1 //=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines malloc/free checker, which checks for potential memory 11 // leaks, double free, and use-after-free problems. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ClangSACheckers.h" 16 #include "InterCheckerAPI.h" 17 #include "clang/AST/Attr.h" 18 #include "clang/AST/ParentMap.h" 19 #include "clang/Basic/SourceManager.h" 20 #include "clang/Basic/TargetInfo.h" 21 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 22 #include "clang/StaticAnalyzer/Core/Checker.h" 23 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 24 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 25 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 26 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 27 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 28 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" 29 #include "llvm/ADT/STLExtras.h" 30 #include "llvm/ADT/SmallString.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include <climits> 33 #include <utility> 34 35 using namespace clang; 36 using namespace ento; 37 38 namespace { 39 40 // Used to check correspondence between allocators and deallocators. 41 enum AllocationFamily { 42 AF_None, 43 AF_Malloc, 44 AF_CXXNew, 45 AF_CXXNewArray, 46 AF_IfNameIndex, 47 AF_Alloca 48 }; 49 50 class RefState { 51 enum Kind { // Reference to allocated memory. 52 Allocated, 53 // Reference to zero-allocated memory. 54 AllocatedOfSizeZero, 55 // Reference to released/freed memory. 56 Released, 57 // The responsibility for freeing resources has transferred from 58 // this reference. A relinquished symbol should not be freed. 59 Relinquished, 60 // We are no longer guaranteed to have observed all manipulations 61 // of this pointer/memory. For example, it could have been 62 // passed as a parameter to an opaque function. 63 Escaped 64 }; 65 66 const Stmt *S; 67 unsigned K : 3; // Kind enum, but stored as a bitfield. 68 unsigned Family : 29; // Rest of 32-bit word, currently just an allocation 69 // family. 70 71 RefState(Kind k, const Stmt *s, unsigned family) 72 : S(s), K(k), Family(family) { 73 assert(family != AF_None); 74 } 75 public: 76 bool isAllocated() const { return K == Allocated; } 77 bool isAllocatedOfSizeZero() const { return K == AllocatedOfSizeZero; } 78 bool isReleased() const { return K == Released; } 79 bool isRelinquished() const { return K == Relinquished; } 80 bool isEscaped() const { return K == Escaped; } 81 AllocationFamily getAllocationFamily() const { 82 return (AllocationFamily)Family; 83 } 84 const Stmt *getStmt() const { return S; } 85 86 bool operator==(const RefState &X) const { 87 return K == X.K && S == X.S && Family == X.Family; 88 } 89 90 static RefState getAllocated(unsigned family, const Stmt *s) { 91 return RefState(Allocated, s, family); 92 } 93 static RefState getAllocatedOfSizeZero(const RefState *RS) { 94 return RefState(AllocatedOfSizeZero, RS->getStmt(), 95 RS->getAllocationFamily()); 96 } 97 static RefState getReleased(unsigned family, const Stmt *s) { 98 return RefState(Released, s, family); 99 } 100 static RefState getRelinquished(unsigned family, const Stmt *s) { 101 return RefState(Relinquished, s, family); 102 } 103 static RefState getEscaped(const RefState *RS) { 104 return RefState(Escaped, RS->getStmt(), RS->getAllocationFamily()); 105 } 106 107 void Profile(llvm::FoldingSetNodeID &ID) const { 108 ID.AddInteger(K); 109 ID.AddPointer(S); 110 ID.AddInteger(Family); 111 } 112 113 void dump(raw_ostream &OS) const { 114 switch (static_cast<Kind>(K)) { 115 #define CASE(ID) case ID: OS << #ID; break; 116 CASE(Allocated) 117 CASE(AllocatedOfSizeZero) 118 CASE(Released) 119 CASE(Relinquished) 120 CASE(Escaped) 121 } 122 } 123 124 LLVM_DUMP_METHOD void dump() const { dump(llvm::errs()); } 125 }; 126 127 enum ReallocPairKind { 128 RPToBeFreedAfterFailure, 129 // The symbol has been freed when reallocation failed. 130 RPIsFreeOnFailure, 131 // The symbol does not need to be freed after reallocation fails. 132 RPDoNotTrackAfterFailure 133 }; 134 135 /// \class ReallocPair 136 /// \brief Stores information about the symbol being reallocated by a call to 137 /// 'realloc' to allow modeling failed reallocation later in the path. 138 struct ReallocPair { 139 // \brief The symbol which realloc reallocated. 140 SymbolRef ReallocatedSym; 141 ReallocPairKind Kind; 142 143 ReallocPair(SymbolRef S, ReallocPairKind K) : 144 ReallocatedSym(S), Kind(K) {} 145 void Profile(llvm::FoldingSetNodeID &ID) const { 146 ID.AddInteger(Kind); 147 ID.AddPointer(ReallocatedSym); 148 } 149 bool operator==(const ReallocPair &X) const { 150 return ReallocatedSym == X.ReallocatedSym && 151 Kind == X.Kind; 152 } 153 }; 154 155 typedef std::pair<const ExplodedNode*, const MemRegion*> LeakInfo; 156 157 class MallocChecker : public Checker<check::DeadSymbols, 158 check::PointerEscape, 159 check::ConstPointerEscape, 160 check::PreStmt<ReturnStmt>, 161 check::PreCall, 162 check::PostStmt<CallExpr>, 163 check::PostStmt<CXXNewExpr>, 164 check::PreStmt<CXXDeleteExpr>, 165 check::PostStmt<BlockExpr>, 166 check::PostObjCMessage, 167 check::Location, 168 eval::Assume> 169 { 170 public: 171 MallocChecker() 172 : II_alloca(nullptr), II_win_alloca(nullptr), II_malloc(nullptr), 173 II_free(nullptr), II_realloc(nullptr), II_calloc(nullptr), 174 II_valloc(nullptr), II_reallocf(nullptr), II_strndup(nullptr), 175 II_strdup(nullptr), II_win_strdup(nullptr), II_kmalloc(nullptr), 176 II_if_nameindex(nullptr), II_if_freenameindex(nullptr), 177 II_wcsdup(nullptr), II_win_wcsdup(nullptr) {} 178 179 /// In pessimistic mode, the checker assumes that it does not know which 180 /// functions might free the memory. 181 enum CheckKind { 182 CK_MallocChecker, 183 CK_NewDeleteChecker, 184 CK_NewDeleteLeaksChecker, 185 CK_MismatchedDeallocatorChecker, 186 CK_NumCheckKinds 187 }; 188 189 enum class MemoryOperationKind { 190 MOK_Allocate, 191 MOK_Free, 192 MOK_Any 193 }; 194 195 DefaultBool IsOptimistic; 196 197 DefaultBool ChecksEnabled[CK_NumCheckKinds]; 198 CheckName CheckNames[CK_NumCheckKinds]; 199 200 void checkPreCall(const CallEvent &Call, CheckerContext &C) const; 201 void checkPostStmt(const CallExpr *CE, CheckerContext &C) const; 202 void checkPostStmt(const CXXNewExpr *NE, CheckerContext &C) const; 203 void checkPreStmt(const CXXDeleteExpr *DE, CheckerContext &C) const; 204 void checkPostObjCMessage(const ObjCMethodCall &Call, CheckerContext &C) const; 205 void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const; 206 void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const; 207 void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const; 208 ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond, 209 bool Assumption) const; 210 void checkLocation(SVal l, bool isLoad, const Stmt *S, 211 CheckerContext &C) const; 212 213 ProgramStateRef checkPointerEscape(ProgramStateRef State, 214 const InvalidatedSymbols &Escaped, 215 const CallEvent *Call, 216 PointerEscapeKind Kind) const; 217 ProgramStateRef checkConstPointerEscape(ProgramStateRef State, 218 const InvalidatedSymbols &Escaped, 219 const CallEvent *Call, 220 PointerEscapeKind Kind) const; 221 222 void printState(raw_ostream &Out, ProgramStateRef State, 223 const char *NL, const char *Sep) const override; 224 225 private: 226 mutable std::unique_ptr<BugType> BT_DoubleFree[CK_NumCheckKinds]; 227 mutable std::unique_ptr<BugType> BT_DoubleDelete; 228 mutable std::unique_ptr<BugType> BT_Leak[CK_NumCheckKinds]; 229 mutable std::unique_ptr<BugType> BT_UseFree[CK_NumCheckKinds]; 230 mutable std::unique_ptr<BugType> BT_BadFree[CK_NumCheckKinds]; 231 mutable std::unique_ptr<BugType> BT_FreeAlloca[CK_NumCheckKinds]; 232 mutable std::unique_ptr<BugType> BT_MismatchedDealloc; 233 mutable std::unique_ptr<BugType> BT_OffsetFree[CK_NumCheckKinds]; 234 mutable std::unique_ptr<BugType> BT_UseZerroAllocated[CK_NumCheckKinds]; 235 mutable IdentifierInfo *II_alloca, *II_win_alloca, *II_malloc, *II_free, 236 *II_realloc, *II_calloc, *II_valloc, *II_reallocf, 237 *II_strndup, *II_strdup, *II_win_strdup, *II_kmalloc, 238 *II_if_nameindex, *II_if_freenameindex, *II_wcsdup, 239 *II_win_wcsdup; 240 mutable Optional<uint64_t> KernelZeroFlagVal; 241 242 void initIdentifierInfo(ASTContext &C) const; 243 244 /// \brief Determine family of a deallocation expression. 245 AllocationFamily getAllocationFamily(CheckerContext &C, const Stmt *S) const; 246 247 /// \brief Print names of allocators and deallocators. 248 /// 249 /// \returns true on success. 250 bool printAllocDeallocName(raw_ostream &os, CheckerContext &C, 251 const Expr *E) const; 252 253 /// \brief Print expected name of an allocator based on the deallocator's 254 /// family derived from the DeallocExpr. 255 void printExpectedAllocName(raw_ostream &os, CheckerContext &C, 256 const Expr *DeallocExpr) const; 257 /// \brief Print expected name of a deallocator based on the allocator's 258 /// family. 259 void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family) const; 260 261 ///@{ 262 /// Check if this is one of the functions which can allocate/reallocate memory 263 /// pointed to by one of its arguments. 264 bool isMemFunction(const FunctionDecl *FD, ASTContext &C) const; 265 bool isCMemFunction(const FunctionDecl *FD, 266 ASTContext &C, 267 AllocationFamily Family, 268 MemoryOperationKind MemKind) const; 269 bool isStandardNewDelete(const FunctionDecl *FD, ASTContext &C) const; 270 ///@} 271 272 /// \brief Perform a zero-allocation check. 273 ProgramStateRef ProcessZeroAllocation(CheckerContext &C, const Expr *E, 274 const unsigned AllocationSizeArg, 275 ProgramStateRef State) const; 276 277 ProgramStateRef MallocMemReturnsAttr(CheckerContext &C, 278 const CallExpr *CE, 279 const OwnershipAttr* Att, 280 ProgramStateRef State) const; 281 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE, 282 const Expr *SizeEx, SVal Init, 283 ProgramStateRef State, 284 AllocationFamily Family = AF_Malloc); 285 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE, 286 SVal SizeEx, SVal Init, 287 ProgramStateRef State, 288 AllocationFamily Family = AF_Malloc); 289 290 static ProgramStateRef addExtentSize(CheckerContext &C, const CXXNewExpr *NE, 291 ProgramStateRef State); 292 293 // Check if this malloc() for special flags. At present that means M_ZERO or 294 // __GFP_ZERO (in which case, treat it like calloc). 295 llvm::Optional<ProgramStateRef> 296 performKernelMalloc(const CallExpr *CE, CheckerContext &C, 297 const ProgramStateRef &State) const; 298 299 /// Update the RefState to reflect the new memory allocation. 300 static ProgramStateRef 301 MallocUpdateRefState(CheckerContext &C, const Expr *E, ProgramStateRef State, 302 AllocationFamily Family = AF_Malloc); 303 304 ProgramStateRef FreeMemAttr(CheckerContext &C, const CallExpr *CE, 305 const OwnershipAttr* Att, 306 ProgramStateRef State) const; 307 ProgramStateRef FreeMemAux(CheckerContext &C, const CallExpr *CE, 308 ProgramStateRef state, unsigned Num, 309 bool Hold, 310 bool &ReleasedAllocated, 311 bool ReturnsNullOnFailure = false) const; 312 ProgramStateRef FreeMemAux(CheckerContext &C, const Expr *Arg, 313 const Expr *ParentExpr, 314 ProgramStateRef State, 315 bool Hold, 316 bool &ReleasedAllocated, 317 bool ReturnsNullOnFailure = false) const; 318 319 ProgramStateRef ReallocMem(CheckerContext &C, const CallExpr *CE, 320 bool FreesMemOnFailure, 321 ProgramStateRef State) const; 322 static ProgramStateRef CallocMem(CheckerContext &C, const CallExpr *CE, 323 ProgramStateRef State); 324 325 ///\brief Check if the memory associated with this symbol was released. 326 bool isReleased(SymbolRef Sym, CheckerContext &C) const; 327 328 bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S) const; 329 330 void checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 331 const Stmt *S) const; 332 333 bool checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const; 334 335 /// Check if the function is known free memory, or if it is 336 /// "interesting" and should be modeled explicitly. 