1 //=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines a variety of memory management related checkers, such as 10 // leak, double free, and use-after-free. 11 // 12 // The following checkers are defined here: 13 // 14 // * MallocChecker 15 // Despite its name, it models all sorts of memory allocations and 16 // de- or reallocation, including but not limited to malloc, free, 17 // relloc, new, delete. It also reports on a variety of memory misuse 18 // errors. 19 // Many other checkers interact very closely with this checker, in fact, 20 // most are merely options to this one. Other checkers may register 21 // MallocChecker, but do not enable MallocChecker's reports (more details 22 // to follow around its field, ChecksEnabled). 23 // It also has a boolean "Optimistic" checker option, which if set to true 24 // will cause the checker to model user defined memory management related 25 // functions annotated via the attribute ownership_takes, ownership_holds 26 // and ownership_returns. 27 // 28 // * NewDeleteChecker 29 // Enables the modeling of new, new[], delete, delete[] in MallocChecker, 30 // and checks for related double-free and use-after-free errors. 31 // 32 // * NewDeleteLeaksChecker 33 // Checks for leaks related to new, new[], delete, delete[]. 34 // Depends on NewDeleteChecker. 35 // 36 // * MismatchedDeallocatorChecker 37 // Enables checking whether memory is deallocated with the correspending 38 // allocation function in MallocChecker, such as malloc() allocated 39 // regions are only freed by free(), new by delete, new[] by delete[]. 40 // 41 // InnerPointerChecker interacts very closely with MallocChecker, but unlike 42 // the above checkers, it has it's own file, hence the many InnerPointerChecker 43 // related headers and non-static functions. 44 // 45 //===----------------------------------------------------------------------===// 46 47 #include "AllocationState.h" 48 #include "InterCheckerAPI.h" 49 #include "clang/AST/Attr.h" 50 #include "clang/AST/DeclCXX.h" 51 #include "clang/AST/DeclTemplate.h" 52 #include "clang/AST/Expr.h" 53 #include "clang/AST/ExprCXX.h" 54 #include "clang/AST/ParentMap.h" 55 #include "clang/ASTMatchers/ASTMatchFinder.h" 56 #include "clang/ASTMatchers/ASTMatchers.h" 57 #include "clang/Analysis/ProgramPoint.h" 58 #include "clang/Basic/LLVM.h" 59 #include "clang/Basic/SourceManager.h" 60 #include "clang/Basic/TargetInfo.h" 61 #include "clang/Lex/Lexer.h" 62 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" 63 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 64 #include "clang/StaticAnalyzer/Core/BugReporter/CommonBugCategories.h" 65 #include "clang/StaticAnalyzer/Core/Checker.h" 66 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 67 #include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h" 68 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 69 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 70 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h" 71 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h" 72 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h" 73 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 74 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 75 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h" 76 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" 77 #include "clang/StaticAnalyzer/Core/PathSensitive/StoreRef.h" 78 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" 79 #include "llvm/ADT/STLExtras.h" 80 #include "llvm/ADT/SetOperations.h" 81 #include "llvm/ADT/SmallString.h" 82 #include "llvm/ADT/StringExtras.h" 83 #include "llvm/Support/Casting.h" 84 #include "llvm/Support/Compiler.h" 85 #include "llvm/Support/ErrorHandling.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include <climits> 88 #include <functional> 89 #include <utility> 90 91 using namespace clang; 92 using namespace ento; 93 using namespace std::placeholders; 94 95 //===----------------------------------------------------------------------===// 96 // The types of allocation we're modeling. This is used to check whether a 97 // dynamically allocated object is deallocated with the correct function, like 98 // not using operator delete on an object created by malloc(), or alloca regions 99 // aren't ever deallocated manually. 100 //===----------------------------------------------------------------------===// 101 102 namespace { 103 104 // Used to check correspondence between allocators and deallocators. 105 enum AllocationFamily { 106 AF_None, 107 AF_Malloc, 108 AF_CXXNew, 109 AF_CXXNewArray, 110 AF_IfNameIndex, 111 AF_Alloca, 112 AF_InnerBuffer 113 }; 114 115 } // end of anonymous namespace 116 117 /// Print names of allocators and deallocators. 118 /// 119 /// \returns true on success. 120 static bool printMemFnName(raw_ostream &os, CheckerContext &C, const Expr *E); 121 122 /// Print expected name of an allocator based on the deallocator's family 123 /// derived from the DeallocExpr. 124 static void printExpectedAllocName(raw_ostream &os, AllocationFamily Family); 125 126 /// Print expected name of a deallocator based on the allocator's 127 /// family. 128 static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family); 129 130 //===----------------------------------------------------------------------===// 131 // The state of a symbol, in terms of memory management. 132 //===----------------------------------------------------------------------===// 133 134 namespace { 135 136 class RefState { 137 enum Kind { 138 // Reference to allocated memory. 139 Allocated, 140 // Reference to zero-allocated memory. 141 AllocatedOfSizeZero, 142 // Reference to released/freed memory. 143 Released, 144 // The responsibility for freeing resources has transferred from 145 // this reference. A relinquished symbol should not be freed. 146 Relinquished, 147 // We are no longer guaranteed to have observed all manipulations 148 // of this pointer/memory. For example, it could have been 149 // passed as a parameter to an opaque function. 150 Escaped 151 }; 152 153 const Stmt *S; 154 155 Kind K; 156 AllocationFamily Family; 157 158 RefState(Kind k, const Stmt *s, AllocationFamily family) 159 : S(s), K(k), Family(family) { 160 assert(family != AF_None); 161 } 162 163 public: 164 bool isAllocated() const { return K == Allocated; } 165 bool isAllocatedOfSizeZero() const { return K == AllocatedOfSizeZero; } 166 bool isReleased() const { return K == Released; } 167 bool isRelinquished() const { return K == Relinquished; } 168 bool isEscaped() const { return K == Escaped; } 169 AllocationFamily getAllocationFamily() const { return Family; } 170 const Stmt *getStmt() const { return S; } 171 172 bool operator==(const RefState &X) const { 173 return K == X.K && S == X.S && Family == X.Family; 174 } 175 176 static RefState getAllocated(AllocationFamily family, const Stmt *s) { 177 return RefState(Allocated, s, family); 178 } 179 static RefState getAllocatedOfSizeZero(const RefState *RS) { 180 return RefState(AllocatedOfSizeZero, RS->getStmt(), 181 RS->getAllocationFamily()); 182 } 183 static RefState getReleased(AllocationFamily family, const Stmt *s) { 184 return RefState(Released, s, family); 185 } 186 static RefState getRelinquished(AllocationFamily family, const Stmt *s) { 187 return RefState(Relinquished, s, family); 188 } 189 static RefState getEscaped(const RefState *RS) { 190 return RefState(Escaped, RS->getStmt(), RS->getAllocationFamily()); 191 } 192 193 void Profile(llvm::FoldingSetNodeID &ID) const { 194 ID.AddInteger(K); 195 ID.AddPointer(S); 196 ID.AddInteger(Family); 197 } 198 199 LLVM_DUMP_METHOD void dump(raw_ostream &OS) const { 200 switch (K) { 201 #define CASE(ID) case ID: OS << #ID; break; 202 CASE(Allocated) 203 CASE(AllocatedOfSizeZero) 204 CASE(Released) 205 CASE(Relinquished) 206 CASE(Escaped) 207 } 208 } 209 210 LLVM_DUMP_METHOD void dump() const { dump(llvm::errs()); } 211 }; 212 213 } // end of anonymous namespace 214 215 REGISTER_MAP_WITH_PROGRAMSTATE(RegionState, SymbolRef, RefState) 216 217 /// Check if the memory associated with this symbol was released. 218 static bool isReleased(SymbolRef Sym, CheckerContext &C); 219 220 /// Update the RefState to reflect the new memory allocation. 221 /// The optional \p RetVal parameter specifies the newly allocated pointer 222 /// value; if unspecified, the value of expression \p E is used. 223 static ProgramStateRef MallocUpdateRefState(CheckerContext &C, const Expr *E, 224 ProgramStateRef State, 225 AllocationFamily Family, 226 Optional<SVal> RetVal = None); 227 228 //===----------------------------------------------------------------------===// 229 // The modeling of memory reallocation. 230 // 231 // The terminology 'toPtr' and 'fromPtr' will be used: 232 // toPtr = realloc(fromPtr, 20); 233 //===----------------------------------------------------------------------===// 234 235 REGISTER_SET_WITH_PROGRAMSTATE(ReallocSizeZeroSymbols, SymbolRef) 236 237 namespace { 238 239 /// The state of 'fromPtr' after reallocation is known to have failed. 240 enum OwnershipAfterReallocKind { 241 // The symbol needs to be freed (e.g.: realloc) 242 OAR_ToBeFreedAfterFailure, 243 // The symbol has been freed (e.g.: reallocf) 244 OAR_FreeOnFailure, 245 // The symbol doesn't have to freed (e.g.: we aren't sure if, how and where 246 // 'fromPtr' was allocated: 247 // void Haha(int *ptr) { 248 // ptr = realloc(ptr, 67); 249 // // ... 250 // } 251 // ). 252 OAR_DoNotTrackAfterFailure 253 }; 254 255 /// Stores information about the 'fromPtr' symbol after reallocation. 256 /// 257 /// This is important because realloc may fail, and that needs special modeling. 258 /// Whether reallocation failed or not will not be known until later, so we'll 259 /// store whether upon failure 'fromPtr' will be freed, or needs to be freed 260 /// later, etc. 261 struct ReallocPair { 262 263 // The 'fromPtr'. 264 SymbolRef ReallocatedSym; 265 OwnershipAfterReallocKind Kind; 266 267 ReallocPair(SymbolRef S, OwnershipAfterReallocKind K) 268 : ReallocatedSym(S), Kind(K) {} 269 void Profile(llvm::FoldingSetNodeID &ID) const { 270 ID.AddInteger(Kind); 271 ID.AddPointer(ReallocatedSym); 272 } 273 bool operator==(const ReallocPair &X) const { 274 return ReallocatedSym == X.ReallocatedSym && 275 Kind == X.Kind; 276 } 277 }; 278 279 } // end of anonymous namespace 280 281 REGISTER_MAP_WITH_PROGRAMSTATE(ReallocPairs, SymbolRef, ReallocPair) 282 283 /// Tells if the callee is one of the builtin new/delete operators, including 284 /// placement operators and other standard overloads. 285 static bool isStandardNewDelete(const FunctionDecl *FD); 286 static bool isStandardNewDelete(const CallEvent &Call) { 287 if (!Call.getDecl() || !isa<FunctionDecl>(Call.getDecl())) 288 return false; 289 return isStandardNewDelete(cast<FunctionDecl>(Call.getDecl())); 290 } 291 292 //===----------------------------------------------------------------------===// 293 // Definition of the MallocChecker class. 294 //===----------------------------------------------------------------------===// 295 296 namespace { 297 298 class MallocChecker 299 : public Checker<check::DeadSymbols, check::PointerEscape, 300 check::ConstPointerEscape, check::PreStmt<ReturnStmt>, 301 check::EndFunction, check::PreCall, check::PostCall, 302 check::NewAllocator, check::PostStmt<BlockExpr>, 303 check::PostObjCMessage, check::Location, eval::Assume> { 304 public: 305 /// In pessimistic mode, the checker assumes that it does not know which 306 /// functions might free the memory. 307 /// In optimistic mode, the checker assumes that all user-defined functions 308 /// which might free a pointer are annotated. 309 bool ShouldIncludeOwnershipAnnotatedFunctions = false; 310 311 bool ShouldRegisterNoOwnershipChangeVisitor = false; 312 313 /// Many checkers are essentially built into this one, so enabling them will 314 /// make MallocChecker perform additional modeling and reporting. 315 enum CheckKind { 316 /// When a subchecker is enabled but MallocChecker isn't, model memory 317 /// management but do not emit warnings emitted with MallocChecker only 318 /// enabled. 