1 //=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines a variety of memory management related checkers, such as 10 // leak, double free, and use-after-free. 11 // 12 // The following checkers are defined here: 13 // 14 // * MallocChecker 15 // Despite its name, it models all sorts of memory allocations and 16 // de- or reallocation, including but not limited to malloc, free, 17 // relloc, new, delete. It also reports on a variety of memory misuse 18 // errors. 19 // Many other checkers interact very closely with this checker, in fact, 20 // most are merely options to this one. Other checkers may register 21 // MallocChecker, but do not enable MallocChecker's reports (more details 22 // to follow around its field, ChecksEnabled). 23 // It also has a boolean "Optimistic" checker option, which if set to true 24 // will cause the checker to model user defined memory management related 25 // functions annotated via the attribute ownership_takes, ownership_holds 26 // and ownership_returns. 27 // 28 // * NewDeleteChecker 29 // Enables the modeling of new, new[], delete, delete[] in MallocChecker, 30 // and checks for related double-free and use-after-free errors. 31 // 32 // * NewDeleteLeaksChecker 33 // Checks for leaks related to new, new[], delete, delete[]. 34 // Depends on NewDeleteChecker. 35 // 36 // * MismatchedDeallocatorChecker 37 // Enables checking whether memory is deallocated with the correspending 38 // allocation function in MallocChecker, such as malloc() allocated 39 // regions are only freed by free(), new by delete, new[] by delete[]. 40 // 41 // InnerPointerChecker interacts very closely with MallocChecker, but unlike 42 // the above checkers, it has it's own file, hence the many InnerPointerChecker 43 // related headers and non-static functions. 44 // 45 //===----------------------------------------------------------------------===// 46 47 #include "AllocationState.h" 48 #include "InterCheckerAPI.h" 49 #include "clang/AST/Attr.h" 50 #include "clang/AST/Expr.h" 51 #include "clang/AST/ExprCXX.h" 52 #include "clang/AST/ParentMap.h" 53 #include "clang/Basic/LLVM.h" 54 #include "clang/Basic/SourceManager.h" 55 #include "clang/Basic/TargetInfo.h" 56 #include "clang/Lex/Lexer.h" 57 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" 58 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 59 #include "clang/StaticAnalyzer/Core/BugReporter/CommonBugCategories.h" 60 #include "clang/StaticAnalyzer/Core/Checker.h" 61 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 62 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 63 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 64 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h" 65 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicSize.h" 66 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 67 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 68 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h" 69 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" 70 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SmallString.h" 73 #include "llvm/ADT/StringExtras.h" 74 #include "llvm/Support/Compiler.h" 75 #include "llvm/Support/ErrorHandling.h" 76 #include <climits> 77 #include <functional> 78 #include <utility> 79 80 using namespace clang; 81 using namespace ento; 82 using namespace std::placeholders; 83 84 //===----------------------------------------------------------------------===// 85 // The types of allocation we're modeling. This is used to check whether a 86 // dynamically allocated object is deallocated with the correct function, like 87 // not using operator delete on an object created by malloc(), or alloca regions 88 // aren't ever deallocated manually. 89 //===----------------------------------------------------------------------===// 90 91 namespace { 92 93 // Used to check correspondence between allocators and deallocators. 94 enum AllocationFamily { 95 AF_None, 96 AF_Malloc, 97 AF_CXXNew, 98 AF_CXXNewArray, 99 AF_IfNameIndex, 100 AF_Alloca, 101 AF_InnerBuffer 102 }; 103 104 } // end of anonymous namespace 105 106 /// Print names of allocators and deallocators. 107 /// 108 /// \returns true on success. 109 static bool printMemFnName(raw_ostream &os, CheckerContext &C, const Expr *E); 110 111 /// Print expected name of an allocator based on the deallocator's family 112 /// derived from the DeallocExpr. 113 static void printExpectedAllocName(raw_ostream &os, AllocationFamily Family); 114 115 /// Print expected name of a deallocator based on the allocator's 116 /// family. 117 static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family); 118 119 //===----------------------------------------------------------------------===// 120 // The state of a symbol, in terms of memory management. 121 //===----------------------------------------------------------------------===// 122 123 namespace { 124 125 class RefState { 126 enum Kind { 127 // Reference to allocated memory. 128 Allocated, 129 // Reference to zero-allocated memory. 130 AllocatedOfSizeZero, 131 // Reference to released/freed memory. 132 Released, 133 // The responsibility for freeing resources has transferred from 134 // this reference. A relinquished symbol should not be freed. 135 Relinquished, 136 // We are no longer guaranteed to have observed all manipulations 137 // of this pointer/memory. For example, it could have been 138 // passed as a parameter to an opaque function. 139 Escaped 140 }; 141 142 const Stmt *S; 143 144 Kind K; 145 AllocationFamily Family; 146 147 RefState(Kind k, const Stmt *s, AllocationFamily family) 148 : S(s), K(k), Family(family) { 149 assert(family != AF_None); 150 } 151 152 public: 153 bool isAllocated() const { return K == Allocated; } 154 bool isAllocatedOfSizeZero() const { return K == AllocatedOfSizeZero; } 155 bool isReleased() const { return K == Released; } 156 bool isRelinquished() const { return K == Relinquished; } 157 bool isEscaped() const { return K == Escaped; } 158 AllocationFamily getAllocationFamily() const { return Family; } 159 const Stmt *getStmt() const { return S; } 160 161 bool operator==(const RefState &X) const { 162 return K == X.K && S == X.S && Family == X.Family; 163 } 164 165 static RefState getAllocated(AllocationFamily family, const Stmt *s) { 166 return RefState(Allocated, s, family); 167 } 168 static RefState getAllocatedOfSizeZero(const RefState *RS) { 169 return RefState(AllocatedOfSizeZero, RS->getStmt(), 170 RS->getAllocationFamily()); 171 } 172 static RefState getReleased(AllocationFamily family, const Stmt *s) { 173 return RefState(Released, s, family); 174 } 175 static RefState getRelinquished(AllocationFamily family, const Stmt *s) { 176 return RefState(Relinquished, s, family); 177 } 178 static RefState getEscaped(const RefState *RS) { 179 return RefState(Escaped, RS->getStmt(), RS->getAllocationFamily()); 180 } 181 182 void Profile(llvm::FoldingSetNodeID &ID) const { 183 ID.AddInteger(K); 184 ID.AddPointer(S); 185 ID.AddInteger(Family); 186 } 187 188 LLVM_DUMP_METHOD void dump(raw_ostream &OS) const { 189 switch (K) { 190 #define CASE(ID) case ID: OS << #ID; break; 191 CASE(Allocated) 192 CASE(AllocatedOfSizeZero) 193 CASE(Released) 194 CASE(Relinquished) 195 CASE(Escaped) 196 } 197 } 198 199 LLVM_DUMP_METHOD void dump() const { dump(llvm::errs()); } 200 }; 201 202 } // end of anonymous namespace 203 204 REGISTER_MAP_WITH_PROGRAMSTATE(RegionState, SymbolRef, RefState) 205 206 /// Check if the memory associated with this symbol was released. 207 static bool isReleased(SymbolRef Sym, CheckerContext &C); 208 209 /// Update the RefState to reflect the new memory allocation. 210 /// The optional \p RetVal parameter specifies the newly allocated pointer 211 /// value; if unspecified, the value of expression \p E is used. 212 static ProgramStateRef MallocUpdateRefState(CheckerContext &C, const Expr *E, 213 ProgramStateRef State, 214 AllocationFamily Family, 215 Optional<SVal> RetVal = None); 216 217 //===----------------------------------------------------------------------===// 218 // The modeling of memory reallocation. 219 // 220 // The terminology 'toPtr' and 'fromPtr' will be used: 221 // toPtr = realloc(fromPtr, 20); 222 //===----------------------------------------------------------------------===// 223 224 REGISTER_SET_WITH_PROGRAMSTATE(ReallocSizeZeroSymbols, SymbolRef) 225 226 namespace { 227 228 /// The state of 'fromPtr' after reallocation is known to have failed. 229 enum OwnershipAfterReallocKind { 230 // The symbol needs to be freed (e.g.: realloc) 231 OAR_ToBeFreedAfterFailure, 232 // The symbol has been freed (e.g.: reallocf) 233 OAR_FreeOnFailure, 234 // The symbol doesn't have to freed (e.g.: we aren't sure if, how and where 235 // 'fromPtr' was allocated: 236 // void Haha(int *ptr) { 237 // ptr = realloc(ptr, 67); 238 // // ... 239 // } 240 // ). 241 OAR_DoNotTrackAfterFailure 242 }; 243 244 /// Stores information about the 'fromPtr' symbol after reallocation. 245 /// 246 /// This is important because realloc may fail, and that needs special modeling. 247 /// Whether reallocation failed or not will not be known until later, so we'll 248 /// store whether upon failure 'fromPtr' will be freed, or needs to be freed 249 /// later, etc. 250 struct ReallocPair { 251 252 // The 'fromPtr'. 253 SymbolRef ReallocatedSym; 254 OwnershipAfterReallocKind Kind; 255 256 ReallocPair(SymbolRef S, OwnershipAfterReallocKind K) 257 : ReallocatedSym(S), Kind(K) {} 258 void Profile(llvm::FoldingSetNodeID &ID) const { 259 ID.AddInteger(Kind); 260 ID.AddPointer(ReallocatedSym); 261 } 262 bool operator==(const ReallocPair &X) const { 263 return ReallocatedSym == X.ReallocatedSym && 264 Kind == X.Kind; 265 } 266 }; 267 268 } // end of anonymous namespace 269 270 REGISTER_MAP_WITH_PROGRAMSTATE(ReallocPairs, SymbolRef, ReallocPair) 271 272 /// Tells if the callee is one of the builtin new/delete operators, including 273 /// placement operators and other standard overloads. 274 static bool isStandardNewDelete(const FunctionDecl *FD); 275 static bool isStandardNewDelete(const CallEvent &Call) { 276 if (!Call.getDecl() || !isa<FunctionDecl>(Call.getDecl())) 277 return false; 278 return isStandardNewDelete(cast<FunctionDecl>(Call.getDecl())); 279 } 280 281 //===----------------------------------------------------------------------===// 282 // Definition of the MallocChecker class. 283 //===----------------------------------------------------------------------===// 284 285 namespace { 286 287 class MallocChecker 288 : public Checker<check::DeadSymbols, check::PointerEscape, 289 check::ConstPointerEscape, check::PreStmt<ReturnStmt>, 290 check::EndFunction, check::PreCall, check::PostCall, 291 check::NewAllocator, check::PostStmt<BlockExpr>, 292 check::PostObjCMessage, check::Location, eval::Assume> { 293 public: 294 /// In pessimistic mode, the checker assumes that it does not know which 295 /// functions might free the memory. 296 /// In optimistic mode, the checker assumes that all user-defined functions 297 /// which might free a pointer are annotated. 298 DefaultBool ShouldIncludeOwnershipAnnotatedFunctions; 299 300 /// Many checkers are essentially built into this one, so enabling them will 301 /// make MallocChecker perform additional modeling and reporting. 302 enum CheckKind { 303 /// When a subchecker is enabled but MallocChecker isn't, model memory 304 /// management but do not emit warnings emitted with MallocChecker only 305 /// enabled. 306 CK_MallocChecker, 307 CK_NewDeleteChecker, 308 CK_NewDeleteLeaksChecker, 309 CK_MismatchedDeallocatorChecker, 310 CK_InnerPointerChecker, 311 CK_NumCheckKinds 312 }; 313 314 using LeakInfo = std::pair<const ExplodedNode *, const MemRegion *>; 315 316 DefaultBool ChecksEnabled[CK_NumCheckKinds]; 317 CheckerNameRef CheckNames[CK_NumCheckKinds]; 318 319 void checkPreCall(const CallEvent &Call, CheckerContext &C) const; 320 void checkPostCall(const CallEvent &Call, CheckerContext &C) const; 321 void checkNewAllocator(const CXXAllocatorCall &Call, CheckerContext &C) const; 322 void checkPostObjCMessage(const ObjCMethodCall &Call, CheckerContext &C) const; 323 void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const; 324 void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const; 325 void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const; 326 void checkEndFunction(const ReturnStmt *S, CheckerContext &C) const; 327 ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond, 328 bool Assumption) const; 329 void checkLocation(SVal l, bool isLoad, const Stmt *S, 330 CheckerContext &C) const; 331 332 ProgramStateRef checkPointerEscape(ProgramStateRef State, 333 const InvalidatedSymbols &Escaped, 334 const CallEvent *Call, 335 PointerEscapeKind Kind) const; 336 ProgramStateRef checkConstPointerEscape(ProgramStateRef State, 337 const InvalidatedSymbols &Escaped, 338 const CallEvent *Call, 339 PointerEscapeKind Kind) const; 340 341 void printState(raw_ostream &Out, ProgramStateRef State, 342 const char *NL, const char *Sep) const override; 343 344 private: 345 mutable std::unique_ptr<BugType> BT_DoubleFree[CK_NumCheckKinds]; 346 mutable std::unique_ptr<BugType> BT_DoubleDelete; 347 mutable std::unique_ptr<BugType> BT_Leak[CK_NumCheckKinds]; 348 mutable std::unique_ptr<BugType> BT_UseFree[CK_NumCheckKinds]; 349 mutable std::unique_ptr<BugType> BT_BadFree[CK_NumCheckKinds]; 350 mutable std::unique_ptr<BugType> BT_FreeAlloca[CK_NumCheckKinds]; 351 mutable std::unique_ptr<BugType> BT_MismatchedDealloc; 352 mutable std::unique_ptr<BugType> BT_OffsetFree[CK_NumCheckKinds]; 353 mutable std::unique_ptr<BugType> BT_UseZerroAllocated[CK_NumCheckKinds]; 354 355 #define CHECK_FN(NAME) \ 356 void NAME(const CallEvent &Call, CheckerContext &C) const; 357 358 CHECK_FN(checkFree) 359 CHECK_FN(checkIfNameIndex) 360 CHECK_FN(checkBasicAlloc) 361 CHECK_FN(checkKernelMalloc) 362 CHECK_FN(checkCalloc) 363 CHECK_FN(checkAlloca) 364 CHECK_FN(checkStrdup) 365 CHECK_FN(checkIfFreeNameIndex) 366 CHECK_FN(checkCXXNewOrCXXDelete) 367 CHECK_FN(checkGMalloc0) 368 CHECK_FN(checkGMemdup) 369 CHECK_FN(checkGMallocN) 370 CHECK_FN(checkGMallocN0) 371 CHECK_FN(checkReallocN) 372 CHECK_FN(checkOwnershipAttr) 373 374 void checkRealloc(const CallEvent &Call, CheckerContext &C, 375 bool ShouldFreeOnFail) const; 376 377 using CheckFn = std::function<void(const MallocChecker *, 378 const CallEvent &Call, CheckerContext &C)>; 379 380 const CallDescriptionMap<CheckFn> FreeingMemFnMap{ 381 {{"free", 1}, &MallocChecker::checkFree}, 382 {{"if_freenameindex", 1}, &MallocChecker::checkIfFreeNameIndex}, 383 {{"kfree", 1}, &MallocChecker::checkFree}, 384 {{"g_free", 1}, &MallocChecker::checkFree}, 385 }; 386 387 bool isFreeingCall(const CallEvent &Call) const; 388 389 CallDescriptionMap<CheckFn> AllocatingMemFnMap{ 390 {{"alloca", 1}, &MallocChecker::checkAlloca}, 391 {{"_alloca", 1}, &MallocChecker::checkAlloca}, 392 {{"malloc", 1}, &MallocChecker::checkBasicAlloc}, 393 {{"malloc", 3}, &MallocChecker::checkKernelMalloc}, 394 {{"calloc", 2}, &MallocChecker::checkCalloc}, 395 {{"valloc", 1}, &MallocChecker::checkBasicAlloc}, 396 {{CDF_MaybeBuiltin, "strndup", 2}, &MallocChecker::checkStrdup}, 397 {{CDF_MaybeBuiltin, "strdup", 1}, &MallocChecker::checkStrdup}, 398 {{"_strdup", 1}, &MallocChecker::checkStrdup}, 399 {{"kmalloc", 2}, &MallocChecker::checkKernelMalloc}, 400 {{"if_nameindex", 1}, &MallocChecker::checkIfNameIndex}, 401 {{CDF_MaybeBuiltin, "wcsdup", 1}, &MallocChecker::checkStrdup}, 402 {{CDF_MaybeBuiltin, "_wcsdup", 1}, &MallocChecker::checkStrdup}, 403 {{"g_malloc", 1}, &MallocChecker::checkBasicAlloc}, 404 {{"g_malloc0", 1}, &MallocChecker::checkGMalloc0}, 405 {{"g_try_malloc", 1}, &MallocChecker::checkBasicAlloc}, 406 {{"g_try_malloc0", 1}, &MallocChecker::checkGMalloc0}, 407 {{"g_memdup", 2}, &MallocChecker::checkGMemdup}, 408 {{"g_malloc_n", 2}, &MallocChecker::checkGMallocN}, 409 {{"g_malloc0_n", 2}, &MallocChecker::checkGMallocN0}, 410 {{"g_try_malloc_n", 2}, &MallocChecker::checkGMallocN}, 411 {{"g_try_malloc0_n", 2}, &MallocChecker::checkGMallocN0}, 412 }; 413 414 CallDescriptionMap<CheckFn> ReallocatingMemFnMap{ 415 {{"realloc", 2}, 416 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)}, 417 {{"reallocf", 2}, 418 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, true)}, 419 {{"g_realloc", 2}, 420 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)}, 421 {{"g_try_realloc", 2}, 422 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)}, 423 {{"g_realloc_n", 3}, &MallocChecker::checkReallocN}, 424 {{"g_try_realloc_n", 3}, &MallocChecker::checkReallocN}, 425 }; 426 427 bool isMemCall(const CallEvent &Call) const; 428 429 // TODO: Remove mutable by moving the initializtaion to the registry function. 