337 /// 338 /// \param [out] EscapingSymbol A function might not free memory in general, 339 /// but could be known to free a particular symbol. In this case, false is 340 /// returned and the single escaping symbol is returned through the out 341 /// parameter. 342 /// 343 /// We assume that pointers do not escape through calls to system functions 344 /// not handled by this checker. 345 bool mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent *Call, 346 ProgramStateRef State, 347 SymbolRef &EscapingSymbol) const; 348 349 // Implementation of the checkPointerEscape callabcks. 350 ProgramStateRef checkPointerEscapeAux(ProgramStateRef State, 351 const InvalidatedSymbols &Escaped, 352 const CallEvent *Call, 353 PointerEscapeKind Kind, 354 bool(*CheckRefState)(const RefState*)) const; 355 356 ///@{ 357 /// Tells if a given family/call/symbol is tracked by the current checker. 358 /// Sets CheckKind to the kind of the checker responsible for this 359 /// family/call/symbol. 360 Optional<CheckKind> getCheckIfTracked(AllocationFamily Family, 361 bool IsALeakCheck = false) const; 362 Optional<CheckKind> getCheckIfTracked(CheckerContext &C, 363 const Stmt *AllocDeallocStmt, 364 bool IsALeakCheck = false) const; 365 Optional<CheckKind> getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 366 bool IsALeakCheck = false) const; 367 ///@} 368 static bool SummarizeValue(raw_ostream &os, SVal V); 369 static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR); 370 void ReportBadFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 371 const Expr *DeallocExpr) const; 372 void ReportFreeAlloca(CheckerContext &C, SVal ArgVal, 373 SourceRange Range) const; 374 void ReportMismatchedDealloc(CheckerContext &C, SourceRange Range, 375 const Expr *DeallocExpr, const RefState *RS, 376 SymbolRef Sym, bool OwnershipTransferred) const; 377 void ReportOffsetFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 378 const Expr *DeallocExpr, 379 const Expr *AllocExpr = nullptr) const; 380 void ReportUseAfterFree(CheckerContext &C, SourceRange Range, 381 SymbolRef Sym) const; 382 void ReportDoubleFree(CheckerContext &C, SourceRange Range, bool Released, 383 SymbolRef Sym, SymbolRef PrevSym) const; 384 385 void ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const; 386 387 void ReportUseZeroAllocated(CheckerContext &C, SourceRange Range, 388 SymbolRef Sym) const; 389 390 /// Find the location of the allocation for Sym on the path leading to the 391 /// exploded node N. 392 LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym, 393 CheckerContext &C) const; 394 395 void reportLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const; 396 397 /// The bug visitor which allows us to print extra diagnostics along the 398 /// BugReport path. For example, showing the allocation site of the leaked 399 /// region. 400 class MallocBugVisitor final 401 : public BugReporterVisitorImpl<MallocBugVisitor> { 402 protected: 403 enum NotificationMode { 404 Normal, 405 ReallocationFailed 406 }; 407 408 // The allocated region symbol tracked by the main analysis. 409 SymbolRef Sym; 410 411 // The mode we are in, i.e. what kind of diagnostics will be emitted. 412 NotificationMode Mode; 413 414 // A symbol from when the primary region should have been reallocated. 415 SymbolRef FailedReallocSymbol; 416 417 bool IsLeak; 418 419 public: 420 MallocBugVisitor(SymbolRef S, bool isLeak = false) 421 : Sym(S), Mode(Normal), FailedReallocSymbol(nullptr), IsLeak(isLeak) {} 422 423 void Profile(llvm::FoldingSetNodeID &ID) const override { 424 static int X = 0; 425 ID.AddPointer(&X); 426 ID.AddPointer(Sym); 427 } 428 429 inline bool isAllocated(const RefState *S, const RefState *SPrev, 430 const Stmt *Stmt) { 431 // Did not track -> allocated. Other state (released) -> allocated. 432 return (Stmt && (isa<CallExpr>(Stmt) || isa<CXXNewExpr>(Stmt)) && 433 (S && (S->isAllocated() || S->isAllocatedOfSizeZero())) && 434 (!SPrev || !(SPrev->isAllocated() || 435 SPrev->isAllocatedOfSizeZero()))); 436 } 437 438 inline bool isReleased(const RefState *S, const RefState *SPrev, 439 const Stmt *Stmt) { 440 // Did not track -> released. Other state (allocated) -> released. 441 return (Stmt && (isa<CallExpr>(Stmt) || isa<CXXDeleteExpr>(Stmt)) && 442 (S && S->isReleased()) && (!SPrev || !SPrev->isReleased())); 443 } 444 445 inline bool isRelinquished(const RefState *S, const RefState *SPrev, 446 const Stmt *Stmt) { 447 // Did not track -> relinquished. Other state (allocated) -> relinquished. 448 return (Stmt && (isa<CallExpr>(Stmt) || isa<ObjCMessageExpr>(Stmt) || 449 isa<ObjCPropertyRefExpr>(Stmt)) && 450 (S && S->isRelinquished()) && 451 (!SPrev || !SPrev->isRelinquished())); 452 } 453 454 inline bool isReallocFailedCheck(const RefState *S, const RefState *SPrev, 455 const Stmt *Stmt) { 456 // If the expression is not a call, and the state change is 457 // released -> allocated, it must be the realloc return value 458 // check. If we have to handle more cases here, it might be cleaner just 459 // to track this extra bit in the state itself. 460 return ((!Stmt || !isa<CallExpr>(Stmt)) && 461 (S && (S->isAllocated() || S->isAllocatedOfSizeZero())) && 462 (SPrev && !(SPrev->isAllocated() || 463 SPrev->isAllocatedOfSizeZero()))); 464 } 465 466 PathDiagnosticPiece *VisitNode(const ExplodedNode *N, 467 const ExplodedNode *PrevN, 468 BugReporterContext &BRC, 469 BugReport &BR) override; 470 471 std::unique_ptr<PathDiagnosticPiece> 472 getEndPath(BugReporterContext &BRC, const ExplodedNode *EndPathNode, 473 BugReport &BR) override { 474 if (!IsLeak) 475 return nullptr; 476 477 PathDiagnosticLocation L = 478 PathDiagnosticLocation::createEndOfPath(EndPathNode, 479 BRC.getSourceManager()); 480 // Do not add the statement itself as a range in case of leak. 481 return llvm::make_unique<PathDiagnosticEventPiece>(L, BR.getDescription(), 482 false); 483 } 484 485 private: 486 class StackHintGeneratorForReallocationFailed 487 : public StackHintGeneratorForSymbol { 488 public: 489 StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M) 490 : StackHintGeneratorForSymbol(S, M) {} 491 492 std::string getMessageForArg(const Expr *ArgE, 493 unsigned ArgIndex) override { 494 // Printed parameters start at 1, not 0. 495 ++ArgIndex; 496 497 SmallString<200> buf; 498 llvm::raw_svector_ostream os(buf); 499 500 os << "Reallocation of " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex) 501 << " parameter failed"; 502 503 return os.str(); 504 } 505 506 std::string getMessageForReturn(const CallExpr *CallExpr) override { 507 return "Reallocation of returned value failed"; 508 } 509 }; 510 }; 511 }; 512 } // end anonymous namespace 513 514 REGISTER_MAP_WITH_PROGRAMSTATE(RegionState, SymbolRef, RefState) 515 REGISTER_MAP_WITH_PROGRAMSTATE(ReallocPairs, SymbolRef, ReallocPair) 516 REGISTER_SET_WITH_PROGRAMSTATE(ReallocSizeZeroSymbols, SymbolRef) 517 518 // A map from the freed symbol to the symbol representing the return value of 519 // the free function. 520 REGISTER_MAP_WITH_PROGRAMSTATE(FreeReturnValue, SymbolRef, SymbolRef) 521 522 namespace { 523 class StopTrackingCallback final : public SymbolVisitor { 524 ProgramStateRef state; 525 public: 526 StopTrackingCallback(ProgramStateRef st) : state(std::move(st)) {} 527 ProgramStateRef getState() const { return state; } 528 529 bool VisitSymbol(SymbolRef sym) override { 530 state = state->remove<RegionState>(sym); 531 return true; 532 } 533 }; 534 } // end anonymous namespace 535 536 void MallocChecker::initIdentifierInfo(ASTContext &Ctx) const { 537 if (II_malloc) 538 return; 539 II_alloca = &Ctx.Idents.get("alloca"); 540 II_malloc = &Ctx.Idents.get("malloc"); 541 II_free = &Ctx.Idents.get("free"); 542 II_realloc = &Ctx.Idents.get("realloc"); 543 II_reallocf = &Ctx.Idents.get("reallocf"); 544 II_calloc = &Ctx.Idents.get("calloc"); 545 II_valloc = &Ctx.Idents.get("valloc"); 546 II_strdup = &Ctx.Idents.get("strdup"); 547 II_strndup = &Ctx.Idents.get("strndup"); 548 II_wcsdup = &Ctx.Idents.get("wcsdup"); 549 II_kmalloc = &Ctx.Idents.get("kmalloc"); 550 II_if_nameindex = &Ctx.Idents.get("if_nameindex"); 551 II_if_freenameindex = &Ctx.Idents.get("if_freenameindex"); 552 553 //MSVC uses `_`-prefixed instead, so we check for them too. 554 II_win_strdup = &Ctx.Idents.get("_strdup"); 555 II_win_wcsdup = &Ctx.Idents.get("_wcsdup"); 556 II_win_alloca = &Ctx.Idents.get("_alloca"); 557 } 558 559 bool MallocChecker::isMemFunction(const FunctionDecl *FD, ASTContext &C) const { 560 if (isCMemFunction(FD, C, AF_Malloc, MemoryOperationKind::MOK_Any)) 561 return true; 562 563 if (isCMemFunction(FD, C, AF_IfNameIndex, MemoryOperationKind::MOK_Any)) 564 return true; 565 566 if (isCMemFunction(FD, C, AF_Alloca, MemoryOperationKind::MOK_Any)) 567 return true; 568 569 if (isStandardNewDelete(FD, C)) 570 return true; 571 572 return false; 573 } 574 575 bool MallocChecker::isCMemFunction(const FunctionDecl *FD, 576 ASTContext &C, 577 AllocationFamily Family, 578 MemoryOperationKind MemKind) const { 579 if (!FD) 580 return false; 581 582 bool CheckFree = (MemKind == MemoryOperationKind::MOK_Any || 583 MemKind == MemoryOperationKind::MOK_Free); 584 bool CheckAlloc = (MemKind == MemoryOperationKind::MOK_Any || 585 MemKind == MemoryOperationKind::MOK_Allocate); 586 587 if (FD->getKind() == Decl::Function) { 588 const IdentifierInfo *FunI = FD->getIdentifier(); 589 initIdentifierInfo(C); 590 591 if (Family == AF_Malloc && CheckFree) { 592 if (FunI == II_free || FunI == II_realloc || FunI == II_reallocf) 593 return true; 594 } 595 596 if (Family == AF_Malloc && CheckAlloc) { 597 if (FunI == II_malloc || FunI == II_realloc || FunI == II_reallocf || 598 FunI == II_calloc || FunI == II_valloc || FunI == II_strdup || 599 FunI == II_win_strdup || FunI == II_strndup || FunI == II_wcsdup || 600 FunI == II_win_wcsdup || FunI == II_kmalloc) 601 return true; 602 } 603 604 if (Family == AF_IfNameIndex && CheckFree) { 605 if (FunI == II_if_freenameindex) 606 return true; 607 } 608 609 if (Family == AF_IfNameIndex && CheckAlloc) { 610 if (FunI == II_if_nameindex) 611 return true; 612 } 613 614 if (Family == AF_Alloca && CheckAlloc) { 615 if (FunI == II_alloca || FunI == II_win_alloca) 616 return true; 617 } 618 } 619 620 if (Family != AF_Malloc) 621 return false; 622 623 if (IsOptimistic && FD->hasAttrs()) { 624 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { 625 OwnershipAttr::OwnershipKind OwnKind = I->getOwnKind(); 626 if(OwnKind == OwnershipAttr::Takes || OwnKind == OwnershipAttr::Holds) { 627 if (CheckFree) 628 return true; 629 } else if (OwnKind == OwnershipAttr::Returns) { 630 if (CheckAlloc) 631 return true; 632 } 633 } 634 } 635 636 return false; 637 } 638 639 // Tells if the callee is one of the following: 640 // 1) A global non-placement new/delete operator function. 641 // 2) A global placement operator function with the single placement argument 642 // of type std::nothrow_t. 643 bool MallocChecker::isStandardNewDelete(const FunctionDecl *FD, 644 ASTContext &C) const { 645 if (!FD) 646 return false; 647 648 OverloadedOperatorKind Kind = FD->getOverloadedOperator(); 649 if (Kind != OO_New && Kind != OO_Array_New && 650 Kind != OO_Delete && Kind != OO_Array_Delete) 651 return false; 652 653 // Skip all operator new/delete methods. 654 if (isa<CXXMethodDecl>(FD)) 655 return false; 656 657 // Return true if tested operator is a standard placement nothrow operator. 658 if (FD->getNumParams() == 2) { 659 QualType T = FD->getParamDecl(1)->getType(); 660 if (const IdentifierInfo *II = T.getBaseTypeIdentifier()) 661 return II->getName().equals("nothrow_t"); 662 } 663 664 // Skip placement operators. 665 if (FD->getNumParams() != 1 || FD->isVariadic()) 666 return false; 667 668 // One of the standard new/new[]/delete/delete[] non-placement operators. 669 return true; 670 } 671 672 llvm::Optional<ProgramStateRef> MallocChecker::performKernelMalloc( 673 const CallExpr *CE, CheckerContext &C, const ProgramStateRef &State) const { 674 // 3-argument malloc(), as commonly used in {Free,Net,Open}BSD Kernels: 675 // 676 // void *malloc(unsigned long size, struct malloc_type *mtp, int flags); 677 // 678 // One of the possible flags is M_ZERO, which means 'give me back an 679 // allocation which is already zeroed', like calloc. 