xref: /llvm-project/clang/lib/StaticAnalyzer/Checkers/MallocChecker.cpp (revision 8fd74ebfc03317feac43f513cb9e7d45e9215d12)
1 //=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines malloc/free checker, which checks for potential memory
10 // leaks, double free, and use-after-free problems.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
15 #include "InterCheckerAPI.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/ParentMap.h"
18 #include "clang/Basic/SourceManager.h"
19 #include "clang/Basic/TargetInfo.h"
20 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
21 #include "clang/StaticAnalyzer/Core/BugReporter/CommonBugCategories.h"
22 #include "clang/StaticAnalyzer/Core/Checker.h"
23 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
24 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
25 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
26 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
27 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
28 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/SmallString.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "AllocationState.h"
33 #include <climits>
34 #include <utility>
35 
36 using namespace clang;
37 using namespace ento;
38 
39 namespace {
40 
41 // Used to check correspondence between allocators and deallocators.
42 enum AllocationFamily {
43   AF_None,
44   AF_Malloc,
45   AF_CXXNew,
46   AF_CXXNewArray,
47   AF_IfNameIndex,
48   AF_Alloca,
49   AF_InnerBuffer
50 };
51 
52 class RefState {
53   enum Kind { // Reference to allocated memory.
54               Allocated,
55               // Reference to zero-allocated memory.
56               AllocatedOfSizeZero,
57               // Reference to released/freed memory.
58               Released,
59               // The responsibility for freeing resources has transferred from
60               // this reference. A relinquished symbol should not be freed.
61               Relinquished,
62               // We are no longer guaranteed to have observed all manipulations
63               // of this pointer/memory. For example, it could have been
64               // passed as a parameter to an opaque function.
65               Escaped
66   };
67 
68   const Stmt *S;
69   unsigned K : 3; // Kind enum, but stored as a bitfield.
70   unsigned Family : 29; // Rest of 32-bit word, currently just an allocation
71                         // family.
72 
73   RefState(Kind k, const Stmt *s, unsigned family)
74     : S(s), K(k), Family(family) {
75     assert(family != AF_None);
76   }
77 public:
78   bool isAllocated() const { return K == Allocated; }
79   bool isAllocatedOfSizeZero() const { return K == AllocatedOfSizeZero; }
80   bool isReleased() const { return K == Released; }
81   bool isRelinquished() const { return K == Relinquished; }
82   bool isEscaped() const { return K == Escaped; }
83   AllocationFamily getAllocationFamily() const {
84     return (AllocationFamily)Family;
85   }
86   const Stmt *getStmt() const { return S; }
87 
88   bool operator==(const RefState &X) const {
89     return K == X.K && S == X.S && Family == X.Family;
90   }
91 
92   static RefState getAllocated(unsigned family, const Stmt *s) {
93     return RefState(Allocated, s, family);
94   }
95   static RefState getAllocatedOfSizeZero(const RefState *RS) {
96     return RefState(AllocatedOfSizeZero, RS->getStmt(),
97                     RS->getAllocationFamily());
98   }
99   static RefState getReleased(unsigned family, const Stmt *s) {
100     return RefState(Released, s, family);
101   }
102   static RefState getRelinquished(unsigned family, const Stmt *s) {
103     return RefState(Relinquished, s, family);
104   }
105   static RefState getEscaped(const RefState *RS) {
106     return RefState(Escaped, RS->getStmt(), RS->getAllocationFamily());
107   }
108 
109   void Profile(llvm::FoldingSetNodeID &ID) const {
110     ID.AddInteger(K);
111     ID.AddPointer(S);
112     ID.AddInteger(Family);
113   }
114 
115   void dump(raw_ostream &OS) const {
116     switch (static_cast<Kind>(K)) {
117 #define CASE(ID) case ID: OS << #ID; break;
118     CASE(Allocated)
119     CASE(AllocatedOfSizeZero)
120     CASE(Released)
121     CASE(Relinquished)
122     CASE(Escaped)
123     }
124   }
125 
126   LLVM_DUMP_METHOD void dump() const { dump(llvm::errs()); }
127 };
128 
129 enum ReallocPairKind {
130   RPToBeFreedAfterFailure,
131   // The symbol has been freed when reallocation failed.
132   RPIsFreeOnFailure,
133   // The symbol does not need to be freed after reallocation fails.
134   RPDoNotTrackAfterFailure
135 };
136 
137 /// \class ReallocPair
138 /// Stores information about the symbol being reallocated by a call to
139 /// 'realloc' to allow modeling failed reallocation later in the path.
140 struct ReallocPair {
141   // The symbol which realloc reallocated.
142   SymbolRef ReallocatedSym;
143   ReallocPairKind Kind;
144 
145   ReallocPair(SymbolRef S, ReallocPairKind K) :
146     ReallocatedSym(S), Kind(K) {}
147   void Profile(llvm::FoldingSetNodeID &ID) const {
148     ID.AddInteger(Kind);
149     ID.AddPointer(ReallocatedSym);
150   }
151   bool operator==(const ReallocPair &X) const {
152     return ReallocatedSym == X.ReallocatedSym &&
153            Kind == X.Kind;
154   }
155 };
156 
157 typedef std::pair<const ExplodedNode*, const MemRegion*> LeakInfo;
158 
159 class MallocChecker : public Checker<check::DeadSymbols,
160                                      check::PointerEscape,
161                                      check::ConstPointerEscape,
162                                      check::PreStmt<ReturnStmt>,
163                                      check::EndFunction,
164                                      check::PreCall,
165                                      check::PostStmt<CallExpr>,
166                                      check::PostStmt<CXXNewExpr>,
167                                      check::NewAllocator,
168                                      check::PreStmt<CXXDeleteExpr>,
169                                      check::PostStmt<BlockExpr>,
170                                      check::PostObjCMessage,
171                                      check::Location,
172                                      eval::Assume>
173 {
174 public:
175   MallocChecker()
176       : II_alloca(nullptr), II_win_alloca(nullptr), II_malloc(nullptr),
177         II_free(nullptr), II_realloc(nullptr), II_calloc(nullptr),
178         II_valloc(nullptr), II_reallocf(nullptr), II_strndup(nullptr),
179         II_strdup(nullptr), II_win_strdup(nullptr), II_kmalloc(nullptr),
180         II_if_nameindex(nullptr), II_if_freenameindex(nullptr),
181         II_wcsdup(nullptr), II_win_wcsdup(nullptr), II_g_malloc(nullptr),
182         II_g_malloc0(nullptr), II_g_realloc(nullptr), II_g_try_malloc(nullptr),
183         II_g_try_malloc0(nullptr), II_g_try_realloc(nullptr),
184         II_g_free(nullptr), II_g_memdup(nullptr), II_g_malloc_n(nullptr),
185         II_g_malloc0_n(nullptr), II_g_realloc_n(nullptr),
186         II_g_try_malloc_n(nullptr), II_g_try_malloc0_n(nullptr),
187         II_g_try_realloc_n(nullptr) {}
188 
189   /// In pessimistic mode, the checker assumes that it does not know which
190   /// functions might free the memory.
191   enum CheckKind {
192     CK_MallocChecker,
193     CK_NewDeleteChecker,
194     CK_NewDeleteLeaksChecker,
195     CK_MismatchedDeallocatorChecker,
196     CK_InnerPointerChecker,
197     CK_NumCheckKinds
198   };
199 
200   enum class MemoryOperationKind {
201     MOK_Allocate,
202     MOK_Free,
203     MOK_Any
204   };
205 
206   DefaultBool IsOptimistic;
207 
208   DefaultBool ChecksEnabled[CK_NumCheckKinds];
209   CheckName CheckNames[CK_NumCheckKinds];
210 
211   void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
212   void checkPostStmt(const CallExpr *CE, CheckerContext &C) const;
213   void checkPostStmt(const CXXNewExpr *NE, CheckerContext &C) const;
214   void checkNewAllocator(const CXXNewExpr *NE, SVal Target,
215                          CheckerContext &C) const;
216   void checkPreStmt(const CXXDeleteExpr *DE, CheckerContext &C) const;
217   void checkPostObjCMessage(const ObjCMethodCall &Call, CheckerContext &C) const;
218   void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const;
219   void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const;
220   void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const;
221   void checkEndFunction(const ReturnStmt *S, CheckerContext &C) const;
222   ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond,
223                             bool Assumption) const;
224   void checkLocation(SVal l, bool isLoad, const Stmt *S,
225                      CheckerContext &C) const;
226 
227   ProgramStateRef checkPointerEscape(ProgramStateRef State,
228                                     const InvalidatedSymbols &Escaped,
229                                     const CallEvent *Call,
230                                     PointerEscapeKind Kind) const;
231   ProgramStateRef checkConstPointerEscape(ProgramStateRef State,
232                                           const InvalidatedSymbols &Escaped,
233                                           const CallEvent *Call,
234                                           PointerEscapeKind Kind) const;
235 
236   void printState(raw_ostream &Out, ProgramStateRef State,
237                   const char *NL, const char *Sep) const override;
238 
239 private:
240   mutable std::unique_ptr<BugType> BT_DoubleFree[CK_NumCheckKinds];
241   mutable std::unique_ptr<BugType> BT_DoubleDelete;
242   mutable std::unique_ptr<BugType> BT_Leak[CK_NumCheckKinds];
243   mutable std::unique_ptr<BugType> BT_UseFree[CK_NumCheckKinds];
244   mutable std::unique_ptr<BugType> BT_BadFree[CK_NumCheckKinds];
245   mutable std::unique_ptr<BugType> BT_FreeAlloca[CK_NumCheckKinds];
246   mutable std::unique_ptr<BugType> BT_MismatchedDealloc;
247   mutable std::unique_ptr<BugType> BT_OffsetFree[CK_NumCheckKinds];
248   mutable std::unique_ptr<BugType> BT_UseZerroAllocated[CK_NumCheckKinds];
249   mutable IdentifierInfo *II_alloca, *II_win_alloca, *II_malloc, *II_free,
250                          *II_realloc, *II_calloc, *II_valloc, *II_reallocf,
251                          *II_strndup, *II_strdup, *II_win_strdup, *II_kmalloc,
252                          *II_if_nameindex, *II_if_freenameindex, *II_wcsdup,
253                          *II_win_wcsdup, *II_g_malloc, *II_g_malloc0,
254                          *II_g_realloc, *II_g_try_malloc, *II_g_try_malloc0,
255                          *II_g_try_realloc, *II_g_free, *II_g_memdup,
256                          *II_g_malloc_n, *II_g_malloc0_n, *II_g_realloc_n,
257                          *II_g_try_malloc_n, *II_g_try_malloc0_n,
258                          *II_g_try_realloc_n;
259   mutable Optional<uint64_t> KernelZeroFlagVal;
260 
261   void initIdentifierInfo(ASTContext &C) const;
262 
263   /// Determine family of a deallocation expression.
264   AllocationFamily getAllocationFamily(CheckerContext &C, const Stmt *S) const;
265 
266   /// Print names of allocators and deallocators.
267   ///
268   /// \returns true on success.
269   bool printAllocDeallocName(raw_ostream &os, CheckerContext &C,
270                              const Expr *E) const;
271 
272   /// Print expected name of an allocator based on the deallocator's
273   /// family derived from the DeallocExpr.
274   void printExpectedAllocName(raw_ostream &os, CheckerContext &C,
275                               const Expr *DeallocExpr) const;
276   /// Print expected name of a deallocator based on the allocator's
277   /// family.
278   void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family) const;
279 
280   ///@{
281   /// Check if this is one of the functions which can allocate/reallocate memory
282   /// pointed to by one of its arguments.
283   bool isMemFunction(const FunctionDecl *FD, ASTContext &C) const;
284   bool isCMemFunction(const FunctionDecl *FD,
285                       ASTContext &C,
286                       AllocationFamily Family,
287                       MemoryOperationKind MemKind) const;
288   bool isStandardNewDelete(const FunctionDecl *FD, ASTContext &C) const;
289   ///@}
290 
291   /// Process C++ operator new()'s allocation, which is the part of C++
292   /// new-expression that goes before the constructor.
293   void processNewAllocation(const CXXNewExpr *NE, CheckerContext &C,
294                             SVal Target) const;
295 
296   /// Perform a zero-allocation check.
297   /// The optional \p RetVal parameter specifies the newly allocated pointer
298   /// value; if unspecified, the value of expression \p E is used.
299   ProgramStateRef ProcessZeroAllocation(CheckerContext &C, const Expr *E,
300                                         const unsigned AllocationSizeArg,
301                                         ProgramStateRef State,
302                                         Optional<SVal> RetVal = None) const;
303 
304   ProgramStateRef MallocMemReturnsAttr(CheckerContext &C,
305                                        const CallExpr *CE,
306                                        const OwnershipAttr* Att,
307                                        ProgramStateRef State) const;
308   static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE,
309                                       const Expr *SizeEx, SVal Init,
310                                       ProgramStateRef State,
311                                       AllocationFamily Family = AF_Malloc);
312   static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE,
313                                       SVal SizeEx, SVal Init,
314                                       ProgramStateRef State,
315                                       AllocationFamily Family = AF_Malloc);
316 
317   static ProgramStateRef addExtentSize(CheckerContext &C, const CXXNewExpr *NE,
318                                        ProgramStateRef State, SVal Target);
319 
320   // Check if this malloc() for special flags. At present that means M_ZERO or
321   // __GFP_ZERO (in which case, treat it like calloc).
322   llvm::Optional<ProgramStateRef>
323   performKernelMalloc(const CallExpr *CE, CheckerContext &C,
324                       const ProgramStateRef &State) const;
325 
326   /// Update the RefState to reflect the new memory allocation.
327   /// The optional \p RetVal parameter specifies the newly allocated pointer
328   /// value; if unspecified, the value of expression \p E is used.
329   static ProgramStateRef
330   MallocUpdateRefState(CheckerContext &C, const Expr *E, ProgramStateRef State,
331                        AllocationFamily Family = AF_Malloc,
332                        Optional<SVal> RetVal = None);
333 
334   ProgramStateRef FreeMemAttr(CheckerContext &C, const CallExpr *CE,
335                               const OwnershipAttr* Att,
336                               ProgramStateRef State) const;
337   ProgramStateRef FreeMemAux(CheckerContext &C, const CallExpr *CE,
338                              ProgramStateRef state, unsigned Num,
339                              bool Hold,
340                              bool &ReleasedAllocated,
341                              bool ReturnsNullOnFailure = false) const;
342   ProgramStateRef FreeMemAux(CheckerContext &C, const Expr *Arg,
343                              const Expr *ParentExpr,
344                              ProgramStateRef State,
345                              bool Hold,
346                              bool &ReleasedAllocated,
347                              bool ReturnsNullOnFailure = false) const;
348 
349   ProgramStateRef ReallocMemAux(CheckerContext &C, const CallExpr *CE,
350                                 bool FreesMemOnFailure,
351                                 ProgramStateRef State,
352                                 bool SuffixWithN = false) const;
353   static SVal evalMulForBufferSize(CheckerContext &C, const Expr *Blocks,
354                                    const Expr *BlockBytes);
355   static ProgramStateRef CallocMem(CheckerContext &C, const CallExpr *CE,
356                                    ProgramStateRef State);
357 
358   /// Check if the memory associated with this symbol was released.
359   bool isReleased(SymbolRef Sym, CheckerContext &C) const;
360 
361   bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S) const;
362 
363   void checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C,
364                              const Stmt *S) const;
365 
366   bool checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const;
367 
368   /// Check if the function is known free memory, or if it is
369   /// "interesting" and should be modeled explicitly.
370   ///
371   /// \param [out] EscapingSymbol A function might not free memory in general,
372   ///   but could be known to free a particular symbol. In this case, false is
373   ///   returned and the single escaping symbol is returned through the out
374   ///   parameter.
375   ///
376   /// We assume that pointers do not escape through calls to system functions
377   /// not handled by this checker.
378   bool mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent *Call,
379                                    ProgramStateRef State,
380                                    SymbolRef &EscapingSymbol) const;
381 
382   // Implementation of the checkPointerEscape callbacks.
383   ProgramStateRef checkPointerEscapeAux(ProgramStateRef State,
384                                   const InvalidatedSymbols &Escaped,
385                                   const CallEvent *Call,
386                                   PointerEscapeKind Kind,
387                                   bool(*CheckRefState)(const RefState*)) const;
388 
389   // Implementation of the checkPreStmt and checkEndFunction callbacks.
