaybeState.getValue();
773       else
774         State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State);
775     } else if (FunI == II_valloc) {
776       if (CE->getNumArgs() < 1)
777         return;
778       State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State);
779       State = ProcessZeroAllocation(C, CE, 0, State);
780     } else if (FunI == II_realloc) {
781       State = ReallocMem(C, CE, false, State);
782       State = ProcessZeroAllocation(C, CE, 1, State);
783     } else if (FunI == II_reallocf) {
784       State = ReallocMem(C, CE, true, State);
785       State = ProcessZeroAllocation(C, CE, 1, State);
786     } else if (FunI == II_calloc) {
787       State = CallocMem(C, CE, State);
788       State = ProcessZeroAllocation(C, CE, 0, State);
789       State = ProcessZeroAllocation(C, CE, 1, State);
790     } else if (FunI == II_free) {
791       State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory);
792     } else if (FunI == II_strdup) {
793       State = MallocUpdateRefState(C, CE, State);
794     } else if (FunI == II_strndup) {
795       State = MallocUpdateRefState(C, CE, State);
796     } else if (FunI == II_alloca) {
797       State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State,
798                            AF_Alloca);
799       State = ProcessZeroAllocation(C, CE, 0, State);
800     } else if (isStandardNewDelete(FD, C.getASTContext())) {
801       // Process direct calls to operator new/new[]/delete/delete[] functions
802       // as distinct from new/new[]/delete/delete[] expressions that are
803       // processed by the checkPostStmt callbacks for CXXNewExpr and
804       // CXXDeleteExpr.
805       OverloadedOperatorKind K = FD->getOverloadedOperator();
806       if (K == OO_New) {
807         State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State,
808                              AF_CXXNew);
809         State = ProcessZeroAllocation(C, CE, 0, State);
810       }
811       else if (K == OO_Array_New) {
812         State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State,
813                              AF_CXXNewArray);
814         State = ProcessZeroAllocation(C, CE, 0, State);
815       }
816       else if (K == OO_Delete || K == OO_Array_Delete)
817         State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory);
818       else
819         llvm_unreachable("not a new/delete operator");
820     } else if (FunI == II_if_nameindex) {
821       // Should we model this differently? We can allocate a fixed number of
822       // elements with zeros in the last one.
823       State = MallocMemAux(C, CE, UnknownVal(), UnknownVal(), State,
824                            AF_IfNameIndex);
825     } else if (FunI == II_if_freenameindex) {
826       State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory);
827     }
828   }
829 
830   if (IsOptimistic || ChecksEnabled[CK_MismatchedDeallocatorChecker]) {
831     // Check all the attributes, if there are any.
832     // There can be multiple of these attributes.
833     if (FD->hasAttrs())
834       for (const auto *I : FD->specific_attrs<OwnershipAttr>()) {
835         switch (I->getOwnKind()) {
836         case OwnershipAttr::Returns:
837           State = MallocMemReturnsAttr(C, CE, I, State);
838           break;
839         case OwnershipAttr::Takes:
840         case OwnershipAttr::Holds:
841           State = FreeMemAttr(C, CE, I, State);
842           break;
843         }
844       }
845   }
846   C.addTransition(State);
847 }
848 
849 // Performs a 0-sized allocations check.
850 ProgramStateRef MallocChecker::ProcessZeroAllocation(CheckerContext &C,
851                                                const Expr *E,
852                                                const unsigned AllocationSizeArg,
853                                                ProgramStateRef State) const {
854   if (!State)
855     return nullptr;
856 
857   const Expr *Arg = nullptr;
858 
859   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
860     Arg = CE->getArg(AllocationSizeArg);
861   }
862   else if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) {
863     if (NE->isArray())
864       Arg = NE->getArraySize();
865     else
866       return State;
867   }
868   else
869     llvm_unreachable("not a CallExpr or CXXNewExpr");
870 
871   assert(Arg);
872 
873   Optional<DefinedSVal> DefArgVal =
874       State->getSVal(Arg, C.getLocationContext()).getAs<DefinedSVal>();
875 
876   if (!DefArgVal)
877     return State;
878 
879   // Check if the allocation size is 0.
880   ProgramStateRef TrueState, FalseState;
881   SValBuilder &SvalBuilder = C.getSValBuilder();
882   DefinedSVal Zero =
883       SvalBuilder.makeZeroVal(Arg->getType()).castAs<DefinedSVal>();
884 
885   std::tie(TrueState, FalseState) =
886       State->assume(SvalBuilder.evalEQ(State, *DefArgVal, Zero));
887 
888   if (TrueState && !FalseState) {
889     SVal retVal = State->getSVal(E, C.getLocationContext());
890     SymbolRef Sym = retVal.getAsLocSymbol();
891     if (!Sym)
892       return State;
893 
894     const RefState *RS = State->get<RegionState>(Sym);
895     if (!RS)
896       return State; // TODO: change to assert(RS); after realloc() will
897                     // guarantee have a RegionState attached.
898 
899     if (!RS->isAllocated())
900       return State;
901 
902     return TrueState->set<RegionState>(Sym,
903                                        RefState::getAllocatedOfSizeZero(RS));
904   }
905 
906   // Assume the value is non-zero going forward.
907   assert(FalseState);
908   return FalseState;
909 }
910 
911 static QualType getDeepPointeeType(QualType T) {
912   QualType Result = T, PointeeType = T->getPointeeType();
913   while (!PointeeType.isNull()) {
914     Result = PointeeType;
915     PointeeType = PointeeType->getPointeeType();
916   }
917   return Result;
918 }
919 
920 static bool treatUnusedNewEscaped(const CXXNewExpr *NE) {
921 
922   const CXXConstructExpr *ConstructE = NE->getConstructExpr();
923   if (!ConstructE)
924     return false;
925 
926   if (!NE->getAllocatedType()->getAsCXXRecordDecl())
927     return false;
928 
929   const CXXConstructorDecl *CtorD = ConstructE->getConstructor();
930 
931   // Iterate over the constructor parameters.
932   for (const auto *CtorParam : CtorD->params()) {
933 
934     QualType CtorParamPointeeT = CtorParam->getType()->getPointeeType();
935     if (CtorParamPointeeT.isNull())
936       continue;
937 
938     CtorParamPointeeT = getDeepPointeeType(CtorParamPointeeT);
939 
940     if (CtorParamPointeeT->getAsCXXRecordDecl())
941       return true;
942   }
943 
944   return false;
945 }
946 
947 void MallocChecker::checkPostStmt(const CXXNewExpr *NE,
948                                   CheckerContext &C) const {
949 
950   if (NE->getNumPlacementArgs())
951     for (CXXNewExpr::const_arg_iterator I = NE->placement_arg_begin(),
952          E = NE->placement_arg_end(); I != E; ++I)
953       if (SymbolRef Sym = C.getSVal(*I).getAsSymbol())
954         checkUseAfterFree(Sym, C, *I);
955 
956   if (!isStandardNewDelete(NE->getOperatorNew(), C.getASTContext()))
957     return;
958 
959   ParentMap &PM = C.getLocationContext()->getParentMap();
960   if (!PM.isConsumedExpr(NE) && treatUnusedNewEscaped(NE))
961     return;
962 
963   ProgramStateRef State = C.getState();
964   // The return value from operator new is bound to a specified initialization
965   // value (if any) and we don't want to loose this value. So we call
966   // MallocUpdateRefState() instead of MallocMemAux() which breakes the
967   // existing binding.
968   State = MallocUpdateRefState(C, NE, State, NE->isArray() ? AF_CXXNewArray
969                                                            : AF_CXXNew);
970   State = ProcessZeroAllocation(C, NE, 0, State);
971   C.addTransition(State);
972 }
973 
974 void MallocChecker::checkPreStmt(const CXXDeleteExpr *DE,
975                                  CheckerContext &C) const {
976 
977   if (!ChecksEnabled[CK_NewDeleteChecker])
978     if (SymbolRef Sym = C.getSVal(DE->getArgument()).getAsSymbol())
979       checkUseAfterFree(Sym, C, DE->getArgument());
980 
981   if (!isStandardNewDelete(DE->getOperatorDelete(), C.getASTContext()))
982     return;
983 
984   ProgramStateRef State = C.getState();
985   bool ReleasedAllocated;
986   State = FreeMemAux(C, DE->getArgument(), DE, State,
987                      /*Hold*/false, ReleasedAllocated);
988 
989   C.addTransition(State);
990 }
991 
992 static bool isKnownDeallocObjCMethodName(const ObjCMethodCall &Call) {
993   // If the first selector piece is one of the names below, assume that the
994   // object takes ownership of the memory, promising to eventually deallocate it
995   // with free().
996   // Ex:  [NSData dataWithBytesNoCopy:bytes length:10];
997   // (...unless a 'freeWhenDone' parameter is false, but that's checked later.)
998   StringRef FirstSlot = Call.getSelector().getNameForSlot(0);
999   if (FirstSlot == "dataWithBytesNoCopy" ||
1000       FirstSlot == "initWithBytesNoCopy" ||
1001       FirstSlot == "initWithCharactersNoCopy")
1002     return true;
1003 
1004   return false;
1005 }
1006 
1007 static Optional<bool> getFreeWhenDoneArg(const ObjCMethodCall &Call) {
1008   Selector S = Call.getSelector();
1009 
1010   // FIXME: We should not rely on fully-constrained symbols being folded.
