1 //=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines a variety of memory management related checkers, such as 10 // leak, double free, and use-after-free. 11 // 12 // The following checkers are defined here: 13 // 14 // * MallocChecker 15 // Despite its name, it models all sorts of memory allocations and 16 // de- or reallocation, including but not limited to malloc, free, 17 // relloc, new, delete. It also reports on a variety of memory misuse 18 // errors. 19 // Many other checkers interact very closely with this checker, in fact, 20 // most are merely options to this one. Other checkers may register 21 // MallocChecker, but do not enable MallocChecker's reports (more details 22 // to follow around its field, ChecksEnabled). 23 // It also has a boolean "Optimistic" checker option, which if set to true 24 // will cause the checker to model user defined memory management related 25 // functions annotated via the attribute ownership_takes, ownership_holds 26 // and ownership_returns. 27 // 28 // * NewDeleteChecker 29 // Enables the modeling of new, new[], delete, delete[] in MallocChecker, 30 // and checks for related double-free and use-after-free errors. 31 // 32 // * NewDeleteLeaksChecker 33 // Checks for leaks related to new, new[], delete, delete[]. 34 // Depends on NewDeleteChecker. 35 // 36 // * MismatchedDeallocatorChecker 37 // Enables checking whether memory is deallocated with the correspending 38 // allocation function in MallocChecker, such as malloc() allocated 39 // regions are only freed by free(), new by delete, new[] by delete[]. 40 // 41 // InnerPointerChecker interacts very closely with MallocChecker, but unlike 42 // the above checkers, it has it's own file, hence the many InnerPointerChecker 43 // related headers and non-static functions. 44 // 45 //===----------------------------------------------------------------------===// 46 47 #include "AllocationState.h" 48 #include "InterCheckerAPI.h" 49 #include "NoOwnershipChangeVisitor.h" 50 #include "clang/AST/Attr.h" 51 #include "clang/AST/DeclCXX.h" 52 #include "clang/AST/DeclTemplate.h" 53 #include "clang/AST/Expr.h" 54 #include "clang/AST/ExprCXX.h" 55 #include "clang/AST/ParentMap.h" 56 #include "clang/ASTMatchers/ASTMatchFinder.h" 57 #include "clang/ASTMatchers/ASTMatchers.h" 58 #include "clang/Analysis/ProgramPoint.h" 59 #include "clang/Basic/LLVM.h" 60 #include "clang/Basic/SourceManager.h" 61 #include "clang/Basic/TargetInfo.h" 62 #include "clang/Lex/Lexer.h" 63 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" 64 #include "clang/StaticAnalyzer/Checkers/Taint.h" 65 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 66 #include "clang/StaticAnalyzer/Core/BugReporter/CommonBugCategories.h" 67 #include "clang/StaticAnalyzer/Core/Checker.h" 68 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 69 #include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h" 70 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 71 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 72 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h" 73 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h" 74 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h" 75 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 76 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 77 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h" 78 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" 79 #include "clang/StaticAnalyzer/Core/PathSensitive/StoreRef.h" 80 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" 81 #include "llvm/ADT/STLExtras.h" 82 #include "llvm/ADT/SetOperations.h" 83 #include "llvm/ADT/StringExtras.h" 84 #include "llvm/Support/Casting.h" 85 #include "llvm/Support/Compiler.h" 86 #include "llvm/Support/ErrorHandling.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include <functional> 89 #include <optional> 90 #include <utility> 91 92 using namespace clang; 93 using namespace ento; 94 using namespace std::placeholders; 95 96 //===----------------------------------------------------------------------===// 97 // The types of allocation we're modeling. This is used to check whether a 98 // dynamically allocated object is deallocated with the correct function, like 99 // not using operator delete on an object created by malloc(), or alloca regions 100 // aren't ever deallocated manually. 101 //===----------------------------------------------------------------------===// 102 103 namespace { 104 105 // Used to check correspondence between allocators and deallocators. 106 enum AllocationFamilyKind { 107 AF_None, 108 AF_Malloc, 109 AF_CXXNew, 110 AF_CXXNewArray, 111 AF_IfNameIndex, 112 AF_Alloca, 113 AF_InnerBuffer, 114 AF_Custom, 115 }; 116 117 struct AllocationFamily { 118 AllocationFamilyKind Kind; 119 std::optional<StringRef> CustomName; 120 121 explicit AllocationFamily(AllocationFamilyKind AKind, 122 std::optional<StringRef> Name = std::nullopt) 123 : Kind(AKind), CustomName(Name) { 124 assert((Kind != AF_Custom || CustomName.has_value()) && 125 "Custom family must specify also the name"); 126 127 // Preseve previous behavior when "malloc" class means AF_Malloc 128 if (Kind == AF_Custom && CustomName.value() == "malloc") { 129 Kind = AF_Malloc; 130 CustomName = std::nullopt; 131 } 132 } 133 134 bool operator==(const AllocationFamily &Other) const { 135 return std::tie(Kind, CustomName) == std::tie(Other.Kind, Other.CustomName); 136 } 137 138 bool operator!=(const AllocationFamily &Other) const { 139 return !(*this == Other); 140 } 141 142 void Profile(llvm::FoldingSetNodeID &ID) const { 143 ID.AddInteger(Kind); 144 145 if (Kind == AF_Custom) 146 ID.AddString(CustomName.value()); 147 } 148 }; 149 150 } // end of anonymous namespace 151 152 /// Print names of allocators and deallocators. 153 /// 154 /// \returns true on success. 155 static bool printMemFnName(raw_ostream &os, CheckerContext &C, const Expr *E); 156 157 /// Print expected name of an allocator based on the deallocator's family 158 /// derived from the DeallocExpr. 159 static void printExpectedAllocName(raw_ostream &os, AllocationFamily Family); 160 161 /// Print expected name of a deallocator based on the allocator's 162 /// family. 163 static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family); 164 165 //===----------------------------------------------------------------------===// 166 // The state of a symbol, in terms of memory management. 167 //===----------------------------------------------------------------------===// 168 169 namespace { 170 171 class RefState { 172 enum Kind { 173 // Reference to allocated memory. 174 Allocated, 175 // Reference to zero-allocated memory. 176 AllocatedOfSizeZero, 177 // Reference to released/freed memory. 178 Released, 179 // The responsibility for freeing resources has transferred from 180 // this reference. A relinquished symbol should not be freed. 181 Relinquished, 182 // We are no longer guaranteed to have observed all manipulations 183 // of this pointer/memory. For example, it could have been 184 // passed as a parameter to an opaque function. 185 Escaped 186 }; 187 188 const Stmt *S; 189 190 Kind K; 191 AllocationFamily Family; 192 193 RefState(Kind k, const Stmt *s, AllocationFamily family) 194 : S(s), K(k), Family(family) { 195 assert(family.Kind != AF_None); 196 } 197 198 public: 199 bool isAllocated() const { return K == Allocated; } 200 bool isAllocatedOfSizeZero() const { return K == AllocatedOfSizeZero; } 201 bool isReleased() const { return K == Released; } 202 bool isRelinquished() const { return K == Relinquished; } 203 bool isEscaped() const { return K == Escaped; } 204 AllocationFamily getAllocationFamily() const { return Family; } 205 const Stmt *getStmt() const { return S; } 206 207 bool operator==(const RefState &X) const { 208 return K == X.K && S == X.S && Family == X.Family; 209 } 210 211 static RefState getAllocated(AllocationFamily family, const Stmt *s) { 212 return RefState(Allocated, s, family); 213 } 214 static RefState getAllocatedOfSizeZero(const RefState *RS) { 215 return RefState(AllocatedOfSizeZero, RS->getStmt(), 216 RS->getAllocationFamily()); 217 } 218 static RefState getReleased(AllocationFamily family, const Stmt *s) { 219 return RefState(Released, s, family); 220 } 221 static RefState getRelinquished(AllocationFamily family, const Stmt *s) { 222 return RefState(Relinquished, s, family); 223 } 224 static RefState getEscaped(const RefState *RS) { 225 return RefState(Escaped, RS->getStmt(), RS->getAllocationFamily()); 226 } 227 228 void Profile(llvm::FoldingSetNodeID &ID) const { 229 ID.AddInteger(K); 230 ID.AddPointer(S); 231 Family.Profile(ID); 232 } 233 234 LLVM_DUMP_METHOD void dump(raw_ostream &OS) const { 235 switch (K) { 236 #define CASE(ID) case ID: OS << #ID; break; 237 CASE(Allocated) 238 CASE(AllocatedOfSizeZero) 239 CASE(Released) 240 CASE(Relinquished) 241 CASE(Escaped) 242 } 243 } 244 245 LLVM_DUMP_METHOD void dump() const { dump(llvm::errs()); } 246 }; 247 248 } // end of anonymous namespace 249 250 REGISTER_MAP_WITH_PROGRAMSTATE(RegionState, SymbolRef, RefState) 251 252 /// Check if the memory associated with this symbol was released. 253 static bool isReleased(SymbolRef Sym, CheckerContext &C); 254 255 /// Update the RefState to reflect the new memory allocation. 256 /// The optional \p RetVal parameter specifies the newly allocated pointer 257 /// value; if unspecified, the value of expression \p E is used. 258 static ProgramStateRef 259 MallocUpdateRefState(CheckerContext &C, const Expr *E, ProgramStateRef State, 260 AllocationFamily Family, 261 std::optional<SVal> RetVal = std::nullopt); 262 263 //===----------------------------------------------------------------------===// 264 // The modeling of memory reallocation. 265 // 266 // The terminology 'toPtr' and 'fromPtr' will be used: 267 // toPtr = realloc(fromPtr, 20); 268 //===----------------------------------------------------------------------===// 269 270 REGISTER_SET_WITH_PROGRAMSTATE(ReallocSizeZeroSymbols, SymbolRef) 271 272 namespace { 273 274 /// The state of 'fromPtr' after reallocation is known to have failed. 275 enum OwnershipAfterReallocKind { 276 // The symbol needs to be freed (e.g.: realloc) 277 OAR_ToBeFreedAfterFailure, 278 // The symbol has been freed (e.g.: reallocf) 279 OAR_FreeOnFailure, 280 // The symbol doesn't have to freed (e.g.: we aren't sure if, how and where 281 // 'fromPtr' was allocated: 282 // void Haha(int *ptr) { 283 // ptr = realloc(ptr, 67); 284 // // ... 285 // } 286 // ). 287 OAR_DoNotTrackAfterFailure 288 }; 289 290 /// Stores information about the 'fromPtr' symbol after reallocation. 291 /// 292 /// This is important because realloc may fail, and that needs special modeling. 293 /// Whether reallocation failed or not will not be known until later, so we'll 294 /// store whether upon failure 'fromPtr' will be freed, or needs to be freed 295 /// later, etc. 296 struct ReallocPair { 297 298 // The 'fromPtr'. 299 SymbolRef ReallocatedSym; 300 OwnershipAfterReallocKind Kind; 301 302 ReallocPair(SymbolRef S, OwnershipAfterReallocKind K) 303 : ReallocatedSym(S), Kind(K) {} 304 void Profile(llvm::FoldingSetNodeID &ID) const { 305 ID.AddInteger(Kind); 306 ID.AddPointer(ReallocatedSym); 307 } 308 bool operator==(const ReallocPair &X) const { 309 return ReallocatedSym == X.ReallocatedSym && 310 Kind == X.Kind; 311 } 312 }; 313 314 } // end of anonymous namespace 315 316 REGISTER_MAP_WITH_PROGRAMSTATE(ReallocPairs, SymbolRef, ReallocPair) 317 318 /// Tells if the callee is one of the builtin new/delete operators, including 319 /// placement operators and other standard overloads. 320 static bool isStandardNewDelete(const FunctionDecl *FD); 321 static bool isStandardNewDelete(const CallEvent &Call) { 322 if (!Call.getDecl() || !isa<FunctionDecl>(Call.getDecl())) 323 return false; 324 return isStandardNewDelete(cast<FunctionDecl>(Call.getDecl())); 325 } 326 327 //===----------------------------------------------------------------------===// 328 // Definition of the MallocChecker class. 329 //===----------------------------------------------------------------------===// 330 331 namespace { 332 333 class MallocChecker 334 : public Checker<check::DeadSymbols, check::PointerEscape, 335 check::ConstPointerEscape, check::PreStmt<ReturnStmt>, 336 check::EndFunction, check::PreCall, check::PostCall, 337 check::NewAllocator, check::PostStmt<BlockExpr>, 338 check::PostObjCMessage, check::Location, eval::Assume> { 339 public: 340 /// In pessimistic mode, the checker assumes that it does not know which 341 /// functions might free the memory. 342 /// In optimistic mode, the checker assumes that all user-defined functions 343 /// which might free a pointer are annotated. 344 bool ShouldIncludeOwnershipAnnotatedFunctions = false; 345 346 bool ShouldRegisterNoOwnershipChangeVisitor = false; 347 348 /// Many checkers are essentially built into this one, so enabling them will 349 /// make MallocChecker perform additional modeling and reporting. 350 enum CheckKind { 351 /// When a subchecker is enabled but MallocChecker isn't, model memory 352 /// management but do not emit warnings emitted with MallocChecker only 353 /// enabled. 354 CK_MallocChecker, 355 CK_NewDeleteChecker, 356 CK_NewDeleteLeaksChecker, 357 CK_MismatchedDeallocatorChecker, 358 CK_InnerPointerChecker, 359 CK_TaintedAllocChecker, 360 CK_NumCheckKinds 361 }; 362 363 using LeakInfo = std::pair<const ExplodedNode *, const MemRegion *>; 364 365 bool ChecksEnabled[CK_NumCheckKinds] = {false}; 366 CheckerNameRef CheckNames[CK_NumCheckKinds]; 367 368 void checkPreCall(const CallEvent &Call, CheckerContext &C) const; 369 void checkPostCall(const CallEvent &Call, CheckerContext &C) const; 370 void checkNewAllocator(const CXXAllocatorCall &Call, CheckerContext &C) const; 371 void checkPostObjCMessage(const ObjCMethodCall &Call, CheckerContext &C) const; 372 void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const; 373 void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const; 374 void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const; 375 void checkEndFunction(const ReturnStmt *S, CheckerContext &C) const; 376 ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond, 377 bool Assumption) const; 378 void checkLocation(SVal l, bool isLoad, const Stmt *S, 379 CheckerContext &C) const; 380 381 ProgramStateRef checkPointerEscape(ProgramStateRef State, 382 const InvalidatedSymbols &Escaped, 383 const CallEvent *Call, 384 PointerEscapeKind Kind) const; 385 ProgramStateRef checkConstPointerEscape(ProgramStateRef State, 386 const InvalidatedSymbols &Escaped, 387 const CallEvent *Call, 388 PointerEscapeKind Kind) const; 389 390 void printState(raw_ostream &Out, ProgramStateRef State, 391 const char *NL, const char *Sep) const override; 392 393 private: 394 mutable std::unique_ptr<BugType> BT_DoubleFree[CK_NumCheckKinds]; 395 mutable std::unique_ptr<BugType> BT_DoubleDelete; 396 mutable std::unique_ptr<BugType> BT_Leak[CK_NumCheckKinds]; 397 mutable std::unique_ptr<BugType> BT_UseFree[CK_NumCheckKinds]; 398 mutable std::unique_ptr<BugType> BT_BadFree[CK_NumCheckKinds]; 399 mutable std::unique_ptr<BugType> BT_FreeAlloca[CK_NumCheckKinds]; 400 mutable std::unique_ptr<BugType> BT_MismatchedDealloc; 401 mutable std::unique_ptr<BugType> BT_OffsetFree[CK_NumCheckKinds]; 402 mutable std::unique_ptr<BugType> BT_UseZerroAllocated[CK_NumCheckKinds]; 403 mutable std::unique_ptr<BugType> BT_TaintedAlloc; 404 405 #define CHECK_FN(NAME) \ 406 void NAME(const CallEvent &Call, CheckerContext &C) const; 407 408 CHECK_FN(checkFree) 409 CHECK_FN(checkIfNameIndex) 410 CHECK_FN(checkBasicAlloc) 411 CHECK_FN(checkKernelMalloc) 412 CHECK_FN(checkCalloc) 413 CHECK_FN(checkAlloca) 414 CHECK_FN(checkStrdup) 415 CHECK_FN(checkIfFreeNameIndex) 416 CHECK_FN(checkCXXNewOrCXXDelete) 417 CHECK_FN(checkGMalloc0) 418 CHECK_FN(checkGMemdup) 419 CHECK_FN(checkGMallocN) 420 CHECK_FN(checkGMallocN0) 421 CHECK_FN(preGetdelim) 422 CHECK_FN(checkGetdelim) 423 CHECK_FN(checkReallocN) 424 CHECK_FN(checkOwnershipAttr) 425 426 void checkRealloc(const CallEvent &Call, CheckerContext &C, 427 bool ShouldFreeOnFail) const; 428 429 using CheckFn = std::function<void(const MallocChecker *, 430 const CallEvent &Call, CheckerContext &C)>; 431 432 const CallDescriptionMap<CheckFn> PreFnMap{ 433 // NOTE: the following CallDescription also matches the C++ standard 434 // library function std::getline(); the callback will filter it out. 435 {{CDM::CLibrary, {"getline"}, 3}, &MallocChecker::preGetdelim}, 436 {{CDM::CLibrary, {"getdelim"}, 4}, &MallocChecker::preGetdelim}, 437 }; 438 439 const CallDescriptionMap<CheckFn> FreeingMemFnMap{ 440 {{CDM::CLibrary, {"free"}, 1}, &MallocChecker::checkFree}, 441 {{CDM::CLibrary, {"if_freenameindex"}, 1}, 442 &MallocChecker::checkIfFreeNameIndex}, 443 {{CDM::CLibrary, {"kfree"}, 1}, &MallocChecker::checkFree}, 444 {{CDM::CLibrary, {"g_free"}, 1}, &MallocChecker::checkFree}, 445 }; 446 447 bool isFreeingCall(const CallEvent &Call) const; 448 static bool isFreeingOwnershipAttrCall(const FunctionDecl *Func); 449 450 friend class NoMemOwnershipChangeVisitor; 451 452 CallDescriptionMap<CheckFn> AllocatingMemFnMap{ 453 {{CDM::CLibrary, {"alloca"}, 1}, &MallocChecker::checkAlloca}, 454 {{CDM::CLibrary, {"_alloca"}, 1}, &MallocChecker::checkAlloca}, 455 // The line for "alloca" also covers "__builtin_alloca", but the 456 // _with_align variant must be listed separately because it takes an 457 // extra argument: 458 {{CDM::CLibrary, {"__builtin_alloca_with_align"}, 2}, 459 &MallocChecker::checkAlloca}, 460 {{CDM::CLibrary, {"malloc"}, 1}, &MallocChecker::checkBasicAlloc}, 461 {{CDM::CLibrary, {"malloc"}, 3}, &MallocChecker::checkKernelMalloc}, 462 {{CDM::CLibrary, {"calloc"}, 2}, &MallocChecker::checkCalloc}, 463 {{CDM::CLibrary, {"valloc"}, 1}, &MallocChecker::checkBasicAlloc}, 464 {{CDM::CLibrary, {"strndup"}, 2}, &MallocChecker::checkStrdup}, 465 {{CDM::CLibrary, {"strdup"}, 1}, &MallocChecker::checkStrdup}, 466 {{CDM::CLibrary, {"_strdup"}, 1}, &MallocChecker::checkStrdup}, 467 {{CDM::CLibrary, {"kmalloc"}, 2}, &MallocChecker::checkKernelMalloc}, 468 {{CDM::CLibrary, {"if_nameindex"}, 1}, &MallocChecker::checkIfNameIndex}, 469 {{CDM::CLibrary, {"wcsdup"}, 1}, &MallocChecker::checkStrdup}, 470 {{CDM::CLibrary, {"_wcsdup"}, 1}, &MallocChecker::checkStrdup}, 471 {{CDM::CLibrary, {"g_malloc"}, 1}, &MallocChecker::checkBasicAlloc}, 472 {{CDM::CLibrary, {"g_malloc0"}, 1}, &MallocChecker::checkGMalloc0}, 473 {{CDM::CLibrary, {"g_try_malloc"}, 1}, &MallocChecker::checkBasicAlloc}, 474 {{CDM::CLibrary, {"g_try_malloc0"}, 1}, &MallocChecker::checkGMalloc0}, 475 {{CDM::CLibrary, {"g_memdup"}, 2}, &MallocChecker::checkGMemdup}, 476 {{CDM::CLibrary, {"g_malloc_n"}, 2}, &MallocChecker::checkGMallocN}, 477 {{CDM::CLibrary, {"g_malloc0_n"}, 2}, &MallocChecker::checkGMallocN0}, 478 {{CDM::CLibrary, {"g_try_malloc_n"}, 2}, &MallocChecker::checkGMallocN}, 479 {{CDM::CLibrary, {"g_try_malloc0_n"}, 2}, &MallocChecker::checkGMallocN0}, 480 }; 481 482 CallDescriptionMap<CheckFn> ReallocatingMemFnMap{ 483 {{CDM::CLibrary, {"realloc"}, 2}, 484 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)}, 485 {{CDM::CLibrary, {"reallocf"}, 2}, 486 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, true)}, 487 {{CDM::CLibrary, {"g_realloc"}, 2}, 488 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)}, 489 {{CDM::CLibrary, {"g_try_realloc"}, 2}, 490 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)}, 491 {{CDM::CLibrary, {"g_realloc_n"}, 3}, &MallocChecker::checkReallocN}, 492 {{CDM::CLibrary, {"g_try_realloc_n"}, 3}, &MallocChecker::checkReallocN}, 493 494 // NOTE: the following CallDescription also matches the C++ standard 495 // library function std::getline(); the callback will filter it out. 496 {{CDM::CLibrary, {"getline"}, 3}, &MallocChecker::checkGetdelim}, 497 {{CDM::CLibrary, {"getdelim"}, 4}, &MallocChecker::checkGetdelim}, 498 }; 499 500 bool isMemCall(const CallEvent &Call) const; 501 void reportTaintBug(StringRef Msg, ProgramStateRef State, CheckerContext &C, 502 llvm::ArrayRef<SymbolRef> TaintedSyms, 503 AllocationFamily Family) const; 504 505 void checkTaintedness(CheckerContext &C, const CallEvent &Call, 506 const SVal SizeSVal, ProgramStateRef State, 507 AllocationFamily Family) const; 508 509 // TODO: Remove mutable by moving the initializtaion to the registry function. 510 mutable std::optional<uint64_t> KernelZeroFlagVal; 511 512 using KernelZeroSizePtrValueTy = std::optional<int>; 513 /// Store the value of macro called `ZERO_SIZE_PTR`. 514 /// The value is initialized at first use, before first use the outer 515 /// Optional is empty, afterwards it contains another Optional that indicates 516 /// if the macro value could be determined, and if yes the value itself. 517 mutable std::optional<KernelZeroSizePtrValueTy> KernelZeroSizePtrValue; 518 519 /// Process C++ operator new()'s allocation, which is the part of C++ 520 /// new-expression that goes before the constructor. 521 [[nodiscard]] ProgramStateRef 522 processNewAllocation(const CXXAllocatorCall &Call, CheckerContext &C, 523 AllocationFamily Family) const; 524 525 /// Perform a zero-allocation check. 526 /// 527 /// \param [in] Call The expression that allocates memory. 528 /// \param [in] IndexOfSizeArg Index of the argument that specifies the size 529 /// of the memory that needs to be allocated. E.g. for malloc, this would be 530 /// 0. 531 /// \param [in] RetVal Specifies the newly allocated pointer value; 532 /// if unspecified, the value of expression \p E is used. 533 [[nodiscard]] static ProgramStateRef 534 ProcessZeroAllocCheck(const CallEvent &Call, const unsigned IndexOfSizeArg, 535 ProgramStateRef State, 536 std::optional<SVal> RetVal = std::nullopt); 537 538 /// Model functions with the ownership_returns attribute. 539 /// 540 /// User-defined function may have the ownership_returns attribute, which 541 /// annotates that the function returns with an object that was allocated on 542 /// the heap, and passes the ownertship to the callee. 543 /// 544 /// void __attribute((ownership_returns(malloc, 1))) *my_malloc(size_t); 545 /// 546 /// It has two parameters: 547 /// - first: name of the resource (e.g. 'malloc') 548 /// - (OPTIONAL) second: size of the allocated region 549 /// 550 /// \param [in] Call The expression that allocates memory. 551 /// \param [in] Att The ownership_returns attribute. 552 /// \param [in] State The \c ProgramState right before allocation. 553 /// \returns The ProgramState right after allocation. 554 [[nodiscard]] ProgramStateRef 555 MallocMemReturnsAttr(CheckerContext &C, const CallEvent &Call, 556 const OwnershipAttr *Att, ProgramStateRef State) const; 557 558 /// Models memory allocation. 559 /// 560 /// \param [in] Call The expression that allocates memory. 561 /// \param [in] SizeEx Size of the memory that needs to be allocated. 562 /// \param [in] Init The value the allocated memory needs to be initialized. 563 /// with. For example, \c calloc initializes the allocated memory to 0, 564 /// malloc leaves it undefined. 565 /// \param [in] State The \c ProgramState right before allocation. 566 /// \returns The ProgramState right after allocation. 567 [[nodiscard]] ProgramStateRef 568 MallocMemAux(CheckerContext &C, const CallEvent &Call, const Expr *SizeEx, 569 SVal Init, ProgramStateRef State, AllocationFamily Family) const; 570 571 /// Models memory allocation. 572 /// 573 /// \param [in] Call The expression that allocates memory. 574 /// \param [in] Size Size of the memory that needs to be allocated. 575 /// \param [in] Init The value the allocated memory needs to be initialized. 576 /// with. For example, \c calloc initializes the allocated memory to 0, 577 /// malloc leaves it undefined. 578 /// \param [in] State The \c ProgramState right before allocation. 579 /// \returns The ProgramState right after allocation. 580 [[nodiscard]] ProgramStateRef MallocMemAux(CheckerContext &C, 581 const CallEvent &Call, SVal Size, 582 SVal Init, ProgramStateRef State, 583 AllocationFamily Family) const; 584 585 // Check if this malloc() for special flags. At present that means M_ZERO or 586 // __GFP_ZERO (in which case, treat it like calloc). 587 [[nodiscard]] std::optional<ProgramStateRef> 588 performKernelMalloc(const CallEvent &Call, CheckerContext &C, 589 const ProgramStateRef &State) const; 590 591 /// Model functions with the ownership_takes and ownership_holds attributes. 592 /// 593 /// User-defined function may have the ownership_takes and/or ownership_holds 594 /// attributes, which annotates that the function frees the memory passed as a 595 /// parameter. 596 /// 597 /// void __attribute((ownership_takes(malloc, 1))) my_free(void *); 598 /// void __attribute((ownership_holds(malloc, 1))) my_hold(void *); 599 /// 600 /// They have two parameters: 601 /// - first: name of the resource (e.g. 'malloc') 602 /// - second: index of the parameter the attribute applies to 603 /// 604 /// \param [in] Call The expression that frees memory. 605 /// \param [in] Att The ownership_takes or ownership_holds attribute. 606 /// \param [in] State The \c ProgramState right before allocation. 607 /// \returns The ProgramState right after deallocation. 608 [[nodiscard]] ProgramStateRef FreeMemAttr(CheckerContext &C, 609 const CallEvent &Call, 610 const OwnershipAttr *Att, 611 ProgramStateRef State) const; 612 613 /// Models memory deallocation. 614 /// 615 /// \param [in] Call The expression that frees memory. 616 /// \param [in] State The \c ProgramState right before allocation. 617 /// \param [in] Num Index of the argument that needs to be freed. This is 618 /// normally 0, but for custom free functions it may be different. 619 /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds 620 /// attribute. 621 /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known 622 /// to have been allocated, or in other words, the symbol to be freed was 623 /// registered as allocated by this checker. In the following case, \c ptr 624 /// isn't known to be allocated. 625 /// void Haha(int *ptr) { 626 /// ptr = realloc(ptr, 67); 627 /// // ... 628 /// } 629 /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function 630 /// we're modeling returns with Null on failure. 631 /// \returns The ProgramState right after deallocation. 632 [[nodiscard]] ProgramStateRef 633 FreeMemAux(CheckerContext &C, const CallEvent &Call, ProgramStateRef State, 634 unsigned Num, bool Hold, bool &IsKnownToBeAllocated, 635 AllocationFamily Family, bool ReturnsNullOnFailure = false) const; 636 637 /// Models memory deallocation. 638 /// 639 /// \param [in] ArgExpr The variable who's pointee needs to be freed. 640 /// \param [in] Call The expression that frees the memory. 641 /// \param [in] State The \c ProgramState right before allocation. 642 /// normally 0, but for custom free functions it may be different. 643 /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds 644 /// attribute. 645 /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known 646 /// to have been allocated, or in other words, the symbol to be freed was 647 /// registered as allocated by this checker. In the following case, \c ptr 648 /// isn't known to be allocated. 649 /// void Haha(int *ptr) { 650 /// ptr = realloc(ptr, 67); 651 /// // ... 652 /// } 653 /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function 654 /// we're modeling returns with Null on failure. 655 /// \param [in] ArgValOpt Optional value to use for the argument instead of 656 /// the one obtained from ArgExpr. 657 /// \returns The ProgramState right after deallocation. 658 [[nodiscard]] ProgramStateRef 659 FreeMemAux(CheckerContext &C, const Expr *ArgExpr, const CallEvent &Call, 660 ProgramStateRef State, bool Hold, bool &IsKnownToBeAllocated, 661 AllocationFamily Family, bool ReturnsNullOnFailure = false, 662 std::optional<SVal> ArgValOpt = {}) const; 663 664 // TODO: Needs some refactoring, as all other deallocation modeling 665 // functions are suffering from out parameters and messy code due to how 666 // realloc is handled. 667 // 668 /// Models memory reallocation. 669 /// 670 /// \param [in] Call The expression that reallocated memory 671 /// \param [in] ShouldFreeOnFail Whether if reallocation fails, the supplied 672 /// memory should be freed. 673 /// \param [in] State The \c ProgramState right before reallocation. 674 /// \param [in] SuffixWithN Whether the reallocation function we're modeling 675 /// has an '_n' suffix, such as g_realloc_n. 676 /// \returns The ProgramState right after reallocation. 677 [[nodiscard]] ProgramStateRef 678 ReallocMemAux(CheckerContext &C, const CallEvent &Call, bool ShouldFreeOnFail, 679 ProgramStateRef State, AllocationFamily Family, 680 bool SuffixWithN = false) const; 681 682 /// Evaluates the buffer size that needs to be allocated. 683 /// 684 /// \param [in] Blocks The amount of blocks that needs to be allocated. 685 /// \param [in] BlockBytes The size of a block. 686 /// \returns The symbolic value of \p Blocks * \p BlockBytes. 687 [[nodiscard]] static SVal evalMulForBufferSize(CheckerContext &C, 688 const Expr *Blocks, 689 const Expr *BlockBytes); 690 691 /// Models zero initialized array allocation. 692 /// 693 /// \param [in] Call The expression that reallocated memory 694 /// \param [in] State The \c ProgramState right before reallocation. 695 /// \returns The ProgramState right after allocation. 696 [[nodiscard]] ProgramStateRef CallocMem(CheckerContext &C, 697 const CallEvent &Call, 698 ProgramStateRef State) const; 699 700 /// See if deallocation happens in a suspicious context. If so, escape the 701 /// pointers that otherwise would have been deallocated and return true. 702 bool suppressDeallocationsInSuspiciousContexts(const CallEvent &Call, 703 CheckerContext &C) const; 704 705 /// If in \p S \p Sym is used, check whether \p Sym was already freed. 706 bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S) const; 707 708 /// If in \p S \p Sym is used, check whether \p Sym was allocated as a zero 709 /// sized memory region. 710 void checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 711 const Stmt *S) const; 712 713 /// If in \p S \p Sym is being freed, check whether \p Sym was already freed. 714 bool checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const; 715 716 /// Check if the function is known to free memory, or if it is 717 /// "interesting" and should be modeled explicitly. 718 /// 719 /// \param [out] EscapingSymbol A function might not free memory in general, 720 /// but could be known to free a particular symbol. In this case, false is 721 /// returned and the single escaping symbol is returned through the out 722 /// parameter. 723 /// 724 /// We assume that pointers do not escape through calls to system functions 725 /// not handled by this checker. 726 bool mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent *Call, 727 ProgramStateRef State, 728 SymbolRef &EscapingSymbol) const; 729 730 /// Implementation of the checkPointerEscape callbacks. 731 [[nodiscard]] ProgramStateRef 732 checkPointerEscapeAux(ProgramStateRef State, 733 const InvalidatedSymbols &Escaped, 734 const CallEvent *Call, PointerEscapeKind Kind, 735 bool IsConstPointerEscape) const; 736 737 // Implementation of the checkPreStmt and checkEndFunction callbacks. 738 void checkEscapeOnReturn(const ReturnStmt *S, CheckerContext &C) const; 739 740 ///@{ 741 /// Tells if a given family/call/symbol is tracked by the current checker. 742 /// Sets CheckKind to the kind of the checker responsible for this 743 /// family/call/symbol. 744 std::optional<CheckKind> getCheckIfTracked(AllocationFamily Family, 745 bool IsALeakCheck = false) const; 746 747 std::optional<CheckKind> getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 748 bool IsALeakCheck = false) const; 749 ///@} 750 static bool SummarizeValue(raw_ostream &os, SVal V); 751 static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR); 752 753 void HandleNonHeapDealloc(CheckerContext &C, SVal ArgVal, SourceRange Range, 754 const Expr *DeallocExpr, 755 AllocationFamily Family) const; 756 757 void HandleFreeAlloca(CheckerContext &C, SVal ArgVal, 758 SourceRange Range) const; 759 760 void HandleMismatchedDealloc(CheckerContext &C, SourceRange Range, 761 const Expr *DeallocExpr, const RefState *RS, 762 SymbolRef Sym, bool OwnershipTransferred) const; 763 764 void HandleOffsetFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 765 const Expr *DeallocExpr, AllocationFamily Family, 766 const Expr *AllocExpr = nullptr) const; 767 768 void HandleUseAfterFree(CheckerContext &C, SourceRange Range, 769 SymbolRef Sym) const; 770 771 void HandleDoubleFree(CheckerContext &C, SourceRange Range, bool Released, 772 SymbolRef Sym, SymbolRef PrevSym) const; 773 774 void HandleDoubleDelete(CheckerContext &C, SymbolRef Sym) const; 775 776 void HandleUseZeroAlloc(CheckerContext &C, SourceRange Range, 777 SymbolRef Sym) const; 778 779 void HandleFunctionPtrFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 780 const Expr *FreeExpr, 781 AllocationFamily Family) const; 782 783 /// Find the location of the allocation for Sym on the path leading to the 784 /// exploded node N. 785 static LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym, 786 CheckerContext &C); 787 788 void HandleLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const; 789 790 /// Test if value in ArgVal equals to value in macro `ZERO_SIZE_PTR`. 791 bool isArgZERO_SIZE_PTR(ProgramStateRef State, CheckerContext &C, 792 SVal ArgVal) const; 793 }; 794 } // end anonymous namespace 795 796 //===----------------------------------------------------------------------===// 797 // Definition of NoOwnershipChangeVisitor. 798 //===----------------------------------------------------------------------===// 799 800 namespace { 801 class NoMemOwnershipChangeVisitor final : public NoOwnershipChangeVisitor { 802 protected: 803 /// Syntactically checks whether the callee is a deallocating function. Since 804 /// we have no path-sensitive information on this call (we would need a 805 /// CallEvent instead of a CallExpr for that), its possible that a 806 /// deallocation function was called indirectly through a function pointer, 807 /// but we are not able to tell, so this is a best effort analysis. 