680 681 // 2-argument kmalloc(), as used in the Linux kernel: 682 // 683 // void *kmalloc(size_t size, gfp_t flags); 684 // 685 // Has the similar flag value __GFP_ZERO. 686 687 // This logic is largely cloned from O_CREAT in UnixAPIChecker, maybe some 688 // code could be shared. 689 690 ASTContext &Ctx = C.getASTContext(); 691 llvm::Triple::OSType OS = Ctx.getTargetInfo().getTriple().getOS(); 692 693 if (!KernelZeroFlagVal.hasValue()) { 694 if (OS == llvm::Triple::FreeBSD) 695 KernelZeroFlagVal = 0x0100; 696 else if (OS == llvm::Triple::NetBSD) 697 KernelZeroFlagVal = 0x0002; 698 else if (OS == llvm::Triple::OpenBSD) 699 KernelZeroFlagVal = 0x0008; 700 else if (OS == llvm::Triple::Linux) 701 // __GFP_ZERO 702 KernelZeroFlagVal = 0x8000; 703 else 704 // FIXME: We need a more general way of getting the M_ZERO value. 705 // See also: O_CREAT in UnixAPIChecker.cpp. 706 707 // Fall back to normal malloc behavior on platforms where we don't 708 // know M_ZERO. 709 return None; 710 } 711 712 // We treat the last argument as the flags argument, and callers fall-back to 713 // normal malloc on a None return. This works for the FreeBSD kernel malloc 714 // as well as Linux kmalloc. 715 if (CE->getNumArgs() < 2) 716 return None; 717 718 const Expr *FlagsEx = CE->getArg(CE->getNumArgs() - 1); 719 const SVal V = State->getSVal(FlagsEx, C.getLocationContext()); 720 if (!V.getAs<NonLoc>()) { 721 // The case where 'V' can be a location can only be due to a bad header, 722 // so in this case bail out. 723 return None; 724 } 725 726 NonLoc Flags = V.castAs<NonLoc>(); 727 NonLoc ZeroFlag = C.getSValBuilder() 728 .makeIntVal(KernelZeroFlagVal.getValue(), FlagsEx->getType()) 729 .castAs<NonLoc>(); 730 SVal MaskedFlagsUC = C.getSValBuilder().evalBinOpNN(State, BO_And, 731 Flags, ZeroFlag, 732 FlagsEx->getType()); 733 if (MaskedFlagsUC.isUnknownOrUndef()) 734 return None; 735 DefinedSVal MaskedFlags = MaskedFlagsUC.castAs<DefinedSVal>(); 736 737 // Check if maskedFlags is non-zero. 738 ProgramStateRef TrueState, FalseState; 739 std::tie(TrueState, FalseState) = State->assume(MaskedFlags); 740 741 // If M_ZERO is set, treat this like calloc (initialized). 742 if (TrueState && !FalseState) { 743 SVal ZeroVal = C.getSValBuilder().makeZeroVal(Ctx.CharTy); 744 return MallocMemAux(C, CE, CE->getArg(0), ZeroVal, TrueState); 745 } 746 747 return None; 748 } 749 750 void MallocChecker::checkPostStmt(const CallExpr *CE, CheckerContext &C) const { 751 if (C.wasInlined) 752 return; 753 754 const FunctionDecl *FD = C.getCalleeDecl(CE); 755 if (!FD) 756 return; 757 758 ProgramStateRef State = C.getState(); 759 bool ReleasedAllocatedMemory = false; 760 761 if (FD->getKind() == Decl::Function) { 762 initIdentifierInfo(C.getASTContext()); 763 IdentifierInfo *FunI = FD->getIdentifier(); 764 765 if (FunI == II_malloc) { 766 if (CE->getNumArgs() < 1) 767 return; 768 if (CE->getNumArgs() < 3) { 769 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 770 if (CE->getNumArgs() == 1) 771 State = ProcessZeroAllocation(C, CE, 0, State); 772 } else if (CE->getNumArgs() == 3) { 773 llvm::Optional<ProgramStateRef> MaybeState = 774 performKernelMalloc(CE, C, State); 775 if (MaybeState.hasValue()) 776 State = MaybeState.getValue(); 777 else 778 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 779 } 780 } else if (FunI == II_kmalloc) { 781 llvm::Optional<ProgramStateRef> MaybeState = 782 performKernelMalloc(CE, C, State); 783 if (MaybeState.hasValue()) 784 State = MaybeState.getValue(); 785 else 786 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 787 } else if (FunI == II_valloc) { 788 if (CE->getNumArgs() < 1) 789 return; 790 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 791 State = ProcessZeroAllocation(C, CE, 0, State); 792 } else if (FunI == II_realloc) { 793 State = ReallocMem(C, CE, false, State); 794 State = ProcessZeroAllocation(C, CE, 1, State); 795 } else if (FunI == II_reallocf) { 796 State = ReallocMem(C, CE, true, State); 797 State = ProcessZeroAllocation(C, CE, 1, State); 798 } else if (FunI == II_calloc) { 799 State = CallocMem(C, CE, State); 800 State = ProcessZeroAllocation(C, CE, 0, State); 801 State = ProcessZeroAllocation(C, CE, 1, State); 802 } else if (FunI == II_free) { 803 State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory); 804 } else if (FunI == II_strdup || FunI == II_win_strdup || 805 FunI == II_wcsdup || FunI == II_win_wcsdup) { 806 State = MallocUpdateRefState(C, CE, State); 807 } else if (FunI == II_strndup) { 808 State = MallocUpdateRefState(C, CE, State); 809 } else if (FunI == II_alloca || FunI == II_win_alloca) { 810 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, 811 AF_Alloca); 812 State = ProcessZeroAllocation(C, CE, 0, State); 813 } else if (isStandardNewDelete(FD, C.getASTContext())) { 814 // Process direct calls to operator new/new[]/delete/delete[] functions 815 // as distinct from new/new[]/delete/delete[] expressions that are 816 // processed by the checkPostStmt callbacks for CXXNewExpr and 817 // CXXDeleteExpr. 818 OverloadedOperatorKind K = FD->getOverloadedOperator(); 819 if (K == OO_New) { 820 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, 821 AF_CXXNew); 822 State = ProcessZeroAllocation(C, CE, 0, State); 823 } 824 else if (K == OO_Array_New) { 825 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, 826 AF_CXXNewArray); 827 State = ProcessZeroAllocation(C, CE, 0, State); 828 } 829 else if (K == OO_Delete || K == OO_Array_Delete) 830 State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory); 831 else 832 llvm_unreachable("not a new/delete operator"); 833 } else if (FunI == II_if_nameindex) { 834 // Should we model this differently? We can allocate a fixed number of 835 // elements with zeros in the last one. 836 State = MallocMemAux(C, CE, UnknownVal(), UnknownVal(), State, 837 AF_IfNameIndex); 838 } else if (FunI == II_if_freenameindex) { 839 State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory); 840 } 841 } 842 843 if (IsOptimistic || ChecksEnabled[CK_MismatchedDeallocatorChecker]) { 844 // Check all the attributes, if there are any. 845 // There can be multiple of these attributes. 846 if (FD->hasAttrs()) 847 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { 848 switch (I->getOwnKind()) { 849 case OwnershipAttr::Returns: 850 State = MallocMemReturnsAttr(C, CE, I, State); 851 break; 852 case OwnershipAttr::Takes: 853 case OwnershipAttr::Holds: 854 State = FreeMemAttr(C, CE, I, State); 855 break; 856 } 857 } 858 } 859 C.addTransition(State); 860 } 861 862 // Performs a 0-sized allocations check. 863 ProgramStateRef MallocChecker::ProcessZeroAllocation(CheckerContext &C, 864 const Expr *E, 865 const unsigned AllocationSizeArg, 866 ProgramStateRef State) const { 867 if (!State) 868 return nullptr; 869 870 const Expr *Arg = nullptr; 871 872 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 873 Arg = CE->getArg(AllocationSizeArg); 874 } 875 else if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { 876 if (NE->isArray()) 877 Arg = NE->getArraySize(); 878 else 879 return State; 880 } 881 else 882 llvm_unreachable("not a CallExpr or CXXNewExpr"); 883 884 assert(Arg); 885 886 Optional<DefinedSVal> DefArgVal = 887 State->getSVal(Arg, C.getLocationContext()).getAs<DefinedSVal>(); 888 889 if (!DefArgVal) 890 return State; 891 892 // Check if the allocation size is 0. 893 ProgramStateRef TrueState, FalseState; 894 SValBuilder &SvalBuilder = C.getSValBuilder(); 895 DefinedSVal Zero = 896 SvalBuilder.makeZeroVal(Arg->getType()).castAs<DefinedSVal>(); 897 898 std::tie(TrueState, FalseState) = 899 State->assume(SvalBuilder.evalEQ(State, *DefArgVal, Zero)); 900 901 if (TrueState && !FalseState) { 902 SVal retVal = State->getSVal(E, C.getLocationContext()); 903 SymbolRef Sym = retVal.getAsLocSymbol(); 904 if (!Sym) 905 return State; 906 907 const RefState *RS = State->get<RegionState>(Sym); 908 if (RS) { 909 if (RS->isAllocated()) 910 return TrueState->set<RegionState>(Sym, 911 RefState::getAllocatedOfSizeZero(RS)); 912 else 913 return State; 914 } else { 915 // Case of zero-size realloc. Historically 'realloc(ptr, 0)' is treated as 916 // 'free(ptr)' and the returned value from 'realloc(ptr, 0)' is not 917 // tracked. Add zero-reallocated Sym to the state to catch references 918 // to zero-allocated memory. 919 return TrueState->add<ReallocSizeZeroSymbols>(Sym); 920 } 921 } 922 923 // Assume the value is non-zero going forward. 924 assert(FalseState); 925 return FalseState; 926 } 927 928 static QualType getDeepPointeeType(QualType T) { 929 QualType Result = T, PointeeType = T->getPointeeType(); 930 while (!PointeeType.isNull()) { 931 Result = PointeeType; 932 PointeeType = PointeeType->getPointeeType(); 933 } 934 return Result; 935 } 936 937 static bool treatUnusedNewEscaped(const CXXNewExpr *NE) { 938 939 const CXXConstructExpr *ConstructE = NE->getConstructExpr(); 940 if (!ConstructE) 941 return false; 942 943 if (!NE->getAllocatedType()->getAsCXXRecordDecl()) 944 return false; 945 946 const CXXConstructorDecl *CtorD = ConstructE->getConstructor(); 947 948 // Iterate over the constructor parameters. 949 for (const auto *CtorParam : CtorD->parameters()) { 950 951 QualType CtorParamPointeeT = CtorParam->getType()->getPointeeType(); 952 if (CtorParamPointeeT.isNull()) 953 continue; 954 955 CtorParamPointeeT = getDeepPointeeType(CtorParamPointeeT); 956 957 if (CtorParamPointeeT->getAsCXXRecordDecl()) 958 return true; 959 } 960 961 return false; 962 } 963 964 void MallocChecker::checkPostStmt(const CXXNewExpr *NE, 965 CheckerContext &C) const { 966 967 if (NE->getNumPlacementArgs()) 968 for (CXXNewExpr::const_arg_iterator I = NE->placement_arg_begin(), 969 E = NE->placement_arg_end(); I != E; ++I) 970 if (SymbolRef Sym = C.getSVal(*I).getAsSymbol()) 971 checkUseAfterFree(Sym, C, *I); 972 973 if (!isStandardNewDelete(NE->getOperatorNew(), C.getASTContext())) 974 return; 975 976 ParentMap &PM = C.getLocationContext()->getParentMap(); 977 if (!PM.isConsumedExpr(NE) && treatUnusedNewEscaped(NE)) 978 return; 979 980 ProgramStateRef State = C.getState(); 981 // The return value from operator new is bound to a specified initialization 982 // value (if any) and we don't want to loose this value. So we call 983 // MallocUpdateRefState() instead of MallocMemAux() which breakes the 984 // existing binding. 985 State = MallocUpdateRefState(C, NE, State, NE->isArray() ? AF_CXXNewArray 986 : AF_CXXNew); 987 State = addExtentSize(C, NE, State); 988 State = ProcessZeroAllocation(C, NE, 0, State); 989 C.addTransition(State); 990 } 991 992 // Sets the extent value of the MemRegion allocated by 993 // new expression NE to its size in Bytes. 994 // 995 ProgramStateRef MallocChecker::addExtentSize(CheckerContext &C, 996 const CXXNewExpr *NE, 997 ProgramStateRef State) { 998 if (!State) 999 return nullptr; 1000 SValBuilder &svalBuilder = C.getSValBuilder(); 1001 SVal ElementCount; 1002 const LocationContext *LCtx = C.getLocationContext(); 1003 const SubRegion *Region; 1004 if (NE->isArray()) { 1005 const Expr *SizeExpr = NE->getArraySize(); 1006 ElementCount = State->getSVal(SizeExpr, C.getLocationContext()); 1007 // Store the extent size for the (symbolic)region 1008 // containing the elements. 1009 Region = (State->getSVal(NE, LCtx)) 1010 .getAsRegion() 1011 ->getAs<SubRegion>() 1012 ->getSuperRegion() 1013 ->getAs<SubRegion>(); 1014 } else { 1015 ElementCount = svalBuilder.makeIntVal(1, true); 1016 Region = (State->getSVal(NE, LCtx)).getAsRegion()->getAs<SubRegion>(); 1017 } 1018 assert(Region); 1019 1020 // Set the region's extent equal to the Size in Bytes. 