1 //=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines malloc/free checker, which checks for potential memory 11 // leaks, double free, and use-after-free problems. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ClangSACheckers.h" 16 #include "InterCheckerAPI.h" 17 #include "clang/AST/Attr.h" 18 #include "clang/AST/ParentMap.h" 19 #include "clang/Basic/SourceManager.h" 20 #include "clang/Basic/TargetInfo.h" 21 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 22 #include "clang/StaticAnalyzer/Core/BugReporter/CommonBugCategories.h" 23 #include "clang/StaticAnalyzer/Core/Checker.h" 24 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 25 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 26 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 27 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 28 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 29 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/StringExtras.h" 33 #include "AllocationState.h" 34 #include <climits> 35 #include <utility> 36 37 using namespace clang; 38 using namespace ento; 39 40 namespace { 41 42 // Used to check correspondence between allocators and deallocators. 43 enum AllocationFamily { 44 AF_None, 45 AF_Malloc, 46 AF_CXXNew, 47 AF_CXXNewArray, 48 AF_IfNameIndex, 49 AF_Alloca, 50 AF_InnerBuffer 51 }; 52 53 class RefState { 54 enum Kind { // Reference to allocated memory. 55 Allocated, 56 // Reference to zero-allocated memory. 57 AllocatedOfSizeZero, 58 // Reference to released/freed memory. 59 Released, 60 // The responsibility for freeing resources has transferred from 61 // this reference. A relinquished symbol should not be freed. 62 Relinquished, 63 // We are no longer guaranteed to have observed all manipulations 64 // of this pointer/memory. For example, it could have been 65 // passed as a parameter to an opaque function. 66 Escaped 67 }; 68 69 const Stmt *S; 70 unsigned K : 3; // Kind enum, but stored as a bitfield. 71 unsigned Family : 29; // Rest of 32-bit word, currently just an allocation 72 // family. 73 74 RefState(Kind k, const Stmt *s, unsigned family) 75 : S(s), K(k), Family(family) { 76 assert(family != AF_None); 77 } 78 public: 79 bool isAllocated() const { return K == Allocated; } 80 bool isAllocatedOfSizeZero() const { return K == AllocatedOfSizeZero; } 81 bool isReleased() const { return K == Released; } 82 bool isRelinquished() const { return K == Relinquished; } 83 bool isEscaped() const { return K == Escaped; } 84 AllocationFamily getAllocationFamily() const { 85 return (AllocationFamily)Family; 86 } 87 const Stmt *getStmt() const { return S; } 88 89 bool operator==(const RefState &X) const { 90 return K == X.K && S == X.S && Family == X.Family; 91 } 92 93 static RefState getAllocated(unsigned family, const Stmt *s) { 94 return RefState(Allocated, s, family); 95 } 96 static RefState getAllocatedOfSizeZero(const RefState *RS) { 97 return RefState(AllocatedOfSizeZero, RS->getStmt(), 98 RS->getAllocationFamily()); 99 } 100 static RefState getReleased(unsigned family, const Stmt *s) { 101 return RefState(Released, s, family); 102 } 103 static RefState getRelinquished(unsigned family, const Stmt *s) { 104 return RefState(Relinquished, s, family); 105 } 106 static RefState getEscaped(const RefState *RS) { 107 return RefState(Escaped, RS->getStmt(), RS->getAllocationFamily()); 108 } 109 110 void Profile(llvm::FoldingSetNodeID &ID) const { 111 ID.AddInteger(K); 112 ID.AddPointer(S); 113 ID.AddInteger(Family); 114 } 115 116 void dump(raw_ostream &OS) const { 117 switch (static_cast<Kind>(K)) { 118 #define CASE(ID) case ID: OS << #ID; break; 119 CASE(Allocated) 120 CASE(AllocatedOfSizeZero) 121 CASE(Released) 122 CASE(Relinquished) 123 CASE(Escaped) 124 } 125 } 126 127 LLVM_DUMP_METHOD void dump() const { dump(llvm::errs()); } 128 }; 129 130 enum ReallocPairKind { 131 RPToBeFreedAfterFailure, 132 // The symbol has been freed when reallocation failed. 133 RPIsFreeOnFailure, 134 // The symbol does not need to be freed after reallocation fails. 135 RPDoNotTrackAfterFailure 136 }; 137 138 /// \class ReallocPair 139 /// Stores information about the symbol being reallocated by a call to 140 /// 'realloc' to allow modeling failed reallocation later in the path. 141 struct ReallocPair { 142 // The symbol which realloc reallocated. 143 SymbolRef ReallocatedSym; 144 ReallocPairKind Kind; 145 146 ReallocPair(SymbolRef S, ReallocPairKind K) : 147 ReallocatedSym(S), Kind(K) {} 148 void Profile(llvm::FoldingSetNodeID &ID) const { 149 ID.AddInteger(Kind); 150 ID.AddPointer(ReallocatedSym); 151 } 152 bool operator==(const ReallocPair &X) const { 153 return ReallocatedSym == X.ReallocatedSym && 154 Kind == X.Kind; 155 } 156 }; 157 158 typedef std::pair<const ExplodedNode*, const MemRegion*> LeakInfo; 159 160 class MallocChecker : public Checker<check::DeadSymbols, 161 check::PointerEscape, 162 check::ConstPointerEscape, 163 check::PreStmt<ReturnStmt>, 164 check::PreCall, 165 check::PostStmt<CallExpr>, 166 check::PostStmt<CXXNewExpr>, 167 check::NewAllocator, 168 check::PreStmt<CXXDeleteExpr>, 169 check::PostStmt<BlockExpr>, 170 check::PostObjCMessage, 171 check::Location, 172 eval::Assume> 173 { 174 public: 175 MallocChecker() 176 : II_alloca(nullptr), II_win_alloca(nullptr), II_malloc(nullptr), 177 II_free(nullptr), II_realloc(nullptr), II_calloc(nullptr), 178 II_valloc(nullptr), II_reallocf(nullptr), II_strndup(nullptr), 179 II_strdup(nullptr), II_win_strdup(nullptr), II_kmalloc(nullptr), 180 II_if_nameindex(nullptr), II_if_freenameindex(nullptr), 181 II_wcsdup(nullptr), II_win_wcsdup(nullptr), II_g_malloc(nullptr), 182 II_g_malloc0(nullptr), II_g_realloc(nullptr), II_g_try_malloc(nullptr), 183 II_g_try_malloc0(nullptr), II_g_try_realloc(nullptr), 184 II_g_free(nullptr), II_g_memdup(nullptr), II_g_malloc_n(nullptr), 185 II_g_malloc0_n(nullptr), II_g_realloc_n(nullptr), 186 II_g_try_malloc_n(nullptr), II_g_try_malloc0_n(nullptr), 187 II_g_try_realloc_n(nullptr) {} 188 189 /// In pessimistic mode, the checker assumes that it does not know which 190 /// functions might free the memory. 191 enum CheckKind { 192 CK_MallocChecker, 193 CK_NewDeleteChecker, 194 CK_NewDeleteLeaksChecker, 195 CK_MismatchedDeallocatorChecker, 196 CK_NumCheckKinds 197 }; 198 199 enum class MemoryOperationKind { 200 MOK_Allocate, 201 MOK_Free, 202 MOK_Any 203 }; 204 205 DefaultBool IsOptimistic; 206 207 DefaultBool ChecksEnabled[CK_NumCheckKinds]; 208 CheckName CheckNames[CK_NumCheckKinds]; 209 210 void checkPreCall(const CallEvent &Call, CheckerContext &C) const; 211 void checkPostStmt(const CallExpr *CE, CheckerContext &C) const; 212 void checkPostStmt(const CXXNewExpr *NE, CheckerContext &C) const; 213 void checkNewAllocator(const CXXNewExpr *NE, SVal Target, 214 CheckerContext &C) const; 215 void checkPreStmt(const CXXDeleteExpr *DE, CheckerContext &C) const; 216 void checkPostObjCMessage(const ObjCMethodCall &Call, CheckerContext &C) const; 217 void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const; 218 void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const; 219 void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const; 220 ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond, 221 bool Assumption) const; 222 void checkLocation(SVal l, bool isLoad, const Stmt *S, 223 CheckerContext &C) const; 224 225 ProgramStateRef checkPointerEscape(ProgramStateRef State, 226 const InvalidatedSymbols &Escaped, 227 const CallEvent *Call, 228 PointerEscapeKind Kind) const; 229 ProgramStateRef checkConstPointerEscape(ProgramStateRef State, 230 const InvalidatedSymbols &Escaped, 231 const CallEvent *Call, 232 PointerEscapeKind Kind) const; 233 234 void printState(raw_ostream &Out, ProgramStateRef State, 235 const char *NL, const char *Sep) const override; 236 237 private: 238 mutable std::unique_ptr<BugType> BT_DoubleFree[CK_NumCheckKinds]; 239 mutable std::unique_ptr<BugType> BT_DoubleDelete; 240 mutable std::unique_ptr<BugType> BT_Leak[CK_NumCheckKinds]; 241 mutable std::unique_ptr<BugType> BT_UseFree[CK_NumCheckKinds]; 242 mutable std::unique_ptr<BugType> BT_BadFree[CK_NumCheckKinds]; 243 mutable std::unique_ptr<BugType> BT_FreeAlloca[CK_NumCheckKinds]; 244 mutable std::unique_ptr<BugType> BT_MismatchedDealloc; 245 mutable std::unique_ptr<BugType> BT_OffsetFree[CK_NumCheckKinds]; 246 mutable std::unique_ptr<BugType> BT_UseZerroAllocated[CK_NumCheckKinds]; 247 mutable IdentifierInfo *II_alloca, *II_win_alloca, *II_malloc, *II_free, 248 *II_realloc, *II_calloc, *II_valloc, *II_reallocf, 249 *II_strndup, *II_strdup, *II_win_strdup, *II_kmalloc, 250 *II_if_nameindex, *II_if_freenameindex, *II_wcsdup, 251 *II_win_wcsdup, *II_g_malloc, *II_g_malloc0, 252 *II_g_realloc, *II_g_try_malloc, *II_g_try_malloc0, 253 *II_g_try_realloc, *II_g_free, *II_g_memdup, 254 *II_g_malloc_n, *II_g_malloc0_n, *II_g_realloc_n, 255 *II_g_try_malloc_n, *II_g_try_malloc0_n, 256 *II_g_try_realloc_n; 257 mutable Optional<uint64_t> KernelZeroFlagVal; 258 259 void initIdentifierInfo(ASTContext &C) const; 260 261 /// Determine family of a deallocation expression. 262 AllocationFamily getAllocationFamily(CheckerContext &C, const Stmt *S) const; 263 264 /// Print names of allocators and deallocators. 265 /// 266 /// \returns true on success. 267 bool printAllocDeallocName(raw_ostream &os, CheckerContext &C, 268 const Expr *E) const; 269 270 /// Print expected name of an allocator based on the deallocator's 271 /// family derived from the DeallocExpr. 272 void printExpectedAllocName(raw_ostream &os, CheckerContext &C, 273 const Expr *DeallocExpr) const; 274 /// Print expected name of a deallocator based on the allocator's 275 /// family. 276 void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family) const; 277 278 ///@{ 279 /// Check if this is one of the functions which can allocate/reallocate memory 280 /// pointed to by one of its arguments. 281 bool isMemFunction(const FunctionDecl *FD, ASTContext &C) const; 282 bool isCMemFunction(const FunctionDecl *FD, 283 ASTContext &C, 284 AllocationFamily Family, 285 MemoryOperationKind MemKind) const; 286 bool isStandardNewDelete(const FunctionDecl *FD, ASTContext &C) const; 287 ///@} 288 289 /// Process C++ operator new()'s allocation, which is the part of C++ 290 /// new-expression that goes before the constructor. 291 void processNewAllocation(const CXXNewExpr *NE, CheckerContext &C, 292 SVal Target) const; 293 294 /// Perform a zero-allocation check. 295 /// The optional \p RetVal parameter specifies the newly allocated pointer 296 /// value; if unspecified, the value of expression \p E is used. 297 ProgramStateRef ProcessZeroAllocation(CheckerContext &C, const Expr *E, 298 const unsigned AllocationSizeArg, 299 ProgramStateRef State, 300 Optional<SVal> RetVal = None) const; 301 302 ProgramStateRef MallocMemReturnsAttr(CheckerContext &C, 303 const CallExpr *CE, 304 const OwnershipAttr* Att, 305 ProgramStateRef State) const; 306 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE, 307 const Expr *SizeEx, SVal Init, 308 ProgramStateRef State, 309 AllocationFamily Family = AF_Malloc); 310 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE, 311 SVal SizeEx, SVal Init, 312 ProgramStateRef State, 313 AllocationFamily Family = AF_Malloc); 314 315 static ProgramStateRef addExtentSize(CheckerContext &C, const CXXNewExpr *NE, 316 ProgramStateRef State, SVal Target); 317 318 // Check if this malloc() for special flags. At present that means M_ZERO or 319 // __GFP_ZERO (in which case, treat it like calloc). 320 llvm::Optional<ProgramStateRef> 321 performKernelMalloc(const CallExpr *CE, CheckerContext &C, 322 const ProgramStateRef &State) const; 323 324 /// Update the RefState to reflect the new memory allocation. 325 /// The optional \p RetVal parameter specifies the newly allocated pointer 326 /// value; if unspecified, the value of expression \p E is used. 327 static ProgramStateRef 328 MallocUpdateRefState(CheckerContext &C, const Expr *E, ProgramStateRef State, 329 AllocationFamily Family = AF_Malloc, 330 Optional<SVal> RetVal = None); 331 332 ProgramStateRef FreeMemAttr(CheckerContext &C, const CallExpr *CE, 333 const OwnershipAttr* Att, 334 ProgramStateRef State) const; 335 ProgramStateRef FreeMemAux(CheckerContext &C, const CallExpr *CE, 336 ProgramStateRef state, unsigned Num, 337 bool Hold, 338 bool &ReleasedAllocated, 339 bool ReturnsNullOnFailure = false) const; 340 ProgramStateRef FreeMemAux(CheckerContext &C, const Expr *Arg, 341 const Expr *ParentExpr, 342 ProgramStateRef State, 343 bool Hold, 344 bool &ReleasedAllocated, 345 bool ReturnsNullOnFailure = false) const; 346 347 ProgramStateRef ReallocMemAux(CheckerContext &C, const CallExpr *CE, 348 bool FreesMemOnFailure, 349 ProgramStateRef State, 350 bool SuffixWithN = false) const; 351 static SVal evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, 352 const Expr *BlockBytes); 353 static ProgramStateRef CallocMem(CheckerContext &C, const CallExpr *CE, 354 ProgramStateRef State); 355 356 ///Check if the memory associated with this symbol was released. 357 bool isReleased(SymbolRef Sym, CheckerContext &C) const; 358 359 bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S) const; 360 361 void checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 362 const Stmt *S) const; 363 364 bool checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const; 365 366 /// Check if the function is known free memory, or if it is 367 /// "interesting" and should be modeled explicitly. 368 /// 369 /// \param [out] EscapingSymbol A function might not free memory in general, 370 /// but could be known to free a particular symbol. In this case, false is 371 /// returned and the single escaping symbol is returned through the out 372 /// parameter. 