808 /// See namespace `memory_passed_to_fn_call_free_through_fn_ptr` in 809 /// clang/test/Analysis/NewDeleteLeaks.cpp. 810 bool isFreeingCallAsWritten(const CallExpr &Call) const { 811 const auto *MallocChk = static_cast<const MallocChecker *>(&Checker); 812 if (MallocChk->FreeingMemFnMap.lookupAsWritten(Call) || 813 MallocChk->ReallocatingMemFnMap.lookupAsWritten(Call)) 814 return true; 815 816 if (const auto *Func = 817 llvm::dyn_cast_or_null<FunctionDecl>(Call.getCalleeDecl())) 818 return MallocChecker::isFreeingOwnershipAttrCall(Func); 819 820 return false; 821 } 822 823 bool hasResourceStateChanged(ProgramStateRef CallEnterState, 824 ProgramStateRef CallExitEndState) final { 825 return CallEnterState->get<RegionState>(Sym) != 826 CallExitEndState->get<RegionState>(Sym); 827 } 828 829 /// Heuristically guess whether the callee intended to free memory. This is 830 /// done syntactically, because we are trying to argue about alternative 831 /// paths of execution, and as a consequence we don't have path-sensitive 832 /// information. 833 bool doesFnIntendToHandleOwnership(const Decl *Callee, 834 ASTContext &ACtx) final { 835 using namespace clang::ast_matchers; 836 const FunctionDecl *FD = dyn_cast<FunctionDecl>(Callee); 837 838 auto Matches = match(findAll(stmt(anyOf(cxxDeleteExpr().bind("delete"), 839 callExpr().bind("call")))), 840 *FD->getBody(), ACtx); 841 for (BoundNodes Match : Matches) { 842 if (Match.getNodeAs<CXXDeleteExpr>("delete")) 843 return true; 844 845 if (const auto *Call = Match.getNodeAs<CallExpr>("call")) 846 if (isFreeingCallAsWritten(*Call)) 847 return true; 848 } 849 // TODO: Ownership might change with an attempt to store the allocated 850 // memory, not only through deallocation. Check for attempted stores as 851 // well. 852 return false; 853 } 854 855 PathDiagnosticPieceRef emitNote(const ExplodedNode *N) final { 856 PathDiagnosticLocation L = PathDiagnosticLocation::create( 857 N->getLocation(), 858 N->getState()->getStateManager().getContext().getSourceManager()); 859 return std::make_shared<PathDiagnosticEventPiece>( 860 L, "Returning without deallocating memory or storing the pointer for " 861 "later deallocation"); 862 } 863 864 public: 865 NoMemOwnershipChangeVisitor(SymbolRef Sym, const MallocChecker *Checker) 866 : NoOwnershipChangeVisitor(Sym, Checker) {} 867 868 void Profile(llvm::FoldingSetNodeID &ID) const override { 869 static int Tag = 0; 870 ID.AddPointer(&Tag); 871 ID.AddPointer(Sym); 872 } 873 }; 874 875 } // end anonymous namespace 876 877 //===----------------------------------------------------------------------===// 878 // Definition of MallocBugVisitor. 879 //===----------------------------------------------------------------------===// 880 881 namespace { 882 /// The bug visitor which allows us to print extra diagnostics along the 883 /// BugReport path. For example, showing the allocation site of the leaked 884 /// region. 885 class MallocBugVisitor final : public BugReporterVisitor { 886 protected: 887 enum NotificationMode { Normal, ReallocationFailed }; 888 889 // The allocated region symbol tracked by the main analysis. 890 SymbolRef Sym; 891 892 // The mode we are in, i.e. what kind of diagnostics will be emitted. 893 NotificationMode Mode; 894 895 // A symbol from when the primary region should have been reallocated. 896 SymbolRef FailedReallocSymbol; 897 898 // A C++ destructor stack frame in which memory was released. Used for 899 // miscellaneous false positive suppression. 900 const StackFrameContext *ReleaseDestructorLC; 901 902 bool IsLeak; 903 904 public: 905 MallocBugVisitor(SymbolRef S, bool isLeak = false) 906 : Sym(S), Mode(Normal), FailedReallocSymbol(nullptr), 907 ReleaseDestructorLC(nullptr), IsLeak(isLeak) {} 908 909 static void *getTag() { 910 static int Tag = 0; 911 return &Tag; 912 } 913 914 void Profile(llvm::FoldingSetNodeID &ID) const override { 915 ID.AddPointer(getTag()); 916 ID.AddPointer(Sym); 917 } 918 919 /// Did not track -> allocated. Other state (released) -> allocated. 920 static inline bool isAllocated(const RefState *RSCurr, const RefState *RSPrev, 921 const Stmt *Stmt) { 922 return (isa_and_nonnull<CallExpr, CXXNewExpr>(Stmt) && 923 (RSCurr && 924 (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) && 925 (!RSPrev || 926 !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero()))); 927 } 928 929 /// Did not track -> released. Other state (allocated) -> released. 930 /// The statement associated with the release might be missing. 931 static inline bool isReleased(const RefState *RSCurr, const RefState *RSPrev, 932 const Stmt *Stmt) { 933 bool IsReleased = 934 (RSCurr && RSCurr->isReleased()) && (!RSPrev || !RSPrev->isReleased()); 935 assert(!IsReleased || (isa_and_nonnull<CallExpr, CXXDeleteExpr>(Stmt)) || 936 (!Stmt && RSCurr->getAllocationFamily().Kind == AF_InnerBuffer)); 937 return IsReleased; 938 } 939 940 /// Did not track -> relinquished. Other state (allocated) -> relinquished. 941 static inline bool isRelinquished(const RefState *RSCurr, 942 const RefState *RSPrev, const Stmt *Stmt) { 943 return ( 944 isa_and_nonnull<CallExpr, ObjCMessageExpr, ObjCPropertyRefExpr>(Stmt) && 945 (RSCurr && RSCurr->isRelinquished()) && 946 (!RSPrev || !RSPrev->isRelinquished())); 947 } 948 949 /// If the expression is not a call, and the state change is 950 /// released -> allocated, it must be the realloc return value 951 /// check. If we have to handle more cases here, it might be cleaner just 952 /// to track this extra bit in the state itself. 953 static inline bool hasReallocFailed(const RefState *RSCurr, 954 const RefState *RSPrev, 955 const Stmt *Stmt) { 956 return ((!isa_and_nonnull<CallExpr>(Stmt)) && 957 (RSCurr && 958 (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) && 959 (RSPrev && 960 !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero()))); 961 } 962 963 PathDiagnosticPieceRef VisitNode(const ExplodedNode *N, 964 BugReporterContext &BRC, 965 PathSensitiveBugReport &BR) override; 966 967 PathDiagnosticPieceRef getEndPath(BugReporterContext &BRC, 968 const ExplodedNode *EndPathNode, 969 PathSensitiveBugReport &BR) override { 970 if (!IsLeak) 971 return nullptr; 972 973 PathDiagnosticLocation L = BR.getLocation(); 974 // Do not add the statement itself as a range in case of leak. 975 return std::make_shared<PathDiagnosticEventPiece>(L, BR.getDescription(), 976 false); 977 } 978 979 private: 980 class StackHintGeneratorForReallocationFailed 981 : public StackHintGeneratorForSymbol { 982 public: 983 StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M) 984 : StackHintGeneratorForSymbol(S, M) {} 985 986 std::string getMessageForArg(const Expr *ArgE, unsigned ArgIndex) override { 987 // Printed parameters start at 1, not 0. 988 ++ArgIndex; 989 990 SmallString<200> buf; 991 llvm::raw_svector_ostream os(buf); 992 993 os << "Reallocation of " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex) 994 << " parameter failed"; 995 996 return std::string(os.str()); 997 } 998 999 std::string getMessageForReturn(const CallExpr *CallExpr) override { 1000 return "Reallocation of returned value failed"; 1001 } 1002 }; 1003 }; 1004 } // end anonymous namespace 1005 1006 // A map from the freed symbol to the symbol representing the return value of 1007 // the free function. 1008 REGISTER_MAP_WITH_PROGRAMSTATE(FreeReturnValue, SymbolRef, SymbolRef) 1009 1010 namespace { 1011 class StopTrackingCallback final : public SymbolVisitor { 1012 ProgramStateRef state; 1013 1014 public: 1015 StopTrackingCallback(ProgramStateRef st) : state(std::move(st)) {} 1016 ProgramStateRef getState() const { return state; } 1017 1018 bool VisitSymbol(SymbolRef sym) override { 1019 state = state->remove<RegionState>(sym); 1020 return true; 1021 } 1022 }; 1023 } // end anonymous namespace 1024 1025 static bool isStandardNewDelete(const FunctionDecl *FD) { 1026 if (!FD) 1027 return false; 1028 1029 OverloadedOperatorKind Kind = FD->getOverloadedOperator(); 1030 if (Kind != OO_New && Kind != OO_Array_New && Kind != OO_Delete && 1031 Kind != OO_Array_Delete) 1032 return false; 1033 1034 // This is standard if and only if it's not defined in a user file. 1035 SourceLocation L = FD->getLocation(); 1036 // If the header for operator delete is not included, it's still defined 1037 // in an invalid source location. Check to make sure we don't crash. 1038 return !L.isValid() || 1039 FD->getASTContext().getSourceManager().isInSystemHeader(L); 1040 } 1041 1042 //===----------------------------------------------------------------------===// 1043 // Methods of MallocChecker and MallocBugVisitor. 1044 //===----------------------------------------------------------------------===// 1045 1046 bool MallocChecker::isFreeingOwnershipAttrCall(const FunctionDecl *Func) { 1047 if (Func->hasAttrs()) { 1048 for (const auto *I : Func->specific_attrs<OwnershipAttr>()) { 1049 OwnershipAttr::OwnershipKind OwnKind = I->getOwnKind(); 1050 if (OwnKind == OwnershipAttr::Takes || OwnKind == OwnershipAttr::Holds) 1051 return true; 1052 } 1053 } 1054 return false; 1055 } 1056 1057 bool MallocChecker::isFreeingCall(const CallEvent &Call) const { 1058 if (FreeingMemFnMap.lookup(Call) || ReallocatingMemFnMap.lookup(Call)) 1059 return true; 1060 1061 if (const auto *Func = dyn_cast_or_null<FunctionDecl>(Call.getDecl())) 1062 return isFreeingOwnershipAttrCall(Func); 1063 1064 return false; 1065 } 1066 1067 bool MallocChecker::isMemCall(const CallEvent &Call) const { 1068 if (FreeingMemFnMap.lookup(Call) || AllocatingMemFnMap.lookup(Call) || 1069 ReallocatingMemFnMap.lookup(Call)) 1070 return true; 1071 1072 if (!ShouldIncludeOwnershipAnnotatedFunctions) 1073 return false; 1074 1075 const auto *Func = dyn_cast<FunctionDecl>(Call.getDecl()); 1076 return Func && Func->hasAttr<OwnershipAttr>(); 1077 } 1078 1079 std::optional<ProgramStateRef> 1080 MallocChecker::performKernelMalloc(const CallEvent &Call, CheckerContext &C, 1081 const ProgramStateRef &State) const { 1082 // 3-argument malloc(), as commonly used in {Free,Net,Open}BSD Kernels: 1083 // 1084 // void *malloc(unsigned long size, struct malloc_type *mtp, int flags); 1085 // 1086 // One of the possible flags is M_ZERO, which means 'give me back an 1087 // allocation which is already zeroed', like calloc. 1088 1089 // 2-argument kmalloc(), as used in the Linux kernel: 1090 // 1091 // void *kmalloc(size_t size, gfp_t flags); 1092 // 1093 // Has the similar flag value __GFP_ZERO. 1094 1095 // This logic is largely cloned from O_CREAT in UnixAPIChecker, maybe some 1096 // code could be shared. 1097 1098 ASTContext &Ctx = C.getASTContext(); 1099 llvm::Triple::OSType OS = Ctx.getTargetInfo().getTriple().getOS(); 1100 1101 if (!KernelZeroFlagVal) { 1102 switch (OS) { 1103 case llvm::Triple::FreeBSD: 1104 KernelZeroFlagVal = 0x0100; 1105 break; 1106 case llvm::Triple::NetBSD: 1107 KernelZeroFlagVal = 0x0002; 1108 break; 1109 case llvm::Triple::OpenBSD: 1110 KernelZeroFlagVal = 0x0008; 1111 break; 1112 case llvm::Triple::Linux: 1113 // __GFP_ZERO 1114 KernelZeroFlagVal = 0x8000; 1115 break; 1116 default: 1117 // FIXME: We need a more general way of getting the M_ZERO value. 1118 // See also: O_CREAT in UnixAPIChecker.cpp. 1119 1120 // Fall back to normal malloc behavior on platforms where we don't 1121 // know M_ZERO. 1122 return std::nullopt; 1123 } 1124 } 1125 1126 // We treat the last argument as the flags argument, and callers fall-back to 1127 // normal malloc on a None return. This works for the FreeBSD kernel malloc 1128 // as well as Linux kmalloc. 1129 if (Call.getNumArgs() < 2) 1130 return std::nullopt; 1131 1132 const Expr *FlagsEx = Call.getArgExpr(Call.getNumArgs() - 1); 1133 const SVal V = C.getSVal(FlagsEx); 1134 if (!isa<NonLoc>(V)) { 1135 // The case where 'V' can be a location can only be due to a bad header, 1136 // so in this case bail out. 1137 return std::nullopt; 1138 } 1139 1140 NonLoc Flags = V.castAs<NonLoc>(); 1141 NonLoc ZeroFlag = C.getSValBuilder() 1142 .makeIntVal(*KernelZeroFlagVal, FlagsEx->getType()) 1143 .castAs<NonLoc>(); 1144 SVal MaskedFlagsUC = C.getSValBuilder().evalBinOpNN(State, BO_And, 1145 Flags, ZeroFlag, 1146 FlagsEx->getType()); 1147 if (MaskedFlagsUC.isUnknownOrUndef()) 1148 return std::nullopt; 1149 DefinedSVal MaskedFlags = MaskedFlagsUC.castAs<DefinedSVal>(); 1150 1151 // Check if maskedFlags is non-zero. 1152 ProgramStateRef TrueState, FalseState; 1153 std::tie(TrueState, FalseState) = State->assume(MaskedFlags); 1154 1155 // If M_ZERO is set, treat this like calloc (initialized). 1156 if (TrueState && !FalseState) { 1157 SVal ZeroVal = C.getSValBuilder().makeZeroVal(Ctx.CharTy); 1158 return MallocMemAux(C, Call, Call.getArgExpr(0), ZeroVal, TrueState, 1159 AllocationFamily(AF_Malloc)); 1160 } 1161 1162 return std::nullopt; 1163 } 1164 1165 SVal MallocChecker::evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, 1166 const Expr *BlockBytes) { 1167 SValBuilder &SB = C.getSValBuilder(); 1168 SVal BlocksVal = C.getSVal(Blocks); 1169 SVal BlockBytesVal = C.getSVal(BlockBytes); 1170 ProgramStateRef State = C.getState(); 1171 SVal TotalSize = SB.evalBinOp(State, BO_Mul, BlocksVal, BlockBytesVal, 1172 SB.getContext().getSizeType()); 1173 return TotalSize; 1174 } 1175 1176 void MallocChecker::checkBasicAlloc(const CallEvent &Call, 1177 CheckerContext &C) const { 1178 ProgramStateRef State = C.getState(); 1179 State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State, 1180 AllocationFamily(AF_Malloc)); 1181 State = ProcessZeroAllocCheck(Call, 0, State); 1182 C.addTransition(State); 1183 } 1184 1185 void MallocChecker::checkKernelMalloc(const CallEvent &Call, 1186 CheckerContext &C) const { 1187 ProgramStateRef State = C.getState(); 1188 std::optional<ProgramStateRef> MaybeState = 1189 performKernelMalloc(Call, C, State); 1190 if (MaybeState) 1191 State = *MaybeState; 1192 else 1193 State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State, 1194 AllocationFamily(AF_Malloc)); 1195 C.addTransition(State); 1196 } 1197 1198 static bool isStandardRealloc(const CallEvent &Call) { 1199 const FunctionDecl *FD = dyn_cast<FunctionDecl>(Call.getDecl()); 1200 assert(FD); 1201 ASTContext &AC = FD->getASTContext(); 1202 1203 return FD->getDeclaredReturnType().getDesugaredType(AC) == AC.VoidPtrTy && 1204 FD->getParamDecl(0)->getType().getDesugaredType(AC) == AC.VoidPtrTy && 1205 FD->getParamDecl(1)->getType().getDesugaredType(AC) == 1206 AC.getSizeType(); 1207 } 1208 1209 static bool isGRealloc(const CallEvent &Call) { 1210 const FunctionDecl *FD = dyn_cast<FunctionDecl>(Call.getDecl()); 1211 assert(FD); 1212 ASTContext &AC = FD->getASTContext(); 1213 1214 return FD->getDeclaredReturnType().getDesugaredType(AC) == AC.VoidPtrTy && 1215 FD->getParamDecl(0)->getType().getDesugaredType(AC) == AC.VoidPtrTy && 1216 FD->getParamDecl(1)->getType().getDesugaredType(AC) == 1217 AC.UnsignedLongTy; 1218 } 1219 1220 void MallocChecker::checkRealloc(const CallEvent &Call, CheckerContext &C, 1221 bool ShouldFreeOnFail) const { 1222 // Ignore calls to functions whose type does not match the expected type of 1223 // either the standard realloc or g_realloc from GLib. 1224 // FIXME: Should we perform this kind of checking consistently for each 1225 // function? If yes, then perhaps extend the `CallDescription` interface to 1226 // handle this. 1227 if (!isStandardRealloc(Call) && !isGRealloc(Call)) 1228 return; 1229 1230 ProgramStateRef State = C.getState(); 1231 State = ReallocMemAux(C, Call, ShouldFreeOnFail, State, 1232 AllocationFamily(AF_Malloc)); 1233 State = ProcessZeroAllocCheck(Call, 1, State); 1234 C.addTransition(State); 1235 } 1236 1237 void MallocChecker::checkCalloc(const CallEvent &Call, 1238 CheckerContext &C) const { 1239 ProgramStateRef State = C.getState(); 1240 State = CallocMem(C, Call, State); 1241 State = ProcessZeroAllocCheck(Call, 0, State); 1242 State = ProcessZeroAllocCheck(Call, 1, State); 1243 C.addTransition(State); 1244 } 1245 1246 void MallocChecker::checkFree(const CallEvent &Call, CheckerContext &C) const { 1247 ProgramStateRef State = C.getState(); 1248 bool IsKnownToBeAllocatedMemory = false; 1249 if (suppressDeallocationsInSuspiciousContexts(Call, C)) 1250 return; 1251 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1252 AllocationFamily(AF_Malloc)); 1253 C.addTransition(State); 1254 } 1255 1256 void MallocChecker::checkAlloca(const CallEvent &Call, 1257 CheckerContext &C) const { 1258 ProgramStateRef State = C.getState(); 1259 State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State, 1260 AllocationFamily(AF_Alloca)); 1261 State = ProcessZeroAllocCheck(Call, 0, State); 1262 C.addTransition(State); 1263 } 1264 1265 void MallocChecker::checkStrdup(const CallEvent &Call, 1266 CheckerContext &C) const { 1267 ProgramStateRef State = C.getState(); 1268 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1269 if (!CE) 1270 return; 1271 State = MallocUpdateRefState(C, CE, State, AllocationFamily(AF_Malloc)); 1272 1273 C.addTransition(State); 1274 } 1275 1276 void MallocChecker::checkIfNameIndex(const CallEvent &Call, 1277 CheckerContext &C) const { 1278 ProgramStateRef State = C.getState(); 1279 // Should we model this differently? We can allocate a fixed number of 1280 // elements with zeros in the last one. 1281 State = MallocMemAux(C, Call, UnknownVal(), UnknownVal(), State, 1282 AllocationFamily(AF_IfNameIndex)); 1283 1284 C.addTransition(State); 1285 } 1286 1287 void MallocChecker::checkIfFreeNameIndex(const CallEvent &Call, 1288 CheckerContext &C) const { 1289 ProgramStateRef State = C.getState(); 1290 bool IsKnownToBeAllocatedMemory = false; 1291 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1292 AllocationFamily(AF_IfNameIndex)); 1293 C.addTransition(State); 1294 } 1295 1296 void MallocChecker::checkCXXNewOrCXXDelete(const CallEvent &Call, 1297 CheckerContext &C) const { 1298 ProgramStateRef State = C.getState(); 1299 bool IsKnownToBeAllocatedMemory = false; 1300 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1301 if (!CE) 1302 return; 1303 1304 assert(isStandardNewDelete(Call)); 1305 1306 // Process direct calls to operator new/new[]/delete/delete[] functions 1307 // as distinct from new/new[]/delete/delete[] expressions that are 1308 // processed by the checkPostStmt callbacks for CXXNewExpr and 1309 // CXXDeleteExpr. 