1021 QualType ElementType = NE->getAllocatedType(); 1022 ASTContext &AstContext = C.getASTContext(); 1023 CharUnits TypeSize = AstContext.getTypeSizeInChars(ElementType); 1024 1025 if (Optional<DefinedOrUnknownSVal> DefinedSize = 1026 ElementCount.getAs<DefinedOrUnknownSVal>()) { 1027 DefinedOrUnknownSVal Extent = Region->getExtent(svalBuilder); 1028 // size in Bytes = ElementCount*TypeSize 1029 SVal SizeInBytes = svalBuilder.evalBinOpNN( 1030 State, BO_Mul, ElementCount.castAs<NonLoc>(), 1031 svalBuilder.makeArrayIndex(TypeSize.getQuantity()), 1032 svalBuilder.getArrayIndexType()); 1033 DefinedOrUnknownSVal extentMatchesSize = svalBuilder.evalEQ( 1034 State, Extent, SizeInBytes.castAs<DefinedOrUnknownSVal>()); 1035 State = State->assume(extentMatchesSize, true); 1036 } 1037 return State; 1038 } 1039 1040 void MallocChecker::checkPreStmt(const CXXDeleteExpr *DE, 1041 CheckerContext &C) const { 1042 1043 if (!ChecksEnabled[CK_NewDeleteChecker]) 1044 if (SymbolRef Sym = C.getSVal(DE->getArgument()).getAsSymbol()) 1045 checkUseAfterFree(Sym, C, DE->getArgument()); 1046 1047 if (!isStandardNewDelete(DE->getOperatorDelete(), C.getASTContext())) 1048 return; 1049 1050 ProgramStateRef State = C.getState(); 1051 bool ReleasedAllocated; 1052 State = FreeMemAux(C, DE->getArgument(), DE, State, 1053 /*Hold*/false, ReleasedAllocated); 1054 1055 C.addTransition(State); 1056 } 1057 1058 static bool isKnownDeallocObjCMethodName(const ObjCMethodCall &Call) { 1059 // If the first selector piece is one of the names below, assume that the 1060 // object takes ownership of the memory, promising to eventually deallocate it 1061 // with free(). 1062 // Ex: [NSData dataWithBytesNoCopy:bytes length:10]; 1063 // (...unless a 'freeWhenDone' parameter is false, but that's checked later.) 1064 StringRef FirstSlot = Call.getSelector().getNameForSlot(0); 1065 return FirstSlot == "dataWithBytesNoCopy" || 1066 FirstSlot == "initWithBytesNoCopy" || 1067 FirstSlot == "initWithCharactersNoCopy"; 1068 } 1069 1070 static Optional<bool> getFreeWhenDoneArg(const ObjCMethodCall &Call) { 1071 Selector S = Call.getSelector(); 1072 1073 // FIXME: We should not rely on fully-constrained symbols being folded. 1074 for (unsigned i = 1; i < S.getNumArgs(); ++i) 1075 if (S.getNameForSlot(i).equals("freeWhenDone")) 1076 return !Call.getArgSVal(i).isZeroConstant(); 1077 1078 return None; 1079 } 1080 1081 void MallocChecker::checkPostObjCMessage(const ObjCMethodCall &Call, 1082 CheckerContext &C) const { 1083 if (C.wasInlined) 1084 return; 1085 1086 if (!isKnownDeallocObjCMethodName(Call)) 1087 return; 1088 1089 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call)) 1090 if (!*FreeWhenDone) 1091 return; 1092 1093 bool ReleasedAllocatedMemory; 1094 ProgramStateRef State = FreeMemAux(C, Call.getArgExpr(0), 1095 Call.getOriginExpr(), C.getState(), 1096 /*Hold=*/true, ReleasedAllocatedMemory, 1097 /*RetNullOnFailure=*/true); 1098 1099 C.addTransition(State); 1100 } 1101 1102 ProgramStateRef 1103 MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallExpr *CE, 1104 const OwnershipAttr *Att, 1105 ProgramStateRef State) const { 1106 if (!State) 1107 return nullptr; 1108 1109 if (Att->getModule() != II_malloc) 1110 return nullptr; 1111 1112 OwnershipAttr::args_iterator I = Att->args_begin(), E = Att->args_end(); 1113 if (I != E) { 1114 return MallocMemAux(C, CE, CE->getArg(*I), UndefinedVal(), State); 1115 } 1116 return MallocMemAux(C, CE, UnknownVal(), UndefinedVal(), State); 1117 } 1118 1119 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1120 const CallExpr *CE, 1121 const Expr *SizeEx, SVal Init, 1122 ProgramStateRef State, 1123 AllocationFamily Family) { 1124 if (!State) 1125 return nullptr; 1126 1127 return MallocMemAux(C, CE, State->getSVal(SizeEx, C.getLocationContext()), 1128 Init, State, Family); 1129 } 1130 1131 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1132 const CallExpr *CE, 1133 SVal Size, SVal Init, 1134 ProgramStateRef State, 1135 AllocationFamily Family) { 1136 if (!State) 1137 return nullptr; 1138 1139 // We expect the malloc functions to return a pointer. 1140 if (!Loc::isLocType(CE->getType())) 1141 return nullptr; 1142 1143 // Bind the return value to the symbolic value from the heap region. 1144 // TODO: We could rewrite post visit to eval call; 'malloc' does not have 1145 // side effects other than what we model here. 1146 unsigned Count = C.blockCount(); 1147 SValBuilder &svalBuilder = C.getSValBuilder(); 1148 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 1149 DefinedSVal RetVal = svalBuilder.getConjuredHeapSymbolVal(CE, LCtx, Count) 1150 .castAs<DefinedSVal>(); 1151 State = State->BindExpr(CE, C.getLocationContext(), RetVal); 1152 1153 // Fill the region with the initialization value. 1154 State = State->bindDefault(RetVal, Init); 1155 1156 // Set the region's extent equal to the Size parameter. 1157 const SymbolicRegion *R = 1158 dyn_cast_or_null<SymbolicRegion>(RetVal.getAsRegion()); 1159 if (!R) 1160 return nullptr; 1161 if (Optional<DefinedOrUnknownSVal> DefinedSize = 1162 Size.getAs<DefinedOrUnknownSVal>()) { 1163 SValBuilder &svalBuilder = C.getSValBuilder(); 1164 DefinedOrUnknownSVal Extent = R->getExtent(svalBuilder); 1165 DefinedOrUnknownSVal extentMatchesSize = 1166 svalBuilder.evalEQ(State, Extent, *DefinedSize); 1167 1168 State = State->assume(extentMatchesSize, true); 1169 assert(State); 1170 } 1171 1172 return MallocUpdateRefState(C, CE, State, Family); 1173 } 1174 1175 ProgramStateRef MallocChecker::MallocUpdateRefState(CheckerContext &C, 1176 const Expr *E, 1177 ProgramStateRef State, 1178 AllocationFamily Family) { 1179 if (!State) 1180 return nullptr; 1181 1182 // Get the return value. 1183 SVal retVal = State->getSVal(E, C.getLocationContext()); 1184 1185 // We expect the malloc functions to return a pointer. 1186 if (!retVal.getAs<Loc>()) 1187 return nullptr; 1188 1189 SymbolRef Sym = retVal.getAsLocSymbol(); 1190 assert(Sym); 1191 1192 // Set the symbol's state to Allocated. 1193 return State->set<RegionState>(Sym, RefState::getAllocated(Family, E)); 1194 } 1195 1196 ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C, 1197 const CallExpr *CE, 1198 const OwnershipAttr *Att, 1199 ProgramStateRef State) const { 1200 if (!State) 1201 return nullptr; 1202 1203 if (Att->getModule() != II_malloc) 1204 return nullptr; 1205 1206 bool ReleasedAllocated = false; 1207 1208 for (const auto &Arg : Att->args()) { 1209 ProgramStateRef StateI = FreeMemAux(C, CE, State, Arg, 1210 Att->getOwnKind() == OwnershipAttr::Holds, 1211 ReleasedAllocated); 1212 if (StateI) 1213 State = StateI; 1214 } 1215 return State; 1216 } 1217 1218 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, 1219 const CallExpr *CE, 1220 ProgramStateRef State, 1221 unsigned Num, 1222 bool Hold, 1223 bool &ReleasedAllocated, 1224 bool ReturnsNullOnFailure) const { 1225 if (!State) 1226 return nullptr; 1227 1228 if (CE->getNumArgs() < (Num + 1)) 1229 return nullptr; 1230 1231 return FreeMemAux(C, CE->getArg(Num), CE, State, Hold, 1232 ReleasedAllocated, ReturnsNullOnFailure); 1233 } 1234 1235 /// Checks if the previous call to free on the given symbol failed - if free 1236 /// failed, returns true. Also, returns the corresponding return value symbol. 1237 static bool didPreviousFreeFail(ProgramStateRef State, 1238 SymbolRef Sym, SymbolRef &RetStatusSymbol) { 1239 const SymbolRef *Ret = State->get<FreeReturnValue>(Sym); 1240 if (Ret) { 1241 assert(*Ret && "We should not store the null return symbol"); 1242 ConstraintManager &CMgr = State->getConstraintManager(); 1243 ConditionTruthVal FreeFailed = CMgr.isNull(State, *Ret); 1244 RetStatusSymbol = *Ret; 1245 return FreeFailed.isConstrainedTrue(); 1246 } 1247 return false; 1248 } 1249 1250 AllocationFamily MallocChecker::getAllocationFamily(CheckerContext &C, 1251 const Stmt *S) const { 1252 if (!S) 1253 return AF_None; 1254 1255 if (const CallExpr *CE = dyn_cast<CallExpr>(S)) { 1256 const FunctionDecl *FD = C.getCalleeDecl(CE); 1257 1258 if (!FD) 1259 FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); 1260 1261 ASTContext &Ctx = C.getASTContext(); 1262 1263 if (isCMemFunction(FD, Ctx, AF_Malloc, MemoryOperationKind::MOK_Any)) 1264 return AF_Malloc; 1265 1266 if (isStandardNewDelete(FD, Ctx)) { 1267 OverloadedOperatorKind Kind = FD->getOverloadedOperator(); 1268 if (Kind == OO_New || Kind == OO_Delete) 1269 return AF_CXXNew; 1270 else if (Kind == OO_Array_New || Kind == OO_Array_Delete) 1271 return AF_CXXNewArray; 1272 } 1273 1274 if (isCMemFunction(FD, Ctx, AF_IfNameIndex, MemoryOperationKind::MOK_Any)) 1275 return AF_IfNameIndex; 1276 1277 if (isCMemFunction(FD, Ctx, AF_Alloca, MemoryOperationKind::MOK_Any)) 1278 return AF_Alloca; 1279 1280 return AF_None; 1281 } 1282 1283 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(S)) 1284 return NE->isArray() ? AF_CXXNewArray : AF_CXXNew; 1285 1286 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(S)) 1287 return DE->isArrayForm() ? AF_CXXNewArray : AF_CXXNew; 1288 1289 if (isa<ObjCMessageExpr>(S)) 1290 return AF_Malloc; 1291 1292 return AF_None; 1293 } 1294 1295 bool MallocChecker::printAllocDeallocName(raw_ostream &os, CheckerContext &C, 1296 const Expr *E) const { 1297 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 1298 // FIXME: This doesn't handle indirect calls. 1299 const FunctionDecl *FD = CE->getDirectCallee(); 1300 if (!FD) 1301 return false; 1302 1303 os << *FD; 1304 if (!FD->isOverloadedOperator()) 1305 os << "()"; 1306 return true; 1307 } 1308 1309 if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E)) { 1310 if (Msg->isInstanceMessage()) 1311 os << "-"; 1312 else 1313 os << "+"; 1314 Msg->getSelector().print(os); 1315 return true; 1316 } 1317 1318 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { 1319 os << "'" 1320 << getOperatorSpelling(NE->getOperatorNew()->getOverloadedOperator()) 1321 << "'"; 1322 return true; 1323 } 1324 1325 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(E)) { 1326 os << "'" 1327 << getOperatorSpelling(DE->getOperatorDelete()->getOverloadedOperator()) 1328 << "'"; 1329 return true; 1330 } 1331 1332 return false; 1333 } 1334 1335 void MallocChecker::printExpectedAllocName(raw_ostream &os, CheckerContext &C, 1336 const Expr *E) const { 1337 AllocationFamily Family = getAllocationFamily(C, E); 1338 1339 switch(Family) { 1340 case AF_Malloc: os << "malloc()"; return; 1341 case AF_CXXNew: os << "'new'"; return; 1342 case AF_CXXNewArray: os << "'new[]'"; return; 1343 case AF_IfNameIndex: os << "'if_nameindex()'"; return; 1344 case AF_Alloca: 1345 case AF_None: llvm_unreachable("not a deallocation expression"); 1346 } 1347 } 1348 1349 void MallocChecker::printExpectedDeallocName(raw_ostream &os, 1350 AllocationFamily Family) const { 1351 switch(Family) { 1352 case AF_Malloc: os << "free()"; return; 1353 case AF_CXXNew: os << "'delete'"; return; 1354 case AF_CXXNewArray: os << "'delete[]'"; return; 1355 case AF_IfNameIndex: os << "'if_freenameindex()'"; return; 1356 case AF_Alloca: 1357 case AF_None: llvm_unreachable("suspicious argument"); 1358 } 1359 } 1360 1361 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, 1362 const Expr *ArgExpr, 1363 const Expr *ParentExpr, 1364 ProgramStateRef State, 1365 bool Hold, 1366 bool &ReleasedAllocated, 1367 bool ReturnsNullOnFailure) const { 1368 1369 if (!State) 1370 return nullptr; 1371 1372 SVal ArgVal = State->getSVal(ArgExpr, C.getLocationContext()); 1373 if (!ArgVal.getAs<DefinedOrUnknownSVal>()) 1374 return nullptr; 1375 DefinedOrUnknownSVal location = ArgVal.castAs<DefinedOrUnknownSVal>(); 1376 1377 // Check for null dereferences. 1378 if (!location.getAs<Loc>()) 1379 return nullptr; 1380 1381 // The explicit NULL case, no operation is performed. 1382 ProgramStateRef notNullState, nullState; 1383 std::tie(notNullState, nullState) = State->assume(location); 1384 if (nullState && !notNullState) 1385 return nullptr; 1386 1387 // Unknown values could easily be okay 1388 // Undefined values are handled elsewhere 1389 if (ArgVal.isUnknownOrUndef()) 1390 return nullptr; 1391 1392 const MemRegion *R = ArgVal.getAsRegion(); 1393 1394 // Nonlocs can't be freed, of course. 1395 // Non-region locations (labels and fixed addresses) also shouldn't be freed. 