373 /// 374 /// We assume that pointers do not escape through calls to system functions 375 /// not handled by this checker. 376 bool mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent *Call, 377 ProgramStateRef State, 378 SymbolRef &EscapingSymbol) const; 379 380 // Implementation of the checkPointerEscape callabcks. 381 ProgramStateRef checkPointerEscapeAux(ProgramStateRef State, 382 const InvalidatedSymbols &Escaped, 383 const CallEvent *Call, 384 PointerEscapeKind Kind, 385 bool(*CheckRefState)(const RefState*)) const; 386 387 ///@{ 388 /// Tells if a given family/call/symbol is tracked by the current checker. 389 /// Sets CheckKind to the kind of the checker responsible for this 390 /// family/call/symbol. 391 Optional<CheckKind> getCheckIfTracked(AllocationFamily Family, 392 bool IsALeakCheck = false) const; 393 Optional<CheckKind> getCheckIfTracked(CheckerContext &C, 394 const Stmt *AllocDeallocStmt, 395 bool IsALeakCheck = false) const; 396 Optional<CheckKind> getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 397 bool IsALeakCheck = false) const; 398 ///@} 399 static bool SummarizeValue(raw_ostream &os, SVal V); 400 static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR); 401 void ReportBadFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 402 const Expr *DeallocExpr) const; 403 void ReportFreeAlloca(CheckerContext &C, SVal ArgVal, 404 SourceRange Range) const; 405 void ReportMismatchedDealloc(CheckerContext &C, SourceRange Range, 406 const Expr *DeallocExpr, const RefState *RS, 407 SymbolRef Sym, bool OwnershipTransferred) const; 408 void ReportOffsetFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 409 const Expr *DeallocExpr, 410 const Expr *AllocExpr = nullptr) const; 411 void ReportUseAfterFree(CheckerContext &C, SourceRange Range, 412 SymbolRef Sym) const; 413 void ReportDoubleFree(CheckerContext &C, SourceRange Range, bool Released, 414 SymbolRef Sym, SymbolRef PrevSym) const; 415 416 void ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const; 417 418 void ReportUseZeroAllocated(CheckerContext &C, SourceRange Range, 419 SymbolRef Sym) const; 420 421 void ReportFunctionPointerFree(CheckerContext &C, SVal ArgVal, 422 SourceRange Range, const Expr *FreeExpr) const; 423 424 /// Find the location of the allocation for Sym on the path leading to the 425 /// exploded node N. 426 LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym, 427 CheckerContext &C) const; 428 429 void reportLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const; 430 431 /// The bug visitor which allows us to print extra diagnostics along the 432 /// BugReport path. For example, showing the allocation site of the leaked 433 /// region. 434 class MallocBugVisitor final : public BugReporterVisitor { 435 protected: 436 enum NotificationMode { 437 Normal, 438 ReallocationFailed 439 }; 440 441 // The allocated region symbol tracked by the main analysis. 442 SymbolRef Sym; 443 444 // The mode we are in, i.e. what kind of diagnostics will be emitted. 445 NotificationMode Mode; 446 447 // A symbol from when the primary region should have been reallocated. 448 SymbolRef FailedReallocSymbol; 449 450 // A C++ destructor stack frame in which memory was released. Used for 451 // miscellaneous false positive suppression. 452 const StackFrameContext *ReleaseDestructorLC; 453 454 bool IsLeak; 455 456 public: 457 MallocBugVisitor(SymbolRef S, bool isLeak = false) 458 : Sym(S), Mode(Normal), FailedReallocSymbol(nullptr), 459 ReleaseDestructorLC(nullptr), IsLeak(isLeak) {} 460 461 static void *getTag() { 462 static int Tag = 0; 463 return &Tag; 464 } 465 466 void Profile(llvm::FoldingSetNodeID &ID) const override { 467 ID.AddPointer(getTag()); 468 ID.AddPointer(Sym); 469 } 470 471 inline bool isAllocated(const RefState *S, const RefState *SPrev, 472 const Stmt *Stmt) { 473 // Did not track -> allocated. Other state (released) -> allocated. 474 return (Stmt && (isa<CallExpr>(Stmt) || isa<CXXNewExpr>(Stmt)) && 475 (S && (S->isAllocated() || S->isAllocatedOfSizeZero())) && 476 (!SPrev || !(SPrev->isAllocated() || 477 SPrev->isAllocatedOfSizeZero()))); 478 } 479 480 inline bool isReleased(const RefState *S, const RefState *SPrev, 481 const Stmt *Stmt) { 482 // Did not track -> released. Other state (allocated) -> released. 483 // The statement associated with the release might be missing. 484 bool IsReleased = (S && S->isReleased()) && 485 (!SPrev || !SPrev->isReleased()); 486 assert(!IsReleased || 487 (Stmt && (isa<CallExpr>(Stmt) || isa<CXXDeleteExpr>(Stmt))) || 488 (!Stmt && S->getAllocationFamily() == AF_InnerBuffer)); 489 return IsReleased; 490 } 491 492 inline bool isRelinquished(const RefState *S, const RefState *SPrev, 493 const Stmt *Stmt) { 494 // Did not track -> relinquished. Other state (allocated) -> relinquished. 495 return (Stmt && (isa<CallExpr>(Stmt) || isa<ObjCMessageExpr>(Stmt) || 496 isa<ObjCPropertyRefExpr>(Stmt)) && 497 (S && S->isRelinquished()) && 498 (!SPrev || !SPrev->isRelinquished())); 499 } 500 501 inline bool isReallocFailedCheck(const RefState *S, const RefState *SPrev, 502 const Stmt *Stmt) { 503 // If the expression is not a call, and the state change is 504 // released -> allocated, it must be the realloc return value 505 // check. If we have to handle more cases here, it might be cleaner just 506 // to track this extra bit in the state itself. 507 return ((!Stmt || !isa<CallExpr>(Stmt)) && 508 (S && (S->isAllocated() || S->isAllocatedOfSizeZero())) && 509 (SPrev && !(SPrev->isAllocated() || 510 SPrev->isAllocatedOfSizeZero()))); 511 } 512 513 std::shared_ptr<PathDiagnosticPiece> VisitNode(const ExplodedNode *N, 514 const ExplodedNode *PrevN, 515 BugReporterContext &BRC, 516 BugReport &BR) override; 517 518 std::shared_ptr<PathDiagnosticPiece> 519 getEndPath(BugReporterContext &BRC, const ExplodedNode *EndPathNode, 520 BugReport &BR) override { 521 if (!IsLeak) 522 return nullptr; 523 524 PathDiagnosticLocation L = 525 PathDiagnosticLocation::createEndOfPath(EndPathNode, 526 BRC.getSourceManager()); 527 // Do not add the statement itself as a range in case of leak. 528 return std::make_shared<PathDiagnosticEventPiece>(L, BR.getDescription(), 529 false); 530 } 531 532 private: 533 class StackHintGeneratorForReallocationFailed 534 : public StackHintGeneratorForSymbol { 535 public: 536 StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M) 537 : StackHintGeneratorForSymbol(S, M) {} 538 539 std::string getMessageForArg(const Expr *ArgE, 540 unsigned ArgIndex) override { 541 // Printed parameters start at 1, not 0. 542 ++ArgIndex; 543 544 SmallString<200> buf; 545 llvm::raw_svector_ostream os(buf); 546 547 os << "Reallocation of " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex) 548 << " parameter failed"; 549 550 return os.str(); 551 } 552 553 std::string getMessageForReturn(const CallExpr *CallExpr) override { 554 return "Reallocation of returned value failed"; 555 } 556 }; 557 }; 558 }; 559 } // end anonymous namespace 560 561 REGISTER_MAP_WITH_PROGRAMSTATE(RegionState, SymbolRef, RefState) 562 REGISTER_MAP_WITH_PROGRAMSTATE(ReallocPairs, SymbolRef, ReallocPair) 563 REGISTER_SET_WITH_PROGRAMSTATE(ReallocSizeZeroSymbols, SymbolRef) 564 565 // A map from the freed symbol to the symbol representing the return value of 566 // the free function. 567 REGISTER_MAP_WITH_PROGRAMSTATE(FreeReturnValue, SymbolRef, SymbolRef) 568 569 namespace { 570 class StopTrackingCallback final : public SymbolVisitor { 571 ProgramStateRef state; 572 public: 573 StopTrackingCallback(ProgramStateRef st) : state(std::move(st)) {} 574 ProgramStateRef getState() const { return state; } 575 576 bool VisitSymbol(SymbolRef sym) override { 577 state = state->remove<RegionState>(sym); 578 return true; 579 } 580 }; 581 } // end anonymous namespace 582 583 void MallocChecker::initIdentifierInfo(ASTContext &Ctx) const { 584 if (II_malloc) 585 return; 586 II_alloca = &Ctx.Idents.get("alloca"); 587 II_malloc = &Ctx.Idents.get("malloc"); 588 II_free = &Ctx.Idents.get("free"); 589 II_realloc = &Ctx.Idents.get("realloc"); 590 II_reallocf = &Ctx.Idents.get("reallocf"); 591 II_calloc = &Ctx.Idents.get("calloc"); 592 II_valloc = &Ctx.Idents.get("valloc"); 593 II_strdup = &Ctx.Idents.get("strdup"); 594 II_strndup = &Ctx.Idents.get("strndup"); 595 II_wcsdup = &Ctx.Idents.get("wcsdup"); 596 II_kmalloc = &Ctx.Idents.get("kmalloc"); 597 II_if_nameindex = &Ctx.Idents.get("if_nameindex"); 598 II_if_freenameindex = &Ctx.Idents.get("if_freenameindex"); 599 600 //MSVC uses `_`-prefixed instead, so we check for them too. 601 II_win_strdup = &Ctx.Idents.get("_strdup"); 602 II_win_wcsdup = &Ctx.Idents.get("_wcsdup"); 603 II_win_alloca = &Ctx.Idents.get("_alloca"); 604 605 // Glib 606 II_g_malloc = &Ctx.Idents.get("g_malloc"); 607 II_g_malloc0 = &Ctx.Idents.get("g_malloc0"); 608 II_g_realloc = &Ctx.Idents.get("g_realloc"); 609 II_g_try_malloc = &Ctx.Idents.get("g_try_malloc"); 610 II_g_try_malloc0 = &Ctx.Idents.get("g_try_malloc0"); 611 II_g_try_realloc = &Ctx.Idents.get("g_try_realloc"); 612 II_g_free = &Ctx.Idents.get("g_free"); 613 II_g_memdup = &Ctx.Idents.get("g_memdup"); 614 II_g_malloc_n = &Ctx.Idents.get("g_malloc_n"); 615 II_g_malloc0_n = &Ctx.Idents.get("g_malloc0_n"); 616 II_g_realloc_n = &Ctx.Idents.get("g_realloc_n"); 617 II_g_try_malloc_n = &Ctx.Idents.get("g_try_malloc_n"); 618 II_g_try_malloc0_n = &Ctx.Idents.get("g_try_malloc0_n"); 619 II_g_try_realloc_n = &Ctx.Idents.get("g_try_realloc_n"); 620 } 621 622 bool MallocChecker::isMemFunction(const FunctionDecl *FD, ASTContext &C) const { 623 if (isCMemFunction(FD, C, AF_Malloc, MemoryOperationKind::MOK_Any)) 624 return true; 625 626 if (isCMemFunction(FD, C, AF_IfNameIndex, MemoryOperationKind::MOK_Any)) 627 return true; 628 629 if (isCMemFunction(FD, C, AF_Alloca, MemoryOperationKind::MOK_Any)) 630 return true; 631 632 if (isStandardNewDelete(FD, C)) 633 return true; 634 635 return false; 636 } 637 638 bool MallocChecker::isCMemFunction(const FunctionDecl *FD, 639 ASTContext &C, 640 AllocationFamily Family, 641 MemoryOperationKind MemKind) const { 642 if (!FD) 643 return false; 644 645 bool CheckFree = (MemKind == MemoryOperationKind::MOK_Any || 646 MemKind == MemoryOperationKind::MOK_Free); 647 bool CheckAlloc = (MemKind == MemoryOperationKind::MOK_Any || 648 MemKind == MemoryOperationKind::MOK_Allocate); 649 650 if (FD->getKind() == Decl::Function) { 651 const IdentifierInfo *FunI = FD->getIdentifier(); 652 initIdentifierInfo(C); 653 654 if (Family == AF_Malloc && CheckFree) { 655 if (FunI == II_free || FunI == II_realloc || FunI == II_reallocf || 656 FunI == II_g_free) 657 return true; 658 } 659 660 if (Family == AF_Malloc && CheckAlloc) { 661 if (FunI == II_malloc || FunI == II_realloc || FunI == II_reallocf || 662 FunI == II_calloc || FunI == II_valloc || FunI == II_strdup || 663 FunI == II_win_strdup || FunI == II_strndup || FunI == II_wcsdup || 664 FunI == II_win_wcsdup || FunI == II_kmalloc || 665 FunI == II_g_malloc || FunI == II_g_malloc0 || 666 FunI == II_g_realloc || FunI == II_g_try_malloc || 667 FunI == II_g_try_malloc0 || FunI == II_g_try_realloc || 668 FunI == II_g_memdup || FunI == II_g_malloc_n || 669 FunI == II_g_malloc0_n || FunI == II_g_realloc_n || 670 FunI == II_g_try_malloc_n || FunI == II_g_try_malloc0_n || 671 FunI == II_g_try_realloc_n) 672 return true; 673 } 674 675 if (Family == AF_IfNameIndex && CheckFree) { 676 if (FunI == II_if_freenameindex) 677 return true; 678 } 679 680 if (Family == AF_IfNameIndex && CheckAlloc) { 681 if (FunI == II_if_nameindex) 682 return true; 683 } 684 685 if (Family == AF_Alloca && CheckAlloc) { 686 if (FunI == II_alloca || FunI == II_win_alloca) 687 return true; 688 } 689 } 690 691 if (Family != AF_Malloc) 692 return false; 693 694 if (IsOptimistic && FD->hasAttrs()) { 695 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { 696 OwnershipAttr::OwnershipKind OwnKind = I->getOwnKind(); 697 if(OwnKind == OwnershipAttr::Takes || OwnKind == OwnershipAttr::Holds) { 698 if (CheckFree) 699 return true; 700 } else if (OwnKind == OwnershipAttr::Returns) { 701 if (CheckAlloc) 702 return true; 703 } 704 } 705 } 706 707 return false; 708 } 709 710 // Tells if the callee is one of the following: 711 // 1) A global non-placement new/delete operator function. 712 // 2) A global placement operator function with the single placement argument 713 // of type std::nothrow_t. 714 bool MallocChecker::isStandardNewDelete(const FunctionDecl *FD, 715 ASTContext &C) const { 716 if (!FD) 717 return false; 718 719 OverloadedOperatorKind Kind = FD->getOverloadedOperator(); 720 if (Kind != OO_New && Kind != OO_Array_New && 721 Kind != OO_Delete && Kind != OO_Array_Delete) 722 return false; 723 724 // Skip all operator new/delete methods. 725 if (isa<CXXMethodDecl>(FD)) 726 return false; 727 728 // Return true if tested operator is a standard placement nothrow operator. 729 if (FD->getNumParams() == 2) { 730 QualType T = FD->getParamDecl(1)->getType(); 731 if (const IdentifierInfo *II = T.getBaseTypeIdentifier()) 732 return II->getName().equals("nothrow_t"); 733 } 734 735 // Skip placement operators. 736 if (FD->getNumParams() != 1 || FD->isVariadic()) 737 return false; 738 739 // One of the standard new/new[]/delete/delete[] non-placement operators. 740 return true; 741 } 742 743 llvm::Optional<ProgramStateRef> MallocChecker::performKernelMalloc( 744 const CallExpr *CE, CheckerContext &C, const ProgramStateRef &State) const { 745 // 3-argument malloc(), as commonly used in {Free,Net,Open}BSD Kernels: 746 // 747 // void *malloc(unsigned long size, struct malloc_type *mtp, int flags); 748 // 749 // One of the possible flags is M_ZERO, which means 'give me back an 750 // allocation which is already zeroed', like calloc. 