1011   for (unsigned i = 1; i < S.getNumArgs(); ++i)
1012     if (S.getNameForSlot(i).equals("freeWhenDone"))
1013       return !Call.getArgSVal(i).isZeroConstant();
1014 
1015   return None;
1016 }
1017 
1018 void MallocChecker::checkPostObjCMessage(const ObjCMethodCall &Call,
1019                                          CheckerContext &C) const {
1020   if (C.wasInlined)
1021     return;
1022 
1023   if (!isKnownDeallocObjCMethodName(Call))
1024     return;
1025 
1026   if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call))
1027     if (!*FreeWhenDone)
1028       return;
1029 
1030   bool ReleasedAllocatedMemory;
1031   ProgramStateRef State = FreeMemAux(C, Call.getArgExpr(0),
1032                                      Call.getOriginExpr(), C.getState(),
1033                                      /*Hold=*/true, ReleasedAllocatedMemory,
1034                                      /*RetNullOnFailure=*/true);
1035 
1036   C.addTransition(State);
1037 }
1038 
1039 ProgramStateRef
1040 MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallExpr *CE,
1041                                     const OwnershipAttr *Att,
1042                                     ProgramStateRef State) const {
1043   if (!State)
1044     return nullptr;
1045 
1046   if (Att->getModule() != II_malloc)
1047     return nullptr;
1048 
1049   OwnershipAttr::args_iterator I = Att->args_begin(), E = Att->args_end();
1050   if (I != E) {
1051     return MallocMemAux(C, CE, CE->getArg(*I), UndefinedVal(), State);
1052   }
1053   return MallocMemAux(C, CE, UnknownVal(), UndefinedVal(), State);
1054 }
1055 
1056 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C,
1057                                             const CallExpr *CE,
1058                                             const Expr *SizeEx, SVal Init,
1059                                             ProgramStateRef State,
1060                                             AllocationFamily Family) {
1061   if (!State)
1062     return nullptr;
1063 
1064   return MallocMemAux(C, CE, State->getSVal(SizeEx, C.getLocationContext()),
1065                       Init, State, Family);
1066 }
1067 
1068 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C,
1069                                            const CallExpr *CE,
1070                                            SVal Size, SVal Init,
1071                                            ProgramStateRef State,
1072                                            AllocationFamily Family) {
1073   if (!State)
1074     return nullptr;
1075 
1076   // We expect the malloc functions to return a pointer.
1077   if (!Loc::isLocType(CE->getType()))
1078     return nullptr;
1079 
1080   // Bind the return value to the symbolic value from the heap region.
1081   // TODO: We could rewrite post visit to eval call; 'malloc' does not have
1082   // side effects other than what we model here.
1083   unsigned Count = C.blockCount();
1084   SValBuilder &svalBuilder = C.getSValBuilder();
1085   const LocationContext *LCtx = C.getPredecessor()->getLocationContext();
1086   DefinedSVal RetVal = svalBuilder.getConjuredHeapSymbolVal(CE, LCtx, Count)
1087       .castAs<DefinedSVal>();
1088   State = State->BindExpr(CE, C.getLocationContext(), RetVal);
1089 
1090   // Fill the region with the initialization value.
1091   State = State->bindDefault(RetVal, Init);
1092 
1093   // Set the region's extent equal to the Size parameter.
1094   const SymbolicRegion *R =
1095       dyn_cast_or_null<SymbolicRegion>(RetVal.getAsRegion());
1096   if (!R)
1097     return nullptr;
1098   if (Optional<DefinedOrUnknownSVal> DefinedSize =
1099           Size.getAs<DefinedOrUnknownSVal>()) {
1100     SValBuilder &svalBuilder = C.getSValBuilder();
1101     DefinedOrUnknownSVal Extent = R->getExtent(svalBuilder);
1102     DefinedOrUnknownSVal extentMatchesSize =
1103         svalBuilder.evalEQ(State, Extent, *DefinedSize);
1104 
1105     State = State->assume(extentMatchesSize, true);
1106     assert(State);
1107   }
1108 
1109   return MallocUpdateRefState(C, CE, State, Family);
1110 }
1111 
1112 ProgramStateRef MallocChecker::MallocUpdateRefState(CheckerContext &C,
1113                                                     const Expr *E,
1114                                                     ProgramStateRef State,
1115                                                     AllocationFamily Family) {
1116   if (!State)
1117     return nullptr;
1118 
1119   // Get the return value.
1120   SVal retVal = State->getSVal(E, C.getLocationContext());
1121 
1122   // We expect the malloc functions to return a pointer.
1123   if (!retVal.getAs<Loc>())
1124     return nullptr;
1125 
1126   SymbolRef Sym = retVal.getAsLocSymbol();
1127   assert(Sym);
1128 
1129   // Set the symbol's state to Allocated.
1130   return State->set<RegionState>(Sym, RefState::getAllocated(Family, E));
1131 }
1132 
1133 ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C,
1134                                            const CallExpr *CE,
1135                                            const OwnershipAttr *Att,
1136                                            ProgramStateRef State) const {
1137   if (!State)
1138     return nullptr;
1139 
1140   if (Att->getModule() != II_malloc)
1141     return nullptr;
1142 
1143   bool ReleasedAllocated = false;
1144 
1145   for (const auto &Arg : Att->args()) {
1146     ProgramStateRef StateI = FreeMemAux(C, CE, State, Arg,
1147                                Att->getOwnKind() == OwnershipAttr::Holds,
1148                                ReleasedAllocated);
1149     if (StateI)
1150       State = StateI;
1151   }
1152   return State;
1153 }
1154 
1155 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C,
1156                                           const CallExpr *CE,
1157                                           ProgramStateRef State,
1158                                           unsigned Num,
1159                                           bool Hold,
1160                                           bool &ReleasedAllocated,
1161                                           bool ReturnsNullOnFailure) const {
1162   if (!State)
1163     return nullptr;
1164 
1165   if (CE->getNumArgs() < (Num + 1))
1166     return nullptr;
1167 
1168   return FreeMemAux(C, CE->getArg(Num), CE, State, Hold,
1169                     ReleasedAllocated, ReturnsNullOnFailure);
1170 }
1171 
1172 /// Checks if the previous call to free on the given symbol failed - if free
1173 /// failed, returns true. Also, returns the corresponding return value symbol.
1174 static bool didPreviousFreeFail(ProgramStateRef State,
1175                                 SymbolRef Sym, SymbolRef &RetStatusSymbol) {
1176   const SymbolRef *Ret = State->get<FreeReturnValue>(Sym);
1177   if (Ret) {
1178     assert(*Ret && "We should not store the null return symbol");
1179     ConstraintManager &CMgr = State->getConstraintManager();
1180     ConditionTruthVal FreeFailed = CMgr.isNull(State, *Ret);
1181     RetStatusSymbol = *Ret;
1182     return FreeFailed.isConstrainedTrue();
1183   }
1184   return false;
1185 }
1186 
1187 AllocationFamily MallocChecker::getAllocationFamily(CheckerContext &C,
1188                                                     const Stmt *S) const {
1189   if (!S)
1190     return AF_None;
1191 
1192   if (const CallExpr *CE = dyn_cast<CallExpr>(S)) {
1193     const FunctionDecl *FD = C.getCalleeDecl(CE);
1194 
1195     if (!FD)
1196       FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1197 
1198     ASTContext &Ctx = C.getASTContext();
1199 
1200     if (isCMemFunction(FD, Ctx, AF_Malloc, MemoryOperationKind::MOK_Any))
1201       return AF_Malloc;
1202 
1203     if (isStandardNewDelete(FD, Ctx)) {
1204       OverloadedOperatorKind Kind = FD->getOverloadedOperator();
1205       if (Kind == OO_New || Kind == OO_Delete)
1206         return AF_CXXNew;
1207       else if (Kind == OO_Array_New || Kind == OO_Array_Delete)
1208         return AF_CXXNewArray;
1209     }
1210 
1211     if (isCMemFunction(FD, Ctx, AF_IfNameIndex, MemoryOperationKind::MOK_Any))
1212       return AF_IfNameIndex;
1213 
1214     if (isCMemFunction(FD, Ctx, AF_Alloca, MemoryOperationKind::MOK_Any))
1215       return AF_Alloca;
1216 
1217     return AF_None;
1218   }
1219 
1220   if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(S))
1221     return NE->isArray() ? AF_CXXNewArray : AF_CXXNew;
1222 
1223   if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(S))
1224     return DE->isArrayForm() ? AF_CXXNewArray : AF_CXXNew;
1225 
1226   if (isa<ObjCMessageExpr>(S))
1227     return AF_Malloc;
1228 
1229   return AF_None;
1230 }
1231 
1232 bool MallocChecker::printAllocDeallocName(raw_ostream &os, CheckerContext &C,
1233                                           const Expr *E) const {
1234   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
1235     // FIXME: This doesn't handle indirect calls.
1236     const FunctionDecl *FD = CE->getDirectCallee();
1237     if (!FD)
1238       return false;
1239 
1240     os << *FD;
1241     if (!FD->isOverloadedOperator())
1242       os << "()";
1243     return true;
1244   }
1245 
1246   if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E)) {
1247     if (Msg->isInstanceMessage())
1248       os << "-";
1249     else
1250       os << "+";
1251     Msg->getSelector().print(os);
1252     return true;
1253   }
1254 
1255   if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) {
1256     os << "'"
1257        << getOperatorSpelling(NE->getOperatorNew()->getOverloadedOperator())
1258        << "'";
1259     return true;
1260   }
1261 
1262   if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(E)) {
1263     os << "'"
1264        << getOperatorSpelling(DE->getOperatorDelete()->getOverloadedOperator())
1265        << "'";
1266     return true;
1267   }
1268 
1269   return false;
1270 }
1271 
1272 void MallocChecker::printExpectedAllocName(raw_ostream &os, CheckerContext &C,
1273                                            const Expr *E) const {
1274   AllocationFamily Family = getAllocationFamily(C, E);
1275 
1276   switch(Family) {
1277     case AF_Malloc: os << "malloc()"; return;
1278     case AF_CXXNew: os << "'new'"; return;
1279     case AF_CXXNewArray: os << "'new[]'"; return;
1280     case AF_IfNameIndex: os << "'if_nameindex()'"; return;
1281     case AF_Alloca:
1282     case AF_None: llvm_unreachable("not a deallocation expression");
1283   }
1284 }
1285 
1286 void MallocChecker::printExpectedDeallocName(raw_ostream &os,
1287                                              AllocationFamily Family) const {
1288   switch(Family) {
1289     case AF_Malloc: os << "free()"; return;
1290     case AF_CXXNew: os << "'delete'"; return;
1291     case AF_CXXNewArray: os << "'delete[]'"; return;
1292     case AF_IfNameIndex: os << "'if_freenameindex()'"; return;
1293     case AF_Alloca:
1294     case AF_None: llvm_unreachable("suspicious argument");
1295   }
1296 }
1297 
1298 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C,
1299                                           const Expr *ArgExpr,
1300                                           const Expr *ParentExpr,
1301                                           ProgramStateRef State,
1302                                           bool Hold,
1303                                           bool &ReleasedAllocated,
1304                                           bool ReturnsNullOnFailure) const {
1305 
1306   if (!State)
1307     return nullptr;
1308 
1309   SVal ArgVal = State->getSVal(ArgExpr, C.getLocationContext());
1310   if (!ArgVal.getAs<DefinedOrUnknownSVal>())
1311     return nullptr;
1312   DefinedOrUnknownSVal location = ArgVal.castAs<DefinedOrUnknownSVal>();
1313 
1314   // Check for null dereferences.