1396 if (!R) { 1397 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1398 return nullptr; 1399 } 1400 1401 R = R->StripCasts(); 1402 1403 // Blocks might show up as heap data, but should not be free()d 1404 if (isa<BlockDataRegion>(R)) { 1405 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1406 return nullptr; 1407 } 1408 1409 const MemSpaceRegion *MS = R->getMemorySpace(); 1410 1411 // Parameters, locals, statics, globals, and memory returned by 1412 // __builtin_alloca() shouldn't be freed. 1413 if (!(isa<UnknownSpaceRegion>(MS) || isa<HeapSpaceRegion>(MS))) { 1414 // FIXME: at the time this code was written, malloc() regions were 1415 // represented by conjured symbols, which are all in UnknownSpaceRegion. 1416 // This means that there isn't actually anything from HeapSpaceRegion 1417 // that should be freed, even though we allow it here. 1418 // Of course, free() can work on memory allocated outside the current 1419 // function, so UnknownSpaceRegion is always a possibility. 1420 // False negatives are better than false positives. 1421 1422 if (isa<AllocaRegion>(R)) 1423 ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1424 else 1425 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1426 1427 return nullptr; 1428 } 1429 1430 const SymbolicRegion *SrBase = dyn_cast<SymbolicRegion>(R->getBaseRegion()); 1431 // Various cases could lead to non-symbol values here. 1432 // For now, ignore them. 1433 if (!SrBase) 1434 return nullptr; 1435 1436 SymbolRef SymBase = SrBase->getSymbol(); 1437 const RefState *RsBase = State->get<RegionState>(SymBase); 1438 SymbolRef PreviousRetStatusSymbol = nullptr; 1439 1440 if (RsBase) { 1441 1442 // Memory returned by alloca() shouldn't be freed. 1443 if (RsBase->getAllocationFamily() == AF_Alloca) { 1444 ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1445 return nullptr; 1446 } 1447 1448 // Check for double free first. 1449 if ((RsBase->isReleased() || RsBase->isRelinquished()) && 1450 !didPreviousFreeFail(State, SymBase, PreviousRetStatusSymbol)) { 1451 ReportDoubleFree(C, ParentExpr->getSourceRange(), RsBase->isReleased(), 1452 SymBase, PreviousRetStatusSymbol); 1453 return nullptr; 1454 1455 // If the pointer is allocated or escaped, but we are now trying to free it, 1456 // check that the call to free is proper. 1457 } else if (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero() || 1458 RsBase->isEscaped()) { 1459 1460 // Check if an expected deallocation function matches the real one. 1461 bool DeallocMatchesAlloc = 1462 RsBase->getAllocationFamily() == getAllocationFamily(C, ParentExpr); 1463 if (!DeallocMatchesAlloc) { 1464 ReportMismatchedDealloc(C, ArgExpr->getSourceRange(), 1465 ParentExpr, RsBase, SymBase, Hold); 1466 return nullptr; 1467 } 1468 1469 // Check if the memory location being freed is the actual location 1470 // allocated, or an offset. 1471 RegionOffset Offset = R->getAsOffset(); 1472 if (Offset.isValid() && 1473 !Offset.hasSymbolicOffset() && 1474 Offset.getOffset() != 0) { 1475 const Expr *AllocExpr = cast<Expr>(RsBase->getStmt()); 1476 ReportOffsetFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1477 AllocExpr); 1478 return nullptr; 1479 } 1480 } 1481 } 1482 1483 ReleasedAllocated = (RsBase != nullptr) && (RsBase->isAllocated() || 1484 RsBase->isAllocatedOfSizeZero()); 1485 1486 // Clean out the info on previous call to free return info. 1487 State = State->remove<FreeReturnValue>(SymBase); 1488 1489 // Keep track of the return value. If it is NULL, we will know that free 1490 // failed. 1491 if (ReturnsNullOnFailure) { 1492 SVal RetVal = C.getSVal(ParentExpr); 1493 SymbolRef RetStatusSymbol = RetVal.getAsSymbol(); 1494 if (RetStatusSymbol) { 1495 C.getSymbolManager().addSymbolDependency(SymBase, RetStatusSymbol); 1496 State = State->set<FreeReturnValue>(SymBase, RetStatusSymbol); 1497 } 1498 } 1499 1500 AllocationFamily Family = RsBase ? RsBase->getAllocationFamily() 1501 : getAllocationFamily(C, ParentExpr); 1502 // Normal free. 1503 if (Hold) 1504 return State->set<RegionState>(SymBase, 1505 RefState::getRelinquished(Family, 1506 ParentExpr)); 1507 1508 return State->set<RegionState>(SymBase, 1509 RefState::getReleased(Family, ParentExpr)); 1510 } 1511 1512 Optional<MallocChecker::CheckKind> 1513 MallocChecker::getCheckIfTracked(AllocationFamily Family, 1514 bool IsALeakCheck) const { 1515 switch (Family) { 1516 case AF_Malloc: 1517 case AF_Alloca: 1518 case AF_IfNameIndex: { 1519 if (ChecksEnabled[CK_MallocChecker]) 1520 return CK_MallocChecker; 1521 1522 return Optional<MallocChecker::CheckKind>(); 1523 } 1524 case AF_CXXNew: 1525 case AF_CXXNewArray: { 1526 if (IsALeakCheck) { 1527 if (ChecksEnabled[CK_NewDeleteLeaksChecker]) 1528 return CK_NewDeleteLeaksChecker; 1529 } 1530 else { 1531 if (ChecksEnabled[CK_NewDeleteChecker]) 1532 return CK_NewDeleteChecker; 1533 } 1534 return Optional<MallocChecker::CheckKind>(); 1535 } 1536 case AF_None: { 1537 llvm_unreachable("no family"); 1538 } 1539 } 1540 llvm_unreachable("unhandled family"); 1541 } 1542 1543 Optional<MallocChecker::CheckKind> 1544 MallocChecker::getCheckIfTracked(CheckerContext &C, 1545 const Stmt *AllocDeallocStmt, 1546 bool IsALeakCheck) const { 1547 return getCheckIfTracked(getAllocationFamily(C, AllocDeallocStmt), 1548 IsALeakCheck); 1549 } 1550 1551 Optional<MallocChecker::CheckKind> 1552 MallocChecker::getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 1553 bool IsALeakCheck) const { 1554 if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) 1555 return CK_MallocChecker; 1556 1557 const RefState *RS = C.getState()->get<RegionState>(Sym); 1558 assert(RS); 1559 return getCheckIfTracked(RS->getAllocationFamily(), IsALeakCheck); 1560 } 1561 1562 bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) { 1563 if (Optional<nonloc::ConcreteInt> IntVal = V.getAs<nonloc::ConcreteInt>()) 1564 os << "an integer (" << IntVal->getValue() << ")"; 1565 else if (Optional<loc::ConcreteInt> ConstAddr = V.getAs<loc::ConcreteInt>()) 1566 os << "a constant address (" << ConstAddr->getValue() << ")"; 1567 else if (Optional<loc::GotoLabel> Label = V.getAs<loc::GotoLabel>()) 1568 os << "the address of the label '" << Label->getLabel()->getName() << "'"; 1569 else 1570 return false; 1571 1572 return true; 1573 } 1574 1575 bool MallocChecker::SummarizeRegion(raw_ostream &os, 1576 const MemRegion *MR) { 1577 switch (MR->getKind()) { 1578 case MemRegion::FunctionCodeRegionKind: { 1579 const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl(); 1580 if (FD) 1581 os << "the address of the function '" << *FD << '\''; 1582 else 1583 os << "the address of a function"; 1584 return true; 1585 } 1586 case MemRegion::BlockCodeRegionKind: 1587 os << "block text"; 1588 return true; 1589 case MemRegion::BlockDataRegionKind: 1590 // FIXME: where the block came from? 1591 os << "a block"; 1592 return true; 1593 default: { 1594 const MemSpaceRegion *MS = MR->getMemorySpace(); 1595 1596 if (isa<StackLocalsSpaceRegion>(MS)) { 1597 const VarRegion *VR = dyn_cast<VarRegion>(MR); 1598 const VarDecl *VD; 1599 if (VR) 1600 VD = VR->getDecl(); 1601 else 1602 VD = nullptr; 1603 1604 if (VD) 1605 os << "the address of the local variable '" << VD->getName() << "'"; 1606 else 1607 os << "the address of a local stack variable"; 1608 return true; 1609 } 1610 1611 if (isa<StackArgumentsSpaceRegion>(MS)) { 1612 const VarRegion *VR = dyn_cast<VarRegion>(MR); 1613 const VarDecl *VD; 1614 if (VR) 1615 VD = VR->getDecl(); 1616 else 1617 VD = nullptr; 1618 1619 if (VD) 1620 os << "the address of the parameter '" << VD->getName() << "'"; 1621 else 1622 os << "the address of a parameter"; 1623 return true; 1624 } 1625 1626 if (isa<GlobalsSpaceRegion>(MS)) { 1627 const VarRegion *VR = dyn_cast<VarRegion>(MR); 1628 const VarDecl *VD; 1629 if (VR) 1630 VD = VR->getDecl(); 1631 else 1632 VD = nullptr; 1633 1634 if (VD) { 1635 if (VD->isStaticLocal()) 1636 os << "the address of the static variable '" << VD->getName() << "'"; 1637 else 1638 os << "the address of the global variable '" << VD->getName() << "'"; 1639 } else 1640 os << "the address of a global variable"; 1641 return true; 1642 } 1643 1644 return false; 1645 } 1646 } 1647 } 1648 1649 void MallocChecker::ReportBadFree(CheckerContext &C, SVal ArgVal, 1650 SourceRange Range, 1651 const Expr *DeallocExpr) const { 1652 1653 if (!ChecksEnabled[CK_MallocChecker] && 1654 !ChecksEnabled[CK_NewDeleteChecker]) 1655 return; 1656 1657 Optional<MallocChecker::CheckKind> CheckKind = 1658 getCheckIfTracked(C, DeallocExpr); 1659 if (!CheckKind.hasValue()) 1660 return; 1661 1662 if (ExplodedNode *N = C.generateErrorNode()) { 1663 if (!BT_BadFree[*CheckKind]) 1664 BT_BadFree[*CheckKind].reset( 1665 new BugType(CheckNames[*CheckKind], "Bad free", "Memory Error")); 1666 1667 SmallString<100> buf; 1668 llvm::raw_svector_ostream os(buf); 1669 1670 const MemRegion *MR = ArgVal.getAsRegion(); 1671 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 1672 MR = ER->getSuperRegion(); 1673 1674 os << "Argument to "; 1675 if (!printAllocDeallocName(os, C, DeallocExpr)) 1676 os << "deallocator"; 1677 1678 os << " is "; 1679 bool Summarized = MR ? SummarizeRegion(os, MR) 1680 : SummarizeValue(os, ArgVal); 1681 if (Summarized) 1682 os << ", which is not memory allocated by "; 1683 else 1684 os << "not memory allocated by "; 1685 1686 printExpectedAllocName(os, C, DeallocExpr); 1687 1688 auto R = llvm::make_unique<BugReport>(*BT_BadFree[*CheckKind], os.str(), N); 1689 R->markInteresting(MR); 1690 R->addRange(Range); 1691 C.emitReport(std::move(R)); 1692 } 1693 } 1694 1695 void MallocChecker::ReportFreeAlloca(CheckerContext &C, SVal ArgVal, 1696 SourceRange Range) const { 1697 1698 Optional<MallocChecker::CheckKind> CheckKind; 1699 1700 if (ChecksEnabled[CK_MallocChecker]) 1701 CheckKind = CK_MallocChecker; 1702 else if (ChecksEnabled[CK_MismatchedDeallocatorChecker]) 1703 CheckKind = CK_MismatchedDeallocatorChecker; 1704 else 1705 return; 1706 1707 if (ExplodedNode *N = C.generateErrorNode()) { 1708 if (!BT_FreeAlloca[*CheckKind]) 1709 BT_FreeAlloca[*CheckKind].reset( 1710 new BugType(CheckNames[*CheckKind], "Free alloca()", "Memory Error")); 1711 1712 auto R = llvm::make_unique<BugReport>( 1713 *BT_FreeAlloca[*CheckKind], 1714 "Memory allocated by alloca() should not be deallocated", N); 1715 R->markInteresting(ArgVal.getAsRegion()); 1716 R->addRange(Range); 1717 C.emitReport(std::move(R)); 1718 } 1719 } 1720 1721 void MallocChecker::ReportMismatchedDealloc(CheckerContext &C, 1722 SourceRange Range, 1723 const Expr *DeallocExpr, 1724 const RefState *RS, 1725 SymbolRef Sym, 1726 bool OwnershipTransferred) const { 1727 1728 if (!ChecksEnabled[CK_MismatchedDeallocatorChecker]) 1729 return; 1730 1731 if (ExplodedNode *N = C.generateErrorNode()) { 1732 if (!BT_MismatchedDealloc) 1733 BT_MismatchedDealloc.reset( 1734 new BugType(CheckNames[CK_MismatchedDeallocatorChecker], 1735 "Bad deallocator", "Memory Error")); 1736 1737 SmallString<100> buf; 1738 llvm::raw_svector_ostream os(buf); 1739 1740 const Expr *AllocExpr = cast<Expr>(RS->getStmt()); 1741 SmallString<20> AllocBuf; 1742 llvm::raw_svector_ostream AllocOs(AllocBuf); 1743 SmallString<20> DeallocBuf; 1744 llvm::raw_svector_ostream DeallocOs(DeallocBuf); 1745 1746 if (OwnershipTransferred) { 1747 if (printAllocDeallocName(DeallocOs, C, DeallocExpr)) 1748 os << DeallocOs.str() << " cannot"; 1749 else 1750 os << "Cannot"; 1751 1752 os << " take ownership of memory"; 1753 1754 if (printAllocDeallocName(AllocOs, C, AllocExpr)) 1755 os << " allocated by " << AllocOs.str(); 1756 } else { 1757 os << "Memory"; 1758 if (printAllocDeallocName(AllocOs, C, AllocExpr)) 1759 os << " allocated by " << AllocOs.str(); 1760 1761 os << " should be deallocated by "; 1762 printExpectedDeallocName(os, RS->getAllocationFamily()); 1763 1764 if (printAllocDeallocName(DeallocOs, C, DeallocExpr)) 1765 os << ", not " << DeallocOs.str(); 1766 } 1767 1768 auto R = llvm::make_unique<BugReport>(*BT_MismatchedDealloc, os.str(), N); 1769 R->markInteresting(Sym); 1770 R->addRange(Range); 1771 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 1772 C.emitReport(std::move(R)); 1773 } 1774 } 1775 1776 void MallocChecker::ReportOffsetFree(CheckerContext &C, SVal ArgVal, 