1310 const FunctionDecl *FD = C.getCalleeDecl(CE); 1311 switch (FD->getOverloadedOperator()) { 1312 case OO_New: 1313 State = MallocMemAux(C, Call, CE->getArg(0), UndefinedVal(), State, 1314 AllocationFamily(AF_CXXNew)); 1315 State = ProcessZeroAllocCheck(Call, 0, State); 1316 break; 1317 case OO_Array_New: 1318 State = MallocMemAux(C, Call, CE->getArg(0), UndefinedVal(), State, 1319 AllocationFamily(AF_CXXNewArray)); 1320 State = ProcessZeroAllocCheck(Call, 0, State); 1321 break; 1322 case OO_Delete: 1323 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1324 AllocationFamily(AF_CXXNew)); 1325 break; 1326 case OO_Array_Delete: 1327 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1328 AllocationFamily(AF_CXXNewArray)); 1329 break; 1330 default: 1331 assert(false && "not a new/delete operator"); 1332 return; 1333 } 1334 1335 C.addTransition(State); 1336 } 1337 1338 void MallocChecker::checkGMalloc0(const CallEvent &Call, 1339 CheckerContext &C) const { 1340 ProgramStateRef State = C.getState(); 1341 SValBuilder &svalBuilder = C.getSValBuilder(); 1342 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 1343 State = MallocMemAux(C, Call, Call.getArgExpr(0), zeroVal, State, 1344 AllocationFamily(AF_Malloc)); 1345 State = ProcessZeroAllocCheck(Call, 0, State); 1346 C.addTransition(State); 1347 } 1348 1349 void MallocChecker::checkGMemdup(const CallEvent &Call, 1350 CheckerContext &C) const { 1351 ProgramStateRef State = C.getState(); 1352 State = MallocMemAux(C, Call, Call.getArgExpr(1), UnknownVal(), State, 1353 AllocationFamily(AF_Malloc)); 1354 State = ProcessZeroAllocCheck(Call, 1, State); 1355 C.addTransition(State); 1356 } 1357 1358 void MallocChecker::checkGMallocN(const CallEvent &Call, 1359 CheckerContext &C) const { 1360 ProgramStateRef State = C.getState(); 1361 SVal Init = UndefinedVal(); 1362 SVal TotalSize = evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1)); 1363 State = MallocMemAux(C, Call, TotalSize, Init, State, 1364 AllocationFamily(AF_Malloc)); 1365 State = ProcessZeroAllocCheck(Call, 0, State); 1366 State = ProcessZeroAllocCheck(Call, 1, State); 1367 C.addTransition(State); 1368 } 1369 1370 void MallocChecker::checkGMallocN0(const CallEvent &Call, 1371 CheckerContext &C) const { 1372 ProgramStateRef State = C.getState(); 1373 SValBuilder &SB = C.getSValBuilder(); 1374 SVal Init = SB.makeZeroVal(SB.getContext().CharTy); 1375 SVal TotalSize = evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1)); 1376 State = MallocMemAux(C, Call, TotalSize, Init, State, 1377 AllocationFamily(AF_Malloc)); 1378 State = ProcessZeroAllocCheck(Call, 0, State); 1379 State = ProcessZeroAllocCheck(Call, 1, State); 1380 C.addTransition(State); 1381 } 1382 1383 static bool isFromStdNamespace(const CallEvent &Call) { 1384 const Decl *FD = Call.getDecl(); 1385 assert(FD && "a CallDescription cannot match a call without a Decl"); 1386 return FD->isInStdNamespace(); 1387 } 1388 1389 void MallocChecker::preGetdelim(const CallEvent &Call, 1390 CheckerContext &C) const { 1391 // Discard calls to the C++ standard library function std::getline(), which 1392 // is completely unrelated to the POSIX getline() that we're checking. 1393 if (isFromStdNamespace(Call)) 1394 return; 1395 1396 ProgramStateRef State = C.getState(); 1397 const auto LinePtr = getPointeeVal(Call.getArgSVal(0), State); 1398 if (!LinePtr) 1399 return; 1400 1401 // FreeMemAux takes IsKnownToBeAllocated as an output parameter, and it will 1402 // be true after the call if the symbol was registered by this checker. 1403 // We do not need this value here, as FreeMemAux will take care 1404 // of reporting any violation of the preconditions. 1405 bool IsKnownToBeAllocated = false; 1406 State = FreeMemAux(C, Call.getArgExpr(0), Call, State, false, 1407 IsKnownToBeAllocated, AllocationFamily(AF_Malloc), false, 1408 LinePtr); 1409 if (State) 1410 C.addTransition(State); 1411 } 1412 1413 void MallocChecker::checkGetdelim(const CallEvent &Call, 1414 CheckerContext &C) const { 1415 // Discard calls to the C++ standard library function std::getline(), which 1416 // is completely unrelated to the POSIX getline() that we're checking. 1417 if (isFromStdNamespace(Call)) 1418 return; 1419 1420 ProgramStateRef State = C.getState(); 1421 // Handle the post-conditions of getline and getdelim: 1422 // Register the new conjured value as an allocated buffer. 1423 const CallExpr *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1424 if (!CE) 1425 return; 1426 1427 SValBuilder &SVB = C.getSValBuilder(); 1428 1429 const auto LinePtr = 1430 getPointeeVal(Call.getArgSVal(0), State)->getAs<DefinedSVal>(); 1431 const auto Size = 1432 getPointeeVal(Call.getArgSVal(1), State)->getAs<DefinedSVal>(); 1433 if (!LinePtr || !Size || !LinePtr->getAsRegion()) 1434 return; 1435 1436 State = setDynamicExtent(State, LinePtr->getAsRegion(), *Size, SVB); 1437 C.addTransition(MallocUpdateRefState(C, CE, State, 1438 AllocationFamily(AF_Malloc), *LinePtr)); 1439 } 1440 1441 void MallocChecker::checkReallocN(const CallEvent &Call, 1442 CheckerContext &C) const { 1443 ProgramStateRef State = C.getState(); 1444 State = ReallocMemAux(C, Call, /*ShouldFreeOnFail=*/false, State, 1445 AllocationFamily(AF_Malloc), 1446 /*SuffixWithN=*/true); 1447 State = ProcessZeroAllocCheck(Call, 1, State); 1448 State = ProcessZeroAllocCheck(Call, 2, State); 1449 C.addTransition(State); 1450 } 1451 1452 void MallocChecker::checkOwnershipAttr(const CallEvent &Call, 1453 CheckerContext &C) const { 1454 ProgramStateRef State = C.getState(); 1455 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1456 if (!CE) 1457 return; 1458 const FunctionDecl *FD = C.getCalleeDecl(CE); 1459 if (!FD) 1460 return; 1461 if (ShouldIncludeOwnershipAnnotatedFunctions || 1462 ChecksEnabled[CK_MismatchedDeallocatorChecker]) { 1463 // Check all the attributes, if there are any. 1464 // There can be multiple of these attributes. 1465 if (FD->hasAttrs()) 1466 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { 1467 switch (I->getOwnKind()) { 1468 case OwnershipAttr::Returns: 1469 State = MallocMemReturnsAttr(C, Call, I, State); 1470 break; 1471 case OwnershipAttr::Takes: 1472 case OwnershipAttr::Holds: 1473 State = FreeMemAttr(C, Call, I, State); 1474 break; 1475 } 1476 } 1477 } 1478 C.addTransition(State); 1479 } 1480 1481 void MallocChecker::checkPostCall(const CallEvent &Call, 1482 CheckerContext &C) const { 1483 if (C.wasInlined) 1484 return; 1485 if (!Call.getOriginExpr()) 1486 return; 1487 1488 ProgramStateRef State = C.getState(); 1489 1490 if (const CheckFn *Callback = FreeingMemFnMap.lookup(Call)) { 1491 (*Callback)(this, Call, C); 1492 return; 1493 } 1494 1495 if (const CheckFn *Callback = AllocatingMemFnMap.lookup(Call)) { 1496 (*Callback)(this, Call, C); 1497 return; 1498 } 1499 1500 if (const CheckFn *Callback = ReallocatingMemFnMap.lookup(Call)) { 1501 (*Callback)(this, Call, C); 1502 return; 1503 } 1504 1505 if (isStandardNewDelete(Call)) { 1506 checkCXXNewOrCXXDelete(Call, C); 1507 return; 1508 } 1509 1510 checkOwnershipAttr(Call, C); 1511 } 1512 1513 // Performs a 0-sized allocations check. 1514 ProgramStateRef MallocChecker::ProcessZeroAllocCheck( 1515 const CallEvent &Call, const unsigned IndexOfSizeArg, ProgramStateRef State, 1516 std::optional<SVal> RetVal) { 1517 if (!State) 1518 return nullptr; 1519 1520 if (!RetVal) 1521 RetVal = Call.getReturnValue(); 1522 1523 const Expr *Arg = nullptr; 1524 1525 if (const CallExpr *CE = dyn_cast<CallExpr>(Call.getOriginExpr())) { 1526 Arg = CE->getArg(IndexOfSizeArg); 1527 } else if (const CXXNewExpr *NE = 1528 dyn_cast<CXXNewExpr>(Call.getOriginExpr())) { 1529 if (NE->isArray()) { 1530 Arg = *NE->getArraySize(); 1531 } else { 1532 return State; 1533 } 1534 } else { 1535 assert(false && "not a CallExpr or CXXNewExpr"); 1536 return nullptr; 1537 } 1538 1539 assert(Arg); 1540 1541 auto DefArgVal = 1542 State->getSVal(Arg, Call.getLocationContext()).getAs<DefinedSVal>(); 1543 1544 if (!DefArgVal) 1545 return State; 1546 1547 // Check if the allocation size is 0. 1548 ProgramStateRef TrueState, FalseState; 1549 SValBuilder &SvalBuilder = State->getStateManager().getSValBuilder(); 1550 DefinedSVal Zero = 1551 SvalBuilder.makeZeroVal(Arg->getType()).castAs<DefinedSVal>(); 1552 1553 std::tie(TrueState, FalseState) = 1554 State->assume(SvalBuilder.evalEQ(State, *DefArgVal, Zero)); 1555 1556 if (TrueState && !FalseState) { 1557 SymbolRef Sym = RetVal->getAsLocSymbol(); 1558 if (!Sym) 1559 return State; 1560 1561 const RefState *RS = State->get<RegionState>(Sym); 1562 if (RS) { 1563 if (RS->isAllocated()) 1564 return TrueState->set<RegionState>(Sym, 1565 RefState::getAllocatedOfSizeZero(RS)); 1566 else 1567 return State; 1568 } else { 1569 // Case of zero-size realloc. Historically 'realloc(ptr, 0)' is treated as 1570 // 'free(ptr)' and the returned value from 'realloc(ptr, 0)' is not 1571 // tracked. Add zero-reallocated Sym to the state to catch references 1572 // to zero-allocated memory. 1573 return TrueState->add<ReallocSizeZeroSymbols>(Sym); 1574 } 1575 } 1576 1577 // Assume the value is non-zero going forward. 1578 assert(FalseState); 1579 return FalseState; 1580 } 1581 1582 static QualType getDeepPointeeType(QualType T) { 1583 QualType Result = T, PointeeType = T->getPointeeType(); 1584 while (!PointeeType.isNull()) { 1585 Result = PointeeType; 1586 PointeeType = PointeeType->getPointeeType(); 1587 } 1588 return Result; 1589 } 1590 1591 /// \returns true if the constructor invoked by \p NE has an argument of a 1592 /// pointer/reference to a record type. 1593 static bool hasNonTrivialConstructorCall(const CXXNewExpr *NE) { 1594 1595 const CXXConstructExpr *ConstructE = NE->getConstructExpr(); 1596 if (!ConstructE) 1597 return false; 1598 1599 if (!NE->getAllocatedType()->getAsCXXRecordDecl()) 1600 return false; 1601 1602 const CXXConstructorDecl *CtorD = ConstructE->getConstructor(); 1603 1604 // Iterate over the constructor parameters. 1605 for (const auto *CtorParam : CtorD->parameters()) { 1606 1607 QualType CtorParamPointeeT = CtorParam->getType()->getPointeeType(); 1608 if (CtorParamPointeeT.isNull()) 1609 continue; 1610 1611 CtorParamPointeeT = getDeepPointeeType(CtorParamPointeeT); 1612 1613 if (CtorParamPointeeT->getAsCXXRecordDecl()) 1614 return true; 1615 } 1616 1617 return false; 1618 } 1619 1620 ProgramStateRef 1621 MallocChecker::processNewAllocation(const CXXAllocatorCall &Call, 1622 CheckerContext &C, 1623 AllocationFamily Family) const { 1624 if (!isStandardNewDelete(Call)) 1625 return nullptr; 1626 1627 const CXXNewExpr *NE = Call.getOriginExpr(); 1628 const ParentMap &PM = C.getLocationContext()->getParentMap(); 1629 ProgramStateRef State = C.getState(); 1630 1631 // Non-trivial constructors have a chance to escape 'this', but marking all 1632 // invocations of trivial constructors as escaped would cause too great of 1633 // reduction of true positives, so let's just do that for constructors that 1634 // have an argument of a pointer-to-record type. 1635 if (!PM.isConsumedExpr(NE) && hasNonTrivialConstructorCall(NE)) 1636 return State; 1637 1638 // The return value from operator new is bound to a specified initialization 1639 // value (if any) and we don't want to loose this value. So we call 1640 // MallocUpdateRefState() instead of MallocMemAux() which breaks the 1641 // existing binding. 1642 SVal Target = Call.getObjectUnderConstruction(); 1643 if (Call.getOriginExpr()->isArray()) { 1644 if (auto SizeEx = NE->getArraySize()) 1645 checkTaintedness(C, Call, C.getSVal(*SizeEx), State, 1646 AllocationFamily(AF_CXXNewArray)); 1647 } 1648 1649 State = MallocUpdateRefState(C, NE, State, Family, Target); 1650 State = ProcessZeroAllocCheck(Call, 0, State, Target); 1651 return State; 1652 } 1653 1654 void MallocChecker::checkNewAllocator(const CXXAllocatorCall &Call, 1655 CheckerContext &C) const { 1656 if (!C.wasInlined) { 1657 ProgramStateRef State = processNewAllocation( 1658 Call, C, 1659 AllocationFamily(Call.getOriginExpr()->isArray() ? AF_CXXNewArray 1660 : AF_CXXNew)); 1661 C.addTransition(State); 1662 } 1663 } 1664 1665 static bool isKnownDeallocObjCMethodName(const ObjCMethodCall &Call) { 1666 // If the first selector piece is one of the names below, assume that the 1667 // object takes ownership of the memory, promising to eventually deallocate it 1668 // with free(). 1669 // Ex: [NSData dataWithBytesNoCopy:bytes length:10]; 1670 // (...unless a 'freeWhenDone' parameter is false, but that's checked later.) 1671 StringRef FirstSlot = Call.getSelector().getNameForSlot(0); 1672 return FirstSlot == "dataWithBytesNoCopy" || 1673 FirstSlot == "initWithBytesNoCopy" || 1674 FirstSlot == "initWithCharactersNoCopy"; 1675 } 1676 1677 static std::optional<bool> getFreeWhenDoneArg(const ObjCMethodCall &Call) { 1678 Selector S = Call.getSelector(); 1679 1680 // FIXME: We should not rely on fully-constrained symbols being folded. 1681 for (unsigned i = 1; i < S.getNumArgs(); ++i) 1682 if (S.getNameForSlot(i) == "freeWhenDone") 1683 return !Call.getArgSVal(i).isZeroConstant(); 1684 1685 return std::nullopt; 1686 } 1687 1688 void MallocChecker::checkPostObjCMessage(const ObjCMethodCall &Call, 1689 CheckerContext &C) const { 1690 if (C.wasInlined) 1691 return; 1692 1693 if (!isKnownDeallocObjCMethodName(Call)) 1694 return; 1695 1696 if (std::optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call)) 1697 if (!*FreeWhenDone) 1698 return; 1699 1700 if (Call.hasNonZeroCallbackArg()) 1701 return; 1702 1703 bool IsKnownToBeAllocatedMemory; 1704 ProgramStateRef State = FreeMemAux(C, Call.getArgExpr(0), Call, C.getState(), 1705 /*Hold=*/true, IsKnownToBeAllocatedMemory, 1706 AllocationFamily(AF_Malloc), 1707 /*ReturnsNullOnFailure=*/true); 1708 1709 C.addTransition(State); 1710 } 1711 1712 ProgramStateRef 1713 MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallEvent &Call, 1714 const OwnershipAttr *Att, 1715 ProgramStateRef State) const { 1716 if (!State) 1717 return nullptr; 1718 1719 auto attrClassName = Att->getModule()->getName(); 1720 auto Family = AllocationFamily(AF_Custom, attrClassName); 1721 1722 if (!Att->args().empty()) { 1723 return MallocMemAux(C, Call, 1724 Call.getArgExpr(Att->args_begin()->getASTIndex()), 1725 UndefinedVal(), State, Family); 1726 } 1727 return MallocMemAux(C, Call, UnknownVal(), UndefinedVal(), State, Family); 1728 } 1729 1730 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1731 const CallEvent &Call, 1732 const Expr *SizeEx, SVal Init, 1733 ProgramStateRef State, 1734 AllocationFamily Family) const { 1735 if (!State) 1736 return nullptr; 1737 1738 assert(SizeEx); 1739 return MallocMemAux(C, Call, C.getSVal(SizeEx), Init, State, Family); 1740 } 1741 1742 void MallocChecker::reportTaintBug(StringRef Msg, ProgramStateRef State, 1743 CheckerContext &C, 1744 llvm::ArrayRef<SymbolRef> TaintedSyms, 1745 AllocationFamily Family) const { 1746 if (ExplodedNode *N = C.generateNonFatalErrorNode(State, this)) { 1747 if (!BT_TaintedAlloc) 1748 BT_TaintedAlloc.reset(new BugType(CheckNames[CK_TaintedAllocChecker], 1749 "Tainted Memory Allocation", 1750 categories::TaintedData)); 1751 auto R = std::make_unique<PathSensitiveBugReport>(*BT_TaintedAlloc, Msg, N); 1752 for (auto TaintedSym : TaintedSyms) { 1753 R->markInteresting(TaintedSym); 1754 } 1755 C.emitReport(std::move(R)); 1756 } 1757 } 1758 1759 void MallocChecker::checkTaintedness(CheckerContext &C, const CallEvent &Call, 1760 const SVal SizeSVal, ProgramStateRef State, 1761 AllocationFamily Family) const { 1762 if (!ChecksEnabled[CK_TaintedAllocChecker]) 1763 return; 1764 std::vector<SymbolRef> TaintedSyms = 1765 taint::getTaintedSymbols(State, SizeSVal); 1766 if (TaintedSyms.empty()) 1767 return; 1768 1769 SValBuilder &SVB = C.getSValBuilder(); 1770 QualType SizeTy = SVB.getContext().getSizeType(); 1771 QualType CmpTy = SVB.getConditionType(); 1772 // In case the symbol is tainted, we give a warning if the 1773 // size is larger than SIZE_MAX/4 1774 BasicValueFactory &BVF = SVB.getBasicValueFactory(); 1775 const llvm::APSInt MaxValInt = BVF.getMaxValue(SizeTy); 1776 NonLoc MaxLength = 1777 SVB.makeIntVal(MaxValInt / APSIntType(MaxValInt).getValue(4)); 1778 std::optional<NonLoc> SizeNL = SizeSVal.getAs<NonLoc>(); 1779 auto Cmp = SVB.evalBinOpNN(State, BO_GE, *SizeNL, MaxLength, CmpTy) 1780 .getAs<DefinedOrUnknownSVal>(); 1781 if (!Cmp) 1782 return; 1783 auto [StateTooLarge, StateNotTooLarge] = State->assume(*Cmp); 1784 if (!StateTooLarge && StateNotTooLarge) { 1785 // We can prove that size is not too large so there is no issue. 