430 mutable Optional<uint64_t> KernelZeroFlagVal; 431 432 using KernelZeroSizePtrValueTy = Optional<int>; 433 /// Store the value of macro called `ZERO_SIZE_PTR`. 434 /// The value is initialized at first use, before first use the outer 435 /// Optional is empty, afterwards it contains another Optional that indicates 436 /// if the macro value could be determined, and if yes the value itself. 437 mutable Optional<KernelZeroSizePtrValueTy> KernelZeroSizePtrValue; 438 439 /// Process C++ operator new()'s allocation, which is the part of C++ 440 /// new-expression that goes before the constructor. 441 LLVM_NODISCARD 442 ProgramStateRef processNewAllocation(const CXXAllocatorCall &Call, 443 CheckerContext &C, 444 AllocationFamily Family) const; 445 446 /// Perform a zero-allocation check. 447 /// 448 /// \param [in] Call The expression that allocates memory. 449 /// \param [in] IndexOfSizeArg Index of the argument that specifies the size 450 /// of the memory that needs to be allocated. E.g. for malloc, this would be 451 /// 0. 452 /// \param [in] RetVal Specifies the newly allocated pointer value; 453 /// if unspecified, the value of expression \p E is used. 454 LLVM_NODISCARD 455 static ProgramStateRef ProcessZeroAllocCheck(const CallEvent &Call, 456 const unsigned IndexOfSizeArg, 457 ProgramStateRef State, 458 Optional<SVal> RetVal = None); 459 460 /// Model functions with the ownership_returns attribute. 461 /// 462 /// User-defined function may have the ownership_returns attribute, which 463 /// annotates that the function returns with an object that was allocated on 464 /// the heap, and passes the ownertship to the callee. 465 /// 466 /// void __attribute((ownership_returns(malloc, 1))) *my_malloc(size_t); 467 /// 468 /// It has two parameters: 469 /// - first: name of the resource (e.g. 'malloc') 470 /// - (OPTIONAL) second: size of the allocated region 471 /// 472 /// \param [in] Call The expression that allocates memory. 473 /// \param [in] Att The ownership_returns attribute. 474 /// \param [in] State The \c ProgramState right before allocation. 475 /// \returns The ProgramState right after allocation. 476 LLVM_NODISCARD 477 ProgramStateRef MallocMemReturnsAttr(CheckerContext &C, const CallEvent &Call, 478 const OwnershipAttr *Att, 479 ProgramStateRef State) const; 480 481 /// Models memory allocation. 482 /// 483 /// \param [in] Call The expression that allocates memory. 484 /// \param [in] SizeEx Size of the memory that needs to be allocated. 485 /// \param [in] Init The value the allocated memory needs to be initialized. 486 /// with. For example, \c calloc initializes the allocated memory to 0, 487 /// malloc leaves it undefined. 488 /// \param [in] State The \c ProgramState right before allocation. 489 /// \returns The ProgramState right after allocation. 490 LLVM_NODISCARD 491 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallEvent &Call, 492 const Expr *SizeEx, SVal Init, 493 ProgramStateRef State, 494 AllocationFamily Family); 495 496 /// Models memory allocation. 497 /// 498 /// \param [in] Call The expression that allocates memory. 499 /// \param [in] Size Size of the memory that needs to be allocated. 500 /// \param [in] Init The value the allocated memory needs to be initialized. 501 /// with. For example, \c calloc initializes the allocated memory to 0, 502 /// malloc leaves it undefined. 503 /// \param [in] State The \c ProgramState right before allocation. 504 /// \returns The ProgramState right after allocation. 505 LLVM_NODISCARD 506 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallEvent &Call, 507 SVal Size, SVal Init, 508 ProgramStateRef State, 509 AllocationFamily Family); 510 511 LLVM_NODISCARD 512 static ProgramStateRef addExtentSize(CheckerContext &C, const CXXNewExpr *NE, 513 ProgramStateRef State, SVal Target); 514 515 // Check if this malloc() for special flags. At present that means M_ZERO or 516 // __GFP_ZERO (in which case, treat it like calloc). 517 LLVM_NODISCARD 518 llvm::Optional<ProgramStateRef> 519 performKernelMalloc(const CallEvent &Call, CheckerContext &C, 520 const ProgramStateRef &State) const; 521 522 /// Model functions with the ownership_takes and ownership_holds attributes. 523 /// 524 /// User-defined function may have the ownership_takes and/or ownership_holds 525 /// attributes, which annotates that the function frees the memory passed as a 526 /// parameter. 527 /// 528 /// void __attribute((ownership_takes(malloc, 1))) my_free(void *); 529 /// void __attribute((ownership_holds(malloc, 1))) my_hold(void *); 530 /// 531 /// They have two parameters: 532 /// - first: name of the resource (e.g. 'malloc') 533 /// - second: index of the parameter the attribute applies to 534 /// 535 /// \param [in] Call The expression that frees memory. 536 /// \param [in] Att The ownership_takes or ownership_holds attribute. 537 /// \param [in] State The \c ProgramState right before allocation. 538 /// \returns The ProgramState right after deallocation. 539 LLVM_NODISCARD 540 ProgramStateRef FreeMemAttr(CheckerContext &C, const CallEvent &Call, 541 const OwnershipAttr *Att, 542 ProgramStateRef State) const; 543 544 /// Models memory deallocation. 545 /// 546 /// \param [in] Call The expression that frees memory. 547 /// \param [in] State The \c ProgramState right before allocation. 548 /// \param [in] Num Index of the argument that needs to be freed. This is 549 /// normally 0, but for custom free functions it may be different. 550 /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds 551 /// attribute. 552 /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known 553 /// to have been allocated, or in other words, the symbol to be freed was 554 /// registered as allocated by this checker. In the following case, \c ptr 555 /// isn't known to be allocated. 556 /// void Haha(int *ptr) { 557 /// ptr = realloc(ptr, 67); 558 /// // ... 559 /// } 560 /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function 561 /// we're modeling returns with Null on failure. 562 /// \returns The ProgramState right after deallocation. 563 LLVM_NODISCARD 564 ProgramStateRef FreeMemAux(CheckerContext &C, const CallEvent &Call, 565 ProgramStateRef State, unsigned Num, bool Hold, 566 bool &IsKnownToBeAllocated, 567 AllocationFamily Family, 568 bool ReturnsNullOnFailure = false) const; 569 570 /// Models memory deallocation. 571 /// 572 /// \param [in] ArgExpr The variable who's pointee needs to be freed. 573 /// \param [in] Call The expression that frees the memory. 574 /// \param [in] State The \c ProgramState right before allocation. 575 /// normally 0, but for custom free functions it may be different. 576 /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds 577 /// attribute. 578 /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known 579 /// to have been allocated, or in other words, the symbol to be freed was 580 /// registered as allocated by this checker. In the following case, \c ptr 581 /// isn't known to be allocated. 582 /// void Haha(int *ptr) { 583 /// ptr = realloc(ptr, 67); 584 /// // ... 585 /// } 586 /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function 587 /// we're modeling returns with Null on failure. 588 /// \returns The ProgramState right after deallocation. 589 LLVM_NODISCARD 590 ProgramStateRef FreeMemAux(CheckerContext &C, const Expr *ArgExpr, 591 const CallEvent &Call, ProgramStateRef State, 592 bool Hold, bool &IsKnownToBeAllocated, 593 AllocationFamily Family, 594 bool ReturnsNullOnFailure = false) const; 595 596 // TODO: Needs some refactoring, as all other deallocation modeling 597 // functions are suffering from out parameters and messy code due to how 598 // realloc is handled. 599 // 600 /// Models memory reallocation. 601 /// 602 /// \param [in] Call The expression that reallocated memory 603 /// \param [in] ShouldFreeOnFail Whether if reallocation fails, the supplied 604 /// memory should be freed. 605 /// \param [in] State The \c ProgramState right before reallocation. 606 /// \param [in] SuffixWithN Whether the reallocation function we're modeling 607 /// has an '_n' suffix, such as g_realloc_n. 608 /// \returns The ProgramState right after reallocation. 609 LLVM_NODISCARD 610 ProgramStateRef ReallocMemAux(CheckerContext &C, const CallEvent &Call, 611 bool ShouldFreeOnFail, ProgramStateRef State, 612 AllocationFamily Family, 613 bool SuffixWithN = false) const; 614 615 /// Evaluates the buffer size that needs to be allocated. 616 /// 617 /// \param [in] Blocks The amount of blocks that needs to be allocated. 618 /// \param [in] BlockBytes The size of a block. 619 /// \returns The symbolic value of \p Blocks * \p BlockBytes. 620 LLVM_NODISCARD 621 static SVal evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, 622 const Expr *BlockBytes); 623 624 /// Models zero initialized array allocation. 625 /// 626 /// \param [in] Call The expression that reallocated memory 627 /// \param [in] State The \c ProgramState right before reallocation. 628 /// \returns The ProgramState right after allocation. 629 LLVM_NODISCARD 630 static ProgramStateRef CallocMem(CheckerContext &C, const CallEvent &Call, 631 ProgramStateRef State); 632 633 /// See if deallocation happens in a suspicious context. If so, escape the 634 /// pointers that otherwise would have been deallocated and return true. 635 bool suppressDeallocationsInSuspiciousContexts(const CallEvent &Call, 636 CheckerContext &C) const; 637 638 /// If in \p S \p Sym is used, check whether \p Sym was already freed. 639 bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S) const; 640 641 /// If in \p S \p Sym is used, check whether \p Sym was allocated as a zero 642 /// sized memory region. 643 void checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 644 const Stmt *S) const; 645 646 /// If in \p S \p Sym is being freed, check whether \p Sym was already freed. 647 bool checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const; 648 649 /// Check if the function is known to free memory, or if it is 650 /// "interesting" and should be modeled explicitly. 651 /// 652 /// \param [out] EscapingSymbol A function might not free memory in general, 653 /// but could be known to free a particular symbol. In this case, false is 654 /// returned and the single escaping symbol is returned through the out 655 /// parameter. 656 /// 657 /// We assume that pointers do not escape through calls to system functions 658 /// not handled by this checker. 659 bool mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent *Call, 660 ProgramStateRef State, 661 SymbolRef &EscapingSymbol) const; 662 663 /// Implementation of the checkPointerEscape callbacks. 664 LLVM_NODISCARD 665 ProgramStateRef checkPointerEscapeAux(ProgramStateRef State, 666 const InvalidatedSymbols &Escaped, 667 const CallEvent *Call, 668 PointerEscapeKind Kind, 669 bool IsConstPointerEscape) const; 670 671 // Implementation of the checkPreStmt and checkEndFunction callbacks. 672 void checkEscapeOnReturn(const ReturnStmt *S, CheckerContext &C) const; 673 674 ///@{ 675 /// Tells if a given family/call/symbol is tracked by the current checker. 676 /// Sets CheckKind to the kind of the checker responsible for this 677 /// family/call/symbol. 678 Optional<CheckKind> getCheckIfTracked(AllocationFamily Family, 679 bool IsALeakCheck = false) const; 680 681 Optional<CheckKind> getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 682 bool IsALeakCheck = false) const; 683 ///@} 684 static bool SummarizeValue(raw_ostream &os, SVal V); 685 static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR); 686 687 void HandleNonHeapDealloc(CheckerContext &C, SVal ArgVal, SourceRange Range, 688 const Expr *DeallocExpr, 689 AllocationFamily Family) const; 690 691 void HandleFreeAlloca(CheckerContext &C, SVal ArgVal, 692 SourceRange Range) const; 693 694 void HandleMismatchedDealloc(CheckerContext &C, SourceRange Range, 695 const Expr *DeallocExpr, const RefState *RS, 696 SymbolRef Sym, bool OwnershipTransferred) const; 697 698 void HandleOffsetFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 699 const Expr *DeallocExpr, AllocationFamily Family, 700 const Expr *AllocExpr = nullptr) const; 701 702 void HandleUseAfterFree(CheckerContext &C, SourceRange Range, 703 SymbolRef Sym) const; 704 705 void HandleDoubleFree(CheckerContext &C, SourceRange Range, bool Released, 706 SymbolRef Sym, SymbolRef PrevSym) const; 707 708 void HandleDoubleDelete(CheckerContext &C, SymbolRef Sym) const; 709 710 void HandleUseZeroAlloc(CheckerContext &C, SourceRange Range, 711 SymbolRef Sym) const; 712 713 void HandleFunctionPtrFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 714 const Expr *FreeExpr, 715 AllocationFamily Family) const; 716 717 /// Find the location of the allocation for Sym on the path leading to the 718 /// exploded node N. 719 static LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym, 720 CheckerContext &C); 721 722 void HandleLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const; 723 724 /// Test if value in ArgVal equals to value in macro `ZERO_SIZE_PTR`. 725 bool isArgZERO_SIZE_PTR(ProgramStateRef State, CheckerContext &C, 726 SVal ArgVal) const; 727 }; 728 729 //===----------------------------------------------------------------------===// 730 // Definition of MallocBugVisitor. 731 //===----------------------------------------------------------------------===// 732 733 /// The bug visitor which allows us to print extra diagnostics along the 734 /// BugReport path. For example, showing the allocation site of the leaked 735 /// region. 736 class MallocBugVisitor final : public BugReporterVisitor { 737 protected: 738 enum NotificationMode { Normal, ReallocationFailed }; 739 740 // The allocated region symbol tracked by the main analysis. 741 SymbolRef Sym; 742 743 // The mode we are in, i.e. what kind of diagnostics will be emitted. 744 NotificationMode Mode; 745 746 // A symbol from when the primary region should have been reallocated. 747 SymbolRef FailedReallocSymbol; 748 749 // A C++ destructor stack frame in which memory was released. Used for 750 // miscellaneous false positive suppression. 751 const StackFrameContext *ReleaseDestructorLC; 752 753 bool IsLeak; 754 755 public: 756 MallocBugVisitor(SymbolRef S, bool isLeak = false) 757 : Sym(S), Mode(Normal), FailedReallocSymbol(nullptr), 758 ReleaseDestructorLC(nullptr), IsLeak(isLeak) {} 759 760 static void *getTag() { 761 static int Tag = 0; 762 return &Tag; 763 } 764 765 void Profile(llvm::FoldingSetNodeID &ID) const override { 766 ID.AddPointer(getTag()); 767 ID.AddPointer(Sym); 768 } 769 770 /// Did not track -> allocated. Other state (released) -> allocated. 