319 CK_MallocChecker, 320 CK_NewDeleteChecker, 321 CK_NewDeleteLeaksChecker, 322 CK_MismatchedDeallocatorChecker, 323 CK_InnerPointerChecker, 324 CK_NumCheckKinds 325 }; 326 327 using LeakInfo = std::pair<const ExplodedNode *, const MemRegion *>; 328 329 bool ChecksEnabled[CK_NumCheckKinds] = {false}; 330 CheckerNameRef CheckNames[CK_NumCheckKinds]; 331 332 void checkPreCall(const CallEvent &Call, CheckerContext &C) const; 333 void checkPostCall(const CallEvent &Call, CheckerContext &C) const; 334 void checkNewAllocator(const CXXAllocatorCall &Call, CheckerContext &C) const; 335 void checkPostObjCMessage(const ObjCMethodCall &Call, CheckerContext &C) const; 336 void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const; 337 void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const; 338 void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const; 339 void checkEndFunction(const ReturnStmt *S, CheckerContext &C) const; 340 ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond, 341 bool Assumption) const; 342 void checkLocation(SVal l, bool isLoad, const Stmt *S, 343 CheckerContext &C) const; 344 345 ProgramStateRef checkPointerEscape(ProgramStateRef State, 346 const InvalidatedSymbols &Escaped, 347 const CallEvent *Call, 348 PointerEscapeKind Kind) const; 349 ProgramStateRef checkConstPointerEscape(ProgramStateRef State, 350 const InvalidatedSymbols &Escaped, 351 const CallEvent *Call, 352 PointerEscapeKind Kind) const; 353 354 void printState(raw_ostream &Out, ProgramStateRef State, 355 const char *NL, const char *Sep) const override; 356 357 private: 358 mutable std::unique_ptr<BugType> BT_DoubleFree[CK_NumCheckKinds]; 359 mutable std::unique_ptr<BugType> BT_DoubleDelete; 360 mutable std::unique_ptr<BugType> BT_Leak[CK_NumCheckKinds]; 361 mutable std::unique_ptr<BugType> BT_UseFree[CK_NumCheckKinds]; 362 mutable std::unique_ptr<BugType> BT_BadFree[CK_NumCheckKinds]; 363 mutable std::unique_ptr<BugType> BT_FreeAlloca[CK_NumCheckKinds]; 364 mutable std::unique_ptr<BugType> BT_MismatchedDealloc; 365 mutable std::unique_ptr<BugType> BT_OffsetFree[CK_NumCheckKinds]; 366 mutable std::unique_ptr<BugType> BT_UseZerroAllocated[CK_NumCheckKinds]; 367 368 #define CHECK_FN(NAME) \ 369 void NAME(const CallEvent &Call, CheckerContext &C) const; 370 371 CHECK_FN(checkFree) 372 CHECK_FN(checkIfNameIndex) 373 CHECK_FN(checkBasicAlloc) 374 CHECK_FN(checkKernelMalloc) 375 CHECK_FN(checkCalloc) 376 CHECK_FN(checkAlloca) 377 CHECK_FN(checkStrdup) 378 CHECK_FN(checkIfFreeNameIndex) 379 CHECK_FN(checkCXXNewOrCXXDelete) 380 CHECK_FN(checkGMalloc0) 381 CHECK_FN(checkGMemdup) 382 CHECK_FN(checkGMallocN) 383 CHECK_FN(checkGMallocN0) 384 CHECK_FN(checkReallocN) 385 CHECK_FN(checkOwnershipAttr) 386 387 void checkRealloc(const CallEvent &Call, CheckerContext &C, 388 bool ShouldFreeOnFail) const; 389 390 using CheckFn = std::function<void(const MallocChecker *, 391 const CallEvent &Call, CheckerContext &C)>; 392 393 const CallDescriptionMap<CheckFn> FreeingMemFnMap{ 394 {{"free", 1}, &MallocChecker::checkFree}, 395 {{"if_freenameindex", 1}, &MallocChecker::checkIfFreeNameIndex}, 396 {{"kfree", 1}, &MallocChecker::checkFree}, 397 {{"g_free", 1}, &MallocChecker::checkFree}, 398 }; 399 400 bool isFreeingCall(const CallEvent &Call) const; 401 static bool isFreeingOwnershipAttrCall(const FunctionDecl *Func); 402 403 friend class NoOwnershipChangeVisitor; 404 405 CallDescriptionMap<CheckFn> AllocatingMemFnMap{ 406 {{"alloca", 1}, &MallocChecker::checkAlloca}, 407 {{"_alloca", 1}, &MallocChecker::checkAlloca}, 408 {{"malloc", 1}, &MallocChecker::checkBasicAlloc}, 409 {{"malloc", 3}, &MallocChecker::checkKernelMalloc}, 410 {{"calloc", 2}, &MallocChecker::checkCalloc}, 411 {{"valloc", 1}, &MallocChecker::checkBasicAlloc}, 412 {{CDF_MaybeBuiltin, "strndup", 2}, &MallocChecker::checkStrdup}, 413 {{CDF_MaybeBuiltin, "strdup", 1}, &MallocChecker::checkStrdup}, 414 {{"_strdup", 1}, &MallocChecker::checkStrdup}, 415 {{"kmalloc", 2}, &MallocChecker::checkKernelMalloc}, 416 {{"if_nameindex", 1}, &MallocChecker::checkIfNameIndex}, 417 {{CDF_MaybeBuiltin, "wcsdup", 1}, &MallocChecker::checkStrdup}, 418 {{CDF_MaybeBuiltin, "_wcsdup", 1}, &MallocChecker::checkStrdup}, 419 {{"g_malloc", 1}, &MallocChecker::checkBasicAlloc}, 420 {{"g_malloc0", 1}, &MallocChecker::checkGMalloc0}, 421 {{"g_try_malloc", 1}, &MallocChecker::checkBasicAlloc}, 422 {{"g_try_malloc0", 1}, &MallocChecker::checkGMalloc0}, 423 {{"g_memdup", 2}, &MallocChecker::checkGMemdup}, 424 {{"g_malloc_n", 2}, &MallocChecker::checkGMallocN}, 425 {{"g_malloc0_n", 2}, &MallocChecker::checkGMallocN0}, 426 {{"g_try_malloc_n", 2}, &MallocChecker::checkGMallocN}, 427 {{"g_try_malloc0_n", 2}, &MallocChecker::checkGMallocN0}, 428 }; 429 430 CallDescriptionMap<CheckFn> ReallocatingMemFnMap{ 431 {{"realloc", 2}, 432 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)}, 433 {{"reallocf", 2}, 434 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, true)}, 435 {{"g_realloc", 2}, 436 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)}, 437 {{"g_try_realloc", 2}, 438 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)}, 439 {{"g_realloc_n", 3}, &MallocChecker::checkReallocN}, 440 {{"g_try_realloc_n", 3}, &MallocChecker::checkReallocN}, 441 }; 442 443 bool isMemCall(const CallEvent &Call) const; 444 445 // TODO: Remove mutable by moving the initializtaion to the registry function. 446 mutable Optional<uint64_t> KernelZeroFlagVal; 447 448 using KernelZeroSizePtrValueTy = Optional<int>; 449 /// Store the value of macro called `ZERO_SIZE_PTR`. 450 /// The value is initialized at first use, before first use the outer 451 /// Optional is empty, afterwards it contains another Optional that indicates 452 /// if the macro value could be determined, and if yes the value itself. 453 mutable Optional<KernelZeroSizePtrValueTy> KernelZeroSizePtrValue; 454 455 /// Process C++ operator new()'s allocation, which is the part of C++ 456 /// new-expression that goes before the constructor. 457 LLVM_NODISCARD 458 ProgramStateRef processNewAllocation(const CXXAllocatorCall &Call, 459 CheckerContext &C, 460 AllocationFamily Family) const; 461 462 /// Perform a zero-allocation check. 463 /// 464 /// \param [in] Call The expression that allocates memory. 465 /// \param [in] IndexOfSizeArg Index of the argument that specifies the size 466 /// of the memory that needs to be allocated. E.g. for malloc, this would be 467 /// 0. 468 /// \param [in] RetVal Specifies the newly allocated pointer value; 469 /// if unspecified, the value of expression \p E is used. 470 LLVM_NODISCARD 471 static ProgramStateRef ProcessZeroAllocCheck(const CallEvent &Call, 472 const unsigned IndexOfSizeArg, 473 ProgramStateRef State, 474 Optional<SVal> RetVal = None); 475 476 /// Model functions with the ownership_returns attribute. 477 /// 478 /// User-defined function may have the ownership_returns attribute, which 479 /// annotates that the function returns with an object that was allocated on 480 /// the heap, and passes the ownertship to the callee. 481 /// 482 /// void __attribute((ownership_returns(malloc, 1))) *my_malloc(size_t); 483 /// 484 /// It has two parameters: 485 /// - first: name of the resource (e.g. 'malloc') 486 /// - (OPTIONAL) second: size of the allocated region 487 /// 488 /// \param [in] Call The expression that allocates memory. 489 /// \param [in] Att The ownership_returns attribute. 490 /// \param [in] State The \c ProgramState right before allocation. 491 /// \returns The ProgramState right after allocation. 492 LLVM_NODISCARD 493 ProgramStateRef MallocMemReturnsAttr(CheckerContext &C, const CallEvent &Call, 494 const OwnershipAttr *Att, 495 ProgramStateRef State) const; 496 497 /// Models memory allocation. 498 /// 499 /// \param [in] Call The expression that allocates memory. 500 /// \param [in] SizeEx Size of the memory that needs to be allocated. 501 /// \param [in] Init The value the allocated memory needs to be initialized. 502 /// with. For example, \c calloc initializes the allocated memory to 0, 503 /// malloc leaves it undefined. 504 /// \param [in] State The \c ProgramState right before allocation. 505 /// \returns The ProgramState right after allocation. 506 LLVM_NODISCARD 507 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallEvent &Call, 508 const Expr *SizeEx, SVal Init, 509 ProgramStateRef State, 510 AllocationFamily Family); 511 512 /// Models memory allocation. 513 /// 514 /// \param [in] Call The expression that allocates memory. 515 /// \param [in] Size Size of the memory that needs to be allocated. 516 /// \param [in] Init The value the allocated memory needs to be initialized. 517 /// with. For example, \c calloc initializes the allocated memory to 0, 518 /// malloc leaves it undefined. 519 /// \param [in] State The \c ProgramState right before allocation. 520 /// \returns The ProgramState right after allocation. 521 LLVM_NODISCARD 522 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallEvent &Call, 523 SVal Size, SVal Init, 524 ProgramStateRef State, 525 AllocationFamily Family); 526 527 // Check if this malloc() for special flags. At present that means M_ZERO or 528 // __GFP_ZERO (in which case, treat it like calloc). 529 LLVM_NODISCARD 530 llvm::Optional<ProgramStateRef> 531 performKernelMalloc(const CallEvent &Call, CheckerContext &C, 532 const ProgramStateRef &State) const; 533 534 /// Model functions with the ownership_takes and ownership_holds attributes. 535 /// 536 /// User-defined function may have the ownership_takes and/or ownership_holds 537 /// attributes, which annotates that the function frees the memory passed as a 538 /// parameter. 539 /// 540 /// void __attribute((ownership_takes(malloc, 1))) my_free(void *); 541 /// void __attribute((ownership_holds(malloc, 1))) my_hold(void *); 542 /// 543 /// They have two parameters: 544 /// - first: name of the resource (e.g. 'malloc') 545 /// - second: index of the parameter the attribute applies to 546 /// 547 /// \param [in] Call The expression that frees memory. 548 /// \param [in] Att The ownership_takes or ownership_holds attribute. 549 /// \param [in] State The \c ProgramState right before allocation. 550 /// \returns The ProgramState right after deallocation. 551 LLVM_NODISCARD 552 ProgramStateRef FreeMemAttr(CheckerContext &C, const CallEvent &Call, 553 const OwnershipAttr *Att, 554 ProgramStateRef State) const; 555 556 /// Models memory deallocation. 557 /// 558 /// \param [in] Call The expression that frees memory. 559 /// \param [in] State The \c ProgramState right before allocation. 560 /// \param [in] Num Index of the argument that needs to be freed. This is 561 /// normally 0, but for custom free functions it may be different. 562 /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds 563 /// attribute. 564 /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known 565 /// to have been allocated, or in other words, the symbol to be freed was 566 /// registered as allocated by this checker. In the following case, \c ptr 567 /// isn't known to be allocated. 568 /// void Haha(int *ptr) { 569 /// ptr = realloc(ptr, 67); 570 /// // ... 571 /// } 572 /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function 573 /// we're modeling returns with Null on failure. 574 /// \returns The ProgramState right after deallocation. 575 LLVM_NODISCARD 576 ProgramStateRef FreeMemAux(CheckerContext &C, const CallEvent &Call, 577 ProgramStateRef State, unsigned Num, bool Hold, 578 bool &IsKnownToBeAllocated, 579 AllocationFamily Family, 580 bool ReturnsNullOnFailure = false) const; 581 582 /// Models memory deallocation. 583 /// 584 /// \param [in] ArgExpr The variable who's pointee needs to be freed. 585 /// \param [in] Call The expression that frees the memory. 586 /// \param [in] State The \c ProgramState right before allocation. 587 /// normally 0, but for custom free functions it may be different. 588 /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds 589 /// attribute. 590 /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known 591 /// to have been allocated, or in other words, the symbol to be freed was 592 /// registered as allocated by this checker. In the following case, \c ptr 593 /// isn't known to be allocated. 594 /// void Haha(int *ptr) { 595 /// ptr = realloc(ptr, 67); 596 /// // ... 597 /// } 598 /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function 599 /// we're modeling returns with Null on failure. 600 /// \returns The ProgramState right after deallocation. 601 LLVM_NODISCARD 602 ProgramStateRef FreeMemAux(CheckerContext &C, const Expr *ArgExpr, 603 const CallEvent &Call, ProgramStateRef State, 604 bool Hold, bool &IsKnownToBeAllocated, 605 AllocationFamily Family, 606 bool ReturnsNullOnFailure = false) const; 607 608 // TODO: Needs some refactoring, as all other deallocation modeling 609 // functions are suffering from out parameters and messy code due to how 610 // realloc is handled. 611 // 612 /// Models memory reallocation. 613 /// 614 /// \param [in] Call The expression that reallocated memory 615 /// \param [in] ShouldFreeOnFail Whether if reallocation fails, the supplied 616 /// memory should be freed. 617 /// \param [in] State The \c ProgramState right before reallocation. 618 /// \param [in] SuffixWithN Whether the reallocation function we're modeling 619 /// has an '_n' suffix, such as g_realloc_n. 620 /// \returns The ProgramState right after reallocation. 621 LLVM_NODISCARD 622 ProgramStateRef ReallocMemAux(CheckerContext &C, const CallEvent &Call, 623 bool ShouldFreeOnFail, ProgramStateRef State, 624 AllocationFamily Family, 625 bool SuffixWithN = false) const; 626 627 /// Evaluates the buffer size that needs to be allocated. 628 /// 629 /// \param [in] Blocks The amount of blocks that needs to be allocated. 630 /// \param [in] BlockBytes The size of a block. 631 /// \returns The symbolic value of \p Blocks * \p BlockBytes. 632 LLVM_NODISCARD 633 static SVal evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, 634 const Expr *BlockBytes); 635 636 /// Models zero initialized array allocation. 637 /// 638 /// \param [in] Call The expression that reallocated memory 639 /// \param [in] State The \c ProgramState right before reallocation. 640 /// \returns The ProgramState right after allocation. 