390   void checkEscapeOnReturn(const ReturnStmt *S, CheckerContext &C) const;
391 
392   ///@{
393   /// Tells if a given family/call/symbol is tracked by the current checker.
394   /// Sets CheckKind to the kind of the checker responsible for this
395   /// family/call/symbol.
396   Optional<CheckKind> getCheckIfTracked(AllocationFamily Family,
397                                         bool IsALeakCheck = false) const;
398   Optional<CheckKind> getCheckIfTracked(CheckerContext &C,
399                                         const Stmt *AllocDeallocStmt,
400                                         bool IsALeakCheck = false) const;
401   Optional<CheckKind> getCheckIfTracked(CheckerContext &C, SymbolRef Sym,
402                                         bool IsALeakCheck = false) const;
403   ///@}
404   static bool SummarizeValue(raw_ostream &os, SVal V);
405   static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR);
406   void ReportBadFree(CheckerContext &C, SVal ArgVal, SourceRange Range,
407                      const Expr *DeallocExpr) const;
408   void ReportFreeAlloca(CheckerContext &C, SVal ArgVal,
409                         SourceRange Range) const;
410   void ReportMismatchedDealloc(CheckerContext &C, SourceRange Range,
411                                const Expr *DeallocExpr, const RefState *RS,
412                                SymbolRef Sym, bool OwnershipTransferred) const;
413   void ReportOffsetFree(CheckerContext &C, SVal ArgVal, SourceRange Range,
414                         const Expr *DeallocExpr,
415                         const Expr *AllocExpr = nullptr) const;
416   void ReportUseAfterFree(CheckerContext &C, SourceRange Range,
417                           SymbolRef Sym) const;
418   void ReportDoubleFree(CheckerContext &C, SourceRange Range, bool Released,
419                         SymbolRef Sym, SymbolRef PrevSym) const;
420 
421   void ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const;
422 
423   void ReportUseZeroAllocated(CheckerContext &C, SourceRange Range,
424                               SymbolRef Sym) const;
425 
426   void ReportFunctionPointerFree(CheckerContext &C, SVal ArgVal,
427                                  SourceRange Range, const Expr *FreeExpr) const;
428 
429   /// Find the location of the allocation for Sym on the path leading to the
430   /// exploded node N.
431   LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym,
432                              CheckerContext &C) const;
433 
434   void reportLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const;
435 
436   /// The bug visitor which allows us to print extra diagnostics along the
437   /// BugReport path. For example, showing the allocation site of the leaked
438   /// region.
439   class MallocBugVisitor final : public BugReporterVisitor {
440   protected:
441     enum NotificationMode {
442       Normal,
443       ReallocationFailed
444     };
445 
446     // The allocated region symbol tracked by the main analysis.
447     SymbolRef Sym;
448 
449     // The mode we are in, i.e. what kind of diagnostics will be emitted.
450     NotificationMode Mode;
451 
452     // A symbol from when the primary region should have been reallocated.
453     SymbolRef FailedReallocSymbol;
454 
455     // A C++ destructor stack frame in which memory was released. Used for
456     // miscellaneous false positive suppression.
457     const StackFrameContext *ReleaseDestructorLC;
458 
459     bool IsLeak;
460 
461   public:
462     MallocBugVisitor(SymbolRef S, bool isLeak = false)
463         : Sym(S), Mode(Normal), FailedReallocSymbol(nullptr),
464           ReleaseDestructorLC(nullptr), IsLeak(isLeak) {}
465 
466     static void *getTag() {
467       static int Tag = 0;
468       return &Tag;
469     }
470 
471     void Profile(llvm::FoldingSetNodeID &ID) const override {
472       ID.AddPointer(getTag());
473       ID.AddPointer(Sym);
474     }
475 
476     inline bool isAllocated(const RefState *S, const RefState *SPrev,
477                             const Stmt *Stmt) {
478       // Did not track -> allocated. Other state (released) -> allocated.
479       return (Stmt && (isa<CallExpr>(Stmt) || isa<CXXNewExpr>(Stmt)) &&
480               (S && (S->isAllocated() || S->isAllocatedOfSizeZero())) &&
481               (!SPrev || !(SPrev->isAllocated() ||
482                            SPrev->isAllocatedOfSizeZero())));
483     }
484 
485     inline bool isReleased(const RefState *S, const RefState *SPrev,
486                            const Stmt *Stmt) {
487       // Did not track -> released. Other state (allocated) -> released.
488       // The statement associated with the release might be missing.
489       bool IsReleased = (S && S->isReleased()) &&
490                         (!SPrev || !SPrev->isReleased());
491       assert(!IsReleased ||
492              (Stmt && (isa<CallExpr>(Stmt) || isa<CXXDeleteExpr>(Stmt))) ||
493              (!Stmt && S->getAllocationFamily() == AF_InnerBuffer));
494       return IsReleased;
495     }
496 
497     inline bool isRelinquished(const RefState *S, const RefState *SPrev,
498                                const Stmt *Stmt) {
499       // Did not track -> relinquished. Other state (allocated) -> relinquished.
500       return (Stmt && (isa<CallExpr>(Stmt) || isa<ObjCMessageExpr>(Stmt) ||
501                                               isa<ObjCPropertyRefExpr>(Stmt)) &&
502               (S && S->isRelinquished()) &&
503               (!SPrev || !SPrev->isRelinquished()));
504     }
505 
506     inline bool isReallocFailedCheck(const RefState *S, const RefState *SPrev,
507                                      const Stmt *Stmt) {
508       // If the expression is not a call, and the state change is
509       // released -> allocated, it must be the realloc return value
510       // check. If we have to handle more cases here, it might be cleaner just
511       // to track this extra bit in the state itself.
512       return ((!Stmt || !isa<CallExpr>(Stmt)) &&
513               (S && (S->isAllocated() || S->isAllocatedOfSizeZero())) &&
514               (SPrev && !(SPrev->isAllocated() ||
515                           SPrev->isAllocatedOfSizeZero())));
516     }
517 
518     std::shared_ptr<PathDiagnosticPiece> VisitNode(const ExplodedNode *N,
519                                                    BugReporterContext &BRC,
520                                                    BugReport &BR) override;
521 
522     std::shared_ptr<PathDiagnosticPiece>
523     getEndPath(BugReporterContext &BRC, const ExplodedNode *EndPathNode,
524                BugReport &BR) override {
525       if (!IsLeak)
526         return nullptr;
527 
528       PathDiagnosticLocation L =
529         PathDiagnosticLocation::createEndOfPath(EndPathNode,
530                                                 BRC.getSourceManager());
531       // Do not add the statement itself as a range in case of leak.
532       return std::make_shared<PathDiagnosticEventPiece>(L, BR.getDescription(),
533                                                          false);
534     }
535 
536   private:
537     class StackHintGeneratorForReallocationFailed
538         : public StackHintGeneratorForSymbol {
539     public:
540       StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M)
541         : StackHintGeneratorForSymbol(S, M) {}
542 
543       std::string getMessageForArg(const Expr *ArgE,
544                                    unsigned ArgIndex) override {
545         // Printed parameters start at 1, not 0.
546         ++ArgIndex;
547 
548         SmallString<200> buf;
549         llvm::raw_svector_ostream os(buf);
550 
551         os << "Reallocation of " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex)
552            << " parameter failed";
553 
554         return os.str();
555       }
556 
557       std::string getMessageForReturn(const CallExpr *CallExpr) override {
558         return "Reallocation of returned value failed";
559       }
560     };
561   };
562 };
563 } // end anonymous namespace
564 
565 REGISTER_MAP_WITH_PROGRAMSTATE(RegionState, SymbolRef, RefState)
566 REGISTER_MAP_WITH_PROGRAMSTATE(ReallocPairs, SymbolRef, ReallocPair)
567 REGISTER_SET_WITH_PROGRAMSTATE(ReallocSizeZeroSymbols, SymbolRef)
568 
569 // A map from the freed symbol to the symbol representing the return value of
570 // the free function.
571 REGISTER_MAP_WITH_PROGRAMSTATE(FreeReturnValue, SymbolRef, SymbolRef)
572 
573 namespace {
574 class StopTrackingCallback final : public SymbolVisitor {
575   ProgramStateRef state;
576 public:
577   StopTrackingCallback(ProgramStateRef st) : state(std::move(st)) {}
578   ProgramStateRef getState() const { return state; }
579 
580   bool VisitSymbol(SymbolRef sym) override {
581     state = state->remove<RegionState>(sym);
582     return true;
583   }
584 };
585 } // end anonymous namespace
586 
587 void MallocChecker::initIdentifierInfo(ASTContext &Ctx) const {
588   if (II_malloc)
589     return;
590   II_alloca = &Ctx.Idents.get("alloca");
591   II_malloc = &Ctx.Idents.get("malloc");
592   II_free = &Ctx.Idents.get("free");
593   II_realloc = &Ctx.Idents.get("realloc");
594   II_reallocf = &Ctx.Idents.get("reallocf");
595   II_calloc = &Ctx.Idents.get("calloc");
596   II_valloc = &Ctx.Idents.get("valloc");
597   II_strdup = &Ctx.Idents.get("strdup");
598   II_strndup = &Ctx.Idents.get("strndup");
599   II_wcsdup = &Ctx.Idents.get("wcsdup");
600   II_kmalloc = &Ctx.Idents.get("kmalloc");
601   II_if_nameindex = &Ctx.Idents.get("if_nameindex");
602   II_if_freenameindex = &Ctx.Idents.get("if_freenameindex");
603 
604   //MSVC uses `_`-prefixed instead, so we check for them too.
605   II_win_strdup = &Ctx.Idents.get("_strdup");
606   II_win_wcsdup = &Ctx.Idents.get("_wcsdup");
607   II_win_alloca = &Ctx.Idents.get("_alloca");
608 
609   // Glib
610   II_g_malloc = &Ctx.Idents.get("g_malloc");
611   II_g_malloc0 = &Ctx.Idents.get("g_malloc0");
612   II_g_realloc = &Ctx.Idents.get("g_realloc");
613   II_g_try_malloc = &Ctx.Idents.get("g_try_malloc");
614   II_g_try_malloc0 = &Ctx.Idents.get("g_try_malloc0");
615   II_g_try_realloc = &Ctx.Idents.get("g_try_realloc");
616   II_g_free = &Ctx.Idents.get("g_free");
617   II_g_memdup = &Ctx.Idents.get("g_memdup");
618   II_g_malloc_n = &Ctx.Idents.get("g_malloc_n");
619   II_g_malloc0_n = &Ctx.Idents.get("g_malloc0_n");
620   II_g_realloc_n = &Ctx.Idents.get("g_realloc_n");
621   II_g_try_malloc_n = &Ctx.Idents.get("g_try_malloc_n");
622   II_g_try_malloc0_n = &Ctx.Idents.get("g_try_malloc0_n");
623   II_g_try_realloc_n = &Ctx.Idents.get("g_try_realloc_n");
624 }
625 
626 bool MallocChecker::isMemFunction(const FunctionDecl *FD, ASTContext &C) const {
627   if (isCMemFunction(FD, C, AF_Malloc, MemoryOperationKind::MOK_Any))
628     return true;
629 
630   if (isCMemFunction(FD, C, AF_IfNameIndex, MemoryOperationKind::MOK_Any))
631     return true;
632 
633   if (isCMemFunction(FD, C, AF_Alloca, MemoryOperationKind::MOK_Any))
634     return true;
635 
636   if (isStandardNewDelete(FD, C))
637     return true;
638 
639   return false;
640 }
641 
642 bool MallocChecker::isCMemFunction(const FunctionDecl *FD,
643                                    ASTContext &C,
644                                    AllocationFamily Family,
645                                    MemoryOperationKind MemKind) const {
646   if (!FD)
647     return false;
648 
649   bool CheckFree = (MemKind == MemoryOperationKind::MOK_Any ||
650                     MemKind == MemoryOperationKind::MOK_Free);
651   bool CheckAlloc = (MemKind == MemoryOperationKind::MOK_Any ||
652                      MemKind == MemoryOperationKind::MOK_Allocate);
653 
654   if (FD->getKind() == Decl::Function) {
655     const IdentifierInfo *FunI = FD->getIdentifier();
656     initIdentifierInfo(C);
657 
658     if (Family == AF_Malloc && CheckFree) {
659       if (FunI == II_free || FunI == II_realloc || FunI == II_reallocf ||
660           FunI == II_g_free)
661         return true;
662     }
663 
664     if (Family == AF_Malloc && CheckAlloc) {
665       if (FunI == II_malloc || FunI == II_realloc || FunI == II_reallocf ||
666           FunI == II_calloc || FunI == II_valloc || FunI == II_strdup ||
667           FunI == II_win_strdup || FunI == II_strndup || FunI == II_wcsdup ||
668           FunI == II_win_wcsdup || FunI == II_kmalloc ||
669           FunI == II_g_malloc || FunI == II_g_malloc0 ||
670           FunI == II_g_realloc || FunI == II_g_try_malloc ||
671           FunI == II_g_try_malloc0 || FunI == II_g_try_realloc ||
672           FunI == II_g_memdup || FunI == II_g_malloc_n ||
673           FunI == II_g_malloc0_n || FunI == II_g_realloc_n ||
674           FunI == II_g_try_malloc_n || FunI == II_g_try_malloc0_n ||
675           FunI == II_g_try_realloc_n)
676         return true;
677     }
678 
679     if (Family == AF_IfNameIndex && CheckFree) {
680       if (FunI == II_if_freenameindex)
681         return true;
682     }
683 
684     if (Family == AF_IfNameIndex && CheckAlloc) {
685       if (FunI == II_if_nameindex)
686         return true;
687     }
688 
689     if (Family == AF_Alloca && CheckAlloc) {
690       if (FunI == II_alloca || FunI == II_win_alloca)
691         return true;
692     }
693   }
694 
695   if (Family != AF_Malloc)
696     return false;
697 
698   if (IsOptimistic && FD->hasAttrs()) {
699     for (const auto *I : FD->specific_attrs<OwnershipAttr>()) {
700       OwnershipAttr::OwnershipKind OwnKind = I->getOwnKind();
701       if(OwnKind == OwnershipAttr::Takes || OwnKind == OwnershipAttr::Holds) {
702         if (CheckFree)
703           return true;
704       } else if (OwnKind == OwnershipAttr::Returns) {
705         if (CheckAlloc)
706           return true;
707       }
708     }
709   }
710 
711   return false;
712 }
713 
714 // Tells if the callee is one of the builtin new/delete operators, including
715 // placement operators and other standard overloads.
716 bool MallocChecker::isStandardNewDelete(const FunctionDecl *FD,
717                                         ASTContext &C) const {
718   if (!FD)
719     return false;
720 
721   OverloadedOperatorKind Kind = FD->getOverloadedOperator();
722   if (Kind != OO_New && Kind != OO_Array_New &&
723       Kind != OO_Delete && Kind != OO_Array_Delete)
724     return false;
725 
726   // This is standard if and only if it's not defined in a user file.
727   SourceLocation L = FD->getLocation();
728   // If the header for operator delete is not included, it's still defined
729   // in an invalid source location. Check to make sure we don't crash.
730   return !L.isValid() || C.getSourceManager().isInSystemHeader(L);
731 }
732 
733 llvm::Optional<ProgramStateRef> MallocChecker::performKernelMalloc(
734   const CallExpr *CE, CheckerContext &C, const ProgramStateRef &State) const {
735   // 3-argument malloc(), as commonly used in {Free,Net,Open}BSD Kernels:
736   //
737   // void *malloc(unsigned long size, struct malloc_type *mtp, int flags);
738   //
739   // One of the possible flags is M_ZERO, which means 'give me back an
740   // allocation which is already zeroed', like calloc.
741 
742   // 2-argument kmalloc(), as used in the Linux kernel:
743   //
744   // void *kmalloc(size_t size, gfp_t flags);
745   //
746   // Has the similar flag value __GFP_ZERO.
747 
748   // This logic is largely cloned from O_CREAT in UnixAPIChecker, maybe some
749   // code could be shared.