771 static inline bool isAllocated(const RefState *RSCurr, const RefState *RSPrev, 772 const Stmt *Stmt) { 773 return (Stmt && (isa<CallExpr>(Stmt) || isa<CXXNewExpr>(Stmt)) && 774 (RSCurr && 775 (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) && 776 (!RSPrev || 777 !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero()))); 778 } 779 780 /// Did not track -> released. Other state (allocated) -> released. 781 /// The statement associated with the release might be missing. 782 static inline bool isReleased(const RefState *RSCurr, const RefState *RSPrev, 783 const Stmt *Stmt) { 784 bool IsReleased = 785 (RSCurr && RSCurr->isReleased()) && (!RSPrev || !RSPrev->isReleased()); 786 assert(!IsReleased || 787 (Stmt && (isa<CallExpr>(Stmt) || isa<CXXDeleteExpr>(Stmt))) || 788 (!Stmt && RSCurr->getAllocationFamily() == AF_InnerBuffer)); 789 return IsReleased; 790 } 791 792 /// Did not track -> relinquished. Other state (allocated) -> relinquished. 793 static inline bool isRelinquished(const RefState *RSCurr, 794 const RefState *RSPrev, const Stmt *Stmt) { 795 return (Stmt && 796 (isa<CallExpr>(Stmt) || isa<ObjCMessageExpr>(Stmt) || 797 isa<ObjCPropertyRefExpr>(Stmt)) && 798 (RSCurr && RSCurr->isRelinquished()) && 799 (!RSPrev || !RSPrev->isRelinquished())); 800 } 801 802 /// If the expression is not a call, and the state change is 803 /// released -> allocated, it must be the realloc return value 804 /// check. If we have to handle more cases here, it might be cleaner just 805 /// to track this extra bit in the state itself. 806 static inline bool hasReallocFailed(const RefState *RSCurr, 807 const RefState *RSPrev, 808 const Stmt *Stmt) { 809 return ((!Stmt || !isa<CallExpr>(Stmt)) && 810 (RSCurr && 811 (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) && 812 (RSPrev && 813 !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero()))); 814 } 815 816 PathDiagnosticPieceRef VisitNode(const ExplodedNode *N, 817 BugReporterContext &BRC, 818 PathSensitiveBugReport &BR) override; 819 820 PathDiagnosticPieceRef getEndPath(BugReporterContext &BRC, 821 const ExplodedNode *EndPathNode, 822 PathSensitiveBugReport &BR) override { 823 if (!IsLeak) 824 return nullptr; 825 826 PathDiagnosticLocation L = BR.getLocation(); 827 // Do not add the statement itself as a range in case of leak. 828 return std::make_shared<PathDiagnosticEventPiece>(L, BR.getDescription(), 829 false); 830 } 831 832 private: 833 class StackHintGeneratorForReallocationFailed 834 : public StackHintGeneratorForSymbol { 835 public: 836 StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M) 837 : StackHintGeneratorForSymbol(S, M) {} 838 839 std::string getMessageForArg(const Expr *ArgE, unsigned ArgIndex) override { 840 // Printed parameters start at 1, not 0. 841 ++ArgIndex; 842 843 SmallString<200> buf; 844 llvm::raw_svector_ostream os(buf); 845 846 os << "Reallocation of " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex) 847 << " parameter failed"; 848 849 return std::string(os.str()); 850 } 851 852 std::string getMessageForReturn(const CallExpr *CallExpr) override { 853 return "Reallocation of returned value failed"; 854 } 855 }; 856 }; 857 858 } // end anonymous namespace 859 860 // A map from the freed symbol to the symbol representing the return value of 861 // the free function. 862 REGISTER_MAP_WITH_PROGRAMSTATE(FreeReturnValue, SymbolRef, SymbolRef) 863 864 namespace { 865 class StopTrackingCallback final : public SymbolVisitor { 866 ProgramStateRef state; 867 868 public: 869 StopTrackingCallback(ProgramStateRef st) : state(std::move(st)) {} 870 ProgramStateRef getState() const { return state; } 871 872 bool VisitSymbol(SymbolRef sym) override { 873 state = state->remove<RegionState>(sym); 874 return true; 875 } 876 }; 877 } // end anonymous namespace 878 879 static bool isStandardNewDelete(const FunctionDecl *FD) { 880 if (!FD) 881 return false; 882 883 OverloadedOperatorKind Kind = FD->getOverloadedOperator(); 884 if (Kind != OO_New && Kind != OO_Array_New && Kind != OO_Delete && 885 Kind != OO_Array_Delete) 886 return false; 887 888 // This is standard if and only if it's not defined in a user file. 889 SourceLocation L = FD->getLocation(); 890 // If the header for operator delete is not included, it's still defined 891 // in an invalid source location. Check to make sure we don't crash. 892 return !L.isValid() || 893 FD->getASTContext().getSourceManager().isInSystemHeader(L); 894 } 895 896 //===----------------------------------------------------------------------===// 897 // Methods of MallocChecker and MallocBugVisitor. 898 //===----------------------------------------------------------------------===// 899 900 bool MallocChecker::isFreeingCall(const CallEvent &Call) const { 901 if (FreeingMemFnMap.lookup(Call) || ReallocatingMemFnMap.lookup(Call)) 902 return true; 903 904 const auto *Func = dyn_cast<FunctionDecl>(Call.getDecl()); 905 if (Func && Func->hasAttrs()) { 906 for (const auto *I : Func->specific_attrs<OwnershipAttr>()) { 907 OwnershipAttr::OwnershipKind OwnKind = I->getOwnKind(); 908 if (OwnKind == OwnershipAttr::Takes || OwnKind == OwnershipAttr::Holds) 909 return true; 910 } 911 } 912 return false; 913 } 914 915 bool MallocChecker::isMemCall(const CallEvent &Call) const { 916 if (FreeingMemFnMap.lookup(Call) || AllocatingMemFnMap.lookup(Call) || 917 ReallocatingMemFnMap.lookup(Call)) 918 return true; 919 920 if (!ShouldIncludeOwnershipAnnotatedFunctions) 921 return false; 922 923 const auto *Func = dyn_cast<FunctionDecl>(Call.getDecl()); 924 return Func && Func->hasAttr<OwnershipAttr>(); 925 } 926 927 llvm::Optional<ProgramStateRef> 928 MallocChecker::performKernelMalloc(const CallEvent &Call, CheckerContext &C, 929 const ProgramStateRef &State) const { 930 // 3-argument malloc(), as commonly used in {Free,Net,Open}BSD Kernels: 931 // 932 // void *malloc(unsigned long size, struct malloc_type *mtp, int flags); 933 // 934 // One of the possible flags is M_ZERO, which means 'give me back an 935 // allocation which is already zeroed', like calloc. 936 937 // 2-argument kmalloc(), as used in the Linux kernel: 938 // 939 // void *kmalloc(size_t size, gfp_t flags); 940 // 941 // Has the similar flag value __GFP_ZERO. 942 943 // This logic is largely cloned from O_CREAT in UnixAPIChecker, maybe some 944 // code could be shared. 945 946 ASTContext &Ctx = C.getASTContext(); 947 llvm::Triple::OSType OS = Ctx.getTargetInfo().getTriple().getOS(); 948 949 if (!KernelZeroFlagVal.hasValue()) { 950 if (OS == llvm::Triple::FreeBSD) 951 KernelZeroFlagVal = 0x0100; 952 else if (OS == llvm::Triple::NetBSD) 953 KernelZeroFlagVal = 0x0002; 954 else if (OS == llvm::Triple::OpenBSD) 955 KernelZeroFlagVal = 0x0008; 956 else if (OS == llvm::Triple::Linux) 957 // __GFP_ZERO 958 KernelZeroFlagVal = 0x8000; 959 else 960 // FIXME: We need a more general way of getting the M_ZERO value. 961 // See also: O_CREAT in UnixAPIChecker.cpp. 962 963 // Fall back to normal malloc behavior on platforms where we don't 964 // know M_ZERO. 965 return None; 966 } 967 968 // We treat the last argument as the flags argument, and callers fall-back to 969 // normal malloc on a None return. This works for the FreeBSD kernel malloc 970 // as well as Linux kmalloc. 971 if (Call.getNumArgs() < 2) 972 return None; 973 974 const Expr *FlagsEx = Call.getArgExpr(Call.getNumArgs() - 1); 975 const SVal V = C.getSVal(FlagsEx); 976 if (!V.getAs<NonLoc>()) { 977 // The case where 'V' can be a location can only be due to a bad header, 978 // so in this case bail out. 979 return None; 980 } 981 982 NonLoc Flags = V.castAs<NonLoc>(); 983 NonLoc ZeroFlag = C.getSValBuilder() 984 .makeIntVal(KernelZeroFlagVal.getValue(), FlagsEx->getType()) 985 .castAs<NonLoc>(); 986 SVal MaskedFlagsUC = C.getSValBuilder().evalBinOpNN(State, BO_And, 987 Flags, ZeroFlag, 988 FlagsEx->getType()); 989 if (MaskedFlagsUC.isUnknownOrUndef()) 990 return None; 991 DefinedSVal MaskedFlags = MaskedFlagsUC.castAs<DefinedSVal>(); 992 993 // Check if maskedFlags is non-zero. 994 ProgramStateRef TrueState, FalseState; 995 std::tie(TrueState, FalseState) = State->assume(MaskedFlags); 996 997 // If M_ZERO is set, treat this like calloc (initialized). 998 if (TrueState && !FalseState) { 999 SVal ZeroVal = C.getSValBuilder().makeZeroVal(Ctx.CharTy); 1000 return MallocMemAux(C, Call, Call.getArgExpr(0), ZeroVal, TrueState, 1001 AF_Malloc); 1002 } 1003 1004 return None; 1005 } 1006 1007 SVal MallocChecker::evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, 1008 const Expr *BlockBytes) { 1009 SValBuilder &SB = C.getSValBuilder(); 1010 SVal BlocksVal = C.getSVal(Blocks); 1011 SVal BlockBytesVal = C.getSVal(BlockBytes); 1012 ProgramStateRef State = C.getState(); 1013 SVal TotalSize = SB.evalBinOp(State, BO_Mul, BlocksVal, BlockBytesVal, 1014 SB.getContext().getSizeType()); 1015 return TotalSize; 1016 } 1017 1018 void MallocChecker::checkBasicAlloc(const CallEvent &Call, 1019 CheckerContext &C) const { 1020 ProgramStateRef State = C.getState(); 1021 State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State, 1022 AF_Malloc); 1023 State = ProcessZeroAllocCheck(Call, 0, State); 1024 C.addTransition(State); 1025 } 1026 1027 void MallocChecker::checkKernelMalloc(const CallEvent &Call, 1028 CheckerContext &C) const { 1029 ProgramStateRef State = C.getState(); 1030 llvm::Optional<ProgramStateRef> MaybeState = 1031 performKernelMalloc(Call, C, State); 1032 if (MaybeState.hasValue()) 1033 State = MaybeState.getValue(); 1034 else 1035 State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State, 1036 AF_Malloc); 1037 C.addTransition(State); 1038 } 1039 1040 void MallocChecker::checkRealloc(const CallEvent &Call, 1041 CheckerContext &C, 1042 bool ShouldFreeOnFail) const { 1043 ProgramStateRef State = C.getState(); 1044 State = ReallocMemAux(C, Call, ShouldFreeOnFail, State, AF_Malloc); 1045 State = ProcessZeroAllocCheck(Call, 1, State); 1046 C.addTransition(State); 1047 } 1048 1049 void MallocChecker::checkCalloc(const CallEvent &Call, 1050 CheckerContext &C) const { 1051 ProgramStateRef State = C.getState(); 1052 State = CallocMem(C, Call, State); 1053 State = ProcessZeroAllocCheck(Call, 0, State); 1054 State = ProcessZeroAllocCheck(Call, 1, State); 1055 C.addTransition(State); 1056 } 1057 1058 void MallocChecker::checkFree(const CallEvent &Call, CheckerContext &C) const { 1059 ProgramStateRef State = C.getState(); 1060 bool IsKnownToBeAllocatedMemory = false; 1061 if (suppressDeallocationsInSuspiciousContexts(Call, C)) 1062 return; 1063 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1064 AF_Malloc); 1065 C.addTransition(State); 1066 } 1067 1068 void MallocChecker::checkAlloca(const CallEvent &Call, 1069 CheckerContext &C) const { 1070 ProgramStateRef State = C.getState(); 1071 State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State, 1072 AF_Alloca); 1073 State = ProcessZeroAllocCheck(Call, 0, State); 1074 C.addTransition(State); 1075 } 1076 1077 void MallocChecker::checkStrdup(const CallEvent &Call, 1078 CheckerContext &C) const { 1079 ProgramStateRef State = C.getState(); 1080 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1081 if (!CE) 1082 return; 1083 State = MallocUpdateRefState(C, CE, State, AF_Malloc); 1084 1085 C.addTransition(State); 1086 } 1087 1088 void MallocChecker::checkIfNameIndex(const CallEvent &Call, 1089 CheckerContext &C) const { 1090 ProgramStateRef State = C.getState(); 1091 // Should we model this differently? We can allocate a fixed number of 1092 // elements with zeros in the last one. 1093 State = 1094 MallocMemAux(C, Call, UnknownVal(), UnknownVal(), State, AF_IfNameIndex); 1095 1096 C.addTransition(State); 1097 } 1098 1099 void MallocChecker::checkIfFreeNameIndex(const CallEvent &Call, 1100 CheckerContext &C) const { 1101 ProgramStateRef State = C.getState(); 1102 bool IsKnownToBeAllocatedMemory = false; 1103 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1104 AF_IfNameIndex); 1105 C.addTransition(State); 1106 } 1107 1108 void MallocChecker::checkCXXNewOrCXXDelete(const CallEvent &Call, 1109 CheckerContext &C) const { 1110 ProgramStateRef State = C.getState(); 1111 bool IsKnownToBeAllocatedMemory = false; 1112 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1113 if (!CE) 1114 return; 1115 1116 assert(isStandardNewDelete(Call)); 1117 1118 // Process direct calls to operator new/new[]/delete/delete[] functions 1119 // as distinct from new/new[]/delete/delete[] expressions that are 1120 // processed by the checkPostStmt callbacks for CXXNewExpr and 1121 // CXXDeleteExpr. 1122 const FunctionDecl *FD = C.getCalleeDecl(CE); 1123 switch (FD->getOverloadedOperator()) { 1124 case OO_New: 1125 State = 1126 MallocMemAux(C, Call, CE->getArg(0), UndefinedVal(), State, AF_CXXNew); 1127 State = ProcessZeroAllocCheck(Call, 0, State); 1128 break; 1129 case OO_Array_New: 1130 State = MallocMemAux(C, Call, CE->getArg(0), UndefinedVal(), State, 1131 AF_CXXNewArray); 1132 State = ProcessZeroAllocCheck(Call, 0, State); 1133 break; 1134 case OO_Delete: 1135 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1136 AF_CXXNew); 1137 break; 1138 case OO_Array_Delete: 1139 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1140 AF_CXXNewArray); 1141 break; 1142 default: 1143 llvm_unreachable("not a new/delete operator"); 1144 } 1145 1146 C.addTransition(State); 1147 } 1148 1149 void MallocChecker::checkGMalloc0(const CallEvent &Call, 1150 CheckerContext &C) const { 1151 ProgramStateRef State = C.getState(); 1152 SValBuilder &svalBuilder = C.getSValBuilder(); 1153 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 1154 State = MallocMemAux(C, Call, Call.getArgExpr(0), zeroVal, State, AF_Malloc); 1155 State = ProcessZeroAllocCheck(Call, 0, State); 1156 C.addTransition(State); 1157 } 1158 1159 void MallocChecker::checkGMemdup(const CallEvent &Call, 1160 CheckerContext &C) const { 1161 ProgramStateRef State = C.getState(); 1162 State = MallocMemAux(C, Call, Call.getArgExpr(1), UndefinedVal(), State, 1163 AF_Malloc); 1164 State = ProcessZeroAllocCheck(Call, 1, State); 1165 C.addTransition(State); 1166 } 1167 1168 void MallocChecker::checkGMallocN(const CallEvent &Call, 1169 CheckerContext &C) const { 1170 ProgramStateRef State = C.getState(); 1171 SVal Init = UndefinedVal(); 1172 SVal TotalSize = evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1)); 1173 State = MallocMemAux(C, Call, TotalSize, Init, State, AF_Malloc); 1174 State = ProcessZeroAllocCheck(Call, 0, State); 1175 State = ProcessZeroAllocCheck(Call, 1, State); 1176 C.addTransition(State); 1177 } 1178 1179 void MallocChecker::checkGMallocN0(const CallEvent &Call, 1180 CheckerContext &C) const { 1181 ProgramStateRef State = C.getState(); 1182 SValBuilder &SB = C.getSValBuilder(); 1183 SVal Init = SB.makeZeroVal(SB.getContext().CharTy); 1184 SVal TotalSize = evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1)); 1185 State = MallocMemAux(C, Call, TotalSize, Init, State, AF_Malloc); 1186 State = ProcessZeroAllocCheck(Call, 0, State); 1187 State = ProcessZeroAllocCheck(Call, 1, State); 1188 C.addTransition(State); 1189 } 1190 1191 void MallocChecker::checkReallocN(const CallEvent &Call, 1192 CheckerContext &C) const { 1193 ProgramStateRef State = C.getState(); 1194 State = ReallocMemAux(C, Call, /*ShouldFreeOnFail=*/false, State, AF_Malloc, 1195 /*SuffixWithN=*/true); 1196 State = ProcessZeroAllocCheck(Call, 1, State); 1197 State = ProcessZeroAllocCheck(Call, 2, State); 1198 C.addTransition(State); 1199 } 1200 1201 void MallocChecker::checkOwnershipAttr(const CallEvent &Call, 1202 CheckerContext &C) const { 1203 ProgramStateRef State = C.getState(); 1204 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1205 if (!CE) 1206 return; 1207 const FunctionDecl *FD = C.getCalleeDecl(CE); 1208 if (!FD) 1209 return; 1210 if (ShouldIncludeOwnershipAnnotatedFunctions || 1211 ChecksEnabled[CK_MismatchedDeallocatorChecker]) { 1212 // Check all the attributes, if there are any. 1213 // There can be multiple of these attributes. 