641 LLVM_NODISCARD 642 static ProgramStateRef CallocMem(CheckerContext &C, const CallEvent &Call, 643 ProgramStateRef State); 644 645 /// See if deallocation happens in a suspicious context. If so, escape the 646 /// pointers that otherwise would have been deallocated and return true. 647 bool suppressDeallocationsInSuspiciousContexts(const CallEvent &Call, 648 CheckerContext &C) const; 649 650 /// If in \p S \p Sym is used, check whether \p Sym was already freed. 651 bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S) const; 652 653 /// If in \p S \p Sym is used, check whether \p Sym was allocated as a zero 654 /// sized memory region. 655 void checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 656 const Stmt *S) const; 657 658 /// If in \p S \p Sym is being freed, check whether \p Sym was already freed. 659 bool checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const; 660 661 /// Check if the function is known to free memory, or if it is 662 /// "interesting" and should be modeled explicitly. 663 /// 664 /// \param [out] EscapingSymbol A function might not free memory in general, 665 /// but could be known to free a particular symbol. In this case, false is 666 /// returned and the single escaping symbol is returned through the out 667 /// parameter. 668 /// 669 /// We assume that pointers do not escape through calls to system functions 670 /// not handled by this checker. 671 bool mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent *Call, 672 ProgramStateRef State, 673 SymbolRef &EscapingSymbol) const; 674 675 /// Implementation of the checkPointerEscape callbacks. 676 LLVM_NODISCARD 677 ProgramStateRef checkPointerEscapeAux(ProgramStateRef State, 678 const InvalidatedSymbols &Escaped, 679 const CallEvent *Call, 680 PointerEscapeKind Kind, 681 bool IsConstPointerEscape) const; 682 683 // Implementation of the checkPreStmt and checkEndFunction callbacks. 684 void checkEscapeOnReturn(const ReturnStmt *S, CheckerContext &C) const; 685 686 ///@{ 687 /// Tells if a given family/call/symbol is tracked by the current checker. 688 /// Sets CheckKind to the kind of the checker responsible for this 689 /// family/call/symbol. 690 Optional<CheckKind> getCheckIfTracked(AllocationFamily Family, 691 bool IsALeakCheck = false) const; 692 693 Optional<CheckKind> getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 694 bool IsALeakCheck = false) const; 695 ///@} 696 static bool SummarizeValue(raw_ostream &os, SVal V); 697 static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR); 698 699 void HandleNonHeapDealloc(CheckerContext &C, SVal ArgVal, SourceRange Range, 700 const Expr *DeallocExpr, 701 AllocationFamily Family) const; 702 703 void HandleFreeAlloca(CheckerContext &C, SVal ArgVal, 704 SourceRange Range) const; 705 706 void HandleMismatchedDealloc(CheckerContext &C, SourceRange Range, 707 const Expr *DeallocExpr, const RefState *RS, 708 SymbolRef Sym, bool OwnershipTransferred) const; 709 710 void HandleOffsetFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 711 const Expr *DeallocExpr, AllocationFamily Family, 712 const Expr *AllocExpr = nullptr) const; 713 714 void HandleUseAfterFree(CheckerContext &C, SourceRange Range, 715 SymbolRef Sym) const; 716 717 void HandleDoubleFree(CheckerContext &C, SourceRange Range, bool Released, 718 SymbolRef Sym, SymbolRef PrevSym) const; 719 720 void HandleDoubleDelete(CheckerContext &C, SymbolRef Sym) const; 721 722 void HandleUseZeroAlloc(CheckerContext &C, SourceRange Range, 723 SymbolRef Sym) const; 724 725 void HandleFunctionPtrFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 726 const Expr *FreeExpr, 727 AllocationFamily Family) const; 728 729 /// Find the location of the allocation for Sym on the path leading to the 730 /// exploded node N. 731 static LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym, 732 CheckerContext &C); 733 734 void HandleLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const; 735 736 /// Test if value in ArgVal equals to value in macro `ZERO_SIZE_PTR`. 737 bool isArgZERO_SIZE_PTR(ProgramStateRef State, CheckerContext &C, 738 SVal ArgVal) const; 739 }; 740 } // end anonymous namespace 741 742 //===----------------------------------------------------------------------===// 743 // Definition of NoOwnershipChangeVisitor. 744 //===----------------------------------------------------------------------===// 745 746 namespace { 747 class NoOwnershipChangeVisitor final : public NoStateChangeFuncVisitor { 748 // The symbol whose (lack of) ownership change we are interested in. 749 SymbolRef Sym; 750 const MallocChecker &Checker; 751 using OwnerSet = llvm::SmallPtrSet<const MemRegion *, 8>; 752 753 // Collect which entities point to the allocated memory, and could be 754 // responsible for deallocating it. 755 class OwnershipBindingsHandler : public StoreManager::BindingsHandler { 756 SymbolRef Sym; 757 OwnerSet &Owners; 758 759 public: 760 OwnershipBindingsHandler(SymbolRef Sym, OwnerSet &Owners) 761 : Sym(Sym), Owners(Owners) {} 762 763 bool HandleBinding(StoreManager &SMgr, Store Store, const MemRegion *Region, 764 SVal Val) override { 765 if (Val.getAsSymbol() == Sym) 766 Owners.insert(Region); 767 return true; 768 } 769 770 LLVM_DUMP_METHOD void dump() const { dumpToStream(llvm::errs()); } 771 LLVM_DUMP_METHOD void dumpToStream(llvm::raw_ostream &out) const { 772 out << "Owners: {\n"; 773 for (const MemRegion *Owner : Owners) { 774 out << " "; 775 Owner->dumpToStream(out); 776 out << ",\n"; 777 } 778 out << "}\n"; 779 } 780 }; 781 782 protected: 783 OwnerSet getOwnersAtNode(const ExplodedNode *N) { 784 OwnerSet Ret; 785 786 ProgramStateRef State = N->getState(); 787 OwnershipBindingsHandler Handler{Sym, Ret}; 788 State->getStateManager().getStoreManager().iterBindings(State->getStore(), 789 Handler); 790 return Ret; 791 } 792 793 LLVM_DUMP_METHOD static std::string 794 getFunctionName(const ExplodedNode *CallEnterN) { 795 if (const CallExpr *CE = llvm::dyn_cast_or_null<CallExpr>( 796 CallEnterN->getLocationAs<CallEnter>()->getCallExpr())) 797 if (const FunctionDecl *FD = CE->getDirectCallee()) 798 return FD->getQualifiedNameAsString(); 799 return ""; 800 } 801 802 /// Syntactically checks whether the callee is a deallocating function. Since 803 /// we have no path-sensitive information on this call (we would need a 804 /// CallEvent instead of a CallExpr for that), its possible that a 805 /// deallocation function was called indirectly through a function pointer, 806 /// but we are not able to tell, so this is a best effort analysis. 807 /// See namespace `memory_passed_to_fn_call_free_through_fn_ptr` in 808 /// clang/test/Analysis/NewDeleteLeaks.cpp. 809 bool isFreeingCallAsWritten(const CallExpr &Call) const { 810 if (Checker.FreeingMemFnMap.lookupAsWritten(Call) || 811 Checker.ReallocatingMemFnMap.lookupAsWritten(Call)) 812 return true; 813 814 if (const auto *Func = 815 llvm::dyn_cast_or_null<FunctionDecl>(Call.getCalleeDecl())) 816 return MallocChecker::isFreeingOwnershipAttrCall(Func); 817 818 return false; 819 } 820 821 /// Heuristically guess whether the callee intended to free memory. This is 822 /// done syntactically, because we are trying to argue about alternative 823 /// paths of execution, and as a consequence we don't have path-sensitive 824 /// information. 825 bool doesFnIntendToHandleOwnership(const Decl *Callee, ASTContext &ACtx) { 826 using namespace clang::ast_matchers; 827 const FunctionDecl *FD = dyn_cast<FunctionDecl>(Callee); 828 829 // Given that the stack frame was entered, the body should always be 830 // theoretically obtainable. In case of body farms, the synthesized body 831 // is not attached to declaration, thus triggering the '!FD->hasBody()' 832 // branch. That said, would a synthesized body ever intend to handle 833 // ownership? As of today they don't. And if they did, how would we 834 // put notes inside it, given that it doesn't match any source locations? 835 if (!FD || !FD->hasBody()) 836 return false; 837 838 auto Matches = match(findAll(stmt(anyOf(cxxDeleteExpr().bind("delete"), 839 callExpr().bind("call")))), 840 *FD->getBody(), ACtx); 841 for (BoundNodes Match : Matches) { 842 if (Match.getNodeAs<CXXDeleteExpr>("delete")) 843 return true; 844 845 if (const auto *Call = Match.getNodeAs<CallExpr>("call")) 846 if (isFreeingCallAsWritten(*Call)) 847 return true; 848 } 849 // TODO: Ownership might change with an attempt to store the allocated 850 // memory, not only through deallocation. Check for attempted stores as 851 // well. 852 return false; 853 } 854 855 virtual bool 856 wasModifiedInFunction(const ExplodedNode *CallEnterN, 857 const ExplodedNode *CallExitEndN) override { 858 if (!doesFnIntendToHandleOwnership( 859 CallExitEndN->getFirstPred()->getLocationContext()->getDecl(), 860 CallExitEndN->getState()->getAnalysisManager().getASTContext())) 861 return true; 862 863 if (CallEnterN->getState()->get<RegionState>(Sym) != 864 CallExitEndN->getState()->get<RegionState>(Sym)) 865 return true; 866 867 OwnerSet CurrOwners = getOwnersAtNode(CallEnterN); 868 OwnerSet ExitOwners = getOwnersAtNode(CallExitEndN); 869 870 // Owners in the current set may be purged from the analyzer later on. 871 // If a variable is dead (is not referenced directly or indirectly after 872 // some point), it will be removed from the Store before the end of its 873 // actual lifetime. 874 // This means that that if the ownership status didn't change, CurrOwners 875 // must be a superset of, but not necessarily equal to ExitOwners. 876 return !llvm::set_is_subset(ExitOwners, CurrOwners); 877 } 878 879 static PathDiagnosticPieceRef emitNote(const ExplodedNode *N) { 880 PathDiagnosticLocation L = PathDiagnosticLocation::create( 881 N->getLocation(), 882 N->getState()->getStateManager().getContext().getSourceManager()); 883 return std::make_shared<PathDiagnosticEventPiece>( 884 L, "Returning without deallocating memory or storing the pointer for " 885 "later deallocation"); 886 } 887 888 virtual PathDiagnosticPieceRef 889 maybeEmitNoteForObjCSelf(PathSensitiveBugReport &R, 890 const ObjCMethodCall &Call, 891 const ExplodedNode *N) override { 892 // TODO: Implement. 893 return nullptr; 894 } 895 896 virtual PathDiagnosticPieceRef 897 maybeEmitNoteForCXXThis(PathSensitiveBugReport &R, 898 const CXXConstructorCall &Call, 899 const ExplodedNode *N) override { 900 // TODO: Implement. 901 return nullptr; 902 } 903 904 virtual PathDiagnosticPieceRef 905 maybeEmitNoteForParameters(PathSensitiveBugReport &R, const CallEvent &Call, 906 const ExplodedNode *N) override { 907 // TODO: Factor the logic of "what constitutes as an entity being passed 908 // into a function call" out by reusing the code in 909 // NoStoreFuncVisitor::maybeEmitNoteForParameters, maybe by incorporating 910 // the printing technology in UninitializedObject's FieldChainInfo. 911 ArrayRef<ParmVarDecl *> Parameters = Call.parameters(); 912 for (unsigned I = 0; I < Call.getNumArgs() && I < Parameters.size(); ++I) { 913 SVal V = Call.getArgSVal(I); 914 if (V.getAsSymbol() == Sym) 915 return emitNote(N); 916 } 917 return nullptr; 918 } 919 920 public: 921 NoOwnershipChangeVisitor(SymbolRef Sym, const MallocChecker *Checker) 922 : NoStateChangeFuncVisitor(bugreporter::TrackingKind::Thorough), Sym(Sym), 923 Checker(*Checker) {} 924 925 void Profile(llvm::FoldingSetNodeID &ID) const override { 926 static int Tag = 0; 927 ID.AddPointer(&Tag); 928 ID.AddPointer(Sym); 929 } 930 931 void *getTag() const { 932 static int Tag = 0; 933 return static_cast<void *>(&Tag); 934 } 935 }; 936 937 } // end anonymous namespace 938 939 //===----------------------------------------------------------------------===// 940 // Definition of MallocBugVisitor. 941 //===----------------------------------------------------------------------===// 942 943 namespace { 944 /// The bug visitor which allows us to print extra diagnostics along the 945 /// BugReport path. For example, showing the allocation site of the leaked 946 /// region. 947 class MallocBugVisitor final : public BugReporterVisitor { 948 protected: 949 enum NotificationMode { Normal, ReallocationFailed }; 950 951 // The allocated region symbol tracked by the main analysis. 952 SymbolRef Sym; 953 954 // The mode we are in, i.e. what kind of diagnostics will be emitted. 955 NotificationMode Mode; 956 957 // A symbol from when the primary region should have been reallocated. 958 SymbolRef FailedReallocSymbol; 959 960 // A C++ destructor stack frame in which memory was released. Used for 961 // miscellaneous false positive suppression. 962 const StackFrameContext *ReleaseDestructorLC; 963 964 bool IsLeak; 965 966 public: 967 MallocBugVisitor(SymbolRef S, bool isLeak = false) 968 : Sym(S), Mode(Normal), FailedReallocSymbol(nullptr), 969 ReleaseDestructorLC(nullptr), IsLeak(isLeak) {} 970 971 static void *getTag() { 972 static int Tag = 0; 973 return &Tag; 974 } 975 976 void Profile(llvm::FoldingSetNodeID &ID) const override { 977 ID.AddPointer(getTag()); 978 ID.AddPointer(Sym); 979 } 980 981 /// Did not track -> allocated. Other state (released) -> allocated. 982 static inline bool isAllocated(const RefState *RSCurr, const RefState *RSPrev, 983 const Stmt *Stmt) { 984 return (isa_and_nonnull<CallExpr, CXXNewExpr>(Stmt) && 985 (RSCurr && 986 (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) && 987 (!RSPrev || 988 !