1786 return; 1787 } 1788 1789 std::string Callee = "Memory allocation function"; 1790 if (Call.getCalleeIdentifier()) 1791 Callee = Call.getCalleeIdentifier()->getName().str(); 1792 reportTaintBug( 1793 Callee + " is called with a tainted (potentially attacker controlled) " 1794 "value. Make sure the value is bound checked.", 1795 State, C, TaintedSyms, Family); 1796 } 1797 1798 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1799 const CallEvent &Call, SVal Size, 1800 SVal Init, ProgramStateRef State, 1801 AllocationFamily Family) const { 1802 if (!State) 1803 return nullptr; 1804 1805 const Expr *CE = Call.getOriginExpr(); 1806 1807 // We expect the malloc functions to return a pointer. 1808 if (!Loc::isLocType(CE->getType())) 1809 return nullptr; 1810 1811 // Bind the return value to the symbolic value from the heap region. 1812 // TODO: move use of this functions to an EvalCall callback, becasue 1813 // BindExpr() should'nt be used elsewhere. 1814 unsigned Count = C.blockCount(); 1815 SValBuilder &SVB = C.getSValBuilder(); 1816 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 1817 DefinedSVal RetVal = ((Family.Kind == AF_Alloca) 1818 ? SVB.getAllocaRegionVal(CE, LCtx, Count) 1819 : SVB.getConjuredHeapSymbolVal(CE, LCtx, Count) 1820 .castAs<DefinedSVal>()); 1821 State = State->BindExpr(CE, C.getLocationContext(), RetVal); 1822 1823 // Fill the region with the initialization value. 1824 State = State->bindDefaultInitial(RetVal, Init, LCtx); 1825 1826 // If Size is somehow undefined at this point, this line prevents a crash. 1827 if (Size.isUndef()) 1828 Size = UnknownVal(); 1829 1830 checkTaintedness(C, Call, Size, State, AllocationFamily(AF_Malloc)); 1831 1832 // Set the region's extent. 1833 State = setDynamicExtent(State, RetVal.getAsRegion(), 1834 Size.castAs<DefinedOrUnknownSVal>(), SVB); 1835 1836 return MallocUpdateRefState(C, CE, State, Family); 1837 } 1838 1839 static ProgramStateRef MallocUpdateRefState(CheckerContext &C, const Expr *E, 1840 ProgramStateRef State, 1841 AllocationFamily Family, 1842 std::optional<SVal> RetVal) { 1843 if (!State) 1844 return nullptr; 1845 1846 // Get the return value. 1847 if (!RetVal) 1848 RetVal = C.getSVal(E); 1849 1850 // We expect the malloc functions to return a pointer. 1851 if (!RetVal->getAs<Loc>()) 1852 return nullptr; 1853 1854 SymbolRef Sym = RetVal->getAsLocSymbol(); 1855 1856 // This is a return value of a function that was not inlined, such as malloc() 1857 // or new(). We've checked that in the caller. Therefore, it must be a symbol. 1858 assert(Sym); 1859 // FIXME: In theory this assertion should fail for `alloca()` calls (because 1860 // `AllocaRegion`s are not symbolic); but in practice this does not happen. 1861 // As the current code appears to work correctly, I'm not touching this issue 1862 // now, but it would be good to investigate and clarify this. 1863 // Also note that perhaps the special `AllocaRegion` should be replaced by 1864 // `SymbolicRegion` (or turned into a subclass of `SymbolicRegion`) to enable 1865 // proper tracking of memory allocated by `alloca()` -- and after that change 1866 // this assertion would become valid again. 1867 1868 // Set the symbol's state to Allocated. 1869 return State->set<RegionState>(Sym, RefState::getAllocated(Family, E)); 1870 } 1871 1872 ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C, 1873 const CallEvent &Call, 1874 const OwnershipAttr *Att, 1875 ProgramStateRef State) const { 1876 if (!State) 1877 return nullptr; 1878 1879 auto attrClassName = Att->getModule()->getName(); 1880 auto Family = AllocationFamily(AF_Custom, attrClassName); 1881 1882 bool IsKnownToBeAllocated = false; 1883 1884 for (const auto &Arg : Att->args()) { 1885 ProgramStateRef StateI = 1886 FreeMemAux(C, Call, State, Arg.getASTIndex(), 1887 Att->getOwnKind() == OwnershipAttr::Holds, 1888 IsKnownToBeAllocated, Family); 1889 if (StateI) 1890 State = StateI; 1891 } 1892 return State; 1893 } 1894 1895 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, 1896 const CallEvent &Call, 1897 ProgramStateRef State, unsigned Num, 1898 bool Hold, bool &IsKnownToBeAllocated, 1899 AllocationFamily Family, 1900 bool ReturnsNullOnFailure) const { 1901 if (!State) 1902 return nullptr; 1903 1904 if (Call.getNumArgs() < (Num + 1)) 1905 return nullptr; 1906 1907 return FreeMemAux(C, Call.getArgExpr(Num), Call, State, Hold, 1908 IsKnownToBeAllocated, Family, ReturnsNullOnFailure); 1909 } 1910 1911 /// Checks if the previous call to free on the given symbol failed - if free 1912 /// failed, returns true. Also, returns the corresponding return value symbol. 1913 static bool didPreviousFreeFail(ProgramStateRef State, 1914 SymbolRef Sym, SymbolRef &RetStatusSymbol) { 1915 const SymbolRef *Ret = State->get<FreeReturnValue>(Sym); 1916 if (Ret) { 1917 assert(*Ret && "We should not store the null return symbol"); 1918 ConstraintManager &CMgr = State->getConstraintManager(); 1919 ConditionTruthVal FreeFailed = CMgr.isNull(State, *Ret); 1920 RetStatusSymbol = *Ret; 1921 return FreeFailed.isConstrainedTrue(); 1922 } 1923 return false; 1924 } 1925 1926 static void printOwnershipTakesList(raw_ostream &os, CheckerContext &C, 1927 const Expr *E) { 1928 const CallExpr *CE = dyn_cast<CallExpr>(E); 1929 1930 if (!CE) 1931 return; 1932 1933 const FunctionDecl *FD = CE->getDirectCallee(); 1934 if (!FD) 1935 return; 1936 1937 // Only one ownership_takes attribute is allowed. 1938 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { 1939 if (I->getOwnKind() != OwnershipAttr::Takes) 1940 continue; 1941 1942 os << ", which takes ownership of '" << I->getModule()->getName() << '\''; 1943 break; 1944 } 1945 } 1946 1947 static bool printMemFnName(raw_ostream &os, CheckerContext &C, const Expr *E) { 1948 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 1949 // FIXME: This doesn't handle indirect calls. 1950 const FunctionDecl *FD = CE->getDirectCallee(); 1951 if (!FD) 1952 return false; 1953 1954 os << '\'' << *FD; 1955 1956 if (!FD->isOverloadedOperator()) 1957 os << "()"; 1958 1959 os << '\''; 1960 return true; 1961 } 1962 1963 if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E)) { 1964 if (Msg->isInstanceMessage()) 1965 os << "-"; 1966 else 1967 os << "+"; 1968 Msg->getSelector().print(os); 1969 return true; 1970 } 1971 1972 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { 1973 os << "'" 1974 << getOperatorSpelling(NE->getOperatorNew()->getOverloadedOperator()) 1975 << "'"; 1976 return true; 1977 } 1978 1979 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(E)) { 1980 os << "'" 1981 << getOperatorSpelling(DE->getOperatorDelete()->getOverloadedOperator()) 1982 << "'"; 1983 return true; 1984 } 1985 1986 return false; 1987 } 1988 1989 static void printExpectedAllocName(raw_ostream &os, AllocationFamily Family) { 1990 1991 switch (Family.Kind) { 1992 case AF_Malloc: 1993 os << "'malloc()'"; 1994 return; 1995 case AF_CXXNew: 1996 os << "'new'"; 1997 return; 1998 case AF_CXXNewArray: 1999 os << "'new[]'"; 2000 return; 2001 case AF_IfNameIndex: 2002 os << "'if_nameindex()'"; 2003 return; 2004 case AF_InnerBuffer: 2005 os << "container-specific allocator"; 2006 return; 2007 case AF_Custom: 2008 os << Family.CustomName.value(); 2009 return; 2010 case AF_Alloca: 2011 case AF_None: 2012 assert(false && "not a deallocation expression"); 2013 } 2014 } 2015 2016 static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family) { 2017 switch (Family.Kind) { 2018 case AF_Malloc: 2019 os << "'free()'"; 2020 return; 2021 case AF_CXXNew: 2022 os << "'delete'"; 2023 return; 2024 case AF_CXXNewArray: 2025 os << "'delete[]'"; 2026 return; 2027 case AF_IfNameIndex: 2028 os << "'if_freenameindex()'"; 2029 return; 2030 case AF_InnerBuffer: 2031 os << "container-specific deallocator"; 2032 return; 2033 case AF_Custom: 2034 os << "function that takes ownership of '" << Family.CustomName.value() 2035 << "\'"; 2036 return; 2037 case AF_Alloca: 2038 case AF_None: 2039 assert(false && "not a deallocation expression"); 2040 } 2041 } 2042 2043 ProgramStateRef 2044 MallocChecker::FreeMemAux(CheckerContext &C, const Expr *ArgExpr, 2045 const CallEvent &Call, ProgramStateRef State, 2046 bool Hold, bool &IsKnownToBeAllocated, 2047 AllocationFamily Family, bool ReturnsNullOnFailure, 2048 std::optional<SVal> ArgValOpt) const { 2049 2050 if (!State) 2051 return nullptr; 2052 2053 SVal ArgVal = ArgValOpt.value_or(C.getSVal(ArgExpr)); 2054 if (!isa<DefinedOrUnknownSVal>(ArgVal)) 2055 return nullptr; 2056 DefinedOrUnknownSVal location = ArgVal.castAs<DefinedOrUnknownSVal>(); 2057 2058 // Check for null dereferences. 2059 if (!isa<Loc>(location)) 2060 return nullptr; 2061 2062 // The explicit NULL case, no operation is performed. 2063 ProgramStateRef notNullState, nullState; 2064 std::tie(notNullState, nullState) = State->assume(location); 2065 if (nullState && !notNullState) 2066 return nullptr; 2067 2068 // Unknown values could easily be okay 2069 // Undefined values are handled elsewhere 2070 if (ArgVal.isUnknownOrUndef()) 2071 return nullptr; 2072 2073 const MemRegion *R = ArgVal.getAsRegion(); 2074 const Expr *ParentExpr = Call.getOriginExpr(); 2075 2076 // NOTE: We detected a bug, but the checker under whose name we would emit the 2077 // error could be disabled. Generally speaking, the MallocChecker family is an 2078 // integral part of the Static Analyzer, and disabling any part of it should 2079 // only be done under exceptional circumstances, such as frequent false 2080 // positives. If this is the case, we can reasonably believe that there are 2081 // serious faults in our understanding of the source code, and even if we 2082 // don't emit an warning, we should terminate further analysis with a sink 2083 // node. 2084 2085 // Nonlocs can't be freed, of course. 2086 // Non-region locations (labels and fixed addresses) also shouldn't be freed. 2087 if (!R) { 2088 // Exception: 2089 // If the macro ZERO_SIZE_PTR is defined, this could be a kernel source 2090 // code. In that case, the ZERO_SIZE_PTR defines a special value used for a 2091 // zero-sized memory block which is allowed to be freed, despite not being a 2092 // null pointer. 2093 if (Family.Kind != AF_Malloc || !isArgZERO_SIZE_PTR(State, C, ArgVal)) 2094 HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 2095 Family); 2096 return nullptr; 2097 } 2098 2099 R = R->StripCasts(); 2100 2101 // Blocks might show up as heap data, but should not be free()d 2102 if (isa<BlockDataRegion>(R)) { 2103 HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 2104 Family); 2105 return nullptr; 2106 } 2107 2108 const MemSpaceRegion *MS = R->getMemorySpace(); 2109 2110 // Parameters, locals, statics, globals, and memory returned by 2111 // __builtin_alloca() shouldn't be freed. 2112 if (!isa<UnknownSpaceRegion, HeapSpaceRegion>(MS)) { 2113 // Regions returned by malloc() are represented by SymbolicRegion objects 2114 // within HeapSpaceRegion. Of course, free() can work on memory allocated 2115 // outside the current function, so UnknownSpaceRegion is also a 2116 // possibility here. 2117 2118 if (isa<AllocaRegion>(R)) 2119 HandleFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 2120 else 2121 HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 2122 Family); 2123 2124 return nullptr; 2125 } 2126 2127 const SymbolicRegion *SrBase = dyn_cast<SymbolicRegion>(R->getBaseRegion()); 2128 // Various cases could lead to non-symbol values here. 2129 // For now, ignore them. 2130 if (!SrBase) 2131 return nullptr; 2132 2133 SymbolRef SymBase = SrBase->getSymbol(); 2134 const RefState *RsBase = State->get<RegionState>(SymBase); 2135 SymbolRef PreviousRetStatusSymbol = nullptr; 2136 2137 IsKnownToBeAllocated = 2138 RsBase && (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero()); 2139 2140 if (RsBase) { 2141 2142 // Memory returned by alloca() shouldn't be freed. 2143 if (RsBase->getAllocationFamily().Kind == AF_Alloca) { 2144 HandleFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 2145 return nullptr; 2146 } 2147 2148 // Check for double free first. 2149 if ((RsBase->isReleased() || RsBase->isRelinquished()) && 2150 !didPreviousFreeFail(State, SymBase, PreviousRetStatusSymbol)) { 2151 HandleDoubleFree(C, ParentExpr->getSourceRange(), RsBase->isReleased(), 2152 SymBase, PreviousRetStatusSymbol); 2153 return nullptr; 2154 2155 // If the pointer is allocated or escaped, but we are now trying to free it, 2156 // check that the call to free is proper. 2157 } else if (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero() || 2158 RsBase->isEscaped()) { 2159 2160 // Check if an expected deallocation function matches the real one. 2161 bool DeallocMatchesAlloc = RsBase->getAllocationFamily() == Family; 2162 if (!DeallocMatchesAlloc) { 2163 HandleMismatchedDealloc(C, ArgExpr->getSourceRange(), ParentExpr, 2164 RsBase, SymBase, Hold); 2165 return nullptr; 2166 } 2167 2168 // Check if the memory location being freed is the actual location 2169 // allocated, or an offset. 2170 RegionOffset Offset = R->getAsOffset(); 2171 if (Offset.isValid() && 2172 !Offset.hasSymbolicOffset() && 2173 Offset.getOffset() != 0) { 2174 const Expr *AllocExpr = cast<Expr>(RsBase->getStmt()); 2175 HandleOffsetFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 2176 Family, AllocExpr); 2177 return nullptr; 2178 } 2179 } 2180 } 2181 2182 if (SymBase->getType()->isFunctionPointerType()) { 2183 HandleFunctionPtrFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 2184 Family); 2185 return nullptr; 2186 } 2187 2188 // Clean out the info on previous call to free return info. 2189 State = State->remove<FreeReturnValue>(SymBase); 2190 2191 // Keep track of the return value. If it is NULL, we will know that free 2192 // failed. 2193 if (ReturnsNullOnFailure) { 2194 SVal RetVal = C.getSVal(ParentExpr); 2195 SymbolRef RetStatusSymbol = RetVal.getAsSymbol(); 2196 if (RetStatusSymbol) { 2197 C.getSymbolManager().addSymbolDependency(SymBase, RetStatusSymbol); 2198 State = State->set<FreeReturnValue>(SymBase, RetStatusSymbol); 2199 } 2200 } 2201 2202 // If we don't know anything about this symbol, a free on it may be totally 2203 // valid. If this is the case, lets assume that the allocation family of the 2204 // freeing function is the same as the symbols allocation family, and go with 2205 // that. 2206 assert(!RsBase || (RsBase && RsBase->getAllocationFamily() == Family)); 2207 2208 // Normal free. 2209 if (Hold) 2210 return State->set<RegionState>(SymBase, 2211 RefState::getRelinquished(Family, 2212 ParentExpr)); 2213 2214 return State->set<RegionState>(SymBase, 2215 RefState::getReleased(Family, ParentExpr)); 2216 } 2217 2218 std::optional<MallocChecker::CheckKind> 2219 MallocChecker::getCheckIfTracked(AllocationFamily Family, 2220 bool IsALeakCheck) const { 2221 switch (Family.Kind) { 2222 case AF_Malloc: 2223 case AF_Alloca: 2224 case AF_Custom: 2225 case AF_IfNameIndex: { 2226 if (ChecksEnabled[CK_MallocChecker]) 2227 return CK_MallocChecker; 2228 return std::nullopt; 2229 } 2230 case AF_CXXNew: 2231 case AF_CXXNewArray: { 2232 if (IsALeakCheck) { 2233 if (ChecksEnabled[CK_NewDeleteLeaksChecker]) 2234 return CK_NewDeleteLeaksChecker; 2235 } 2236 else { 2237 if (ChecksEnabled[CK_NewDeleteChecker]) 2238 return CK_NewDeleteChecker; 2239 } 2240 return std::nullopt; 2241 } 2242 case AF_InnerBuffer: { 2243 if (ChecksEnabled[CK_InnerPointerChecker]) 2244 return CK_InnerPointerChecker; 2245 return std::nullopt; 2246 } 2247 case AF_None: { 2248 assert(false && "no family"); 2249 return std::nullopt; 2250 } 2251 } 2252 assert(false && "unhandled family"); 2253 return std::nullopt; 2254 } 2255 2256 std::optional<MallocChecker::CheckKind> 2257 MallocChecker::getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 2258 bool IsALeakCheck) const { 2259 if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) 2260 return CK_MallocChecker; 2261 2262 const RefState *RS = C.getState()->get<RegionState>(Sym); 2263 assert(RS); 2264 return getCheckIfTracked(RS->getAllocationFamily(), IsALeakCheck); 2265 } 2266 2267 bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) { 2268 if (std::optional<nonloc::ConcreteInt> IntVal = 2269 V.getAs<nonloc::ConcreteInt>()) 2270 os << "an integer (" << IntVal->getValue() << ")"; 2271 else if (std::optional<loc::ConcreteInt> ConstAddr = 2272 V.getAs<loc::ConcreteInt>()) 2273 os << "a constant address (" << ConstAddr->getValue() << ")"; 2274 else if (std::optional<loc::GotoLabel> Label = V.getAs<loc::GotoLabel>()) 2275 os << "the address of the label '" << Label->getLabel()->getName() << "'"; 2276 else 2277 return false; 2278 2279 return true; 2280 } 2281 2282 bool MallocChecker::SummarizeRegion(raw_ostream &os, 2283 const MemRegion *MR) { 2284 switch (MR->getKind()) { 2285 case MemRegion::FunctionCodeRegionKind: { 2286 const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl(); 2287 if (FD) 2288 os << "the address of the function '" << *FD << '\''; 2289 else 2290 os << "the address of a function"; 2291 return true; 2292 } 2293 case MemRegion::BlockCodeRegionKind: 2294 os << "block text"; 2295 return true; 2296 case MemRegion::BlockDataRegionKind: 2297 // FIXME: where the block came from? 2298 os << "a block"; 2299 return true; 2300 default: { 2301 const MemSpaceRegion *MS = MR->getMemorySpace(); 2302 2303 if (isa<StackLocalsSpaceRegion>(MS)) { 2304 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2305 const VarDecl *VD; 2306 if (VR) 2307 VD = VR->getDecl(); 2308 else 2309 VD = nullptr; 2310 2311 if (VD) 2312 os << "the address of the local variable '" << VD->getName() << "'"; 2313 else 2314 os << "the address of a local