750 
751   ASTContext &Ctx = C.getASTContext();
752   llvm::Triple::OSType OS = Ctx.getTargetInfo().getTriple().getOS();
753 
754   if (!KernelZeroFlagVal.hasValue()) {
755     if (OS == llvm::Triple::FreeBSD)
756       KernelZeroFlagVal = 0x0100;
757     else if (OS == llvm::Triple::NetBSD)
758       KernelZeroFlagVal = 0x0002;
759     else if (OS == llvm::Triple::OpenBSD)
760       KernelZeroFlagVal = 0x0008;
761     else if (OS == llvm::Triple::Linux)
762       // __GFP_ZERO
763       KernelZeroFlagVal = 0x8000;
764     else
765       // FIXME: We need a more general way of getting the M_ZERO value.
766       // See also: O_CREAT in UnixAPIChecker.cpp.
767 
768       // Fall back to normal malloc behavior on platforms where we don't
769       // know M_ZERO.
770       return None;
771   }
772 
773   // We treat the last argument as the flags argument, and callers fall-back to
774   // normal malloc on a None return. This works for the FreeBSD kernel malloc
775   // as well as Linux kmalloc.
776   if (CE->getNumArgs() < 2)
777     return None;
778 
779   const Expr *FlagsEx = CE->getArg(CE->getNumArgs() - 1);
780   const SVal V = C.getSVal(FlagsEx);
781   if (!V.getAs<NonLoc>()) {
782     // The case where 'V' can be a location can only be due to a bad header,
783     // so in this case bail out.
784     return None;
785   }
786 
787   NonLoc Flags = V.castAs<NonLoc>();
788   NonLoc ZeroFlag = C.getSValBuilder()
789       .makeIntVal(KernelZeroFlagVal.getValue(), FlagsEx->getType())
790       .castAs<NonLoc>();
791   SVal MaskedFlagsUC = C.getSValBuilder().evalBinOpNN(State, BO_And,
792                                                       Flags, ZeroFlag,
793                                                       FlagsEx->getType());
794   if (MaskedFlagsUC.isUnknownOrUndef())
795     return None;
796   DefinedSVal MaskedFlags = MaskedFlagsUC.castAs<DefinedSVal>();
797 
798   // Check if maskedFlags is non-zero.
799   ProgramStateRef TrueState, FalseState;
800   std::tie(TrueState, FalseState) = State->assume(MaskedFlags);
801 
802   // If M_ZERO is set, treat this like calloc (initialized).
803   if (TrueState && !FalseState) {
804     SVal ZeroVal = C.getSValBuilder().makeZeroVal(Ctx.CharTy);
805     return MallocMemAux(C, CE, CE->getArg(0), ZeroVal, TrueState);
806   }
807 
808   return None;
809 }
810 
811 SVal MallocChecker::evalMulForBufferSize(CheckerContext &C, const Expr *Blocks,
812                                          const Expr *BlockBytes) {
813   SValBuilder &SB = C.getSValBuilder();
814   SVal BlocksVal = C.getSVal(Blocks);
815   SVal BlockBytesVal = C.getSVal(BlockBytes);
816   ProgramStateRef State = C.getState();
817   SVal TotalSize = SB.evalBinOp(State, BO_Mul, BlocksVal, BlockBytesVal,
818                                 SB.getContext().getSizeType());
819   return TotalSize;
820 }
821 
822 void MallocChecker::checkPostStmt(const CallExpr *CE, CheckerContext &C) const {
823   if (C.wasInlined)
824     return;
825 
826   const FunctionDecl *FD = C.getCalleeDecl(CE);
827   if (!FD)
828     return;
829 
830   ProgramStateRef State = C.getState();
831   bool ReleasedAllocatedMemory = false;
832 
833   if (FD->getKind() == Decl::Function) {
834     initIdentifierInfo(C.getASTContext());
835     IdentifierInfo *FunI = FD->getIdentifier();
836 
837     if (FunI == II_malloc || FunI == II_g_malloc || FunI == II_g_try_malloc) {
838       if (CE->getNumArgs() < 1)
839         return;
840       if (CE->getNumArgs() < 3) {
841         State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State);
842         if (CE->getNumArgs() == 1)
843           State = ProcessZeroAllocation(C, CE, 0, State);
844       } else if (CE->getNumArgs() == 3) {
845         llvm::Optional<ProgramStateRef> MaybeState =
846           performKernelMalloc(CE, C, State);
847         if (MaybeState.hasValue())
848           State = MaybeState.getValue();
849         else
850           State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State);
851       }
852     } else if (FunI == II_kmalloc) {
853       if (CE->getNumArgs() < 1)
854         return;
855       llvm::Optional<ProgramStateRef> MaybeState =
856         performKernelMalloc(CE, C, State);
857       if (MaybeState.hasValue())
858         State = MaybeState.getValue();
859       else
860         State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State);
861     } else if (FunI == II_valloc) {
862       if (CE->getNumArgs() < 1)
863         return;
864       State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State);
865       State = ProcessZeroAllocation(C, CE, 0, State);
866     } else if (FunI == II_realloc || FunI == II_g_realloc ||
867                FunI == II_g_try_realloc) {
868       State = ReallocMemAux(C, CE, false, State);
869       State = ProcessZeroAllocation(C, CE, 1, State);
870     } else if (FunI == II_reallocf) {
871       State = ReallocMemAux(C, CE, true, State);
872       State = ProcessZeroAllocation(C, CE, 1, State);
873     } else if (FunI == II_calloc) {
874       State = CallocMem(C, CE, State);
875       State = ProcessZeroAllocation(C, CE, 0, State);
876       State = ProcessZeroAllocation(C, CE, 1, State);
877     } else if (FunI == II_free || FunI == II_g_free) {
878       State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory);
879     } else if (FunI == II_strdup || FunI == II_win_strdup ||
880                FunI == II_wcsdup || FunI == II_win_wcsdup) {
881       State = MallocUpdateRefState(C, CE, State);
882     } else if (FunI == II_strndup) {
883       State = MallocUpdateRefState(C, CE, State);
884     } else if (FunI == II_alloca || FunI == II_win_alloca) {
885       if (CE->getNumArgs() < 1)
886         return;
887       State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State,
888                            AF_Alloca);
889       State = ProcessZeroAllocation(C, CE, 0, State);
890     } else if (isStandardNewDelete(FD, C.getASTContext())) {
891       // Process direct calls to operator new/new[]/delete/delete[] functions
892       // as distinct from new/new[]/delete/delete[] expressions that are
893       // processed by the checkPostStmt callbacks for CXXNewExpr and
894       // CXXDeleteExpr.
895       OverloadedOperatorKind K = FD->getOverloadedOperator();
896       if (K == OO_New) {
897         State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State,
898                              AF_CXXNew);
899         State = ProcessZeroAllocation(C, CE, 0, State);
900       }
901       else if (K == OO_Array_New) {
902         State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State,
903                              AF_CXXNewArray);
904         State = ProcessZeroAllocation(C, CE, 0, State);
905       }
906       else if (K == OO_Delete || K == OO_Array_Delete)
907         State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory);
908       else
909         llvm_unreachable("not a new/delete operator");
910     } else if (FunI == II_if_nameindex) {
911       // Should we model this differently? We can allocate a fixed number of
912       // elements with zeros in the last one.
913       State = MallocMemAux(C, CE, UnknownVal(), UnknownVal(), State,
914                            AF_IfNameIndex);
915     } else if (FunI == II_if_freenameindex) {
916       State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory);
917     } else if (FunI == II_g_malloc0 || FunI == II_g_try_malloc0) {
918       if (CE->getNumArgs() < 1)
919         return;
920       SValBuilder &svalBuilder = C.getSValBuilder();
921       SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy);
922       State = MallocMemAux(C, CE, CE->getArg(0), zeroVal, State);
923       State = ProcessZeroAllocation(C, CE, 0, State);
924     } else if (FunI == II_g_memdup) {
925       if (CE->getNumArgs() < 2)
926         return;
927       State = MallocMemAux(C, CE, CE->getArg(1), UndefinedVal(), State);
928       State = ProcessZeroAllocation(C, CE, 1, State);
929     } else if (FunI == II_g_malloc_n || FunI == II_g_try_malloc_n ||
930                FunI == II_g_malloc0_n || FunI == II_g_try_malloc0_n) {
931       if (CE->getNumArgs() < 2)
932         return;
933       SVal Init = UndefinedVal();
934       if (FunI == II_g_malloc0_n || FunI == II_g_try_malloc0_n) {
935         SValBuilder &SB = C.getSValBuilder();
936         Init = SB.makeZeroVal(SB.getContext().CharTy);
937       }
938       SVal TotalSize = evalMulForBufferSize(C, CE->getArg(0), CE->getArg(1));
939       State = MallocMemAux(C, CE, TotalSize, Init, State);
940       State = ProcessZeroAllocation(C, CE, 0, State);
941       State = ProcessZeroAllocation(C, CE, 1, State);
942     } else if (FunI == II_g_realloc_n || FunI == II_g_try_realloc_n) {
943       if (CE->getNumArgs() < 3)
944         return;
945       State = ReallocMemAux(C, CE, false, State, true);
946       State = ProcessZeroAllocation(C, CE, 1, State);
947       State = ProcessZeroAllocation(C, CE, 2, State);
948     }
949   }
950 
951   if (IsOptimistic || ChecksEnabled[CK_MismatchedDeallocatorChecker]) {
952     // Check all the attributes, if there are any.
953     // There can be multiple of these attributes.
954     if (FD->hasAttrs())
955       for (const auto *I : FD->specific_attrs<OwnershipAttr>()) {
956         switch (I->getOwnKind()) {
957         case OwnershipAttr::Returns:
958           State = MallocMemReturnsAttr(C, CE, I, State);
959           break;
960         case OwnershipAttr::Takes:
961         case OwnershipAttr::Holds:
962           State = FreeMemAttr(C, CE, I, State);
963           break;
964         }
965       }
966   }
967   C.addTransition(State);
968 }
969 
970 // Performs a 0-sized allocations check.
971 ProgramStateRef MallocChecker::ProcessZeroAllocation(
972     CheckerContext &C, const Expr *E, const unsigned AllocationSizeArg,
973     ProgramStateRef State, Optional<SVal> RetVal) const {
974   if (!State)
975     return nullptr;
976 
977   if (!RetVal)
978     RetVal = C.getSVal(E);
979 
980   const Expr *Arg = nullptr;
981 
982   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
983     Arg = CE->getArg(AllocationSizeArg);
984   }
985   else if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) {
986     if (NE->isArray())
987       Arg = NE->getArraySize();
988     else
989       return State;
990   }
991   else
992     llvm_unreachable("not a CallExpr or CXXNewExpr");
993 
994   assert(Arg);
995 
996   Optional<DefinedSVal> DefArgVal = C.getSVal(Arg).getAs<DefinedSVal>();
997 
998   if (!DefArgVal)
999     return State;
1000 
1001   // Check if the allocation size is 0.
1002   ProgramStateRef TrueState, FalseState;
1003   SValBuilder &SvalBuilder = C.getSValBuilder();
1004   DefinedSVal Zero =
1005       SvalBuilder.makeZeroVal(Arg->getType()).castAs<DefinedSVal>();
1006 
1007   std::tie(TrueState, FalseState) =
1008       State->assume(SvalBuilder.evalEQ(State, *DefArgVal, Zero));
1009 
1010   if (TrueState && !FalseState) {
1011     SymbolRef Sym = RetVal->getAsLocSymbol();
1012     if (!Sym)
1013       return State;
1014 
1015     const RefState *RS = State->get<RegionState>(Sym);
1016     if (RS) {
1017       if (RS->isAllocated())
1018         return TrueState->set<RegionState>(Sym,
1019                                           RefState::getAllocatedOfSizeZero(RS));
1020       else
1021         return State;
1022     } else {
1023       // Case of zero-size realloc. Historically 'realloc(ptr, 0)' is treated as
1024       // 'free(ptr)' and the returned value from 'realloc(ptr, 0)' is not
1025       // tracked. Add zero-reallocated Sym to the state to catch references
1026       // to zero-allocated memory.
1027       return TrueState->add<ReallocSizeZeroSymbols>(Sym);
1028     }
1029   }
1030 
1031   // Assume the value is non-zero going forward.
1032   assert(FalseState);
1033   return FalseState;
1034 }
1035 
1036 static QualType getDeepPointeeType(QualType T) {
1037   QualType Result = T, PointeeType = T->getPointeeType();
1038   while (!PointeeType.isNull()) {
1039     Result = PointeeType;
1040     PointeeType = PointeeType->getPointeeType();
1041   }
1042   return Result;
1043 }
1044 
1045 static bool treatUnusedNewEscaped(const CXXNewExpr *NE) {
1046 
1047   const CXXConstructExpr *ConstructE = NE->getConstructExpr();
1048   if (!ConstructE)
1049     return false;
1050 
1051   if (!NE->getAllocatedType()->getAsCXXRecordDecl())
1052     return false;
1053 
1054   const CXXConstructorDecl *CtorD = ConstructE->getConstructor();
1055 
1056   // Iterate over the constructor parameters.
1057   for (const auto *CtorParam : CtorD->parameters()) {
1058 
1059     QualType CtorParamPointeeT = CtorParam->getType()->getPointeeType();
1060     if (CtorParamPointeeT.isNull())
1061       continue;
1062 
1063     CtorParamPointeeT = getDeepPointeeType(CtorParamPointeeT);
1064 
1065     if (CtorParamPointeeT->getAsCXXRecordDecl())
1066       return true;
1067   }
1068 
1069   return false;
1070 }
1071 
1072 void MallocChecker::processNewAllocation(const CXXNewExpr *NE,
1073                                          CheckerContext &C,
1074                                          SVal Target) const {
1075   if (!isStandardNewDelete(NE->getOperatorNew(), C.getASTContext()))
1076     return;
1077 
1078   ParentMap &PM = C.getLocationContext()->getParentMap();
1079   if (!PM.isConsumedExpr(NE) && treatUnusedNewEscaped(NE))
1080     return;
1081 
1082   ProgramStateRef State = C.getState();
1083   // The return value from operator new is bound to a specified initialization
1084   // value (if any) and we don't want to loose this value. So we call
1085   // MallocUpdateRefState() instead of MallocMemAux() which breaks the
1086   // existing binding.
1087   State = MallocUpdateRefState(C, NE, State, NE->isArray() ? AF_CXXNewArray
1088                                                            : AF_CXXNew, Target);
1089   State = addExtentSize(C, NE, State, Target);
1090   State = ProcessZeroAllocation(C, NE, 0, State, Target);
1091   C.addTransition(State);
1092 }
1093 
1094 void MallocChecker::checkPostStmt(const CXXNewExpr *NE,
1095                                   CheckerContext &C) const {
1096   if (!C.getAnalysisManager().getAnalyzerOptions().MayInlineCXXAllocator)
1097     processNewAllocation(NE, C, C.getSVal(NE));
1098 }
1099 
1100 void MallocChecker::checkNewAllocator(const CXXNewExpr *NE, SVal Target,
1101                                       CheckerContext &C) const {
1102   if (!C.wasInlined)
1103     processNewAllocation(NE, C, Target);
1104 }
1105 
1106 // Sets the extent value of the MemRegion allocated by
1107 // new expression NE to its size in Bytes.
1108 //
1109 ProgramStateRef MallocChecker::addExtentSize(CheckerContext &C,
1110                                              const CXXNewExpr *NE,
1111                                              ProgramStateRef State,
1112                                              SVal Target) {
1113   if (!State)
1114     return nullptr;
1115   SValBuilder &svalBuilder = C.getSValBuilder();
1116   SVal ElementCount;
1117   const SubRegion *Region;
1118   if (NE->isArray()) {
1119     const Expr *SizeExpr = NE->getArraySize();
1120     ElementCount = C.getSVal(SizeExpr);
1121     // Store the extent size for the (symbolic)region
1122     // containing the elements.
1123     Region = Target.getAsRegion()
1124                  ->getAs<SubRegion>()
1125                  ->StripCasts()
1126                  ->getAs<SubRegion>();
1127   } else {
1128     ElementCount = svalBuilder.makeIntVal(1, true);
1129     Region = Target.getAsRegion()->getAs<SubRegion>();
1130   }
1131   assert(Region);
1132 
1133   // Set the region's extent equal to the Size in Bytes.