751 752 // 2-argument kmalloc(), as used in the Linux kernel: 753 // 754 // void *kmalloc(size_t size, gfp_t flags); 755 // 756 // Has the similar flag value __GFP_ZERO. 757 758 // This logic is largely cloned from O_CREAT in UnixAPIChecker, maybe some 759 // code could be shared. 760 761 ASTContext &Ctx = C.getASTContext(); 762 llvm::Triple::OSType OS = Ctx.getTargetInfo().getTriple().getOS(); 763 764 if (!KernelZeroFlagVal.hasValue()) { 765 if (OS == llvm::Triple::FreeBSD) 766 KernelZeroFlagVal = 0x0100; 767 else if (OS == llvm::Triple::NetBSD) 768 KernelZeroFlagVal = 0x0002; 769 else if (OS == llvm::Triple::OpenBSD) 770 KernelZeroFlagVal = 0x0008; 771 else if (OS == llvm::Triple::Linux) 772 // __GFP_ZERO 773 KernelZeroFlagVal = 0x8000; 774 else 775 // FIXME: We need a more general way of getting the M_ZERO value. 776 // See also: O_CREAT in UnixAPIChecker.cpp. 777 778 // Fall back to normal malloc behavior on platforms where we don't 779 // know M_ZERO. 780 return None; 781 } 782 783 // We treat the last argument as the flags argument, and callers fall-back to 784 // normal malloc on a None return. This works for the FreeBSD kernel malloc 785 // as well as Linux kmalloc. 786 if (CE->getNumArgs() < 2) 787 return None; 788 789 const Expr *FlagsEx = CE->getArg(CE->getNumArgs() - 1); 790 const SVal V = C.getSVal(FlagsEx); 791 if (!V.getAs<NonLoc>()) { 792 // The case where 'V' can be a location can only be due to a bad header, 793 // so in this case bail out. 794 return None; 795 } 796 797 NonLoc Flags = V.castAs<NonLoc>(); 798 NonLoc ZeroFlag = C.getSValBuilder() 799 .makeIntVal(KernelZeroFlagVal.getValue(), FlagsEx->getType()) 800 .castAs<NonLoc>(); 801 SVal MaskedFlagsUC = C.getSValBuilder().evalBinOpNN(State, BO_And, 802 Flags, ZeroFlag, 803 FlagsEx->getType()); 804 if (MaskedFlagsUC.isUnknownOrUndef()) 805 return None; 806 DefinedSVal MaskedFlags = MaskedFlagsUC.castAs<DefinedSVal>(); 807 808 // Check if maskedFlags is non-zero. 809 ProgramStateRef TrueState, FalseState; 810 std::tie(TrueState, FalseState) = State->assume(MaskedFlags); 811 812 // If M_ZERO is set, treat this like calloc (initialized). 813 if (TrueState && !FalseState) { 814 SVal ZeroVal = C.getSValBuilder().makeZeroVal(Ctx.CharTy); 815 return MallocMemAux(C, CE, CE->getArg(0), ZeroVal, TrueState); 816 } 817 818 return None; 819 } 820 821 SVal MallocChecker::evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, 822 const Expr *BlockBytes) { 823 SValBuilder &SB = C.getSValBuilder(); 824 SVal BlocksVal = C.getSVal(Blocks); 825 SVal BlockBytesVal = C.getSVal(BlockBytes); 826 ProgramStateRef State = C.getState(); 827 SVal TotalSize = SB.evalBinOp(State, BO_Mul, BlocksVal, BlockBytesVal, 828 SB.getContext().getSizeType()); 829 return TotalSize; 830 } 831 832 void MallocChecker::checkPostStmt(const CallExpr *CE, CheckerContext &C) const { 833 if (C.wasInlined) 834 return; 835 836 const FunctionDecl *FD = C.getCalleeDecl(CE); 837 if (!FD) 838 return; 839 840 ProgramStateRef State = C.getState(); 841 bool ReleasedAllocatedMemory = false; 842 843 if (FD->getKind() == Decl::Function) { 844 initIdentifierInfo(C.getASTContext()); 845 IdentifierInfo *FunI = FD->getIdentifier(); 846 847 if (FunI == II_malloc || FunI == II_g_malloc || FunI == II_g_try_malloc) { 848 if (CE->getNumArgs() < 1) 849 return; 850 if (CE->getNumArgs() < 3) { 851 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 852 if (CE->getNumArgs() == 1) 853 State = ProcessZeroAllocation(C, CE, 0, State); 854 } else if (CE->getNumArgs() == 3) { 855 llvm::Optional<ProgramStateRef> MaybeState = 856 performKernelMalloc(CE, C, State); 857 if (MaybeState.hasValue()) 858 State = MaybeState.getValue(); 859 else 860 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 861 } 862 } else if (FunI == II_kmalloc) { 863 if (CE->getNumArgs() < 1) 864 return; 865 llvm::Optional<ProgramStateRef> MaybeState = 866 performKernelMalloc(CE, C, State); 867 if (MaybeState.hasValue()) 868 State = MaybeState.getValue(); 869 else 870 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 871 } else if (FunI == II_valloc) { 872 if (CE->getNumArgs() < 1) 873 return; 874 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 875 State = ProcessZeroAllocation(C, CE, 0, State); 876 } else if (FunI == II_realloc || FunI == II_g_realloc || 877 FunI == II_g_try_realloc) { 878 State = ReallocMemAux(C, CE, false, State); 879 State = ProcessZeroAllocation(C, CE, 1, State); 880 } else if (FunI == II_reallocf) { 881 State = ReallocMemAux(C, CE, true, State); 882 State = ProcessZeroAllocation(C, CE, 1, State); 883 } else if (FunI == II_calloc) { 884 State = CallocMem(C, CE, State); 885 State = ProcessZeroAllocation(C, CE, 0, State); 886 State = ProcessZeroAllocation(C, CE, 1, State); 887 } else if (FunI == II_free || FunI == II_g_free) { 888 State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory); 889 } else if (FunI == II_strdup || FunI == II_win_strdup || 890 FunI == II_wcsdup || FunI == II_win_wcsdup) { 891 State = MallocUpdateRefState(C, CE, State); 892 } else if (FunI == II_strndup) { 893 State = MallocUpdateRefState(C, CE, State); 894 } else if (FunI == II_alloca || FunI == II_win_alloca) { 895 if (CE->getNumArgs() < 1) 896 return; 897 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, 898 AF_Alloca); 899 State = ProcessZeroAllocation(C, CE, 0, State); 900 } else if (isStandardNewDelete(FD, C.getASTContext())) { 901 // Process direct calls to operator new/new[]/delete/delete[] functions 902 // as distinct from new/new[]/delete/delete[] expressions that are 903 // processed by the checkPostStmt callbacks for CXXNewExpr and 904 // CXXDeleteExpr. 905 OverloadedOperatorKind K = FD->getOverloadedOperator(); 906 if (K == OO_New) { 907 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, 908 AF_CXXNew); 909 State = ProcessZeroAllocation(C, CE, 0, State); 910 } 911 else if (K == OO_Array_New) { 912 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, 913 AF_CXXNewArray); 914 State = ProcessZeroAllocation(C, CE, 0, State); 915 } 916 else if (K == OO_Delete || K == OO_Array_Delete) 917 State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory); 918 else 919 llvm_unreachable("not a new/delete operator"); 920 } else if (FunI == II_if_nameindex) { 921 // Should we model this differently? We can allocate a fixed number of 922 // elements with zeros in the last one. 923 State = MallocMemAux(C, CE, UnknownVal(), UnknownVal(), State, 924 AF_IfNameIndex); 925 } else if (FunI == II_if_freenameindex) { 926 State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory); 927 } else if (FunI == II_g_malloc0 || FunI == II_g_try_malloc0) { 928 if (CE->getNumArgs() < 1) 929 return; 930 SValBuilder &svalBuilder = C.getSValBuilder(); 931 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 932 State = MallocMemAux(C, CE, CE->getArg(0), zeroVal, State); 933 State = ProcessZeroAllocation(C, CE, 0, State); 934 } else if (FunI == II_g_memdup) { 935 if (CE->getNumArgs() < 2) 936 return; 937 State = MallocMemAux(C, CE, CE->getArg(1), UndefinedVal(), State); 938 State = ProcessZeroAllocation(C, CE, 1, State); 939 } else if (FunI == II_g_malloc_n || FunI == II_g_try_malloc_n || 940 FunI == II_g_malloc0_n || FunI == II_g_try_malloc0_n) { 941 if (CE->getNumArgs() < 2) 942 return; 943 SVal Init = UndefinedVal(); 944 if (FunI == II_g_malloc0_n || FunI == II_g_try_malloc0_n) { 945 SValBuilder &SB = C.getSValBuilder(); 946 Init = SB.makeZeroVal(SB.getContext().CharTy); 947 } 948 SVal TotalSize = evalMulForBufferSize(C, CE->getArg(0), CE->getArg(1)); 949 State = MallocMemAux(C, CE, TotalSize, Init, State); 950 State = ProcessZeroAllocation(C, CE, 0, State); 951 State = ProcessZeroAllocation(C, CE, 1, State); 952 } else if (FunI == II_g_realloc_n || FunI == II_g_try_realloc_n) { 953 if (CE->getNumArgs() < 3) 954 return; 955 State = ReallocMemAux(C, CE, false, State, true); 956 State = ProcessZeroAllocation(C, CE, 1, State); 957 State = ProcessZeroAllocation(C, CE, 2, State); 958 } 959 } 960 961 if (IsOptimistic || ChecksEnabled[CK_MismatchedDeallocatorChecker]) { 962 // Check all the attributes, if there are any. 963 // There can be multiple of these attributes. 964 if (FD->hasAttrs()) 965 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { 966 switch (I->getOwnKind()) { 967 case OwnershipAttr::Returns: 968 State = MallocMemReturnsAttr(C, CE, I, State); 969 break; 970 case OwnershipAttr::Takes: 971 case OwnershipAttr::Holds: 972 State = FreeMemAttr(C, CE, I, State); 973 break; 974 } 975 } 976 } 977 C.addTransition(State); 978 } 979 980 // Performs a 0-sized allocations check. 981 ProgramStateRef MallocChecker::ProcessZeroAllocation( 982 CheckerContext &C, const Expr *E, const unsigned AllocationSizeArg, 983 ProgramStateRef State, Optional<SVal> RetVal) const { 984 if (!State) 985 return nullptr; 986 987 if (!RetVal) 988 RetVal = C.getSVal(E); 989 990 const Expr *Arg = nullptr; 991 992 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 993 Arg = CE->getArg(AllocationSizeArg); 994 } 995 else if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { 996 if (NE->isArray()) 997 Arg = NE->getArraySize(); 998 else 999 return State; 1000 } 1001 else 1002 llvm_unreachable("not a CallExpr or CXXNewExpr"); 1003 1004 assert(Arg); 1005 1006 Optional<DefinedSVal> DefArgVal = C.getSVal(Arg).getAs<DefinedSVal>(); 1007 1008 if (!DefArgVal) 1009 return State; 1010 1011 // Check if the allocation size is 0. 1012 ProgramStateRef TrueState, FalseState; 1013 SValBuilder &SvalBuilder = C.getSValBuilder(); 1014 DefinedSVal Zero = 1015 SvalBuilder.makeZeroVal(Arg->getType()).castAs<DefinedSVal>(); 1016 1017 std::tie(TrueState, FalseState) = 1018 State->assume(SvalBuilder.evalEQ(State, *DefArgVal, Zero)); 1019 1020 if (TrueState && !FalseState) { 1021 SymbolRef Sym = RetVal->getAsLocSymbol(); 1022 if (!Sym) 1023 return State; 1024 1025 const RefState *RS = State->get<RegionState>(Sym); 1026 if (RS) { 1027 if (RS->isAllocated()) 1028 return TrueState->set<RegionState>(Sym, 1029 RefState::getAllocatedOfSizeZero(RS)); 1030 else 1031 return State; 1032 } else { 1033 // Case of zero-size realloc. Historically 'realloc(ptr, 0)' is treated as 1034 // 'free(ptr)' and the returned value from 'realloc(ptr, 0)' is not 1035 // tracked. Add zero-reallocated Sym to the state to catch references 1036 // to zero-allocated memory. 1037 return TrueState->add<ReallocSizeZeroSymbols>(Sym); 1038 } 1039 } 1040 1041 // Assume the value is non-zero going forward. 1042 assert(FalseState); 1043 return FalseState; 1044 } 1045 1046 static QualType getDeepPointeeType(QualType T) { 1047 QualType Result = T, PointeeType = T->getPointeeType(); 1048 while (!PointeeType.isNull()) { 1049 Result = PointeeType; 1050 PointeeType = PointeeType->getPointeeType(); 1051 } 1052 return Result; 1053 } 1054 1055 static bool treatUnusedNewEscaped(const CXXNewExpr *NE) { 1056 1057 const CXXConstructExpr *ConstructE = NE->getConstructExpr(); 1058 if (!ConstructE) 1059 return false; 1060 1061 if (!NE->getAllocatedType()->getAsCXXRecordDecl()) 1062 return false; 1063 1064 const CXXConstructorDecl *CtorD = ConstructE->getConstructor(); 1065 1066 // Iterate over the constructor parameters. 1067 for (const auto *CtorParam : CtorD->parameters()) { 1068 1069 QualType CtorParamPointeeT = CtorParam->getType()->getPointeeType(); 1070 if (CtorParamPointeeT.isNull()) 1071 continue; 1072 1073 CtorParamPointeeT = getDeepPointeeType(CtorParamPointeeT); 1074 1075 if (CtorParamPointeeT->getAsCXXRecordDecl()) 1076 return true; 1077 } 1078 1079 return false; 1080 } 1081 1082 void MallocChecker::processNewAllocation(const CXXNewExpr *NE, 1083 CheckerContext &C, 1084 SVal Target) const { 1085 if (NE->getNumPlacementArgs()) 1086 for (CXXNewExpr::const_arg_iterator I = NE->placement_arg_begin(), 1087 E = NE->placement_arg_end(); I != E; ++I) 1088 if (SymbolRef Sym = C.getSVal(*I).getAsSymbol()) 1089 checkUseAfterFree(Sym, C, *I); 1090 1091 if (!isStandardNewDelete(NE->getOperatorNew(), C.getASTContext())) 1092 return; 1093 1094 ParentMap &PM = C.getLocationContext()->getParentMap(); 1095 if (!PM.isConsumedExpr(NE) && treatUnusedNewEscaped(NE)) 1096 return; 1097 1098 ProgramStateRef State = C.getState(); 1099 // The return value from operator new is bound to a specified initialization 1100 // value (if any) and we don't want to loose this value. So we call 1101 // MallocUpdateRefState() instead of MallocMemAux() which breakes the 1102 // existing binding. 1103 State = MallocUpdateRefState(C, NE, State, NE->isArray() ? AF_CXXNewArray 1104 : AF_CXXNew, Target); 1105 State = addExtentSize(C, NE, State, Target); 1106 State = ProcessZeroAllocation(C, NE, 0, State, Target); 1107 C.addTransition(State); 1108 } 1109 1110 void MallocChecker::checkPostStmt(const CXXNewExpr *NE, 1111 CheckerContext &C) const { 1112 if (!C.getAnalysisManager().getAnalyzerOptions().mayInlineCXXAllocator()) 1113 processNewAllocation(NE, C, C.getSVal(NE)); 1114 } 1115 1116 void MallocChecker::checkNewAllocator(const CXXNewExpr *NE, SVal Target, 1117 CheckerContext &C) const { 1118 if (!C.wasInlined) 1119 processNewAllocation(NE, C, Target); 1120 } 1121 1122 // Sets the extent value of the MemRegion allocated by 1123 // new expression NE to its size in Bytes. 