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero()))); 989 } 990 991 /// Did not track -> released. Other state (allocated) -> released. 992 /// The statement associated with the release might be missing. 993 static inline bool isReleased(const RefState *RSCurr, const RefState *RSPrev, 994 const Stmt *Stmt) { 995 bool IsReleased = 996 (RSCurr && RSCurr->isReleased()) && (!RSPrev || !RSPrev->isReleased()); 997 assert(!IsReleased || (isa_and_nonnull<CallExpr, CXXDeleteExpr>(Stmt)) || 998 (!Stmt && RSCurr->getAllocationFamily() == AF_InnerBuffer)); 999 return IsReleased; 1000 } 1001 1002 /// Did not track -> relinquished. Other state (allocated) -> relinquished. 1003 static inline bool isRelinquished(const RefState *RSCurr, 1004 const RefState *RSPrev, const Stmt *Stmt) { 1005 return ( 1006 isa_and_nonnull<CallExpr, ObjCMessageExpr, ObjCPropertyRefExpr>(Stmt) && 1007 (RSCurr && RSCurr->isRelinquished()) && 1008 (!RSPrev || !RSPrev->isRelinquished())); 1009 } 1010 1011 /// If the expression is not a call, and the state change is 1012 /// released -> allocated, it must be the realloc return value 1013 /// check. If we have to handle more cases here, it might be cleaner just 1014 /// to track this extra bit in the state itself. 1015 static inline bool hasReallocFailed(const RefState *RSCurr, 1016 const RefState *RSPrev, 1017 const Stmt *Stmt) { 1018 return ((!isa_and_nonnull<CallExpr>(Stmt)) && 1019 (RSCurr && 1020 (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) && 1021 (RSPrev && 1022 !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero()))); 1023 } 1024 1025 PathDiagnosticPieceRef VisitNode(const ExplodedNode *N, 1026 BugReporterContext &BRC, 1027 PathSensitiveBugReport &BR) override; 1028 1029 PathDiagnosticPieceRef getEndPath(BugReporterContext &BRC, 1030 const ExplodedNode *EndPathNode, 1031 PathSensitiveBugReport &BR) override { 1032 if (!IsLeak) 1033 return nullptr; 1034 1035 PathDiagnosticLocation L = BR.getLocation(); 1036 // Do not add the statement itself as a range in case of leak. 1037 return std::make_shared<PathDiagnosticEventPiece>(L, BR.getDescription(), 1038 false); 1039 } 1040 1041 private: 1042 class StackHintGeneratorForReallocationFailed 1043 : public StackHintGeneratorForSymbol { 1044 public: 1045 StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M) 1046 : StackHintGeneratorForSymbol(S, M) {} 1047 1048 std::string getMessageForArg(const Expr *ArgE, unsigned ArgIndex) override { 1049 // Printed parameters start at 1, not 0. 1050 ++ArgIndex; 1051 1052 SmallString<200> buf; 1053 llvm::raw_svector_ostream os(buf); 1054 1055 os << "Reallocation of " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex) 1056 << " parameter failed"; 1057 1058 return std::string(os.str()); 1059 } 1060 1061 std::string getMessageForReturn(const CallExpr *CallExpr) override { 1062 return "Reallocation of returned value failed"; 1063 } 1064 }; 1065 }; 1066 } // end anonymous namespace 1067 1068 // A map from the freed symbol to the symbol representing the return value of 1069 // the free function. 1070 REGISTER_MAP_WITH_PROGRAMSTATE(FreeReturnValue, SymbolRef, SymbolRef) 1071 1072 namespace { 1073 class StopTrackingCallback final : public SymbolVisitor { 1074 ProgramStateRef state; 1075 1076 public: 1077 StopTrackingCallback(ProgramStateRef st) : state(std::move(st)) {} 1078 ProgramStateRef getState() const { return state; } 1079 1080 bool VisitSymbol(SymbolRef sym) override { 1081 state = state->remove<RegionState>(sym); 1082 return true; 1083 } 1084 }; 1085 } // end anonymous namespace 1086 1087 static bool isStandardNewDelete(const FunctionDecl *FD) { 1088 if (!FD) 1089 return false; 1090 1091 OverloadedOperatorKind Kind = FD->getOverloadedOperator(); 1092 if (Kind != OO_New && Kind != OO_Array_New && Kind != OO_Delete && 1093 Kind != OO_Array_Delete) 1094 return false; 1095 1096 // This is standard if and only if it's not defined in a user file. 1097 SourceLocation L = FD->getLocation(); 1098 // If the header for operator delete is not included, it's still defined 1099 // in an invalid source location. Check to make sure we don't crash. 1100 return !L.isValid() || 1101 FD->getASTContext().getSourceManager().isInSystemHeader(L); 1102 } 1103 1104 //===----------------------------------------------------------------------===// 1105 // Methods of MallocChecker and MallocBugVisitor. 1106 //===----------------------------------------------------------------------===// 1107 1108 bool MallocChecker::isFreeingOwnershipAttrCall(const FunctionDecl *Func) { 1109 if (Func->hasAttrs()) { 1110 for (const auto *I : Func->specific_attrs<OwnershipAttr>()) { 1111 OwnershipAttr::OwnershipKind OwnKind = I->getOwnKind(); 1112 if (OwnKind == OwnershipAttr::Takes || OwnKind == OwnershipAttr::Holds) 1113 return true; 1114 } 1115 } 1116 return false; 1117 } 1118 1119 bool MallocChecker::isFreeingCall(const CallEvent &Call) const { 1120 if (FreeingMemFnMap.lookup(Call) || ReallocatingMemFnMap.lookup(Call)) 1121 return true; 1122 1123 if (const auto *Func = dyn_cast_or_null<FunctionDecl>(Call.getDecl())) 1124 return isFreeingOwnershipAttrCall(Func); 1125 1126 return false; 1127 } 1128 1129 bool MallocChecker::isMemCall(const CallEvent &Call) const { 1130 if (FreeingMemFnMap.lookup(Call) || AllocatingMemFnMap.lookup(Call) || 1131 ReallocatingMemFnMap.lookup(Call)) 1132 return true; 1133 1134 if (!ShouldIncludeOwnershipAnnotatedFunctions) 1135 return false; 1136 1137 const auto *Func = dyn_cast<FunctionDecl>(Call.getDecl()); 1138 return Func && Func->hasAttr<OwnershipAttr>(); 1139 } 1140 1141 llvm::Optional<ProgramStateRef> 1142 MallocChecker::performKernelMalloc(const CallEvent &Call, CheckerContext &C, 1143 const ProgramStateRef &State) const { 1144 // 3-argument malloc(), as commonly used in {Free,Net,Open}BSD Kernels: 1145 // 1146 // void *malloc(unsigned long size, struct malloc_type *mtp, int flags); 1147 // 1148 // One of the possible flags is M_ZERO, which means 'give me back an 1149 // allocation which is already zeroed', like calloc. 1150 1151 // 2-argument kmalloc(), as used in the Linux kernel: 1152 // 1153 // void *kmalloc(size_t size, gfp_t flags); 1154 // 1155 // Has the similar flag value __GFP_ZERO. 1156 1157 // This logic is largely cloned from O_CREAT in UnixAPIChecker, maybe some 1158 // code could be shared. 1159 1160 ASTContext &Ctx = C.getASTContext(); 1161 llvm::Triple::OSType OS = Ctx.getTargetInfo().getTriple().getOS(); 1162 1163 if (!KernelZeroFlagVal.hasValue()) { 1164 if (OS == llvm::Triple::FreeBSD) 1165 KernelZeroFlagVal = 0x0100; 1166 else if (OS == llvm::Triple::NetBSD) 1167 KernelZeroFlagVal = 0x0002; 1168 else if (OS == llvm::Triple::OpenBSD) 1169 KernelZeroFlagVal = 0x0008; 1170 else if (OS == llvm::Triple::Linux) 1171 // __GFP_ZERO 1172 KernelZeroFlagVal = 0x8000; 1173 else 1174 // FIXME: We need a more general way of getting the M_ZERO value. 1175 // See also: O_CREAT in UnixAPIChecker.cpp. 1176 1177 // Fall back to normal malloc behavior on platforms where we don't 1178 // know M_ZERO. 1179 return None; 1180 } 1181 1182 // We treat the last argument as the flags argument, and callers fall-back to 1183 // normal malloc on a None return. This works for the FreeBSD kernel malloc 1184 // as well as Linux kmalloc. 1185 if (Call.getNumArgs() < 2) 1186 return None; 1187 1188 const Expr *FlagsEx = Call.getArgExpr(Call.getNumArgs() - 1); 1189 const SVal V = C.getSVal(FlagsEx); 1190 if (!V.getAs<NonLoc>()) { 1191 // The case where 'V' can be a location can only be due to a bad header, 1192 // so in this case bail out. 1193 return None; 1194 } 1195 1196 NonLoc Flags = V.castAs<NonLoc>(); 1197 NonLoc ZeroFlag = C.getSValBuilder() 1198 .makeIntVal(KernelZeroFlagVal.getValue(), FlagsEx->getType()) 1199 .castAs<NonLoc>(); 1200 SVal MaskedFlagsUC = C.getSValBuilder().evalBinOpNN(State, BO_And, 1201 Flags, ZeroFlag, 1202 FlagsEx->getType()); 1203 if (MaskedFlagsUC.isUnknownOrUndef()) 1204 return None; 1205 DefinedSVal MaskedFlags = MaskedFlagsUC.castAs<DefinedSVal>(); 1206 1207 // Check if maskedFlags is non-zero. 1208 ProgramStateRef TrueState, FalseState; 1209 std::tie(TrueState, FalseState) = State->assume(MaskedFlags); 1210 1211 // If M_ZERO is set, treat this like calloc (initialized). 1212 if (TrueState && !FalseState) { 1213 SVal ZeroVal = C.getSValBuilder().makeZeroVal(Ctx.CharTy); 1214 return MallocMemAux(C, Call, Call.getArgExpr(0), ZeroVal, TrueState, 1215 AF_Malloc); 1216 } 1217 1218 return None; 1219 } 1220 1221 SVal MallocChecker::evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, 1222 const Expr *BlockBytes) { 1223 SValBuilder &SB = C.getSValBuilder(); 1224 SVal BlocksVal = C.getSVal(Blocks); 1225 SVal BlockBytesVal = C.getSVal(BlockBytes); 1226 ProgramStateRef State = C.getState(); 1227 SVal TotalSize = SB.evalBinOp(State, BO_Mul, BlocksVal, BlockBytesVal, 1228 SB.getContext().getSizeType()); 1229 return TotalSize; 1230 } 1231 1232 void MallocChecker::checkBasicAlloc(const CallEvent &Call, 1233 CheckerContext &C) const { 1234 ProgramStateRef State = C.getState(); 1235 State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State, 1236 AF_Malloc); 1237 State = ProcessZeroAllocCheck(Call, 0, State); 1238 C.addTransition(State); 1239 } 1240 1241 void MallocChecker::checkKernelMalloc(const CallEvent &Call, 1242 CheckerContext &C) const { 1243 ProgramStateRef State = C.getState(); 1244 llvm::Optional<ProgramStateRef> MaybeState = 1245 performKernelMalloc(Call, C, State); 1246 if (MaybeState.hasValue()) 1247 State = MaybeState.getValue(); 1248 else 1249 State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State, 1250 AF_Malloc); 1251 C.addTransition(State); 1252 } 1253 1254 static bool isStandardRealloc(const CallEvent &Call) { 1255 const FunctionDecl *FD = dyn_cast<FunctionDecl>(Call.getDecl()); 1256 assert(FD); 1257 ASTContext &AC = FD->getASTContext(); 1258 1259 if (isa<CXXMethodDecl>(FD)) 1260 return false; 1261 1262 return FD->getDeclaredReturnType().getDesugaredType(AC) == AC.VoidPtrTy && 1263 FD->getParamDecl(0)->getType().getDesugaredType(AC) == AC.VoidPtrTy && 1264 FD->getParamDecl(1)->getType().getDesugaredType(AC) == 1265 AC.getSizeType(); 1266 } 1267 1268 static bool isGRealloc(const CallEvent &Call) { 1269 const FunctionDecl *FD = dyn_cast<FunctionDecl>(Call.getDecl()); 1270 assert(FD); 1271 ASTContext &AC = FD->getASTContext(); 1272 1273 if (isa<CXXMethodDecl>(FD)) 1274 return false; 1275 1276 return FD->getDeclaredReturnType().getDesugaredType(AC) == AC.VoidPtrTy && 1277 FD->getParamDecl(0)->getType().getDesugaredType(AC) == AC.VoidPtrTy && 1278 FD->getParamDecl(1)->getType().getDesugaredType(AC) == 1279 AC.UnsignedLongTy; 1280 } 1281 1282 void MallocChecker::checkRealloc(const CallEvent &Call, CheckerContext &C, 1283 bool ShouldFreeOnFail) const { 1284 // HACK: CallDescription currently recognizes non-standard realloc functions 1285 // as standard because it doesn't check the type, or wether its a non-method 1286 // function. This should be solved by making CallDescription smarter. 1287 // Mind that this came from a bug report, and all other functions suffer from 1288 // this. 1289 // https://bugs.llvm.org/show_bug.cgi?id=46253 1290 if (!isStandardRealloc(Call) && !isGRealloc(Call)) 1291 return; 1292 ProgramStateRef State = C.getState(); 1293 State = ReallocMemAux(C, Call, ShouldFreeOnFail, State, AF_Malloc); 1294 State = ProcessZeroAllocCheck(Call, 1, State); 1295 C.addTransition(State); 1296 } 1297 1298 void MallocChecker::checkCalloc(const CallEvent &Call, 1299 CheckerContext &C) const { 1300 ProgramStateRef State = C.getState(); 1301 State = CallocMem(C, Call, State); 1302 State = ProcessZeroAllocCheck(Call, 0, State); 1303 State = ProcessZeroAllocCheck(Call, 1, State); 1304 C.addTransition(State); 1305 } 1306 1307 void MallocChecker::checkFree(const CallEvent &Call, CheckerContext &C) const { 1308 ProgramStateRef State = C.getState(); 1309 bool IsKnownToBeAllocatedMemory = false; 1310 if (suppressDeallocationsInSuspiciousContexts(Call, C)) 1311 return; 1312 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1313 AF_Malloc); 1314 C.addTransition(State); 1315 } 1316 1317 void MallocChecker::checkAlloca(const CallEvent &Call, 1318 CheckerContext &C) const { 1319 ProgramStateRef State = C.getState(); 1320 State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State, 1321 AF_Alloca); 1322 State = ProcessZeroAllocCheck(Call, 0, State); 1323 C.addTransition(State); 1324 } 1325 1326 void MallocChecker::checkStrdup(const CallEvent &Call, 1327 CheckerContext &C) const { 1328 ProgramStateRef State = C.getState(); 1329 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1330 if (!CE) 1331 return; 1332 State = MallocUpdateRefState(C, CE, State, AF_Malloc); 1333 1334 C.addTransition(State); 1335 } 1336 1337 void MallocChecker::checkIfNameIndex(const CallEvent &Call, 1338 CheckerContext &C) const { 1339 ProgramStateRef State = C.getState(); 1340 // Should we model this differently? We can allocate a fixed number of 1341 // elements with zeros in the last one. 1342 State = 1343 MallocMemAux(C, Call, UnknownVal(), UnknownVal(), State, AF_IfNameIndex); 1344 1345 C.addTransition(State); 1346 } 1347 1348 void MallocChecker::checkIfFreeNameIndex(const CallEvent &Call, 1349 CheckerContext &C) const { 1350 ProgramStateRef State = C.getState(); 1351 bool IsKnownToBeAllocatedMemory = false; 1352 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1353 AF_IfNameIndex); 1354 C.addTransition(State); 1355 } 1356 1357 void MallocChecker::checkCXXNewOrCXXDelete(const CallEvent &Call, 1358 CheckerContext &C) const { 1359 ProgramStateRef State = C.getState(); 1360 bool IsKnownToBeAllocatedMemory = false; 1361 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1362 if (!CE) 1363 return; 1364 1365 assert(isStandardNewDelete(Call)); 1366 1367 // Process direct calls to operator new/new[]/delete/delete[] functions 1368 // as distinct from new/new[]/delete/delete[] expressions that are 1369 // processed by the checkPostStmt callbacks for CXXNewExpr and 1370 // CXXDeleteExpr. 