1134   QualType ElementType = NE->getAllocatedType();
1135   ASTContext &AstContext = C.getASTContext();
1136   CharUnits TypeSize = AstContext.getTypeSizeInChars(ElementType);
1137 
1138   if (ElementCount.getAs<NonLoc>()) {
1139     DefinedOrUnknownSVal Extent = Region->getExtent(svalBuilder);
1140     // size in Bytes = ElementCount*TypeSize
1141     SVal SizeInBytes = svalBuilder.evalBinOpNN(
1142         State, BO_Mul, ElementCount.castAs<NonLoc>(),
1143         svalBuilder.makeArrayIndex(TypeSize.getQuantity()),
1144         svalBuilder.getArrayIndexType());
1145     DefinedOrUnknownSVal extentMatchesSize = svalBuilder.evalEQ(
1146         State, Extent, SizeInBytes.castAs<DefinedOrUnknownSVal>());
1147     State = State->assume(extentMatchesSize, true);
1148   }
1149   return State;
1150 }
1151 
1152 void MallocChecker::checkPreStmt(const CXXDeleteExpr *DE,
1153                                  CheckerContext &C) const {
1154 
1155   if (!ChecksEnabled[CK_NewDeleteChecker])
1156     if (SymbolRef Sym = C.getSVal(DE->getArgument()).getAsSymbol())
1157       checkUseAfterFree(Sym, C, DE->getArgument());
1158 
1159   if (!isStandardNewDelete(DE->getOperatorDelete(), C.getASTContext()))
1160     return;
1161 
1162   ProgramStateRef State = C.getState();
1163   bool ReleasedAllocated;
1164   State = FreeMemAux(C, DE->getArgument(), DE, State,
1165                      /*Hold*/false, ReleasedAllocated);
1166 
1167   C.addTransition(State);
1168 }
1169 
1170 static bool isKnownDeallocObjCMethodName(const ObjCMethodCall &Call) {
1171   // If the first selector piece is one of the names below, assume that the
1172   // object takes ownership of the memory, promising to eventually deallocate it
1173   // with free().
1174   // Ex:  [NSData dataWithBytesNoCopy:bytes length:10];
1175   // (...unless a 'freeWhenDone' parameter is false, but that's checked later.)
1176   StringRef FirstSlot = Call.getSelector().getNameForSlot(0);
1177   return FirstSlot == "dataWithBytesNoCopy" ||
1178          FirstSlot == "initWithBytesNoCopy" ||
1179          FirstSlot == "initWithCharactersNoCopy";
1180 }
1181 
1182 static Optional<bool> getFreeWhenDoneArg(const ObjCMethodCall &Call) {
1183   Selector S = Call.getSelector();
1184 
1185   // FIXME: We should not rely on fully-constrained symbols being folded.
1186   for (unsigned i = 1; i < S.getNumArgs(); ++i)
1187     if (S.getNameForSlot(i).equals("freeWhenDone"))
1188       return !Call.getArgSVal(i).isZeroConstant();
1189 
1190   return None;
1191 }
1192 
1193 void MallocChecker::checkPostObjCMessage(const ObjCMethodCall &Call,
1194                                          CheckerContext &C) const {
1195   if (C.wasInlined)
1196     return;
1197 
1198   if (!isKnownDeallocObjCMethodName(Call))
1199     return;
1200 
1201   if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call))
1202     if (!*FreeWhenDone)
1203       return;
1204 
1205   bool ReleasedAllocatedMemory;
1206   ProgramStateRef State = FreeMemAux(C, Call.getArgExpr(0),
1207                                      Call.getOriginExpr(), C.getState(),
1208                                      /*Hold=*/true, ReleasedAllocatedMemory,
1209                                      /*RetNullOnFailure=*/true);
1210 
1211   C.addTransition(State);
1212 }
1213 
1214 ProgramStateRef
1215 MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallExpr *CE,
1216                                     const OwnershipAttr *Att,
1217                                     ProgramStateRef State) const {
1218   if (!State)
1219     return nullptr;
1220 
1221   if (Att->getModule() != II_malloc)
1222     return nullptr;
1223 
1224   OwnershipAttr::args_iterator I = Att->args_begin(), E = Att->args_end();
1225   if (I != E) {
1226     return MallocMemAux(C, CE, CE->getArg(I->getASTIndex()), UndefinedVal(),
1227                         State);
1228   }
1229   return MallocMemAux(C, CE, UnknownVal(), UndefinedVal(), State);
1230 }
1231 
1232 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C,
1233                                             const CallExpr *CE,
1234                                             const Expr *SizeEx, SVal Init,
1235                                             ProgramStateRef State,
1236                                             AllocationFamily Family) {
1237   if (!State)
1238     return nullptr;
1239 
1240   return MallocMemAux(C, CE, C.getSVal(SizeEx), Init, State, Family);
1241 }
1242 
1243 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C,
1244                                            const CallExpr *CE,
1245                                            SVal Size, SVal Init,
1246                                            ProgramStateRef State,
1247                                            AllocationFamily Family) {
1248   if (!State)
1249     return nullptr;
1250 
1251   // We expect the malloc functions to return a pointer.
1252   if (!Loc::isLocType(CE->getType()))
1253     return nullptr;
1254 
1255   // Bind the return value to the symbolic value from the heap region.
1256   // TODO: We could rewrite post visit to eval call; 'malloc' does not have
1257   // side effects other than what we model here.
1258   unsigned Count = C.blockCount();
1259   SValBuilder &svalBuilder = C.getSValBuilder();
1260   const LocationContext *LCtx = C.getPredecessor()->getLocationContext();
1261   DefinedSVal RetVal = svalBuilder.getConjuredHeapSymbolVal(CE, LCtx, Count)
1262       .castAs<DefinedSVal>();
1263   State = State->BindExpr(CE, C.getLocationContext(), RetVal);
1264 
1265   // Fill the region with the initialization value.
1266   State = State->bindDefaultInitial(RetVal, Init, LCtx);
1267 
1268   // Set the region's extent equal to the Size parameter.
1269   const SymbolicRegion *R =
1270       dyn_cast_or_null<SymbolicRegion>(RetVal.getAsRegion());
1271   if (!R)
1272     return nullptr;
1273   if (Optional<DefinedOrUnknownSVal> DefinedSize =
1274           Size.getAs<DefinedOrUnknownSVal>()) {
1275     SValBuilder &svalBuilder = C.getSValBuilder();
1276     DefinedOrUnknownSVal Extent = R->getExtent(svalBuilder);
1277     DefinedOrUnknownSVal extentMatchesSize =
1278         svalBuilder.evalEQ(State, Extent, *DefinedSize);
1279 
1280     State = State->assume(extentMatchesSize, true);
1281     assert(State);
1282   }
1283 
1284   return MallocUpdateRefState(C, CE, State, Family);
1285 }
1286 
1287 ProgramStateRef MallocChecker::MallocUpdateRefState(CheckerContext &C,
1288                                                     const Expr *E,
1289                                                     ProgramStateRef State,
1290                                                     AllocationFamily Family,
1291                                                     Optional<SVal> RetVal) {
1292   if (!State)
1293     return nullptr;
1294 
1295   // Get the return value.
1296   if (!RetVal)
1297     RetVal = C.getSVal(E);
1298 
1299   // We expect the malloc functions to return a pointer.
1300   if (!RetVal->getAs<Loc>())
1301     return nullptr;
1302 
1303   SymbolRef Sym = RetVal->getAsLocSymbol();
1304   // This is a return value of a function that was not inlined, such as malloc()
1305   // or new(). We've checked that in the caller. Therefore, it must be a symbol.
1306   assert(Sym);
1307 
1308   // Set the symbol's state to Allocated.
1309   return State->set<RegionState>(Sym, RefState::getAllocated(Family, E));
1310 }
1311 
1312 ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C,
1313                                            const CallExpr *CE,
1314                                            const OwnershipAttr *Att,
1315                                            ProgramStateRef State) const {
1316   if (!State)
1317     return nullptr;
1318 
1319   if (Att->getModule() != II_malloc)
1320     return nullptr;
1321 
1322   bool ReleasedAllocated = false;
1323 
1324   for (const auto &Arg : Att->args()) {
1325     ProgramStateRef StateI = FreeMemAux(
1326         C, CE, State, Arg.getASTIndex(),
1327         Att->getOwnKind() == OwnershipAttr::Holds, ReleasedAllocated);
1328     if (StateI)
1329       State = StateI;
1330   }
1331   return State;
1332 }
1333 
1334 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C,
1335                                           const CallExpr *CE,
1336                                           ProgramStateRef State,
1337                                           unsigned Num,
1338                                           bool Hold,
1339                                           bool &ReleasedAllocated,
1340                                           bool ReturnsNullOnFailure) const {
1341   if (!State)
1342     return nullptr;
1343 
1344   if (CE->getNumArgs() < (Num + 1))
1345     return nullptr;
1346 
1347   return FreeMemAux(C, CE->getArg(Num), CE, State, Hold,
1348                     ReleasedAllocated, ReturnsNullOnFailure);
1349 }
1350 
1351 /// Checks if the previous call to free on the given symbol failed - if free
1352 /// failed, returns true. Also, returns the corresponding return value symbol.
1353 static bool didPreviousFreeFail(ProgramStateRef State,
1354                                 SymbolRef Sym, SymbolRef &RetStatusSymbol) {
1355   const SymbolRef *Ret = State->get<FreeReturnValue>(Sym);
1356   if (Ret) {
1357     assert(*Ret && "We should not store the null return symbol");
1358     ConstraintManager &CMgr = State->getConstraintManager();
1359     ConditionTruthVal FreeFailed = CMgr.isNull(State, *Ret);
1360     RetStatusSymbol = *Ret;
1361     return FreeFailed.isConstrainedTrue();
1362   }
1363   return false;
1364 }
1365 
1366 AllocationFamily MallocChecker::getAllocationFamily(CheckerContext &C,
1367                                                     const Stmt *S) const {
1368   if (!S)
1369     return AF_None;
1370 
1371   if (const CallExpr *CE = dyn_cast<CallExpr>(S)) {
1372     const FunctionDecl *FD = C.getCalleeDecl(CE);
1373 
1374     if (!FD)
1375       FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1376 
1377     ASTContext &Ctx = C.getASTContext();
1378 
1379     if (isCMemFunction(FD, Ctx, AF_Malloc, MemoryOperationKind::MOK_Any))
1380       return AF_Malloc;
1381 
1382     if (isStandardNewDelete(FD, Ctx)) {
1383       OverloadedOperatorKind Kind = FD->getOverloadedOperator();
1384       if (Kind == OO_New || Kind == OO_Delete)
1385         return AF_CXXNew;
1386       else if (Kind == OO_Array_New || Kind == OO_Array_Delete)
1387         return AF_CXXNewArray;
1388     }
1389 
1390     if (isCMemFunction(FD, Ctx, AF_IfNameIndex, MemoryOperationKind::MOK_Any))
1391       return AF_IfNameIndex;
1392 
1393     if (isCMemFunction(FD, Ctx, AF_Alloca, MemoryOperationKind::MOK_Any))
1394       return AF_Alloca;
1395 
1396     return AF_None;
1397   }
1398 
1399   if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(S))
1400     return NE->isArray() ? AF_CXXNewArray : AF_CXXNew;
1401 
1402   if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(S))
1403     return DE->isArrayForm() ? AF_CXXNewArray : AF_CXXNew;
1404 
1405   if (isa<ObjCMessageExpr>(S))
1406     return AF_Malloc;
1407 
1408   return AF_None;
1409 }
1410 
1411 bool MallocChecker::printAllocDeallocName(raw_ostream &os, CheckerContext &C,
1412                                           const Expr *E) const {
1413   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
1414     // FIXME: This doesn't handle indirect calls.
1415     const FunctionDecl *FD = CE->getDirectCallee();
1416     if (!FD)
1417       return false;
1418 
1419     os << *FD;
1420     if (!FD->isOverloadedOperator())
1421       os << "()";
1422     return true;
1423   }
1424 
1425   if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E)) {
1426     if (Msg->isInstanceMessage())
1427       os << "-";
1428     else
1429       os << "+";
1430     Msg->getSelector().print(os);
1431     return true;
1432   }
1433 
1434   if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) {
1435     os << "'"
1436        << getOperatorSpelling(NE->getOperatorNew()->getOverloadedOperator())
1437        << "'";
1438     return true;
1439   }
1440 
1441   if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(E)) {
1442     os << "'"
1443        << getOperatorSpelling(DE->getOperatorDelete()->getOverloadedOperator())
1444        << "'";
1445     return true;
1446   }
1447 
1448   return false;
1449 }
1450 
1451 void MallocChecker::printExpectedAllocName(raw_ostream &os, CheckerContext &C,
1452                                            const Expr *E) const {
1453   AllocationFamily Family = getAllocationFamily(C, E);
1454 
1455   switch(Family) {
1456     case AF_Malloc: os << "malloc()"; return;
1457     case AF_CXXNew: os << "'new'"; return;
1458     case AF_CXXNewArray: os << "'new[]'"; return;
1459     case AF_IfNameIndex: os << "'if_nameindex()'"; return;
1460     case AF_InnerBuffer: os << "container-specific allocator"; return;
1461     case AF_Alloca:
1462     case AF_None: llvm_unreachable("not a deallocation expression");
1463   }
1464 }
1465 
1466 void MallocChecker::printExpectedDeallocName(raw_ostream &os,
1467                                              AllocationFamily Family) const {
1468   switch(Family) {
1469     case AF_Malloc: os << "free()"; return;
1470     case AF_CXXNew: os << "'delete'"; return;
1471     case AF_CXXNewArray: os << "'delete[]'"; return;
1472     case AF_IfNameIndex: os << "'if_freenameindex()'"; return;
1473     case AF_InnerBuffer: os << "container-specific deallocator"; return;
1474     case AF_Alloca:
1475     case AF_None: llvm_unreachable("suspicious argument");
1476   }
1477 }
1478 
1479 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C,
1480                                           const Expr *ArgExpr,
1481                                           const Expr *ParentExpr,
1482                                           ProgramStateRef State,
1483                                           bool Hold,
1484                                           bool &ReleasedAllocated,
1485                                           bool ReturnsNullOnFailure) const {
1486 
1487   if (!State)
1488     return nullptr;
1489 
1490   SVal ArgVal = C.getSVal(ArgExpr);
1491   if (!ArgVal.getAs<DefinedOrUnknownSVal>())
1492     return nullptr;
1493   DefinedOrUnknownSVal location = ArgVal.castAs<DefinedOrUnknownSVal>();
1494 
1495   // Check for null dereferences.
1496   if (!location.getAs<Loc>())
1497     return nullptr;
1498 
1499   // The explicit NULL case, no operation is performed.
1500   ProgramStateRef notNullState, nullState;
1501   std::tie(notNullState, nullState) = State->assume(location);
1502   if (nullState && !notNullState)
1503     return nullptr;
1504 
1505   // Unknown values could easily be okay
1506   // Undefined values are handled elsewhere
1507   if (ArgVal.isUnknownOrUndef())
1508     return nullptr;
1509 
1510   const MemRegion *R = ArgVal.getAsRegion();
1511 
1512   // Nonlocs can't be freed, of course.
1513   // Non-region locations (labels and fixed addresses) also shouldn't be freed.
1514   if (!R) {
1515     ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr);
1516     return nullptr;
1517   }
1518 
1519   R = R->StripCasts();
1520 
1521   // Blocks might show up as heap data, but should not be free()d
1522   if (isa<BlockDataRegion>(R)) {
1523     ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr);
1524     return nullptr;
1525   }
1526 
1527   const MemSpaceRegion *MS = R->getMemorySpace();
1528 
1529   // Parameters, locals, statics, globals, and memory returned by
1530   // __builtin_alloca() shouldn't be freed.
1531   if (!(isa<UnknownSpaceRegion>(MS) || isa<HeapSpaceRegion>(MS))) {
1532     // FIXME: at the time this code was written, malloc() regions were
1533     // represented by conjured symbols, which are all in UnknownSpaceRegion.
1534     // This means that there isn't actually anything from HeapSpaceRegion
1535     // that should be freed, even though we allow it here.
1536     // Of course, free() can work on memory allocated outside the current
1537     // function, so UnknownSpaceRegion is always a possibility.
1538     // False negatives are better than false positives.
1539 
1540     if (isa<AllocaRegion>(R))
1541       ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange());
1542     else
1543       ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr);
1544 
1545     return nullptr;
1546   }
1547 
1548   const SymbolicRegion *SrBase = dyn_cast<SymbolicRegion>(R->getBaseRegion());
1549   // Various cases could lead to non-symbol values here.