1214 if (FD->hasAttrs()) 1215 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { 1216 switch (I->getOwnKind()) { 1217 case OwnershipAttr::Returns: 1218 State = MallocMemReturnsAttr(C, Call, I, State); 1219 break; 1220 case OwnershipAttr::Takes: 1221 case OwnershipAttr::Holds: 1222 State = FreeMemAttr(C, Call, I, State); 1223 break; 1224 } 1225 } 1226 } 1227 C.addTransition(State); 1228 } 1229 1230 void MallocChecker::checkPostCall(const CallEvent &Call, 1231 CheckerContext &C) const { 1232 if (C.wasInlined) 1233 return; 1234 if (!Call.getOriginExpr()) 1235 return; 1236 1237 ProgramStateRef State = C.getState(); 1238 1239 if (const CheckFn *Callback = FreeingMemFnMap.lookup(Call)) { 1240 (*Callback)(this, Call, C); 1241 return; 1242 } 1243 1244 if (const CheckFn *Callback = AllocatingMemFnMap.lookup(Call)) { 1245 (*Callback)(this, Call, C); 1246 return; 1247 } 1248 1249 if (const CheckFn *Callback = ReallocatingMemFnMap.lookup(Call)) { 1250 (*Callback)(this, Call, C); 1251 return; 1252 } 1253 1254 if (isStandardNewDelete(Call)) { 1255 checkCXXNewOrCXXDelete(Call, C); 1256 return; 1257 } 1258 1259 checkOwnershipAttr(Call, C); 1260 } 1261 1262 // Performs a 0-sized allocations check. 1263 ProgramStateRef MallocChecker::ProcessZeroAllocCheck( 1264 const CallEvent &Call, const unsigned IndexOfSizeArg, ProgramStateRef State, 1265 Optional<SVal> RetVal) { 1266 if (!State) 1267 return nullptr; 1268 1269 if (!RetVal) 1270 RetVal = Call.getReturnValue(); 1271 1272 const Expr *Arg = nullptr; 1273 1274 if (const CallExpr *CE = dyn_cast<CallExpr>(Call.getOriginExpr())) { 1275 Arg = CE->getArg(IndexOfSizeArg); 1276 } else if (const CXXNewExpr *NE = 1277 dyn_cast<CXXNewExpr>(Call.getOriginExpr())) { 1278 if (NE->isArray()) { 1279 Arg = *NE->getArraySize(); 1280 } else { 1281 return State; 1282 } 1283 } else 1284 llvm_unreachable("not a CallExpr or CXXNewExpr"); 1285 1286 assert(Arg); 1287 1288 auto DefArgVal = 1289 State->getSVal(Arg, Call.getLocationContext()).getAs<DefinedSVal>(); 1290 1291 if (!DefArgVal) 1292 return State; 1293 1294 // Check if the allocation size is 0. 1295 ProgramStateRef TrueState, FalseState; 1296 SValBuilder &SvalBuilder = State->getStateManager().getSValBuilder(); 1297 DefinedSVal Zero = 1298 SvalBuilder.makeZeroVal(Arg->getType()).castAs<DefinedSVal>(); 1299 1300 std::tie(TrueState, FalseState) = 1301 State->assume(SvalBuilder.evalEQ(State, *DefArgVal, Zero)); 1302 1303 if (TrueState && !FalseState) { 1304 SymbolRef Sym = RetVal->getAsLocSymbol(); 1305 if (!Sym) 1306 return State; 1307 1308 const RefState *RS = State->get<RegionState>(Sym); 1309 if (RS) { 1310 if (RS->isAllocated()) 1311 return TrueState->set<RegionState>(Sym, 1312 RefState::getAllocatedOfSizeZero(RS)); 1313 else 1314 return State; 1315 } else { 1316 // Case of zero-size realloc. Historically 'realloc(ptr, 0)' is treated as 1317 // 'free(ptr)' and the returned value from 'realloc(ptr, 0)' is not 1318 // tracked. Add zero-reallocated Sym to the state to catch references 1319 // to zero-allocated memory. 1320 return TrueState->add<ReallocSizeZeroSymbols>(Sym); 1321 } 1322 } 1323 1324 // Assume the value is non-zero going forward. 1325 assert(FalseState); 1326 return FalseState; 1327 } 1328 1329 static QualType getDeepPointeeType(QualType T) { 1330 QualType Result = T, PointeeType = T->getPointeeType(); 1331 while (!PointeeType.isNull()) { 1332 Result = PointeeType; 1333 PointeeType = PointeeType->getPointeeType(); 1334 } 1335 return Result; 1336 } 1337 1338 /// \returns true if the constructor invoked by \p NE has an argument of a 1339 /// pointer/reference to a record type. 1340 static bool hasNonTrivialConstructorCall(const CXXNewExpr *NE) { 1341 1342 const CXXConstructExpr *ConstructE = NE->getConstructExpr(); 1343 if (!ConstructE) 1344 return false; 1345 1346 if (!NE->getAllocatedType()->getAsCXXRecordDecl()) 1347 return false; 1348 1349 const CXXConstructorDecl *CtorD = ConstructE->getConstructor(); 1350 1351 // Iterate over the constructor parameters. 1352 for (const auto *CtorParam : CtorD->parameters()) { 1353 1354 QualType CtorParamPointeeT = CtorParam->getType()->getPointeeType(); 1355 if (CtorParamPointeeT.isNull()) 1356 continue; 1357 1358 CtorParamPointeeT = getDeepPointeeType(CtorParamPointeeT); 1359 1360 if (CtorParamPointeeT->getAsCXXRecordDecl()) 1361 return true; 1362 } 1363 1364 return false; 1365 } 1366 1367 ProgramStateRef 1368 MallocChecker::processNewAllocation(const CXXAllocatorCall &Call, 1369 CheckerContext &C, 1370 AllocationFamily Family) const { 1371 if (!isStandardNewDelete(Call)) 1372 return nullptr; 1373 1374 const CXXNewExpr *NE = Call.getOriginExpr(); 1375 const ParentMap &PM = C.getLocationContext()->getParentMap(); 1376 ProgramStateRef State = C.getState(); 1377 1378 // Non-trivial constructors have a chance to escape 'this', but marking all 1379 // invocations of trivial constructors as escaped would cause too great of 1380 // reduction of true positives, so let's just do that for constructors that 1381 // have an argument of a pointer-to-record type. 1382 if (!PM.isConsumedExpr(NE) && hasNonTrivialConstructorCall(NE)) 1383 return State; 1384 1385 // The return value from operator new is bound to a specified initialization 1386 // value (if any) and we don't want to loose this value. So we call 1387 // MallocUpdateRefState() instead of MallocMemAux() which breaks the 1388 // existing binding. 1389 SVal Target = Call.getObjectUnderConstruction(); 1390 State = MallocUpdateRefState(C, NE, State, Family, Target); 1391 State = addExtentSize(C, NE, State, Target); 1392 State = ProcessZeroAllocCheck(Call, 0, State, Target); 1393 return State; 1394 } 1395 1396 void MallocChecker::checkNewAllocator(const CXXAllocatorCall &Call, 1397 CheckerContext &C) const { 1398 if (!C.wasInlined) { 1399 ProgramStateRef State = processNewAllocation( 1400 Call, C, 1401 (Call.getOriginExpr()->isArray() ? AF_CXXNewArray : AF_CXXNew)); 1402 C.addTransition(State); 1403 } 1404 } 1405 1406 // Sets the extent value of the MemRegion allocated by 1407 // new expression NE to its size in Bytes. 1408 // 1409 ProgramStateRef MallocChecker::addExtentSize(CheckerContext &C, 1410 const CXXNewExpr *NE, 1411 ProgramStateRef State, 1412 SVal Target) { 1413 if (!State) 1414 return nullptr; 1415 SValBuilder &svalBuilder = C.getSValBuilder(); 1416 SVal ElementCount; 1417 const SubRegion *Region; 1418 if (NE->isArray()) { 1419 const Expr *SizeExpr = *NE->getArraySize(); 1420 ElementCount = C.getSVal(SizeExpr); 1421 // Store the extent size for the (symbolic)region 1422 // containing the elements. 1423 Region = Target.getAsRegion() 1424 ->castAs<SubRegion>() 1425 ->StripCasts() 1426 ->castAs<SubRegion>(); 1427 } else { 1428 ElementCount = svalBuilder.makeIntVal(1, true); 1429 Region = Target.getAsRegion()->castAs<SubRegion>(); 1430 } 1431 1432 // Set the region's extent equal to the Size in Bytes. 1433 QualType ElementType = NE->getAllocatedType(); 1434 ASTContext &AstContext = C.getASTContext(); 1435 CharUnits TypeSize = AstContext.getTypeSizeInChars(ElementType); 1436 1437 if (ElementCount.getAs<NonLoc>()) { 1438 DefinedOrUnknownSVal DynSize = getDynamicSize(State, Region, svalBuilder); 1439 1440 // size in Bytes = ElementCount*TypeSize 1441 SVal SizeInBytes = svalBuilder.evalBinOpNN( 1442 State, BO_Mul, ElementCount.castAs<NonLoc>(), 1443 svalBuilder.makeArrayIndex(TypeSize.getQuantity()), 1444 svalBuilder.getArrayIndexType()); 1445 DefinedOrUnknownSVal DynSizeMatchesSize = svalBuilder.evalEQ( 1446 State, DynSize, SizeInBytes.castAs<DefinedOrUnknownSVal>()); 1447 State = State->assume(DynSizeMatchesSize, true); 1448 } 1449 return State; 1450 } 1451 1452 static bool isKnownDeallocObjCMethodName(const ObjCMethodCall &Call) { 1453 // If the first selector piece is one of the names below, assume that the 1454 // object takes ownership of the memory, promising to eventually deallocate it 1455 // with free(). 1456 // Ex: [NSData dataWithBytesNoCopy:bytes length:10]; 1457 // (...unless a 'freeWhenDone' parameter is false, but that's checked later.) 1458 StringRef FirstSlot = Call.getSelector().getNameForSlot(0); 1459 return FirstSlot == "dataWithBytesNoCopy" || 1460 FirstSlot == "initWithBytesNoCopy" || 1461 FirstSlot == "initWithCharactersNoCopy"; 1462 } 1463 1464 static Optional<bool> getFreeWhenDoneArg(const ObjCMethodCall &Call) { 1465 Selector S = Call.getSelector(); 1466 1467 // FIXME: We should not rely on fully-constrained symbols being folded. 1468 for (unsigned i = 1; i < S.getNumArgs(); ++i) 1469 if (S.getNameForSlot(i).equals("freeWhenDone")) 1470 return !Call.getArgSVal(i).isZeroConstant(); 1471 1472 return None; 1473 } 1474 1475 void MallocChecker::checkPostObjCMessage(const ObjCMethodCall &Call, 1476 CheckerContext &C) const { 1477 if (C.wasInlined) 1478 return; 1479 1480 if (!isKnownDeallocObjCMethodName(Call)) 1481 return; 1482 1483 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call)) 1484 if (!*FreeWhenDone) 1485 return; 1486 1487 if (Call.hasNonZeroCallbackArg()) 1488 return; 1489 1490 bool IsKnownToBeAllocatedMemory; 1491 ProgramStateRef State = 1492 FreeMemAux(C, Call.getArgExpr(0), Call, C.getState(), 1493 /*Hold=*/true, IsKnownToBeAllocatedMemory, AF_Malloc, 1494 /*RetNullOnFailure=*/true); 1495 1496 C.addTransition(State); 1497 } 1498 1499 ProgramStateRef 1500 MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallEvent &Call, 1501 const OwnershipAttr *Att, 1502 ProgramStateRef State) const { 1503 if (!State) 1504 return nullptr; 1505 1506 if (Att->getModule()->getName() != "malloc") 1507 return nullptr; 1508 1509 OwnershipAttr::args_iterator I = Att->args_begin(), E = Att->args_end(); 1510 if (I != E) { 1511 return MallocMemAux(C, Call, Call.getArgExpr(I->getASTIndex()), 1512 UndefinedVal(), State, AF_Malloc); 1513 } 1514 return MallocMemAux(C, Call, UnknownVal(), UndefinedVal(), State, AF_Malloc); 1515 } 1516 1517 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1518 const CallEvent &Call, 1519 const Expr *SizeEx, SVal Init, 1520 ProgramStateRef State, 1521 AllocationFamily Family) { 1522 if (!State) 1523 return nullptr; 1524 1525 assert(SizeEx); 1526 return MallocMemAux(C, Call, C.getSVal(SizeEx), Init, State, Family); 1527 } 1528 1529 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1530 const CallEvent &Call, SVal Size, 1531 SVal Init, ProgramStateRef State, 1532 AllocationFamily Family) { 1533 if (!State) 1534 return nullptr; 1535 1536 const Expr *CE = Call.getOriginExpr(); 1537 1538 // We expect the malloc functions to return a pointer. 1539 if (!Loc::isLocType(CE->getType())) 1540 return nullptr; 1541 1542 // Bind the return value to the symbolic value from the heap region. 1543 // TODO: We could rewrite post visit to eval call; 'malloc' does not have 1544 // side effects other than what we model here. 1545 unsigned Count = C.blockCount(); 1546 SValBuilder &svalBuilder = C.getSValBuilder(); 1547 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 1548 DefinedSVal RetVal = svalBuilder.getConjuredHeapSymbolVal(CE, LCtx, Count) 1549 .castAs<DefinedSVal>(); 1550 State = State->BindExpr(CE, C.getLocationContext(), RetVal); 1551 1552 // Fill the region with the initialization value. 1553 State = State->bindDefaultInitial(RetVal, Init, LCtx); 1554 1555 // Set the region's extent equal to the Size parameter. 1556 const SymbolicRegion *R = 1557 dyn_cast_or_null<SymbolicRegion>(RetVal.getAsRegion()); 1558 if (!R) 1559 return nullptr; 1560 if (Optional<DefinedOrUnknownSVal> DefinedSize = 1561 Size.getAs<DefinedOrUnknownSVal>()) { 1562 DefinedOrUnknownSVal DynSize = getDynamicSize(State, R, svalBuilder); 1563 1564 DefinedOrUnknownSVal DynSizeMatchesSize = 1565 svalBuilder.evalEQ(State, DynSize, *DefinedSize); 1566 1567 State = State->assume(DynSizeMatchesSize, true); 1568 assert(State); 1569 } 1570 1571 return MallocUpdateRefState(C, CE, State, Family); 1572 } 1573 1574 static ProgramStateRef MallocUpdateRefState(CheckerContext &C, const Expr *E, 1575 ProgramStateRef State, 1576 AllocationFamily Family, 1577 Optional<SVal> RetVal) { 1578 if (!State) 1579 return nullptr; 1580 1581 // Get the return value. 1582 if (!RetVal) 1583 RetVal = C.getSVal(E); 1584 1585 // We expect the malloc functions to return a pointer. 1586 if (!RetVal->getAs<Loc>()) 1587 return nullptr; 1588 1589 SymbolRef Sym = RetVal->getAsLocSymbol(); 1590 // This is a return value of a function that was not inlined, such as malloc() 1591 // or new(). We've checked that in the caller. Therefore, it must be a symbol. 1592 assert(Sym); 1593 1594 // Set the symbol's state to Allocated. 1595 return State->set<RegionState>(Sym, RefState::getAllocated(Family, E)); 1596 } 1597 1598 ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C, 1599 const CallEvent &Call, 1600 const OwnershipAttr *Att, 1601 ProgramStateRef State) const { 1602 if (!State) 1603 return nullptr; 1604 1605 if (Att->getModule()->getName() != "malloc") 1606 return nullptr; 1607 1608 bool IsKnownToBeAllocated = false; 1609 1610 for (const auto &Arg : Att->args()) { 1611 ProgramStateRef StateI = 1612 FreeMemAux(C, Call, State, Arg.getASTIndex(), 1613 Att->getOwnKind() == OwnershipAttr::Holds, 1614 IsKnownToBeAllocated, AF_Malloc); 1615 if (StateI) 1616 State = StateI; 1617 } 1618 return State; 1619 } 1620 1621 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, 1622 const CallEvent &Call, 1623 ProgramStateRef State, unsigned Num, 1624 bool Hold, bool &IsKnownToBeAllocated, 1625 AllocationFamily Family, 1626 bool ReturnsNullOnFailure) const { 1627 if (!State) 1628 return nullptr; 1629 1630 if (Call.getNumArgs() < (Num + 1)) 1631 return nullptr; 1632 1633 return FreeMemAux(C, Call.getArgExpr(Num), Call, State, Hold, 1634 IsKnownToBeAllocated, Family, ReturnsNullOnFailure); 1635 } 1636 1637 /// Checks if the previous call to free on the given symbol failed - if free 1638 /// failed, returns true. Also, returns the corresponding return value symbol. 1639 static bool didPreviousFreeFail(ProgramStateRef State, 1640 SymbolRef Sym, SymbolRef &RetStatusSymbol) { 1641 const SymbolRef *Ret = State->get<FreeReturnValue>(Sym); 1642 if (Ret) { 1643 assert(*Ret && "We should not store the null return symbol"); 1644 ConstraintManager &CMgr = State->getConstraintManager(); 1645 ConditionTruthVal FreeFailed = CMgr.isNull(State, *Ret); 1646 RetStatusSymbol = *Ret; 1647 return FreeFailed.isConstrainedTrue(); 1648 } 1649 return false; 1650 } 1651 1652 static bool printMemFnName(raw_ostream &os, CheckerContext &C, const Expr *E) { 1653 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 1654 // FIXME: This doesn't handle indirect calls. 