1315   if (!location.getAs<Loc>())
1316     return nullptr;
1317 
1318   // The explicit NULL case, no operation is performed.
1319   ProgramStateRef notNullState, nullState;
1320   std::tie(notNullState, nullState) = State->assume(location);
1321   if (nullState && !notNullState)
1322     return nullptr;
1323 
1324   // Unknown values could easily be okay
1325   // Undefined values are handled elsewhere
1326   if (ArgVal.isUnknownOrUndef())
1327     return nullptr;
1328 
1329   const MemRegion *R = ArgVal.getAsRegion();
1330 
1331   // Nonlocs can't be freed, of course.
1332   // Non-region locations (labels and fixed addresses) also shouldn't be freed.
1333   if (!R) {
1334     ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr);
1335     return nullptr;
1336   }
1337 
1338   R = R->StripCasts();
1339 
1340   // Blocks might show up as heap data, but should not be free()d
1341   if (isa<BlockDataRegion>(R)) {
1342     ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr);
1343     return nullptr;
1344   }
1345 
1346   const MemSpaceRegion *MS = R->getMemorySpace();
1347 
1348   // Parameters, locals, statics, globals, and memory returned by
1349   // __builtin_alloca() shouldn't be freed.
1350   if (!(isa<UnknownSpaceRegion>(MS) || isa<HeapSpaceRegion>(MS))) {
1351     // FIXME: at the time this code was written, malloc() regions were
1352     // represented by conjured symbols, which are all in UnknownSpaceRegion.
1353     // This means that there isn't actually anything from HeapSpaceRegion
1354     // that should be freed, even though we allow it here.
1355     // Of course, free() can work on memory allocated outside the current
1356     // function, so UnknownSpaceRegion is always a possibility.
1357     // False negatives are better than false positives.
1358 
1359     if (isa<AllocaRegion>(R))
1360       ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange());
1361     else
1362       ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr);
1363 
1364     return nullptr;
1365   }
1366 
1367   const SymbolicRegion *SrBase = dyn_cast<SymbolicRegion>(R->getBaseRegion());
1368   // Various cases could lead to non-symbol values here.
1369   // For now, ignore them.
1370   if (!SrBase)
1371     return nullptr;
1372 
1373   SymbolRef SymBase = SrBase->getSymbol();
1374   const RefState *RsBase = State->get<RegionState>(SymBase);
1375   SymbolRef PreviousRetStatusSymbol = nullptr;
1376 
1377   if (RsBase) {
1378 
1379     // Memory returned by alloca() shouldn't be freed.
1380     if (RsBase->getAllocationFamily() == AF_Alloca) {
1381       ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange());
1382       return nullptr;
1383     }
1384 
1385     // Check for double free first.
1386     if ((RsBase->isReleased() || RsBase->isRelinquished()) &&
1387         !didPreviousFreeFail(State, SymBase, PreviousRetStatusSymbol)) {
1388       ReportDoubleFree(C, ParentExpr->getSourceRange(), RsBase->isReleased(),
1389                        SymBase, PreviousRetStatusSymbol);
1390       return nullptr;
1391 
1392     // If the pointer is allocated or escaped, but we are now trying to free it,
1393     // check that the call to free is proper.
1394     } else if (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero() ||
1395                RsBase->isEscaped()) {
1396 
1397       // Check if an expected deallocation function matches the real one.
1398       bool DeallocMatchesAlloc =
1399         RsBase->getAllocationFamily() == getAllocationFamily(C, ParentExpr);
1400       if (!DeallocMatchesAlloc) {
1401         ReportMismatchedDealloc(C, ArgExpr->getSourceRange(),
1402                                 ParentExpr, RsBase, SymBase, Hold);
1403         return nullptr;
1404       }
1405 
1406       // Check if the memory location being freed is the actual location
1407       // allocated, or an offset.
1408       RegionOffset Offset = R->getAsOffset();
1409       if (Offset.isValid() &&
1410           !Offset.hasSymbolicOffset() &&
1411           Offset.getOffset() != 0) {
1412         const Expr *AllocExpr = cast<Expr>(RsBase->getStmt());
1413         ReportOffsetFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr,
1414                          AllocExpr);
1415         return nullptr;
1416       }
1417     }
1418   }
1419 
1420   ReleasedAllocated = (RsBase != nullptr) && (RsBase->isAllocated() ||
1421                                               RsBase->isAllocatedOfSizeZero());
1422 
1423   // Clean out the info on previous call to free return info.
1424   State = State->remove<FreeReturnValue>(SymBase);
1425 
1426   // Keep track of the return value. If it is NULL, we will know that free
1427   // failed.
1428   if (ReturnsNullOnFailure) {
1429     SVal RetVal = C.getSVal(ParentExpr);
1430     SymbolRef RetStatusSymbol = RetVal.getAsSymbol();
1431     if (RetStatusSymbol) {
1432       C.getSymbolManager().addSymbolDependency(SymBase, RetStatusSymbol);
1433       State = State->set<FreeReturnValue>(SymBase, RetStatusSymbol);
1434     }
1435   }
1436 
1437   AllocationFamily Family = RsBase ? RsBase->getAllocationFamily()
1438                                    : getAllocationFamily(C, ParentExpr);
1439   // Normal free.
1440   if (Hold)
1441     return State->set<RegionState>(SymBase,
1442                                    RefState::getRelinquished(Family,
1443                                                              ParentExpr));
1444 
1445   return State->set<RegionState>(SymBase,
1446                                  RefState::getReleased(Family, ParentExpr));
1447 }
1448 
1449 Optional<MallocChecker::CheckKind>
1450 MallocChecker::getCheckIfTracked(AllocationFamily Family,
1451                                  bool IsALeakCheck) const {
1452   switch (Family) {
1453   case AF_Malloc:
1454   case AF_Alloca:
1455   case AF_IfNameIndex: {
1456     if (ChecksEnabled[CK_MallocChecker])
1457       return CK_MallocChecker;
1458 
1459     return Optional<MallocChecker::CheckKind>();
1460   }
1461   case AF_CXXNew:
1462   case AF_CXXNewArray: {
1463     if (IsALeakCheck) {
1464       if (ChecksEnabled[CK_NewDeleteLeaksChecker])
1465         return CK_NewDeleteLeaksChecker;
1466     }
1467     else {
1468       if (ChecksEnabled[CK_NewDeleteChecker])
1469         return CK_NewDeleteChecker;
1470     }
1471     return Optional<MallocChecker::CheckKind>();
1472   }
1473   case AF_None: {
1474     llvm_unreachable("no family");
1475   }
1476   }
1477   llvm_unreachable("unhandled family");
1478 }
1479 
1480 Optional<MallocChecker::CheckKind>
1481 MallocChecker::getCheckIfTracked(CheckerContext &C,
1482                                  const Stmt *AllocDeallocStmt,
1483                                  bool IsALeakCheck) const {
1484   return getCheckIfTracked(getAllocationFamily(C, AllocDeallocStmt),
1485                            IsALeakCheck);
1486 }
1487 
1488 Optional<MallocChecker::CheckKind>
1489 MallocChecker::getCheckIfTracked(CheckerContext &C, SymbolRef Sym,
1490                                  bool IsALeakCheck) const {
1491   const RefState *RS = C.getState()->get<RegionState>(Sym);
1492   assert(RS);
1493   return getCheckIfTracked(RS->getAllocationFamily(), IsALeakCheck);
1494 }
1495 
1496 bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) {
1497   if (Optional<nonloc::ConcreteInt> IntVal = V.getAs<nonloc::ConcreteInt>())
1498     os << "an integer (" << IntVal->getValue() << ")";
1499   else if (Optional<loc::ConcreteInt> ConstAddr = V.getAs<loc::ConcreteInt>())
1500     os << "a constant address (" << ConstAddr->getValue() << ")";
1501   else if (Optional<loc::GotoLabel> Label = V.getAs<loc::GotoLabel>())
1502     os << "the address of the label '" << Label->getLabel()->getName() << "'";
1503   else
1504     return false;
1505 
1506   return true;
1507 }
1508 
1509 bool MallocChecker::SummarizeRegion(raw_ostream &os,
1510                                     const MemRegion *MR) {
1511   switch (MR->getKind()) {
1512   case MemRegion::FunctionTextRegionKind: {
1513     const NamedDecl *FD = cast<FunctionTextRegion>(MR)->getDecl();
1514     if (FD)
1515       os << "the address of the function '" << *FD << '\'';
1516     else
1517       os << "the address of a function";
1518     return true;
1519   }
1520   case MemRegion::BlockTextRegionKind:
1521     os << "block text";
1522     return true;
1523   case MemRegion::BlockDataRegionKind:
1524     // FIXME: where the block came from?