1550   // For now, ignore them.
1551   if (!SrBase)
1552     return nullptr;
1553 
1554   SymbolRef SymBase = SrBase->getSymbol();
1555   const RefState *RsBase = State->get<RegionState>(SymBase);
1556   SymbolRef PreviousRetStatusSymbol = nullptr;
1557 
1558   if (RsBase) {
1559 
1560     // Memory returned by alloca() shouldn't be freed.
1561     if (RsBase->getAllocationFamily() == AF_Alloca) {
1562       ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange());
1563       return nullptr;
1564     }
1565 
1566     // Check for double free first.
1567     if ((RsBase->isReleased() || RsBase->isRelinquished()) &&
1568         !didPreviousFreeFail(State, SymBase, PreviousRetStatusSymbol)) {
1569       ReportDoubleFree(C, ParentExpr->getSourceRange(), RsBase->isReleased(),
1570                        SymBase, PreviousRetStatusSymbol);
1571       return nullptr;
1572 
1573     // If the pointer is allocated or escaped, but we are now trying to free it,
1574     // check that the call to free is proper.
1575     } else if (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero() ||
1576                RsBase->isEscaped()) {
1577 
1578       // Check if an expected deallocation function matches the real one.
1579       bool DeallocMatchesAlloc =
1580         RsBase->getAllocationFamily() == getAllocationFamily(C, ParentExpr);
1581       if (!DeallocMatchesAlloc) {
1582         ReportMismatchedDealloc(C, ArgExpr->getSourceRange(),
1583                                 ParentExpr, RsBase, SymBase, Hold);
1584         return nullptr;
1585       }
1586 
1587       // Check if the memory location being freed is the actual location
1588       // allocated, or an offset.
1589       RegionOffset Offset = R->getAsOffset();
1590       if (Offset.isValid() &&
1591           !Offset.hasSymbolicOffset() &&
1592           Offset.getOffset() != 0) {
1593         const Expr *AllocExpr = cast<Expr>(RsBase->getStmt());
1594         ReportOffsetFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr,
1595                          AllocExpr);
1596         return nullptr;
1597       }
1598     }
1599   }
1600 
1601   if (SymBase->getType()->isFunctionPointerType()) {
1602     ReportFunctionPointerFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr);
1603     return nullptr;
1604   }
1605 
1606   ReleasedAllocated = (RsBase != nullptr) && (RsBase->isAllocated() ||
1607                                               RsBase->isAllocatedOfSizeZero());
1608 
1609   // Clean out the info on previous call to free return info.
1610   State = State->remove<FreeReturnValue>(SymBase);
1611 
1612   // Keep track of the return value. If it is NULL, we will know that free
1613   // failed.
1614   if (ReturnsNullOnFailure) {
1615     SVal RetVal = C.getSVal(ParentExpr);
1616     SymbolRef RetStatusSymbol = RetVal.getAsSymbol();
1617     if (RetStatusSymbol) {
1618       C.getSymbolManager().addSymbolDependency(SymBase, RetStatusSymbol);
1619       State = State->set<FreeReturnValue>(SymBase, RetStatusSymbol);
1620     }
1621   }
1622 
1623   AllocationFamily Family = RsBase ? RsBase->getAllocationFamily()
1624                                    : getAllocationFamily(C, ParentExpr);
1625   // Normal free.
1626   if (Hold)
1627     return State->set<RegionState>(SymBase,
1628                                    RefState::getRelinquished(Family,
1629                                                              ParentExpr));
1630 
1631   return State->set<RegionState>(SymBase,
1632                                  RefState::getReleased(Family, ParentExpr));
1633 }
1634 
1635 Optional<MallocChecker::CheckKind>
1636 MallocChecker::getCheckIfTracked(AllocationFamily Family,
1637                                  bool IsALeakCheck) const {
1638   switch (Family) {
1639   case AF_Malloc:
1640   case AF_Alloca:
1641   case AF_IfNameIndex: {
1642     if (ChecksEnabled[CK_MallocChecker])
1643       return CK_MallocChecker;
1644     return None;
1645   }
1646   case AF_CXXNew:
1647   case AF_CXXNewArray: {
1648     if (IsALeakCheck) {
1649       if (ChecksEnabled[CK_NewDeleteLeaksChecker])
1650         return CK_NewDeleteLeaksChecker;
1651     }
1652     else {
1653       if (ChecksEnabled[CK_NewDeleteChecker])
1654         return CK_NewDeleteChecker;
1655     }
1656     return None;
1657   }
1658   case AF_InnerBuffer: {
1659     if (ChecksEnabled[CK_InnerPointerChecker])
1660       return CK_InnerPointerChecker;
1661     return None;
1662   }
1663   case AF_None: {
1664     llvm_unreachable("no family");
1665   }
1666   }
1667   llvm_unreachable("unhandled family");
1668 }
1669 
1670 Optional<MallocChecker::CheckKind>
1671 MallocChecker::getCheckIfTracked(CheckerContext &C,
1672                                  const Stmt *AllocDeallocStmt,
1673                                  bool IsALeakCheck) const {
1674   return getCheckIfTracked(getAllocationFamily(C, AllocDeallocStmt),
1675                            IsALeakCheck);
1676 }
1677 
1678 Optional<MallocChecker::CheckKind>
1679 MallocChecker::getCheckIfTracked(CheckerContext &C, SymbolRef Sym,
1680                                  bool IsALeakCheck) const {
1681   if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym))
1682     return CK_MallocChecker;
1683 
1684   const RefState *RS = C.getState()->get<RegionState>(Sym);
1685   assert(RS);
1686   return getCheckIfTracked(RS->getAllocationFamily(), IsALeakCheck);
1687 }
1688 
1689 bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) {
1690   if (Optional<nonloc::ConcreteInt> IntVal = V.getAs<nonloc::ConcreteInt>())
1691     os << "an integer (" << IntVal->getValue() << ")";
1692   else if (Optional<loc::ConcreteInt> ConstAddr = V.getAs<loc::ConcreteInt>())
1693     os << "a constant address (" << ConstAddr->getValue() << ")";
1694   else if (Optional<loc::GotoLabel> Label = V.getAs<loc::GotoLabel>())
1695     os << "the address of the label '" << Label->getLabel()->getName() << "'";
1696   else
1697     return false;
1698 
1699   return true;
1700 }
1701 
1702 bool MallocChecker::SummarizeRegion(raw_ostream &os,
1703                                     const MemRegion *MR) {
1704   switch (MR->getKind()) {
1705   case MemRegion::FunctionCodeRegionKind: {
1706     const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl();
1707     if (FD)
1708       os << "the address of the function '" << *FD << '\'';
1709     else
1710       os << "the address of a function";
1711     return true;
1712   }
1713   case MemRegion::BlockCodeRegionKind:
1714     os << "block text";
1715     return true;
1716   case MemRegion::BlockDataRegionKind:
1717     // FIXME: where the block came from?
1718     os << "a block";
1719     return true;
1720   default: {
1721     const MemSpaceRegion *MS = MR->getMemorySpace();
1722 
1723     if (isa<StackLocalsSpaceRegion>(MS)) {
1724       const VarRegion *VR = dyn_cast<VarRegion>(MR);
1725       const VarDecl *VD;
1726       if (VR)
1727         VD = VR->getDecl();
1728       else
1729         VD = nullptr;
1730 
1731       if (VD)
1732         os << "the address of the local variable '" << VD->getName() << "'";
1733       else
1734         os << "the address of a local stack variable";
1735       return true;
1736     }
1737 
1738     if (isa<StackArgumentsSpaceRegion>(MS)) {
1739       const VarRegion *VR = dyn_cast<VarRegion>(MR);
1740       const VarDecl *VD;
1741       if (VR)
1742         VD = VR->getDecl();
1743       else
1744         VD = nullptr;
1745 
1746       if (VD)
1747         os << "the address of the parameter '" << VD->getName() << "'";
1748       else
1749         os << "the address of a parameter";
1750       return true;
1751     }
1752 
1753     if (isa<GlobalsSpaceRegion>(MS)) {
1754       const VarRegion *VR = dyn_cast<VarRegion>(MR);
1755       const VarDecl *VD;
1756       if (VR)
1757         VD = VR->getDecl();
1758       else
1759         VD = nullptr;
1760 
1761       if (VD) {
1762         if (VD->isStaticLocal())
1763           os << "the address of the static variable '" << VD->getName() << "'";
1764         else
1765           os << "the address of the global variable '" << VD->getName() << "'";
1766       } else
1767         os << "the address of a global variable";
1768       return true;
1769     }
1770 
1771     return false;
1772   }
1773   }
1774 }
1775 
1776 void MallocChecker::ReportBadFree(CheckerContext &C, SVal ArgVal,
1777                                   SourceRange Range,
1778                                   const Expr *DeallocExpr) const {
1779 
1780   if (!ChecksEnabled[CK_MallocChecker] &&
1781       !ChecksEnabled[CK_NewDeleteChecker])
1782     return;
1783 
1784   Optional<MallocChecker::CheckKind> CheckKind =
1785       getCheckIfTracked(C, DeallocExpr);
1786   if (!CheckKind.hasValue())
1787     return;
1788 
1789   if (ExplodedNode *N = C.generateErrorNode()) {
1790     if (!BT_BadFree[*CheckKind])
1791       BT_BadFree[*CheckKind].reset(new BugType(
1792           CheckNames[*CheckKind], "Bad free", categories::MemoryError));
1793 
1794     SmallString<100> buf;
1795     llvm::raw_svector_ostream os(buf);
1796 
1797     const MemRegion *MR = ArgVal.getAsRegion();
1798     while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR))
1799       MR = ER->getSuperRegion();
1800 
1801     os << "Argument to ";
1802     if (!printAllocDeallocName(os, C, DeallocExpr))
1803       os << "deallocator";
1804 
1805     os << " is ";
1806     bool Summarized = MR ? SummarizeRegion(os, MR)
1807                          : SummarizeValue(os, ArgVal);
1808     if (Summarized)
1809       os << ", which is not memory allocated by ";
1810     else
1811       os << "not memory allocated by ";
1812 
1813     printExpectedAllocName(os, C, DeallocExpr);
1814 
1815     auto R = llvm::make_unique<BugReport>(*BT_BadFree[*CheckKind], os.str(), N);
1816     R->markInteresting(MR);
1817     R->addRange(Range);
1818     C.emitReport(std::move(R));
1819   }
1820 }
1821 
1822 void MallocChecker::ReportFreeAlloca(CheckerContext &C, SVal ArgVal,
1823                                      SourceRange Range) const {
1824 
1825   Optional<MallocChecker::CheckKind> CheckKind;
1826 
1827   if (ChecksEnabled[CK_MallocChecker])
1828     CheckKind = CK_MallocChecker;
1829   else if (ChecksEnabled[CK_MismatchedDeallocatorChecker])
1830     CheckKind = CK_MismatchedDeallocatorChecker;
1831   else
1832     return;
1833 
1834   if (ExplodedNode *N = C.generateErrorNode()) {
1835     if (!BT_FreeAlloca[*CheckKind])
1836       BT_FreeAlloca[*CheckKind].reset(new BugType(
1837           CheckNames[*CheckKind], "Free alloca()", categories::MemoryError));
1838 
1839     auto R = llvm::make_unique<BugReport>(
1840         *BT_FreeAlloca[*CheckKind],
1841         "Memory allocated by alloca() should not be deallocated", N);
1842     R->markInteresting(ArgVal.getAsRegion());
1843     R->addRange(Range);
1844     C.emitReport(std::move(R));
1845   }
1846 }
1847 
1848 void MallocChecker::ReportMismatchedDealloc(CheckerContext &C,
1849                                             SourceRange Range,
1850                                             const Expr *DeallocExpr,
1851                                             const RefState *RS,
1852                                             SymbolRef Sym,
1853                                             bool OwnershipTransferred) const {
1854 
1855   if (!ChecksEnabled[CK_MismatchedDeallocatorChecker])
1856     return;
1857 
1858   if (ExplodedNode *N = C.generateErrorNode()) {
1859     if (!BT_MismatchedDealloc)
1860       BT_MismatchedDealloc.reset(
1861           new BugType(CheckNames[CK_MismatchedDeallocatorChecker],
1862                       "Bad deallocator", categories::MemoryError));
1863 
1864     SmallString<100> buf;
1865     llvm::raw_svector_ostream os(buf);
1866 
1867     const Expr *AllocExpr = cast<Expr>(RS->getStmt());
1868     SmallString<20> AllocBuf;
1869     llvm::raw_svector_ostream AllocOs(AllocBuf);
1870     SmallString<20> DeallocBuf;
1871     llvm::raw_svector_ostream DeallocOs(DeallocBuf);
1872 
1873     if (OwnershipTransferred) {
1874       if (printAllocDeallocName(DeallocOs, C, DeallocExpr))
1875         os << DeallocOs.str() << " cannot";
1876       else
1877         os << "Cannot";
1878 
1879       os << " take ownership of memory";
1880 
1881       if (printAllocDeallocName(AllocOs, C, AllocExpr))
1882         os << " allocated by " << AllocOs.str();
1883     } else {
1884       os << "Memory";
1885       if (printAllocDeallocName(AllocOs, C, AllocExpr))
1886         os << " allocated by " << AllocOs.str();
1887 
1888       os << " should be deallocated by ";
1889         printExpectedDeallocName(os, RS->getAllocationFamily());
1890 
1891       if (printAllocDeallocName(DeallocOs, C, DeallocExpr))
1892         os << ", not " << DeallocOs.str();
1893     }
1894 
1895     auto R = llvm::make_unique<BugReport>(*BT_MismatchedDealloc, os.str(), N);
1896     R->markInteresting(Sym);
1897     R->addRange(Range);
1898     R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym));
1899     C.emitReport(std::move(R));
1900   }
1901 }
1902 
1903 void MallocChecker::ReportOffsetFree(CheckerContext &C, SVal ArgVal,
1904                                      SourceRange Range, const Expr *DeallocExpr,
1905                                      const Expr *AllocExpr) const {
1906 
1907 
1908   if (!ChecksEnabled[CK_MallocChecker] &&
1909       !ChecksEnabled[CK_NewDeleteChecker])
1910     return;
1911 
1912   Optional<MallocChecker::CheckKind> CheckKind =
1913       getCheckIfTracked(C, AllocExpr);
1914   if (!CheckKind.hasValue())
1915     return;
1916 
1917   ExplodedNode *N = C.generateErrorNode();
1918   if (!N)
1919     return;
1920 
1921   if (!BT_OffsetFree[*CheckKind])
1922     BT_OffsetFree[*CheckKind].reset(new BugType(
1923         CheckNames[*CheckKind], "Offset free", categories::MemoryError));
1924 
1925   SmallString<100> buf;
1926   llvm::raw_svector_ostream os(buf);
1927   SmallString<20> AllocNameBuf;
1928   llvm::raw_svector_ostream AllocNameOs(AllocNameBuf);
1929 
1930   const MemRegion *MR = ArgVal.getAsRegion();
1931   assert(MR && "Only MemRegion based symbols can have offset free errors");
1932 
1933   RegionOffset Offset = MR->getAsOffset();
1934   assert((Offset.isValid() &&
1935           !Offset.hasSymbolicOffset() &&
1936           Offset.getOffset() != 0) &&
1937          "Only symbols with a valid offset can have offset free errors");
1938 
1939   int offsetBytes = Offset.getOffset() / C.getASTContext().getCharWidth();
1940 
1941   os << "Argument to ";
1942   if (!printAllocDeallocName(os, C, DeallocExpr))
1943     os << "deallocator";
1944   os << " is offset by "
1945      << offsetBytes
1946      << " "
1947      << ((abs(offsetBytes) > 1) ? "bytes" : "byte")
1948      << " from the start of ";
1949   if (AllocExpr && printAllocDeallocName(AllocNameOs, C, AllocExpr))
1950     os << "memory allocated by " << AllocNameOs.str();
1951   else
1952     os << "allocated memory";
1953 
1954   auto R = llvm::make_unique<BugReport>(*BT_OffsetFree[*CheckKind], os.str(), N);
1955   R->markInteresting(MR->getBaseRegion());
1956   R->addRange(Range);
1957   C.emitReport(std::move(R));
1958 }
1959 
1960 void MallocChecker::ReportUseAfterFree(CheckerContext &C, SourceRange Range,
1961                                        SymbolRef Sym) const {
1962 
1963   if (!ChecksEnabled[CK_MallocChecker] &&
1964       !ChecksEnabled[CK_NewDeleteChecker] &&
1965       !ChecksEnabled[CK_InnerPointerChecker])
1966     return;
1967 
1968   Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);