stack variable"; 2315 return true; 2316 } 2317 2318 if (isa<StackArgumentsSpaceRegion>(MS)) { 2319 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2320 const VarDecl *VD; 2321 if (VR) 2322 VD = VR->getDecl(); 2323 else 2324 VD = nullptr; 2325 2326 if (VD) 2327 os << "the address of the parameter '" << VD->getName() << "'"; 2328 else 2329 os << "the address of a parameter"; 2330 return true; 2331 } 2332 2333 if (isa<GlobalsSpaceRegion>(MS)) { 2334 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2335 const VarDecl *VD; 2336 if (VR) 2337 VD = VR->getDecl(); 2338 else 2339 VD = nullptr; 2340 2341 if (VD) { 2342 if (VD->isStaticLocal()) 2343 os << "the address of the static variable '" << VD->getName() << "'"; 2344 else 2345 os << "the address of the global variable '" << VD->getName() << "'"; 2346 } else 2347 os << "the address of a global variable"; 2348 return true; 2349 } 2350 2351 return false; 2352 } 2353 } 2354 } 2355 2356 void MallocChecker::HandleNonHeapDealloc(CheckerContext &C, SVal ArgVal, 2357 SourceRange Range, 2358 const Expr *DeallocExpr, 2359 AllocationFamily Family) const { 2360 2361 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2362 C.addSink(); 2363 return; 2364 } 2365 2366 std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2367 if (!CheckKind) 2368 return; 2369 2370 if (ExplodedNode *N = C.generateErrorNode()) { 2371 if (!BT_BadFree[*CheckKind]) 2372 BT_BadFree[*CheckKind].reset(new BugType( 2373 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 2374 2375 SmallString<100> buf; 2376 llvm::raw_svector_ostream os(buf); 2377 2378 const MemRegion *MR = ArgVal.getAsRegion(); 2379 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 2380 MR = ER->getSuperRegion(); 2381 2382 os << "Argument to "; 2383 if (!printMemFnName(os, C, DeallocExpr)) 2384 os << "deallocator"; 2385 2386 os << " is "; 2387 bool Summarized = MR ? SummarizeRegion(os, MR) 2388 : SummarizeValue(os, ArgVal); 2389 if (Summarized) 2390 os << ", which is not memory allocated by "; 2391 else 2392 os << "not memory allocated by "; 2393 2394 printExpectedAllocName(os, Family); 2395 2396 auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind], 2397 os.str(), N); 2398 R->markInteresting(MR); 2399 R->addRange(Range); 2400 C.emitReport(std::move(R)); 2401 } 2402 } 2403 2404 void MallocChecker::HandleFreeAlloca(CheckerContext &C, SVal ArgVal, 2405 SourceRange Range) const { 2406 2407 std::optional<MallocChecker::CheckKind> CheckKind; 2408 2409 if (ChecksEnabled[CK_MallocChecker]) 2410 CheckKind = CK_MallocChecker; 2411 else if (ChecksEnabled[CK_MismatchedDeallocatorChecker]) 2412 CheckKind = CK_MismatchedDeallocatorChecker; 2413 else { 2414 C.addSink(); 2415 return; 2416 } 2417 2418 if (ExplodedNode *N = C.generateErrorNode()) { 2419 if (!BT_FreeAlloca[*CheckKind]) 2420 BT_FreeAlloca[*CheckKind].reset(new BugType( 2421 CheckNames[*CheckKind], "Free 'alloca()'", categories::MemoryError)); 2422 2423 auto R = std::make_unique<PathSensitiveBugReport>( 2424 *BT_FreeAlloca[*CheckKind], 2425 "Memory allocated by 'alloca()' should not be deallocated", N); 2426 R->markInteresting(ArgVal.getAsRegion()); 2427 R->addRange(Range); 2428 C.emitReport(std::move(R)); 2429 } 2430 } 2431 2432 void MallocChecker::HandleMismatchedDealloc(CheckerContext &C, 2433 SourceRange Range, 2434 const Expr *DeallocExpr, 2435 const RefState *RS, SymbolRef Sym, 2436 bool OwnershipTransferred) const { 2437 2438 if (!ChecksEnabled[CK_MismatchedDeallocatorChecker]) { 2439 C.addSink(); 2440 return; 2441 } 2442 2443 if (ExplodedNode *N = C.generateErrorNode()) { 2444 if (!BT_MismatchedDealloc) 2445 BT_MismatchedDealloc.reset( 2446 new BugType(CheckNames[CK_MismatchedDeallocatorChecker], 2447 "Bad deallocator", categories::MemoryError)); 2448 2449 SmallString<100> buf; 2450 llvm::raw_svector_ostream os(buf); 2451 2452 const Expr *AllocExpr = cast<Expr>(RS->getStmt()); 2453 SmallString<20> AllocBuf; 2454 llvm::raw_svector_ostream AllocOs(AllocBuf); 2455 SmallString<20> DeallocBuf; 2456 llvm::raw_svector_ostream DeallocOs(DeallocBuf); 2457 2458 if (OwnershipTransferred) { 2459 if (printMemFnName(DeallocOs, C, DeallocExpr)) 2460 os << DeallocOs.str() << " cannot"; 2461 else 2462 os << "Cannot"; 2463 2464 os << " take ownership of memory"; 2465 2466 if (printMemFnName(AllocOs, C, AllocExpr)) 2467 os << " allocated by " << AllocOs.str(); 2468 } else { 2469 os << "Memory"; 2470 if (printMemFnName(AllocOs, C, AllocExpr)) 2471 os << " allocated by " << AllocOs.str(); 2472 2473 os << " should be deallocated by "; 2474 printExpectedDeallocName(os, RS->getAllocationFamily()); 2475 2476 if (printMemFnName(DeallocOs, C, DeallocExpr)) 2477 os << ", not " << DeallocOs.str(); 2478 2479 printOwnershipTakesList(os, C, DeallocExpr); 2480 } 2481 2482 auto R = std::make_unique<PathSensitiveBugReport>(*BT_MismatchedDealloc, 2483 os.str(), N); 2484 R->markInteresting(Sym); 2485 R->addRange(Range); 2486 R->addVisitor<MallocBugVisitor>(Sym); 2487 C.emitReport(std::move(R)); 2488 } 2489 } 2490 2491 void MallocChecker::HandleOffsetFree(CheckerContext &C, SVal ArgVal, 2492 SourceRange Range, const Expr *DeallocExpr, 2493 AllocationFamily Family, 2494 const Expr *AllocExpr) const { 2495 2496 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2497 C.addSink(); 2498 return; 2499 } 2500 2501 std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2502 if (!CheckKind) 2503 return; 2504 2505 ExplodedNode *N = C.generateErrorNode(); 2506 if (!N) 2507 return; 2508 2509 if (!BT_OffsetFree[*CheckKind]) 2510 BT_OffsetFree[*CheckKind].reset(new BugType( 2511 CheckNames[*CheckKind], "Offset free", categories::MemoryError)); 2512 2513 SmallString<100> buf; 2514 llvm::raw_svector_ostream os(buf); 2515 SmallString<20> AllocNameBuf; 2516 llvm::raw_svector_ostream AllocNameOs(AllocNameBuf); 2517 2518 const MemRegion *MR = ArgVal.getAsRegion(); 2519 assert(MR && "Only MemRegion based symbols can have offset free errors"); 2520 2521 RegionOffset Offset = MR->getAsOffset(); 2522 assert((Offset.isValid() && 2523 !Offset.hasSymbolicOffset() && 2524 Offset.getOffset() != 0) && 2525 "Only symbols with a valid offset can have offset free errors"); 2526 2527 int offsetBytes = Offset.getOffset() / C.getASTContext().getCharWidth(); 2528 2529 os << "Argument to "; 2530 if (!printMemFnName(os, C, DeallocExpr)) 2531 os << "deallocator"; 2532 os << " is offset by " 2533 << offsetBytes 2534 << " " 2535 << ((abs(offsetBytes) > 1) ? "bytes" : "byte") 2536 << " from the start of "; 2537 if (AllocExpr && printMemFnName(AllocNameOs, C, AllocExpr)) 2538 os << "memory allocated by " << AllocNameOs.str(); 2539 else 2540 os << "allocated memory"; 2541 2542 auto R = std::make_unique<PathSensitiveBugReport>(*BT_OffsetFree[*CheckKind], 2543 os.str(), N); 2544 R->markInteresting(MR->getBaseRegion()); 2545 R->addRange(Range); 2546 C.emitReport(std::move(R)); 2547 } 2548 2549 void MallocChecker::HandleUseAfterFree(CheckerContext &C, SourceRange Range, 2550 SymbolRef Sym) const { 2551 2552 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker] && 2553 !ChecksEnabled[CK_InnerPointerChecker]) { 2554 C.addSink(); 2555 return; 2556 } 2557 2558 std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2559 if (!CheckKind) 2560 return; 2561 2562 if (ExplodedNode *N = C.generateErrorNode()) { 2563 if (!BT_UseFree[*CheckKind]) 2564 BT_UseFree[*CheckKind].reset(new BugType( 2565 CheckNames[*CheckKind], "Use-after-free", categories::MemoryError)); 2566 2567 AllocationFamily AF = 2568 C.getState()->get<RegionState>(Sym)->getAllocationFamily(); 2569 2570 auto R = std::make_unique<PathSensitiveBugReport>( 2571 *BT_UseFree[*CheckKind], 2572 AF.Kind == AF_InnerBuffer 2573 ? "Inner pointer of container used after re/deallocation" 2574 : "Use of memory after it is freed", 2575 N); 2576 2577 R->markInteresting(Sym); 2578 R->addRange(Range); 2579 R->addVisitor<MallocBugVisitor>(Sym); 2580 2581 if (AF.Kind == AF_InnerBuffer) 2582 R->addVisitor(allocation_state::getInnerPointerBRVisitor(Sym)); 2583 2584 C.emitReport(std::move(R)); 2585 } 2586 } 2587 2588 void MallocChecker::HandleDoubleFree(CheckerContext &C, SourceRange Range, 2589 bool Released, SymbolRef Sym, 2590 SymbolRef PrevSym) const { 2591 2592 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2593 C.addSink(); 2594 return; 2595 } 2596 2597 std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2598 if (!CheckKind) 2599 return; 2600 2601 if (ExplodedNode *N = C.generateErrorNode()) { 2602 if (!BT_DoubleFree[*CheckKind]) 2603 BT_DoubleFree[*CheckKind].reset(new BugType( 2604 CheckNames[*CheckKind], "Double free", categories::MemoryError)); 2605 2606 auto R = std::make_unique<PathSensitiveBugReport>( 2607 *BT_DoubleFree[*CheckKind], 2608 (Released ? "Attempt to free released memory" 2609 : "Attempt to free non-owned memory"), 2610 N); 2611 R->addRange(Range); 2612 R->markInteresting(Sym); 2613 if (PrevSym) 2614 R->markInteresting(PrevSym); 2615 R->addVisitor<MallocBugVisitor>(Sym); 2616 C.emitReport(std::move(R)); 2617 } 2618 } 2619 2620 void MallocChecker::HandleDoubleDelete(CheckerContext &C, SymbolRef Sym) const { 2621 2622 if (!ChecksEnabled[CK_NewDeleteChecker]) { 2623 C.addSink(); 2624 return; 2625 } 2626 2627 std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2628 if (!CheckKind) 2629 return; 2630 2631 if (ExplodedNode *N = C.generateErrorNode()) { 2632 if (!BT_DoubleDelete) 2633 BT_DoubleDelete.reset(new BugType(CheckNames[CK_NewDeleteChecker], 2634 "Double delete", 2635 categories::MemoryError)); 2636 2637 auto R = std::make_unique<PathSensitiveBugReport>( 2638 *BT_DoubleDelete, "Attempt to delete released memory", N); 2639 2640 R->markInteresting(Sym); 2641 R->addVisitor<MallocBugVisitor>(Sym); 2642 C.emitReport(std::move(R)); 2643 } 2644 } 2645 2646 void MallocChecker::HandleUseZeroAlloc(CheckerContext &C, SourceRange Range, 2647 SymbolRef Sym) const { 2648 2649 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2650 C.addSink(); 2651 return; 2652 } 2653 2654 std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2655 2656 if (!CheckKind) 2657 return; 2658 2659 if (ExplodedNode *N = C.generateErrorNode()) { 2660 if (!BT_UseZerroAllocated[*CheckKind]) 2661 BT_UseZerroAllocated[*CheckKind].reset( 2662 new BugType(CheckNames[*CheckKind], "Use of zero allocated", 2663 categories::MemoryError)); 2664 2665 auto R = std::make_unique<PathSensitiveBugReport>( 2666 *BT_UseZerroAllocated[*CheckKind], 2667 "Use of memory allocated with size zero", N); 2668 2669 R->addRange(Range); 2670 if (Sym) { 2671 R->markInteresting(Sym); 2672 R->addVisitor<MallocBugVisitor>(Sym); 2673 } 2674 C.emitReport(std::move(R)); 2675 } 2676 } 2677 2678 void MallocChecker::HandleFunctionPtrFree(CheckerContext &C, SVal ArgVal, 2679 SourceRange Range, 2680 const Expr *FreeExpr, 2681 AllocationFamily Family) const { 2682 if (!ChecksEnabled[CK_MallocChecker]) { 2683 C.addSink(); 2684 return; 2685 } 2686 2687 std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2688 if (!CheckKind) 2689 return; 2690 2691 if (ExplodedNode *N = C.generateErrorNode()) { 2692 if (!BT_BadFree[*CheckKind]) 2693 BT_BadFree[*CheckKind].reset(new BugType( 2694 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 2695 2696 SmallString<100> Buf; 2697 llvm::raw_svector_ostream Os(Buf); 2698 2699 const MemRegion *MR = ArgVal.getAsRegion(); 2700 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 2701 MR = ER->getSuperRegion(); 2702 2703 Os << "Argument to "; 2704 if (!printMemFnName(Os, C, FreeExpr)) 2705 Os << "deallocator"; 2706 2707 Os << " is a function pointer"; 2708 2709 auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind], 2710 Os.str(), N); 2711 R->markInteresting(MR); 2712 R->addRange(Range); 2713 C.emitReport(std::move(R)); 2714 } 2715 } 2716 2717 ProgramStateRef 2718 MallocChecker::ReallocMemAux(CheckerContext &C, const CallEvent &Call, 2719 bool ShouldFreeOnFail, ProgramStateRef State, 2720 AllocationFamily Family, bool SuffixWithN) const { 2721 if (!State) 2722 return nullptr; 2723 2724 const CallExpr *CE = cast<CallExpr>(Call.getOriginExpr()); 2725 2726 if (SuffixWithN && CE->getNumArgs() < 3) 2727 return nullptr; 2728 else if (CE->getNumArgs() < 2) 2729 return nullptr; 2730 2731 const Expr *arg0Expr = CE->getArg(0); 2732 SVal Arg0Val = C.getSVal(arg0Expr); 2733 if (!isa<DefinedOrUnknownSVal>(Arg0Val)) 2734 return nullptr; 2735 DefinedOrUnknownSVal arg0Val = Arg0Val.castAs<DefinedOrUnknownSVal>(); 2736 2737 SValBuilder &svalBuilder = C.getSValBuilder(); 2738 2739 DefinedOrUnknownSVal PtrEQ = svalBuilder.evalEQ( 2740 State, arg0Val, svalBuilder.makeNullWithType(arg0Expr->getType())); 2741 2742 // Get the size argument. 2743 const Expr *Arg1 = CE->getArg(1); 2744 2745 // Get the value of the size argument. 2746 SVal TotalSize = C.getSVal(Arg1); 2747 if (SuffixWithN) 2748 TotalSize = evalMulForBufferSize(C, Arg1, CE->getArg(2)); 2749 if (!isa<DefinedOrUnknownSVal>(TotalSize)) 2750 return nullptr; 2751 2752 // Compare the size argument to 0. 2753 DefinedOrUnknownSVal SizeZero = 2754 svalBuilder.evalEQ(State, TotalSize.castAs<DefinedOrUnknownSVal>(), 2755 svalBuilder.makeIntValWithWidth( 2756 svalBuilder.getContext().getSizeType(), 0)); 2757 2758 ProgramStateRef StatePtrIsNull, StatePtrNotNull; 2759 std::tie(StatePtrIsNull, StatePtrNotNull) = State->assume(PtrEQ); 2760 ProgramStateRef StateSizeIsZero, StateSizeNotZero; 2761 std::tie(StateSizeIsZero, StateSizeNotZero) = State->assume(SizeZero); 2762 // We only assume exceptional states if they are definitely true; if the 2763 // state is under-constrained, assume regular realloc behavior. 2764 bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull; 2765 bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero; 2766 2767 // If the ptr is NULL and the size is not 0, the call is equivalent to 2768 // malloc(size). 2769 if (PrtIsNull && !SizeIsZero) { 2770 ProgramStateRef stateMalloc = MallocMemAux( 2771 C, Call, TotalSize, UndefinedVal(), StatePtrIsNull, Family); 2772 return stateMalloc; 2773 } 2774 2775 if (PrtIsNull && SizeIsZero) 2776 return State; 2777 2778 assert(!PrtIsNull); 2779 2780 bool IsKnownToBeAllocated = false; 2781 2782 // If the size is 0, free the memory. 2783 if (SizeIsZero) 2784 // The semantics of the return value are: 2785 // If size was equal to 0, either NULL or a pointer suitable to be passed 2786 // to free() is returned. We just free the input pointer and do not add 2787 // any constrains on the output pointer. 2788 if (ProgramStateRef stateFree = FreeMemAux( 2789 C, Call, StateSizeIsZero, 0, false, IsKnownToBeAllocated, Family)) 2790 return stateFree; 2791 2792 // Default behavior. 2793 if (ProgramStateRef stateFree = 2794 FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocated, Family)) { 2795 2796 ProgramStateRef stateRealloc = 2797 MallocMemAux(C, Call, TotalSize, UnknownVal(), stateFree, Family); 2798 if (!stateRealloc) 2799 return nullptr; 2800 2801 OwnershipAfterReallocKind Kind = OAR_ToBeFreedAfterFailure; 2802 if (ShouldFreeOnFail) 2803 Kind = OAR_FreeOnFailure; 2804 else if (!IsKnownToBeAllocated) 2805 Kind = OAR_DoNotTrackAfterFailure; 2806 2807 // Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size). 2808 SymbolRef FromPtr = arg0Val.getLocSymbolInBase(); 2809 SVal RetVal = C.getSVal(CE); 2810 SymbolRef ToPtr = RetVal.getAsSymbol(); 2811 assert(FromPtr && ToPtr && 2812 "By this point, FreeMemAux and MallocMemAux should have checked " 2813 "whether the argument or the return value is symbolic!"); 2814 2815 // Record the info about the reallocated symbol so that we could properly 2816 // process failed reallocation. 2817 stateRealloc = stateRealloc->set<ReallocPairs>(ToPtr, 2818 ReallocPair(FromPtr, Kind)); 2819 // The reallocated symbol should stay alive for as long as the new symbol. 2820 C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr); 2821 return stateRealloc; 2822 } 2823 return nullptr; 2824 } 2825 2826 ProgramStateRef MallocChecker::CallocMem(CheckerContext &C, 2827 const CallEvent &Call, 2828 ProgramStateRef State) const { 2829 if (!State) 2830 return nullptr; 2831 2832 if (Call.getNumArgs() < 2) 2833 return nullptr; 2834 2835 SValBuilder &svalBuilder = C.getSValBuilder(); 2836 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 2837 SVal TotalSize = 2838 evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1)); 2839 2840 return MallocMemAux(C, Call, TotalSize, zeroVal, State, 2841 AllocationFamily(AF_Malloc)); 2842 } 2843 2844 MallocChecker::LeakInfo MallocChecker::getAllocationSite(const ExplodedNode *N, 2845 SymbolRef Sym, 2846 CheckerContext &C) { 2847 const LocationContext *LeakContext = N->getLocationContext(); 2848 // Walk the ExplodedGraph backwards and find the first node that referred to 2849 // the tracked symbol. 2850 const ExplodedNode *AllocNode = N; 2851 const MemRegion *ReferenceRegion = nullptr; 2852 2853 while (N) { 2854 ProgramStateRef State = N->getState(); 2855 if (!State->get<RegionState>(Sym)) 2856 break; 2857 2858 // Find the most recent expression bound to the symbol in the current 2859 // context. 2860 if (!ReferenceRegion) { 2861 if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) { 2862 SVal Val = State->getSVal(MR); 2863 if (Val.getAsLocSymbol() == Sym) { 2864 const VarRegion *VR = MR->getBaseRegion()->getAs<VarRegion>(); 2865 // Do not show local variables belonging to a function other than 2866 // where the error is reported. 