1371 const FunctionDecl *FD = C.getCalleeDecl(CE); 1372 switch (FD->getOverloadedOperator()) { 1373 case OO_New: 1374 State = 1375 MallocMemAux(C, Call, CE->getArg(0), UndefinedVal(), State, AF_CXXNew); 1376 State = ProcessZeroAllocCheck(Call, 0, State); 1377 break; 1378 case OO_Array_New: 1379 State = MallocMemAux(C, Call, CE->getArg(0), UndefinedVal(), State, 1380 AF_CXXNewArray); 1381 State = ProcessZeroAllocCheck(Call, 0, State); 1382 break; 1383 case OO_Delete: 1384 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1385 AF_CXXNew); 1386 break; 1387 case OO_Array_Delete: 1388 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1389 AF_CXXNewArray); 1390 break; 1391 default: 1392 llvm_unreachable("not a new/delete operator"); 1393 } 1394 1395 C.addTransition(State); 1396 } 1397 1398 void MallocChecker::checkGMalloc0(const CallEvent &Call, 1399 CheckerContext &C) const { 1400 ProgramStateRef State = C.getState(); 1401 SValBuilder &svalBuilder = C.getSValBuilder(); 1402 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 1403 State = MallocMemAux(C, Call, Call.getArgExpr(0), zeroVal, State, AF_Malloc); 1404 State = ProcessZeroAllocCheck(Call, 0, State); 1405 C.addTransition(State); 1406 } 1407 1408 void MallocChecker::checkGMemdup(const CallEvent &Call, 1409 CheckerContext &C) const { 1410 ProgramStateRef State = C.getState(); 1411 State = 1412 MallocMemAux(C, Call, Call.getArgExpr(1), UnknownVal(), State, AF_Malloc); 1413 State = ProcessZeroAllocCheck(Call, 1, State); 1414 C.addTransition(State); 1415 } 1416 1417 void MallocChecker::checkGMallocN(const CallEvent &Call, 1418 CheckerContext &C) const { 1419 ProgramStateRef State = C.getState(); 1420 SVal Init = UndefinedVal(); 1421 SVal TotalSize = evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1)); 1422 State = MallocMemAux(C, Call, TotalSize, Init, State, AF_Malloc); 1423 State = ProcessZeroAllocCheck(Call, 0, State); 1424 State = ProcessZeroAllocCheck(Call, 1, State); 1425 C.addTransition(State); 1426 } 1427 1428 void MallocChecker::checkGMallocN0(const CallEvent &Call, 1429 CheckerContext &C) const { 1430 ProgramStateRef State = C.getState(); 1431 SValBuilder &SB = C.getSValBuilder(); 1432 SVal Init = SB.makeZeroVal(SB.getContext().CharTy); 1433 SVal TotalSize = evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1)); 1434 State = MallocMemAux(C, Call, TotalSize, Init, State, AF_Malloc); 1435 State = ProcessZeroAllocCheck(Call, 0, State); 1436 State = ProcessZeroAllocCheck(Call, 1, State); 1437 C.addTransition(State); 1438 } 1439 1440 void MallocChecker::checkReallocN(const CallEvent &Call, 1441 CheckerContext &C) const { 1442 ProgramStateRef State = C.getState(); 1443 State = ReallocMemAux(C, Call, /*ShouldFreeOnFail=*/false, State, AF_Malloc, 1444 /*SuffixWithN=*/true); 1445 State = ProcessZeroAllocCheck(Call, 1, State); 1446 State = ProcessZeroAllocCheck(Call, 2, State); 1447 C.addTransition(State); 1448 } 1449 1450 void MallocChecker::checkOwnershipAttr(const CallEvent &Call, 1451 CheckerContext &C) const { 1452 ProgramStateRef State = C.getState(); 1453 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1454 if (!CE) 1455 return; 1456 const FunctionDecl *FD = C.getCalleeDecl(CE); 1457 if (!FD) 1458 return; 1459 if (ShouldIncludeOwnershipAnnotatedFunctions || 1460 ChecksEnabled[CK_MismatchedDeallocatorChecker]) { 1461 // Check all the attributes, if there are any. 1462 // There can be multiple of these attributes. 1463 if (FD->hasAttrs()) 1464 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { 1465 switch (I->getOwnKind()) { 1466 case OwnershipAttr::Returns: 1467 State = MallocMemReturnsAttr(C, Call, I, State); 1468 break; 1469 case OwnershipAttr::Takes: 1470 case OwnershipAttr::Holds: 1471 State = FreeMemAttr(C, Call, I, State); 1472 break; 1473 } 1474 } 1475 } 1476 C.addTransition(State); 1477 } 1478 1479 void MallocChecker::checkPostCall(const CallEvent &Call, 1480 CheckerContext &C) const { 1481 if (C.wasInlined) 1482 return; 1483 if (!Call.getOriginExpr()) 1484 return; 1485 1486 ProgramStateRef State = C.getState(); 1487 1488 if (const CheckFn *Callback = FreeingMemFnMap.lookup(Call)) { 1489 (*Callback)(this, Call, C); 1490 return; 1491 } 1492 1493 if (const CheckFn *Callback = AllocatingMemFnMap.lookup(Call)) { 1494 (*Callback)(this, Call, C); 1495 return; 1496 } 1497 1498 if (const CheckFn *Callback = ReallocatingMemFnMap.lookup(Call)) { 1499 (*Callback)(this, Call, C); 1500 return; 1501 } 1502 1503 if (isStandardNewDelete(Call)) { 1504 checkCXXNewOrCXXDelete(Call, C); 1505 return; 1506 } 1507 1508 checkOwnershipAttr(Call, C); 1509 } 1510 1511 // Performs a 0-sized allocations check. 1512 ProgramStateRef MallocChecker::ProcessZeroAllocCheck( 1513 const CallEvent &Call, const unsigned IndexOfSizeArg, ProgramStateRef State, 1514 Optional<SVal> RetVal) { 1515 if (!State) 1516 return nullptr; 1517 1518 if (!RetVal) 1519 RetVal = Call.getReturnValue(); 1520 1521 const Expr *Arg = nullptr; 1522 1523 if (const CallExpr *CE = dyn_cast<CallExpr>(Call.getOriginExpr())) { 1524 Arg = CE->getArg(IndexOfSizeArg); 1525 } else if (const CXXNewExpr *NE = 1526 dyn_cast<CXXNewExpr>(Call.getOriginExpr())) { 1527 if (NE->isArray()) { 1528 Arg = *NE->getArraySize(); 1529 } else { 1530 return State; 1531 } 1532 } else 1533 llvm_unreachable("not a CallExpr or CXXNewExpr"); 1534 1535 assert(Arg); 1536 1537 auto DefArgVal = 1538 State->getSVal(Arg, Call.getLocationContext()).getAs<DefinedSVal>(); 1539 1540 if (!DefArgVal) 1541 return State; 1542 1543 // Check if the allocation size is 0. 1544 ProgramStateRef TrueState, FalseState; 1545 SValBuilder &SvalBuilder = State->getStateManager().getSValBuilder(); 1546 DefinedSVal Zero = 1547 SvalBuilder.makeZeroVal(Arg->getType()).castAs<DefinedSVal>(); 1548 1549 std::tie(TrueState, FalseState) = 1550 State->assume(SvalBuilder.evalEQ(State, *DefArgVal, Zero)); 1551 1552 if (TrueState && !FalseState) { 1553 SymbolRef Sym = RetVal->getAsLocSymbol(); 1554 if (!Sym) 1555 return State; 1556 1557 const RefState *RS = State->get<RegionState>(Sym); 1558 if (RS) { 1559 if (RS->isAllocated()) 1560 return TrueState->set<RegionState>(Sym, 1561 RefState::getAllocatedOfSizeZero(RS)); 1562 else 1563 return State; 1564 } else { 1565 // Case of zero-size realloc. Historically 'realloc(ptr, 0)' is treated as 1566 // 'free(ptr)' and the returned value from 'realloc(ptr, 0)' is not 1567 // tracked. Add zero-reallocated Sym to the state to catch references 1568 // to zero-allocated memory. 1569 return TrueState->add<ReallocSizeZeroSymbols>(Sym); 1570 } 1571 } 1572 1573 // Assume the value is non-zero going forward. 1574 assert(FalseState); 1575 return FalseState; 1576 } 1577 1578 static QualType getDeepPointeeType(QualType T) { 1579 QualType Result = T, PointeeType = T->getPointeeType(); 1580 while (!PointeeType.isNull()) { 1581 Result = PointeeType; 1582 PointeeType = PointeeType->getPointeeType(); 1583 } 1584 return Result; 1585 } 1586 1587 /// \returns true if the constructor invoked by \p NE has an argument of a 1588 /// pointer/reference to a record type. 1589 static bool hasNonTrivialConstructorCall(const CXXNewExpr *NE) { 1590 1591 const CXXConstructExpr *ConstructE = NE->getConstructExpr(); 1592 if (!ConstructE) 1593 return false; 1594 1595 if (!NE->getAllocatedType()->getAsCXXRecordDecl()) 1596 return false; 1597 1598 const CXXConstructorDecl *CtorD = ConstructE->getConstructor(); 1599 1600 // Iterate over the constructor parameters. 1601 for (const auto *CtorParam : CtorD->parameters()) { 1602 1603 QualType CtorParamPointeeT = CtorParam->getType()->getPointeeType(); 1604 if (CtorParamPointeeT.isNull()) 1605 continue; 1606 1607 CtorParamPointeeT = getDeepPointeeType(CtorParamPointeeT); 1608 1609 if (CtorParamPointeeT->getAsCXXRecordDecl()) 1610 return true; 1611 } 1612 1613 return false; 1614 } 1615 1616 ProgramStateRef 1617 MallocChecker::processNewAllocation(const CXXAllocatorCall &Call, 1618 CheckerContext &C, 1619 AllocationFamily Family) const { 1620 if (!isStandardNewDelete(Call)) 1621 return nullptr; 1622 1623 const CXXNewExpr *NE = Call.getOriginExpr(); 1624 const ParentMap &PM = C.getLocationContext()->getParentMap(); 1625 ProgramStateRef State = C.getState(); 1626 1627 // Non-trivial constructors have a chance to escape 'this', but marking all 1628 // invocations of trivial constructors as escaped would cause too great of 1629 // reduction of true positives, so let's just do that for constructors that 1630 // have an argument of a pointer-to-record type. 1631 if (!PM.isConsumedExpr(NE) && hasNonTrivialConstructorCall(NE)) 1632 return State; 1633 1634 // The return value from operator new is bound to a specified initialization 1635 // value (if any) and we don't want to loose this value. So we call 1636 // MallocUpdateRefState() instead of MallocMemAux() which breaks the 1637 // existing binding. 1638 SVal Target = Call.getObjectUnderConstruction(); 1639 State = MallocUpdateRefState(C, NE, State, Family, Target); 1640 State = ProcessZeroAllocCheck(Call, 0, State, Target); 1641 return State; 1642 } 1643 1644 void MallocChecker::checkNewAllocator(const CXXAllocatorCall &Call, 1645 CheckerContext &C) const { 1646 if (!C.wasInlined) { 1647 ProgramStateRef State = processNewAllocation( 1648 Call, C, 1649 (Call.getOriginExpr()->isArray() ? AF_CXXNewArray : AF_CXXNew)); 1650 C.addTransition(State); 1651 } 1652 } 1653 1654 static bool isKnownDeallocObjCMethodName(const ObjCMethodCall &Call) { 1655 // If the first selector piece is one of the names below, assume that the 1656 // object takes ownership of the memory, promising to eventually deallocate it 1657 // with free(). 1658 // Ex: [NSData dataWithBytesNoCopy:bytes length:10]; 1659 // (...unless a 'freeWhenDone' parameter is false, but that's checked later.) 1660 StringRef FirstSlot = Call.getSelector().getNameForSlot(0); 1661 return FirstSlot == "dataWithBytesNoCopy" || 1662 FirstSlot == "initWithBytesNoCopy" || 1663 FirstSlot == "initWithCharactersNoCopy"; 1664 } 1665 1666 static Optional<bool> getFreeWhenDoneArg(const ObjCMethodCall &Call) { 1667 Selector S = Call.getSelector(); 1668 1669 // FIXME: We should not rely on fully-constrained symbols being folded. 1670 for (unsigned i = 1; i < S.getNumArgs(); ++i) 1671 if (S.getNameForSlot(i).equals("freeWhenDone")) 1672 return !Call.getArgSVal(i).isZeroConstant(); 1673 1674 return None; 1675 } 1676 1677 void MallocChecker::checkPostObjCMessage(const ObjCMethodCall &Call, 1678 CheckerContext &C) const { 1679 if (C.wasInlined) 1680 return; 1681 1682 if (!isKnownDeallocObjCMethodName(Call)) 1683 return; 1684 1685 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call)) 1686 if (!*FreeWhenDone) 1687 return; 1688 1689 if (Call.hasNonZeroCallbackArg()) 1690 return; 1691 1692 bool IsKnownToBeAllocatedMemory; 1693 ProgramStateRef State = 1694 FreeMemAux(C, Call.getArgExpr(0), Call, C.getState(), 1695 /*Hold=*/true, IsKnownToBeAllocatedMemory, AF_Malloc, 1696 /*ReturnsNullOnFailure=*/true); 1697 1698 C.addTransition(State); 1699 } 1700 1701 ProgramStateRef 1702 MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallEvent &Call, 1703 const OwnershipAttr *Att, 1704 ProgramStateRef State) const { 1705 if (!State) 1706 return nullptr; 1707 1708 if (Att->getModule()->getName() != "malloc") 1709 return nullptr; 1710 1711 OwnershipAttr::args_iterator I = Att->args_begin(), E = Att->args_end(); 1712 if (I != E) { 1713 return MallocMemAux(C, Call, Call.getArgExpr(I->getASTIndex()), 1714 UndefinedVal(), State, AF_Malloc); 1715 } 1716 return MallocMemAux(C, Call, UnknownVal(), UndefinedVal(), State, AF_Malloc); 1717 } 1718 1719 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1720 const CallEvent &Call, 1721 const Expr *SizeEx, SVal Init, 1722 ProgramStateRef State, 1723 AllocationFamily Family) { 1724 if (!State) 1725 return nullptr; 1726 1727 assert(SizeEx); 1728 return MallocMemAux(C, Call, C.getSVal(SizeEx), Init, State, Family); 1729 } 1730 1731 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1732 const CallEvent &Call, SVal Size, 1733 SVal Init, ProgramStateRef State, 1734 AllocationFamily Family) { 1735 if (!State) 1736 return nullptr; 1737 1738 const Expr *CE = Call.getOriginExpr(); 1739 1740 // We expect the malloc functions to return a pointer. 1741 if (!Loc::isLocType(CE->getType())) 1742 return nullptr; 1743 1744 // Bind the return value to the symbolic value from the heap region. 