1969   if (!CheckKind.hasValue())
1970     return;
1971 
1972   if (ExplodedNode *N = C.generateErrorNode()) {
1973     if (!BT_UseFree[*CheckKind])
1974       BT_UseFree[*CheckKind].reset(new BugType(
1975           CheckNames[*CheckKind], "Use-after-free", categories::MemoryError));
1976 
1977     AllocationFamily AF =
1978         C.getState()->get<RegionState>(Sym)->getAllocationFamily();
1979 
1980     auto R = llvm::make_unique<BugReport>(*BT_UseFree[*CheckKind],
1981         AF == AF_InnerBuffer
1982               ? "Inner pointer of container used after re/deallocation"
1983               : "Use of memory after it is freed",
1984         N);
1985 
1986     R->markInteresting(Sym);
1987     R->addRange(Range);
1988     R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym));
1989 
1990     if (AF == AF_InnerBuffer)
1991       R->addVisitor(allocation_state::getInnerPointerBRVisitor(Sym));
1992 
1993     C.emitReport(std::move(R));
1994   }
1995 }
1996 
1997 void MallocChecker::ReportDoubleFree(CheckerContext &C, SourceRange Range,
1998                                      bool Released, SymbolRef Sym,
1999                                      SymbolRef PrevSym) const {
2000 
2001   if (!ChecksEnabled[CK_MallocChecker] &&
2002       !ChecksEnabled[CK_NewDeleteChecker])
2003     return;
2004 
2005   Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);
2006   if (!CheckKind.hasValue())
2007     return;
2008 
2009   if (ExplodedNode *N = C.generateErrorNode()) {
2010     if (!BT_DoubleFree[*CheckKind])
2011       BT_DoubleFree[*CheckKind].reset(new BugType(
2012           CheckNames[*CheckKind], "Double free", categories::MemoryError));
2013 
2014     auto R = llvm::make_unique<BugReport>(
2015         *BT_DoubleFree[*CheckKind],
2016         (Released ? "Attempt to free released memory"
2017                   : "Attempt to free non-owned memory"),
2018         N);
2019     R->addRange(Range);
2020     R->markInteresting(Sym);
2021     if (PrevSym)
2022       R->markInteresting(PrevSym);
2023     R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym));
2024     C.emitReport(std::move(R));
2025   }
2026 }
2027 
2028 void MallocChecker::ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const {
2029 
2030   if (!ChecksEnabled[CK_NewDeleteChecker])
2031     return;
2032 
2033   Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);
2034   if (!CheckKind.hasValue())
2035     return;
2036 
2037   if (ExplodedNode *N = C.generateErrorNode()) {
2038     if (!BT_DoubleDelete)
2039       BT_DoubleDelete.reset(new BugType(CheckNames[CK_NewDeleteChecker],
2040                                         "Double delete",
2041                                         categories::MemoryError));
2042 
2043     auto R = llvm::make_unique<BugReport>(
2044         *BT_DoubleDelete, "Attempt to delete released memory", N);
2045 
2046     R->markInteresting(Sym);
2047     R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym));
2048     C.emitReport(std::move(R));
2049   }
2050 }
2051 
2052 void MallocChecker::ReportUseZeroAllocated(CheckerContext &C,
2053                                            SourceRange Range,
2054                                            SymbolRef Sym) const {
2055 
2056   if (!ChecksEnabled[CK_MallocChecker] &&
2057       !ChecksEnabled[CK_NewDeleteChecker])
2058     return;
2059 
2060   Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);
2061 
2062   if (!CheckKind.hasValue())
2063     return;
2064 
2065   if (ExplodedNode *N = C.generateErrorNode()) {
2066     if (!BT_UseZerroAllocated[*CheckKind])
2067       BT_UseZerroAllocated[*CheckKind].reset(
2068           new BugType(CheckNames[*CheckKind], "Use of zero allocated",
2069                       categories::MemoryError));
2070 
2071     auto R = llvm::make_unique<BugReport>(*BT_UseZerroAllocated[*CheckKind],
2072                                          "Use of zero-allocated memory", N);
2073 
2074     R->addRange(Range);
2075     if (Sym) {
2076       R->markInteresting(Sym);
2077       R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym));
2078     }
2079     C.emitReport(std::move(R));
2080   }
2081 }
2082 
2083 void MallocChecker::ReportFunctionPointerFree(CheckerContext &C, SVal ArgVal,
2084                                               SourceRange Range,
2085                                               const Expr *FreeExpr) const {
2086   if (!ChecksEnabled[CK_MallocChecker])
2087     return;
2088 
2089   Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, FreeExpr);
2090   if (!CheckKind.hasValue())
2091     return;
2092 
2093   if (ExplodedNode *N = C.generateErrorNode()) {
2094     if (!BT_BadFree[*CheckKind])
2095       BT_BadFree[*CheckKind].reset(new BugType(
2096           CheckNames[*CheckKind], "Bad free", categories::MemoryError));
2097 
2098     SmallString<100> Buf;
2099     llvm::raw_svector_ostream Os(Buf);
2100 
2101     const MemRegion *MR = ArgVal.getAsRegion();
2102     while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR))
2103       MR = ER->getSuperRegion();
2104 
2105     Os << "Argument to ";
2106     if (!printAllocDeallocName(Os, C, FreeExpr))
2107       Os << "deallocator";
2108 
2109     Os << " is a function pointer";
2110 
2111     auto R = llvm::make_unique<BugReport>(*BT_BadFree[*CheckKind], Os.str(), N);
2112     R->markInteresting(MR);
2113     R->addRange(Range);
2114     C.emitReport(std::move(R));
2115   }
2116 }
2117 
2118 ProgramStateRef MallocChecker::ReallocMemAux(CheckerContext &C,
2119                                              const CallExpr *CE,
2120                                              bool FreesOnFail,
2121                                              ProgramStateRef State,
2122                                              bool SuffixWithN) const {
2123   if (!State)
2124     return nullptr;
2125 
2126   if (SuffixWithN && CE->getNumArgs() < 3)
2127     return nullptr;
2128   else if (CE->getNumArgs() < 2)
2129     return nullptr;
2130 
2131   const Expr *arg0Expr = CE->getArg(0);
2132   SVal Arg0Val = C.getSVal(arg0Expr);
2133   if (!Arg0Val.getAs<DefinedOrUnknownSVal>())
2134     return nullptr;
2135   DefinedOrUnknownSVal arg0Val = Arg0Val.castAs<DefinedOrUnknownSVal>();
2136 
2137   SValBuilder &svalBuilder = C.getSValBuilder();
2138 
2139   DefinedOrUnknownSVal PtrEQ =
2140     svalBuilder.evalEQ(State, arg0Val, svalBuilder.makeNull());
2141 
2142   // Get the size argument.
2143   const Expr *Arg1 = CE->getArg(1);
2144 
2145   // Get the value of the size argument.
2146   SVal TotalSize = C.getSVal(Arg1);
2147   if (SuffixWithN)
2148     TotalSize = evalMulForBufferSize(C, Arg1, CE->getArg(2));
2149   if (!TotalSize.getAs<DefinedOrUnknownSVal>())
2150     return nullptr;
2151 
2152   // Compare the size argument to 0.
2153   DefinedOrUnknownSVal SizeZero =
2154     svalBuilder.evalEQ(State, TotalSize.castAs<DefinedOrUnknownSVal>(),
2155                        svalBuilder.makeIntValWithPtrWidth(0, false));
2156 
2157   ProgramStateRef StatePtrIsNull, StatePtrNotNull;
2158   std::tie(StatePtrIsNull, StatePtrNotNull) = State->assume(PtrEQ);
2159   ProgramStateRef StateSizeIsZero, StateSizeNotZero;
2160   std::tie(StateSizeIsZero, StateSizeNotZero) = State->assume(SizeZero);
2161   // We only assume exceptional states if they are definitely true; if the
2162   // state is under-constrained, assume regular realloc behavior.
2163   bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull;
2164   bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero;
2165 
2166   // If the ptr is NULL and the size is not 0, the call is equivalent to
2167   // malloc(size).
2168   if (PrtIsNull && !SizeIsZero) {
2169     ProgramStateRef stateMalloc = MallocMemAux(C, CE, TotalSize,
2170                                                UndefinedVal(), StatePtrIsNull);
2171     return stateMalloc;
2172   }
2173 
2174   if (PrtIsNull && SizeIsZero)
2175     return State;
2176 
2177   // Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size).
2178   assert(!PrtIsNull);
2179   SymbolRef FromPtr = arg0Val.getAsSymbol();
2180   SVal RetVal = C.getSVal(CE);
2181   SymbolRef ToPtr = RetVal.getAsSymbol();
2182   if (!FromPtr || !ToPtr)
2183     return nullptr;
2184 
2185   bool ReleasedAllocated = false;
2186 
2187   // If the size is 0, free the memory.
2188   if (SizeIsZero)
2189     if (ProgramStateRef stateFree = FreeMemAux(C, CE, StateSizeIsZero, 0,
2190                                                false, ReleasedAllocated)){
2191       // The semantics of the return value are:
2192       // If size was equal to 0, either NULL or a pointer suitable to be passed
2193       // to free() is returned. We just free the input pointer and do not add
2194       // any constrains on the output pointer.
2195       return stateFree;
2196     }
2197 
2198   // Default behavior.
2199   if (ProgramStateRef stateFree =
2200         FreeMemAux(C, CE, State, 0, false, ReleasedAllocated)) {
2201 
2202     ProgramStateRef stateRealloc = MallocMemAux(C, CE, TotalSize,
2203                                                 UnknownVal(), stateFree);
2204     if (!stateRealloc)
2205       return nullptr;
2206 
2207     ReallocPairKind Kind = RPToBeFreedAfterFailure;
2208     if (FreesOnFail)
2209       Kind = RPIsFreeOnFailure;
2210     else if (!ReleasedAllocated)
2211       Kind = RPDoNotTrackAfterFailure;
2212 
2213     // Record the info about the reallocated symbol so that we could properly
2214     // process failed reallocation.
2215     stateRealloc = stateRealloc->set<ReallocPairs>(ToPtr,
2216                                                    ReallocPair(FromPtr, Kind));
2217     // The reallocated symbol should stay alive for as long as the new symbol.
2218     C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr);
2219     return stateRealloc;
2220   }
2221   return nullptr;
2222 }
2223 
2224 ProgramStateRef MallocChecker::CallocMem(CheckerContext &C, const CallExpr *CE,
2225                                          ProgramStateRef State) {
2226   if (!State)
2227     return nullptr;
2228 
2229   if (CE->getNumArgs() < 2)
2230     return nullptr;
2231 
2232   SValBuilder &svalBuilder = C.getSValBuilder();
2233   SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy);
2234   SVal TotalSize = evalMulForBufferSize(C, CE->getArg(0), CE->getArg(1));
2235 
2236   return MallocMemAux(C, CE, TotalSize, zeroVal, State);
2237 }
2238 
2239 LeakInfo
2240 MallocChecker::getAllocationSite(const ExplodedNode *N, SymbolRef Sym,
2241                                  CheckerContext &C) const {
2242   const LocationContext *LeakContext = N->getLocationContext();
2243   // Walk the ExplodedGraph backwards and find the first node that referred to
2244   // the tracked symbol.
2245   const ExplodedNode *AllocNode = N;
2246   const MemRegion *ReferenceRegion = nullptr;
2247 
2248   while (N) {
2249     ProgramStateRef State = N->getState();
2250     if (!State->get<RegionState>(Sym))
2251       break;
2252 
2253     // Find the most recent expression bound to the symbol in the current
2254     // context.
2255       if (!ReferenceRegion) {
2256         if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) {
2257           SVal Val = State->getSVal(MR);
2258           if (Val.getAsLocSymbol() == Sym) {
2259             const VarRegion* VR = MR->getBaseRegion()->getAs<VarRegion>();
2260             // Do not show local variables belonging to a function other than
2261             // where the error is reported.
2262             if (!VR ||
2263                 (VR->getStackFrame() == LeakContext->getStackFrame()))
2264               ReferenceRegion = MR;
2265           }
2266         }
2267       }
2268 
2269     // Allocation node, is the last node in the current or parent context in
2270     // which the symbol was tracked.
2271     const LocationContext *NContext = N->getLocationContext();
2272     if (NContext == LeakContext ||
2273         NContext->isParentOf(LeakContext))
2274       AllocNode = N;
2275     N = N->pred_empty() ? nullptr : *(N->pred_begin());
2276   }
2277 
2278   return LeakInfo(AllocNode, ReferenceRegion);
2279 }
2280 
2281 void MallocChecker::reportLeak(SymbolRef Sym, ExplodedNode *N,
2282                                CheckerContext &C) const {
2283 
2284   if (!ChecksEnabled[CK_MallocChecker] &&
2285       !ChecksEnabled[CK_NewDeleteLeaksChecker])
2286     return;
2287 
2288   const RefState *RS = C.getState()->get<RegionState>(Sym);
2289   assert(RS && "cannot leak an untracked symbol");
2290   AllocationFamily Family = RS->getAllocationFamily();
2291 
2292   if (Family == AF_Alloca)
2293     return;
2294 
2295   Optional<MallocChecker::CheckKind>
2296       CheckKind = getCheckIfTracked(Family, true);
2297 
2298   if (!CheckKind.hasValue())
2299     return;
2300 
2301   assert(N);
2302   if (!BT_Leak[*CheckKind]) {
2303     // Leaks should not be reported if they are post-dominated by a sink:
2304     // (1) Sinks are higher importance bugs.
2305     // (2) NoReturnFunctionChecker uses sink nodes to represent paths ending
2306     //     with __noreturn functions such as assert() or exit(). We choose not
2307     //     to report leaks on such paths.
2308     BT_Leak[*CheckKind].reset(new BugType(CheckNames[*CheckKind], "Memory leak",
2309                                           categories::MemoryError,
2310                                           /*SuppressOnSink=*/true));
2311   }
2312 
2313   // Most bug reports are cached at the location where they occurred.
2314   // With leaks, we want to unique them by the location where they were
2315   // allocated, and only report a single path.
2316   PathDiagnosticLocation LocUsedForUniqueing;
2317   const ExplodedNode *AllocNode = nullptr;
2318   const MemRegion *Region = nullptr;
2319   std::tie(AllocNode, Region) = getAllocationSite(N, Sym, C);
2320 
2321   const Stmt *AllocationStmt = PathDiagnosticLocation::getStmt(AllocNode);
2322   if (AllocationStmt)
2323     LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocationStmt,
2324                                               C.getSourceManager(),
2325                                               AllocNode->getLocationContext());
2326 
2327   SmallString<200> buf;
2328   llvm::raw_svector_ostream os(buf);
2329   if (Region && Region->canPrintPretty()) {
2330     os << "Potential leak of memory pointed to by ";
2331     Region->printPretty(os);
2332   } else {
2333     os << "Potential memory leak";
2334   }
2335 
2336   auto R = llvm::make_unique<BugReport>(
2337       *BT_Leak[*CheckKind], os.str(), N, LocUsedForUniqueing,
2338       AllocNode->getLocationContext()->getDecl());
2339   R->markInteresting(Sym);
2340   R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym, true));
2341   C.emitReport(std::move(R));
2342 }
2343 
2344 void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper,
2345                                      CheckerContext &C) const
2346 {
2347   ProgramStateRef state = C.getState();
2348   RegionStateTy OldRS = state->get<RegionState>();
2349   RegionStateTy::Factory &F = state->get_context<RegionState>();
2350 
2351   RegionStateTy RS = OldRS;
2352   SmallVector<SymbolRef, 2> Errors;
2353   for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) {
2354     if (SymReaper.isDead(I->first)) {
2355       if (I->second.isAllocated() || I->second.isAllocatedOfSizeZero())
2356         Errors.push_back(I->first);
2357       // Remove the dead symbol from the map.
2358       RS = F.remove(RS, I->first);
2359     }
2360   }
2361 
2362   if (RS == OldRS) {
2363     // We shouldn't have touched other maps yet.