2867 if (!VR || (VR->getStackFrame() == LeakContext->getStackFrame())) 2868 ReferenceRegion = MR; 2869 } 2870 } 2871 } 2872 2873 // Allocation node, is the last node in the current or parent context in 2874 // which the symbol was tracked. 2875 const LocationContext *NContext = N->getLocationContext(); 2876 if (NContext == LeakContext || 2877 NContext->isParentOf(LeakContext)) 2878 AllocNode = N; 2879 N = N->pred_empty() ? nullptr : *(N->pred_begin()); 2880 } 2881 2882 return LeakInfo(AllocNode, ReferenceRegion); 2883 } 2884 2885 void MallocChecker::HandleLeak(SymbolRef Sym, ExplodedNode *N, 2886 CheckerContext &C) const { 2887 2888 if (!ChecksEnabled[CK_MallocChecker] && 2889 !ChecksEnabled[CK_NewDeleteLeaksChecker]) 2890 return; 2891 2892 const RefState *RS = C.getState()->get<RegionState>(Sym); 2893 assert(RS && "cannot leak an untracked symbol"); 2894 AllocationFamily Family = RS->getAllocationFamily(); 2895 2896 if (Family.Kind == AF_Alloca) 2897 return; 2898 2899 std::optional<MallocChecker::CheckKind> CheckKind = 2900 getCheckIfTracked(Family, true); 2901 2902 if (!CheckKind) 2903 return; 2904 2905 assert(N); 2906 if (!BT_Leak[*CheckKind]) { 2907 // Leaks should not be reported if they are post-dominated by a sink: 2908 // (1) Sinks are higher importance bugs. 2909 // (2) NoReturnFunctionChecker uses sink nodes to represent paths ending 2910 // with __noreturn functions such as assert() or exit(). We choose not 2911 // to report leaks on such paths. 2912 BT_Leak[*CheckKind].reset(new BugType(CheckNames[*CheckKind], "Memory leak", 2913 categories::MemoryError, 2914 /*SuppressOnSink=*/true)); 2915 } 2916 2917 // Most bug reports are cached at the location where they occurred. 2918 // With leaks, we want to unique them by the location where they were 2919 // allocated, and only report a single path. 2920 PathDiagnosticLocation LocUsedForUniqueing; 2921 const ExplodedNode *AllocNode = nullptr; 2922 const MemRegion *Region = nullptr; 2923 std::tie(AllocNode, Region) = getAllocationSite(N, Sym, C); 2924 2925 const Stmt *AllocationStmt = AllocNode->getStmtForDiagnostics(); 2926 if (AllocationStmt) 2927 LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocationStmt, 2928 C.getSourceManager(), 2929 AllocNode->getLocationContext()); 2930 2931 SmallString<200> buf; 2932 llvm::raw_svector_ostream os(buf); 2933 if (Region && Region->canPrintPretty()) { 2934 os << "Potential leak of memory pointed to by "; 2935 Region->printPretty(os); 2936 } else { 2937 os << "Potential memory leak"; 2938 } 2939 2940 auto R = std::make_unique<PathSensitiveBugReport>( 2941 *BT_Leak[*CheckKind], os.str(), N, LocUsedForUniqueing, 2942 AllocNode->getLocationContext()->getDecl()); 2943 R->markInteresting(Sym); 2944 R->addVisitor<MallocBugVisitor>(Sym, true); 2945 if (ShouldRegisterNoOwnershipChangeVisitor) 2946 R->addVisitor<NoMemOwnershipChangeVisitor>(Sym, this); 2947 C.emitReport(std::move(R)); 2948 } 2949 2950 void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper, 2951 CheckerContext &C) const 2952 { 2953 ProgramStateRef state = C.getState(); 2954 RegionStateTy OldRS = state->get<RegionState>(); 2955 RegionStateTy::Factory &F = state->get_context<RegionState>(); 2956 2957 RegionStateTy RS = OldRS; 2958 SmallVector<SymbolRef, 2> Errors; 2959 for (auto [Sym, State] : RS) { 2960 if (SymReaper.isDead(Sym)) { 2961 if (State.isAllocated() || State.isAllocatedOfSizeZero()) 2962 Errors.push_back(Sym); 2963 // Remove the dead symbol from the map. 2964 RS = F.remove(RS, Sym); 2965 } 2966 } 2967 2968 if (RS == OldRS) { 2969 // We shouldn't have touched other maps yet. 2970 assert(state->get<ReallocPairs>() == 2971 C.getState()->get<ReallocPairs>()); 2972 assert(state->get<FreeReturnValue>() == 2973 C.getState()->get<FreeReturnValue>()); 2974 return; 2975 } 2976 2977 // Cleanup the Realloc Pairs Map. 2978 ReallocPairsTy RP = state->get<ReallocPairs>(); 2979 for (auto [Sym, ReallocPair] : RP) { 2980 if (SymReaper.isDead(Sym) || SymReaper.isDead(ReallocPair.ReallocatedSym)) { 2981 state = state->remove<ReallocPairs>(Sym); 2982 } 2983 } 2984 2985 // Cleanup the FreeReturnValue Map. 2986 FreeReturnValueTy FR = state->get<FreeReturnValue>(); 2987 for (auto [Sym, RetSym] : FR) { 2988 if (SymReaper.isDead(Sym) || SymReaper.isDead(RetSym)) { 2989 state = state->remove<FreeReturnValue>(Sym); 2990 } 2991 } 2992 2993 // Generate leak node. 2994 ExplodedNode *N = C.getPredecessor(); 2995 if (!Errors.empty()) { 2996 static CheckerProgramPointTag Tag("MallocChecker", "DeadSymbolsLeak"); 2997 N = C.generateNonFatalErrorNode(C.getState(), &Tag); 2998 if (N) { 2999 for (SymbolRef Sym : Errors) { 3000 HandleLeak(Sym, N, C); 3001 } 3002 } 3003 } 3004 3005 C.addTransition(state->set<RegionState>(RS), N); 3006 } 3007 3008 void MallocChecker::checkPreCall(const CallEvent &Call, 3009 CheckerContext &C) const { 3010 3011 if (const auto *DC = dyn_cast<CXXDeallocatorCall>(&Call)) { 3012 const CXXDeleteExpr *DE = DC->getOriginExpr(); 3013 3014 if (!ChecksEnabled[CK_NewDeleteChecker]) 3015 if (SymbolRef Sym = C.getSVal(DE->getArgument()).getAsSymbol()) 3016 checkUseAfterFree(Sym, C, DE->getArgument()); 3017 3018 if (!isStandardNewDelete(DC->getDecl())) 3019 return; 3020 3021 ProgramStateRef State = C.getState(); 3022 bool IsKnownToBeAllocated; 3023 State = FreeMemAux( 3024 C, DE->getArgument(), Call, State, 3025 /*Hold*/ false, IsKnownToBeAllocated, 3026 AllocationFamily(DE->isArrayForm() ? AF_CXXNewArray : AF_CXXNew)); 3027 3028 C.addTransition(State); 3029 return; 3030 } 3031 3032 if (const auto *DC = dyn_cast<CXXDestructorCall>(&Call)) { 3033 SymbolRef Sym = DC->getCXXThisVal().getAsSymbol(); 3034 if (!Sym || checkDoubleDelete(Sym, C)) 3035 return; 3036 } 3037 3038 // We need to handle getline pre-conditions here before the pointed region 3039 // gets invalidated by StreamChecker 3040 if (const auto *PreFN = PreFnMap.lookup(Call)) { 3041 (*PreFN)(this, Call, C); 3042 return; 3043 } 3044 3045 // We will check for double free in the post visit. 3046 if (const AnyFunctionCall *FC = dyn_cast<AnyFunctionCall>(&Call)) { 3047 const FunctionDecl *FD = FC->getDecl(); 3048 if (!FD) 3049 return; 3050 3051 if (ChecksEnabled[CK_MallocChecker] && isFreeingCall(Call)) 3052 return; 3053 } 3054 3055 // Check if the callee of a method is deleted. 3056 if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(&Call)) { 3057 SymbolRef Sym = CC->getCXXThisVal().getAsSymbol(); 3058 if (!Sym || checkUseAfterFree(Sym, C, CC->getCXXThisExpr())) 3059 return; 3060 } 3061 3062 // Check arguments for being used after free. 3063 for (unsigned I = 0, E = Call.getNumArgs(); I != E; ++I) { 3064 SVal ArgSVal = Call.getArgSVal(I); 3065 if (isa<Loc>(ArgSVal)) { 3066 SymbolRef Sym = ArgSVal.getAsSymbol(); 3067 if (!Sym) 3068 continue; 3069 if (checkUseAfterFree(Sym, C, Call.getArgExpr(I))) 3070 return; 3071 } 3072 } 3073 } 3074 3075 void MallocChecker::checkPreStmt(const ReturnStmt *S, 3076 CheckerContext &C) const { 3077 checkEscapeOnReturn(S, C); 3078 } 3079 3080 // In the CFG, automatic destructors come after the return statement. 3081 // This callback checks for returning memory that is freed by automatic 3082 // destructors, as those cannot be reached in checkPreStmt(). 3083 void MallocChecker::checkEndFunction(const ReturnStmt *S, 3084 CheckerContext &C) const { 3085 checkEscapeOnReturn(S, C); 3086 } 3087 3088 void MallocChecker::checkEscapeOnReturn(const ReturnStmt *S, 3089 CheckerContext &C) const { 3090 if (!S) 3091 return; 3092 3093 const Expr *E = S->getRetValue(); 3094 if (!E) 3095 return; 3096 3097 // Check if we are returning a symbol. 3098 ProgramStateRef State = C.getState(); 3099 SVal RetVal = C.getSVal(E); 3100 SymbolRef Sym = RetVal.getAsSymbol(); 3101 if (!Sym) 3102 // If we are returning a field of the allocated struct or an array element, 3103 // the callee could still free the memory. 3104 // TODO: This logic should be a part of generic symbol escape callback. 3105 if (const MemRegion *MR = RetVal.getAsRegion()) 3106 if (isa<FieldRegion, ElementRegion>(MR)) 3107 if (const SymbolicRegion *BMR = 3108 dyn_cast<SymbolicRegion>(MR->getBaseRegion())) 3109 Sym = BMR->getSymbol(); 3110 3111 // Check if we are returning freed memory. 3112 if (Sym) 3113 checkUseAfterFree(Sym, C, E); 3114 } 3115 3116 // TODO: Blocks should be either inlined or should call invalidate regions 3117 // upon invocation. After that's in place, special casing here will not be 3118 // needed. 3119 void MallocChecker::checkPostStmt(const BlockExpr *BE, 3120 CheckerContext &C) const { 3121 3122 // Scan the BlockDecRefExprs for any object the retain count checker 3123 // may be tracking. 3124 if (!BE->getBlockDecl()->hasCaptures()) 3125 return; 3126 3127 ProgramStateRef state = C.getState(); 3128 const BlockDataRegion *R = 3129 cast<BlockDataRegion>(C.getSVal(BE).getAsRegion()); 3130 3131 auto ReferencedVars = R->referenced_vars(); 3132 if (ReferencedVars.empty()) 3133 return; 3134 3135 SmallVector<const MemRegion*, 10> Regions; 3136 const LocationContext *LC = C.getLocationContext(); 3137 MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager(); 3138 3139 for (const auto &Var : ReferencedVars) { 3140 const VarRegion *VR = Var.getCapturedRegion(); 3141 if (VR->getSuperRegion() == R) { 3142 VR = MemMgr.getVarRegion(VR->getDecl(), LC); 3143 } 3144 Regions.push_back(VR); 3145 } 3146 3147 state = 3148 state->scanReachableSymbols<StopTrackingCallback>(Regions).getState(); 3149 C.addTransition(state); 3150 } 3151 3152 static bool isReleased(SymbolRef Sym, CheckerContext &C) { 3153 assert(Sym); 3154 const RefState *RS = C.getState()->get<RegionState>(Sym); 3155 return (RS && RS->isReleased()); 3156 } 3157 3158 bool MallocChecker::suppressDeallocationsInSuspiciousContexts( 3159 const CallEvent &Call, CheckerContext &C) const { 3160 if (Call.getNumArgs() == 0) 3161 return false; 3162 3163 StringRef FunctionStr = ""; 3164 if (const auto *FD = dyn_cast<FunctionDecl>(C.getStackFrame()->getDecl())) 3165 if (const Stmt *Body = FD->getBody()) 3166 if (Body->getBeginLoc().isValid()) 3167 FunctionStr = 3168 Lexer::getSourceText(CharSourceRange::getTokenRange( 3169 {FD->getBeginLoc(), Body->getBeginLoc()}), 3170 C.getSourceManager(), C.getLangOpts()); 3171 3172 // We do not model the Integer Set Library's retain-count based allocation. 3173 if (!FunctionStr.contains("__isl_")) 3174 return false; 3175 3176 ProgramStateRef State = C.getState(); 3177 3178 for (const Expr *Arg : cast<CallExpr>(Call.getOriginExpr())->arguments()) 3179 if (SymbolRef Sym = C.getSVal(Arg).getAsSymbol()) 3180 if (const RefState *RS = State->get<RegionState>(Sym)) 3181 State = State->set<RegionState>(Sym, RefState::getEscaped(RS)); 3182 3183 C.addTransition(State); 3184 return true; 3185 } 3186 3187 bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C, 3188 const Stmt *S) const { 3189 3190 if (isReleased(Sym, C)) { 3191 HandleUseAfterFree(C, S->getSourceRange(), Sym); 3192 return true; 3193 } 3194 3195 return false; 3196 } 3197 3198 void MallocChecker::checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 3199 const Stmt *S) const { 3200 assert(Sym); 3201 3202 if (const RefState *RS = C.getState()->get<RegionState>(Sym)) { 3203 if (RS->isAllocatedOfSizeZero()) 3204 HandleUseZeroAlloc(C, RS->getStmt()->getSourceRange(), Sym); 3205 } 3206 else if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) { 3207 HandleUseZeroAlloc(C, S->getSourceRange(), Sym); 3208 } 3209 } 3210 3211 bool MallocChecker::checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const { 3212 3213 if (isReleased(Sym, C)) { 3214 HandleDoubleDelete(C, Sym); 3215 return true; 3216 } 3217 return false; 3218 } 3219 3220 // Check if the location is a freed symbolic region. 3221 void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S, 3222 CheckerContext &C) const { 3223 SymbolRef Sym = l.getLocSymbolInBase(); 3224 if (Sym) { 3225 checkUseAfterFree(Sym, C, S); 3226 checkUseZeroAllocated(Sym, C, S); 3227 } 3228 } 3229 3230 // If a symbolic region is assumed to NULL (or another constant), stop tracking 3231 // it - assuming that allocation failed on this path. 3232 ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state, 3233 SVal Cond, 3234 bool Assumption) const { 3235 RegionStateTy RS = state->get<RegionState>(); 3236 for (SymbolRef Sym : llvm::make_first_range(RS)) { 3237 // If the symbol is assumed to be NULL, remove it from consideration. 3238 ConstraintManager &CMgr = state->getConstraintManager(); 3239 ConditionTruthVal AllocFailed = CMgr.isNull(state, Sym); 3240 if (AllocFailed.isConstrainedTrue()) 3241 state = state->remove<RegionState>(Sym); 3242 } 3243 3244 // Realloc returns 0 when reallocation fails, which means that we should 3245 // restore the state of the pointer being reallocated. 3246 ReallocPairsTy RP = state->get<ReallocPairs>(); 3247 for (auto [Sym, ReallocPair] : RP) { 3248 // If the symbol is assumed to be NULL, remove it from consideration. 3249 ConstraintManager &CMgr = state->getConstraintManager(); 3250 ConditionTruthVal AllocFailed = CMgr.isNull(state, Sym); 3251 if (!AllocFailed.isConstrainedTrue()) 3252 continue; 3253 3254 SymbolRef ReallocSym = ReallocPair.ReallocatedSym; 3255 if (const RefState *RS = state->get<RegionState>(ReallocSym)) { 3256 if (RS->isReleased()) { 3257 switch (ReallocPair.Kind) { 3258 case OAR_ToBeFreedAfterFailure: 3259 state = state->set<RegionState>(ReallocSym, 3260 RefState::getAllocated(RS->getAllocationFamily(), RS->getStmt())); 3261 break; 3262 case OAR_DoNotTrackAfterFailure: 3263 state = state->remove<RegionState>(ReallocSym); 3264 break; 3265 default: 3266 assert(ReallocPair.Kind == OAR_FreeOnFailure); 3267 } 3268 } 3269 } 3270 state = state->remove<ReallocPairs>(Sym); 3271 } 3272 3273 return state; 3274 } 3275 3276 bool MallocChecker::mayFreeAnyEscapedMemoryOrIsModeledExplicitly( 3277 const CallEvent *Call, 3278 ProgramStateRef State, 3279 SymbolRef &EscapingSymbol) const { 3280 assert(Call); 3281 EscapingSymbol = nullptr; 3282 3283 // For now, assume that any C++ or block call can free memory. 3284 // TODO: If we want to be more optimistic here, we'll need to make sure that 3285 // regions escape to C++ containers. They seem to do that even now, but for 3286 // mysterious reasons. 3287 if (!isa<SimpleFunctionCall, ObjCMethodCall>(Call)) 3288 return true; 3289 3290 // Check Objective-C messages by selector name. 3291 if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) { 3292 // If it's not a framework call, or if it takes a callback, assume it 3293 // can free memory. 3294 if (!Call->isInSystemHeader() || Call->argumentsMayEscape()) 3295 return true; 3296 3297 // If it's a method we know about, handle it explicitly post-call. 3298 // This should happen before the "freeWhenDone" check below. 3299 if (isKnownDeallocObjCMethodName(*Msg)) 3300 return false; 3301 3302 // If there's a "freeWhenDone" parameter, but the method isn't one we know 3303 // about, we can't be sure that the object will use free() to deallocate the 3304 // memory, so we can't model it explicitly. The best we can do is use it to 3305 // decide whether the pointer escapes. 3306 if (std::optional<bool> FreeWhenDone = getFreeWhenDoneArg(*Msg)) 3307 return *FreeWhenDone; 3308 3309 // If the first selector piece ends with "NoCopy", and there is no 3310 // "freeWhenDone" parameter set to zero, we know ownership is being 3311 // transferred. Again, though, we can't be sure that the object will use 3312 // free() to deallocate the memory, so we can't model it explicitly. 3313 StringRef FirstSlot = Msg->getSelector().getNameForSlot(0); 3314 if (FirstSlot.ends_with("NoCopy")) 3315 return true; 3316 3317 // If the first selector starts with addPointer, insertPointer, 3318 // or replacePointer, assume we are dealing with NSPointerArray or similar. 3319 // This is similar to C++ containers (vector); we still might want to check 3320 // that the pointers get freed by following the container itself. 3321 if (FirstSlot.starts_with("addPointer") || 3322 FirstSlot.starts_with("insertPointer") || 3323 FirstSlot.starts_with("replacePointer") || 3324 FirstSlot == "valueWithPointer") { 3325 return true; 3326 } 3327 3328 // We should escape receiver on call to 'init'. This is especially relevant 3329 // to the receiver, as the corresponding symbol is usually not referenced 3330 // after the call. 3331 if (Msg->getMethodFamily() == OMF_init) { 3332 EscapingSymbol = Msg->getReceiverSVal().getAsSymbol(); 3333 return true; 3334 } 3335 3336 // Otherwise, assume that the method does not free memory. 3337 // Most framework methods do not free memory. 3338 return false; 3339 } 3340 3341 // At this point the only thing left to handle is straight function calls. 3342 const FunctionDecl *FD = cast<SimpleFunctionCall>(Call)->getDecl(); 3343 if (!FD) 3344 return true; 3345 3346 // If it's one of the allocation functions we can reason about, we model 3347 // its behavior explicitly. 3348 if (isMemCall(*Call)) 3349 return false; 3350 3351 // If it's not a system call, assume it frees memory. 3352 if (!Call->isInSystemHeader()) 3353 return true; 3354 3355 // White list the system functions whose arguments escape. 3356 const IdentifierInfo *II = FD->getIdentifier(); 3357 if (!II) 3358 return true; 3359 StringRef FName = II->getName(); 3360 3361 // White list the 'XXXNoCopy' CoreFoundation functions. 