1124 // 1125 ProgramStateRef MallocChecker::addExtentSize(CheckerContext &C, 1126 const CXXNewExpr *NE, 1127 ProgramStateRef State, 1128 SVal Target) { 1129 if (!State) 1130 return nullptr; 1131 SValBuilder &svalBuilder = C.getSValBuilder(); 1132 SVal ElementCount; 1133 const SubRegion *Region; 1134 if (NE->isArray()) { 1135 const Expr *SizeExpr = NE->getArraySize(); 1136 ElementCount = C.getSVal(SizeExpr); 1137 // Store the extent size for the (symbolic)region 1138 // containing the elements. 1139 Region = Target.getAsRegion() 1140 ->getAs<SubRegion>() 1141 ->StripCasts() 1142 ->getAs<SubRegion>(); 1143 } else { 1144 ElementCount = svalBuilder.makeIntVal(1, true); 1145 Region = Target.getAsRegion()->getAs<SubRegion>(); 1146 } 1147 assert(Region); 1148 1149 // Set the region's extent equal to the Size in Bytes. 1150 QualType ElementType = NE->getAllocatedType(); 1151 ASTContext &AstContext = C.getASTContext(); 1152 CharUnits TypeSize = AstContext.getTypeSizeInChars(ElementType); 1153 1154 if (ElementCount.getAs<NonLoc>()) { 1155 DefinedOrUnknownSVal Extent = Region->getExtent(svalBuilder); 1156 // size in Bytes = ElementCount*TypeSize 1157 SVal SizeInBytes = svalBuilder.evalBinOpNN( 1158 State, BO_Mul, ElementCount.castAs<NonLoc>(), 1159 svalBuilder.makeArrayIndex(TypeSize.getQuantity()), 1160 svalBuilder.getArrayIndexType()); 1161 DefinedOrUnknownSVal extentMatchesSize = svalBuilder.evalEQ( 1162 State, Extent, SizeInBytes.castAs<DefinedOrUnknownSVal>()); 1163 State = State->assume(extentMatchesSize, true); 1164 } 1165 return State; 1166 } 1167 1168 void MallocChecker::checkPreStmt(const CXXDeleteExpr *DE, 1169 CheckerContext &C) const { 1170 1171 if (!ChecksEnabled[CK_NewDeleteChecker]) 1172 if (SymbolRef Sym = C.getSVal(DE->getArgument()).getAsSymbol()) 1173 checkUseAfterFree(Sym, C, DE->getArgument()); 1174 1175 if (!isStandardNewDelete(DE->getOperatorDelete(), C.getASTContext())) 1176 return; 1177 1178 ProgramStateRef State = C.getState(); 1179 bool ReleasedAllocated; 1180 State = FreeMemAux(C, DE->getArgument(), DE, State, 1181 /*Hold*/false, ReleasedAllocated); 1182 1183 C.addTransition(State); 1184 } 1185 1186 static bool isKnownDeallocObjCMethodName(const ObjCMethodCall &Call) { 1187 // If the first selector piece is one of the names below, assume that the 1188 // object takes ownership of the memory, promising to eventually deallocate it 1189 // with free(). 1190 // Ex: [NSData dataWithBytesNoCopy:bytes length:10]; 1191 // (...unless a 'freeWhenDone' parameter is false, but that's checked later.) 1192 StringRef FirstSlot = Call.getSelector().getNameForSlot(0); 1193 return FirstSlot == "dataWithBytesNoCopy" || 1194 FirstSlot == "initWithBytesNoCopy" || 1195 FirstSlot == "initWithCharactersNoCopy"; 1196 } 1197 1198 static Optional<bool> getFreeWhenDoneArg(const ObjCMethodCall &Call) { 1199 Selector S = Call.getSelector(); 1200 1201 // FIXME: We should not rely on fully-constrained symbols being folded. 1202 for (unsigned i = 1; i < S.getNumArgs(); ++i) 1203 if (S.getNameForSlot(i).equals("freeWhenDone")) 1204 return !Call.getArgSVal(i).isZeroConstant(); 1205 1206 return None; 1207 } 1208 1209 void MallocChecker::checkPostObjCMessage(const ObjCMethodCall &Call, 1210 CheckerContext &C) const { 1211 if (C.wasInlined) 1212 return; 1213 1214 if (!isKnownDeallocObjCMethodName(Call)) 1215 return; 1216 1217 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call)) 1218 if (!*FreeWhenDone) 1219 return; 1220 1221 bool ReleasedAllocatedMemory; 1222 ProgramStateRef State = FreeMemAux(C, Call.getArgExpr(0), 1223 Call.getOriginExpr(), C.getState(), 1224 /*Hold=*/true, ReleasedAllocatedMemory, 1225 /*RetNullOnFailure=*/true); 1226 1227 C.addTransition(State); 1228 } 1229 1230 ProgramStateRef 1231 MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallExpr *CE, 1232 const OwnershipAttr *Att, 1233 ProgramStateRef State) const { 1234 if (!State) 1235 return nullptr; 1236 1237 if (Att->getModule() != II_malloc) 1238 return nullptr; 1239 1240 OwnershipAttr::args_iterator I = Att->args_begin(), E = Att->args_end(); 1241 if (I != E) { 1242 return MallocMemAux(C, CE, CE->getArg(I->getASTIndex()), UndefinedVal(), 1243 State); 1244 } 1245 return MallocMemAux(C, CE, UnknownVal(), UndefinedVal(), State); 1246 } 1247 1248 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1249 const CallExpr *CE, 1250 const Expr *SizeEx, SVal Init, 1251 ProgramStateRef State, 1252 AllocationFamily Family) { 1253 if (!State) 1254 return nullptr; 1255 1256 return MallocMemAux(C, CE, C.getSVal(SizeEx), Init, State, Family); 1257 } 1258 1259 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1260 const CallExpr *CE, 1261 SVal Size, SVal Init, 1262 ProgramStateRef State, 1263 AllocationFamily Family) { 1264 if (!State) 1265 return nullptr; 1266 1267 // We expect the malloc functions to return a pointer. 1268 if (!Loc::isLocType(CE->getType())) 1269 return nullptr; 1270 1271 // Bind the return value to the symbolic value from the heap region. 1272 // TODO: We could rewrite post visit to eval call; 'malloc' does not have 1273 // side effects other than what we model here. 1274 unsigned Count = C.blockCount(); 1275 SValBuilder &svalBuilder = C.getSValBuilder(); 1276 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 1277 DefinedSVal RetVal = svalBuilder.getConjuredHeapSymbolVal(CE, LCtx, Count) 1278 .castAs<DefinedSVal>(); 1279 State = State->BindExpr(CE, C.getLocationContext(), RetVal); 1280 1281 // Fill the region with the initialization value. 1282 State = State->bindDefaultInitial(RetVal, Init, LCtx); 1283 1284 // Set the region's extent equal to the Size parameter. 1285 const SymbolicRegion *R = 1286 dyn_cast_or_null<SymbolicRegion>(RetVal.getAsRegion()); 1287 if (!R) 1288 return nullptr; 1289 if (Optional<DefinedOrUnknownSVal> DefinedSize = 1290 Size.getAs<DefinedOrUnknownSVal>()) { 1291 SValBuilder &svalBuilder = C.getSValBuilder(); 1292 DefinedOrUnknownSVal Extent = R->getExtent(svalBuilder); 1293 DefinedOrUnknownSVal extentMatchesSize = 1294 svalBuilder.evalEQ(State, Extent, *DefinedSize); 1295 1296 State = State->assume(extentMatchesSize, true); 1297 assert(State); 1298 } 1299 1300 return MallocUpdateRefState(C, CE, State, Family); 1301 } 1302 1303 ProgramStateRef MallocChecker::MallocUpdateRefState(CheckerContext &C, 1304 const Expr *E, 1305 ProgramStateRef State, 1306 AllocationFamily Family, 1307 Optional<SVal> RetVal) { 1308 if (!State) 1309 return nullptr; 1310 1311 // Get the return value. 1312 if (!RetVal) 1313 RetVal = C.getSVal(E); 1314 1315 // We expect the malloc functions to return a pointer. 1316 if (!RetVal->getAs<Loc>()) 1317 return nullptr; 1318 1319 SymbolRef Sym = RetVal->getAsLocSymbol(); 1320 // This is a return value of a function that was not inlined, such as malloc() 1321 // or new(). We've checked that in the caller. Therefore, it must be a symbol. 1322 assert(Sym); 1323 1324 // Set the symbol's state to Allocated. 1325 return State->set<RegionState>(Sym, RefState::getAllocated(Family, E)); 1326 } 1327 1328 ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C, 1329 const CallExpr *CE, 1330 const OwnershipAttr *Att, 1331 ProgramStateRef State) const { 1332 if (!State) 1333 return nullptr; 1334 1335 if (Att->getModule() != II_malloc) 1336 return nullptr; 1337 1338 bool ReleasedAllocated = false; 1339 1340 for (const auto &Arg : Att->args()) { 1341 ProgramStateRef StateI = FreeMemAux( 1342 C, CE, State, Arg.getASTIndex(), 1343 Att->getOwnKind() == OwnershipAttr::Holds, ReleasedAllocated); 1344 if (StateI) 1345 State = StateI; 1346 } 1347 return State; 1348 } 1349 1350 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, 1351 const CallExpr *CE, 1352 ProgramStateRef State, 1353 unsigned Num, 1354 bool Hold, 1355 bool &ReleasedAllocated, 1356 bool ReturnsNullOnFailure) const { 1357 if (!State) 1358 return nullptr; 1359 1360 if (CE->getNumArgs() < (Num + 1)) 1361 return nullptr; 1362 1363 return FreeMemAux(C, CE->getArg(Num), CE, State, Hold, 1364 ReleasedAllocated, ReturnsNullOnFailure); 1365 } 1366 1367 /// Checks if the previous call to free on the given symbol failed - if free 1368 /// failed, returns true. Also, returns the corresponding return value symbol. 1369 static bool didPreviousFreeFail(ProgramStateRef State, 1370 SymbolRef Sym, SymbolRef &RetStatusSymbol) { 1371 const SymbolRef *Ret = State->get<FreeReturnValue>(Sym); 1372 if (Ret) { 1373 assert(*Ret && "We should not store the null return symbol"); 1374 ConstraintManager &CMgr = State->getConstraintManager(); 1375 ConditionTruthVal FreeFailed = CMgr.isNull(State, *Ret); 1376 RetStatusSymbol = *Ret; 1377 return FreeFailed.isConstrainedTrue(); 1378 } 1379 return false; 1380 } 1381 1382 AllocationFamily MallocChecker::getAllocationFamily(CheckerContext &C, 1383 const Stmt *S) const { 1384 if (!S) 1385 return AF_None; 1386 1387 if (const CallExpr *CE = dyn_cast<CallExpr>(S)) { 1388 const FunctionDecl *FD = C.getCalleeDecl(CE); 1389 1390 if (!FD) 1391 FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); 1392 1393 ASTContext &Ctx = C.getASTContext(); 1394 1395 if (isCMemFunction(FD, Ctx, AF_Malloc, MemoryOperationKind::MOK_Any)) 1396 return AF_Malloc; 1397 1398 if (isStandardNewDelete(FD, Ctx)) { 1399 OverloadedOperatorKind Kind = FD->getOverloadedOperator(); 1400 if (Kind == OO_New || Kind == OO_Delete) 1401 return AF_CXXNew; 1402 else if (Kind == OO_Array_New || Kind == OO_Array_Delete) 1403 return AF_CXXNewArray; 1404 } 1405 1406 if (isCMemFunction(FD, Ctx, AF_IfNameIndex, MemoryOperationKind::MOK_Any)) 1407 return AF_IfNameIndex; 1408 1409 if (isCMemFunction(FD, Ctx, AF_Alloca, MemoryOperationKind::MOK_Any)) 1410 return AF_Alloca; 1411 1412 return AF_None; 1413 } 1414 1415 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(S)) 1416 return NE->isArray() ? AF_CXXNewArray : AF_CXXNew; 1417 1418 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(S)) 1419 return DE->isArrayForm() ? AF_CXXNewArray : AF_CXXNew; 1420 1421 if (isa<ObjCMessageExpr>(S)) 1422 return AF_Malloc; 1423 1424 return AF_None; 1425 } 1426 1427 bool MallocChecker::printAllocDeallocName(raw_ostream &os, CheckerContext &C, 1428 const Expr *E) const { 1429 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 1430 // FIXME: This doesn't handle indirect calls. 1431 const FunctionDecl *FD = CE->getDirectCallee(); 1432 if (!FD) 1433 return false; 1434 1435 os << *FD; 1436 if (!FD->isOverloadedOperator()) 1437 os << "()"; 1438 return true; 1439 } 1440 1441 if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E)) { 1442 if (Msg->isInstanceMessage()) 1443 os << "-"; 1444 else 1445 os << "+"; 1446 Msg->getSelector().print(os); 1447 return true; 1448 } 1449 1450 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { 1451 os << "'" 1452 << getOperatorSpelling(NE->getOperatorNew()->getOverloadedOperator()) 1453 << "'"; 1454 return true; 1455 } 1456 1457 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(E)) { 1458 os << "'" 1459 << getOperatorSpelling(DE->getOperatorDelete()->getOverloadedOperator()) 1460 << "'"; 1461 return true; 1462 } 1463 1464 return false; 1465 } 1466 1467 void MallocChecker::printExpectedAllocName(raw_ostream &os, CheckerContext &C, 1468 const Expr *E) const { 1469 AllocationFamily Family = getAllocationFamily(C, E); 1470 1471 switch(Family) { 1472 case AF_Malloc: os << "malloc()"; return; 1473 case AF_CXXNew: os << "'new'"; return; 1474 case AF_CXXNewArray: os << "'new[]'"; return; 1475 case AF_IfNameIndex: os << "'if_nameindex()'"; return; 1476 case AF_InnerBuffer: os << "container-specific allocator"; return; 1477 case AF_Alloca: 1478 case AF_None: llvm_unreachable("not a deallocation expression"); 1479 } 1480 } 1481 1482 void MallocChecker::printExpectedDeallocName(raw_ostream &os, 1483 AllocationFamily Family) const { 1484 switch(Family) { 1485 case AF_Malloc: os << "free()"; return; 1486 case AF_CXXNew: os << "'delete'"; return; 1487 case AF_CXXNewArray: os << "'delete[]'"; return; 1488 case AF_IfNameIndex: os << "'if_freenameindex()'"; return; 1489 case AF_InnerBuffer: os << "container-specific deallocator"; return; 1490 case AF_Alloca: 1491 case AF_None: llvm_unreachable("suspicious argument"); 1492 } 1493 } 1494 1495 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, 1496 const Expr *ArgExpr, 1497 const Expr *ParentExpr, 1498 ProgramStateRef State, 1499 bool Hold, 1500 bool &ReleasedAllocated, 1501 bool ReturnsNullOnFailure) const { 1502 1503 if (!State) 1504 return nullptr; 1505 1506 SVal ArgVal = C.getSVal(ArgExpr); 1507 if (!ArgVal.getAs<DefinedOrUnknownSVal>()) 1508 return nullptr; 1509 DefinedOrUnknownSVal location = ArgVal.castAs<DefinedOrUnknownSVal>(); 1510 1511 // Check for null dereferences. 1512 if (!location.getAs<Loc>()) 1513 return nullptr; 1514 1515 // The explicit NULL case, no operation is performed. 1516 ProgramStateRef notNullState, nullState; 1517 std::tie(notNullState, nullState) = State->assume(location); 1518 if (nullState && !notNullState) 1519 return nullptr; 1520 1521 // Unknown values could easily be okay 1522 // Undefined values are handled elsewhere 1523 if (ArgVal.isUnknownOrUndef()) 1524 return nullptr; 1525 1526 const MemRegion *R = ArgVal.getAsRegion(); 1527 1528 // Nonlocs can't be freed, of course. 1529 // Non-region locations (labels and fixed addresses) also shouldn't be freed. 1530 if (!R) { 1531 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1532 return nullptr; 1533 } 1534 1535 R = R->StripCasts(); 1536 1537 // Blocks might show up as heap data, but should not be free()d 1538 if (isa<BlockDataRegion>(R)) { 1539 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1540 return nullptr; 1541 } 1542 1543 const MemSpaceRegion *MS = R->getMemorySpace(); 1544 1545 // Parameters, locals, statics, globals, and memory returned by 1546 // __builtin_alloca() shouldn't be freed. 1547 if (!