1777 SourceRange Range, const Expr *DeallocExpr, 1778 const Expr *AllocExpr) const { 1779 1780 1781 if (!ChecksEnabled[CK_MallocChecker] && 1782 !ChecksEnabled[CK_NewDeleteChecker]) 1783 return; 1784 1785 Optional<MallocChecker::CheckKind> CheckKind = 1786 getCheckIfTracked(C, AllocExpr); 1787 if (!CheckKind.hasValue()) 1788 return; 1789 1790 ExplodedNode *N = C.generateErrorNode(); 1791 if (!N) 1792 return; 1793 1794 if (!BT_OffsetFree[*CheckKind]) 1795 BT_OffsetFree[*CheckKind].reset( 1796 new BugType(CheckNames[*CheckKind], "Offset free", "Memory Error")); 1797 1798 SmallString<100> buf; 1799 llvm::raw_svector_ostream os(buf); 1800 SmallString<20> AllocNameBuf; 1801 llvm::raw_svector_ostream AllocNameOs(AllocNameBuf); 1802 1803 const MemRegion *MR = ArgVal.getAsRegion(); 1804 assert(MR && "Only MemRegion based symbols can have offset free errors"); 1805 1806 RegionOffset Offset = MR->getAsOffset(); 1807 assert((Offset.isValid() && 1808 !Offset.hasSymbolicOffset() && 1809 Offset.getOffset() != 0) && 1810 "Only symbols with a valid offset can have offset free errors"); 1811 1812 int offsetBytes = Offset.getOffset() / C.getASTContext().getCharWidth(); 1813 1814 os << "Argument to "; 1815 if (!printAllocDeallocName(os, C, DeallocExpr)) 1816 os << "deallocator"; 1817 os << " is offset by " 1818 << offsetBytes 1819 << " " 1820 << ((abs(offsetBytes) > 1) ? "bytes" : "byte") 1821 << " from the start of "; 1822 if (AllocExpr && printAllocDeallocName(AllocNameOs, C, AllocExpr)) 1823 os << "memory allocated by " << AllocNameOs.str(); 1824 else 1825 os << "allocated memory"; 1826 1827 auto R = llvm::make_unique<BugReport>(*BT_OffsetFree[*CheckKind], os.str(), N); 1828 R->markInteresting(MR->getBaseRegion()); 1829 R->addRange(Range); 1830 C.emitReport(std::move(R)); 1831 } 1832 1833 void MallocChecker::ReportUseAfterFree(CheckerContext &C, SourceRange Range, 1834 SymbolRef Sym) const { 1835 1836 if (!ChecksEnabled[CK_MallocChecker] && 1837 !ChecksEnabled[CK_NewDeleteChecker]) 1838 return; 1839 1840 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 1841 if (!CheckKind.hasValue()) 1842 return; 1843 1844 if (ExplodedNode *N = C.generateErrorNode()) { 1845 if (!BT_UseFree[*CheckKind]) 1846 BT_UseFree[*CheckKind].reset(new BugType( 1847 CheckNames[*CheckKind], "Use-after-free", "Memory Error")); 1848 1849 auto R = llvm::make_unique<BugReport>(*BT_UseFree[*CheckKind], 1850 "Use of memory after it is freed", N); 1851 1852 R->markInteresting(Sym); 1853 R->addRange(Range); 1854 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 1855 C.emitReport(std::move(R)); 1856 } 1857 } 1858 1859 void MallocChecker::ReportDoubleFree(CheckerContext &C, SourceRange Range, 1860 bool Released, SymbolRef Sym, 1861 SymbolRef PrevSym) const { 1862 1863 if (!ChecksEnabled[CK_MallocChecker] && 1864 !ChecksEnabled[CK_NewDeleteChecker]) 1865 return; 1866 1867 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 1868 if (!CheckKind.hasValue()) 1869 return; 1870 1871 if (ExplodedNode *N = C.generateErrorNode()) { 1872 if (!BT_DoubleFree[*CheckKind]) 1873 BT_DoubleFree[*CheckKind].reset( 1874 new BugType(CheckNames[*CheckKind], "Double free", "Memory Error")); 1875 1876 auto R = llvm::make_unique<BugReport>( 1877 *BT_DoubleFree[*CheckKind], 1878 (Released ? "Attempt to free released memory" 1879 : "Attempt to free non-owned memory"), 1880 N); 1881 R->addRange(Range); 1882 R->markInteresting(Sym); 1883 if (PrevSym) 1884 R->markInteresting(PrevSym); 1885 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 1886 C.emitReport(std::move(R)); 1887 } 1888 } 1889 1890 void MallocChecker::ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const { 1891 1892 if (!ChecksEnabled[CK_NewDeleteChecker]) 1893 return; 1894 1895 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 1896 if (!CheckKind.hasValue()) 1897 return; 1898 1899 if (ExplodedNode *N = C.generateErrorNode()) { 1900 if (!BT_DoubleDelete) 1901 BT_DoubleDelete.reset(new BugType(CheckNames[CK_NewDeleteChecker], 1902 "Double delete", "Memory Error")); 1903 1904 auto R = llvm::make_unique<BugReport>( 1905 *BT_DoubleDelete, "Attempt to delete released memory", N); 1906 1907 R->markInteresting(Sym); 1908 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 1909 C.emitReport(std::move(R)); 1910 } 1911 } 1912 1913 void MallocChecker::ReportUseZeroAllocated(CheckerContext &C, 1914 SourceRange Range, 1915 SymbolRef Sym) const { 1916 1917 if (!ChecksEnabled[CK_MallocChecker] && 1918 !ChecksEnabled[CK_NewDeleteChecker]) 1919 return; 1920 1921 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 1922 1923 if (!CheckKind.hasValue()) 1924 return; 1925 1926 if (ExplodedNode *N = C.generateErrorNode()) { 1927 if (!BT_UseZerroAllocated[*CheckKind]) 1928 BT_UseZerroAllocated[*CheckKind].reset(new BugType( 1929 CheckNames[*CheckKind], "Use of zero allocated", "Memory Error")); 1930 1931 auto R = llvm::make_unique<BugReport>(*BT_UseZerroAllocated[*CheckKind], 1932 "Use of zero-allocated memory", N); 1933 1934 R->addRange(Range); 1935 if (Sym) { 1936 R->markInteresting(Sym); 1937 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 1938 } 1939 C.emitReport(std::move(R)); 1940 } 1941 } 1942 1943 ProgramStateRef MallocChecker::ReallocMem(CheckerContext &C, 1944 const CallExpr *CE, 1945 bool FreesOnFail, 1946 ProgramStateRef State) const { 1947 if (!State) 1948 return nullptr; 1949 1950 if (CE->getNumArgs() < 2) 1951 return nullptr; 1952 1953 const Expr *arg0Expr = CE->getArg(0); 1954 const LocationContext *LCtx = C.getLocationContext(); 1955 SVal Arg0Val = State->getSVal(arg0Expr, LCtx); 1956 if (!Arg0Val.getAs<DefinedOrUnknownSVal>()) 1957 return nullptr; 1958 DefinedOrUnknownSVal arg0Val = Arg0Val.castAs<DefinedOrUnknownSVal>(); 1959 1960 SValBuilder &svalBuilder = C.getSValBuilder(); 1961 1962 DefinedOrUnknownSVal PtrEQ = 1963 svalBuilder.evalEQ(State, arg0Val, svalBuilder.makeNull()); 1964 1965 // Get the size argument. If there is no size arg then give up. 1966 const Expr *Arg1 = CE->getArg(1); 1967 if (!Arg1) 1968 return nullptr; 1969 1970 // Get the value of the size argument. 1971 SVal Arg1ValG = State->getSVal(Arg1, LCtx); 1972 if (!Arg1ValG.getAs<DefinedOrUnknownSVal>()) 1973 return nullptr; 1974 DefinedOrUnknownSVal Arg1Val = Arg1ValG.castAs<DefinedOrUnknownSVal>(); 1975 1976 // Compare the size argument to 0. 1977 DefinedOrUnknownSVal SizeZero = 1978 svalBuilder.evalEQ(State, Arg1Val, 1979 svalBuilder.makeIntValWithPtrWidth(0, false)); 1980 1981 ProgramStateRef StatePtrIsNull, StatePtrNotNull; 1982 std::tie(StatePtrIsNull, StatePtrNotNull) = State->assume(PtrEQ); 1983 ProgramStateRef StateSizeIsZero, StateSizeNotZero; 1984 std::tie(StateSizeIsZero, StateSizeNotZero) = State->assume(SizeZero); 1985 // We only assume exceptional states if they are definitely true; if the 1986 // state is under-constrained, assume regular realloc behavior. 1987 bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull; 1988 bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero; 1989 1990 // If the ptr is NULL and the size is not 0, the call is equivalent to 1991 // malloc(size). 1992 if ( PrtIsNull && !SizeIsZero) { 1993 ProgramStateRef stateMalloc = MallocMemAux(C, CE, CE->getArg(1), 1994 UndefinedVal(), StatePtrIsNull); 1995 return stateMalloc; 1996 } 1997 1998 if (PrtIsNull && SizeIsZero) 1999 return State; 2000 2001 // Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size). 2002 assert(!PrtIsNull); 2003 SymbolRef FromPtr = arg0Val.getAsSymbol(); 2004 SVal RetVal = State->getSVal(CE, LCtx); 2005 SymbolRef ToPtr = RetVal.getAsSymbol(); 2006 if (!FromPtr || !ToPtr) 2007 return nullptr; 2008 2009 bool ReleasedAllocated = false; 2010 2011 // If the size is 0, free the memory. 2012 if (SizeIsZero) 2013 if (ProgramStateRef stateFree = FreeMemAux(C, CE, StateSizeIsZero, 0, 2014 false, ReleasedAllocated)){ 2015 // The semantics of the return value are: 2016 // If size was equal to 0, either NULL or a pointer suitable to be passed 2017 // to free() is returned. We just free the input pointer and do not add 2018 // any constrains on the output pointer. 2019 return stateFree; 2020 } 2021 2022 // Default behavior. 2023 if (ProgramStateRef stateFree = 2024 FreeMemAux(C, CE, State, 0, false, ReleasedAllocated)) { 2025 2026 ProgramStateRef stateRealloc = MallocMemAux(C, CE, CE->getArg(1), 2027 UnknownVal(), stateFree); 2028 if (!stateRealloc) 2029 return nullptr; 2030 2031 ReallocPairKind Kind = RPToBeFreedAfterFailure; 2032 if (FreesOnFail) 2033 Kind = RPIsFreeOnFailure; 2034 else if (!ReleasedAllocated) 2035 Kind = RPDoNotTrackAfterFailure; 2036 2037 // Record the info about the reallocated symbol so that we could properly 2038 // process failed reallocation. 2039 stateRealloc = stateRealloc->set<ReallocPairs>(ToPtr, 2040 ReallocPair(FromPtr, Kind)); 2041 // The reallocated symbol should stay alive for as long as the new symbol. 2042 C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr); 2043 return stateRealloc; 2044 } 2045 return nullptr; 2046 } 2047 2048 ProgramStateRef MallocChecker::CallocMem(CheckerContext &C, const CallExpr *CE, 2049 ProgramStateRef State) { 2050 if (!State) 2051 return nullptr; 2052 2053 if (CE->getNumArgs() < 2) 2054 return nullptr; 2055 2056 SValBuilder &svalBuilder = C.getSValBuilder(); 2057 const LocationContext *LCtx = C.getLocationContext(); 2058 SVal count = State->getSVal(CE->getArg(0), LCtx); 2059 SVal elementSize = State->getSVal(CE->getArg(1), LCtx); 2060 SVal TotalSize = svalBuilder.evalBinOp(State, BO_Mul, count, elementSize, 2061 svalBuilder.getContext().getSizeType()); 2062 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 2063 2064 return MallocMemAux(C, CE, TotalSize, zeroVal, State); 2065 } 2066 2067 LeakInfo 2068 MallocChecker::getAllocationSite(const ExplodedNode *N, SymbolRef Sym, 2069 CheckerContext &C) const { 2070 const LocationContext *LeakContext = N->getLocationContext(); 2071 // Walk the ExplodedGraph backwards and find the first node that referred to 2072 // the tracked symbol. 2073 const ExplodedNode *AllocNode = N; 2074 const MemRegion *ReferenceRegion = nullptr; 2075 2076 while (N) { 2077 ProgramStateRef State = N->getState(); 2078 if (!State->get<RegionState>(Sym)) 2079 break; 2080 2081 // Find the most recent expression bound to the symbol in the current 2082 // context. 2083 if (!ReferenceRegion) { 2084 if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) { 2085 SVal Val = State->getSVal(MR); 2086 if (Val.getAsLocSymbol() == Sym) { 2087 const VarRegion* VR = MR->getBaseRegion()->getAs<VarRegion>(); 2088 // Do not show local variables belonging to a function other than 2089 // where the error is reported. 2090 if (!VR || 2091 (VR->getStackFrame() == LeakContext->getCurrentStackFrame())) 2092 ReferenceRegion = MR; 2093 } 2094 } 2095 } 2096 2097 // Allocation node, is the last node in the current or parent context in 2098 // which the symbol was tracked. 2099 const LocationContext *NContext = N->getLocationContext(); 2100 if (NContext == LeakContext || 2101 NContext->isParentOf(LeakContext)) 2102 AllocNode = N; 2103 N = N->pred_empty() ? nullptr : *(N->pred_begin()); 2104 } 2105 2106 return LeakInfo(AllocNode, ReferenceRegion); 2107 } 2108 2109 void MallocChecker::reportLeak(SymbolRef Sym, ExplodedNode *N, 2110 CheckerContext &C) const { 2111 2112 if (!ChecksEnabled[CK_MallocChecker] && 2113 !ChecksEnabled[CK_NewDeleteLeaksChecker]) 2114 return; 2115 2116 const RefState *RS = C.getState()->get<RegionState>(Sym); 2117 assert(RS && "cannot leak an untracked symbol"); 2118 AllocationFamily Family = RS->getAllocationFamily(); 2119 2120 if (Family == AF_Alloca) 2121 return; 2122 2123 Optional<MallocChecker::CheckKind> 2124 CheckKind = getCheckIfTracked(Family, true); 2125 2126 if (!CheckKind.hasValue()) 2127 return; 2128 2129 assert(N); 2130 if (!BT_Leak[*CheckKind]) { 2131 BT_Leak[*CheckKind].reset( 2132 new BugType(CheckNames[*CheckKind], "Memory leak", "Memory Error")); 2133 // Leaks should not be reported if they are post-dominated by a sink: 2134 // (1) Sinks are higher importance bugs. 2135 // (2) NoReturnFunctionChecker uses sink nodes to represent paths ending 2136 // with __noreturn functions such as assert() or exit(). We choose not 2137 // to report leaks on such paths. 