1525     os << "a block";
1526     return true;
1527   default: {
1528     const MemSpaceRegion *MS = MR->getMemorySpace();
1529 
1530     if (isa<StackLocalsSpaceRegion>(MS)) {
1531       const VarRegion *VR = dyn_cast<VarRegion>(MR);
1532       const VarDecl *VD;
1533       if (VR)
1534         VD = VR->getDecl();
1535       else
1536         VD = nullptr;
1537 
1538       if (VD)
1539         os << "the address of the local variable '" << VD->getName() << "'";
1540       else
1541         os << "the address of a local stack variable";
1542       return true;
1543     }
1544 
1545     if (isa<StackArgumentsSpaceRegion>(MS)) {
1546       const VarRegion *VR = dyn_cast<VarRegion>(MR);
1547       const VarDecl *VD;
1548       if (VR)
1549         VD = VR->getDecl();
1550       else
1551         VD = nullptr;
1552 
1553       if (VD)
1554         os << "the address of the parameter '" << VD->getName() << "'";
1555       else
1556         os << "the address of a parameter";
1557       return true;
1558     }
1559 
1560     if (isa<GlobalsSpaceRegion>(MS)) {
1561       const VarRegion *VR = dyn_cast<VarRegion>(MR);
1562       const VarDecl *VD;
1563       if (VR)
1564         VD = VR->getDecl();
1565       else
1566         VD = nullptr;
1567 
1568       if (VD) {
1569         if (VD->isStaticLocal())
1570           os << "the address of the static variable '" << VD->getName() << "'";
1571         else
1572           os << "the address of the global variable '" << VD->getName() << "'";
1573       } else
1574         os << "the address of a global variable";
1575       return true;
1576     }
1577 
1578     return false;
1579   }
1580   }
1581 }
1582 
1583 void MallocChecker::ReportBadFree(CheckerContext &C, SVal ArgVal,
1584                                   SourceRange Range,
1585                                   const Expr *DeallocExpr) const {
1586 
1587   if (!ChecksEnabled[CK_MallocChecker] &&
1588       !ChecksEnabled[CK_NewDeleteChecker])
1589     return;
1590 
1591   Optional<MallocChecker::CheckKind> CheckKind =
1592       getCheckIfTracked(C, DeallocExpr);
1593   if (!CheckKind.hasValue())
1594     return;
1595 
1596   if (ExplodedNode *N = C.generateSink()) {
1597     if (!BT_BadFree[*CheckKind])
1598       BT_BadFree[*CheckKind].reset(
1599           new BugType(CheckNames[*CheckKind], "Bad free", "Memory Error"));
1600 
1601     SmallString<100> buf;
1602     llvm::raw_svector_ostream os(buf);
1603 
1604     const MemRegion *MR = ArgVal.getAsRegion();
1605     while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR))
1606       MR = ER->getSuperRegion();
1607 
1608     os << "Argument to ";
1609     if (!printAllocDeallocName(os, C, DeallocExpr))
1610       os << "deallocator";
1611 
1612     os << " is ";
1613     bool Summarized = MR ? SummarizeRegion(os, MR)
1614                          : SummarizeValue(os, ArgVal);
1615     if (Summarized)
1616       os << ", which is not memory allocated by ";
1617     else
1618       os << "not memory allocated by ";
1619 
1620     printExpectedAllocName(os, C, DeallocExpr);
1621 
1622     auto R = llvm::make_unique<BugReport>(*BT_BadFree[*CheckKind], os.str(), N);
1623     R->markInteresting(MR);
1624     R->addRange(Range);
1625     C.emitReport(std::move(R));
1626   }
1627 }
1628 
1629 void MallocChecker::ReportFreeAlloca(CheckerContext &C, SVal ArgVal,
1630                                      SourceRange Range) const {
1631 
1632   Optional<MallocChecker::CheckKind> CheckKind;
1633 
1634   if (ChecksEnabled[CK_MallocChecker])
1635     CheckKind = CK_MallocChecker;
1636   else if (ChecksEnabled[CK_MismatchedDeallocatorChecker])
1637     CheckKind = CK_MismatchedDeallocatorChecker;
1638   else
1639     return;
1640 
1641   if (ExplodedNode *N = C.generateSink()) {
1642     if (!BT_FreeAlloca[*CheckKind])
1643       BT_FreeAlloca[*CheckKind].reset(
1644           new BugType(CheckNames[*CheckKind], "Free alloca()", "Memory Error"));
1645 
1646     auto R = llvm::make_unique<BugReport>(
1647         *BT_FreeAlloca[*CheckKind],
1648         "Memory allocated by alloca() should not be deallocated", N);
1649     R->markInteresting(ArgVal.getAsRegion());
1650     R->addRange(Range);
1651     C.emitReport(std::move(R));
1652   }
1653 }
1654 
1655 void MallocChecker::ReportMismatchedDealloc(CheckerContext &C,
1656                                             SourceRange Range,
1657                                             const Expr *DeallocExpr,
1658                                             const RefState *RS,
1659                                             SymbolRef Sym,
1660                                             bool OwnershipTransferred) const {
1661 
1662   if (!ChecksEnabled[CK_MismatchedDeallocatorChecker])
1663     return;
1664 
1665   if (ExplodedNode *N = C.generateSink()) {
1666     if (!BT_MismatchedDealloc)
1667       BT_MismatchedDealloc.reset(
1668           new BugType(CheckNames[CK_MismatchedDeallocatorChecker],
1669                       "Bad deallocator", "Memory Error"));
1670 
1671     SmallString<100> buf;
1672     llvm::raw_svector_ostream os(buf);
1673 
1674     const Expr *AllocExpr = cast<Expr>(RS->getStmt());
1675     SmallString<20> AllocBuf;
1676     llvm::raw_svector_ostream AllocOs(AllocBuf);
1677     SmallString<20> DeallocBuf;
1678     llvm::raw_svector_ostream DeallocOs(DeallocBuf);
1679 
1680     if (OwnershipTransferred) {
1681       if (printAllocDeallocName(DeallocOs, C, DeallocExpr))
1682         os << DeallocOs.str() << " cannot";
1683       else
1684         os << "Cannot";
1685 
1686       os << " take ownership of memory";
1687 
1688       if (printAllocDeallocName(AllocOs, C, AllocExpr))
1689         os << " allocated by " << AllocOs.str();
1690     } else {
1691       os << "Memory";
1692       if (printAllocDeallocName(AllocOs, C, AllocExpr))
1693         os << " allocated by " << AllocOs.str();
1694 
1695       os << " should be deallocated by ";
1696         printExpectedDeallocName(os, RS->getAllocationFamily());
1697 
1698       if (printAllocDeallocName(DeallocOs, C, DeallocExpr))
1699         os << ", not " << DeallocOs.str();
1700     }
1701 
1702     auto R = llvm::make_unique<BugReport>(*BT_MismatchedDealloc, os.str(), N);
1703     R->markInteresting(Sym);
1704     R->addRange(Range);
1705     R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym));
1706     C.emitReport(std::move(R));
1707   }
1708 }
1709 
1710 void MallocChecker::ReportOffsetFree(CheckerContext &C, SVal ArgVal,
1711                                      SourceRange Range, const Expr *DeallocExpr,
1712                                      const Expr *AllocExpr) const {
1713 
1714 
1715   if (!ChecksEnabled[CK_MallocChecker] &&
1716       !ChecksEnabled[CK_NewDeleteChecker])
1717     return;
1718 
1719   Optional<MallocChecker::CheckKind> CheckKind =
1720       getCheckIfTracked(C, AllocExpr);
1721   if (!CheckKind.hasValue())
1722     return;
1723 
1724   ExplodedNode *N = C.generateSink();
1725   if (!N)
1726     return;
1727 
1728   if (!BT_OffsetFree[*CheckKind])
1729     BT_OffsetFree[*CheckKind].reset(
1730         new BugType(CheckNames[*CheckKind], "Offset free", "Memory Error"));
1731 
1732   SmallString<100> buf;
1733   llvm::raw_svector_ostream os(buf);
1734   SmallString<20> AllocNameBuf;
1735   llvm::raw_svector_ostream AllocNameOs(AllocNameBuf);
1736 
1737   const MemRegion *MR = ArgVal.getAsRegion();
1738   assert(MR && "Only MemRegion based symbols can have offset free errors");
1739 
1740   RegionOffset Offset = MR->getAsOffset();
1741   assert((Offset.isValid() &&
1742           !Offset.hasSymbolicOffset() &&
1743           Offset.getOffset() != 0) &&
1744          "Only symbols with a valid offset can have offset free errors");
1745 
1746   int offsetBytes = Offset.getOffset() / C.getASTContext().getCharWidth();
1747 
1748   os << "Argument to ";
1749   if (!printAllocDeallocName(os, C, DeallocExpr))
1750     os << "deallocator";
1751   os << " is offset by "
1752      << offsetBytes
1753      << " "
1754      << ((abs(offsetBytes) > 1) ? "bytes" : "byte")
1755      << " from the start of ";
1756   if (AllocExpr && printAllocDeallocName(AllocNameOs, C, AllocExpr))
1757     os << "memory allocated by " << AllocNameOs.str();
1758   else
1759     os << "allocated memory";
1760 
1761   auto R = llvm::make_unique<BugReport>(*BT_OffsetFree[*CheckKind], os.str(), N);
1762   R->markInteresting(MR->getBaseRegion());
1763   R->addRange(Range);
1764   C.emitReport(std::move(R));
1765 }
1766 
1767 void MallocChecker::ReportUseAfterFree(CheckerContext &C, SourceRange Range,
1768                                        SymbolRef Sym) const {
1769 
1770   if (!ChecksEnabled[CK_MallocChecker] &&
1771       !ChecksEnabled[CK_NewDeleteChecker])
1772     return;
1773 
1774   Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);
1775   if (!CheckKind.hasValue())
1776     return;
1777 
1778   if (ExplodedNode *N = C.generateSink()) {
1779     if (!BT_UseFree[*CheckKind])
1780       BT_UseFree[*CheckKind].reset(new BugType(
1781           CheckNames[*CheckKind], "Use-after-free", "Memory Error"));
1782 
1783     auto R = llvm::make_unique<BugReport>(*BT_UseFree[*CheckKind],
1784                                          "Use of memory after it is freed", N);
1785 
1786     R->markInteresting(Sym);
1787     R->addRange(Range);
1788     R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym));
1789     C.emitReport(std::move(R));
1790   }
1791 }
1792 
1793 void MallocChecker::ReportDoubleFree(CheckerContext &C, SourceRange Range,