(isa<UnknownSpaceRegion>(MS) || isa<HeapSpaceRegion>(MS))) { 1548 // FIXME: at the time this code was written, malloc() regions were 1549 // represented by conjured symbols, which are all in UnknownSpaceRegion. 1550 // This means that there isn't actually anything from HeapSpaceRegion 1551 // that should be freed, even though we allow it here. 1552 // Of course, free() can work on memory allocated outside the current 1553 // function, so UnknownSpaceRegion is always a possibility. 1554 // False negatives are better than false positives. 1555 1556 if (isa<AllocaRegion>(R)) 1557 ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1558 else 1559 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1560 1561 return nullptr; 1562 } 1563 1564 const SymbolicRegion *SrBase = dyn_cast<SymbolicRegion>(R->getBaseRegion()); 1565 // Various cases could lead to non-symbol values here. 1566 // For now, ignore them. 1567 if (!SrBase) 1568 return nullptr; 1569 1570 SymbolRef SymBase = SrBase->getSymbol(); 1571 const RefState *RsBase = State->get<RegionState>(SymBase); 1572 SymbolRef PreviousRetStatusSymbol = nullptr; 1573 1574 if (RsBase) { 1575 1576 // Memory returned by alloca() shouldn't be freed. 1577 if (RsBase->getAllocationFamily() == AF_Alloca) { 1578 ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1579 return nullptr; 1580 } 1581 1582 // Check for double free first. 1583 if ((RsBase->isReleased() || RsBase->isRelinquished()) && 1584 !didPreviousFreeFail(State, SymBase, PreviousRetStatusSymbol)) { 1585 ReportDoubleFree(C, ParentExpr->getSourceRange(), RsBase->isReleased(), 1586 SymBase, PreviousRetStatusSymbol); 1587 return nullptr; 1588 1589 // If the pointer is allocated or escaped, but we are now trying to free it, 1590 // check that the call to free is proper. 1591 } else if (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero() || 1592 RsBase->isEscaped()) { 1593 1594 // Check if an expected deallocation function matches the real one. 1595 bool DeallocMatchesAlloc = 1596 RsBase->getAllocationFamily() == getAllocationFamily(C, ParentExpr); 1597 if (!DeallocMatchesAlloc) { 1598 ReportMismatchedDealloc(C, ArgExpr->getSourceRange(), 1599 ParentExpr, RsBase, SymBase, Hold); 1600 return nullptr; 1601 } 1602 1603 // Check if the memory location being freed is the actual location 1604 // allocated, or an offset. 1605 RegionOffset Offset = R->getAsOffset(); 1606 if (Offset.isValid() && 1607 !Offset.hasSymbolicOffset() && 1608 Offset.getOffset() != 0) { 1609 const Expr *AllocExpr = cast<Expr>(RsBase->getStmt()); 1610 ReportOffsetFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1611 AllocExpr); 1612 return nullptr; 1613 } 1614 } 1615 } 1616 1617 if (SymBase->getType()->isFunctionPointerType()) { 1618 ReportFunctionPointerFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1619 return nullptr; 1620 } 1621 1622 ReleasedAllocated = (RsBase != nullptr) && (RsBase->isAllocated() || 1623 RsBase->isAllocatedOfSizeZero()); 1624 1625 // Clean out the info on previous call to free return info. 1626 State = State->remove<FreeReturnValue>(SymBase); 1627 1628 // Keep track of the return value. If it is NULL, we will know that free 1629 // failed. 1630 if (ReturnsNullOnFailure) { 1631 SVal RetVal = C.getSVal(ParentExpr); 1632 SymbolRef RetStatusSymbol = RetVal.getAsSymbol(); 1633 if (RetStatusSymbol) { 1634 C.getSymbolManager().addSymbolDependency(SymBase, RetStatusSymbol); 1635 State = State->set<FreeReturnValue>(SymBase, RetStatusSymbol); 1636 } 1637 } 1638 1639 AllocationFamily Family = RsBase ? RsBase->getAllocationFamily() 1640 : getAllocationFamily(C, ParentExpr); 1641 // Normal free. 1642 if (Hold) 1643 return State->set<RegionState>(SymBase, 1644 RefState::getRelinquished(Family, 1645 ParentExpr)); 1646 1647 return State->set<RegionState>(SymBase, 1648 RefState::getReleased(Family, ParentExpr)); 1649 } 1650 1651 Optional<MallocChecker::CheckKind> 1652 MallocChecker::getCheckIfTracked(AllocationFamily Family, 1653 bool IsALeakCheck) const { 1654 switch (Family) { 1655 case AF_Malloc: 1656 case AF_Alloca: 1657 case AF_IfNameIndex: { 1658 if (ChecksEnabled[CK_MallocChecker]) 1659 return CK_MallocChecker; 1660 1661 return Optional<MallocChecker::CheckKind>(); 1662 } 1663 case AF_CXXNew: 1664 case AF_CXXNewArray: 1665 // FIXME: Add new CheckKind for AF_InnerBuffer. 1666 case AF_InnerBuffer: { 1667 if (IsALeakCheck) { 1668 if (ChecksEnabled[CK_NewDeleteLeaksChecker]) 1669 return CK_NewDeleteLeaksChecker; 1670 } 1671 else { 1672 if (ChecksEnabled[CK_NewDeleteChecker]) 1673 return CK_NewDeleteChecker; 1674 } 1675 return Optional<MallocChecker::CheckKind>(); 1676 } 1677 case AF_None: { 1678 llvm_unreachable("no family"); 1679 } 1680 } 1681 llvm_unreachable("unhandled family"); 1682 } 1683 1684 Optional<MallocChecker::CheckKind> 1685 MallocChecker::getCheckIfTracked(CheckerContext &C, 1686 const Stmt *AllocDeallocStmt, 1687 bool IsALeakCheck) const { 1688 return getCheckIfTracked(getAllocationFamily(C, AllocDeallocStmt), 1689 IsALeakCheck); 1690 } 1691 1692 Optional<MallocChecker::CheckKind> 1693 MallocChecker::getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 1694 bool IsALeakCheck) const { 1695 if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) 1696 return CK_MallocChecker; 1697 1698 const RefState *RS = C.getState()->get<RegionState>(Sym); 1699 assert(RS); 1700 return getCheckIfTracked(RS->getAllocationFamily(), IsALeakCheck); 1701 } 1702 1703 bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) { 1704 if (Optional<nonloc::ConcreteInt> IntVal = V.getAs<nonloc::ConcreteInt>()) 1705 os << "an integer (" << IntVal->getValue() << ")"; 1706 else if (Optional<loc::ConcreteInt> ConstAddr = V.getAs<loc::ConcreteInt>()) 1707 os << "a constant address (" << ConstAddr->getValue() << ")"; 1708 else if (Optional<loc::GotoLabel> Label = V.getAs<loc::GotoLabel>()) 1709 os << "the address of the label '" << Label->getLabel()->getName() << "'"; 1710 else 1711 return false; 1712 1713 return true; 1714 } 1715 1716 bool MallocChecker::SummarizeRegion(raw_ostream &os, 1717 const MemRegion *MR) { 1718 switch (MR->getKind()) { 1719 case MemRegion::FunctionCodeRegionKind: { 1720 const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl(); 1721 if (FD) 1722 os << "the address of the function '" << *FD << '\''; 1723 else 1724 os << "the address of a function"; 1725 return true; 1726 } 1727 case MemRegion::BlockCodeRegionKind: 1728 os << "block text"; 1729 return true; 1730 case MemRegion::BlockDataRegionKind: 1731 // FIXME: where the block came from? 1732 os << "a block"; 1733 return true; 1734 default: { 1735 const MemSpaceRegion *MS = MR->getMemorySpace(); 1736 1737 if (isa<StackLocalsSpaceRegion>(MS)) { 1738 const VarRegion *VR = dyn_cast<VarRegion>(MR); 1739 const VarDecl *VD; 1740 if (VR) 1741 VD = VR->getDecl(); 1742 else 1743 VD = nullptr; 1744 1745 if (VD) 1746 os << "the address of the local variable '" << VD->getName() << "'"; 1747 else 1748 os << "the address of a local stack variable"; 1749 return true; 1750 } 1751 1752 if (isa<StackArgumentsSpaceRegion>(MS)) { 1753 const VarRegion *VR = dyn_cast<VarRegion>(MR); 1754 const VarDecl *VD; 1755 if (VR) 1756 VD = VR->getDecl(); 1757 else 1758 VD = nullptr; 1759 1760 if (VD) 1761 os << "the address of the parameter '" << VD->getName() << "'"; 1762 else 1763 os << "the address of a parameter"; 1764 return true; 1765 } 1766 1767 if (isa<GlobalsSpaceRegion>(MS)) { 1768 const VarRegion *VR = dyn_cast<VarRegion>(MR); 1769 const VarDecl *VD; 1770 if (VR) 1771 VD = VR->getDecl(); 1772 else 1773 VD = nullptr; 1774 1775 if (VD) { 1776 if (VD->isStaticLocal()) 1777 os << "the address of the static variable '" << VD->getName() << "'"; 1778 else 1779 os << "the address of the global variable '" << VD->getName() << "'"; 1780 } else 1781 os << "the address of a global variable"; 1782 return true; 1783 } 1784 1785 return false; 1786 } 1787 } 1788 } 1789 1790 void MallocChecker::ReportBadFree(CheckerContext &C, SVal ArgVal, 1791 SourceRange Range, 1792 const Expr *DeallocExpr) const { 1793 1794 if (!ChecksEnabled[CK_MallocChecker] && 1795 !ChecksEnabled[CK_NewDeleteChecker]) 1796 return; 1797 1798 Optional<MallocChecker::CheckKind> CheckKind = 1799 getCheckIfTracked(C, DeallocExpr); 1800 if (!CheckKind.hasValue()) 1801 return; 1802 1803 if (ExplodedNode *N = C.generateErrorNode()) { 1804 if (!BT_BadFree[*CheckKind]) 1805 BT_BadFree[*CheckKind].reset(new BugType( 1806 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 1807 1808 SmallString<100> buf; 1809 llvm::raw_svector_ostream os(buf); 1810 1811 const MemRegion *MR = ArgVal.getAsRegion(); 1812 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 1813 MR = ER->getSuperRegion(); 1814 1815 os << "Argument to "; 1816 if (!printAllocDeallocName(os, C, DeallocExpr)) 1817 os << "deallocator"; 1818 1819 os << " is "; 1820 bool Summarized = MR ? SummarizeRegion(os, MR) 1821 : SummarizeValue(os, ArgVal); 1822 if (Summarized) 1823 os << ", which is not memory allocated by "; 1824 else 1825 os << "not memory allocated by "; 1826 1827 printExpectedAllocName(os, C, DeallocExpr); 1828 1829 auto R = llvm::make_unique<BugReport>(*BT_BadFree[*CheckKind], os.str(), N); 1830 R->markInteresting(MR); 1831 R->addRange(Range); 1832 C.emitReport(std::move(R)); 1833 } 1834 } 1835 1836 void MallocChecker::ReportFreeAlloca(CheckerContext &C, SVal ArgVal, 1837 SourceRange Range) const { 1838 1839 Optional<MallocChecker::CheckKind> CheckKind; 1840 1841 if (ChecksEnabled[CK_MallocChecker]) 1842 CheckKind = CK_MallocChecker; 1843 else if (ChecksEnabled[CK_MismatchedDeallocatorChecker]) 1844 CheckKind = CK_MismatchedDeallocatorChecker; 1845 else 1846 return; 1847 1848 if (ExplodedNode *N = C.generateErrorNode()) { 1849 if (!BT_FreeAlloca[*CheckKind]) 1850 BT_FreeAlloca[*CheckKind].reset(new BugType( 1851 CheckNames[*CheckKind], "Free alloca()", categories::MemoryError)); 1852 1853 auto R = llvm::make_unique<BugReport>( 1854 *BT_FreeAlloca[*CheckKind], 1855 "Memory allocated by alloca() should not be deallocated", N); 1856 R->markInteresting(ArgVal.getAsRegion()); 1857 R->addRange(Range); 1858 C.emitReport(std::move(R)); 1859 } 1860 } 1861 1862 void MallocChecker::ReportMismatchedDealloc(CheckerContext &C, 1863 SourceRange Range, 1864 const Expr *DeallocExpr, 1865 const RefState *RS, 1866 SymbolRef Sym, 1867 bool OwnershipTransferred) const { 1868 1869 if (!ChecksEnabled[CK_MismatchedDeallocatorChecker]) 1870 return; 1871 1872 if (ExplodedNode *N = C.generateErrorNode()) { 1873 if (!BT_MismatchedDealloc) 1874 BT_MismatchedDealloc.reset( 1875 new BugType(CheckNames[CK_MismatchedDeallocatorChecker], 1876 "Bad deallocator", categories::MemoryError)); 1877 1878 SmallString<100> buf; 1879 llvm::raw_svector_ostream os(buf); 1880 1881 const Expr *AllocExpr = cast<Expr>(RS->getStmt()); 1882 SmallString<20> AllocBuf; 1883 llvm::raw_svector_ostream AllocOs(AllocBuf); 1884 SmallString<20> DeallocBuf; 1885 llvm::raw_svector_ostream DeallocOs(DeallocBuf); 1886 1887 if (OwnershipTransferred) { 1888 if (printAllocDeallocName(DeallocOs, C, DeallocExpr)) 1889 os << DeallocOs.str() << " cannot"; 1890 else 1891 os << "Cannot"; 1892 1893 os << " take ownership of memory"; 1894 1895 if (printAllocDeallocName(AllocOs, C, AllocExpr)) 1896 os << " allocated by " << AllocOs.str(); 1897 } else { 1898 os << "Memory"; 1899 if (printAllocDeallocName(AllocOs, C, AllocExpr)) 1900 os << " allocated by " << AllocOs.str(); 1901 1902 os << " should be deallocated by "; 1903 printExpectedDeallocName(os, RS->getAllocationFamily()); 1904 1905 if (printAllocDeallocName(DeallocOs, C, DeallocExpr)) 1906 os << ", not " << DeallocOs.str(); 1907 } 1908 1909 auto R = llvm::make_unique<BugReport>(*BT_MismatchedDealloc, os.str(), N); 1910 R->markInteresting(Sym); 1911 R->addRange(Range); 1912 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 1913 C.emitReport(std::move(R)); 1914 } 1915 } 1916 1917 void MallocChecker::ReportOffsetFree(CheckerContext &C, SVal ArgVal, 1918 SourceRange Range, const Expr *DeallocExpr, 1919 const Expr *AllocExpr) const { 1920 1921 1922 if (!ChecksEnabled[CK_MallocChecker] && 1923 !ChecksEnabled[CK_NewDeleteChecker]) 1924 return; 1925 1926 Optional<MallocChecker::CheckKind> CheckKind = 1927 getCheckIfTracked(C, AllocExpr); 1928 if (!CheckKind.hasValue()) 1929 return; 1930 1931 ExplodedNode *N = C.generateErrorNode(); 1932 if (!N) 1933 return; 1934 1935 if (!BT_OffsetFree[*CheckKind]) 1936 BT_OffsetFree[*CheckKind].reset(new BugType( 1937 CheckNames[*CheckKind], "Offset free", categories::MemoryError)); 1938 1939 SmallString<100> buf; 1940 llvm::raw_svector_ostream os(buf); 1941 SmallString<20> AllocNameBuf; 1942 llvm::raw_svector_ostream AllocNameOs(AllocNameBuf); 1943 1944 const MemRegion *MR = ArgVal.getAsRegion(); 1945 assert(MR && "Only MemRegion based symbols can have offset free errors"); 1946 1947 RegionOffset Offset = MR->getAsOffset(); 1948 assert((Offset.isValid() && 1949 !Offset.hasSymbolicOffset() && 1950 Offset.getOffset() != 0) && 1951 "Only symbols with a valid offset can have offset free errors"); 1952 1953 int offsetBytes = Offset.getOffset() / C.getASTContext().getCharWidth(); 1954 1955 os << "Argument to "; 1956 if (!printAllocDeallocName(os, C, DeallocExpr)) 1957 os << "deallocator"; 1958 os << " is offset by " 1959 << offsetBytes 1960 << " " 1961 << ((abs(offsetBytes) > 1) ? "bytes" : "byte") 1962 << " from the start of "; 1963 if (AllocExpr && printAllocDeallocName(AllocNameOs, C, AllocExpr)) 1964 os << "memory allocated by " << AllocNameOs.str(); 1965 else 1966 os << "allocated memory"; 1967 1968 auto R = llvm::make_unique<BugReport>(*BT_OffsetFree[*CheckKind], os.str(), N); 