2138 BT_Leak[*CheckKind]->setSuppressOnSink(true); 2139 } 2140 2141 // Most bug reports are cached at the location where they occurred. 2142 // With leaks, we want to unique them by the location where they were 2143 // allocated, and only report a single path. 2144 PathDiagnosticLocation LocUsedForUniqueing; 2145 const ExplodedNode *AllocNode = nullptr; 2146 const MemRegion *Region = nullptr; 2147 std::tie(AllocNode, Region) = getAllocationSite(N, Sym, C); 2148 2149 const Stmt *AllocationStmt = PathDiagnosticLocation::getStmt(AllocNode); 2150 if (AllocationStmt) 2151 LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocationStmt, 2152 C.getSourceManager(), 2153 AllocNode->getLocationContext()); 2154 2155 SmallString<200> buf; 2156 llvm::raw_svector_ostream os(buf); 2157 if (Region && Region->canPrintPretty()) { 2158 os << "Potential leak of memory pointed to by "; 2159 Region->printPretty(os); 2160 } else { 2161 os << "Potential memory leak"; 2162 } 2163 2164 auto R = llvm::make_unique<BugReport>( 2165 *BT_Leak[*CheckKind], os.str(), N, LocUsedForUniqueing, 2166 AllocNode->getLocationContext()->getDecl()); 2167 R->markInteresting(Sym); 2168 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym, true)); 2169 C.emitReport(std::move(R)); 2170 } 2171 2172 void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper, 2173 CheckerContext &C) const 2174 { 2175 if (!SymReaper.hasDeadSymbols()) 2176 return; 2177 2178 ProgramStateRef state = C.getState(); 2179 RegionStateTy RS = state->get<RegionState>(); 2180 RegionStateTy::Factory &F = state->get_context<RegionState>(); 2181 2182 SmallVector<SymbolRef, 2> Errors; 2183 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2184 if (SymReaper.isDead(I->first)) { 2185 if (I->second.isAllocated() || I->second.isAllocatedOfSizeZero()) 2186 Errors.push_back(I->first); 2187 // Remove the dead symbol from the map. 2188 RS = F.remove(RS, I->first); 2189 2190 } 2191 } 2192 2193 // Cleanup the Realloc Pairs Map. 2194 ReallocPairsTy RP = state->get<ReallocPairs>(); 2195 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 2196 if (SymReaper.isDead(I->first) || 2197 SymReaper.isDead(I->second.ReallocatedSym)) { 2198 state = state->remove<ReallocPairs>(I->first); 2199 } 2200 } 2201 2202 // Cleanup the FreeReturnValue Map. 2203 FreeReturnValueTy FR = state->get<FreeReturnValue>(); 2204 for (FreeReturnValueTy::iterator I = FR.begin(), E = FR.end(); I != E; ++I) { 2205 if (SymReaper.isDead(I->first) || 2206 SymReaper.isDead(I->second)) { 2207 state = state->remove<FreeReturnValue>(I->first); 2208 } 2209 } 2210 2211 // Generate leak node. 2212 ExplodedNode *N = C.getPredecessor(); 2213 if (!Errors.empty()) { 2214 static CheckerProgramPointTag Tag("MallocChecker", "DeadSymbolsLeak"); 2215 N = C.generateNonFatalErrorNode(C.getState(), &Tag); 2216 if (N) { 2217 for (SmallVectorImpl<SymbolRef>::iterator 2218 I = Errors.begin(), E = Errors.end(); I != E; ++I) { 2219 reportLeak(*I, N, C); 2220 } 2221 } 2222 } 2223 2224 C.addTransition(state->set<RegionState>(RS), N); 2225 } 2226 2227 void MallocChecker::checkPreCall(const CallEvent &Call, 2228 CheckerContext &C) const { 2229 2230 if (const CXXDestructorCall *DC = dyn_cast<CXXDestructorCall>(&Call)) { 2231 SymbolRef Sym = DC->getCXXThisVal().getAsSymbol(); 2232 if (!Sym || checkDoubleDelete(Sym, C)) 2233 return; 2234 } 2235 2236 // We will check for double free in the post visit. 2237 if (const AnyFunctionCall *FC = dyn_cast<AnyFunctionCall>(&Call)) { 2238 const FunctionDecl *FD = FC->getDecl(); 2239 if (!FD) 2240 return; 2241 2242 ASTContext &Ctx = C.getASTContext(); 2243 if (ChecksEnabled[CK_MallocChecker] && 2244 (isCMemFunction(FD, Ctx, AF_Malloc, MemoryOperationKind::MOK_Free) || 2245 isCMemFunction(FD, Ctx, AF_IfNameIndex, 2246 MemoryOperationKind::MOK_Free))) 2247 return; 2248 2249 if (ChecksEnabled[CK_NewDeleteChecker] && 2250 isStandardNewDelete(FD, Ctx)) 2251 return; 2252 } 2253 2254 // Check if the callee of a method is deleted. 2255 if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(&Call)) { 2256 SymbolRef Sym = CC->getCXXThisVal().getAsSymbol(); 2257 if (!Sym || checkUseAfterFree(Sym, C, CC->getCXXThisExpr())) 2258 return; 2259 } 2260 2261 // Check arguments for being used after free. 2262 for (unsigned I = 0, E = Call.getNumArgs(); I != E; ++I) { 2263 SVal ArgSVal = Call.getArgSVal(I); 2264 if (ArgSVal.getAs<Loc>()) { 2265 SymbolRef Sym = ArgSVal.getAsSymbol(); 2266 if (!Sym) 2267 continue; 2268 if (checkUseAfterFree(Sym, C, Call.getArgExpr(I))) 2269 return; 2270 } 2271 } 2272 } 2273 2274 void MallocChecker::checkPreStmt(const ReturnStmt *S, CheckerContext &C) const { 2275 const Expr *E = S->getRetValue(); 2276 if (!E) 2277 return; 2278 2279 // Check if we are returning a symbol. 2280 ProgramStateRef State = C.getState(); 2281 SVal RetVal = State->getSVal(E, C.getLocationContext()); 2282 SymbolRef Sym = RetVal.getAsSymbol(); 2283 if (!Sym) 2284 // If we are returning a field of the allocated struct or an array element, 2285 // the callee could still free the memory. 2286 // TODO: This logic should be a part of generic symbol escape callback. 2287 if (const MemRegion *MR = RetVal.getAsRegion()) 2288 if (isa<FieldRegion>(MR) || isa<ElementRegion>(MR)) 2289 if (const SymbolicRegion *BMR = 2290 dyn_cast<SymbolicRegion>(MR->getBaseRegion())) 2291 Sym = BMR->getSymbol(); 2292 2293 // Check if we are returning freed memory. 2294 if (Sym) 2295 checkUseAfterFree(Sym, C, E); 2296 } 2297 2298 // TODO: Blocks should be either inlined or should call invalidate regions 2299 // upon invocation. After that's in place, special casing here will not be 2300 // needed. 2301 void MallocChecker::checkPostStmt(const BlockExpr *BE, 2302 CheckerContext &C) const { 2303 2304 // Scan the BlockDecRefExprs for any object the retain count checker 2305 // may be tracking. 2306 if (!BE->getBlockDecl()->hasCaptures()) 2307 return; 2308 2309 ProgramStateRef state = C.getState(); 2310 const BlockDataRegion *R = 2311 cast<BlockDataRegion>(state->getSVal(BE, 2312 C.getLocationContext()).getAsRegion()); 2313 2314 BlockDataRegion::referenced_vars_iterator I = R->referenced_vars_begin(), 2315 E = R->referenced_vars_end(); 2316 2317 if (I == E) 2318 return; 2319 2320 SmallVector<const MemRegion*, 10> Regions; 2321 const LocationContext *LC = C.getLocationContext(); 2322 MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager(); 2323 2324 for ( ; I != E; ++I) { 2325 const VarRegion *VR = I.getCapturedRegion(); 2326 if (VR->getSuperRegion() == R) { 2327 VR = MemMgr.getVarRegion(VR->getDecl(), LC); 2328 } 2329 Regions.push_back(VR); 2330 } 2331 2332 state = 2333 state->scanReachableSymbols<StopTrackingCallback>(Regions.data(), 2334 Regions.data() + Regions.size()).getState(); 2335 C.addTransition(state); 2336 } 2337 2338 bool MallocChecker::isReleased(SymbolRef Sym, CheckerContext &C) const { 2339 assert(Sym); 2340 const RefState *RS = C.getState()->get<RegionState>(Sym); 2341 return (RS && RS->isReleased()); 2342 } 2343 2344 bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C, 2345 const Stmt *S) const { 2346 2347 if (isReleased(Sym, C)) { 2348 ReportUseAfterFree(C, S->getSourceRange(), Sym); 2349 return true; 2350 } 2351 2352 return false; 2353 } 2354 2355 void MallocChecker::checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 2356 const Stmt *S) const { 2357 assert(Sym); 2358 2359 if (const RefState *RS = C.getState()->get<RegionState>(Sym)) { 2360 if (RS->isAllocatedOfSizeZero()) 2361 ReportUseZeroAllocated(C, RS->getStmt()->getSourceRange(), Sym); 2362 } 2363 else if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) { 2364 ReportUseZeroAllocated(C, S->getSourceRange(), Sym); 2365 } 2366 } 2367 2368 bool MallocChecker::checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const { 2369 2370 if (isReleased(Sym, C)) { 2371 ReportDoubleDelete(C, Sym); 2372 return true; 2373 } 2374 return false; 2375 } 2376 2377 // Check if the location is a freed symbolic region. 2378 void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S, 2379 CheckerContext &C) const { 2380 SymbolRef Sym = l.getLocSymbolInBase(); 2381 if (Sym) { 2382 checkUseAfterFree(Sym, C, S); 2383 checkUseZeroAllocated(Sym, C, S); 2384 } 2385 } 2386 2387 // If a symbolic region is assumed to NULL (or another constant), stop tracking 2388 // it - assuming that allocation failed on this path. 2389 ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state, 2390 SVal Cond, 2391 bool Assumption) const { 2392 RegionStateTy RS = state->get<RegionState>(); 2393 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2394 // If the symbol is assumed to be NULL, remove it from consideration. 2395 ConstraintManager &CMgr = state->getConstraintManager(); 2396 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 2397 if (AllocFailed.isConstrainedTrue()) 2398 state = state->remove<RegionState>(I.getKey()); 2399 } 2400 2401 // Realloc returns 0 when reallocation fails, which means that we should 2402 // restore the state of the pointer being reallocated. 2403 ReallocPairsTy RP = state->get<ReallocPairs>(); 2404 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 2405 // If the symbol is assumed to be NULL, remove it from consideration. 2406 ConstraintManager &CMgr = state->getConstraintManager(); 2407 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 2408 if (!AllocFailed.isConstrainedTrue()) 2409 continue; 2410 2411 SymbolRef ReallocSym = I.getData().ReallocatedSym; 2412 if (const RefState *RS = state->get<RegionState>(ReallocSym)) { 2413 if (RS->isReleased()) { 2414 if (I.getData().Kind == RPToBeFreedAfterFailure) 2415 state = state->set<RegionState>(ReallocSym, 2416 RefState::getAllocated(RS->getAllocationFamily(), RS->getStmt())); 2417 else if (I.getData().Kind == RPDoNotTrackAfterFailure) 2418 state = state->remove<RegionState>(ReallocSym); 2419 else 2420 assert(I.getData().Kind == RPIsFreeOnFailure); 2421 } 2422 } 2423 state = state->remove<ReallocPairs>(I.getKey()); 2424 } 2425 2426 return state; 2427 } 2428 2429 bool MallocChecker::mayFreeAnyEscapedMemoryOrIsModeledExplicitly( 2430 const CallEvent *Call, 2431 ProgramStateRef State, 2432 SymbolRef &EscapingSymbol) const { 2433 assert(Call); 2434 EscapingSymbol = nullptr; 2435 2436 // For now, assume that any C++ or block call can free memory. 2437 // TODO: If we want to be more optimistic here, we'll need to make sure that 2438 // regions escape to C++ containers. They seem to do that even now, but for 2439 // mysterious reasons. 2440 if (!(isa<SimpleFunctionCall>(Call) || isa<ObjCMethodCall>(Call))) 2441 return true; 2442 2443 // Check Objective-C messages by selector name. 2444 if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) { 2445 // If it's not a framework call, or if it takes a callback, assume it 2446 // can free memory. 2447 if (!Call->isInSystemHeader() || Call->argumentsMayEscape()) 2448 return true; 2449 2450 // If it's a method we know about, handle it explicitly post-call. 2451 // This should happen before the "freeWhenDone" check below. 2452 if (isKnownDeallocObjCMethodName(*Msg)) 2453 return false; 2454 2455 // If there's a "freeWhenDone" parameter, but the method isn't one we know 2456 // about, we can't be sure that the object will use free() to deallocate the 2457 // memory, so we can't model it explicitly. The best we can do is use it to 2458 // decide whether the pointer escapes. 2459 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(*Msg)) 2460 return *FreeWhenDone; 2461 2462 // If the first selector piece ends with "NoCopy", and there is no 2463 // "freeWhenDone" parameter set to zero, we know ownership is being 2464 // transferred. Again, though, we can't be sure that the object will use 2465 // free() to deallocate the memory, so we can't model it explicitly. 