1794                                      bool Released, SymbolRef Sym,
1795                                      SymbolRef PrevSym) const {
1796 
1797   if (!ChecksEnabled[CK_MallocChecker] &&
1798       !ChecksEnabled[CK_NewDeleteChecker])
1799     return;
1800 
1801   Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);
1802   if (!CheckKind.hasValue())
1803     return;
1804 
1805   if (ExplodedNode *N = C.generateSink()) {
1806     if (!BT_DoubleFree[*CheckKind])
1807       BT_DoubleFree[*CheckKind].reset(
1808           new BugType(CheckNames[*CheckKind], "Double free", "Memory Error"));
1809 
1810     auto R = llvm::make_unique<BugReport>(
1811         *BT_DoubleFree[*CheckKind],
1812         (Released ? "Attempt to free released memory"
1813                   : "Attempt to free non-owned memory"),
1814         N);
1815     R->addRange(Range);
1816     R->markInteresting(Sym);
1817     if (PrevSym)
1818       R->markInteresting(PrevSym);
1819     R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym));
1820     C.emitReport(std::move(R));
1821   }
1822 }
1823 
1824 void MallocChecker::ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const {
1825 
1826   if (!ChecksEnabled[CK_NewDeleteChecker])
1827     return;
1828 
1829   Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);
1830   if (!CheckKind.hasValue())
1831     return;
1832 
1833   if (ExplodedNode *N = C.generateSink()) {
1834     if (!BT_DoubleDelete)
1835       BT_DoubleDelete.reset(new BugType(CheckNames[CK_NewDeleteChecker],
1836                                         "Double delete", "Memory Error"));
1837 
1838     auto R = llvm::make_unique<BugReport>(
1839         *BT_DoubleDelete, "Attempt to delete released memory", N);
1840 
1841     R->markInteresting(Sym);
1842     R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym));
1843     C.emitReport(std::move(R));
1844   }
1845 }
1846 
1847 void MallocChecker::ReportUseZeroAllocated(CheckerContext &C,
1848                                            SourceRange Range,
1849                                            SymbolRef Sym) const {
1850 
1851   if (!ChecksEnabled[CK_MallocChecker] &&
1852       !ChecksEnabled[CK_NewDeleteChecker])
1853     return;
1854 
1855   Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);
1856 
1857   if (!CheckKind.hasValue())
1858     return;
1859 
1860   if (ExplodedNode *N = C.generateSink()) {
1861     if (!BT_UseZerroAllocated[*CheckKind])
1862       BT_UseZerroAllocated[*CheckKind].reset(new BugType(
1863           CheckNames[*CheckKind], "Use of zero allocated", "Memory Error"));
1864 
1865     auto R = llvm::make_unique<BugReport>(*BT_UseZerroAllocated[*CheckKind],
1866                                          "Use of zero-allocated memory", N);
1867 
1868     R->addRange(Range);
1869     if (Sym) {
1870       R->markInteresting(Sym);
1871       R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym));
1872     }
1873     C.emitReport(std::move(R));
1874   }
1875 }
1876 
1877 ProgramStateRef MallocChecker::ReallocMem(CheckerContext &C,
1878                                           const CallExpr *CE,
1879                                           bool FreesOnFail,
1880                                           ProgramStateRef State) const {
1881   if (!State)
1882     return nullptr;
1883 
1884   if (CE->getNumArgs() < 2)
1885     return nullptr;
1886 
1887   const Expr *arg0Expr = CE->getArg(0);
1888   const LocationContext *LCtx = C.getLocationContext();
1889   SVal Arg0Val = State->getSVal(arg0Expr, LCtx);
1890   if (!Arg0Val.getAs<DefinedOrUnknownSVal>())
1891     return nullptr;
1892   DefinedOrUnknownSVal arg0Val = Arg0Val.castAs<DefinedOrUnknownSVal>();
1893 
1894   SValBuilder &svalBuilder = C.getSValBuilder();
1895 
1896   DefinedOrUnknownSVal PtrEQ =
1897     svalBuilder.evalEQ(State, arg0Val, svalBuilder.makeNull());
1898 
1899   // Get the size argument. If there is no size arg then give up.
1900   const Expr *Arg1 = CE->getArg(1);
1901   if (!Arg1)
1902     return nullptr;
1903 
1904   // Get the value of the size argument.
1905   SVal Arg1ValG = State->getSVal(Arg1, LCtx);
1906   if (!Arg1ValG.getAs<DefinedOrUnknownSVal>())
1907     return nullptr;
1908   DefinedOrUnknownSVal Arg1Val = Arg1ValG.castAs<DefinedOrUnknownSVal>();
1909 
1910   // Compare the size argument to 0.
1911   DefinedOrUnknownSVal SizeZero =
1912     svalBuilder.evalEQ(State, Arg1Val,
1913                        svalBuilder.makeIntValWithPtrWidth(0, false));
1914 
1915   ProgramStateRef StatePtrIsNull, StatePtrNotNull;
1916   std::tie(StatePtrIsNull, StatePtrNotNull) = State->assume(PtrEQ);
1917   ProgramStateRef StateSizeIsZero, StateSizeNotZero;
1918   std::tie(StateSizeIsZero, StateSizeNotZero) = State->assume(SizeZero);
1919   // We only assume exceptional states if they are definitely true; if the
1920   // state is under-constrained, assume regular realloc behavior.
1921   bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull;
1922   bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero;
1923 
1924   // If the ptr is NULL and the size is not 0, the call is equivalent to
1925   // malloc(size).
1926   if ( PrtIsNull && !SizeIsZero) {
1927     ProgramStateRef stateMalloc = MallocMemAux(C, CE, CE->getArg(1),
1928                                                UndefinedVal(), StatePtrIsNull);
1929     return stateMalloc;
1930   }
1931 
1932   if (PrtIsNull && SizeIsZero)
1933     return nullptr;
1934 
1935   // Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size).
1936   assert(!PrtIsNull);
1937   SymbolRef FromPtr = arg0Val.getAsSymbol();
1938   SVal RetVal = State->getSVal(CE, LCtx);
1939   SymbolRef ToPtr = RetVal.getAsSymbol();
1940   if (!FromPtr || !ToPtr)
1941     return nullptr;
1942 
1943   bool ReleasedAllocated = false;
1944 
1945   // If the size is 0, free the memory.
1946   if (SizeIsZero)
1947     if (ProgramStateRef stateFree = FreeMemAux(C, CE, StateSizeIsZero, 0,
1948                                                false, ReleasedAllocated)){
1949       // The semantics of the return value are:
1950       // If size was equal to 0, either NULL or a pointer suitable to be passed
1951       // to free() is returned. We just free the input pointer and do not add
1952       // any constrains on the output pointer.
1953       return stateFree;
1954     }
1955 
1956   // Default behavior.
1957   if (ProgramStateRef stateFree =
1958         FreeMemAux(C, CE, State, 0, false, ReleasedAllocated)) {
1959 
1960     ProgramStateRef stateRealloc = MallocMemAux(C, CE, CE->getArg(1),
1961                                                 UnknownVal(), stateFree);
1962     if (!stateRealloc)
1963       return nullptr;
1964 
1965     ReallocPairKind Kind = RPToBeFreedAfterFailure;
1966     if (FreesOnFail)
1967       Kind = RPIsFreeOnFailure;
1968     else if (!ReleasedAllocated)
1969       Kind = RPDoNotTrackAfterFailure;
1970 
1971     // Record the info about the reallocated symbol so that we could properly
1972     // process failed reallocation.
1973     stateRealloc = stateRealloc->set<ReallocPairs>(ToPtr,
1974                                                    ReallocPair(FromPtr, Kind));
1975     // The reallocated symbol should stay alive for as long as the new symbol.
1976     C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr);
1977     return stateRealloc;
1978   }
1979   return nullptr;
1980 }
1981 
1982 ProgramStateRef MallocChecker::CallocMem(CheckerContext &C, const CallExpr *CE,
1983                                          ProgramStateRef State) {
1984   if (!State)
1985     return nullptr;
1986 
1987   if (CE->getNumArgs() < 2)
1988     return nullptr;
1989 
1990   SValBuilder &svalBuilder = C.getSValBuilder();
1991   const LocationContext *LCtx = C.getLocationContext();
1992   SVal count = State->getSVal(CE->getArg(0), LCtx);
1993   SVal elementSize = State->getSVal(CE->getArg(1), LCtx);
1994   SVal TotalSize = svalBuilder.evalBinOp(State, BO_Mul, count, elementSize,
1995                                         svalBuilder.getContext().getSizeType());
1996   SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy);
1997 
1998   return MallocMemAux(C, CE, TotalSize, zeroVal, State);
1999 }
2000 
2001 LeakInfo
2002 MallocChecker::getAllocationSite(const ExplodedNode *N, SymbolRef Sym,
2003                                  CheckerContext &C) const {
2004   const LocationContext *LeakContext = N->getLocationContext();
2005   // Walk the ExplodedGraph backwards and find the first node that referred to
2006   // the tracked symbol.
2007   const ExplodedNode *AllocNode = N;
2008   const MemRegion *ReferenceRegion = nullptr;
2009 
2010   while (N) {
2011     ProgramStateRef State = N->getState();
2012     if (!State->get<RegionState>(Sym))
2013       break;
2014 
2015     // Find the most recent expression bound to the symbol in the current
2016     // context.
2017       if (!ReferenceRegion) {
2018         if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) {
2019           SVal Val = State->getSVal(MR);
2020           if (Val.getAsLocSymbol() == Sym) {
2021             const VarRegion* VR = MR->getBaseRegion()->getAs<VarRegion>();
2022             // Do not show local variables belonging to a function other than
2023             // where the error is reported.
2024             if (!VR ||
2025                 (VR->getStackFrame() == LeakContext->getCurrentStackFrame()))
2026               ReferenceRegion = MR;
2027           }
2028         }
2029       }
2030 
2031     // Allocation node, is the last node in the current or parent context in
2032     // which the symbol was tracked.