1745 // TODO: We could rewrite post visit to eval call; 'malloc' does not have 1746 // side effects other than what we model here. 1747 unsigned Count = C.blockCount(); 1748 SValBuilder &svalBuilder = C.getSValBuilder(); 1749 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 1750 DefinedSVal RetVal = svalBuilder.getConjuredHeapSymbolVal(CE, LCtx, Count) 1751 .castAs<DefinedSVal>(); 1752 State = State->BindExpr(CE, C.getLocationContext(), RetVal); 1753 1754 // Fill the region with the initialization value. 1755 State = State->bindDefaultInitial(RetVal, Init, LCtx); 1756 1757 // Set the region's extent. 1758 State = setDynamicExtent(State, RetVal.getAsRegion(), 1759 Size.castAs<DefinedOrUnknownSVal>(), svalBuilder); 1760 1761 return MallocUpdateRefState(C, CE, State, Family); 1762 } 1763 1764 static ProgramStateRef MallocUpdateRefState(CheckerContext &C, const Expr *E, 1765 ProgramStateRef State, 1766 AllocationFamily Family, 1767 Optional<SVal> RetVal) { 1768 if (!State) 1769 return nullptr; 1770 1771 // Get the return value. 1772 if (!RetVal) 1773 RetVal = C.getSVal(E); 1774 1775 // We expect the malloc functions to return a pointer. 1776 if (!RetVal->getAs<Loc>()) 1777 return nullptr; 1778 1779 SymbolRef Sym = RetVal->getAsLocSymbol(); 1780 // This is a return value of a function that was not inlined, such as malloc() 1781 // or new(). We've checked that in the caller. Therefore, it must be a symbol. 1782 assert(Sym); 1783 1784 // Set the symbol's state to Allocated. 1785 return State->set<RegionState>(Sym, RefState::getAllocated(Family, E)); 1786 } 1787 1788 ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C, 1789 const CallEvent &Call, 1790 const OwnershipAttr *Att, 1791 ProgramStateRef State) const { 1792 if (!State) 1793 return nullptr; 1794 1795 if (Att->getModule()->getName() != "malloc") 1796 return nullptr; 1797 1798 bool IsKnownToBeAllocated = false; 1799 1800 for (const auto &Arg : Att->args()) { 1801 ProgramStateRef StateI = 1802 FreeMemAux(C, Call, State, Arg.getASTIndex(), 1803 Att->getOwnKind() == OwnershipAttr::Holds, 1804 IsKnownToBeAllocated, AF_Malloc); 1805 if (StateI) 1806 State = StateI; 1807 } 1808 return State; 1809 } 1810 1811 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, 1812 const CallEvent &Call, 1813 ProgramStateRef State, unsigned Num, 1814 bool Hold, bool &IsKnownToBeAllocated, 1815 AllocationFamily Family, 1816 bool ReturnsNullOnFailure) const { 1817 if (!State) 1818 return nullptr; 1819 1820 if (Call.getNumArgs() < (Num + 1)) 1821 return nullptr; 1822 1823 return FreeMemAux(C, Call.getArgExpr(Num), Call, State, Hold, 1824 IsKnownToBeAllocated, Family, ReturnsNullOnFailure); 1825 } 1826 1827 /// Checks if the previous call to free on the given symbol failed - if free 1828 /// failed, returns true. Also, returns the corresponding return value symbol. 1829 static bool didPreviousFreeFail(ProgramStateRef State, 1830 SymbolRef Sym, SymbolRef &RetStatusSymbol) { 1831 const SymbolRef *Ret = State->get<FreeReturnValue>(Sym); 1832 if (Ret) { 1833 assert(*Ret && "We should not store the null return symbol"); 1834 ConstraintManager &CMgr = State->getConstraintManager(); 1835 ConditionTruthVal FreeFailed = CMgr.isNull(State, *Ret); 1836 RetStatusSymbol = *Ret; 1837 return FreeFailed.isConstrainedTrue(); 1838 } 1839 return false; 1840 } 1841 1842 static bool printMemFnName(raw_ostream &os, CheckerContext &C, const Expr *E) { 1843 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 1844 // FIXME: This doesn't handle indirect calls. 1845 const FunctionDecl *FD = CE->getDirectCallee(); 1846 if (!FD) 1847 return false; 1848 1849 os << *FD; 1850 if (!FD->isOverloadedOperator()) 1851 os << "()"; 1852 return true; 1853 } 1854 1855 if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E)) { 1856 if (Msg->isInstanceMessage()) 1857 os << "-"; 1858 else 1859 os << "+"; 1860 Msg->getSelector().print(os); 1861 return true; 1862 } 1863 1864 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { 1865 os << "'" 1866 << getOperatorSpelling(NE->getOperatorNew()->getOverloadedOperator()) 1867 << "'"; 1868 return true; 1869 } 1870 1871 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(E)) { 1872 os << "'" 1873 << getOperatorSpelling(DE->getOperatorDelete()->getOverloadedOperator()) 1874 << "'"; 1875 return true; 1876 } 1877 1878 return false; 1879 } 1880 1881 static void printExpectedAllocName(raw_ostream &os, AllocationFamily Family) { 1882 1883 switch(Family) { 1884 case AF_Malloc: os << "malloc()"; return; 1885 case AF_CXXNew: os << "'new'"; return; 1886 case AF_CXXNewArray: os << "'new[]'"; return; 1887 case AF_IfNameIndex: os << "'if_nameindex()'"; return; 1888 case AF_InnerBuffer: os << "container-specific allocator"; return; 1889 case AF_Alloca: 1890 case AF_None: llvm_unreachable("not a deallocation expression"); 1891 } 1892 } 1893 1894 static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family) { 1895 switch(Family) { 1896 case AF_Malloc: os << "free()"; return; 1897 case AF_CXXNew: os << "'delete'"; return; 1898 case AF_CXXNewArray: os << "'delete[]'"; return; 1899 case AF_IfNameIndex: os << "'if_freenameindex()'"; return; 1900 case AF_InnerBuffer: os << "container-specific deallocator"; return; 1901 case AF_Alloca: 1902 case AF_None: llvm_unreachable("suspicious argument"); 1903 } 1904 } 1905 1906 ProgramStateRef MallocChecker::FreeMemAux( 1907 CheckerContext &C, const Expr *ArgExpr, const CallEvent &Call, 1908 ProgramStateRef State, bool Hold, bool &IsKnownToBeAllocated, 1909 AllocationFamily Family, bool ReturnsNullOnFailure) const { 1910 1911 if (!State) 1912 return nullptr; 1913 1914 SVal ArgVal = C.getSVal(ArgExpr); 1915 if (!ArgVal.getAs<DefinedOrUnknownSVal>()) 1916 return nullptr; 1917 DefinedOrUnknownSVal location = ArgVal.castAs<DefinedOrUnknownSVal>(); 1918 1919 // Check for null dereferences. 1920 if (!location.getAs<Loc>()) 1921 return nullptr; 1922 1923 // The explicit NULL case, no operation is performed. 1924 ProgramStateRef notNullState, nullState; 1925 std::tie(notNullState, nullState) = State->assume(location); 1926 if (nullState && !notNullState) 1927 return nullptr; 1928 1929 // Unknown values could easily be okay 1930 // Undefined values are handled elsewhere 1931 if (ArgVal.isUnknownOrUndef()) 1932 return nullptr; 1933 1934 const MemRegion *R = ArgVal.getAsRegion(); 1935 const Expr *ParentExpr = Call.getOriginExpr(); 1936 1937 // NOTE: We detected a bug, but the checker under whose name we would emit the 1938 // error could be disabled. Generally speaking, the MallocChecker family is an 1939 // integral part of the Static Analyzer, and disabling any part of it should 1940 // only be done under exceptional circumstances, such as frequent false 1941 // positives. If this is the case, we can reasonably believe that there are 1942 // serious faults in our understanding of the source code, and even if we 1943 // don't emit an warning, we should terminate further analysis with a sink 1944 // node. 1945 1946 // Nonlocs can't be freed, of course. 1947 // Non-region locations (labels and fixed addresses) also shouldn't be freed. 1948 if (!R) { 1949 // Exception: 1950 // If the macro ZERO_SIZE_PTR is defined, this could be a kernel source 1951 // code. In that case, the ZERO_SIZE_PTR defines a special value used for a 1952 // zero-sized memory block which is allowed to be freed, despite not being a 1953 // null pointer. 1954 if (Family != AF_Malloc || !isArgZERO_SIZE_PTR(State, C, ArgVal)) 1955 HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1956 Family); 1957 return nullptr; 1958 } 1959 1960 R = R->StripCasts(); 1961 1962 // Blocks might show up as heap data, but should not be free()d 1963 if (isa<BlockDataRegion>(R)) { 1964 HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1965 Family); 1966 return nullptr; 1967 } 1968 1969 const MemSpaceRegion *MS = R->getMemorySpace(); 1970 1971 // Parameters, locals, statics, globals, and memory returned by 1972 // __builtin_alloca() shouldn't be freed. 1973 if (!isa<UnknownSpaceRegion, HeapSpaceRegion>(MS)) { 1974 // FIXME: at the time this code was written, malloc() regions were 1975 // represented by conjured symbols, which are all in UnknownSpaceRegion. 1976 // This means that there isn't actually anything from HeapSpaceRegion 1977 // that should be freed, even though we allow it here. 1978 // Of course, free() can work on memory allocated outside the current 1979 // function, so UnknownSpaceRegion is always a possibility. 1980 // False negatives are better than false positives. 1981 1982 if (isa<AllocaRegion>(R)) 1983 HandleFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1984 else 1985 HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1986 Family); 1987 1988 return nullptr; 1989 } 1990 1991 const SymbolicRegion *SrBase = dyn_cast<SymbolicRegion>(R->getBaseRegion()); 1992 // Various cases could lead to non-symbol values here. 1993 // For now, ignore them. 1994 if (!SrBase) 1995 return nullptr; 1996 1997 SymbolRef SymBase = SrBase->getSymbol(); 1998 const RefState *RsBase = State->get<RegionState>(SymBase); 1999 SymbolRef PreviousRetStatusSymbol = nullptr; 2000 2001 IsKnownToBeAllocated = 2002 RsBase && (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero()); 2003 2004 if (RsBase) { 2005 2006 // Memory returned by alloca() shouldn't be freed. 2007 if (RsBase->getAllocationFamily() == AF_Alloca) { 2008 HandleFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 2009 return nullptr; 2010 } 2011 2012 // Check for double free first. 2013 if ((RsBase->isReleased() || RsBase->isRelinquished()) && 2014 !didPreviousFreeFail(State, SymBase, PreviousRetStatusSymbol)) { 2015 HandleDoubleFree(C, ParentExpr->getSourceRange(), RsBase->isReleased(), 2016 SymBase, PreviousRetStatusSymbol); 2017 return nullptr; 2018 2019 // If the pointer is allocated or escaped, but we are now trying to free it, 2020 // check that the call to free is proper. 2021 } else if (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero() || 2022 RsBase->isEscaped()) { 2023 2024 // Check if an expected deallocation function matches the real one. 2025 bool DeallocMatchesAlloc = RsBase->getAllocationFamily() == Family; 2026 if (!DeallocMatchesAlloc) { 2027 HandleMismatchedDealloc(C, ArgExpr->getSourceRange(), ParentExpr, 2028 RsBase, SymBase, Hold); 2029 return nullptr; 2030 } 2031 2032 // Check if the memory location being freed is the actual location 2033 // allocated, or an offset. 2034 RegionOffset Offset = R->getAsOffset(); 2035 if (Offset.isValid() && 2036 !Offset.hasSymbolicOffset() && 2037 Offset.getOffset() != 0) { 2038 const Expr *AllocExpr = cast<Expr>(RsBase->getStmt()); 2039 HandleOffsetFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 2040 Family, AllocExpr); 2041 return nullptr; 2042 } 2043 } 2044 } 2045 2046 if (SymBase->getType()->isFunctionPointerType()) { 2047 HandleFunctionPtrFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 2048 Family); 2049 return nullptr; 2050 } 2051 2052 // Clean out the info on previous call to free return info. 2053 State = State->remove<FreeReturnValue>(SymBase); 2054 2055 // Keep track of the return value. If it is NULL, we will know that free 2056 // failed. 2057 if (ReturnsNullOnFailure) { 2058 SVal RetVal = C.getSVal(ParentExpr); 2059 SymbolRef RetStatusSymbol = RetVal.getAsSymbol(); 2060 if (RetStatusSymbol) { 2061 C.getSymbolManager().addSymbolDependency(SymBase, RetStatusSymbol); 2062 State = State->set<FreeReturnValue>(SymBase, RetStatusSymbol); 2063 } 2064 } 2065 2066 // If we don't know anything about this symbol, a free on it may be totally 2067 // valid. If this is the case, lets assume that the allocation family of the 2068 // freeing function is the same as the symbols allocation family, and go with 2069 // that. 2070 assert(!RsBase || (RsBase && RsBase->getAllocationFamily() == Family)); 2071 2072 // Normal free. 2073 if (Hold) 2074 return State->set<RegionState>(SymBase, 2075 RefState::getRelinquished(Family, 2076 ParentExpr)); 2077 2078 return State->set<RegionState>(SymBase, 2079 RefState::getReleased(Family, ParentExpr)); 2080 } 2081 2082 Optional<MallocChecker::CheckKind> 2083 MallocChecker::getCheckIfTracked(AllocationFamily Family, 2084 bool IsALeakCheck) const { 2085 switch (Family) { 2086 case AF_Malloc: 2087 case AF_Alloca: 2088 case AF_IfNameIndex: { 2089 if (ChecksEnabled[CK_MallocChecker]) 2090 return CK_MallocChecker; 2091 return None; 2092 } 2093 case AF_CXXNew: 2094 case AF_CXXNewArray: { 2095 if (IsALeakCheck) { 2096 if (ChecksEnabled[CK_NewDeleteLeaksChecker]) 2097 return CK_NewDeleteLeaksChecker; 2098 } 2099 else { 2100 if (ChecksEnabled[CK_NewDeleteChecker]) 2101 return CK_NewDeleteChecker; 2102 } 2103 return None; 2104 } 2105 case AF_InnerBuffer: { 2106 if (ChecksEnabled[CK_InnerPointerChecker]) 2107 return CK_InnerPointerChecker; 2108 return None; 2109 } 2110 case AF_None: { 2111 llvm_unreachable("no family"); 2112 } 2113 } 2114 llvm_unreachable("unhandled family"); 2115 } 2116 2117 Optional<MallocChecker::CheckKind> 2118 MallocChecker::getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 2119 bool IsALeakCheck) const { 2120 if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) 2121 return CK_MallocChecker; 2122 2123 