2466 StringRef FirstSlot = Msg->getSelector().getNameForSlot(0); 2467 if (FirstSlot.endswith("NoCopy")) 2468 return true; 2469 2470 // If the first selector starts with addPointer, insertPointer, 2471 // or replacePointer, assume we are dealing with NSPointerArray or similar. 2472 // This is similar to C++ containers (vector); we still might want to check 2473 // that the pointers get freed by following the container itself. 2474 if (FirstSlot.startswith("addPointer") || 2475 FirstSlot.startswith("insertPointer") || 2476 FirstSlot.startswith("replacePointer") || 2477 FirstSlot.equals("valueWithPointer")) { 2478 return true; 2479 } 2480 2481 // We should escape receiver on call to 'init'. This is especially relevant 2482 // to the receiver, as the corresponding symbol is usually not referenced 2483 // after the call. 2484 if (Msg->getMethodFamily() == OMF_init) { 2485 EscapingSymbol = Msg->getReceiverSVal().getAsSymbol(); 2486 return true; 2487 } 2488 2489 // Otherwise, assume that the method does not free memory. 2490 // Most framework methods do not free memory. 2491 return false; 2492 } 2493 2494 // At this point the only thing left to handle is straight function calls. 2495 const FunctionDecl *FD = cast<SimpleFunctionCall>(Call)->getDecl(); 2496 if (!FD) 2497 return true; 2498 2499 ASTContext &ASTC = State->getStateManager().getContext(); 2500 2501 // If it's one of the allocation functions we can reason about, we model 2502 // its behavior explicitly. 2503 if (isMemFunction(FD, ASTC)) 2504 return false; 2505 2506 // If it's not a system call, assume it frees memory. 2507 if (!Call->isInSystemHeader()) 2508 return true; 2509 2510 // White list the system functions whose arguments escape. 2511 const IdentifierInfo *II = FD->getIdentifier(); 2512 if (!II) 2513 return true; 2514 StringRef FName = II->getName(); 2515 2516 // White list the 'XXXNoCopy' CoreFoundation functions. 2517 // We specifically check these before 2518 if (FName.endswith("NoCopy")) { 2519 // Look for the deallocator argument. We know that the memory ownership 2520 // is not transferred only if the deallocator argument is 2521 // 'kCFAllocatorNull'. 2522 for (unsigned i = 1; i < Call->getNumArgs(); ++i) { 2523 const Expr *ArgE = Call->getArgExpr(i)->IgnoreParenCasts(); 2524 if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(ArgE)) { 2525 StringRef DeallocatorName = DE->getFoundDecl()->getName(); 2526 if (DeallocatorName == "kCFAllocatorNull") 2527 return false; 2528 } 2529 } 2530 return true; 2531 } 2532 2533 // Associating streams with malloced buffers. The pointer can escape if 2534 // 'closefn' is specified (and if that function does free memory), 2535 // but it will not if closefn is not specified. 2536 // Currently, we do not inspect the 'closefn' function (PR12101). 2537 if (FName == "funopen") 2538 if (Call->getNumArgs() >= 4 && Call->getArgSVal(4).isConstant(0)) 2539 return false; 2540 2541 // Do not warn on pointers passed to 'setbuf' when used with std streams, 2542 // these leaks might be intentional when setting the buffer for stdio. 2543 // http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer 2544 if (FName == "setbuf" || FName =="setbuffer" || 2545 FName == "setlinebuf" || FName == "setvbuf") { 2546 if (Call->getNumArgs() >= 1) { 2547 const Expr *ArgE = Call->getArgExpr(0)->IgnoreParenCasts(); 2548 if (const DeclRefExpr *ArgDRE = dyn_cast<DeclRefExpr>(ArgE)) 2549 if (const VarDecl *D = dyn_cast<VarDecl>(ArgDRE->getDecl())) 2550 if (D->getCanonicalDecl()->getName().find("std") != StringRef::npos) 2551 return true; 2552 } 2553 } 2554 2555 // A bunch of other functions which either take ownership of a pointer or 2556 // wrap the result up in a struct or object, meaning it can be freed later. 2557 // (See RetainCountChecker.) Not all the parameters here are invalidated, 2558 // but the Malloc checker cannot differentiate between them. The right way 2559 // of doing this would be to implement a pointer escapes callback. 2560 if (FName == "CGBitmapContextCreate" || 2561 FName == "CGBitmapContextCreateWithData" || 2562 FName == "CVPixelBufferCreateWithBytes" || 2563 FName == "CVPixelBufferCreateWithPlanarBytes" || 2564 FName == "OSAtomicEnqueue") { 2565 return true; 2566 } 2567 2568 if (FName == "postEvent" && 2569 FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") { 2570 return true; 2571 } 2572 2573 if (FName == "postEvent" && 2574 FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") { 2575 return true; 2576 } 2577 2578 // Handle cases where we know a buffer's /address/ can escape. 2579 // Note that the above checks handle some special cases where we know that 2580 // even though the address escapes, it's still our responsibility to free the 2581 // buffer. 2582 if (Call->argumentsMayEscape()) 2583 return true; 2584 2585 // Otherwise, assume that the function does not free memory. 2586 // Most system calls do not free the memory. 2587 return false; 2588 } 2589 2590 static bool retTrue(const RefState *RS) { 2591 return true; 2592 } 2593 2594 static bool checkIfNewOrNewArrayFamily(const RefState *RS) { 2595 return (RS->getAllocationFamily() == AF_CXXNewArray || 2596 RS->getAllocationFamily() == AF_CXXNew); 2597 } 2598 2599 ProgramStateRef MallocChecker::checkPointerEscape(ProgramStateRef State, 2600 const InvalidatedSymbols &Escaped, 2601 const CallEvent *Call, 2602 PointerEscapeKind Kind) const { 2603 return checkPointerEscapeAux(State, Escaped, Call, Kind, &retTrue); 2604 } 2605 2606 ProgramStateRef MallocChecker::checkConstPointerEscape(ProgramStateRef State, 2607 const InvalidatedSymbols &Escaped, 2608 const CallEvent *Call, 2609 PointerEscapeKind Kind) const { 2610 return checkPointerEscapeAux(State, Escaped, Call, Kind, 2611 &checkIfNewOrNewArrayFamily); 2612 } 2613 2614 ProgramStateRef MallocChecker::checkPointerEscapeAux(ProgramStateRef State, 2615 const InvalidatedSymbols &Escaped, 2616 const CallEvent *Call, 2617 PointerEscapeKind Kind, 2618 bool(*CheckRefState)(const RefState*)) const { 2619 // If we know that the call does not free memory, or we want to process the 2620 // call later, keep tracking the top level arguments. 2621 SymbolRef EscapingSymbol = nullptr; 2622 if (Kind == PSK_DirectEscapeOnCall && 2623 !mayFreeAnyEscapedMemoryOrIsModeledExplicitly(Call, State, 2624 EscapingSymbol) && 2625 !EscapingSymbol) { 2626 return State; 2627 } 2628 2629 for (InvalidatedSymbols::const_iterator I = Escaped.begin(), 2630 E = Escaped.end(); 2631 I != E; ++I) { 2632 SymbolRef sym = *I; 2633 2634 if (EscapingSymbol && EscapingSymbol != sym) 2635 continue; 2636 2637 if (const RefState *RS = State->get<RegionState>(sym)) { 2638 if ((RS->isAllocated() || RS->isAllocatedOfSizeZero()) && 2639 CheckRefState(RS)) { 2640 State = State->remove<RegionState>(sym); 2641 State = State->set<RegionState>(sym, RefState::getEscaped(RS)); 2642 } 2643 } 2644 } 2645 return State; 2646 } 2647 2648 static SymbolRef findFailedReallocSymbol(ProgramStateRef currState, 2649 ProgramStateRef prevState) { 2650 ReallocPairsTy currMap = currState->get<ReallocPairs>(); 2651 ReallocPairsTy prevMap = prevState->get<ReallocPairs>(); 2652 2653 for (ReallocPairsTy::iterator I = prevMap.begin(), E = prevMap.end(); 2654 I != E; ++I) { 2655 SymbolRef sym = I.getKey(); 2656 if (!currMap.lookup(sym)) 2657 return sym; 2658 } 2659 2660 return nullptr; 2661 } 2662 2663 PathDiagnosticPiece * 2664 MallocChecker::MallocBugVisitor::VisitNode(const ExplodedNode *N, 2665 const ExplodedNode *PrevN, 2666 BugReporterContext &BRC, 2667 BugReport &BR) { 2668 ProgramStateRef state = N->getState(); 2669 ProgramStateRef statePrev = PrevN->getState(); 2670 2671 const RefState *RS = state->get<RegionState>(Sym); 2672 const RefState *RSPrev = statePrev->get<RegionState>(Sym); 2673 if (!RS) 2674 return nullptr; 2675 2676 const Stmt *S = PathDiagnosticLocation::getStmt(N); 2677 if (!S) 2678 return nullptr; 2679 2680 // FIXME: We will eventually need to handle non-statement-based events 2681 // (__attribute__((cleanup))). 2682 2683 // Find out if this is an interesting point and what is the kind. 2684 const char *Msg = nullptr; 2685 StackHintGeneratorForSymbol *StackHint = nullptr; 2686 if (Mode == Normal) { 2687 if (isAllocated(RS, RSPrev, S)) { 2688 Msg = "Memory is allocated"; 2689 StackHint = new StackHintGeneratorForSymbol(Sym, 2690 "Returned allocated memory"); 2691 } else if (isReleased(RS, RSPrev, S)) { 2692 Msg = "Memory is released"; 2693 StackHint = new StackHintGeneratorForSymbol(Sym, 2694 "Returning; memory was released"); 2695 } else if (isRelinquished(RS, RSPrev, S)) { 2696 Msg = "Memory ownership is transferred"; 2697 StackHint = new StackHintGeneratorForSymbol(Sym, ""); 2698 } else if (isReallocFailedCheck(RS, RSPrev, S)) { 2699 Mode = ReallocationFailed; 2700 Msg = "Reallocation failed"; 2701 StackHint = new StackHintGeneratorForReallocationFailed(Sym, 2702 "Reallocation failed"); 2703 2704 if (SymbolRef sym = findFailedReallocSymbol(state, statePrev)) { 2705 // Is it possible to fail two reallocs WITHOUT testing in between? 2706 assert((!FailedReallocSymbol || FailedReallocSymbol == sym) && 2707 "We only support one failed realloc at a time."); 2708 BR.markInteresting(sym); 2709 FailedReallocSymbol = sym; 2710 } 2711 } 2712 2713 // We are in a special mode if a reallocation failed later in the path. 2714 } else if (Mode == ReallocationFailed) { 2715 assert(FailedReallocSymbol && "No symbol to look for."); 2716 2717 // Is this is the first appearance of the reallocated symbol? 2718 if (!statePrev->get<RegionState>(FailedReallocSymbol)) { 2719 // We're at the reallocation point. 2720 Msg = "Attempt to reallocate memory"; 2721 StackHint = new StackHintGeneratorForSymbol(Sym, 2722 "Returned reallocated memory"); 2723 FailedReallocSymbol = nullptr; 2724 Mode = Normal; 2725 } 2726 } 2727 2728 if (!Msg) 2729 return nullptr; 2730 assert(StackHint); 2731 2732 // Generate the extra diagnostic. 2733 PathDiagnosticLocation Pos(S, BRC.getSourceManager(), 2734 N->getLocationContext()); 2735 return new PathDiagnosticEventPiece(Pos, Msg, true, StackHint); 2736 } 2737 2738 void MallocChecker::printState(raw_ostream &Out, ProgramStateRef State, 2739 const char *NL, const char *Sep) const { 2740 2741 RegionStateTy RS = State->get<RegionState>(); 2742 2743 if (!RS.isEmpty()) { 2744 Out << Sep << "MallocChecker :" << NL; 2745 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2746 const RefState *RefS = State->get<RegionState>(I.getKey()); 2747 AllocationFamily Family = RefS->getAllocationFamily(); 2748 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2749 if (!CheckKind.hasValue()) 2750 CheckKind = getCheckIfTracked(Family, true); 2751 2752 I.getKey()->dumpToStream(Out); 2753 Out << " : "; 2754 I.getData().dump(Out); 2755 if (CheckKind.hasValue()) 2756 Out << " (" << CheckNames[*CheckKind].getName() << ")"; 2757 Out << NL; 2758 } 2759 } 2760 } 2761 2762 void ento::registerNewDeleteLeaksChecker(CheckerManager &mgr) { 2763 registerCStringCheckerBasic(mgr); 2764 MallocChecker *checker = mgr.registerChecker<MallocChecker>(); 2765 checker->IsOptimistic = mgr.getAnalyzerOptions().getBooleanOption( 2766 "Optimistic", false, checker); 2767 checker->ChecksEnabled[MallocChecker::CK_NewDeleteLeaksChecker] = true; 2768 checker->CheckNames[MallocChecker::CK_NewDeleteLeaksChecker] = 2769 mgr.getCurrentCheckName(); 2770 // We currently treat NewDeleteLeaks checker as a subchecker of NewDelete 2771 // checker. 2772 if (!checker->ChecksEnabled[MallocChecker::CK_NewDeleteChecker]) 2773 checker->ChecksEnabled[MallocChecker::CK_NewDeleteChecker] = true; 2774 } 2775 2776 #define REGISTER_CHECKER(name) \ 2777 void ento::register##name(CheckerManager &mgr) { \ 2778 registerCStringCheckerBasic(mgr); \ 2779 MallocChecker *checker = mgr.registerChecker<MallocChecker>(); \ 2780 checker->IsOptimistic = mgr.getAnalyzerOptions().getBooleanOption( \ 2781 "Optimistic", false, checker); \ 2782 checker->ChecksEnabled[MallocChecker::CK_##name] = true; \ 2783 checker->CheckNames[MallocChecker::CK_##name] = mgr.getCurrentCheckName(); \ 2784 } 2785 2786 REGISTER_CHECKER(MallocChecker) 2787 REGISTER_CHECKER(NewDeleteChecker) 2788 REGISTER_CHECKER(MismatchedDeallocatorChecker) 2789