2033     const LocationContext *NContext = N->getLocationContext();
2034     if (NContext == LeakContext ||
2035         NContext->isParentOf(LeakContext))
2036       AllocNode = N;
2037     N = N->pred_empty() ? nullptr : *(N->pred_begin());
2038   }
2039 
2040   return LeakInfo(AllocNode, ReferenceRegion);
2041 }
2042 
2043 void MallocChecker::reportLeak(SymbolRef Sym, ExplodedNode *N,
2044                                CheckerContext &C) const {
2045 
2046   if (!ChecksEnabled[CK_MallocChecker] &&
2047       !ChecksEnabled[CK_NewDeleteLeaksChecker])
2048     return;
2049 
2050   const RefState *RS = C.getState()->get<RegionState>(Sym);
2051   assert(RS && "cannot leak an untracked symbol");
2052   AllocationFamily Family = RS->getAllocationFamily();
2053 
2054   if (Family == AF_Alloca)
2055     return;
2056 
2057   Optional<MallocChecker::CheckKind>
2058       CheckKind = getCheckIfTracked(Family, true);
2059 
2060   if (!CheckKind.hasValue())
2061     return;
2062 
2063   assert(N);
2064   if (!BT_Leak[*CheckKind]) {
2065     BT_Leak[*CheckKind].reset(
2066         new BugType(CheckNames[*CheckKind], "Memory leak", "Memory Error"));
2067     // Leaks should not be reported if they are post-dominated by a sink:
2068     // (1) Sinks are higher importance bugs.
2069     // (2) NoReturnFunctionChecker uses sink nodes to represent paths ending
2070     //     with __noreturn functions such as assert() or exit(). We choose not
2071     //     to report leaks on such paths.
2072     BT_Leak[*CheckKind]->setSuppressOnSink(true);
2073   }
2074 
2075   // Most bug reports are cached at the location where they occurred.
2076   // With leaks, we want to unique them by the location where they were
2077   // allocated, and only report a single path.
2078   PathDiagnosticLocation LocUsedForUniqueing;
2079   const ExplodedNode *AllocNode = nullptr;
2080   const MemRegion *Region = nullptr;
2081   std::tie(AllocNode, Region) = getAllocationSite(N, Sym, C);
2082 
2083   ProgramPoint P = AllocNode->getLocation();
2084   const Stmt *AllocationStmt = nullptr;
2085   if (Optional<CallExitEnd> Exit = P.getAs<CallExitEnd>())
2086     AllocationStmt = Exit->getCalleeContext()->getCallSite();
2087   else if (Optional<StmtPoint> SP = P.getAs<StmtPoint>())
2088     AllocationStmt = SP->getStmt();
2089   if (AllocationStmt)
2090     LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocationStmt,
2091                                               C.getSourceManager(),
2092                                               AllocNode->getLocationContext());
2093 
2094   SmallString<200> buf;
2095   llvm::raw_svector_ostream os(buf);
2096   if (Region && Region->canPrintPretty()) {
2097     os << "Potential leak of memory pointed to by ";
2098     Region->printPretty(os);
2099   } else {
2100     os << "Potential memory leak";
2101   }
2102 
2103   auto R = llvm::make_unique<BugReport>(
2104       *BT_Leak[*CheckKind], os.str(), N, LocUsedForUniqueing,
2105       AllocNode->getLocationContext()->getDecl());
2106   R->markInteresting(Sym);
2107   R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym, true));
2108   C.emitReport(std::move(R));
2109 }
2110 
2111 void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper,
2112                                      CheckerContext &C) const
2113 {
2114   if (!SymReaper.hasDeadSymbols())
2115     return;
2116 
2117   ProgramStateRef state = C.getState();
2118   RegionStateTy RS = state->get<RegionState>();
2119   RegionStateTy::Factory &F = state->get_context<RegionState>();
2120 
2121   SmallVector<SymbolRef, 2> Errors;
2122   for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) {
2123     if (SymReaper.isDead(I->first)) {
2124       if (I->second.isAllocated() || I->second.isAllocatedOfSizeZero())
2125         Errors.push_back(I->first);
2126       // Remove the dead symbol from the map.
2127       RS = F.remove(RS, I->first);
2128 
2129     }
2130   }
2131 
2132   // Cleanup the Realloc Pairs Map.
2133   ReallocPairsTy RP = state->get<ReallocPairs>();
2134   for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) {
2135     if (SymReaper.isDead(I->first) ||
2136         SymReaper.isDead(I->second.ReallocatedSym)) {
2137       state = state->remove<ReallocPairs>(I->first);
2138     }
2139   }
2140 
2141   // Cleanup the FreeReturnValue Map.
2142   FreeReturnValueTy FR = state->get<FreeReturnValue>();
2143   for (FreeReturnValueTy::iterator I = FR.begin(), E = FR.end(); I != E; ++I) {
2144     if (SymReaper.isDead(I->first) ||
2145         SymReaper.isDead(I->second)) {
2146       state = state->remove<FreeReturnValue>(I->first);
2147     }
2148   }
2149 
2150   // Generate leak node.
2151   ExplodedNode *N = C.getPredecessor();
2152   if (!Errors.empty()) {
2153     static CheckerProgramPointTag Tag("MallocChecker", "DeadSymbolsLeak");
2154     N = C.addTransition(C.getState(), C.getPredecessor(), &Tag);
2155     for (SmallVectorImpl<SymbolRef>::iterator
2156            I = Errors.begin(), E = Errors.end(); I != E; ++I) {
2157       reportLeak(*I, N, C);
2158     }
2159   }
2160 
2161   C.addTransition(state->set<RegionState>(RS), N);
2162 }
2163 
2164 void MallocChecker::checkPreCall(const CallEvent &Call,
2165                                  CheckerContext &C) const {
2166 
2167   if (const CXXDestructorCall *DC = dyn_cast<CXXDestructorCall>(&Call)) {
2168     SymbolRef Sym = DC->getCXXThisVal().getAsSymbol();
2169     if (!Sym || checkDoubleDelete(Sym, C))
2170       return;
2171   }
2172 
2173   // We will check for double free in the post visit.
2174   if (const AnyFunctionCall *FC = dyn_cast<AnyFunctionCall>(&Call)) {
2175     const FunctionDecl *FD = FC->getDecl();
2176     if (!FD)
2177       return;
2178 
2179     ASTContext &Ctx = C.getASTContext();
2180     if (ChecksEnabled[CK_MallocChecker] &&
2181         (isCMemFunction(FD, Ctx, AF_Malloc, MemoryOperationKind::MOK_Free) ||
2182          isCMemFunction(FD, Ctx, AF_IfNameIndex,
2183                         MemoryOperationKind::MOK_Free)))
2184       return;
2185 
2186     if (ChecksEnabled[CK_NewDeleteChecker] &&
2187         isStandardNewDelete(FD, Ctx))
2188       return;
2189   }
2190 
2191   // Check if the callee of a method is deleted.
2192   if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(&Call)) {
2193     SymbolRef Sym = CC->getCXXThisVal().getAsSymbol();
2194     if (!Sym || checkUseAfterFree(Sym, C, CC->getCXXThisExpr()))
2195       return;
2196   }
2197 
2198   // Check arguments for being used after free.
2199   for (unsigned I = 0, E = Call.getNumArgs(); I != E; ++I) {
2200     SVal ArgSVal = Call.getArgSVal(I);
2201     if (ArgSVal.getAs<Loc>()) {
2202       SymbolRef Sym = ArgSVal.getAsSymbol();
2203       if (!Sym)
2204         continue;
2205       if (checkUseAfterFree(Sym, C, Call.getArgExpr(I)))
2206         return;
2207     }
2208   }
2209 }
2210 
2211 void MallocChecker::checkPreStmt(const ReturnStmt *S, CheckerContext &C) const {
2212   const Expr *E = S->getRetValue();
2213   if (!E)
2214     return;
2215 
2216   // Check if we are returning a symbol.
2217   ProgramStateRef State = C.getState();
2218   SVal RetVal = State->getSVal(E, C.getLocationContext());
2219   SymbolRef Sym = RetVal.getAsSymbol();
2220   if (!Sym)
2221     // If we are returning a field of the allocated struct or an array element,
2222     // the callee could still free the memory.
2223     // TODO: This logic should be a part of generic symbol escape callback.
2224     if (const MemRegion *MR = RetVal.getAsRegion())
2225       if (isa<FieldRegion>(MR) || isa<ElementRegion>(MR))
2226         if (const SymbolicRegion *BMR =
2227               dyn_cast<SymbolicRegion>(MR->getBaseRegion()))
2228           Sym = BMR->getSymbol();
2229 
2230   // Check if we are returning freed memory.
2231   if (Sym)
2232     checkUseAfterFree(Sym, C, E);
2233 }
2234 
2235 // TODO: Blocks should be either inlined or should call invalidate regions
2236 // upon invocation. After that's in place, special casing here will not be
2237 // needed.
2238 void MallocChecker::checkPostStmt(const BlockExpr *BE,
2239                                   CheckerContext &C) const {
2240 
2241   // Scan the BlockDecRefExprs for any object the retain count checker
2242   // may be tracking.