1969 R->markInteresting(MR->getBaseRegion()); 1970 R->addRange(Range); 1971 C.emitReport(std::move(R)); 1972 } 1973 1974 void MallocChecker::ReportUseAfterFree(CheckerContext &C, SourceRange Range, 1975 SymbolRef Sym) const { 1976 1977 if (!ChecksEnabled[CK_MallocChecker] && 1978 !ChecksEnabled[CK_NewDeleteChecker]) 1979 return; 1980 1981 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 1982 if (!CheckKind.hasValue()) 1983 return; 1984 1985 if (ExplodedNode *N = C.generateErrorNode()) { 1986 if (!BT_UseFree[*CheckKind]) 1987 BT_UseFree[*CheckKind].reset(new BugType( 1988 CheckNames[*CheckKind], "Use-after-free", categories::MemoryError)); 1989 1990 auto R = llvm::make_unique<BugReport>(*BT_UseFree[*CheckKind], 1991 "Use of memory after it is freed", N); 1992 1993 R->markInteresting(Sym); 1994 R->addRange(Range); 1995 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 1996 1997 const RefState *RS = C.getState()->get<RegionState>(Sym); 1998 if (RS->getAllocationFamily() == AF_InnerBuffer) 1999 R->addVisitor(allocation_state::getInnerPointerBRVisitor(Sym)); 2000 2001 C.emitReport(std::move(R)); 2002 } 2003 } 2004 2005 void MallocChecker::ReportDoubleFree(CheckerContext &C, SourceRange Range, 2006 bool Released, SymbolRef Sym, 2007 SymbolRef PrevSym) const { 2008 2009 if (!ChecksEnabled[CK_MallocChecker] && 2010 !ChecksEnabled[CK_NewDeleteChecker]) 2011 return; 2012 2013 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2014 if (!CheckKind.hasValue()) 2015 return; 2016 2017 if (ExplodedNode *N = C.generateErrorNode()) { 2018 if (!BT_DoubleFree[*CheckKind]) 2019 BT_DoubleFree[*CheckKind].reset(new BugType( 2020 CheckNames[*CheckKind], "Double free", categories::MemoryError)); 2021 2022 auto R = llvm::make_unique<BugReport>( 2023 *BT_DoubleFree[*CheckKind], 2024 (Released ? "Attempt to free released memory" 2025 : "Attempt to free non-owned memory"), 2026 N); 2027 R->addRange(Range); 2028 R->markInteresting(Sym); 2029 if (PrevSym) 2030 R->markInteresting(PrevSym); 2031 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 2032 C.emitReport(std::move(R)); 2033 } 2034 } 2035 2036 void MallocChecker::ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const { 2037 2038 if (!ChecksEnabled[CK_NewDeleteChecker]) 2039 return; 2040 2041 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2042 if (!CheckKind.hasValue()) 2043 return; 2044 2045 if (ExplodedNode *N = C.generateErrorNode()) { 2046 if (!BT_DoubleDelete) 2047 BT_DoubleDelete.reset(new BugType(CheckNames[CK_NewDeleteChecker], 2048 "Double delete", 2049 categories::MemoryError)); 2050 2051 auto R = llvm::make_unique<BugReport>( 2052 *BT_DoubleDelete, "Attempt to delete released memory", N); 2053 2054 R->markInteresting(Sym); 2055 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 2056 C.emitReport(std::move(R)); 2057 } 2058 } 2059 2060 void MallocChecker::ReportUseZeroAllocated(CheckerContext &C, 2061 SourceRange Range, 2062 SymbolRef Sym) const { 2063 2064 if (!ChecksEnabled[CK_MallocChecker] && 2065 !ChecksEnabled[CK_NewDeleteChecker]) 2066 return; 2067 2068 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2069 2070 if (!CheckKind.hasValue()) 2071 return; 2072 2073 if (ExplodedNode *N = C.generateErrorNode()) { 2074 if (!BT_UseZerroAllocated[*CheckKind]) 2075 BT_UseZerroAllocated[*CheckKind].reset( 2076 new BugType(CheckNames[*CheckKind], "Use of zero allocated", 2077 categories::MemoryError)); 2078 2079 auto R = llvm::make_unique<BugReport>(*BT_UseZerroAllocated[*CheckKind], 2080 "Use of zero-allocated memory", N); 2081 2082 R->addRange(Range); 2083 if (Sym) { 2084 R->markInteresting(Sym); 2085 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 2086 } 2087 C.emitReport(std::move(R)); 2088 } 2089 } 2090 2091 void MallocChecker::ReportFunctionPointerFree(CheckerContext &C, SVal ArgVal, 2092 SourceRange Range, 2093 const Expr *FreeExpr) const { 2094 if (!ChecksEnabled[CK_MallocChecker]) 2095 return; 2096 2097 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, FreeExpr); 2098 if (!CheckKind.hasValue()) 2099 return; 2100 2101 if (ExplodedNode *N = C.generateErrorNode()) { 2102 if (!BT_BadFree[*CheckKind]) 2103 BT_BadFree[*CheckKind].reset(new BugType( 2104 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 2105 2106 SmallString<100> Buf; 2107 llvm::raw_svector_ostream Os(Buf); 2108 2109 const MemRegion *MR = ArgVal.getAsRegion(); 2110 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 2111 MR = ER->getSuperRegion(); 2112 2113 Os << "Argument to "; 2114 if (!printAllocDeallocName(Os, C, FreeExpr)) 2115 Os << "deallocator"; 2116 2117 Os << " is a function pointer"; 2118 2119 auto R = llvm::make_unique<BugReport>(*BT_BadFree[*CheckKind], Os.str(), N); 2120 R->markInteresting(MR); 2121 R->addRange(Range); 2122 C.emitReport(std::move(R)); 2123 } 2124 } 2125 2126 ProgramStateRef MallocChecker::ReallocMemAux(CheckerContext &C, 2127 const CallExpr *CE, 2128 bool FreesOnFail, 2129 ProgramStateRef State, 2130 bool SuffixWithN) const { 2131 if (!State) 2132 return nullptr; 2133 2134 if (SuffixWithN && CE->getNumArgs() < 3) 2135 return nullptr; 2136 else if (CE->getNumArgs() < 2) 2137 return nullptr; 2138 2139 const Expr *arg0Expr = CE->getArg(0); 2140 SVal Arg0Val = C.getSVal(arg0Expr); 2141 if (!Arg0Val.getAs<DefinedOrUnknownSVal>()) 2142 return nullptr; 2143 DefinedOrUnknownSVal arg0Val = Arg0Val.castAs<DefinedOrUnknownSVal>(); 2144 2145 SValBuilder &svalBuilder = C.getSValBuilder(); 2146 2147 DefinedOrUnknownSVal PtrEQ = 2148 svalBuilder.evalEQ(State, arg0Val, svalBuilder.makeNull()); 2149 2150 // Get the size argument. 2151 const Expr *Arg1 = CE->getArg(1); 2152 2153 // Get the value of the size argument. 2154 SVal TotalSize = C.getSVal(Arg1); 2155 if (SuffixWithN) 2156 TotalSize = evalMulForBufferSize(C, Arg1, CE->getArg(2)); 2157 if (!TotalSize.getAs<DefinedOrUnknownSVal>()) 2158 return nullptr; 2159 2160 // Compare the size argument to 0. 2161 DefinedOrUnknownSVal SizeZero = 2162 svalBuilder.evalEQ(State, TotalSize.castAs<DefinedOrUnknownSVal>(), 2163 svalBuilder.makeIntValWithPtrWidth(0, false)); 2164 2165 ProgramStateRef StatePtrIsNull, StatePtrNotNull; 2166 std::tie(StatePtrIsNull, StatePtrNotNull) = State->assume(PtrEQ); 2167 ProgramStateRef StateSizeIsZero, StateSizeNotZero; 2168 std::tie(StateSizeIsZero, StateSizeNotZero) = State->assume(SizeZero); 2169 // We only assume exceptional states if they are definitely true; if the 2170 // state is under-constrained, assume regular realloc behavior. 2171 bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull; 2172 bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero; 2173 2174 // If the ptr is NULL and the size is not 0, the call is equivalent to 2175 // malloc(size). 2176 if (PrtIsNull && !SizeIsZero) { 2177 ProgramStateRef stateMalloc = MallocMemAux(C, CE, TotalSize, 2178 UndefinedVal(), StatePtrIsNull); 2179 return stateMalloc; 2180 } 2181 2182 if (PrtIsNull && SizeIsZero) 2183 return State; 2184 2185 // Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size). 2186 assert(!PrtIsNull); 2187 SymbolRef FromPtr = arg0Val.getAsSymbol(); 2188 SVal RetVal = C.getSVal(CE); 2189 SymbolRef ToPtr = RetVal.getAsSymbol(); 2190 if (!FromPtr || !ToPtr) 2191 return nullptr; 2192 2193 bool ReleasedAllocated = false; 2194 2195 // If the size is 0, free the memory. 2196 if (SizeIsZero) 2197 if (ProgramStateRef stateFree = FreeMemAux(C, CE, StateSizeIsZero, 0, 2198 false, ReleasedAllocated)){ 2199 // The semantics of the return value are: 2200 // If size was equal to 0, either NULL or a pointer suitable to be passed 2201 // to free() is returned. We just free the input pointer and do not add 2202 // any constrains on the output pointer. 2203 return stateFree; 2204 } 2205 2206 // Default behavior. 2207 if (ProgramStateRef stateFree = 2208 FreeMemAux(C, CE, State, 0, false, ReleasedAllocated)) { 2209 2210 ProgramStateRef stateRealloc = MallocMemAux(C, CE, TotalSize, 2211 UnknownVal(), stateFree); 2212 if (!stateRealloc) 2213 return nullptr; 2214 2215 ReallocPairKind Kind = RPToBeFreedAfterFailure; 2216 if (FreesOnFail) 2217 Kind = RPIsFreeOnFailure; 2218 else if (!ReleasedAllocated) 2219 Kind = RPDoNotTrackAfterFailure; 2220 2221 // Record the info about the reallocated symbol so that we could properly 2222 // process failed reallocation. 2223 stateRealloc = stateRealloc->set<ReallocPairs>(ToPtr, 2224 ReallocPair(FromPtr, Kind)); 2225 // The reallocated symbol should stay alive for as long as the new symbol. 2226 C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr); 2227 return stateRealloc; 2228 } 2229 return nullptr; 2230 } 2231 2232 ProgramStateRef MallocChecker::CallocMem(CheckerContext &C, const CallExpr *CE, 2233 ProgramStateRef State) { 2234 if (!State) 2235 return nullptr; 2236 2237 if (CE->getNumArgs() < 2) 2238 return nullptr; 2239 2240 SValBuilder &svalBuilder = C.getSValBuilder(); 2241 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 2242 SVal TotalSize = evalMulForBufferSize(C, CE->getArg(0), CE->getArg(1)); 2243 2244 return MallocMemAux(C, CE, TotalSize, zeroVal, State); 2245 } 2246 2247 LeakInfo 2248 MallocChecker::getAllocationSite(const ExplodedNode *N, SymbolRef Sym, 2249 CheckerContext &C) const { 2250 const LocationContext *LeakContext = N->getLocationContext(); 2251 // Walk the ExplodedGraph backwards and find the first node that referred to 2252 // the tracked symbol. 2253 const ExplodedNode *AllocNode = N; 2254 const MemRegion *ReferenceRegion = nullptr; 2255 2256 while (N) { 2257 ProgramStateRef State = N->getState(); 2258 if (!State->get<RegionState>(Sym)) 2259 break; 2260 2261 // Find the most recent expression bound to the symbol in the current 2262 // context. 2263 if (!ReferenceRegion) { 2264 if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) { 2265 SVal Val = State->getSVal(MR); 2266 if (Val.getAsLocSymbol() == Sym) { 2267 const VarRegion* VR = MR->getBaseRegion()->getAs<VarRegion>(); 2268 // Do not show local variables belonging to a function other than 2269 // where the error is reported. 2270 if (!VR || 2271 (VR->getStackFrame() == LeakContext->getStackFrame())) 2272 ReferenceRegion = MR; 2273 } 2274 } 2275 } 2276 2277 // Allocation node, is the last node in the current or parent context in 2278 // which the symbol was tracked. 2279 const LocationContext *NContext = N->getLocationContext(); 2280 if (NContext == LeakContext || 2281 NContext->isParentOf(LeakContext)) 2282 AllocNode = N; 2283 N = N->pred_empty() ? nullptr : *(N->pred_begin()); 2284 } 2285 2286 return LeakInfo(AllocNode, ReferenceRegion); 2287 } 2288 2289 void MallocChecker::reportLeak(SymbolRef Sym, ExplodedNode *N, 2290 CheckerContext &C) const { 2291 2292 if (!ChecksEnabled[CK_MallocChecker] && 2293 !ChecksEnabled[CK_NewDeleteLeaksChecker]) 2294 return; 2295 2296 const RefState *RS = C.getState()->get<RegionState>(Sym); 2297 assert(RS && "cannot leak an untracked symbol"); 2298 AllocationFamily Family = RS->getAllocationFamily(); 2299 2300 if (Family == AF_Alloca) 2301 return; 2302 2303 Optional<MallocChecker::CheckKind> 2304 CheckKind = getCheckIfTracked(Family, true); 2305 2306 if (!CheckKind.hasValue()) 2307 return; 2308 2309 assert(N); 2310 if (!BT_Leak[*CheckKind]) { 2311 BT_Leak[*CheckKind].reset(new BugType(CheckNames[*CheckKind], "Memory leak", 2312 categories::MemoryError)); 2313 // Leaks should not be reported if they are post-dominated by a sink: 2314 // (1) Sinks are higher importance bugs. 2315 // (2) NoReturnFunctionChecker uses sink nodes to represent paths ending 2316 // with __noreturn functions such as assert() or exit(). We choose not 2317 // to report leaks on such paths. 2318 BT_Leak[*CheckKind]->setSuppressOnSink(true); 2319 } 2320 2321 // Most bug reports are cached at the location where they occurred. 2322 // With leaks, we want to unique them by the location where they were 2323 // allocated, and only report a single path. 2324 PathDiagnosticLocation LocUsedForUniqueing; 2325 const ExplodedNode *AllocNode = nullptr; 2326 const MemRegion *Region = nullptr; 2327 std::tie(AllocNode, Region) = getAllocationSite(N, Sym, C); 2328 2329 const Stmt *AllocationStmt = PathDiagnosticLocation::getStmt(AllocNode); 2330 if (AllocationStmt) 2331 LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocationStmt, 2332 C.getSourceManager(), 2333 AllocNode->getLocationContext()); 2334 2335 SmallString<200> buf; 2336 llvm::raw_svector_ostream os(buf); 2337 if (Region && Region->canPrintPretty()) { 2338 os << "Potential leak of memory pointed to by "; 2339 Region->printPretty(os); 2340 } else { 2341 os << "Potential memory leak"; 2342 } 2343 2344 auto R = llvm::make_unique<BugReport>( 2345 *BT_Leak[*CheckKind], os.str(), N, LocUsedForUniqueing, 2346 AllocNode->getLocationContext()->getDecl()); 2347 R->markInteresting(Sym); 2348 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym, true)); 2349 C.emitReport(std::move(R)); 2350 } 2351 2352 void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper, 2353 CheckerContext &C) const 2354 { 2355 if (!SymReaper.hasDeadSymbols()) 2356 return; 2357 2358 ProgramStateRef state = C.getState(); 2359 RegionStateTy RS = state->get<RegionState>(); 2360 RegionStateTy::Factory &F = state->get_context<RegionState>(); 2361 2362 SmallVector<SymbolRef, 2> Errors; 2363 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2364 if (SymReaper.isDead(I->first)) { 2365 if (I->second.isAllocated() || I->second.isAllocatedOfSizeZero()) 2366 Errors.push_back(I->first); 2367 // Remove the dead symbol from the map. 2368 RS = F.remove(RS, I->first); 2369 2370 } 2371 } 2372 2373 // Cleanup the Realloc Pairs Map. 2374 ReallocPairsTy RP = state->get<ReallocPairs>(); 2375 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 2376 if (SymReaper.isDead(I->first) || 2377 SymReaper.isDead(I->second.ReallocatedSym)) { 2378 state = state->remove<ReallocPairs>(I->first); 2379 } 2380 } 2381 2382 // Cleanup the FreeReturnValue Map. 2383 FreeReturnValueTy FR = state->get<FreeReturnValue>(); 2384 for (FreeReturnValueTy::iterator I = FR.begin(), E = FR.end(); I != E; ++I) { 2385 if (SymReaper.isDead(I->first) || 2386 SymReaper.isDead(I->second)) { 2387 state = state->remove<FreeReturnValue>(I->first); 2388 } 2389 } 2390 2391 // Generate leak node. 2392 ExplodedNode *N = C.getPredecessor(); 2393 if (!Errors.empty()) { 2394 static CheckerProgramPointTag Tag("MallocChecker", "DeadSymbolsLeak"); 2395 N = C.generateNonFatalErrorNode(C.getState(), &Tag); 2396 if (N) { 2397 for (SmallVectorImpl<SymbolRef>::iterator 2398 I = Errors.begin(), E = Errors.end(); I != E; ++I) { 2399 reportLeak(*I, N, C); 2400 } 2401 } 2402 } 2403 2404 C.addTransition(state->set<RegionState>(RS), N); 2405 } 2406 2407 void MallocChecker::checkPreCall(const CallEvent &Call, 2408 CheckerContext &C) const { 2409 2410 if (const CXXDestructorCall *DC = dyn_cast<CXXDestructorCall>(&Call)) { 2411 SymbolRef Sym = DC->getCXXThisVal().getAsSymbol(); 2412 if (!Sym || checkDoubleDelete(Sym, C)) 2413 return; 2414 } 2415 2416 // We will check for double free in the post visit. 