const RefState *RS = C.getState()->get<RegionState>(Sym); 2124 assert(RS); 2125 return getCheckIfTracked(RS->getAllocationFamily(), IsALeakCheck); 2126 } 2127 2128 bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) { 2129 if (Optional<nonloc::ConcreteInt> IntVal = V.getAs<nonloc::ConcreteInt>()) 2130 os << "an integer (" << IntVal->getValue() << ")"; 2131 else if (Optional<loc::ConcreteInt> ConstAddr = V.getAs<loc::ConcreteInt>()) 2132 os << "a constant address (" << ConstAddr->getValue() << ")"; 2133 else if (Optional<loc::GotoLabel> Label = V.getAs<loc::GotoLabel>()) 2134 os << "the address of the label '" << Label->getLabel()->getName() << "'"; 2135 else 2136 return false; 2137 2138 return true; 2139 } 2140 2141 bool MallocChecker::SummarizeRegion(raw_ostream &os, 2142 const MemRegion *MR) { 2143 switch (MR->getKind()) { 2144 case MemRegion::FunctionCodeRegionKind: { 2145 const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl(); 2146 if (FD) 2147 os << "the address of the function '" << *FD << '\''; 2148 else 2149 os << "the address of a function"; 2150 return true; 2151 } 2152 case MemRegion::BlockCodeRegionKind: 2153 os << "block text"; 2154 return true; 2155 case MemRegion::BlockDataRegionKind: 2156 // FIXME: where the block came from? 2157 os << "a block"; 2158 return true; 2159 default: { 2160 const MemSpaceRegion *MS = MR->getMemorySpace(); 2161 2162 if (isa<StackLocalsSpaceRegion>(MS)) { 2163 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2164 const VarDecl *VD; 2165 if (VR) 2166 VD = VR->getDecl(); 2167 else 2168 VD = nullptr; 2169 2170 if (VD) 2171 os << "the address of the local variable '" << VD->getName() << "'"; 2172 else 2173 os << "the address of a local stack variable"; 2174 return true; 2175 } 2176 2177 if (isa<StackArgumentsSpaceRegion>(MS)) { 2178 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2179 const VarDecl *VD; 2180 if (VR) 2181 VD = VR->getDecl(); 2182 else 2183 VD = nullptr; 2184 2185 if (VD) 2186 os << "the address of the parameter '" << VD->getName() << "'"; 2187 else 2188 os << "the address of a parameter"; 2189 return true; 2190 } 2191 2192 if (isa<GlobalsSpaceRegion>(MS)) { 2193 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2194 const VarDecl *VD; 2195 if (VR) 2196 VD = VR->getDecl(); 2197 else 2198 VD = nullptr; 2199 2200 if (VD) { 2201 if (VD->isStaticLocal()) 2202 os << "the address of the static variable '" << VD->getName() << "'"; 2203 else 2204 os << "the address of the global variable '" << VD->getName() << "'"; 2205 } else 2206 os << "the address of a global variable"; 2207 return true; 2208 } 2209 2210 return false; 2211 } 2212 } 2213 } 2214 2215 void MallocChecker::HandleNonHeapDealloc(CheckerContext &C, SVal ArgVal, 2216 SourceRange Range, 2217 const Expr *DeallocExpr, 2218 AllocationFamily Family) const { 2219 2220 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2221 C.addSink(); 2222 return; 2223 } 2224 2225 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2226 if (!CheckKind.hasValue()) 2227 return; 2228 2229 if (ExplodedNode *N = C.generateErrorNode()) { 2230 if (!BT_BadFree[*CheckKind]) 2231 BT_BadFree[*CheckKind].reset(new BugType( 2232 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 2233 2234 SmallString<100> buf; 2235 llvm::raw_svector_ostream os(buf); 2236 2237 const MemRegion *MR = ArgVal.getAsRegion(); 2238 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 2239 MR = ER->getSuperRegion(); 2240 2241 os << "Argument to "; 2242 if (!printMemFnName(os, C, DeallocExpr)) 2243 os << "deallocator"; 2244 2245 os << " is "; 2246 bool Summarized = MR ? SummarizeRegion(os, MR) 2247 : SummarizeValue(os, ArgVal); 2248 if (Summarized) 2249 os << ", which is not memory allocated by "; 2250 else 2251 os << "not memory allocated by "; 2252 2253 printExpectedAllocName(os, Family); 2254 2255 auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind], 2256 os.str(), N); 2257 R->markInteresting(MR); 2258 R->addRange(Range); 2259 C.emitReport(std::move(R)); 2260 } 2261 } 2262 2263 void MallocChecker::HandleFreeAlloca(CheckerContext &C, SVal ArgVal, 2264 SourceRange Range) const { 2265 2266 Optional<MallocChecker::CheckKind> CheckKind; 2267 2268 if (ChecksEnabled[CK_MallocChecker]) 2269 CheckKind = CK_MallocChecker; 2270 else if (ChecksEnabled[CK_MismatchedDeallocatorChecker]) 2271 CheckKind = CK_MismatchedDeallocatorChecker; 2272 else { 2273 C.addSink(); 2274 return; 2275 } 2276 2277 if (ExplodedNode *N = C.generateErrorNode()) { 2278 if (!BT_FreeAlloca[*CheckKind]) 2279 BT_FreeAlloca[*CheckKind].reset(new BugType( 2280 CheckNames[*CheckKind], "Free alloca()", categories::MemoryError)); 2281 2282 auto R = std::make_unique<PathSensitiveBugReport>( 2283 *BT_FreeAlloca[*CheckKind], 2284 "Memory allocated by alloca() should not be deallocated", N); 2285 R->markInteresting(ArgVal.getAsRegion()); 2286 R->addRange(Range); 2287 C.emitReport(std::move(R)); 2288 } 2289 } 2290 2291 void MallocChecker::HandleMismatchedDealloc(CheckerContext &C, 2292 SourceRange Range, 2293 const Expr *DeallocExpr, 2294 const RefState *RS, SymbolRef Sym, 2295 bool OwnershipTransferred) const { 2296 2297 if (!ChecksEnabled[CK_MismatchedDeallocatorChecker]) { 2298 C.addSink(); 2299 return; 2300 } 2301 2302 if (ExplodedNode *N = C.generateErrorNode()) { 2303 if (!BT_MismatchedDealloc) 2304 BT_MismatchedDealloc.reset( 2305 new BugType(CheckNames[CK_MismatchedDeallocatorChecker], 2306 "Bad deallocator", categories::MemoryError)); 2307 2308 SmallString<100> buf; 2309 llvm::raw_svector_ostream os(buf); 2310 2311 const Expr *AllocExpr = cast<Expr>(RS->getStmt()); 2312 SmallString<20> AllocBuf; 2313 llvm::raw_svector_ostream AllocOs(AllocBuf); 2314 SmallString<20> DeallocBuf; 2315 llvm::raw_svector_ostream DeallocOs(DeallocBuf); 2316 2317 if (OwnershipTransferred) { 2318 if (printMemFnName(DeallocOs, C, DeallocExpr)) 2319 os << DeallocOs.str() << " cannot"; 2320 else 2321 os << "Cannot"; 2322 2323 os << " take ownership of memory"; 2324 2325 if (printMemFnName(AllocOs, C, AllocExpr)) 2326 os << " allocated by " << AllocOs.str(); 2327 } else { 2328 os << "Memory"; 2329 if (printMemFnName(AllocOs, C, AllocExpr)) 2330 os << " allocated by " << AllocOs.str(); 2331 2332 os << " should be deallocated by "; 2333 printExpectedDeallocName(os, RS->getAllocationFamily()); 2334 2335 if (printMemFnName(DeallocOs, C, DeallocExpr)) 2336 os << ", not " << DeallocOs.str(); 2337 } 2338 2339 auto R = std::make_unique<PathSensitiveBugReport>(*BT_MismatchedDealloc, 2340 os.str(), N); 2341 R->markInteresting(Sym); 2342 R->addRange(Range); 2343 R->addVisitor<MallocBugVisitor>(Sym); 2344 C.emitReport(std::move(R)); 2345 } 2346 } 2347 2348 void MallocChecker::HandleOffsetFree(CheckerContext &C, SVal ArgVal, 2349 SourceRange Range, const Expr *DeallocExpr, 2350 AllocationFamily Family, 2351 const Expr *AllocExpr) const { 2352 2353 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2354 C.addSink(); 2355 return; 2356 } 2357 2358 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2359 if (!CheckKind.hasValue()) 2360 return; 2361 2362 ExplodedNode *N = C.generateErrorNode(); 2363 if (!N) 2364 return; 2365 2366 if (!BT_OffsetFree[*CheckKind]) 2367 BT_OffsetFree[*CheckKind].reset(new BugType( 2368 CheckNames[*CheckKind], "Offset free", categories::MemoryError)); 2369 2370 SmallString<100> buf; 2371 llvm::raw_svector_ostream os(buf); 2372 SmallString<20> AllocNameBuf; 2373 llvm::raw_svector_ostream AllocNameOs(AllocNameBuf); 2374 2375 const MemRegion *MR = ArgVal.getAsRegion(); 2376 assert(MR && "Only MemRegion based symbols can have offset free errors"); 2377 2378 RegionOffset Offset = MR->getAsOffset(); 2379 assert((Offset.isValid() && 2380 !Offset.hasSymbolicOffset() && 2381 Offset.getOffset() != 0) && 2382 "Only symbols with a valid offset can have offset free errors"); 2383 2384 int offsetBytes = Offset.getOffset() / C.getASTContext().getCharWidth(); 2385 2386 os << "Argument to "; 2387 if (!printMemFnName(os, C, DeallocExpr)) 2388 os << "deallocator"; 2389 os << " is offset by " 2390 << offsetBytes 2391 << " " 2392 << ((abs(offsetBytes) > 1) ? "bytes" : "byte") 2393 << " from the start of "; 2394 if (AllocExpr && printMemFnName(AllocNameOs, C, AllocExpr)) 2395 os << "memory allocated by " << AllocNameOs.str(); 2396 else 2397 os << "allocated memory"; 2398 2399 auto R = std::make_unique<PathSensitiveBugReport>(*BT_OffsetFree[*CheckKind], 2400 os.str(), N); 2401 R->markInteresting(MR->getBaseRegion()); 2402 R->addRange(Range); 2403 C.emitReport(std::move(R)); 2404 } 2405 2406 void MallocChecker::HandleUseAfterFree(CheckerContext &C, SourceRange Range, 2407 SymbolRef Sym) const { 2408 2409 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker] && 2410 !ChecksEnabled[CK_InnerPointerChecker]) { 2411 C.addSink(); 2412 return; 2413 } 2414 2415 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2416 if (!CheckKind.hasValue()) 2417 return; 2418 2419 if (ExplodedNode *N = C.generateErrorNode()) { 2420 if (!BT_UseFree[*CheckKind]) 2421 BT_UseFree[*CheckKind].reset(new BugType( 2422 CheckNames[*CheckKind], "Use-after-free", categories::MemoryError)); 2423 2424 AllocationFamily AF = 2425 C.getState()->get<RegionState>(Sym)->getAllocationFamily(); 2426 2427 auto R = std::make_unique<PathSensitiveBugReport>( 2428 *BT_UseFree[*CheckKind], 2429 AF == AF_InnerBuffer 2430 ? "Inner pointer of container used after re/deallocation" 2431 : "Use of memory after it is freed", 2432 N); 2433 2434 R->markInteresting(Sym); 2435 R->addRange(Range); 2436 R->addVisitor<MallocBugVisitor>(Sym); 2437 2438 if (AF == AF_InnerBuffer) 2439 R->addVisitor(allocation_state::getInnerPointerBRVisitor(Sym)); 2440 2441 C.emitReport(std::move(R)); 2442 } 2443 } 2444 2445 void MallocChecker::HandleDoubleFree(CheckerContext &C, SourceRange Range, 2446 bool Released, SymbolRef Sym, 2447 SymbolRef PrevSym) const { 2448 2449 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2450 C.addSink(); 2451 return; 2452 } 2453 2454 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2455 if (!CheckKind.hasValue()) 2456 return; 2457 2458 if (ExplodedNode *N = C.generateErrorNode()) { 2459 if (!BT_DoubleFree[*CheckKind]) 2460 BT_DoubleFree[*CheckKind].reset(new BugType( 2461 CheckNames[*CheckKind], "Double free", categories::MemoryError)); 2462 2463 auto R = std::make_unique<PathSensitiveBugReport>( 2464 *BT_DoubleFree[*CheckKind], 2465 (Released ? "Attempt to free released memory" 2466 : "Attempt to free non-owned memory"), 2467 N); 2468 R->addRange(Range); 2469 R->markInteresting(Sym); 2470 if (PrevSym) 2471 R->markInteresting(PrevSym); 2472 R->addVisitor<MallocBugVisitor>(Sym); 2473 C.emitReport(std::move(R)); 2474 } 2475 } 2476 2477 void MallocChecker::HandleDoubleDelete(CheckerContext &C, SymbolRef Sym) const { 2478 2479 if (!ChecksEnabled[CK_NewDeleteChecker]) { 2480 C.addSink(); 2481 return; 2482 } 2483 2484 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2485 if (!CheckKind.hasValue()) 2486 return; 2487 2488 if (ExplodedNode *N = C.generateErrorNode()) { 2489 if (!BT_DoubleDelete) 2490 BT_DoubleDelete.reset(new BugType(CheckNames[CK_NewDeleteChecker], 2491 "Double delete", 2492 categories::MemoryError)); 2493 2494 auto R = std::make_unique<PathSensitiveBugReport>( 2495 *BT_DoubleDelete, "Attempt to delete released memory", N); 2496 2497 R->markInteresting(Sym); 2498 R->addVisitor<MallocBugVisitor>(Sym); 2499 C.emitReport(std::move(R)); 2500 } 2501 } 2502 2503 void MallocChecker::HandleUseZeroAlloc(CheckerContext &C, SourceRange Range, 2504 SymbolRef Sym) const { 2505 2506 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2507 C.addSink(); 2508 return; 2509 } 2510 2511 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2512 2513 if (!CheckKind.hasValue()) 2514 return; 2515 2516 if (ExplodedNode *N = C.generateErrorNode()) { 2517 if (!BT_UseZerroAllocated[*CheckKind]) 2518 BT_UseZerroAllocated[*CheckKind].reset( 2519 new BugType(CheckNames[*CheckKind], "Use of zero allocated", 2520 categories::MemoryError)); 2521 2522 auto R = std::make_unique<PathSensitiveBugReport>( 2523 *BT_UseZerroAllocated[*CheckKind], 2524 "Use of memory allocated with size zero", N); 2525 2526 R->addRange(Range); 2527 if (Sym) { 2528 R->markInteresting(Sym); 2529 R->addVisitor<MallocBugVisitor>(Sym); 2530 } 2531 C.emitReport(std::move(R)); 2532 } 2533 } 2534 2535 void MallocChecker::HandleFunctionPtrFree(CheckerContext &C, SVal ArgVal, 2536 SourceRange Range, 2537 const Expr *FreeExpr, 2538 AllocationFamily Family) const { 2539 if (!ChecksEnabled[CK_MallocChecker]) { 2540 C.addSink(); 2541 return; 2542 } 2543 2544 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2545 if (!CheckKind.hasValue()) 2546 return; 2547 2548 if (ExplodedNode *N = C.generateErrorNode()) { 2549 if (!BT_BadFree[*CheckKind]) 2550 BT_BadFree[*CheckKind].reset(new BugType( 2551 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 2552 2553 SmallString<100> Buf; 2554 llvm::raw_svector_ostream Os(Buf); 2555 2556 const MemRegion *MR = ArgVal.getAsRegion(); 2557 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 2558 MR = ER->getSuperRegion(); 2559 2560 Os << "Argument to "; 2561 if (!printMemFnName(Os, C, FreeExpr)) 2562 Os << "deallocator"; 2563 2564 Os << " is a function pointer"; 2565 2566 auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind], 2567 Os.str(), N); 2568 R->markInteresting(MR); 2569 R->addRange(Range); 2570 C.emitReport(std::move(R)); 2571 } 2572 } 2573 2574 ProgramStateRef 2575 MallocChecker::ReallocMemAux(CheckerContext &C, const CallEvent &Call, 2576 bool ShouldFreeOnFail, ProgramStateRef State, 2577 AllocationFamily Family, bool SuffixWithN) const { 2578 if (!State) 2579 return nullptr; 2580 2581 const CallExpr *CE = cast<CallExpr>(Call.getOriginExpr()); 2582 2583 if (SuffixWithN && CE->getNumArgs() < 3) 2584 return nullptr; 2585 else if (CE->getNumArgs() < 2) 2586 return nullptr; 2587 2588 const Expr *arg0Expr = CE->getArg(0); 2589 SVal Arg0Val = C.getSVal(arg0Expr); 2590 if (!Arg0Val.getAs<DefinedOrUnknownSVal>()) 2591 return nullptr; 2592 DefinedOrUnknownSVal arg0Val = Arg0Val.castAs<DefinedOrUnknownSVal>(); 2593 2594 SValBuilder &svalBuilder = C.getSValBuilder(); 2595 2596 DefinedOrUnknownSVal PtrEQ = svalBuilder.evalEQ( 2597 State, arg0Val, svalBuilder.makeNullWithType(arg0Expr->getType())); 2598 2599 // Get the size argument. 