2243   if (!BE->getBlockDecl()->hasCaptures())
2244     return;
2245 
2246   ProgramStateRef state = C.getState();
2247   const BlockDataRegion *R =
2248     cast<BlockDataRegion>(state->getSVal(BE,
2249                                          C.getLocationContext()).getAsRegion());
2250 
2251   BlockDataRegion::referenced_vars_iterator I = R->referenced_vars_begin(),
2252                                             E = R->referenced_vars_end();
2253 
2254   if (I == E)
2255     return;
2256 
2257   SmallVector<const MemRegion*, 10> Regions;
2258   const LocationContext *LC = C.getLocationContext();
2259   MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager();
2260 
2261   for ( ; I != E; ++I) {
2262     const VarRegion *VR = I.getCapturedRegion();
2263     if (VR->getSuperRegion() == R) {
2264       VR = MemMgr.getVarRegion(VR->getDecl(), LC);
2265     }
2266     Regions.push_back(VR);
2267   }
2268 
2269   state =
2270     state->scanReachableSymbols<StopTrackingCallback>(Regions.data(),
2271                                     Regions.data() + Regions.size()).getState();
2272   C.addTransition(state);
2273 }
2274 
2275 bool MallocChecker::isReleased(SymbolRef Sym, CheckerContext &C) const {
2276   assert(Sym);
2277   const RefState *RS = C.getState()->get<RegionState>(Sym);
2278   return (RS && RS->isReleased());
2279 }
2280 
2281 bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C,
2282                                       const Stmt *S) const {
2283 
2284   if (isReleased(Sym, C)) {
2285     ReportUseAfterFree(C, S->getSourceRange(), Sym);
2286     return true;
2287   }
2288 
2289   return false;
2290 }
2291 
2292 void MallocChecker::checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C,
2293                                           const Stmt *S) const {
2294   assert(Sym);
2295   const RefState *RS = C.getState()->get<RegionState>(Sym);
2296 
2297   if (RS && RS->isAllocatedOfSizeZero())
2298     ReportUseZeroAllocated(C, RS->getStmt()->getSourceRange(), Sym);
2299 }
2300 
2301 bool MallocChecker::checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const {
2302 
2303   if (isReleased(Sym, C)) {
2304     ReportDoubleDelete(C, Sym);
2305     return true;
2306   }
2307   return false;
2308 }
2309 
2310 // Check if the location is a freed symbolic region.
2311 void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S,
2312                                   CheckerContext &C) const {
2313   SymbolRef Sym = l.getLocSymbolInBase();
2314   if (Sym) {
2315     checkUseAfterFree(Sym, C, S);
2316     checkUseZeroAllocated(Sym, C, S);
2317   }
2318 }
2319 
2320 // If a symbolic region is assumed to NULL (or another constant), stop tracking
2321 // it - assuming that allocation failed on this path.
2322 ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state,
2323                                               SVal Cond,
2324                                               bool Assumption) const {
2325   RegionStateTy RS = state->get<RegionState>();
2326   for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) {
2327     // If the symbol is assumed to be NULL, remove it from consideration.
2328     ConstraintManager &CMgr = state->getConstraintManager();
2329     ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey());
2330     if (AllocFailed.isConstrainedTrue())
2331       state = state->remove<RegionState>(I.getKey());
2332   }
2333 
2334   // Realloc returns 0 when reallocation fails, which means that we should
2335   // restore the state of the pointer being reallocated.
2336   ReallocPairsTy RP = state->get<ReallocPairs>();
2337   for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) {
2338     // If the symbol is assumed to be NULL, remove it from consideration.
2339     ConstraintManager &CMgr = state->getConstraintManager();
2340     ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey());
2341     if (!AllocFailed.isConstrainedTrue())
2342       continue;
2343 
2344     SymbolRef ReallocSym = I.getData().ReallocatedSym;
2345     if (const RefState *RS = state->get<RegionState>(ReallocSym)) {
2346       if (RS->isReleased()) {
2347         if (I.getData().Kind == RPToBeFreedAfterFailure)
2348           state = state->set<RegionState>(ReallocSym,
2349               RefState::getAllocated(RS->getAllocationFamily(), RS->getStmt()));
2350         else if (I.getData().Kind == RPDoNotTrackAfterFailure)
2351           state = state->remove<RegionState>(ReallocSym);
2352         else
2353           assert(I.getData().Kind == RPIsFreeOnFailure);
2354       }
2355     }
2356     state = state->remove<ReallocPairs>(I.getKey());
2357   }
2358 
2359   return state;
2360 }
2361 
2362 bool MallocChecker::mayFreeAnyEscapedMemoryOrIsModeledExplicitly(
2363                                               const CallEvent *Call,
2364                                               ProgramStateRef State,
2365                                               SymbolRef &EscapingSymbol) const {
2366   assert(Call);
2367   EscapingSymbol = nullptr;
2368 
2369   // For now, assume that any C++ or block call can free memory.
2370   // TODO: If we want to be more optimistic here, we'll need to make sure that
2371   // regions escape to C++ containers. They seem to do that even now, but for
2372   // mysterious reasons.
2373   if (!(isa<SimpleFunctionCall>(Call) || isa<ObjCMethodCall>(Call)))
2374     return true;
2375 
2376   // Check Objective-C messages by selector name.
2377   if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) {
2378     // If it's not a framework call, or if it takes a callback, assume it
2379     // can free memory.
2380     if (!Call->isInSystemHeader() || Call->hasNonZeroCallbackArg())
2381       return true;
2382 
2383     // If it's a method we know about, handle it explicitly post-call.
2384     // This should happen before the "freeWhenDone" check below.
2385     if (isKnownDeallocObjCMethodName(*Msg))
2386       return false;
2387 
2388     // If there's a "freeWhenDone" parameter, but the method isn't one we know
2389     // about, we can't be sure that the object will use free() to deallocate the
2390     // memory, so we can't model it explicitly. The best we can do is use it to
2391     // decide whether the pointer escapes.
2392     if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(*Msg))
2393       return *FreeWhenDone;
2394 
2395     // If the first selector piece ends with "NoCopy", and there is no
2396     // "freeWhenDone" parameter set to zero, we know ownership is being
2397     // transferred. Again, though, we can't be sure that the object will use
2398     // free() to deallocate the memory, so we can't model it explicitly.
2399     StringRef FirstSlot = Msg->getSelector().getNameForSlot(0);
2400     if (FirstSlot.endswith("NoCopy"))
2401       return true;
2402 
2403     // If the first selector starts with addPointer, insertPointer,
2404     // or replacePointer, assume we are dealing with NSPointerArray or similar.
2405     // This is similar to C++ containers (vector); we still might want to check
2406     // that the pointers get freed by following the container itself.
2407     if (FirstSlot.startswith("addPointer") ||
2408         FirstSlot.startswith("insertPointer") ||
2409         FirstSlot.startswith("replacePointer") ||
2410         FirstSlot.equals("valueWithPointer")) {
2411       return true;
2412     }
2413 
2414     // We should escape receiver on call to 'init'. This is especially relevant
2415     // to the receiver, as the corresponding symbol is usually not referenced
2416     // after the call.
2417     if (Msg->getMethodFamily() == OMF_init) {
2418       EscapingSymbol = Msg->getReceiverSVal().getAsSymbol();
2419       return true;
2420     }
2421 
2422     // Otherwise, assume that the method does not free memory.
2423     // Most framework methods do not free memory.
2424     return false;
2425   }
2426 
2427   // At this point the only thing left to handle is straight function calls.
2428   const FunctionDecl *FD = cast<SimpleFunctionCall>(Call)->getDecl();
2429   if (!FD)
2430     return true;
2431 
2432   ASTContext &ASTC = State->getStateManager().getContext();
2433 
2434   // If it's one of the allocation functions we can reason about, we model
2435   // its behavior explicitly.
2436   if (isMemFunction(FD, ASTC))
2437     return false;
2438 
2439   // If it's not a system call, assume it frees memory.
2440   if (!Call->isInSystemHeader())
2441     return true;
2442 
2443   // White list the system functions whose arguments escape.
2444   const IdentifierInfo *II = FD->getIdentifier();
2445   if (!II)
2446     return true;
2447   StringRef FName = II->getName();
2448 
2449   // White list the 'XXXNoCopy' CoreFoundation functions.
2450   // We specifically check these before
2451   if (FName.endswith("NoCopy")) {
2452     // Look for the deallocator argument. We know that the memory ownership
2453     // is not transferred only if the deallocator argument is
2454     // 'kCFAllocatorNull'.
2455     for (unsigned i = 1; i < Call->getNumArgs(); ++i) {
2456       const Expr *ArgE = Call->getArgExpr(i)->IgnoreParenCasts();
2457       if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(ArgE)) {
2458         StringRef DeallocatorName = DE->getFoundDecl()->getName();
2459         if (DeallocatorName == "kCFAllocatorNull")
2460           return false;
2461       }
2462     }
2463     return true;
2464   }
2465 
2466   // Associating streams with malloced buffers. The pointer can escape if
2467   // 'closefn' is specified (and if that function does free memory),
2468   // but it will not if closefn is not specified.
2469   // Currently, we do not inspect the 'closefn' function (PR12101).
2470   if (FName == "funopen")
2471     if (Call->getNumArgs() >= 4 && Call->getArgSVal(4).isConstant(0))
2472       return false;
2473 
2474   // Do not warn on pointers passed to 'setbuf' when used with std streams,
2475   // these leaks might be intentional when setting the buffer for stdio.
2476   // http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer
2477   if (FName == "setbuf" || FName =="setbuffer" ||
2478       FName == "setlinebuf" || FName == "setvbuf") {
2479     if (Call->getNumArgs() >= 1) {
2480       const Expr *ArgE = Call->getArgExpr(0)->IgnoreParenCasts();
2481       if (const DeclRefExpr *ArgDRE = dyn_cast<DeclRefExpr>(ArgE))
2482         if (const VarDecl *D = dyn_cast<VarDecl>(ArgDRE->getDecl()))
2483           if (D->getCanonicalDecl()->getName().find("std") != StringRef::npos)
2484             return true;
2485     }
2486   }
2487 
2488   // A bunch of other functions which either take ownership of a pointer or
2489   // wrap the result up in a struct or object, meaning it can be freed later.
2490   // (See RetainCountChecker.) Not all the parameters here are invalidated,
2491   // but the Malloc checker cannot differentiate between them. The right way
2492   // of doing this would be to implement a pointer escapes callback.
2493   if (FName == "CGBitmapContextCreate" ||
2494       FName == "CGBitmapContextCreateWithData" ||
2495       FName == "CVPixelBufferCreateWithBytes" ||
2496       FName == "CVPixelBufferCreateWithPlanarBytes" ||
2497       FName == "OSAtomicEnqueue") {
2498     return true;
2499   }
2500 
2501   // Handle cases where we know a buffer's /address/ can escape.
2502   // Note that the above checks handle some special cases where we know that
2503   // even though the address escapes, it's still our responsibility to free the
2504   // buffer.