1655 const FunctionDecl *FD = CE->getDirectCallee(); 1656 if (!FD) 1657 return false; 1658 1659 os << *FD; 1660 if (!FD->isOverloadedOperator()) 1661 os << "()"; 1662 return true; 1663 } 1664 1665 if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E)) { 1666 if (Msg->isInstanceMessage()) 1667 os << "-"; 1668 else 1669 os << "+"; 1670 Msg->getSelector().print(os); 1671 return true; 1672 } 1673 1674 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { 1675 os << "'" 1676 << getOperatorSpelling(NE->getOperatorNew()->getOverloadedOperator()) 1677 << "'"; 1678 return true; 1679 } 1680 1681 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(E)) { 1682 os << "'" 1683 << getOperatorSpelling(DE->getOperatorDelete()->getOverloadedOperator()) 1684 << "'"; 1685 return true; 1686 } 1687 1688 return false; 1689 } 1690 1691 static void printExpectedAllocName(raw_ostream &os, AllocationFamily Family) { 1692 1693 switch(Family) { 1694 case AF_Malloc: os << "malloc()"; return; 1695 case AF_CXXNew: os << "'new'"; return; 1696 case AF_CXXNewArray: os << "'new[]'"; return; 1697 case AF_IfNameIndex: os << "'if_nameindex()'"; return; 1698 case AF_InnerBuffer: os << "container-specific allocator"; return; 1699 case AF_Alloca: 1700 case AF_None: llvm_unreachable("not a deallocation expression"); 1701 } 1702 } 1703 1704 static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family) { 1705 switch(Family) { 1706 case AF_Malloc: os << "free()"; return; 1707 case AF_CXXNew: os << "'delete'"; return; 1708 case AF_CXXNewArray: os << "'delete[]'"; return; 1709 case AF_IfNameIndex: os << "'if_freenameindex()'"; return; 1710 case AF_InnerBuffer: os << "container-specific deallocator"; return; 1711 case AF_Alloca: 1712 case AF_None: llvm_unreachable("suspicious argument"); 1713 } 1714 } 1715 1716 ProgramStateRef MallocChecker::FreeMemAux( 1717 CheckerContext &C, const Expr *ArgExpr, const CallEvent &Call, 1718 ProgramStateRef State, bool Hold, bool &IsKnownToBeAllocated, 1719 AllocationFamily Family, bool ReturnsNullOnFailure) const { 1720 1721 if (!State) 1722 return nullptr; 1723 1724 SVal ArgVal = C.getSVal(ArgExpr); 1725 if (!ArgVal.getAs<DefinedOrUnknownSVal>()) 1726 return nullptr; 1727 DefinedOrUnknownSVal location = ArgVal.castAs<DefinedOrUnknownSVal>(); 1728 1729 // Check for null dereferences. 1730 if (!location.getAs<Loc>()) 1731 return nullptr; 1732 1733 // The explicit NULL case, no operation is performed. 1734 ProgramStateRef notNullState, nullState; 1735 std::tie(notNullState, nullState) = State->assume(location); 1736 if (nullState && !notNullState) 1737 return nullptr; 1738 1739 // Unknown values could easily be okay 1740 // Undefined values are handled elsewhere 1741 if (ArgVal.isUnknownOrUndef()) 1742 return nullptr; 1743 1744 const MemRegion *R = ArgVal.getAsRegion(); 1745 const Expr *ParentExpr = Call.getOriginExpr(); 1746 1747 // NOTE: We detected a bug, but the checker under whose name we would emit the 1748 // error could be disabled. Generally speaking, the MallocChecker family is an 1749 // integral part of the Static Analyzer, and disabling any part of it should 1750 // only be done under exceptional circumstances, such as frequent false 1751 // positives. If this is the case, we can reasonably believe that there are 1752 // serious faults in our understanding of the source code, and even if we 1753 // don't emit an warning, we should terminate further analysis with a sink 1754 // node. 1755 1756 // Nonlocs can't be freed, of course. 1757 // Non-region locations (labels and fixed addresses) also shouldn't be freed. 1758 if (!R) { 1759 // Exception: 1760 // If the macro ZERO_SIZE_PTR is defined, this could be a kernel source 1761 // code. In that case, the ZERO_SIZE_PTR defines a special value used for a 1762 // zero-sized memory block which is allowed to be freed, despite not being a 1763 // null pointer. 1764 if (Family != AF_Malloc || !isArgZERO_SIZE_PTR(State, C, ArgVal)) 1765 HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1766 Family); 1767 return nullptr; 1768 } 1769 1770 R = R->StripCasts(); 1771 1772 // Blocks might show up as heap data, but should not be free()d 1773 if (isa<BlockDataRegion>(R)) { 1774 HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1775 Family); 1776 return nullptr; 1777 } 1778 1779 const MemSpaceRegion *MS = R->getMemorySpace(); 1780 1781 // Parameters, locals, statics, globals, and memory returned by 1782 // __builtin_alloca() shouldn't be freed. 1783 if (!(isa<UnknownSpaceRegion>(MS) || isa<HeapSpaceRegion>(MS))) { 1784 // FIXME: at the time this code was written, malloc() regions were 1785 // represented by conjured symbols, which are all in UnknownSpaceRegion. 1786 // This means that there isn't actually anything from HeapSpaceRegion 1787 // that should be freed, even though we allow it here. 1788 // Of course, free() can work on memory allocated outside the current 1789 // function, so UnknownSpaceRegion is always a possibility. 1790 // False negatives are better than false positives. 1791 1792 if (isa<AllocaRegion>(R)) 1793 HandleFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1794 else 1795 HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1796 Family); 1797 1798 return nullptr; 1799 } 1800 1801 const SymbolicRegion *SrBase = dyn_cast<SymbolicRegion>(R->getBaseRegion()); 1802 // Various cases could lead to non-symbol values here. 1803 // For now, ignore them. 1804 if (!SrBase) 1805 return nullptr; 1806 1807 SymbolRef SymBase = SrBase->getSymbol(); 1808 const RefState *RsBase = State->get<RegionState>(SymBase); 1809 SymbolRef PreviousRetStatusSymbol = nullptr; 1810 1811 IsKnownToBeAllocated = 1812 RsBase && (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero()); 1813 1814 if (RsBase) { 1815 1816 // Memory returned by alloca() shouldn't be freed. 1817 if (RsBase->getAllocationFamily() == AF_Alloca) { 1818 HandleFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1819 return nullptr; 1820 } 1821 1822 // Check for double free first. 1823 if ((RsBase->isReleased() || RsBase->isRelinquished()) && 1824 !didPreviousFreeFail(State, SymBase, PreviousRetStatusSymbol)) { 1825 HandleDoubleFree(C, ParentExpr->getSourceRange(), RsBase->isReleased(), 1826 SymBase, PreviousRetStatusSymbol); 1827 return nullptr; 1828 1829 // If the pointer is allocated or escaped, but we are now trying to free it, 1830 // check that the call to free is proper. 1831 } else if (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero() || 1832 RsBase->isEscaped()) { 1833 1834 // Check if an expected deallocation function matches the real one. 1835 bool DeallocMatchesAlloc = RsBase->getAllocationFamily() == Family; 1836 if (!DeallocMatchesAlloc) { 1837 HandleMismatchedDealloc(C, ArgExpr->getSourceRange(), ParentExpr, 1838 RsBase, SymBase, Hold); 1839 return nullptr; 1840 } 1841 1842 // Check if the memory location being freed is the actual location 1843 // allocated, or an offset. 1844 RegionOffset Offset = R->getAsOffset(); 1845 if (Offset.isValid() && 1846 !Offset.hasSymbolicOffset() && 1847 Offset.getOffset() != 0) { 1848 const Expr *AllocExpr = cast<Expr>(RsBase->getStmt()); 1849 HandleOffsetFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1850 Family, AllocExpr); 1851 return nullptr; 1852 } 1853 } 1854 } 1855 1856 if (SymBase->getType()->isFunctionPointerType()) { 1857 HandleFunctionPtrFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1858 Family); 1859 return nullptr; 1860 } 1861 1862 // Clean out the info on previous call to free return info. 1863 State = State->remove<FreeReturnValue>(SymBase); 1864 1865 // Keep track of the return value. If it is NULL, we will know that free 1866 // failed. 1867 if (ReturnsNullOnFailure) { 1868 SVal RetVal = C.getSVal(ParentExpr); 1869 SymbolRef RetStatusSymbol = RetVal.getAsSymbol(); 1870 if (RetStatusSymbol) { 1871 C.getSymbolManager().addSymbolDependency(SymBase, RetStatusSymbol); 1872 State = State->set<FreeReturnValue>(SymBase, RetStatusSymbol); 1873 } 1874 } 1875 1876 // If we don't know anything about this symbol, a free on it may be totally 1877 // valid. If this is the case, lets assume that the allocation family of the 1878 // freeing function is the same as the symbols allocation family, and go with 1879 // that. 1880 assert(!RsBase || (RsBase && RsBase->getAllocationFamily() == Family)); 1881 1882 // Normal free. 1883 if (Hold) 1884 return State->set<RegionState>(SymBase, 1885 RefState::getRelinquished(Family, 1886 ParentExpr)); 1887 1888 return State->set<RegionState>(SymBase, 1889 RefState::getReleased(Family, ParentExpr)); 1890 } 1891 1892 Optional<MallocChecker::CheckKind> 1893 MallocChecker::getCheckIfTracked(AllocationFamily Family, 1894 bool IsALeakCheck) const { 1895 switch (Family) { 1896 case AF_Malloc: 1897 case AF_Alloca: 1898 case AF_IfNameIndex: { 1899 if (ChecksEnabled[CK_MallocChecker]) 1900 return CK_MallocChecker; 1901 return None; 1902 } 1903 case AF_CXXNew: 1904 case AF_CXXNewArray: { 1905 if (IsALeakCheck) { 1906 if (ChecksEnabled[CK_NewDeleteLeaksChecker]) 1907 return CK_NewDeleteLeaksChecker; 1908 } 1909 else { 1910 if (ChecksEnabled[CK_NewDeleteChecker]) 1911 return CK_NewDeleteChecker; 1912 } 1913 return None; 1914 } 1915 case AF_InnerBuffer: { 1916 if (ChecksEnabled[CK_InnerPointerChecker]) 1917 return CK_InnerPointerChecker; 1918 return None; 1919 } 1920 case AF_None: { 1921 llvm_unreachable("no family"); 1922 } 1923 } 1924 llvm_unreachable("unhandled family"); 1925 } 1926 1927 Optional<MallocChecker::CheckKind> 1928 MallocChecker::getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 1929 bool IsALeakCheck) const { 1930 if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) 1931 return CK_MallocChecker; 1932 1933 const RefState *RS = C.getState()->get<RegionState>(Sym); 1934 assert(RS); 1935 return getCheckIfTracked(RS->getAllocationFamily(), IsALeakCheck); 1936 } 1937 1938 bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) { 1939 if (Optional<nonloc::ConcreteInt> IntVal = V.getAs<nonloc::ConcreteInt>()) 1940 os << "an integer (" << IntVal->getValue() << ")"; 1941 else if (Optional<loc::ConcreteInt> ConstAddr = V.getAs<loc::ConcreteInt>()) 1942 os << "a constant address (" << ConstAddr->getValue() << ")"; 1943 else if (Optional<loc::GotoLabel> Label = V.getAs<loc::GotoLabel>()) 1944 os << "the address of the label '" << Label->getLabel()->getName() << "'"; 1945 else 1946 return false; 1947 1948 return true; 1949 } 1950 1951 bool MallocChecker::SummarizeRegion(raw_ostream &os, 1952 const MemRegion *MR) { 1953 switch (MR->getKind()) { 1954 case MemRegion::FunctionCodeRegionKind: { 1955 const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl(); 1956 if (FD) 1957 os << "the address of the function '" << *FD << '\''; 1958 else 1959 os << "the address of a function"; 1960 return true; 1961 } 1962 case MemRegion::BlockCodeRegionKind: 1963 os << "block text"; 1964 return true; 1965 case MemRegion::BlockDataRegionKind: 1966 // FIXME: where the block came from? 1967 os << "a block"; 1968 return true; 1969 default: { 1970 const MemSpaceRegion *MS = MR->getMemorySpace(); 1971 1972 if (isa<StackLocalsSpaceRegion>(MS)) { 1973 const VarRegion *VR = dyn_cast<VarRegion>(MR); 1974 const VarDecl *VD; 1975 if (VR) 1976 VD = VR->getDecl(); 1977 else 1978 VD = nullptr; 1979 1980 if (VD) 1981 os << "the address of the local variable '" << VD->getName() << "'"; 1982 else 1983 os << "the address of a local stack variable"; 1984 return true; 1985 } 1986 1987 if (isa<StackArgumentsSpaceRegion>(MS)) { 1988 const VarRegion *VR = dyn_cast<VarRegion>(MR); 1989 const VarDecl *VD; 1990 if (VR) 1991 VD = VR->getDecl(); 1992 else 1993 VD = nullptr; 1994 1995 if (VD) 1996 os << "the address of the parameter '" << VD->getName() << "'"; 1997 else 1998 os << "the address of a parameter"; 1999 return true; 2000 } 2001 2002 if (isa<GlobalsSpaceRegion>(MS)) { 2003 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2004 const VarDecl *VD; 2005 if (VR) 2006 VD = VR->getDecl(); 2007 else 2008 VD = nullptr; 2009 2010 if (VD) { 2011 if (VD->isStaticLocal()) 2012 os << "the address of the static variable '" << VD->getName() << "'"; 2013 else 2014 os << "the address of the global variable '" << VD->getName() << "'"; 2015 } else 2016 os << "the address of a global variable"; 2017 return true; 2018 } 2019 2020 return false; 2021 } 2022 } 2023 } 2024 2025 void MallocChecker::HandleNonHeapDealloc(CheckerContext &C, SVal ArgVal, 2026 SourceRange Range, 2027 const Expr *DeallocExpr, 2028 AllocationFamily Family) const { 2029 2030 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2031 C.addSink(); 2032 return; 2033 } 2034 2035 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2036 if (!CheckKind.hasValue()) 2037 return; 2038 2039 if (ExplodedNode *N = C.generateErrorNode()) { 2040 if (!BT_BadFree[*CheckKind]) 2041 BT_BadFree[*CheckKind].reset(new BugType( 2042 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 2043 2044 SmallString<100> buf; 2045 llvm::raw_svector_ostream os(buf); 2046 2047 const MemRegion *MR = ArgVal.getAsRegion(); 2048 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 2049 MR = ER->getSuperRegion(); 2050 2051 os << "Argument to "; 2052 if (!printMemFnName(os, C, DeallocExpr)) 2053 os << "deallocator"; 2054 2055 os << " is "; 2056 bool Summarized = MR ? SummarizeRegion(os, MR) 2057 : SummarizeValue(os, ArgVal); 2058 if (Summarized) 2059 os << ", which is not memory allocated by "; 2060 else 2061 os << "not memory allocated by "; 2062 2063 printExpectedAllocName(os, Family); 2064 2065 auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind], 2066 os.str(), N); 2067 R->markInteresting(MR); 2068 R->addRange(Range); 2069 C.emitReport(std::move(R)); 2070 } 2071 } 2072 2073 void MallocChecker::HandleFreeAlloca(CheckerContext &C, SVal ArgVal, 2074 SourceRange Range) const { 2075 2076 Optional<MallocChecker::CheckKind> CheckKind; 2077 2078 if (ChecksEnabled[CK_MallocChecker]) 2079 CheckKind = CK_MallocChecker; 2080 else if (ChecksEnabled[CK_MismatchedDeallocatorChecker]) 2081 CheckKind = CK_MismatchedDeallocatorChecker; 2082 else { 2083 C.addSink(); 2084 return; 2085 } 2086 2087 if (ExplodedNode *N = C.generateErrorNode()) { 2088 if (!BT_FreeAlloca[*CheckKind]) 2089 BT_FreeAlloca[*CheckKind].reset(new BugType( 2090 CheckNames[*CheckKind], "Free alloca()", categories::MemoryError)); 2091 2092 auto R = std::make_unique<PathSensitiveBugReport>( 2093 *BT_FreeAlloca[*CheckKind], 2094 "Memory allocated by alloca() should not be deallocated", N); 2095 R->markInteresting(ArgVal.getAsRegion()); 2096 R->addRange(Range); 2097 C.emitReport(std::move(R)); 2098 } 2099 } 2100 2101 void MallocChecker::HandleMismatchedDealloc(CheckerContext &C, 2102 SourceRange Range, 2103 const Expr *DeallocExpr, 2104 const RefState *RS, SymbolRef Sym, 2105 bool OwnershipTransferred) const { 2106 2107 if (!ChecksEnabled[CK_MismatchedDeallocatorChecker]) { 2108 C.addSink(); 2109 return; 2110 } 2111 2112 if (ExplodedNode *N = C.generateErrorNode()) { 2113 if (!BT_MismatchedDealloc) 2114 BT_MismatchedDealloc.reset( 2115 new BugType(CheckNames[CK_MismatchedDeallocatorChecker], 2116 "Bad deallocator", categories::MemoryError)); 2117 2118 SmallString<100> buf; 2119 llvm::raw_svector_ostream os(buf); 2120 2121 const Expr *AllocExpr = cast<Expr>(RS->getStmt()); 2122 SmallString<20> AllocBuf; 2123 llvm::raw_svector_ostream AllocOs(AllocBuf); 2124 SmallString<20> DeallocBuf; 2125 llvm::raw_svector_ostream DeallocOs(DeallocBuf); 2126 2127 if (OwnershipTransferred) { 2128 if (printMemFnName(DeallocOs, C, DeallocExpr)) 2129 os << DeallocOs.str() << " cannot"; 2130 else 2131 os << "Cannot"; 2132 2133 os << " take ownership of memory"; 2134 2135 if (printMemFnName(AllocOs, C, AllocExpr)) 2136 os << " allocated by " << AllocOs.str(); 2137 } else { 2138 os << "Memory"; 2139 if (printMemFnName(AllocOs, C, AllocExpr)) 2140 os << " allocated by " << AllocOs.str(); 2141 