2364     assert(state->get<ReallocPairs>() ==
2365            C.getState()->get<ReallocPairs>());
2366     assert(state->get<FreeReturnValue>() ==
2367            C.getState()->get<FreeReturnValue>());
2368     return;
2369   }
2370 
2371   // Cleanup the Realloc Pairs Map.
2372   ReallocPairsTy RP = state->get<ReallocPairs>();
2373   for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) {
2374     if (SymReaper.isDead(I->first) ||
2375         SymReaper.isDead(I->second.ReallocatedSym)) {
2376       state = state->remove<ReallocPairs>(I->first);
2377     }
2378   }
2379 
2380   // Cleanup the FreeReturnValue Map.
2381   FreeReturnValueTy FR = state->get<FreeReturnValue>();
2382   for (FreeReturnValueTy::iterator I = FR.begin(), E = FR.end(); I != E; ++I) {
2383     if (SymReaper.isDead(I->first) ||
2384         SymReaper.isDead(I->second)) {
2385       state = state->remove<FreeReturnValue>(I->first);
2386     }
2387   }
2388 
2389   // Generate leak node.
2390   ExplodedNode *N = C.getPredecessor();
2391   if (!Errors.empty()) {
2392     static CheckerProgramPointTag Tag("MallocChecker", "DeadSymbolsLeak");
2393     N = C.generateNonFatalErrorNode(C.getState(), &Tag);
2394     if (N) {
2395       for (SmallVectorImpl<SymbolRef>::iterator
2396            I = Errors.begin(), E = Errors.end(); I != E; ++I) {
2397         reportLeak(*I, N, C);
2398       }
2399     }
2400   }
2401 
2402   C.addTransition(state->set<RegionState>(RS), N);
2403 }
2404 
2405 void MallocChecker::checkPreCall(const CallEvent &Call,
2406                                  CheckerContext &C) const {
2407 
2408   if (const CXXDestructorCall *DC = dyn_cast<CXXDestructorCall>(&Call)) {
2409     SymbolRef Sym = DC->getCXXThisVal().getAsSymbol();
2410     if (!Sym || checkDoubleDelete(Sym, C))
2411       return;
2412   }
2413 
2414   // We will check for double free in the post visit.
2415   if (const AnyFunctionCall *FC = dyn_cast<AnyFunctionCall>(&Call)) {
2416     const FunctionDecl *FD = FC->getDecl();
2417     if (!FD)
2418       return;
2419 
2420     ASTContext &Ctx = C.getASTContext();
2421     if (ChecksEnabled[CK_MallocChecker] &&
2422         (isCMemFunction(FD, Ctx, AF_Malloc, MemoryOperationKind::MOK_Free) ||
2423          isCMemFunction(FD, Ctx, AF_IfNameIndex,
2424                         MemoryOperationKind::MOK_Free)))
2425       return;
2426   }
2427 
2428   // Check if the callee of a method is deleted.
2429   if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(&Call)) {
2430     SymbolRef Sym = CC->getCXXThisVal().getAsSymbol();
2431     if (!Sym || checkUseAfterFree(Sym, C, CC->getCXXThisExpr()))
2432       return;
2433   }
2434 
2435   // Check arguments for being used after free.
2436   for (unsigned I = 0, E = Call.getNumArgs(); I != E; ++I) {
2437     SVal ArgSVal = Call.getArgSVal(I);
2438     if (ArgSVal.getAs<Loc>()) {
2439       SymbolRef Sym = ArgSVal.getAsSymbol();
2440       if (!Sym)
2441         continue;
2442       if (checkUseAfterFree(Sym, C, Call.getArgExpr(I)))
2443         return;
2444     }
2445   }
2446 }
2447 
2448 void MallocChecker::checkPreStmt(const ReturnStmt *S,
2449                                  CheckerContext &C) const {
2450   checkEscapeOnReturn(S, C);
2451 }
2452 
2453 // In the CFG, automatic destructors come after the return statement.
2454 // This callback checks for returning memory that is freed by automatic
2455 // destructors, as those cannot be reached in checkPreStmt().
2456 void MallocChecker::checkEndFunction(const ReturnStmt *S,
2457                                      CheckerContext &C) const {
2458   checkEscapeOnReturn(S, C);
2459 }
2460 
2461 void MallocChecker::checkEscapeOnReturn(const ReturnStmt *S,
2462                                         CheckerContext &C) const {
2463   if (!S)
2464     return;
2465 
2466   const Expr *E = S->getRetValue();
2467   if (!E)
2468     return;
2469 
2470   // Check if we are returning a symbol.
2471   ProgramStateRef State = C.getState();
2472   SVal RetVal = C.getSVal(E);
2473   SymbolRef Sym = RetVal.getAsSymbol();
2474   if (!Sym)
2475     // If we are returning a field of the allocated struct or an array element,
2476     // the callee could still free the memory.
2477     // TODO: This logic should be a part of generic symbol escape callback.
2478     if (const MemRegion *MR = RetVal.getAsRegion())
2479       if (isa<FieldRegion>(MR) || isa<ElementRegion>(MR))
2480         if (const SymbolicRegion *BMR =
2481               dyn_cast<SymbolicRegion>(MR->getBaseRegion()))
2482           Sym = BMR->getSymbol();
2483 
2484   // Check if we are returning freed memory.
2485   if (Sym)
2486     checkUseAfterFree(Sym, C, E);
2487 }
2488 
2489 // TODO: Blocks should be either inlined or should call invalidate regions
2490 // upon invocation. After that's in place, special casing here will not be
2491 // needed.
2492 void MallocChecker::checkPostStmt(const BlockExpr *BE,
2493                                   CheckerContext &C) const {
2494 
2495   // Scan the BlockDecRefExprs for any object the retain count checker
2496   // may be tracking.
2497   if (!BE->getBlockDecl()->hasCaptures())
2498     return;
2499 
2500   ProgramStateRef state = C.getState();
2501   const BlockDataRegion *R =
2502     cast<BlockDataRegion>(C.getSVal(BE).getAsRegion());
2503 
2504   BlockDataRegion::referenced_vars_iterator I = R->referenced_vars_begin(),
2505                                             E = R->referenced_vars_end();
2506 
2507   if (I == E)
2508     return;
2509 
2510   SmallVector<const MemRegion*, 10> Regions;
2511   const LocationContext *LC = C.getLocationContext();
2512   MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager();
2513 
2514   for ( ; I != E; ++I) {
2515     const VarRegion *VR = I.getCapturedRegion();
2516     if (VR->getSuperRegion() == R) {
2517       VR = MemMgr.getVarRegion(VR->getDecl(), LC);
2518     }
2519     Regions.push_back(VR);
2520   }
2521 
2522   state =
2523     state->scanReachableSymbols<StopTrackingCallback>(Regions).getState();
2524   C.addTransition(state);
2525 }
2526 
2527 bool MallocChecker::isReleased(SymbolRef Sym, CheckerContext &C) const {
2528   assert(Sym);
2529   const RefState *RS = C.getState()->get<RegionState>(Sym);
2530   return (RS && RS->isReleased());
2531 }
2532 
2533 bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C,
2534                                       const Stmt *S) const {
2535 
2536   if (isReleased(Sym, C)) {
2537     ReportUseAfterFree(C, S->getSourceRange(), Sym);
2538     return true;
2539   }
2540 
2541   return false;
2542 }
2543 
2544 void MallocChecker::checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C,
2545                                           const Stmt *S) const {
2546   assert(Sym);
2547 
2548   if (const RefState *RS = C.getState()->get<RegionState>(Sym)) {
2549     if (RS->isAllocatedOfSizeZero())
2550       ReportUseZeroAllocated(C, RS->getStmt()->getSourceRange(), Sym);
2551   }
2552   else if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) {
2553     ReportUseZeroAllocated(C, S->getSourceRange(), Sym);
2554   }
2555 }
2556 
2557 bool MallocChecker::checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const {
2558 
2559   if (isReleased(Sym, C)) {
2560     ReportDoubleDelete(C, Sym);
2561     return true;
2562   }
2563   return false;
2564 }
2565 
2566 // Check if the location is a freed symbolic region.
2567 void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S,
2568                                   CheckerContext &C) const {
2569   SymbolRef Sym = l.getLocSymbolInBase();
2570   if (Sym) {
2571     checkUseAfterFree(Sym, C, S);
2572     checkUseZeroAllocated(Sym, C, S);
2573   }
2574 }
2575 
2576 // If a symbolic region is assumed to NULL (or another constant), stop tracking
2577 // it - assuming that allocation failed on this path.
2578 ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state,
2579                                               SVal Cond,
2580                                               bool Assumption) const {
2581   RegionStateTy RS = state->get<RegionState>();
2582   for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) {
2583     // If the symbol is assumed to be NULL, remove it from consideration.
2584     ConstraintManager &CMgr = state->getConstraintManager();
2585     ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey());
2586     if (AllocFailed.isConstrainedTrue())
2587       state = state->remove<RegionState>(I.getKey());
2588   }
2589 
2590   // Realloc returns 0 when reallocation fails, which means that we should
2591   // restore the state of the pointer being reallocated.
2592   ReallocPairsTy RP = state->get<ReallocPairs>();
2593   for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) {
2594     // If the symbol is assumed to be NULL, remove it from consideration.
2595     ConstraintManager &CMgr = state->getConstraintManager();
2596     ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey());
2597     if (!AllocFailed.isConstrainedTrue())
2598       continue;
2599 
2600     SymbolRef ReallocSym = I.getData().ReallocatedSym;
2601     if (const RefState *RS = state->get<RegionState>(ReallocSym)) {
2602       if (RS->isReleased()) {
2603         if (I.getData().Kind == RPToBeFreedAfterFailure)
2604           state = state->set<RegionState>(ReallocSym,
2605               RefState::getAllocated(RS->getAllocationFamily(), RS->getStmt()));
2606         else if (I.getData().Kind == RPDoNotTrackAfterFailure)
2607           state = state->remove<RegionState>(ReallocSym);
2608         else
2609           assert(I.getData().Kind == RPIsFreeOnFailure);
2610       }
2611     }
2612     state = state->remove<ReallocPairs>(I.getKey());
2613   }
2614 
2615   return state;
2616 }
2617 
2618 bool MallocChecker::mayFreeAnyEscapedMemoryOrIsModeledExplicitly(
2619                                               const CallEvent *Call,
2620                                               ProgramStateRef State,
2621                                               SymbolRef &EscapingSymbol) const {
2622   assert(Call);
2623   EscapingSymbol = nullptr;
2624 
2625   // For now, assume that any C++ or block call can free memory.
2626   // TODO: If we want to be more optimistic here, we'll need to make sure that
2627   // regions escape to C++ containers. They seem to do that even now, but for
2628   // mysterious reasons.
2629   if (!(isa<SimpleFunctionCall>(Call) || isa<ObjCMethodCall>(Call)))
2630     return true;
2631 
2632   // Check Objective-C messages by selector name.
2633   if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) {
2634     // If it's not a framework call, or if it takes a callback, assume it
2635     // can free memory.
2636     if (!Call->isInSystemHeader() || Call->argumentsMayEscape())
2637       return true;
2638 
2639     // If it's a method we know about, handle it explicitly post-call.
2640     // This should happen before the "freeWhenDone" check below.
2641     if (isKnownDeallocObjCMethodName(*Msg))
2642       return false;
2643 
2644     // If there's a "freeWhenDone" parameter, but the method isn't one we know
2645     // about, we can't be sure that the object will use free() to deallocate the
2646     // memory, so we can't model it explicitly. The best we can do is use it to
2647     // decide whether the pointer escapes.
2648     if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(*Msg))
2649       return *FreeWhenDone;
2650 
2651     // If the first selector piece ends with "NoCopy", and there is no
2652     // "freeWhenDone" parameter set to zero, we know ownership is being
2653     // transferred. Again, though, we can't be sure that the object will use
2654     // free() to deallocate the memory, so we can't model it explicitly.
2655     StringRef FirstSlot = Msg->getSelector().getNameForSlot(0);
2656     if (FirstSlot.endswith("NoCopy"))
2657       return true;
2658 
2659     // If the first selector starts with addPointer, insertPointer,
2660     // or replacePointer, assume we are dealing with NSPointerArray or similar.
2661     // This is similar to C++ containers (vector); we still might want to check
2662     // that the pointers get freed by following the container itself.
2663     if (FirstSlot.startswith("addPointer") ||
2664         FirstSlot.startswith("insertPointer") ||
2665         FirstSlot.startswith("replacePointer") ||
2666         FirstSlot.equals("valueWithPointer")) {
2667       return true;
2668     }
2669 
2670     // We should escape receiver on call to 'init'. This is especially relevant
2671     // to the receiver, as the corresponding symbol is usually not referenced
2672     // after the call.
2673     if (Msg->getMethodFamily() == OMF_init) {
2674       EscapingSymbol = Msg->getReceiverSVal().getAsSymbol();
2675       return true;
2676     }
2677 
2678     // Otherwise, assume that the method does not free memory.
2679     // Most framework methods do not free memory.
2680     return false;
2681   }
2682 
2683   // At this point the only thing left to handle is straight function calls.
2684   const FunctionDecl *FD = cast<SimpleFunctionCall>(Call)->getDecl();
2685   if (!FD)
2686     return true;
2687 
2688   ASTContext &ASTC = State->getStateManager().getContext();
2689 
2690   // If it's one of the allocation functions we can reason about, we model
2691   // its behavior explicitly.
2692   if (isMemFunction(FD, ASTC))
2693     return false;
2694 
2695   // If it's not a system call, assume it frees memory.
2696   if (!Call->isInSystemHeader())
2697     return true;
2698 
2699   // White list the system functions whose arguments escape.
2700   const IdentifierInfo *II = FD->getIdentifier();
2701   if (!II)
2702     return true;
2703   StringRef FName = II->getName();
2704 
2705   // White list the 'XXXNoCopy' CoreFoundation functions.
2706   // We specifically check these before
2707   if (FName.endswith("NoCopy")) {
2708     // Look for the deallocator argument. We know that the memory ownership
2709     // is not transferred only if the deallocator argument is
2710     // 'kCFAllocatorNull'.
2711     for (unsigned i = 1; i < Call->getNumArgs(); ++i) {
2712       const Expr *ArgE = Call->getArgExpr(i)->IgnoreParenCasts();
2713       if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(ArgE)) {
2714         StringRef DeallocatorName = DE->getFoundDecl()->getName();
2715         if (DeallocatorName == "kCFAllocatorNull")
2716           return false;
2717       }
2718     }
2719     return true;
2720   }
2721 
2722   // Associating streams with malloced buffers. The pointer can escape if
2723   // 'closefn' is specified (and if that function does free memory),
2724   // but it will not if closefn is not specified.
2725   // Currently, we do not inspect the 'closefn' function (PR12101).
2726   if (FName == "funopen")
2727     if (Call->getNumArgs() >= 4 && Call->getArgSVal(4).isConstant(0))
2728       return false;
2729 
2730   // Do not warn on pointers passed to 'setbuf' when used with std streams,
2731   // these leaks might be intentional when setting the buffer for stdio.
2732   // http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer
2733   if (FName == "setbuf" || FName =="setbuffer" ||
2734       FName == "setlinebuf" || FName == "setvbuf") {
2735     if (Call->getNumArgs() >= 1) {
2736       const Expr *ArgE = Call->getArgExpr(0)->IgnoreParenCasts();
2737       if (const DeclRefExpr *ArgDRE = dyn_cast<DeclRefExpr>(ArgE))
2738         if (const VarDecl *D = dyn_cast<VarDecl>(ArgDRE->getDecl()))
2739           if (D->getCanonicalDecl()->getName().find("std") != StringRef::npos)
2740             return true;
2741     }
2742   }
2743 
2744   // A bunch of other functions which either take ownership of a pointer or
2745   // wrap the result up in a struct or object, meaning it can be freed later.
2746   // (See RetainCountChecker.) Not all the parameters here are invalidated,
2747   // but the Malloc checker cannot differentiate between them. The right way
2748   // of doing this would be to implement a pointer escapes callback.
2749   if (FName == "CGBitmapContextCreate" ||
2750       FName == "CGBitmapContextCreateWithData" ||
2751       FName == "CVPixelBufferCreateWithBytes" ||
2752       FName == "CVPixelBufferCreateWithPlanarBytes" ||
2753       FName == "OSAtomicEnqueue") {
2754     return true;
2755   }
2756 
2757   if (FName == "postEvent" &&
2758       FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") {
2759     return true;
2760   }
2761 
2762   if (FName == "postEvent" &&
2763       FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") {
2764     return true;
2765   }
2766 
2767   if (FName == "connectImpl" &&
2768       FD->getQualifiedNameAsString() == "QObject::connectImpl") {
2769     return true;
2770   }
2771 
2772   // Handle cases where we know a buffer's /address/ can escape.