2417 if (const AnyFunctionCall *FC = dyn_cast<AnyFunctionCall>(&Call)) { 2418 const FunctionDecl *FD = FC->getDecl(); 2419 if (!FD) 2420 return; 2421 2422 ASTContext &Ctx = C.getASTContext(); 2423 if (ChecksEnabled[CK_MallocChecker] && 2424 (isCMemFunction(FD, Ctx, AF_Malloc, MemoryOperationKind::MOK_Free) || 2425 isCMemFunction(FD, Ctx, AF_IfNameIndex, 2426 MemoryOperationKind::MOK_Free))) 2427 return; 2428 2429 if (ChecksEnabled[CK_NewDeleteChecker] && 2430 isStandardNewDelete(FD, Ctx)) 2431 return; 2432 } 2433 2434 // Check if the callee of a method is deleted. 2435 if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(&Call)) { 2436 SymbolRef Sym = CC->getCXXThisVal().getAsSymbol(); 2437 if (!Sym || checkUseAfterFree(Sym, C, CC->getCXXThisExpr())) 2438 return; 2439 } 2440 2441 // Check arguments for being used after free. 2442 for (unsigned I = 0, E = Call.getNumArgs(); I != E; ++I) { 2443 SVal ArgSVal = Call.getArgSVal(I); 2444 if (ArgSVal.getAs<Loc>()) { 2445 SymbolRef Sym = ArgSVal.getAsSymbol(); 2446 if (!Sym) 2447 continue; 2448 if (checkUseAfterFree(Sym, C, Call.getArgExpr(I))) 2449 return; 2450 } 2451 } 2452 } 2453 2454 void MallocChecker::checkPreStmt(const ReturnStmt *S, CheckerContext &C) const { 2455 const Expr *E = S->getRetValue(); 2456 if (!E) 2457 return; 2458 2459 // Check if we are returning a symbol. 2460 ProgramStateRef State = C.getState(); 2461 SVal RetVal = C.getSVal(E); 2462 SymbolRef Sym = RetVal.getAsSymbol(); 2463 if (!Sym) 2464 // If we are returning a field of the allocated struct or an array element, 2465 // the callee could still free the memory. 2466 // TODO: This logic should be a part of generic symbol escape callback. 2467 if (const MemRegion *MR = RetVal.getAsRegion()) 2468 if (isa<FieldRegion>(MR) || isa<ElementRegion>(MR)) 2469 if (const SymbolicRegion *BMR = 2470 dyn_cast<SymbolicRegion>(MR->getBaseRegion())) 2471 Sym = BMR->getSymbol(); 2472 2473 // Check if we are returning freed memory. 2474 if (Sym) 2475 checkUseAfterFree(Sym, C, E); 2476 } 2477 2478 // TODO: Blocks should be either inlined or should call invalidate regions 2479 // upon invocation. After that's in place, special casing here will not be 2480 // needed. 2481 void MallocChecker::checkPostStmt(const BlockExpr *BE, 2482 CheckerContext &C) const { 2483 2484 // Scan the BlockDecRefExprs for any object the retain count checker 2485 // may be tracking. 2486 if (!BE->getBlockDecl()->hasCaptures()) 2487 return; 2488 2489 ProgramStateRef state = C.getState(); 2490 const BlockDataRegion *R = 2491 cast<BlockDataRegion>(C.getSVal(BE).getAsRegion()); 2492 2493 BlockDataRegion::referenced_vars_iterator I = R->referenced_vars_begin(), 2494 E = R->referenced_vars_end(); 2495 2496 if (I == E) 2497 return; 2498 2499 SmallVector<const MemRegion*, 10> Regions; 2500 const LocationContext *LC = C.getLocationContext(); 2501 MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager(); 2502 2503 for ( ; I != E; ++I) { 2504 const VarRegion *VR = I.getCapturedRegion(); 2505 if (VR->getSuperRegion() == R) { 2506 VR = MemMgr.getVarRegion(VR->getDecl(), LC); 2507 } 2508 Regions.push_back(VR); 2509 } 2510 2511 state = 2512 state->scanReachableSymbols<StopTrackingCallback>(Regions.data(), 2513 Regions.data() + Regions.size()).getState(); 2514 C.addTransition(state); 2515 } 2516 2517 bool MallocChecker::isReleased(SymbolRef Sym, CheckerContext &C) const { 2518 assert(Sym); 2519 const RefState *RS = C.getState()->get<RegionState>(Sym); 2520 return (RS && RS->isReleased()); 2521 } 2522 2523 bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C, 2524 const Stmt *S) const { 2525 2526 if (isReleased(Sym, C)) { 2527 ReportUseAfterFree(C, S->getSourceRange(), Sym); 2528 return true; 2529 } 2530 2531 return false; 2532 } 2533 2534 void MallocChecker::checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 2535 const Stmt *S) const { 2536 assert(Sym); 2537 2538 if (const RefState *RS = C.getState()->get<RegionState>(Sym)) { 2539 if (RS->isAllocatedOfSizeZero()) 2540 ReportUseZeroAllocated(C, RS->getStmt()->getSourceRange(), Sym); 2541 } 2542 else if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) { 2543 ReportUseZeroAllocated(C, S->getSourceRange(), Sym); 2544 } 2545 } 2546 2547 bool MallocChecker::checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const { 2548 2549 if (isReleased(Sym, C)) { 2550 ReportDoubleDelete(C, Sym); 2551 return true; 2552 } 2553 return false; 2554 } 2555 2556 // Check if the location is a freed symbolic region. 2557 void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S, 2558 CheckerContext &C) const { 2559 SymbolRef Sym = l.getLocSymbolInBase(); 2560 if (Sym) { 2561 checkUseAfterFree(Sym, C, S); 2562 checkUseZeroAllocated(Sym, C, S); 2563 } 2564 } 2565 2566 // If a symbolic region is assumed to NULL (or another constant), stop tracking 2567 // it - assuming that allocation failed on this path. 2568 ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state, 2569 SVal Cond, 2570 bool Assumption) const { 2571 RegionStateTy RS = state->get<RegionState>(); 2572 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2573 // If the symbol is assumed to be NULL, remove it from consideration. 2574 ConstraintManager &CMgr = state->getConstraintManager(); 2575 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 2576 if (AllocFailed.isConstrainedTrue()) 2577 state = state->remove<RegionState>(I.getKey()); 2578 } 2579 2580 // Realloc returns 0 when reallocation fails, which means that we should 2581 // restore the state of the pointer being reallocated. 2582 ReallocPairsTy RP = state->get<ReallocPairs>(); 2583 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 2584 // If the symbol is assumed to be NULL, remove it from consideration. 2585 ConstraintManager &CMgr = state->getConstraintManager(); 2586 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 2587 if (!AllocFailed.isConstrainedTrue()) 2588 continue; 2589 2590 SymbolRef ReallocSym = I.getData().ReallocatedSym; 2591 if (const RefState *RS = state->get<RegionState>(ReallocSym)) { 2592 if (RS->isReleased()) { 2593 if (I.getData().Kind == RPToBeFreedAfterFailure) 2594 state = state->set<RegionState>(ReallocSym, 2595 RefState::getAllocated(RS->getAllocationFamily(), RS->getStmt())); 2596 else if (I.getData().Kind == RPDoNotTrackAfterFailure) 2597 state = state->remove<RegionState>(ReallocSym); 2598 else 2599 assert(I.getData().Kind == RPIsFreeOnFailure); 2600 } 2601 } 2602 state = state->remove<ReallocPairs>(I.getKey()); 2603 } 2604 2605 return state; 2606 } 2607 2608 bool MallocChecker::mayFreeAnyEscapedMemoryOrIsModeledExplicitly( 2609 const CallEvent *Call, 2610 ProgramStateRef State, 2611 SymbolRef &EscapingSymbol) const { 2612 assert(Call); 2613 EscapingSymbol = nullptr; 2614 2615 // For now, assume that any C++ or block call can free memory. 2616 // TODO: If we want to be more optimistic here, we'll need to make sure that 2617 // regions escape to C++ containers. They seem to do that even now, but for 2618 // mysterious reasons. 2619 if (!(isa<SimpleFunctionCall>(Call) || isa<ObjCMethodCall>(Call))) 2620 return true; 2621 2622 // Check Objective-C messages by selector name. 2623 if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) { 2624 // If it's not a framework call, or if it takes a callback, assume it 2625 // can free memory. 2626 if (!Call->isInSystemHeader() || Call->argumentsMayEscape()) 2627 return true; 2628 2629 // If it's a method we know about, handle it explicitly post-call. 2630 // This should happen before the "freeWhenDone" check below. 2631 if (isKnownDeallocObjCMethodName(*Msg)) 2632 return false; 2633 2634 // If there's a "freeWhenDone" parameter, but the method isn't one we know 2635 // about, we can't be sure that the object will use free() to deallocate the 2636 // memory, so we can't model it explicitly. The best we can do is use it to 2637 // decide whether the pointer escapes. 2638 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(*Msg)) 2639 return *FreeWhenDone; 2640 2641 // If the first selector piece ends with "NoCopy", and there is no 2642 // "freeWhenDone" parameter set to zero, we know ownership is being 2643 // transferred. Again, though, we can't be sure that the object will use 2644 // free() to deallocate the memory, so we can't model it explicitly. 2645 StringRef FirstSlot = Msg->getSelector().getNameForSlot(0); 2646 if (FirstSlot.endswith("NoCopy")) 2647 return true; 2648 2649 // If the first selector starts with addPointer, insertPointer, 2650 // or replacePointer, assume we are dealing with NSPointerArray or similar. 2651 // This is similar to C++ containers (vector); we still might want to check 2652 // that the pointers get freed by following the container itself. 2653 if (FirstSlot.startswith("addPointer") || 2654 FirstSlot.startswith("insertPointer") || 2655 FirstSlot.startswith("replacePointer") || 2656 FirstSlot.equals("valueWithPointer")) { 2657 return true; 2658 } 2659 2660 // We should escape receiver on call to 'init'. This is especially relevant 2661 // to the receiver, as the corresponding symbol is usually not referenced 2662 // after the call. 2663 if (Msg->getMethodFamily() == OMF_init) { 2664 EscapingSymbol = Msg->getReceiverSVal().getAsSymbol(); 2665 return true; 2666 } 2667 2668 // Otherwise, assume that the method does not free memory. 2669 // Most framework methods do not free memory. 2670 return false; 2671 } 2672 2673 // At this point the only thing left to handle is straight function calls. 2674 const FunctionDecl *FD = cast<SimpleFunctionCall>(Call)->getDecl(); 2675 if (!FD) 2676 return true; 2677 2678 ASTContext &ASTC = State->getStateManager().getContext(); 2679 2680 // If it's one of the allocation functions we can reason about, we model 2681 // its behavior explicitly. 2682 if (isMemFunction(FD, ASTC)) 2683 return false; 2684 2685 // If it's not a system call, assume it frees memory. 2686 if (!Call->isInSystemHeader()) 2687 return true; 2688 2689 // White list the system functions whose arguments escape. 2690 const IdentifierInfo *II = FD->getIdentifier(); 2691 if (!II) 2692 return true; 2693 StringRef FName = II->getName(); 2694 2695 // White list the 'XXXNoCopy' CoreFoundation functions. 2696 // We specifically check these before 2697 if (FName.endswith("NoCopy")) { 2698 // Look for the deallocator argument. We know that the memory ownership 2699 // is not transferred only if the deallocator argument is 2700 // 'kCFAllocatorNull'. 2701 for (unsigned i = 1; i < Call->getNumArgs(); ++i) { 2702 const Expr *ArgE = Call->getArgExpr(i)->IgnoreParenCasts(); 2703 if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(ArgE)) { 2704 StringRef DeallocatorName = DE->getFoundDecl()->getName(); 2705 if (DeallocatorName == "kCFAllocatorNull") 2706 return false; 2707 } 2708 } 2709 return true; 2710 } 2711 2712 // Associating streams with malloced buffers. The pointer can escape if 2713 // 'closefn' is specified (and if that function does free memory), 2714 // but it will not if closefn is not specified. 2715 // Currently, we do not inspect the 'closefn' function (PR12101). 2716 if (FName == "funopen") 2717 if (Call->getNumArgs() >= 4 && Call->getArgSVal(4).isConstant(0)) 2718 return false; 2719 2720 // Do not warn on pointers passed to 'setbuf' when used with std streams, 2721 // these leaks might be intentional when setting the buffer for stdio. 2722 // http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer 2723 if (FName == "setbuf" || FName =="setbuffer" || 2724 FName == "setlinebuf" || FName == "setvbuf") { 2725 if (Call->getNumArgs() >= 1) { 2726 const Expr *ArgE = Call->getArgExpr(0)->IgnoreParenCasts(); 2727 if (const DeclRefExpr *ArgDRE = dyn_cast<DeclRefExpr>(ArgE)) 2728 if (const VarDecl *D = dyn_cast<VarDecl>(ArgDRE->getDecl())) 2729 if (D->getCanonicalDecl()->getName().find("std") != StringRef::npos) 2730 return true; 2731 } 2732 } 2733 2734 // A bunch of other functions which either take ownership of a pointer or 2735 // wrap the result up in a struct or object, meaning it can be freed later. 2736 // (See RetainCountChecker.) Not all the parameters here are invalidated, 2737 // but the Malloc checker cannot differentiate between them. The right way 2738 // of doing this would be to implement a pointer escapes callback. 