2142 os << " should be deallocated by "; 2143 printExpectedDeallocName(os, RS->getAllocationFamily()); 2144 2145 if (printMemFnName(DeallocOs, C, DeallocExpr)) 2146 os << ", not " << DeallocOs.str(); 2147 } 2148 2149 auto R = std::make_unique<PathSensitiveBugReport>(*BT_MismatchedDealloc, 2150 os.str(), N); 2151 R->markInteresting(Sym); 2152 R->addRange(Range); 2153 R->addVisitor(std::make_unique<MallocBugVisitor>(Sym)); 2154 C.emitReport(std::move(R)); 2155 } 2156 } 2157 2158 void MallocChecker::HandleOffsetFree(CheckerContext &C, SVal ArgVal, 2159 SourceRange Range, const Expr *DeallocExpr, 2160 AllocationFamily Family, 2161 const Expr *AllocExpr) const { 2162 2163 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2164 C.addSink(); 2165 return; 2166 } 2167 2168 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2169 if (!CheckKind.hasValue()) 2170 return; 2171 2172 ExplodedNode *N = C.generateErrorNode(); 2173 if (!N) 2174 return; 2175 2176 if (!BT_OffsetFree[*CheckKind]) 2177 BT_OffsetFree[*CheckKind].reset(new BugType( 2178 CheckNames[*CheckKind], "Offset free", categories::MemoryError)); 2179 2180 SmallString<100> buf; 2181 llvm::raw_svector_ostream os(buf); 2182 SmallString<20> AllocNameBuf; 2183 llvm::raw_svector_ostream AllocNameOs(AllocNameBuf); 2184 2185 const MemRegion *MR = ArgVal.getAsRegion(); 2186 assert(MR && "Only MemRegion based symbols can have offset free errors"); 2187 2188 RegionOffset Offset = MR->getAsOffset(); 2189 assert((Offset.isValid() && 2190 !Offset.hasSymbolicOffset() && 2191 Offset.getOffset() != 0) && 2192 "Only symbols with a valid offset can have offset free errors"); 2193 2194 int offsetBytes = Offset.getOffset() / C.getASTContext().getCharWidth(); 2195 2196 os << "Argument to "; 2197 if (!printMemFnName(os, C, DeallocExpr)) 2198 os << "deallocator"; 2199 os << " is offset by " 2200 << offsetBytes 2201 << " " 2202 << ((abs(offsetBytes) > 1) ? "bytes" : "byte") 2203 << " from the start of "; 2204 if (AllocExpr && printMemFnName(AllocNameOs, C, AllocExpr)) 2205 os << "memory allocated by " << AllocNameOs.str(); 2206 else 2207 os << "allocated memory"; 2208 2209 auto R = std::make_unique<PathSensitiveBugReport>(*BT_OffsetFree[*CheckKind], 2210 os.str(), N); 2211 R->markInteresting(MR->getBaseRegion()); 2212 R->addRange(Range); 2213 C.emitReport(std::move(R)); 2214 } 2215 2216 void MallocChecker::HandleUseAfterFree(CheckerContext &C, SourceRange Range, 2217 SymbolRef Sym) const { 2218 2219 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker] && 2220 !ChecksEnabled[CK_InnerPointerChecker]) { 2221 C.addSink(); 2222 return; 2223 } 2224 2225 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2226 if (!CheckKind.hasValue()) 2227 return; 2228 2229 if (ExplodedNode *N = C.generateErrorNode()) { 2230 if (!BT_UseFree[*CheckKind]) 2231 BT_UseFree[*CheckKind].reset(new BugType( 2232 CheckNames[*CheckKind], "Use-after-free", categories::MemoryError)); 2233 2234 AllocationFamily AF = 2235 C.getState()->get<RegionState>(Sym)->getAllocationFamily(); 2236 2237 auto R = std::make_unique<PathSensitiveBugReport>( 2238 *BT_UseFree[*CheckKind], 2239 AF == AF_InnerBuffer 2240 ? "Inner pointer of container used after re/deallocation" 2241 : "Use of memory after it is freed", 2242 N); 2243 2244 R->markInteresting(Sym); 2245 R->addRange(Range); 2246 R->addVisitor(std::make_unique<MallocBugVisitor>(Sym)); 2247 2248 if (AF == AF_InnerBuffer) 2249 R->addVisitor(allocation_state::getInnerPointerBRVisitor(Sym)); 2250 2251 C.emitReport(std::move(R)); 2252 } 2253 } 2254 2255 void MallocChecker::HandleDoubleFree(CheckerContext &C, SourceRange Range, 2256 bool Released, SymbolRef Sym, 2257 SymbolRef PrevSym) const { 2258 2259 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2260 C.addSink(); 2261 return; 2262 } 2263 2264 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2265 if (!CheckKind.hasValue()) 2266 return; 2267 2268 if (ExplodedNode *N = C.generateErrorNode()) { 2269 if (!BT_DoubleFree[*CheckKind]) 2270 BT_DoubleFree[*CheckKind].reset(new BugType( 2271 CheckNames[*CheckKind], "Double free", categories::MemoryError)); 2272 2273 auto R = std::make_unique<PathSensitiveBugReport>( 2274 *BT_DoubleFree[*CheckKind], 2275 (Released ? "Attempt to free released memory" 2276 : "Attempt to free non-owned memory"), 2277 N); 2278 R->addRange(Range); 2279 R->markInteresting(Sym); 2280 if (PrevSym) 2281 R->markInteresting(PrevSym); 2282 R->addVisitor(std::make_unique<MallocBugVisitor>(Sym)); 2283 C.emitReport(std::move(R)); 2284 } 2285 } 2286 2287 void MallocChecker::HandleDoubleDelete(CheckerContext &C, SymbolRef Sym) const { 2288 2289 if (!ChecksEnabled[CK_NewDeleteChecker]) { 2290 C.addSink(); 2291 return; 2292 } 2293 2294 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2295 if (!CheckKind.hasValue()) 2296 return; 2297 2298 if (ExplodedNode *N = C.generateErrorNode()) { 2299 if (!BT_DoubleDelete) 2300 BT_DoubleDelete.reset(new BugType(CheckNames[CK_NewDeleteChecker], 2301 "Double delete", 2302 categories::MemoryError)); 2303 2304 auto R = std::make_unique<PathSensitiveBugReport>( 2305 *BT_DoubleDelete, "Attempt to delete released memory", N); 2306 2307 R->markInteresting(Sym); 2308 R->addVisitor(std::make_unique<MallocBugVisitor>(Sym)); 2309 C.emitReport(std::move(R)); 2310 } 2311 } 2312 2313 void MallocChecker::HandleUseZeroAlloc(CheckerContext &C, SourceRange Range, 2314 SymbolRef Sym) const { 2315 2316 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2317 C.addSink(); 2318 return; 2319 } 2320 2321 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2322 2323 if (!CheckKind.hasValue()) 2324 return; 2325 2326 if (ExplodedNode *N = C.generateErrorNode()) { 2327 if (!BT_UseZerroAllocated[*CheckKind]) 2328 BT_UseZerroAllocated[*CheckKind].reset( 2329 new BugType(CheckNames[*CheckKind], "Use of zero allocated", 2330 categories::MemoryError)); 2331 2332 auto R = std::make_unique<PathSensitiveBugReport>( 2333 *BT_UseZerroAllocated[*CheckKind], "Use of zero-allocated memory", N); 2334 2335 R->addRange(Range); 2336 if (Sym) { 2337 R->markInteresting(Sym); 2338 R->addVisitor(std::make_unique<MallocBugVisitor>(Sym)); 2339 } 2340 C.emitReport(std::move(R)); 2341 } 2342 } 2343 2344 void MallocChecker::HandleFunctionPtrFree(CheckerContext &C, SVal ArgVal, 2345 SourceRange Range, 2346 const Expr *FreeExpr, 2347 AllocationFamily Family) const { 2348 if (!ChecksEnabled[CK_MallocChecker]) { 2349 C.addSink(); 2350 return; 2351 } 2352 2353 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2354 if (!CheckKind.hasValue()) 2355 return; 2356 2357 if (ExplodedNode *N = C.generateErrorNode()) { 2358 if (!BT_BadFree[*CheckKind]) 2359 BT_BadFree[*CheckKind].reset(new BugType( 2360 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 2361 2362 SmallString<100> Buf; 2363 llvm::raw_svector_ostream Os(Buf); 2364 2365 const MemRegion *MR = ArgVal.getAsRegion(); 2366 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 2367 MR = ER->getSuperRegion(); 2368 2369 Os << "Argument to "; 2370 if (!printMemFnName(Os, C, FreeExpr)) 2371 Os << "deallocator"; 2372 2373 Os << " is a function pointer"; 2374 2375 auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind], 2376 Os.str(), N); 2377 R->markInteresting(MR); 2378 R->addRange(Range); 2379 C.emitReport(std::move(R)); 2380 } 2381 } 2382 2383 ProgramStateRef 2384 MallocChecker::ReallocMemAux(CheckerContext &C, const CallEvent &Call, 2385 bool ShouldFreeOnFail, ProgramStateRef State, 2386 AllocationFamily Family, bool SuffixWithN) const { 2387 if (!State) 2388 return nullptr; 2389 2390 const CallExpr *CE = cast<CallExpr>(Call.getOriginExpr()); 2391 2392 if (SuffixWithN && CE->getNumArgs() < 3) 2393 return nullptr; 2394 else if (CE->getNumArgs() < 2) 2395 return nullptr; 2396 2397 const Expr *arg0Expr = CE->getArg(0); 2398 SVal Arg0Val = C.getSVal(arg0Expr); 2399 if (!Arg0Val.getAs<DefinedOrUnknownSVal>()) 2400 return nullptr; 2401 DefinedOrUnknownSVal arg0Val = Arg0Val.castAs<DefinedOrUnknownSVal>(); 2402 2403 SValBuilder &svalBuilder = C.getSValBuilder(); 2404 2405 DefinedOrUnknownSVal PtrEQ = 2406 svalBuilder.evalEQ(State, arg0Val, svalBuilder.makeNull()); 2407 2408 // Get the size argument. 2409 const Expr *Arg1 = CE->getArg(1); 2410 2411 // Get the value of the size argument. 2412 SVal TotalSize = C.getSVal(Arg1); 2413 if (SuffixWithN) 2414 TotalSize = evalMulForBufferSize(C, Arg1, CE->getArg(2)); 2415 if (!TotalSize.getAs<DefinedOrUnknownSVal>()) 2416 return nullptr; 2417 2418 // Compare the size argument to 0. 2419 DefinedOrUnknownSVal SizeZero = 2420 svalBuilder.evalEQ(State, TotalSize.castAs<DefinedOrUnknownSVal>(), 2421 svalBuilder.makeIntValWithPtrWidth(0, false)); 2422 2423 ProgramStateRef StatePtrIsNull, StatePtrNotNull; 2424 std::tie(StatePtrIsNull, StatePtrNotNull) = State->assume(PtrEQ); 2425 ProgramStateRef StateSizeIsZero, StateSizeNotZero; 2426 std::tie(StateSizeIsZero, StateSizeNotZero) = State->assume(SizeZero); 2427 // We only assume exceptional states if they are definitely true; if the 2428 // state is under-constrained, assume regular realloc behavior. 2429 bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull; 2430 bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero; 2431 2432 // If the ptr is NULL and the size is not 0, the call is equivalent to 2433 // malloc(size). 2434 if (PrtIsNull && !SizeIsZero) { 2435 ProgramStateRef stateMalloc = MallocMemAux( 2436 C, Call, TotalSize, UndefinedVal(), StatePtrIsNull, Family); 2437 return stateMalloc; 2438 } 2439 2440 if (PrtIsNull && SizeIsZero) 2441 return State; 2442 2443 assert(!PrtIsNull); 2444 2445 bool IsKnownToBeAllocated = false; 2446 2447 // If the size is 0, free the memory. 2448 if (SizeIsZero) 2449 // The semantics of the return value are: 2450 // If size was equal to 0, either NULL or a pointer suitable to be passed 2451 // to free() is returned. We just free the input pointer and do not add 2452 // any constrains on the output pointer. 2453 if (ProgramStateRef stateFree = FreeMemAux( 2454 C, Call, StateSizeIsZero, 0, false, IsKnownToBeAllocated, Family)) 2455 return stateFree; 2456 2457 // Default behavior. 2458 if (ProgramStateRef stateFree = 2459 FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocated, Family)) { 2460 2461 ProgramStateRef stateRealloc = 2462 MallocMemAux(C, Call, TotalSize, UnknownVal(), stateFree, Family); 2463 if (!stateRealloc) 2464 return nullptr; 2465 2466 OwnershipAfterReallocKind Kind = OAR_ToBeFreedAfterFailure; 2467 if (ShouldFreeOnFail) 2468 Kind = OAR_FreeOnFailure; 2469 else if (!IsKnownToBeAllocated) 2470 Kind = OAR_DoNotTrackAfterFailure; 2471 2472 // Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size). 2473 SymbolRef FromPtr = arg0Val.getLocSymbolInBase(); 2474 SVal RetVal = C.getSVal(CE); 2475 SymbolRef ToPtr = RetVal.getAsSymbol(); 2476 assert(FromPtr && ToPtr && 2477 "By this point, FreeMemAux and MallocMemAux should have checked " 2478 "whether the argument or the return value is symbolic!"); 2479 2480 // Record the info about the reallocated symbol so that we could properly 2481 // process failed reallocation. 2482 stateRealloc = stateRealloc->set<ReallocPairs>(ToPtr, 2483 ReallocPair(FromPtr, Kind)); 2484 // The reallocated symbol should stay alive for as long as the new symbol. 2485 C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr); 2486 return stateRealloc; 2487 } 2488 return nullptr; 2489 } 2490 2491 ProgramStateRef MallocChecker::CallocMem(CheckerContext &C, 2492 const CallEvent &Call, 2493 ProgramStateRef State) { 2494 if (!State) 2495 return nullptr; 2496 2497 if (Call.getNumArgs() < 2) 2498 return nullptr; 2499 2500 SValBuilder &svalBuilder = C.getSValBuilder(); 2501 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 2502 SVal TotalSize = 2503 evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1)); 2504 2505 return MallocMemAux(C, Call, TotalSize, zeroVal, State, AF_Malloc); 2506 } 2507 2508 MallocChecker::LeakInfo MallocChecker::getAllocationSite(const ExplodedNode *N, 2509 SymbolRef Sym, 2510 CheckerContext &C) { 2511 const LocationContext *LeakContext = N->getLocationContext(); 2512 // Walk the ExplodedGraph backwards and find the first node that referred to 2513 // the tracked symbol. 2514 const ExplodedNode *AllocNode = N; 2515 const MemRegion *ReferenceRegion = nullptr; 2516 2517 while (N) { 2518 ProgramStateRef State = N->getState(); 2519 if (!State->get<RegionState>(Sym)) 2520 break; 2521 2522 // Find the most recent expression bound to the symbol in the current 2523 // context. 2524 if (!ReferenceRegion) { 2525 if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) { 2526 SVal Val = State->getSVal(MR); 2527 if (Val.getAsLocSymbol() == Sym) { 2528 const VarRegion *VR = MR->getBaseRegion()->getAs<VarRegion>(); 2529 // Do not show local variables belonging to a function other than 2530 // where the error is reported. 2531 if (!VR || (VR->getStackFrame() == LeakContext->getStackFrame())) 2532 ReferenceRegion = MR; 2533 } 2534 } 2535 } 2536 2537 // Allocation node, is the last node in the current or parent context in 2538 // which the symbol was tracked. 2539 const LocationContext *NContext = N->getLocationContext(); 2540 if (NContext == LeakContext || 2541 NContext->isParentOf(LeakContext)) 2542 AllocNode = N; 2543 N = N->pred_empty() ? nullptr : *(N->pred_begin()); 2544 } 2545 2546 return LeakInfo(AllocNode, ReferenceRegion); 2547 } 2548 2549 void MallocChecker::HandleLeak(SymbolRef Sym, ExplodedNode *N, 2550 CheckerContext &C) const { 2551 2552 if (!ChecksEnabled[CK_MallocChecker] && 2553 !ChecksEnabled[CK_NewDeleteLeaksChecker]) 2554 return; 2555 2556 const RefState *RS = C.getState()->get<RegionState>(Sym); 2557 assert(RS && "cannot leak an untracked symbol"); 2558 AllocationFamily Family = RS->getAllocationFamily(); 2559 2560 if (Family == AF_Alloca) 2561 return; 2562 2563 Optional<MallocChecker::CheckKind> 2564 CheckKind = getCheckIfTracked(Family, true); 2565 2566 if (!CheckKind.hasValue()) 2567 return; 2568 2569 assert(N); 2570 if (!BT_Leak[*CheckKind]) { 2571 // Leaks should not be reported if they are post-dominated by a sink: 2572 // (1) Sinks are higher importance bugs. 2573 // (2) NoReturnFunctionChecker uses sink nodes to represent paths ending 2574 // with __noreturn functions such as assert() or exit(). We choose not 2575 // to report leaks on such paths. 2576 BT_Leak[*CheckKind].reset(new BugType(CheckNames[*CheckKind], "Memory leak", 2577 categories::MemoryError, 2578 /*SuppressOnSink=*/true)); 2579 } 2580 2581 // Most bug reports are cached at the location where they occurred. 