2773   // Note that the above checks handle some special cases where we know that
2774   // even though the address escapes, it's still our responsibility to free the
2775   // buffer.
2776   if (Call->argumentsMayEscape())
2777     return true;
2778 
2779   // Otherwise, assume that the function does not free memory.
2780   // Most system calls do not free the memory.
2781   return false;
2782 }
2783 
2784 static bool retTrue(const RefState *RS) {
2785   return true;
2786 }
2787 
2788 static bool checkIfNewOrNewArrayFamily(const RefState *RS) {
2789   return (RS->getAllocationFamily() == AF_CXXNewArray ||
2790           RS->getAllocationFamily() == AF_CXXNew);
2791 }
2792 
2793 ProgramStateRef MallocChecker::checkPointerEscape(ProgramStateRef State,
2794                                              const InvalidatedSymbols &Escaped,
2795                                              const CallEvent *Call,
2796                                              PointerEscapeKind Kind) const {
2797   return checkPointerEscapeAux(State, Escaped, Call, Kind, &retTrue);
2798 }
2799 
2800 ProgramStateRef MallocChecker::checkConstPointerEscape(ProgramStateRef State,
2801                                               const InvalidatedSymbols &Escaped,
2802                                               const CallEvent *Call,
2803                                               PointerEscapeKind Kind) const {
2804   return checkPointerEscapeAux(State, Escaped, Call, Kind,
2805                                &checkIfNewOrNewArrayFamily);
2806 }
2807 
2808 ProgramStateRef MallocChecker::checkPointerEscapeAux(ProgramStateRef State,
2809                                               const InvalidatedSymbols &Escaped,
2810                                               const CallEvent *Call,
2811                                               PointerEscapeKind Kind,
2812                                   bool(*CheckRefState)(const RefState*)) const {
2813   // If we know that the call does not free memory, or we want to process the
2814   // call later, keep tracking the top level arguments.
2815   SymbolRef EscapingSymbol = nullptr;
2816   if (Kind == PSK_DirectEscapeOnCall &&
2817       !mayFreeAnyEscapedMemoryOrIsModeledExplicitly(Call, State,
2818                                                     EscapingSymbol) &&
2819       !EscapingSymbol) {
2820     return State;
2821   }
2822 
2823   for (InvalidatedSymbols::const_iterator I = Escaped.begin(),
2824        E = Escaped.end();
2825        I != E; ++I) {
2826     SymbolRef sym = *I;
2827 
2828     if (EscapingSymbol && EscapingSymbol != sym)
2829       continue;
2830 
2831     if (const RefState *RS = State->get<RegionState>(sym)) {
2832       if ((RS->isAllocated() || RS->isAllocatedOfSizeZero()) &&
2833           CheckRefState(RS)) {
2834         State = State->remove<RegionState>(sym);
2835         State = State->set<RegionState>(sym, RefState::getEscaped(RS));
2836       }
2837     }
2838   }
2839   return State;
2840 }
2841 
2842 static SymbolRef findFailedReallocSymbol(ProgramStateRef currState,
2843                                          ProgramStateRef prevState) {
2844   ReallocPairsTy currMap = currState->get<ReallocPairs>();
2845   ReallocPairsTy prevMap = prevState->get<ReallocPairs>();
2846 
2847   for (ReallocPairsTy::iterator I = prevMap.begin(), E = prevMap.end();
2848        I != E; ++I) {
2849     SymbolRef sym = I.getKey();
2850     if (!currMap.lookup(sym))
2851       return sym;
2852   }
2853 
2854   return nullptr;
2855 }
2856 
2857 static bool isReferenceCountingPointerDestructor(const CXXDestructorDecl *DD) {
2858   if (const IdentifierInfo *II = DD->getParent()->getIdentifier()) {
2859     StringRef N = II->getName();
2860     if (N.contains_lower("ptr") || N.contains_lower("pointer")) {
2861       if (N.contains_lower("ref") || N.contains_lower("cnt") ||
2862           N.contains_lower("intrusive") || N.contains_lower("shared")) {
2863         return true;
2864       }
2865     }
2866   }
2867   return false;
2868 }
2869 
2870 std::shared_ptr<PathDiagnosticPiece> MallocChecker::MallocBugVisitor::VisitNode(
2871     const ExplodedNode *N, BugReporterContext &BRC, BugReport &BR) {
2872 
2873   ProgramStateRef state = N->getState();
2874   ProgramStateRef statePrev = N->getFirstPred()->getState();
2875 
2876   const RefState *RS = state->get<RegionState>(Sym);
2877   const RefState *RSPrev = statePrev->get<RegionState>(Sym);
2878 
2879   const Stmt *S = PathDiagnosticLocation::getStmt(N);
2880   // When dealing with containers, we sometimes want to give a note
2881   // even if the statement is missing.
2882   if (!S && (!RS || RS->getAllocationFamily() != AF_InnerBuffer))
2883     return nullptr;
2884 
2885   const LocationContext *CurrentLC = N->getLocationContext();
2886 
2887   // If we find an atomic fetch_add or fetch_sub within the destructor in which
2888   // the pointer was released (before the release), this is likely a destructor
2889   // of a shared pointer.
2890   // Because we don't model atomics, and also because we don't know that the
2891   // original reference count is positive, we should not report use-after-frees
2892   // on objects deleted in such destructors. This can probably be improved
2893   // through better shared pointer modeling.
2894   if (ReleaseDestructorLC) {
2895     if (const auto *AE = dyn_cast<AtomicExpr>(S)) {
2896       AtomicExpr::AtomicOp Op = AE->getOp();
2897       if (Op == AtomicExpr::AO__c11_atomic_fetch_add ||
2898           Op == AtomicExpr::AO__c11_atomic_fetch_sub) {
2899         if (ReleaseDestructorLC == CurrentLC ||
2900             ReleaseDestructorLC->isParentOf(CurrentLC)) {
2901           BR.markInvalid(getTag(), S);
2902         }
2903       }
2904     }
2905   }
2906 
2907   // FIXME: We will eventually need to handle non-statement-based events
2908   // (__attribute__((cleanup))).
2909 
2910   // Find out if this is an interesting point and what is the kind.
2911   StringRef Msg;
2912   StackHintGeneratorForSymbol *StackHint = nullptr;
2913   SmallString<256> Buf;
2914   llvm::raw_svector_ostream OS(Buf);
2915 
2916   if (Mode == Normal) {
2917     if (isAllocated(RS, RSPrev, S)) {
2918       Msg = "Memory is allocated";
2919       StackHint = new StackHintGeneratorForSymbol(Sym,
2920                                                   "Returned allocated memory");
2921     } else if (isReleased(RS, RSPrev, S)) {
2922       const auto Family = RS->getAllocationFamily();
2923       switch (Family) {
2924         case AF_Alloca:
2925         case AF_Malloc:
2926         case AF_CXXNew:
2927         case AF_CXXNewArray:
2928         case AF_IfNameIndex:
2929           Msg = "Memory is released";
2930           StackHint = new StackHintGeneratorForSymbol(Sym,
2931                                               "Returning; memory was released");
2932           break;
2933         case AF_InnerBuffer: {
2934           const MemRegion *ObjRegion =
2935               allocation_state::getContainerObjRegion(statePrev, Sym);
2936           const auto *TypedRegion = cast<TypedValueRegion>(ObjRegion);
2937           QualType ObjTy = TypedRegion->getValueType();
2938           OS << "Inner buffer of '" << ObjTy.getAsString() << "' ";
2939 
2940           if (N->getLocation().getKind() == ProgramPoint::PostImplicitCallKind) {
2941             OS << "deallocated by call to destructor";
2942             StackHint = new StackHintGeneratorForSymbol(Sym,
2943                                       "Returning; inner buffer was deallocated");
2944           } else {
2945             OS << "reallocated by call to '";
2946             const Stmt *S = RS->getStmt();
2947             if (const auto *MemCallE = dyn_cast<CXXMemberCallExpr>(S)) {
2948               OS << MemCallE->getMethodDecl()->getNameAsString();
2949             } else if (const auto *OpCallE = dyn_cast<CXXOperatorCallExpr>(S)) {
2950               OS << OpCallE->getDirectCallee()->getNameAsString();
2951             } else if (const auto *CallE = dyn_cast<CallExpr>(S)) {
2952               auto &CEMgr = BRC.getStateManager().getCallEventManager();
2953               CallEventRef<> Call = CEMgr.getSimpleCall(CallE, state, CurrentLC);
2954               const auto *D = dyn_cast_or_null<NamedDecl>(Call->getDecl());
2955               OS << (D ? D->getNameAsString() : "unknown");
2956             }
2957             OS << "'";
2958             StackHint = new StackHintGeneratorForSymbol(Sym,
2959                                       "Returning; inner buffer was reallocated");
2960           }
2961           Msg = OS.str();
2962           break;
2963         }
2964         case AF_None:
2965           llvm_unreachable("Unhandled allocation family!");
2966       }
2967 
2968       // See if we're releasing memory while inlining a destructor
2969       // (or one of its callees). This turns on various common
2970       // false positive suppressions.
2971       bool FoundAnyDestructor = false;
2972       for (const LocationContext *LC = CurrentLC; LC; LC = LC->getParent()) {
2973         if (const auto *DD = dyn_cast<CXXDestructorDecl>(LC->getDecl())) {
2974           if (isReferenceCountingPointerDestructor(DD)) {
2975             // This immediately looks like a reference-counting destructor.
2976             // We're bad at guessing the original reference count of the object,
2977             // so suppress the report for now.
2978             BR.markInvalid(getTag(), DD);
2979           } else if (!FoundAnyDestructor) {
2980             assert(!ReleaseDestructorLC &&
2981                    "There can be only one release point!");
2982             // Suspect that it's a reference counting pointer destructor.
2983             // On one of the next nodes might find out that it has atomic
2984             // reference counting operations within it (see the code above),
2985             // and if so, we'd conclude that it likely is a reference counting
2986             // pointer destructor.
2987             ReleaseDestructorLC = LC->getStackFrame();
2988             // It is unlikely that releasing memory is delegated to a destructor
2989             // inside a destructor of a shared pointer, because it's fairly hard
2990             // to pass the information that the pointer indeed needs to be
2991             // released into it. So we're only interested in the innermost
2992             // destructor.
2993             FoundAnyDestructor = true;
2994           }
2995         }
2996       }
2997     } else if (isRelinquished(RS, RSPrev, S)) {
2998       Msg = "Memory ownership is transferred";
2999       StackHint = new StackHintGeneratorForSymbol(Sym, "");
3000     } else if (isReallocFailedCheck(RS, RSPrev, S)) {
3001       Mode = ReallocationFailed;
3002       Msg = "Reallocation failed";
3003       StackHint = new StackHintGeneratorForReallocationFailed(Sym,
3004                                                        "Reallocation failed");
3005 
3006       if (SymbolRef sym = findFailedReallocSymbol(state, statePrev)) {
3007         // Is it possible to fail two reallocs WITHOUT testing in between?
3008         assert((!FailedReallocSymbol || FailedReallocSymbol == sym) &&
3009           "We only support one failed realloc at a time.");
3010         BR.markInteresting(sym);
3011         FailedReallocSymbol = sym;
3012       }
3013     }
3014 
3015   // We are in a special mode if a reallocation failed later in the path.
3016   } else if (Mode == ReallocationFailed) {
3017     assert(FailedReallocSymbol && "No symbol to look for.");
3018 
3019     // Is this is the first appearance of the reallocated symbol?
3020     if (!statePrev->get<RegionState>(FailedReallocSymbol)) {
3021       // We're at the reallocation point.
3022       Msg = "Attempt to reallocate memory";
3023       StackHint = new StackHintGeneratorForSymbol(Sym,
3024                                                  "Returned reallocated memory");
3025       FailedReallocSymbol = nullptr;
3026       Mode = Normal;
3027     }
3028   }
3029 
3030   if (Msg.empty())
3031     return nullptr;
3032   assert(StackHint);
3033 
3034   // Generate the extra diagnostic.
3035   PathDiagnosticLocation Pos;
3036   if (!S) {
3037     assert(RS->getAllocationFamily() == AF_InnerBuffer);
3038     auto PostImplCall = N->getLocation().getAs<PostImplicitCall>();
3039     if (!PostImplCall)
3040       return nullptr;
3041     Pos = PathDiagnosticLocation(PostImplCall->getLocation(),
3042                                  BRC.getSourceManager());
3043   } else {
3044     Pos = PathDiagnosticLocation(S, BRC.getSourceManager(),
3045                                  N->getLocationContext());
3046   }
3047 
3048   return std::make_shared<PathDiagnosticEventPiece>(Pos, Msg, true, StackHint);
3049 }
3050 
3051 void MallocChecker::printState(raw_ostream &Out, ProgramStateRef State,
3052                                const char *NL, const char *Sep) const {
3053 
3054   RegionStateTy RS = State->get<RegionState>();
3055 
3056   if (!RS.isEmpty()) {
3057     Out << Sep << "MallocChecker :" << NL;
3058     for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) {
3059       const RefState *RefS = State->get<RegionState>(I.getKey());
3060       AllocationFamily Family = RefS->getAllocationFamily();
3061       Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family);
3062       if (!CheckKind.hasValue())
3063          CheckKind = getCheckIfTracked(Family, true);
3064 
3065       I.getKey()->dumpToStream(Out);
3066       Out << " : ";
3067       I.getData().dump(Out);
3068       if (CheckKind.hasValue())
3069         Out << " (" << CheckNames[*CheckKind].getName() << ")";
3070       Out << NL;
3071     }
3072   }
3073 }
3074 
3075 namespace clang {
3076 namespace ento {
3077 namespace allocation_state {
3078 
3079 ProgramStateRef
3080 markReleased(ProgramStateRef State, SymbolRef Sym, const Expr *Origin) {
3081   AllocationFamily Family = AF_InnerBuffer;
3082   return State->set<RegionState>(Sym, RefState::getReleased(Family, Origin));
3083 }
3084 
3085 } // end namespace allocation_state
3086 } // end namespace ento
3087 } // end namespace clang
3088 
3089 // Intended to be used in InnerPointerChecker to register the part of
3090 // MallocChecker connected to it.
3091 void ento::registerInnerPointerCheckerAux(CheckerManager &mgr) {
3092     MallocChecker *checker = mgr.registerChecker<MallocChecker>();
3093     checker->IsOptimistic = mgr.getAnalyzerOptions().getCheckerBooleanOption(
3094                                                   "Optimistic", false, checker);
3095     checker->ChecksEnabled[MallocChecker::CK_InnerPointerChecker] = true;
3096     checker->CheckNames[MallocChecker::CK_InnerPointerChecker] =
3097         mgr.getCurrentCheckName();
3098 }
3099 
3100 void ento::registerDynamicMemoryModeling(CheckerManager &mgr) {
3101   mgr.registerChecker<MallocChecker>();
3102 }
3103 
3104 bool ento::shouldRegisterDynamicMemoryModeling(const LangOptions &LO) {
3105   return true;
3106 }
3107 
3108 #define REGISTER_CHECKER(name)                                                 \
3109   void ento::register##name(CheckerManager &mgr) {                             \
3110     MallocChecker *checker = mgr.registerChecker<MallocChecker>();             \
3111     checker->IsOptimistic = mgr.getAnalyzerOptions().getCheckerBooleanOption(  \
3112         "Optimistic", false, checker);                                         \
3113     checker->ChecksEnabled[MallocChecker::CK_##name] = true;                   \
3114     checker->CheckNames[MallocChecker::CK_##name] = mgr.getCurrentCheckName(); \
3115   }                                                                            \
3116                                                                                \
3117   bool ento::shouldRegister##name(const LangOptions &LO) {                     \
3118     return true;                                                               \
3119   }
3120 
3121 REGISTER_CHECKER(MallocChecker)
3122 REGISTER_CHECKER(NewDeleteChecker)
3123 REGISTER_CHECKER(NewDeleteLeaksChecker)
3124 REGISTER_CHECKER(MismatchedDeallocatorChecker)
3125