2739 if (FName == "CGBitmapContextCreate" || 2740 FName == "CGBitmapContextCreateWithData" || 2741 FName == "CVPixelBufferCreateWithBytes" || 2742 FName == "CVPixelBufferCreateWithPlanarBytes" || 2743 FName == "OSAtomicEnqueue") { 2744 return true; 2745 } 2746 2747 if (FName == "postEvent" && 2748 FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") { 2749 return true; 2750 } 2751 2752 if (FName == "postEvent" && 2753 FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") { 2754 return true; 2755 } 2756 2757 if (FName == "connectImpl" && 2758 FD->getQualifiedNameAsString() == "QObject::connectImpl") { 2759 return true; 2760 } 2761 2762 // Handle cases where we know a buffer's /address/ can escape. 2763 // Note that the above checks handle some special cases where we know that 2764 // even though the address escapes, it's still our responsibility to free the 2765 // buffer. 2766 if (Call->argumentsMayEscape()) 2767 return true; 2768 2769 // Otherwise, assume that the function does not free memory. 2770 // Most system calls do not free the memory. 2771 return false; 2772 } 2773 2774 static bool retTrue(const RefState *RS) { 2775 return true; 2776 } 2777 2778 static bool checkIfNewOrNewArrayFamily(const RefState *RS) { 2779 return (RS->getAllocationFamily() == AF_CXXNewArray || 2780 RS->getAllocationFamily() == AF_CXXNew); 2781 } 2782 2783 ProgramStateRef MallocChecker::checkPointerEscape(ProgramStateRef State, 2784 const InvalidatedSymbols &Escaped, 2785 const CallEvent *Call, 2786 PointerEscapeKind Kind) const { 2787 return checkPointerEscapeAux(State, Escaped, Call, Kind, &retTrue); 2788 } 2789 2790 ProgramStateRef MallocChecker::checkConstPointerEscape(ProgramStateRef State, 2791 const InvalidatedSymbols &Escaped, 2792 const CallEvent *Call, 2793 PointerEscapeKind Kind) const { 2794 return checkPointerEscapeAux(State, Escaped, Call, Kind, 2795 &checkIfNewOrNewArrayFamily); 2796 } 2797 2798 ProgramStateRef MallocChecker::checkPointerEscapeAux(ProgramStateRef State, 2799 const InvalidatedSymbols &Escaped, 2800 const CallEvent *Call, 2801 PointerEscapeKind Kind, 2802 bool(*CheckRefState)(const RefState*)) const { 2803 // If we know that the call does not free memory, or we want to process the 2804 // call later, keep tracking the top level arguments. 2805 SymbolRef EscapingSymbol = nullptr; 2806 if (Kind == PSK_DirectEscapeOnCall && 2807 !mayFreeAnyEscapedMemoryOrIsModeledExplicitly(Call, State, 2808 EscapingSymbol) && 2809 !EscapingSymbol) { 2810 return State; 2811 } 2812 2813 for (InvalidatedSymbols::const_iterator I = Escaped.begin(), 2814 E = Escaped.end(); 2815 I != E; ++I) { 2816 SymbolRef sym = *I; 2817 2818 if (EscapingSymbol && EscapingSymbol != sym) 2819 continue; 2820 2821 if (const RefState *RS = State->get<RegionState>(sym)) { 2822 if ((RS->isAllocated() || RS->isAllocatedOfSizeZero()) && 2823 CheckRefState(RS)) { 2824 State = State->remove<RegionState>(sym); 2825 State = State->set<RegionState>(sym, RefState::getEscaped(RS)); 2826 } 2827 } 2828 } 2829 return State; 2830 } 2831 2832 static SymbolRef findFailedReallocSymbol(ProgramStateRef currState, 2833 ProgramStateRef prevState) { 2834 ReallocPairsTy currMap = currState->get<ReallocPairs>(); 2835 ReallocPairsTy prevMap = prevState->get<ReallocPairs>(); 2836 2837 for (ReallocPairsTy::iterator I = prevMap.begin(), E = prevMap.end(); 2838 I != E; ++I) { 2839 SymbolRef sym = I.getKey(); 2840 if (!currMap.lookup(sym)) 2841 return sym; 2842 } 2843 2844 return nullptr; 2845 } 2846 2847 static bool isReferenceCountingPointerDestructor(const CXXDestructorDecl *DD) { 2848 if (const IdentifierInfo *II = DD->getParent()->getIdentifier()) { 2849 StringRef N = II->getName(); 2850 if (N.contains_lower("ptr") || N.contains_lower("pointer")) { 2851 if (N.contains_lower("ref") || N.contains_lower("cnt") || 2852 N.contains_lower("intrusive") || N.contains_lower("shared")) { 2853 return true; 2854 } 2855 } 2856 } 2857 return false; 2858 } 2859 2860 std::shared_ptr<PathDiagnosticPiece> MallocChecker::MallocBugVisitor::VisitNode( 2861 const ExplodedNode *N, const ExplodedNode *PrevN, BugReporterContext &BRC, 2862 BugReport &BR) { 2863 2864 ProgramStateRef state = N->getState(); 2865 ProgramStateRef statePrev = PrevN->getState(); 2866 2867 const RefState *RS = state->get<RegionState>(Sym); 2868 const RefState *RSPrev = statePrev->get<RegionState>(Sym); 2869 2870 const Stmt *S = PathDiagnosticLocation::getStmt(N); 2871 // When dealing with containers, we sometimes want to give a note 2872 // even if the statement is missing. 2873 if (!S && (!RS || RS->getAllocationFamily() != AF_InnerBuffer)) 2874 return nullptr; 2875 2876 const LocationContext *CurrentLC = N->getLocationContext(); 2877 2878 // If we find an atomic fetch_add or fetch_sub within the destructor in which 2879 // the pointer was released (before the release), this is likely a destructor 2880 // of a shared pointer. 2881 // Because we don't model atomics, and also because we don't know that the 2882 // original reference count is positive, we should not report use-after-frees 2883 // on objects deleted in such destructors. This can probably be improved 2884 // through better shared pointer modeling. 2885 if (ReleaseDestructorLC) { 2886 if (const auto *AE = dyn_cast<AtomicExpr>(S)) { 2887 AtomicExpr::AtomicOp Op = AE->getOp(); 2888 if (Op == AtomicExpr::AO__c11_atomic_fetch_add || 2889 Op == AtomicExpr::AO__c11_atomic_fetch_sub) { 2890 if (ReleaseDestructorLC == CurrentLC || 2891 ReleaseDestructorLC->isParentOf(CurrentLC)) { 2892 BR.markInvalid(getTag(), S); 2893 } 2894 } 2895 } 2896 } 2897 2898 // FIXME: We will eventually need to handle non-statement-based events 2899 // (__attribute__((cleanup))). 2900 2901 // Find out if this is an interesting point and what is the kind. 2902 StringRef Msg; 2903 StackHintGeneratorForSymbol *StackHint = nullptr; 2904 SmallString<256> Buf; 2905 llvm::raw_svector_ostream OS(Buf); 2906 2907 if (Mode == Normal) { 2908 if (isAllocated(RS, RSPrev, S)) { 2909 Msg = "Memory is allocated"; 2910 StackHint = new StackHintGeneratorForSymbol(Sym, 2911 "Returned allocated memory"); 2912 } else if (isReleased(RS, RSPrev, S)) { 2913 const auto Family = RS->getAllocationFamily(); 2914 switch (Family) { 2915 case AF_Alloca: 2916 case AF_Malloc: 2917 case AF_CXXNew: 2918 case AF_CXXNewArray: 2919 case AF_IfNameIndex: 2920 Msg = "Memory is released"; 2921 break; 2922 case AF_InnerBuffer: { 2923 OS << "Inner pointer invalidated by call to "; 2924 if (N->getLocation().getKind() == ProgramPoint::PostImplicitCallKind) { 2925 OS << "destructor"; 2926 } else { 2927 OS << "'"; 2928 const Stmt *S = RS->getStmt(); 2929 if (const auto *MemCallE = dyn_cast<CXXMemberCallExpr>(S)) { 2930 OS << MemCallE->getMethodDecl()->getNameAsString(); 2931 } else if (const auto *OpCallE = dyn_cast<CXXOperatorCallExpr>(S)) { 2932 OS << OpCallE->getDirectCallee()->getNameAsString(); 2933 } else if (const auto *CallE = dyn_cast<CallExpr>(S)) { 2934 auto &CEMgr = BRC.getStateManager().getCallEventManager(); 2935 CallEventRef<> Call = CEMgr.getSimpleCall(CallE, state, CurrentLC); 2936 const auto *D = dyn_cast_or_null<NamedDecl>(Call->getDecl()); 2937 OS << (D ? D->getNameAsString() : "unknown"); 2938 } 2939 OS << "'"; 2940 } 2941 Msg = OS.str(); 2942 break; 2943 } 2944 case AF_None: 2945 llvm_unreachable("Unhandled allocation family!"); 2946 } 2947 StackHint = new StackHintGeneratorForSymbol(Sym, 2948 "Returning; memory was released"); 2949 2950 // See if we're releasing memory while inlining a destructor 2951 // (or one of its callees). This turns on various common 2952 // false positive suppressions. 2953 bool FoundAnyDestructor = false; 2954 for (const LocationContext *LC = CurrentLC; LC; LC = LC->getParent()) { 2955 if (const auto *DD = dyn_cast<CXXDestructorDecl>(LC->getDecl())) { 2956 if (isReferenceCountingPointerDestructor(DD)) { 2957 // This immediately looks like a reference-counting destructor. 2958 // We're bad at guessing the original reference count of the object, 2959 // so suppress the report for now. 2960 BR.markInvalid(getTag(), DD); 2961 } else if (!FoundAnyDestructor) { 2962 assert(!ReleaseDestructorLC && 2963 "There can be only one release point!"); 2964 // Suspect that it's a reference counting pointer destructor. 2965 // On one of the next nodes might find out that it has atomic 2966 // reference counting operations within it (see the code above), 2967 // and if so, we'd conclude that it likely is a reference counting 2968 // pointer destructor. 2969 ReleaseDestructorLC = LC->getStackFrame(); 2970 // It is unlikely that releasing memory is delegated to a destructor 2971 // inside a destructor of a shared pointer, because it's fairly hard 2972 // to pass the information that the pointer indeed needs to be 2973 // released into it. So we're only interested in the innermost 2974 // destructor. 2975 FoundAnyDestructor = true; 2976 } 2977 } 2978 } 2979 } else if (isRelinquished(RS, RSPrev, S)) { 2980 Msg = "Memory ownership is transferred"; 2981 StackHint = new StackHintGeneratorForSymbol(Sym, ""); 2982 } else if (isReallocFailedCheck(RS, RSPrev, S)) { 2983 Mode = ReallocationFailed; 2984 Msg = "Reallocation failed"; 2985 StackHint = new StackHintGeneratorForReallocationFailed(Sym, 2986 "Reallocation failed"); 2987 2988 if (SymbolRef sym = findFailedReallocSymbol(state, statePrev)) { 2989 // Is it possible to fail two reallocs WITHOUT testing in between? 2990 assert((!FailedReallocSymbol || FailedReallocSymbol == sym) && 2991 "We only support one failed realloc at a time."); 2992 BR.markInteresting(sym); 2993 FailedReallocSymbol = sym; 2994 } 2995 } 2996 2997 // We are in a special mode if a reallocation failed later in the path. 2998 } else if (Mode == ReallocationFailed) { 2999 assert(FailedReallocSymbol && "No symbol to look for."); 3000 3001 // Is this is the first appearance of the reallocated symbol? 3002 if (!statePrev->get<RegionState>(FailedReallocSymbol)) { 3003 // We're at the reallocation point. 3004 Msg = "Attempt to reallocate memory"; 3005 StackHint = new StackHintGeneratorForSymbol(Sym, 3006 "Returned reallocated memory"); 3007 FailedReallocSymbol = nullptr; 3008 Mode = Normal; 3009 } 3010 } 3011 3012 if (Msg.empty()) 3013 return nullptr; 3014 assert(StackHint); 3015 3016 // Generate the extra diagnostic. 3017 PathDiagnosticLocation Pos; 3018 if (!S) { 3019 assert(RS->getAllocationFamily() == AF_InnerBuffer); 3020 auto PostImplCall = N->getLocation().getAs<PostImplicitCall>(); 3021 if (!PostImplCall) 3022 return nullptr; 3023 Pos = PathDiagnosticLocation(PostImplCall->getLocation(), 3024 BRC.getSourceManager()); 3025 } else { 3026 Pos = PathDiagnosticLocation(S, BRC.getSourceManager(), 3027 N->getLocationContext()); 3028 } 3029 3030 return std::make_shared<PathDiagnosticEventPiece>(Pos, Msg, true, StackHint); 3031 } 3032 3033 void MallocChecker::printState(raw_ostream &Out, ProgramStateRef State, 3034 const char *NL, const char *Sep) const { 3035 3036 RegionStateTy RS = State->get<RegionState>(); 3037 3038 if (!RS.isEmpty()) { 3039 Out << Sep << "MallocChecker :" << NL; 3040 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 3041 const RefState *RefS = State->get<RegionState>(I.getKey()); 3042 AllocationFamily Family = RefS->getAllocationFamily(); 3043 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 3044 if (!CheckKind.hasValue()) 3045 CheckKind = getCheckIfTracked(Family, true); 3046 3047 I.getKey()->dumpToStream(Out); 3048 Out << " : "; 3049 I.getData().dump(Out); 3050 if (CheckKind.hasValue()) 3051 Out << " (" << CheckNames[*CheckKind].getName() << ")"; 3052 Out << NL; 3053 } 3054 } 3055 } 3056 3057 namespace clang { 3058 namespace ento { 3059 namespace allocation_state { 3060 3061 ProgramStateRef 3062 markReleased(ProgramStateRef State, SymbolRef Sym, const Expr *Origin) { 3063 AllocationFamily Family = AF_InnerBuffer; 3064 return State->set<RegionState>(Sym, RefState::getReleased(Family, Origin)); 3065 } 3066 3067 } // end namespace allocation_state 3068 } // end namespace ento 3069 } // end namespace clang 3070 3071 void ento::registerNewDeleteLeaksChecker(CheckerManager &mgr) { 3072 registerCStringCheckerBasic(mgr); 3073 MallocChecker *checker = mgr.registerChecker<MallocChecker>(); 3074 checker->IsOptimistic = mgr.getAnalyzerOptions().getBooleanOption( 3075 "Optimistic", false, checker); 3076 checker->ChecksEnabled[MallocChecker::CK_NewDeleteLeaksChecker] = true; 3077 checker->CheckNames[MallocChecker::CK_NewDeleteLeaksChecker] = 3078 mgr.getCurrentCheckName(); 3079 // We currently treat NewDeleteLeaks checker as a subchecker of NewDelete 3080 // checker. 3081 if (!checker->ChecksEnabled[MallocChecker::CK_NewDeleteChecker]) { 3082 checker->ChecksEnabled[MallocChecker::CK_NewDeleteChecker] = true; 3083 // FIXME: This does not set the correct name, but without this workaround 3084 // no name will be set at all. 3085 checker->CheckNames[MallocChecker::CK_NewDeleteChecker] = 3086 mgr.getCurrentCheckName(); 3087 } 3088 } 3089 3090 #define REGISTER_CHECKER(name) \ 3091 void ento::register##name(CheckerManager &mgr) { \ 3092 registerCStringCheckerBasic(mgr); \ 3093 MallocChecker *checker = mgr.registerChecker<MallocChecker>(); \ 3094 checker->IsOptimistic = mgr.getAnalyzerOptions().getBooleanOption( \ 3095 "Optimistic", false, checker); \ 3096 checker->ChecksEnabled[MallocChecker::CK_##name] = true; \ 3097 checker->CheckNames[MallocChecker::CK_##name] = mgr.getCurrentCheckName(); \ 3098 } 3099 3100 REGISTER_CHECKER(MallocChecker) 3101 REGISTER_CHECKER(NewDeleteChecker) 3102 REGISTER_CHECKER(MismatchedDeallocatorChecker) 3103