2582 // With leaks, we want to unique them by the location where they were 2583 // allocated, and only report a single path. 2584 PathDiagnosticLocation LocUsedForUniqueing; 2585 const ExplodedNode *AllocNode = nullptr; 2586 const MemRegion *Region = nullptr; 2587 std::tie(AllocNode, Region) = getAllocationSite(N, Sym, C); 2588 2589 const Stmt *AllocationStmt = AllocNode->getStmtForDiagnostics(); 2590 if (AllocationStmt) 2591 LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocationStmt, 2592 C.getSourceManager(), 2593 AllocNode->getLocationContext()); 2594 2595 SmallString<200> buf; 2596 llvm::raw_svector_ostream os(buf); 2597 if (Region && Region->canPrintPretty()) { 2598 os << "Potential leak of memory pointed to by "; 2599 Region->printPretty(os); 2600 } else { 2601 os << "Potential memory leak"; 2602 } 2603 2604 auto R = std::make_unique<PathSensitiveBugReport>( 2605 *BT_Leak[*CheckKind], os.str(), N, LocUsedForUniqueing, 2606 AllocNode->getLocationContext()->getDecl()); 2607 R->markInteresting(Sym); 2608 R->addVisitor(std::make_unique<MallocBugVisitor>(Sym, true)); 2609 C.emitReport(std::move(R)); 2610 } 2611 2612 void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper, 2613 CheckerContext &C) const 2614 { 2615 ProgramStateRef state = C.getState(); 2616 RegionStateTy OldRS = state->get<RegionState>(); 2617 RegionStateTy::Factory &F = state->get_context<RegionState>(); 2618 2619 RegionStateTy RS = OldRS; 2620 SmallVector<SymbolRef, 2> Errors; 2621 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2622 if (SymReaper.isDead(I->first)) { 2623 if (I->second.isAllocated() || I->second.isAllocatedOfSizeZero()) 2624 Errors.push_back(I->first); 2625 // Remove the dead symbol from the map. 2626 RS = F.remove(RS, I->first); 2627 } 2628 } 2629 2630 if (RS == OldRS) { 2631 // We shouldn't have touched other maps yet. 2632 assert(state->get<ReallocPairs>() == 2633 C.getState()->get<ReallocPairs>()); 2634 assert(state->get<FreeReturnValue>() == 2635 C.getState()->get<FreeReturnValue>()); 2636 return; 2637 } 2638 2639 // Cleanup the Realloc Pairs Map. 2640 ReallocPairsTy RP = state->get<ReallocPairs>(); 2641 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 2642 if (SymReaper.isDead(I->first) || 2643 SymReaper.isDead(I->second.ReallocatedSym)) { 2644 state = state->remove<ReallocPairs>(I->first); 2645 } 2646 } 2647 2648 // Cleanup the FreeReturnValue Map. 2649 FreeReturnValueTy FR = state->get<FreeReturnValue>(); 2650 for (FreeReturnValueTy::iterator I = FR.begin(), E = FR.end(); I != E; ++I) { 2651 if (SymReaper.isDead(I->first) || 2652 SymReaper.isDead(I->second)) { 2653 state = state->remove<FreeReturnValue>(I->first); 2654 } 2655 } 2656 2657 // Generate leak node. 2658 ExplodedNode *N = C.getPredecessor(); 2659 if (!Errors.empty()) { 2660 static CheckerProgramPointTag Tag("MallocChecker", "DeadSymbolsLeak"); 2661 N = C.generateNonFatalErrorNode(C.getState(), &Tag); 2662 if (N) { 2663 for (SmallVectorImpl<SymbolRef>::iterator 2664 I = Errors.begin(), E = Errors.end(); I != E; ++I) { 2665 HandleLeak(*I, N, C); 2666 } 2667 } 2668 } 2669 2670 C.addTransition(state->set<RegionState>(RS), N); 2671 } 2672 2673 void MallocChecker::checkPreCall(const CallEvent &Call, 2674 CheckerContext &C) const { 2675 2676 if (const auto *DC = dyn_cast<CXXDeallocatorCall>(&Call)) { 2677 const CXXDeleteExpr *DE = DC->getOriginExpr(); 2678 2679 if (!ChecksEnabled[CK_NewDeleteChecker]) 2680 if (SymbolRef Sym = C.getSVal(DE->getArgument()).getAsSymbol()) 2681 checkUseAfterFree(Sym, C, DE->getArgument()); 2682 2683 if (!isStandardNewDelete(DC->getDecl())) 2684 return; 2685 2686 ProgramStateRef State = C.getState(); 2687 bool IsKnownToBeAllocated; 2688 State = FreeMemAux(C, DE->getArgument(), Call, State, 2689 /*Hold*/ false, IsKnownToBeAllocated, 2690 (DE->isArrayForm() ? AF_CXXNewArray : AF_CXXNew)); 2691 2692 C.addTransition(State); 2693 return; 2694 } 2695 2696 if (const auto *DC = dyn_cast<CXXDestructorCall>(&Call)) { 2697 SymbolRef Sym = DC->getCXXThisVal().getAsSymbol(); 2698 if (!Sym || checkDoubleDelete(Sym, C)) 2699 return; 2700 } 2701 2702 // We will check for double free in the post visit. 2703 if (const AnyFunctionCall *FC = dyn_cast<AnyFunctionCall>(&Call)) { 2704 const FunctionDecl *FD = FC->getDecl(); 2705 if (!FD) 2706 return; 2707 2708 if (ChecksEnabled[CK_MallocChecker] && isFreeingCall(Call)) 2709 return; 2710 } 2711 2712 // Check if the callee of a method is deleted. 2713 if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(&Call)) { 2714 SymbolRef Sym = CC->getCXXThisVal().getAsSymbol(); 2715 if (!Sym || checkUseAfterFree(Sym, C, CC->getCXXThisExpr())) 2716 return; 2717 } 2718 2719 // Check arguments for being used after free. 2720 for (unsigned I = 0, E = Call.getNumArgs(); I != E; ++I) { 2721 SVal ArgSVal = Call.getArgSVal(I); 2722 if (ArgSVal.getAs<Loc>()) { 2723 SymbolRef Sym = ArgSVal.getAsSymbol(); 2724 if (!Sym) 2725 continue; 2726 if (checkUseAfterFree(Sym, C, Call.getArgExpr(I))) 2727 return; 2728 } 2729 } 2730 } 2731 2732 void MallocChecker::checkPreStmt(const ReturnStmt *S, 2733 CheckerContext &C) const { 2734 checkEscapeOnReturn(S, C); 2735 } 2736 2737 // In the CFG, automatic destructors come after the return statement. 2738 // This callback checks for returning memory that is freed by automatic 2739 // destructors, as those cannot be reached in checkPreStmt(). 2740 void MallocChecker::checkEndFunction(const ReturnStmt *S, 2741 CheckerContext &C) const { 2742 checkEscapeOnReturn(S, C); 2743 } 2744 2745 void MallocChecker::checkEscapeOnReturn(const ReturnStmt *S, 2746 CheckerContext &C) const { 2747 if (!S) 2748 return; 2749 2750 const Expr *E = S->getRetValue(); 2751 if (!E) 2752 return; 2753 2754 // Check if we are returning a symbol. 2755 ProgramStateRef State = C.getState(); 2756 SVal RetVal = C.getSVal(E); 2757 SymbolRef Sym = RetVal.getAsSymbol(); 2758 if (!Sym) 2759 // If we are returning a field of the allocated struct or an array element, 2760 // the callee could still free the memory. 2761 // TODO: This logic should be a part of generic symbol escape callback. 2762 if (const MemRegion *MR = RetVal.getAsRegion()) 2763 if (isa<FieldRegion>(MR) || isa<ElementRegion>(MR)) 2764 if (const SymbolicRegion *BMR = 2765 dyn_cast<SymbolicRegion>(MR->getBaseRegion())) 2766 Sym = BMR->getSymbol(); 2767 2768 // Check if we are returning freed memory. 2769 if (Sym) 2770 checkUseAfterFree(Sym, C, E); 2771 } 2772 2773 // TODO: Blocks should be either inlined or should call invalidate regions 2774 // upon invocation. After that's in place, special casing here will not be 2775 // needed. 2776 void MallocChecker::checkPostStmt(const BlockExpr *BE, 2777 CheckerContext &C) const { 2778 2779 // Scan the BlockDecRefExprs for any object the retain count checker 2780 // may be tracking. 2781 if (!BE->getBlockDecl()->hasCaptures()) 2782 return; 2783 2784 ProgramStateRef state = C.getState(); 2785 const BlockDataRegion *R = 2786 cast<BlockDataRegion>(C.getSVal(BE).getAsRegion()); 2787 2788 BlockDataRegion::referenced_vars_iterator I = R->referenced_vars_begin(), 2789 E = R->referenced_vars_end(); 2790 2791 if (I == E) 2792 return; 2793 2794 SmallVector<const MemRegion*, 10> Regions; 2795 const LocationContext *LC = C.getLocationContext(); 2796 MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager(); 2797 2798 for ( ; I != E; ++I) { 2799 const VarRegion *VR = I.getCapturedRegion(); 2800 if (VR->getSuperRegion() == R) { 2801 VR = MemMgr.getVarRegion(VR->getDecl(), LC); 2802 } 2803 Regions.push_back(VR); 2804 } 2805 2806 state = 2807 state->scanReachableSymbols<StopTrackingCallback>(Regions).getState(); 2808 C.addTransition(state); 2809 } 2810 2811 static bool isReleased(SymbolRef Sym, CheckerContext &C) { 2812 assert(Sym); 2813 const RefState *RS = C.getState()->get<RegionState>(Sym); 2814 return (RS && RS->isReleased()); 2815 } 2816 2817 bool MallocChecker::suppressDeallocationsInSuspiciousContexts( 2818 const CallEvent &Call, CheckerContext &C) const { 2819 if (Call.getNumArgs() == 0) 2820 return false; 2821 2822 StringRef FunctionStr = ""; 2823 if (const auto *FD = dyn_cast<FunctionDecl>(C.getStackFrame()->getDecl())) 2824 if (const Stmt *Body = FD->getBody()) 2825 if (Body->getBeginLoc().isValid()) 2826 FunctionStr = 2827 Lexer::getSourceText(CharSourceRange::getTokenRange( 2828 {FD->getBeginLoc(), Body->getBeginLoc()}), 2829 C.getSourceManager(), C.getLangOpts()); 2830 2831 // We do not model the Integer Set Library's retain-count based allocation. 2832 if (!FunctionStr.contains("__isl_")) 2833 return false; 2834 2835 ProgramStateRef State = C.getState(); 2836 2837 for (const Expr *Arg : cast<CallExpr>(Call.getOriginExpr())->arguments()) 2838 if (SymbolRef Sym = C.getSVal(Arg).getAsSymbol()) 2839 if (const RefState *RS = State->get<RegionState>(Sym)) 2840 State = State->set<RegionState>(Sym, RefState::getEscaped(RS)); 2841 2842 C.addTransition(State); 2843 return true; 2844 } 2845 2846 bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C, 2847 const Stmt *S) const { 2848 2849 if (isReleased(Sym, C)) { 2850 HandleUseAfterFree(C, S->getSourceRange(), Sym); 2851 return true; 2852 } 2853 2854 return false; 2855 } 2856 2857 void MallocChecker::checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 2858 const Stmt *S) const { 2859 assert(Sym); 2860 2861 if (const RefState *RS = C.getState()->get<RegionState>(Sym)) { 2862 if (RS->isAllocatedOfSizeZero()) 2863 HandleUseZeroAlloc(C, RS->getStmt()->getSourceRange(), Sym); 2864 } 2865 else if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) { 2866 HandleUseZeroAlloc(C, S->getSourceRange(), Sym); 2867 } 2868 } 2869 2870 bool MallocChecker::checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const { 2871 2872 if (isReleased(Sym, C)) { 2873 HandleDoubleDelete(C, Sym); 2874 return true; 2875 } 2876 return false; 2877 } 2878 2879 // Check if the location is a freed symbolic region. 2880 void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S, 2881 CheckerContext &C) const { 2882 SymbolRef Sym = l.getLocSymbolInBase(); 2883 if (Sym) { 2884 checkUseAfterFree(Sym, C, S); 2885 checkUseZeroAllocated(Sym, C, S); 2886 } 2887 } 2888 2889 // If a symbolic region is assumed to NULL (or another constant), stop tracking 2890 // it - assuming that allocation failed on this path. 2891 ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state, 2892 SVal Cond, 2893 bool Assumption) const { 2894 RegionStateTy RS = state->get<RegionState>(); 2895 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2896 // If the symbol is assumed to be NULL, remove it from consideration. 2897 ConstraintManager &CMgr = state->getConstraintManager(); 2898 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 2899 if (AllocFailed.isConstrainedTrue()) 2900 state = state->remove<RegionState>(I.getKey()); 2901 } 2902 2903 // Realloc returns 0 when reallocation fails, which means that we should 2904 // restore the state of the pointer being reallocated. 2905 ReallocPairsTy RP = state->get<ReallocPairs>(); 2906 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 2907 // If the symbol is assumed to be NULL, remove it from consideration. 2908 ConstraintManager &CMgr = state->getConstraintManager(); 2909 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 2910 if (!AllocFailed.isConstrainedTrue()) 2911 continue; 2912 2913 SymbolRef ReallocSym = I.getData().ReallocatedSym; 2914 if (const RefState *RS = state->get<RegionState>(ReallocSym)) { 2915 if (RS->isReleased()) { 2916 switch (I.getData().Kind) { 2917 case OAR_ToBeFreedAfterFailure: 2918 state = state->set<RegionState>(ReallocSym, 2919 RefState::getAllocated(RS->getAllocationFamily(), RS->getStmt())); 2920 break; 2921 case OAR_DoNotTrackAfterFailure: 2922 state = state->remove<RegionState>(ReallocSym); 2923 break; 2924 default: 2925 assert(I.getData().Kind == OAR_FreeOnFailure); 2926 } 2927 } 2928 } 2929 state = state->remove<ReallocPairs>(I.getKey()); 2930 } 2931 2932 return state; 2933 } 2934 2935 bool MallocChecker::mayFreeAnyEscapedMemoryOrIsModeledExplicitly( 2936 const CallEvent *Call, 2937 ProgramStateRef State, 2938 SymbolRef &EscapingSymbol) const { 2939 assert(Call); 2940 EscapingSymbol = nullptr; 2941 2942 // For now, assume that any C++ or block call can free memory. 2943 // TODO: If we want to be more optimistic here, we'll need to make sure that 2944 // regions escape to C++ containers. They seem to do that even now, but for 2945 // mysterious reasons. 2946 if (!(isa<SimpleFunctionCall>(Call) || isa<ObjCMethodCall>(Call))) 2947 return true; 2948 2949 // Check Objective-C messages by selector name. 2950 if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) { 2951 // If it's not a framework call, or if it takes a callback, assume it 2952 // can free memory. 2953 if (!Call->isInSystemHeader() || Call->argumentsMayEscape()) 2954 return true; 2955 2956 // If it's a method we know about, handle it explicitly post-call. 2957 // This should happen before the "freeWhenDone" check below. 2958 if (isKnownDeallocObjCMethodName(*Msg)) 2959 return false; 2960 2961 // If there's a "freeWhenDone" parameter, but the method isn't one we know 2962 // about, we can't be sure that the object will use free() to deallocate the 2963 // memory, so we can't model it explicitly. The best we can do is use it to 2964 // decide whether the pointer escapes. 2965 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(*Msg)) 2966 return *FreeWhenDone; 2967 2968 // If the first selector piece ends with "NoCopy", and there is no 2969 // "freeWhenDone" parameter set to zero, we know ownership is being 2970 // transferred. Again, though, we can't be sure that the object will use 2971 // free() to deallocate the memory, so we can't model it explicitly. 2972 StringRef FirstSlot = Msg->getSelector().getNameForSlot(0); 2973 if (FirstSlot.endswith("NoCopy")) 2974 return true; 2975 2976 // If the first selector starts with addPointer, insertPointer, 2977 // or replacePointer, assume we are dealing with NSPointerArray or similar. 2978 // This is similar to C++ containers (vector); we still might want to check 2979 // that the pointers get freed by following the container itself. 2980 if (FirstSlot.startswith("addPointer") || 2981 FirstSlot.startswith("insertPointer") || 2982 FirstSlot.startswith("replacePointer") || 2983 FirstSlot.equals("valueWithPointer")) { 2984 return true; 2985 } 2986 2987 // We should escape receiver on call to 'init'. This is especially relevant 2988 // to the receiver, as the corresponding symbol is usually not referenced 2989 // after the call. 2990 if (Msg->getMethodFamily() == OMF_init) { 2991 EscapingSymbol = Msg->getReceiverSVal().getAsSymbol(); 2992 return true; 2993 } 2994 2995 // Otherwise, assume that the method does not free memory. 2996 // Most framework methods do not free memory. 2997 return false; 2998 } 2999 3000 // At this point the only thing left to handle is straight function calls. 3001 const FunctionDecl *FD = cast<SimpleFunctionCall>(Call)->getDecl(); 3002 if (!FD) 3003 return true; 3004 3005 // If it's one of the allocation functions we can reason about, we model 3006 // its behavior explicitly. 3007 if (isMemCall(*Call)) 3008 return false; 3009 3010 // If it's not a system call, assume it frees memory. 3011 if (!Call->isInSystemHeader()) 3012 return true; 3013 3014 // White list the system functions whose arguments escape. 3015 const IdentifierInfo *II = FD->getIdentifier(); 3016 if (!II) 3017 return true; 3018 StringRef FName = II->getName(); 3019 3020 // White list the 'XXXNoCopy' CoreFoundation functions. 3021 // We specifically check these before 3022 if (FName.endswith("NoCopy")) { 3023 // Look for the deallocator argument. We know that the memory ownership 3024 // is not transferred only if the deallocator argument is 3025 // 'kCFAllocatorNull'. 3026 for (unsigned i = 1; i < Call->getNumArgs(); ++i) { 3027 const Expr *ArgE = Call->getArgExpr(i)->IgnoreParenCasts(); 3028 if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(ArgE)) { 3029 StringRef DeallocatorName = DE->getFoundDecl()->getName(); 3030 if (DeallocatorName == "kCFAllocatorNull") 3031 return false; 3032 } 3033 } 3034 return true; 3035 } 3036 3037 // Associating streams with malloced buffers. The pointer can escape if 3038 // 'closefn' is specified (and if that function does free memory), 3039 // but it will not if closefn is not specified. 3040 // Currently, we do not inspect the 'closefn' function (PR12101). 3041 if (FName == "funopen") 3042 if (Call->getNumArgs() >= 4 && Call->getArgSVal(4).isConstant(0)) 3043 return false; 3044 3045 // Do not warn on pointers passed to 'setbuf' when used with std streams, 3046 // these leaks might be intentional when setting the buffer for stdio. 