3362 // We specifically check these before 3363 if (FName.ends_with("NoCopy")) { 3364 // Look for the deallocator argument. We know that the memory ownership 3365 // is not transferred only if the deallocator argument is 3366 // 'kCFAllocatorNull'. 3367 for (unsigned i = 1; i < Call->getNumArgs(); ++i) { 3368 const Expr *ArgE = Call->getArgExpr(i)->IgnoreParenCasts(); 3369 if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(ArgE)) { 3370 StringRef DeallocatorName = DE->getFoundDecl()->getName(); 3371 if (DeallocatorName == "kCFAllocatorNull") 3372 return false; 3373 } 3374 } 3375 return true; 3376 } 3377 3378 // Associating streams with malloced buffers. The pointer can escape if 3379 // 'closefn' is specified (and if that function does free memory), 3380 // but it will not if closefn is not specified. 3381 // Currently, we do not inspect the 'closefn' function (PR12101). 3382 if (FName == "funopen") 3383 if (Call->getNumArgs() >= 4 && Call->getArgSVal(4).isConstant(0)) 3384 return false; 3385 3386 // Do not warn on pointers passed to 'setbuf' when used with std streams, 3387 // these leaks might be intentional when setting the buffer for stdio. 3388 // http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer 3389 if (FName == "setbuf" || FName =="setbuffer" || 3390 FName == "setlinebuf" || FName == "setvbuf") { 3391 if (Call->getNumArgs() >= 1) { 3392 const Expr *ArgE = Call->getArgExpr(0)->IgnoreParenCasts(); 3393 if (const DeclRefExpr *ArgDRE = dyn_cast<DeclRefExpr>(ArgE)) 3394 if (const VarDecl *D = dyn_cast<VarDecl>(ArgDRE->getDecl())) 3395 if (D->getCanonicalDecl()->getName().contains("std")) 3396 return true; 3397 } 3398 } 3399 3400 // A bunch of other functions which either take ownership of a pointer or 3401 // wrap the result up in a struct or object, meaning it can be freed later. 3402 // (See RetainCountChecker.) Not all the parameters here are invalidated, 3403 // but the Malloc checker cannot differentiate between them. The right way 3404 // of doing this would be to implement a pointer escapes callback. 3405 if (FName == "CGBitmapContextCreate" || 3406 FName == "CGBitmapContextCreateWithData" || 3407 FName == "CVPixelBufferCreateWithBytes" || 3408 FName == "CVPixelBufferCreateWithPlanarBytes" || 3409 FName == "OSAtomicEnqueue") { 3410 return true; 3411 } 3412 3413 if (FName == "postEvent" && 3414 FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") { 3415 return true; 3416 } 3417 3418 if (FName == "connectImpl" && 3419 FD->getQualifiedNameAsString() == "QObject::connectImpl") { 3420 return true; 3421 } 3422 3423 if (FName == "singleShotImpl" && 3424 FD->getQualifiedNameAsString() == "QTimer::singleShotImpl") { 3425 return true; 3426 } 3427 3428 // Handle cases where we know a buffer's /address/ can escape. 3429 // Note that the above checks handle some special cases where we know that 3430 // even though the address escapes, it's still our responsibility to free the 3431 // buffer. 3432 if (Call->argumentsMayEscape()) 3433 return true; 3434 3435 // Otherwise, assume that the function does not free memory. 3436 // Most system calls do not free the memory. 3437 return false; 3438 } 3439 3440 ProgramStateRef MallocChecker::checkPointerEscape(ProgramStateRef State, 3441 const InvalidatedSymbols &Escaped, 3442 const CallEvent *Call, 3443 PointerEscapeKind Kind) const { 3444 return checkPointerEscapeAux(State, Escaped, Call, Kind, 3445 /*IsConstPointerEscape*/ false); 3446 } 3447 3448 ProgramStateRef MallocChecker::checkConstPointerEscape(ProgramStateRef State, 3449 const InvalidatedSymbols &Escaped, 3450 const CallEvent *Call, 3451 PointerEscapeKind Kind) const { 3452 // If a const pointer escapes, it may not be freed(), but it could be deleted. 3453 return checkPointerEscapeAux(State, Escaped, Call, Kind, 3454 /*IsConstPointerEscape*/ true); 3455 } 3456 3457 static bool checkIfNewOrNewArrayFamily(const RefState *RS) { 3458 return (RS->getAllocationFamily().Kind == AF_CXXNewArray || 3459 RS->getAllocationFamily().Kind == AF_CXXNew); 3460 } 3461 3462 ProgramStateRef MallocChecker::checkPointerEscapeAux( 3463 ProgramStateRef State, const InvalidatedSymbols &Escaped, 3464 const CallEvent *Call, PointerEscapeKind Kind, 3465 bool IsConstPointerEscape) const { 3466 // If we know that the call does not free memory, or we want to process the 3467 // call later, keep tracking the top level arguments. 3468 SymbolRef EscapingSymbol = nullptr; 3469 if (Kind == PSK_DirectEscapeOnCall && 3470 !mayFreeAnyEscapedMemoryOrIsModeledExplicitly(Call, State, 3471 EscapingSymbol) && 3472 !EscapingSymbol) { 3473 return State; 3474 } 3475 3476 for (SymbolRef sym : Escaped) { 3477 if (EscapingSymbol && EscapingSymbol != sym) 3478 continue; 3479 3480 if (const RefState *RS = State->get<RegionState>(sym)) 3481 if (RS->isAllocated() || RS->isAllocatedOfSizeZero()) 3482 if (!IsConstPointerEscape || checkIfNewOrNewArrayFamily(RS)) 3483 State = State->set<RegionState>(sym, RefState::getEscaped(RS)); 3484 } 3485 return State; 3486 } 3487 3488 bool MallocChecker::isArgZERO_SIZE_PTR(ProgramStateRef State, CheckerContext &C, 3489 SVal ArgVal) const { 3490 if (!KernelZeroSizePtrValue) 3491 KernelZeroSizePtrValue = 3492 tryExpandAsInteger("ZERO_SIZE_PTR", C.getPreprocessor()); 3493 3494 const llvm::APSInt *ArgValKnown = 3495 C.getSValBuilder().getKnownValue(State, ArgVal); 3496 return ArgValKnown && *KernelZeroSizePtrValue && 3497 ArgValKnown->getSExtValue() == **KernelZeroSizePtrValue; 3498 } 3499 3500 static SymbolRef findFailedReallocSymbol(ProgramStateRef currState, 3501 ProgramStateRef prevState) { 3502 ReallocPairsTy currMap = currState->get<ReallocPairs>(); 3503 ReallocPairsTy prevMap = prevState->get<ReallocPairs>(); 3504 3505 for (const ReallocPairsTy::value_type &Pair : prevMap) { 3506 SymbolRef sym = Pair.first; 3507 if (!currMap.lookup(sym)) 3508 return sym; 3509 } 3510 3511 return nullptr; 3512 } 3513 3514 static bool isReferenceCountingPointerDestructor(const CXXDestructorDecl *DD) { 3515 if (const IdentifierInfo *II = DD->getParent()->getIdentifier()) { 3516 StringRef N = II->getName(); 3517 if (N.contains_insensitive("ptr") || N.contains_insensitive("pointer")) { 3518 if (N.contains_insensitive("ref") || N.contains_insensitive("cnt") || 3519 N.contains_insensitive("intrusive") || 3520 N.contains_insensitive("shared") || N.ends_with_insensitive("rc")) { 3521 return true; 3522 } 3523 } 3524 } 3525 return false; 3526 } 3527 3528 PathDiagnosticPieceRef MallocBugVisitor::VisitNode(const ExplodedNode *N, 3529 BugReporterContext &BRC, 3530 PathSensitiveBugReport &BR) { 3531 ProgramStateRef state = N->getState(); 3532 ProgramStateRef statePrev = N->getFirstPred()->getState(); 3533 3534 const RefState *RSCurr = state->get<RegionState>(Sym); 3535 const RefState *RSPrev = statePrev->get<RegionState>(Sym); 3536 3537 const Stmt *S = N->getStmtForDiagnostics(); 3538 // When dealing with containers, we sometimes want to give a note 3539 // even if the statement is missing. 3540 if (!S && (!RSCurr || RSCurr->getAllocationFamily().Kind != AF_InnerBuffer)) 3541 return nullptr; 3542 3543 const LocationContext *CurrentLC = N->getLocationContext(); 3544 3545 // If we find an atomic fetch_add or fetch_sub within the destructor in which 3546 // the pointer was released (before the release), this is likely a destructor 3547 // of a shared pointer. 3548 // Because we don't model atomics, and also because we don't know that the 3549 // original reference count is positive, we should not report use-after-frees 3550 // on objects deleted in such destructors. This can probably be improved 3551 // through better shared pointer modeling. 3552 if (ReleaseDestructorLC && (ReleaseDestructorLC == CurrentLC || 3553 ReleaseDestructorLC->isParentOf(CurrentLC))) { 3554 if (const auto *AE = dyn_cast<AtomicExpr>(S)) { 3555 // Check for manual use of atomic builtins. 3556 AtomicExpr::AtomicOp Op = AE->getOp(); 3557 if (Op == AtomicExpr::AO__c11_atomic_fetch_add || 3558 Op == AtomicExpr::AO__c11_atomic_fetch_sub) { 3559 BR.markInvalid(getTag(), S); 3560 } 3561 } else if (const auto *CE = dyn_cast<CallExpr>(S)) { 3562 // Check for `std::atomic` and such. This covers both regular method calls 3563 // and operator calls. 3564 if (const auto *MD = 3565 dyn_cast_or_null<CXXMethodDecl>(CE->getDirectCallee())) { 3566 const CXXRecordDecl *RD = MD->getParent(); 3567 // A bit wobbly with ".contains()" because it may be like 3568 // "__atomic_base" or something. 3569 if (StringRef(RD->getNameAsString()).contains("atomic")) { 3570 BR.markInvalid(getTag(), S); 3571 } 3572 } 3573 } 3574 } 3575 3576 // FIXME: We will eventually need to handle non-statement-based events 3577 // (__attribute__((cleanup))). 3578 3579 // Find out if this is an interesting point and what is the kind. 3580 StringRef Msg; 3581 std::unique_ptr<StackHintGeneratorForSymbol> StackHint = nullptr; 3582 SmallString<256> Buf; 3583 llvm::raw_svector_ostream OS(Buf); 3584 3585 if (Mode == Normal) { 3586 if (isAllocated(RSCurr, RSPrev, S)) { 3587 Msg = "Memory is allocated"; 3588 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3589 Sym, "Returned allocated memory"); 3590 } else if (isReleased(RSCurr, RSPrev, S)) { 3591 const auto Family = RSCurr->getAllocationFamily(); 3592 switch (Family.Kind) { 3593 case AF_Alloca: 3594 case AF_Malloc: 3595 case AF_Custom: 3596 case AF_CXXNew: 3597 case AF_CXXNewArray: 3598 case AF_IfNameIndex: 3599 Msg = "Memory is released"; 3600 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3601 Sym, "Returning; memory was released"); 3602 break; 3603 case AF_InnerBuffer: { 3604 const MemRegion *ObjRegion = 3605 allocation_state::getContainerObjRegion(statePrev, Sym); 3606 const auto *TypedRegion = cast<TypedValueRegion>(ObjRegion); 3607 QualType ObjTy = TypedRegion->getValueType(); 3608 OS << "Inner buffer of '" << ObjTy << "' "; 3609 3610 if (N->getLocation().getKind() == ProgramPoint::PostImplicitCallKind) { 3611 OS << "deallocated by call to destructor"; 3612 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3613 Sym, "Returning; inner buffer was deallocated"); 3614 } else { 3615 OS << "reallocated by call to '"; 3616 const Stmt *S = RSCurr->getStmt(); 3617 if (const auto *MemCallE = dyn_cast<CXXMemberCallExpr>(S)) { 3618 OS << MemCallE->getMethodDecl()->getDeclName(); 3619 } else if (const auto *OpCallE = dyn_cast<CXXOperatorCallExpr>(S)) { 3620 OS << OpCallE->getDirectCallee()->getDeclName(); 3621 } else if (const auto *CallE = dyn_cast<CallExpr>(S)) { 3622 auto &CEMgr = BRC.getStateManager().getCallEventManager(); 3623 CallEventRef<> Call = 3624 CEMgr.getSimpleCall(CallE, state, CurrentLC, {nullptr, 0}); 3625 if (const auto *D = dyn_cast_or_null<NamedDecl>(Call->getDecl())) 3626 OS << D->getDeclName(); 3627 else 3628 OS << "unknown"; 3629 } 3630 OS << "'"; 3631 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3632 Sym, "Returning; inner buffer was reallocated"); 3633 } 3634 Msg = OS.str(); 3635 break; 3636 } 3637 case AF_None: 3638 assert(false && "Unhandled allocation family!"); 3639 return nullptr; 3640 } 3641 3642 // See if we're releasing memory while inlining a destructor 3643 // (or one of its callees). This turns on various common 3644 // false positive suppressions. 3645 bool FoundAnyDestructor = false; 3646 for (const LocationContext *LC = CurrentLC; LC; LC = LC->getParent()) { 3647 if (const auto *DD = dyn_cast<CXXDestructorDecl>(LC->getDecl())) { 3648 if (isReferenceCountingPointerDestructor(DD)) { 3649 // This immediately looks like a reference-counting destructor. 3650 // We're bad at guessing the original reference count of the object, 3651 // so suppress the report for now. 3652 BR.markInvalid(getTag(), DD); 3653 } else if (!FoundAnyDestructor) { 3654 assert(!ReleaseDestructorLC && 3655 "There can be only one release point!"); 3656 // Suspect that it's a reference counting pointer destructor. 3657 // On one of the next nodes might find out that it has atomic 3658 // reference counting operations within it (see the code above), 3659 // and if so, we'd conclude that it likely is a reference counting 3660 // pointer destructor. 3661 ReleaseDestructorLC = LC->getStackFrame(); 3662 // It is unlikely that releasing memory is delegated to a destructor 3663 // inside a destructor of a shared pointer, because it's fairly hard 3664 // to pass the information that the pointer indeed needs to be 3665 // released into it. So we're only interested in the innermost 3666 // destructor. 3667 FoundAnyDestructor = true; 3668 } 3669 } 3670 } 3671 } else if (isRelinquished(RSCurr, RSPrev, S)) { 3672 Msg = "Memory ownership is transferred"; 3673 StackHint = std::make_unique<StackHintGeneratorForSymbol>(Sym, ""); 3674 } else if (hasReallocFailed(RSCurr, RSPrev, S)) { 3675 Mode = ReallocationFailed; 3676 Msg = "Reallocation failed"; 3677 StackHint = std::make_unique<StackHintGeneratorForReallocationFailed>( 3678 Sym, "Reallocation failed"); 3679 3680 if (SymbolRef sym = findFailedReallocSymbol(state, statePrev)) { 3681 // Is it possible to fail two reallocs WITHOUT testing in between? 3682 assert((!FailedReallocSymbol || FailedReallocSymbol == sym) && 3683 "We only support one failed realloc at a time."); 3684 BR.markInteresting(sym); 3685 FailedReallocSymbol = sym; 3686 } 3687 } 3688 3689 // We are in a special mode if a reallocation failed later in the path. 3690 } else if (Mode == ReallocationFailed) { 3691 assert(FailedReallocSymbol && "No symbol to look for."); 3692 3693 // Is this is the first appearance of the reallocated symbol? 3694 if (!statePrev->get<RegionState>(FailedReallocSymbol)) { 3695 // We're at the reallocation point. 3696 Msg = "Attempt to reallocate memory"; 3697 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3698 Sym, "Returned reallocated memory"); 3699 FailedReallocSymbol = nullptr; 3700 Mode = Normal; 3701 } 3702 } 3703 3704 if (Msg.empty()) { 3705 assert(!StackHint); 3706 return nullptr; 3707 } 3708 3709 assert(StackHint); 3710 3711 // Generate the extra diagnostic. 3712 PathDiagnosticLocation Pos; 3713 if (!S) { 3714 assert(RSCurr->getAllocationFamily().Kind == AF_InnerBuffer); 3715 auto PostImplCall = N->getLocation().getAs<PostImplicitCall>(); 3716 if (!PostImplCall) 3717 return nullptr; 3718 Pos = PathDiagnosticLocation(PostImplCall->getLocation(), 3719 BRC.getSourceManager()); 3720 } else { 3721 Pos = PathDiagnosticLocation(S, BRC.getSourceManager(), 3722 N->getLocationContext()); 3723 } 3724 3725 auto P = std::make_shared<PathDiagnosticEventPiece>(Pos, Msg, true); 3726 BR.addCallStackHint(P, std::move(StackHint)); 3727 return P; 3728 } 3729 3730 void MallocChecker::printState(raw_ostream &Out, ProgramStateRef State, 3731 const char *NL, const char *Sep) const { 3732 3733 RegionStateTy RS = State->get<RegionState>(); 3734 3735 if (!RS.isEmpty()) { 3736 Out << Sep << "MallocChecker :" << NL; 3737 for (auto [Sym, Data] : RS) { 3738 const RefState *RefS = State->get<RegionState>(Sym); 3739 AllocationFamily Family = RefS->getAllocationFamily(); 3740 std::optional<MallocChecker::CheckKind> CheckKind = 3741 getCheckIfTracked(Family); 3742 if (!CheckKind) 3743 CheckKind = getCheckIfTracked(Family, true); 3744 3745 Sym->dumpToStream(Out); 3746 Out << " : "; 3747 Data.dump(Out); 3748 if (CheckKind) 3749 Out << " (" << CheckNames[*CheckKind].getName() << ")"; 3750 Out << NL; 3751 } 3752 } 3753 } 3754 3755 namespace clang { 3756 namespace ento { 3757 namespace allocation_state { 3758 3759 ProgramStateRef 3760 markReleased(ProgramStateRef State, SymbolRef Sym, const Expr *Origin) { 3761 AllocationFamily Family(AF_InnerBuffer); 3762 return State->set<RegionState>(Sym, RefState::getReleased(Family, Origin)); 3763 } 3764 3765 } // end namespace allocation_state 3766 } // end namespace ento 3767 } // end namespace clang 3768 3769 // Intended to be used in InnerPointerChecker to register the part of 3770 // MallocChecker connected to it. 3771 void ento::registerInnerPointerCheckerAux(CheckerManager &mgr) { 3772 MallocChecker *checker = mgr.getChecker<MallocChecker>(); 3773 checker->ChecksEnabled[MallocChecker::CK_InnerPointerChecker] = true; 3774 checker->CheckNames[MallocChecker::CK_InnerPointerChecker] = 3775 mgr.getCurrentCheckerName(); 3776 } 3777 3778 void ento::registerDynamicMemoryModeling(CheckerManager &mgr) { 3779 auto *checker = mgr.registerChecker<MallocChecker>(); 3780 checker->ShouldIncludeOwnershipAnnotatedFunctions = 3781 mgr.getAnalyzerOptions().getCheckerBooleanOption(checker, "Optimistic"); 3782 checker->ShouldRegisterNoOwnershipChangeVisitor = 3783 mgr.getAnalyzerOptions().getCheckerBooleanOption( 3784 checker, "AddNoOwnershipChangeNotes"); 3785 } 3786 3787 bool ento::shouldRegisterDynamicMemoryModeling(const CheckerManager &mgr) { 3788 return true; 3789 } 3790 3791 #define REGISTER_CHECKER(name) \ 3792 void ento::register##name(CheckerManager &mgr) { \ 3793 MallocChecker *checker = mgr.getChecker<MallocChecker>(); \ 3794 checker->ChecksEnabled[MallocChecker::CK_##name] = true; \ 3795 checker->CheckNames[MallocChecker::CK_##name] = \ 3796 mgr.getCurrentCheckerName(); \ 3797 } \ 3798 \ 3799 bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; } 3800 3801 REGISTER_CHECKER(MallocChecker) 3802 REGISTER_CHECKER(NewDeleteChecker) 3803 REGISTER_CHECKER(NewDeleteLeaksChecker) 3804 REGISTER_CHECKER(MismatchedDeallocatorChecker) 3805 REGISTER_CHECKER(TaintedAllocChecker) 3806