2505   if (Call->argumentsMayEscape())
2506     return true;
2507 
2508   // Otherwise, assume that the function does not free memory.
2509   // Most system calls do not free the memory.
2510   return false;
2511 }
2512 
2513 static bool retTrue(const RefState *RS) {
2514   return true;
2515 }
2516 
2517 static bool checkIfNewOrNewArrayFamily(const RefState *RS) {
2518   return (RS->getAllocationFamily() == AF_CXXNewArray ||
2519           RS->getAllocationFamily() == AF_CXXNew);
2520 }
2521 
2522 ProgramStateRef MallocChecker::checkPointerEscape(ProgramStateRef State,
2523                                              const InvalidatedSymbols &Escaped,
2524                                              const CallEvent *Call,
2525                                              PointerEscapeKind Kind) const {
2526   return checkPointerEscapeAux(State, Escaped, Call, Kind, &retTrue);
2527 }
2528 
2529 ProgramStateRef MallocChecker::checkConstPointerEscape(ProgramStateRef State,
2530                                               const InvalidatedSymbols &Escaped,
2531                                               const CallEvent *Call,
2532                                               PointerEscapeKind Kind) const {
2533   return checkPointerEscapeAux(State, Escaped, Call, Kind,
2534                                &checkIfNewOrNewArrayFamily);
2535 }
2536 
2537 ProgramStateRef MallocChecker::checkPointerEscapeAux(ProgramStateRef State,
2538                                               const InvalidatedSymbols &Escaped,
2539                                               const CallEvent *Call,
2540                                               PointerEscapeKind Kind,
2541                                   bool(*CheckRefState)(const RefState*)) const {
2542   // If we know that the call does not free memory, or we want to process the
2543   // call later, keep tracking the top level arguments.
2544   SymbolRef EscapingSymbol = nullptr;
2545   if (Kind == PSK_DirectEscapeOnCall &&
2546       !mayFreeAnyEscapedMemoryOrIsModeledExplicitly(Call, State,
2547                                                     EscapingSymbol) &&
2548       !EscapingSymbol) {
2549     return State;
2550   }
2551 
2552   for (InvalidatedSymbols::const_iterator I = Escaped.begin(),
2553        E = Escaped.end();
2554        I != E; ++I) {
2555     SymbolRef sym = *I;
2556 
2557     if (EscapingSymbol && EscapingSymbol != sym)
2558       continue;
2559 
2560     if (const RefState *RS = State->get<RegionState>(sym)) {
2561       if ((RS->isAllocated() || RS->isAllocatedOfSizeZero()) &&
2562           CheckRefState(RS)) {
2563         State = State->remove<RegionState>(sym);
2564         State = State->set<RegionState>(sym, RefState::getEscaped(RS));
2565       }
2566     }
2567   }
2568   return State;
2569 }
2570 
2571 static SymbolRef findFailedReallocSymbol(ProgramStateRef currState,
2572                                          ProgramStateRef prevState) {
2573   ReallocPairsTy currMap = currState->get<ReallocPairs>();
2574   ReallocPairsTy prevMap = prevState->get<ReallocPairs>();
2575 
2576   for (ReallocPairsTy::iterator I = prevMap.begin(), E = prevMap.end();
2577        I != E; ++I) {
2578     SymbolRef sym = I.getKey();
2579     if (!currMap.lookup(sym))
2580       return sym;
2581   }
2582 
2583   return nullptr;
2584 }
2585 
2586 PathDiagnosticPiece *
2587 MallocChecker::MallocBugVisitor::VisitNode(const ExplodedNode *N,
2588                                            const ExplodedNode *PrevN,
2589                                            BugReporterContext &BRC,
2590                                            BugReport &BR) {
2591   ProgramStateRef state = N->getState();
2592   ProgramStateRef statePrev = PrevN->getState();
2593 
2594   const RefState *RS = state->get<RegionState>(Sym);
2595   const RefState *RSPrev = statePrev->get<RegionState>(Sym);
2596   if (!RS)
2597     return nullptr;
2598 
2599   const Stmt *S = nullptr;
2600   const char *Msg = nullptr;
2601   StackHintGeneratorForSymbol *StackHint = nullptr;
2602 
2603   // Retrieve the associated statement.
2604   ProgramPoint ProgLoc = N->getLocation();
2605   if (Optional<StmtPoint> SP = ProgLoc.getAs<StmtPoint>()) {
2606     S = SP->getStmt();
2607   } else if (Optional<CallExitEnd> Exit = ProgLoc.getAs<CallExitEnd>()) {
2608     S = Exit->getCalleeContext()->getCallSite();
2609   } else if (Optional<BlockEdge> Edge = ProgLoc.getAs<BlockEdge>()) {
2610     // If an assumption was made on a branch, it should be caught
2611     // here by looking at the state transition.
2612     S = Edge->getSrc()->getTerminator();
2613   }
2614 
2615   if (!S)
2616     return nullptr;
2617 
2618   // FIXME: We will eventually need to handle non-statement-based events
2619   // (__attribute__((cleanup))).
2620 
2621   // Find out if this is an interesting point and what is the kind.
2622   if (Mode == Normal) {
2623     if (isAllocated(RS, RSPrev, S)) {
2624       Msg = "Memory is allocated";
2625       StackHint = new StackHintGeneratorForSymbol(Sym,
2626                                                   "Returned allocated memory");
2627     } else if (isReleased(RS, RSPrev, S)) {
2628       Msg = "Memory is released";
2629       StackHint = new StackHintGeneratorForSymbol(Sym,
2630                                              "Returning; memory was released");
2631     } else if (isRelinquished(RS, RSPrev, S)) {
2632       Msg = "Memory ownership is transferred";
2633       StackHint = new StackHintGeneratorForSymbol(Sym, "");
2634     } else if (isReallocFailedCheck(RS, RSPrev, S)) {
2635       Mode = ReallocationFailed;
2636       Msg = "Reallocation failed";
2637       StackHint = new StackHintGeneratorForReallocationFailed(Sym,
2638                                                        "Reallocation failed");
2639 
2640       if (SymbolRef sym = findFailedReallocSymbol(state, statePrev)) {
2641         // Is it possible to fail two reallocs WITHOUT testing in between?
2642         assert((!FailedReallocSymbol || FailedReallocSymbol == sym) &&
2643           "We only support one failed realloc at a time.");
2644         BR.markInteresting(sym);
2645         FailedReallocSymbol = sym;
2646       }
2647     }
2648 
2649   // We are in a special mode if a reallocation failed later in the path.
2650   } else if (Mode == ReallocationFailed) {
2651     assert(FailedReallocSymbol && "No symbol to look for.");
2652 
2653     // Is this is the first appearance of the reallocated symbol?
2654     if (!statePrev->get<RegionState>(FailedReallocSymbol)) {
2655       // We're at the reallocation point.
2656       Msg = "Attempt to reallocate memory";
2657       StackHint = new StackHintGeneratorForSymbol(Sym,
2658                                                  "Returned reallocated memory");
2659       FailedReallocSymbol = nullptr;
2660       Mode = Normal;
2661     }
2662   }
2663 
2664   if (!Msg)
2665     return nullptr;
2666   assert(StackHint);
2667 
2668   // Generate the extra diagnostic.
2669   PathDiagnosticLocation Pos(S, BRC.getSourceManager(),
2670                              N->getLocationContext());
2671   return new PathDiagnosticEventPiece(Pos, Msg, true, StackHint);
2672 }
2673 
2674 void MallocChecker::printState(raw_ostream &Out, ProgramStateRef State,
2675                                const char *NL, const char *Sep) const {
2676 
2677   RegionStateTy RS = State->get<RegionState>();
2678 
2679   if (!RS.isEmpty()) {
2680     Out << Sep << "MallocChecker :" << NL;
2681     for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) {
2682       const RefState *RefS = State->get<RegionState>(I.getKey());
2683       AllocationFamily Family = RefS->getAllocationFamily();
2684       Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family);
2685       if (!CheckKind.hasValue())
2686          CheckKind = getCheckIfTracked(Family, true);
2687 
2688       I.getKey()->dumpToStream(Out);
2689       Out << " : ";
2690       I.getData().dump(Out);
2691       if (CheckKind.hasValue())
2692         Out << " (" << CheckNames[*CheckKind].getName() << ")";
2693       Out << NL;
2694     }
2695   }
2696 }
2697 
2698 void ento::registerNewDeleteLeaksChecker(CheckerManager &mgr) {
2699   registerCStringCheckerBasic(mgr);
2700   MallocChecker *checker = mgr.registerChecker<MallocChecker>();
2701   checker->IsOptimistic = mgr.getAnalyzerOptions().getBooleanOption(
2702       "Optimistic", false, checker);
2703   checker->ChecksEnabled[MallocChecker::CK_NewDeleteLeaksChecker] = true;
2704   checker->CheckNames[MallocChecker::CK_NewDeleteLeaksChecker] =
2705       mgr.getCurrentCheckName();
2706   // We currently treat NewDeleteLeaks checker as a subchecker of NewDelete
2707   // checker.
2708   if (!checker->ChecksEnabled[MallocChecker::CK_NewDeleteChecker])
2709     checker->ChecksEnabled[MallocChecker::CK_NewDeleteChecker] = true;
2710 }
2711 
2712 #define REGISTER_CHECKER(name)                                                 \
2713   void ento::register##name(CheckerManager &mgr) {                             \
2714     registerCStringCheckerBasic(mgr);                                          \
2715     MallocChecker *checker = mgr.registerChecker<MallocChecker>();             \
2716     checker->IsOptimistic = mgr.getAnalyzerOptions().getBooleanOption(         \
2717         "Optimistic", false, checker);                                         \
2718     checker->ChecksEnabled[MallocChecker::CK_##name] = true;                   \
2719     checker->CheckNames[MallocChecker::CK_##name] = mgr.getCurrentCheckName(); \
2720   }
2721 
2722 REGISTER_CHECKER(MallocChecker)
2723 REGISTER_CHECKER(NewDeleteChecker)
2724 REGISTER_CHECKER(MismatchedDeallocatorChecker)
2725