3047 // http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer 3048 if (FName == "setbuf" || FName =="setbuffer" || 3049 FName == "setlinebuf" || FName == "setvbuf") { 3050 if (Call->getNumArgs() >= 1) { 3051 const Expr *ArgE = Call->getArgExpr(0)->IgnoreParenCasts(); 3052 if (const DeclRefExpr *ArgDRE = dyn_cast<DeclRefExpr>(ArgE)) 3053 if (const VarDecl *D = dyn_cast<VarDecl>(ArgDRE->getDecl())) 3054 if (D->getCanonicalDecl()->getName().find("std") != StringRef::npos) 3055 return true; 3056 } 3057 } 3058 3059 // A bunch of other functions which either take ownership of a pointer or 3060 // wrap the result up in a struct or object, meaning it can be freed later. 3061 // (See RetainCountChecker.) Not all the parameters here are invalidated, 3062 // but the Malloc checker cannot differentiate between them. The right way 3063 // of doing this would be to implement a pointer escapes callback. 3064 if (FName == "CGBitmapContextCreate" || 3065 FName == "CGBitmapContextCreateWithData" || 3066 FName == "CVPixelBufferCreateWithBytes" || 3067 FName == "CVPixelBufferCreateWithPlanarBytes" || 3068 FName == "OSAtomicEnqueue") { 3069 return true; 3070 } 3071 3072 if (FName == "postEvent" && 3073 FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") { 3074 return true; 3075 } 3076 3077 if (FName == "postEvent" && 3078 FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") { 3079 return true; 3080 } 3081 3082 if (FName == "connectImpl" && 3083 FD->getQualifiedNameAsString() == "QObject::connectImpl") { 3084 return true; 3085 } 3086 3087 // Handle cases where we know a buffer's /address/ can escape. 3088 // Note that the above checks handle some special cases where we know that 3089 // even though the address escapes, it's still our responsibility to free the 3090 // buffer. 3091 if (Call->argumentsMayEscape()) 3092 return true; 3093 3094 // Otherwise, assume that the function does not free memory. 3095 // Most system calls do not free the memory. 3096 return false; 3097 } 3098 3099 ProgramStateRef MallocChecker::checkPointerEscape(ProgramStateRef State, 3100 const InvalidatedSymbols &Escaped, 3101 const CallEvent *Call, 3102 PointerEscapeKind Kind) const { 3103 return checkPointerEscapeAux(State, Escaped, Call, Kind, 3104 /*IsConstPointerEscape*/ false); 3105 } 3106 3107 ProgramStateRef MallocChecker::checkConstPointerEscape(ProgramStateRef State, 3108 const InvalidatedSymbols &Escaped, 3109 const CallEvent *Call, 3110 PointerEscapeKind Kind) const { 3111 // If a const pointer escapes, it may not be freed(), but it could be deleted. 3112 return checkPointerEscapeAux(State, Escaped, Call, Kind, 3113 /*IsConstPointerEscape*/ true); 3114 } 3115 3116 static bool checkIfNewOrNewArrayFamily(const RefState *RS) { 3117 return (RS->getAllocationFamily() == AF_CXXNewArray || 3118 RS->getAllocationFamily() == AF_CXXNew); 3119 } 3120 3121 ProgramStateRef MallocChecker::checkPointerEscapeAux( 3122 ProgramStateRef State, const InvalidatedSymbols &Escaped, 3123 const CallEvent *Call, PointerEscapeKind Kind, 3124 bool IsConstPointerEscape) const { 3125 // If we know that the call does not free memory, or we want to process the 3126 // call later, keep tracking the top level arguments. 3127 SymbolRef EscapingSymbol = nullptr; 3128 if (Kind == PSK_DirectEscapeOnCall && 3129 !mayFreeAnyEscapedMemoryOrIsModeledExplicitly(Call, State, 3130 EscapingSymbol) && 3131 !EscapingSymbol) { 3132 return State; 3133 } 3134 3135 for (InvalidatedSymbols::const_iterator I = Escaped.begin(), 3136 E = Escaped.end(); 3137 I != E; ++I) { 3138 SymbolRef sym = *I; 3139 3140 if (EscapingSymbol && EscapingSymbol != sym) 3141 continue; 3142 3143 if (const RefState *RS = State->get<RegionState>(sym)) 3144 if (RS->isAllocated() || RS->isAllocatedOfSizeZero()) 3145 if (!IsConstPointerEscape || checkIfNewOrNewArrayFamily(RS)) 3146 State = State->set<RegionState>(sym, RefState::getEscaped(RS)); 3147 } 3148 return State; 3149 } 3150 3151 bool MallocChecker::isArgZERO_SIZE_PTR(ProgramStateRef State, CheckerContext &C, 3152 SVal ArgVal) const { 3153 if (!KernelZeroSizePtrValue) 3154 KernelZeroSizePtrValue = 3155 tryExpandAsInteger("ZERO_SIZE_PTR", C.getPreprocessor()); 3156 3157 const llvm::APSInt *ArgValKnown = 3158 C.getSValBuilder().getKnownValue(State, ArgVal); 3159 return ArgValKnown && *KernelZeroSizePtrValue && 3160 ArgValKnown->getSExtValue() == **KernelZeroSizePtrValue; 3161 } 3162 3163 static SymbolRef findFailedReallocSymbol(ProgramStateRef currState, 3164 ProgramStateRef prevState) { 3165 ReallocPairsTy currMap = currState->get<ReallocPairs>(); 3166 ReallocPairsTy prevMap = prevState->get<ReallocPairs>(); 3167 3168 for (const ReallocPairsTy::value_type &Pair : prevMap) { 3169 SymbolRef sym = Pair.first; 3170 if (!currMap.lookup(sym)) 3171 return sym; 3172 } 3173 3174 return nullptr; 3175 } 3176 3177 static bool isReferenceCountingPointerDestructor(const CXXDestructorDecl *DD) { 3178 if (const IdentifierInfo *II = DD->getParent()->getIdentifier()) { 3179 StringRef N = II->getName(); 3180 if (N.contains_lower("ptr") || N.contains_lower("pointer")) { 3181 if (N.contains_lower("ref") || N.contains_lower("cnt") || 3182 N.contains_lower("intrusive") || N.contains_lower("shared")) { 3183 return true; 3184 } 3185 } 3186 } 3187 return false; 3188 } 3189 3190 PathDiagnosticPieceRef MallocBugVisitor::VisitNode(const ExplodedNode *N, 3191 BugReporterContext &BRC, 3192 PathSensitiveBugReport &BR) { 3193 ProgramStateRef state = N->getState(); 3194 ProgramStateRef statePrev = N->getFirstPred()->getState(); 3195 3196 const RefState *RSCurr = state->get<RegionState>(Sym); 3197 const RefState *RSPrev = statePrev->get<RegionState>(Sym); 3198 3199 const Stmt *S = N->getStmtForDiagnostics(); 3200 // When dealing with containers, we sometimes want to give a note 3201 // even if the statement is missing. 3202 if (!S && (!RSCurr || RSCurr->getAllocationFamily() != AF_InnerBuffer)) 3203 return nullptr; 3204 3205 const LocationContext *CurrentLC = N->getLocationContext(); 3206 3207 // If we find an atomic fetch_add or fetch_sub within the destructor in which 3208 // the pointer was released (before the release), this is likely a destructor 3209 // of a shared pointer. 3210 // Because we don't model atomics, and also because we don't know that the 3211 // original reference count is positive, we should not report use-after-frees 3212 // on objects deleted in such destructors. This can probably be improved 3213 // through better shared pointer modeling. 3214 if (ReleaseDestructorLC) { 3215 if (const auto *AE = dyn_cast<AtomicExpr>(S)) { 3216 AtomicExpr::AtomicOp Op = AE->getOp(); 3217 if (Op == AtomicExpr::AO__c11_atomic_fetch_add || 3218 Op == AtomicExpr::AO__c11_atomic_fetch_sub) { 3219 if (ReleaseDestructorLC == CurrentLC || 3220 ReleaseDestructorLC->isParentOf(CurrentLC)) { 3221 BR.markInvalid(getTag(), S); 3222 } 3223 } 3224 } 3225 } 3226 3227 // FIXME: We will eventually need to handle non-statement-based events 3228 // (__attribute__((cleanup))). 3229 3230 // Find out if this is an interesting point and what is the kind. 3231 StringRef Msg; 3232 std::unique_ptr<StackHintGeneratorForSymbol> StackHint = nullptr; 3233 SmallString<256> Buf; 3234 llvm::raw_svector_ostream OS(Buf); 3235 3236 if (Mode == Normal) { 3237 if (isAllocated(RSCurr, RSPrev, S)) { 3238 Msg = "Memory is allocated"; 3239 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3240 Sym, "Returned allocated memory"); 3241 } else if (isReleased(RSCurr, RSPrev, S)) { 3242 const auto Family = RSCurr->getAllocationFamily(); 3243 switch (Family) { 3244 case AF_Alloca: 3245 case AF_Malloc: 3246 case AF_CXXNew: 3247 case AF_CXXNewArray: 3248 case AF_IfNameIndex: 3249 Msg = "Memory is released"; 3250 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3251 Sym, "Returning; memory was released"); 3252 break; 3253 case AF_InnerBuffer: { 3254 const MemRegion *ObjRegion = 3255 allocation_state::getContainerObjRegion(statePrev, Sym); 3256 const auto *TypedRegion = cast<TypedValueRegion>(ObjRegion); 3257 QualType ObjTy = TypedRegion->getValueType(); 3258 OS << "Inner buffer of '" << ObjTy.getAsString() << "' "; 3259 3260 if (N->getLocation().getKind() == ProgramPoint::PostImplicitCallKind) { 3261 OS << "deallocated by call to destructor"; 3262 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3263 Sym, "Returning; inner buffer was deallocated"); 3264 } else { 3265 OS << "reallocated by call to '"; 3266 const Stmt *S = RSCurr->getStmt(); 3267 if (const auto *MemCallE = dyn_cast<CXXMemberCallExpr>(S)) { 3268 OS << MemCallE->getMethodDecl()->getNameAsString(); 3269 } else if (const auto *OpCallE = dyn_cast<CXXOperatorCallExpr>(S)) { 3270 OS << OpCallE->getDirectCallee()->getNameAsString(); 3271 } else if (const auto *CallE = dyn_cast<CallExpr>(S)) { 3272 auto &CEMgr = BRC.getStateManager().getCallEventManager(); 3273 CallEventRef<> Call = CEMgr.getSimpleCall(CallE, state, CurrentLC); 3274 const auto *D = dyn_cast_or_null<NamedDecl>(Call->getDecl()); 3275 OS << (D ? D->getNameAsString() : "unknown"); 3276 } 3277 OS << "'"; 3278 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3279 Sym, "Returning; inner buffer was reallocated"); 3280 } 3281 Msg = OS.str(); 3282 break; 3283 } 3284 case AF_None: 3285 llvm_unreachable("Unhandled allocation family!"); 3286 } 3287 3288 // See if we're releasing memory while inlining a destructor 3289 // (or one of its callees). This turns on various common 3290 // false positive suppressions. 3291 bool FoundAnyDestructor = false; 3292 for (const LocationContext *LC = CurrentLC; LC; LC = LC->getParent()) { 3293 if (const auto *DD = dyn_cast<CXXDestructorDecl>(LC->getDecl())) { 3294 if (isReferenceCountingPointerDestructor(DD)) { 3295 // This immediately looks like a reference-counting destructor. 3296 // We're bad at guessing the original reference count of the object, 3297 // so suppress the report for now. 3298 BR.markInvalid(getTag(), DD); 3299 } else if (!FoundAnyDestructor) { 3300 assert(!ReleaseDestructorLC && 3301 "There can be only one release point!"); 3302 // Suspect that it's a reference counting pointer destructor. 3303 // On one of the next nodes might find out that it has atomic 3304 // reference counting operations within it (see the code above), 3305 // and if so, we'd conclude that it likely is a reference counting 3306 // pointer destructor. 3307 ReleaseDestructorLC = LC->getStackFrame(); 3308 // It is unlikely that releasing memory is delegated to a destructor 3309 // inside a destructor of a shared pointer, because it's fairly hard 3310 // to pass the information that the pointer indeed needs to be 3311 // released into it. So we're only interested in the innermost 3312 // destructor. 3313 FoundAnyDestructor = true; 3314 } 3315 } 3316 } 3317 } else if (isRelinquished(RSCurr, RSPrev, S)) { 3318 Msg = "Memory ownership is transferred"; 3319 StackHint = std::make_unique<StackHintGeneratorForSymbol>(Sym, ""); 3320 } else if (hasReallocFailed(RSCurr, RSPrev, S)) { 3321 Mode = ReallocationFailed; 3322 Msg = "Reallocation failed"; 3323 StackHint = std::make_unique<StackHintGeneratorForReallocationFailed>( 3324 Sym, "Reallocation failed"); 3325 3326 if (SymbolRef sym = findFailedReallocSymbol(state, statePrev)) { 3327 // Is it possible to fail two reallocs WITHOUT testing in between? 3328 assert((!FailedReallocSymbol || FailedReallocSymbol == sym) && 3329 "We only support one failed realloc at a time."); 3330 BR.markInteresting(sym); 3331 FailedReallocSymbol = sym; 3332 } 3333 } 3334 3335 // We are in a special mode if a reallocation failed later in the path. 3336 } else if (Mode == ReallocationFailed) { 3337 assert(FailedReallocSymbol && "No symbol to look for."); 3338 3339 // Is this is the first appearance of the reallocated symbol? 3340 if (!statePrev->get<RegionState>(FailedReallocSymbol)) { 3341 // We're at the reallocation point. 3342 Msg = "Attempt to reallocate memory"; 3343 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3344 Sym, "Returned reallocated memory"); 3345 FailedReallocSymbol = nullptr; 3346 Mode = Normal; 3347 } 3348 } 3349 3350 if (Msg.empty()) { 3351 assert(!StackHint); 3352 return nullptr; 3353 } 3354 3355 assert(StackHint); 3356 3357 // Generate the extra diagnostic. 3358 PathDiagnosticLocation Pos; 3359 if (!S) { 3360 assert(RSCurr->getAllocationFamily() == AF_InnerBuffer); 3361 auto PostImplCall = N->getLocation().getAs<PostImplicitCall>(); 3362 if (!PostImplCall) 3363 return nullptr; 3364 Pos = PathDiagnosticLocation(PostImplCall->getLocation(), 3365 BRC.getSourceManager()); 3366 } else { 3367 Pos = PathDiagnosticLocation(S, BRC.getSourceManager(), 3368 N->getLocationContext()); 3369 } 3370 3371 auto P = std::make_shared<PathDiagnosticEventPiece>(Pos, Msg, true); 3372 BR.addCallStackHint(P, std::move(StackHint)); 3373 return P; 3374 } 3375 3376 void MallocChecker::printState(raw_ostream &Out, ProgramStateRef State, 3377 const char *NL, const char *Sep) const { 3378 3379 RegionStateTy RS = State->get<RegionState>(); 3380 3381 if (!RS.isEmpty()) { 3382 Out << Sep << "MallocChecker :" << NL; 3383 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 3384 const RefState *RefS = State->get<RegionState>(I.getKey()); 3385 AllocationFamily Family = RefS->getAllocationFamily(); 3386 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 3387 if (!CheckKind.hasValue()) 3388 CheckKind = getCheckIfTracked(Family, true); 3389 3390 I.getKey()->dumpToStream(Out); 3391 Out << " : "; 3392 I.getData().dump(Out); 3393 if (CheckKind.hasValue()) 3394 Out << " (" << CheckNames[*CheckKind].getName() << ")"; 3395 Out << NL; 3396 } 3397 } 3398 } 3399 3400 namespace clang { 3401 namespace ento { 3402 namespace allocation_state { 3403 3404 ProgramStateRef 3405 markReleased(ProgramStateRef State, SymbolRef Sym, const Expr *Origin) { 3406 AllocationFamily Family = AF_InnerBuffer; 3407 return State->set<RegionState>(Sym, RefState::getReleased(Family, Origin)); 3408 } 3409 3410 } // end namespace allocation_state 3411 } // end namespace ento 3412 } // end namespace clang 3413 3414 // Intended to be used in InnerPointerChecker to register the part of 3415 // MallocChecker connected to it. 3416 void ento::registerInnerPointerCheckerAux(CheckerManager &mgr) { 3417 MallocChecker *checker = mgr.getChecker<MallocChecker>(); 3418 checker->ChecksEnabled[MallocChecker::CK_InnerPointerChecker] = true; 3419 checker->CheckNames[MallocChecker::CK_InnerPointerChecker] = 3420 mgr.getCurrentCheckerName(); 3421 } 3422 3423 void ento::registerDynamicMemoryModeling(CheckerManager &mgr) { 3424 auto *checker = mgr.registerChecker<MallocChecker>(); 3425 checker->ShouldIncludeOwnershipAnnotatedFunctions = 3426 mgr.getAnalyzerOptions().getCheckerBooleanOption(checker, "Optimistic"); 3427 } 3428 3429 bool ento::shouldRegisterDynamicMemoryModeling(const CheckerManager &mgr) { 3430 return true; 3431 } 3432 3433 #define REGISTER_CHECKER(name) \ 3434 void ento::register##name(CheckerManager &mgr) { \ 3435 MallocChecker *checker = mgr.getChecker<MallocChecker>(); \ 3436 checker->ChecksEnabled[MallocChecker::CK_##name] = true; \ 3437 checker->CheckNames[MallocChecker::CK_##name] = \ 3438 mgr.getCurrentCheckerName(); \ 3439 } \ 3440 \ 3441 bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; } 3442 3443 REGISTER_CHECKER(MallocChecker) 3444 REGISTER_CHECKER(NewDeleteChecker) 3445 REGISTER_CHECKER(NewDeleteLeaksChecker) 3446 REGISTER_CHECKER(MismatchedDeallocatorChecker) 3447