2600 const Expr *Arg1 = CE->getArg(1); 2601 2602 // Get the value of the size argument. 2603 SVal TotalSize = C.getSVal(Arg1); 2604 if (SuffixWithN) 2605 TotalSize = evalMulForBufferSize(C, Arg1, CE->getArg(2)); 2606 if (!TotalSize.getAs<DefinedOrUnknownSVal>()) 2607 return nullptr; 2608 2609 // Compare the size argument to 0. 2610 DefinedOrUnknownSVal SizeZero = 2611 svalBuilder.evalEQ(State, TotalSize.castAs<DefinedOrUnknownSVal>(), 2612 svalBuilder.makeIntValWithWidth( 2613 svalBuilder.getContext().getSizeType(), 0)); 2614 2615 ProgramStateRef StatePtrIsNull, StatePtrNotNull; 2616 std::tie(StatePtrIsNull, StatePtrNotNull) = State->assume(PtrEQ); 2617 ProgramStateRef StateSizeIsZero, StateSizeNotZero; 2618 std::tie(StateSizeIsZero, StateSizeNotZero) = State->assume(SizeZero); 2619 // We only assume exceptional states if they are definitely true; if the 2620 // state is under-constrained, assume regular realloc behavior. 2621 bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull; 2622 bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero; 2623 2624 // If the ptr is NULL and the size is not 0, the call is equivalent to 2625 // malloc(size). 2626 if (PrtIsNull && !SizeIsZero) { 2627 ProgramStateRef stateMalloc = MallocMemAux( 2628 C, Call, TotalSize, UndefinedVal(), StatePtrIsNull, Family); 2629 return stateMalloc; 2630 } 2631 2632 if (PrtIsNull && SizeIsZero) 2633 return State; 2634 2635 assert(!PrtIsNull); 2636 2637 bool IsKnownToBeAllocated = false; 2638 2639 // If the size is 0, free the memory. 2640 if (SizeIsZero) 2641 // The semantics of the return value are: 2642 // If size was equal to 0, either NULL or a pointer suitable to be passed 2643 // to free() is returned. We just free the input pointer and do not add 2644 // any constrains on the output pointer. 2645 if (ProgramStateRef stateFree = FreeMemAux( 2646 C, Call, StateSizeIsZero, 0, false, IsKnownToBeAllocated, Family)) 2647 return stateFree; 2648 2649 // Default behavior. 2650 if (ProgramStateRef stateFree = 2651 FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocated, Family)) { 2652 2653 ProgramStateRef stateRealloc = 2654 MallocMemAux(C, Call, TotalSize, UnknownVal(), stateFree, Family); 2655 if (!stateRealloc) 2656 return nullptr; 2657 2658 OwnershipAfterReallocKind Kind = OAR_ToBeFreedAfterFailure; 2659 if (ShouldFreeOnFail) 2660 Kind = OAR_FreeOnFailure; 2661 else if (!IsKnownToBeAllocated) 2662 Kind = OAR_DoNotTrackAfterFailure; 2663 2664 // Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size). 2665 SymbolRef FromPtr = arg0Val.getLocSymbolInBase(); 2666 SVal RetVal = C.getSVal(CE); 2667 SymbolRef ToPtr = RetVal.getAsSymbol(); 2668 assert(FromPtr && ToPtr && 2669 "By this point, FreeMemAux and MallocMemAux should have checked " 2670 "whether the argument or the return value is symbolic!"); 2671 2672 // Record the info about the reallocated symbol so that we could properly 2673 // process failed reallocation. 2674 stateRealloc = stateRealloc->set<ReallocPairs>(ToPtr, 2675 ReallocPair(FromPtr, Kind)); 2676 // The reallocated symbol should stay alive for as long as the new symbol. 2677 C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr); 2678 return stateRealloc; 2679 } 2680 return nullptr; 2681 } 2682 2683 ProgramStateRef MallocChecker::CallocMem(CheckerContext &C, 2684 const CallEvent &Call, 2685 ProgramStateRef State) { 2686 if (!State) 2687 return nullptr; 2688 2689 if (Call.getNumArgs() < 2) 2690 return nullptr; 2691 2692 SValBuilder &svalBuilder = C.getSValBuilder(); 2693 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 2694 SVal TotalSize = 2695 evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1)); 2696 2697 return MallocMemAux(C, Call, TotalSize, zeroVal, State, AF_Malloc); 2698 } 2699 2700 MallocChecker::LeakInfo MallocChecker::getAllocationSite(const ExplodedNode *N, 2701 SymbolRef Sym, 2702 CheckerContext &C) { 2703 const LocationContext *LeakContext = N->getLocationContext(); 2704 // Walk the ExplodedGraph backwards and find the first node that referred to 2705 // the tracked symbol. 2706 const ExplodedNode *AllocNode = N; 2707 const MemRegion *ReferenceRegion = nullptr; 2708 2709 while (N) { 2710 ProgramStateRef State = N->getState(); 2711 if (!State->get<RegionState>(Sym)) 2712 break; 2713 2714 // Find the most recent expression bound to the symbol in the current 2715 // context. 2716 if (!ReferenceRegion) { 2717 if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) { 2718 SVal Val = State->getSVal(MR); 2719 if (Val.getAsLocSymbol() == Sym) { 2720 const VarRegion *VR = MR->getBaseRegion()->getAs<VarRegion>(); 2721 // Do not show local variables belonging to a function other than 2722 // where the error is reported. 2723 if (!VR || (VR->getStackFrame() == LeakContext->getStackFrame())) 2724 ReferenceRegion = MR; 2725 } 2726 } 2727 } 2728 2729 // Allocation node, is the last node in the current or parent context in 2730 // which the symbol was tracked. 2731 const LocationContext *NContext = N->getLocationContext(); 2732 if (NContext == LeakContext || 2733 NContext->isParentOf(LeakContext)) 2734 AllocNode = N; 2735 N = N->pred_empty() ? nullptr : *(N->pred_begin()); 2736 } 2737 2738 return LeakInfo(AllocNode, ReferenceRegion); 2739 } 2740 2741 void MallocChecker::HandleLeak(SymbolRef Sym, ExplodedNode *N, 2742 CheckerContext &C) const { 2743 2744 if (!ChecksEnabled[CK_MallocChecker] && 2745 !ChecksEnabled[CK_NewDeleteLeaksChecker]) 2746 return; 2747 2748 const RefState *RS = C.getState()->get<RegionState>(Sym); 2749 assert(RS && "cannot leak an untracked symbol"); 2750 AllocationFamily Family = RS->getAllocationFamily(); 2751 2752 if (Family == AF_Alloca) 2753 return; 2754 2755 Optional<MallocChecker::CheckKind> 2756 CheckKind = getCheckIfTracked(Family, true); 2757 2758 if (!CheckKind.hasValue()) 2759 return; 2760 2761 assert(N); 2762 if (!BT_Leak[*CheckKind]) { 2763 // Leaks should not be reported if they are post-dominated by a sink: 2764 // (1) Sinks are higher importance bugs. 2765 // (2) NoReturnFunctionChecker uses sink nodes to represent paths ending 2766 // with __noreturn functions such as assert() or exit(). We choose not 2767 // to report leaks on such paths. 2768 BT_Leak[*CheckKind].reset(new BugType(CheckNames[*CheckKind], "Memory leak", 2769 categories::MemoryError, 2770 /*SuppressOnSink=*/true)); 2771 } 2772 2773 // Most bug reports are cached at the location where they occurred. 2774 // With leaks, we want to unique them by the location where they were 2775 // allocated, and only report a single path. 2776 PathDiagnosticLocation LocUsedForUniqueing; 2777 const ExplodedNode *AllocNode = nullptr; 2778 const MemRegion *Region = nullptr; 2779 std::tie(AllocNode, Region) = getAllocationSite(N, Sym, C); 2780 2781 const Stmt *AllocationStmt = AllocNode->getStmtForDiagnostics(); 2782 if (AllocationStmt) 2783 LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocationStmt, 2784 C.getSourceManager(), 2785 AllocNode->getLocationContext()); 2786 2787 SmallString<200> buf; 2788 llvm::raw_svector_ostream os(buf); 2789 if (Region && Region->canPrintPretty()) { 2790 os << "Potential leak of memory pointed to by "; 2791 Region->printPretty(os); 2792 } else { 2793 os << "Potential memory leak"; 2794 } 2795 2796 auto R = std::make_unique<PathSensitiveBugReport>( 2797 *BT_Leak[*CheckKind], os.str(), N, LocUsedForUniqueing, 2798 AllocNode->getLocationContext()->getDecl()); 2799 R->markInteresting(Sym); 2800 R->addVisitor<MallocBugVisitor>(Sym, true); 2801 if (ShouldRegisterNoOwnershipChangeVisitor) 2802 R->addVisitor<NoOwnershipChangeVisitor>(Sym, this); 2803 C.emitReport(std::move(R)); 2804 } 2805 2806 void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper, 2807 CheckerContext &C) const 2808 { 2809 ProgramStateRef state = C.getState(); 2810 RegionStateTy OldRS = state->get<RegionState>(); 2811 RegionStateTy::Factory &F = state->get_context<RegionState>(); 2812 2813 RegionStateTy RS = OldRS; 2814 SmallVector<SymbolRef, 2> Errors; 2815 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2816 if (SymReaper.isDead(I->first)) { 2817 if (I->second.isAllocated() || I->second.isAllocatedOfSizeZero()) 2818 Errors.push_back(I->first); 2819 // Remove the dead symbol from the map. 2820 RS = F.remove(RS, I->first); 2821 } 2822 } 2823 2824 if (RS == OldRS) { 2825 // We shouldn't have touched other maps yet. 2826 assert(state->get<ReallocPairs>() == 2827 C.getState()->get<ReallocPairs>()); 2828 assert(state->get<FreeReturnValue>() == 2829 C.getState()->get<FreeReturnValue>()); 2830 return; 2831 } 2832 2833 // Cleanup the Realloc Pairs Map. 2834 ReallocPairsTy RP = state->get<ReallocPairs>(); 2835 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 2836 if (SymReaper.isDead(I->first) || 2837 SymReaper.isDead(I->second.ReallocatedSym)) { 2838 state = state->remove<ReallocPairs>(I->first); 2839 } 2840 } 2841 2842 // Cleanup the FreeReturnValue Map. 2843 FreeReturnValueTy FR = state->get<FreeReturnValue>(); 2844 for (FreeReturnValueTy::iterator I = FR.begin(), E = FR.end(); I != E; ++I) { 2845 if (SymReaper.isDead(I->first) || 2846 SymReaper.isDead(I->second)) { 2847 state = state->remove<FreeReturnValue>(I->first); 2848 } 2849 } 2850 2851 // Generate leak node. 2852 ExplodedNode *N = C.getPredecessor(); 2853 if (!Errors.empty()) { 2854 static CheckerProgramPointTag Tag("MallocChecker", "DeadSymbolsLeak"); 2855 N = C.generateNonFatalErrorNode(C.getState(), &Tag); 2856 if (N) { 2857 for (SmallVectorImpl<SymbolRef>::iterator 2858 I = Errors.begin(), E = Errors.end(); I != E; ++I) { 2859 HandleLeak(*I, N, C); 2860 } 2861 } 2862 } 2863 2864 C.addTransition(state->set<RegionState>(RS), N); 2865 } 2866 2867 void MallocChecker::checkPreCall(const CallEvent &Call, 2868 CheckerContext &C) const { 2869 2870 if (const auto *DC = dyn_cast<CXXDeallocatorCall>(&Call)) { 2871 const CXXDeleteExpr *DE = DC->getOriginExpr(); 2872 2873 if (!ChecksEnabled[CK_NewDeleteChecker]) 2874 if (SymbolRef Sym = C.getSVal(DE->getArgument()).getAsSymbol()) 2875 checkUseAfterFree(Sym, C, DE->getArgument()); 2876 2877 if (!isStandardNewDelete(DC->getDecl())) 2878 return; 2879 2880 ProgramStateRef State = C.getState(); 2881 bool IsKnownToBeAllocated; 2882 State = FreeMemAux(C, DE->getArgument(), Call, State, 2883 /*Hold*/ false, IsKnownToBeAllocated, 2884 (DE->isArrayForm() ? AF_CXXNewArray : AF_CXXNew)); 2885 2886 C.addTransition(State); 2887 return; 2888 } 2889 2890 if (const auto *DC = dyn_cast<CXXDestructorCall>(&Call)) { 2891 SymbolRef Sym = DC->getCXXThisVal().getAsSymbol(); 2892 if (!Sym || checkDoubleDelete(Sym, C)) 2893 return; 2894 } 2895 2896 // We will check for double free in the post visit. 2897 if (const AnyFunctionCall *FC = dyn_cast<AnyFunctionCall>(&Call)) { 2898 const FunctionDecl *FD = FC->getDecl(); 2899 if (!FD) 2900 return; 2901 2902 if (ChecksEnabled[CK_MallocChecker] && isFreeingCall(Call)) 2903 return; 2904 } 2905 2906 // Check if the callee of a method is deleted. 2907 if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(&Call)) { 2908 SymbolRef Sym = CC->getCXXThisVal().getAsSymbol(); 2909 if (!Sym || checkUseAfterFree(Sym, C, CC->getCXXThisExpr())) 2910 return; 2911 } 2912 2913 // Check arguments for being used after free. 2914 for (unsigned I = 0, E = Call.getNumArgs(); I != E; ++I) { 2915 SVal ArgSVal = Call.getArgSVal(I); 2916 if (ArgSVal.getAs<Loc>()) { 2917 SymbolRef Sym = ArgSVal.getAsSymbol(); 2918 if (!Sym) 2919 continue; 2920 if (checkUseAfterFree(Sym, C, Call.getArgExpr(I))) 2921 return; 2922 } 2923 } 2924 } 2925 2926 void MallocChecker::checkPreStmt(const ReturnStmt *S, 2927 CheckerContext &C) const { 2928 checkEscapeOnReturn(S, C); 2929 } 2930 2931 // In the CFG, automatic destructors come after the return statement. 2932 // This callback checks for returning memory that is freed by automatic 2933 // destructors, as those cannot be reached in checkPreStmt(). 2934 void MallocChecker::checkEndFunction(const ReturnStmt *S, 2935 CheckerContext &C) const { 2936 checkEscapeOnReturn(S, C); 2937 } 2938 2939 void MallocChecker::checkEscapeOnReturn(const ReturnStmt *S, 2940 CheckerContext &C) const { 2941 if (!S) 2942 return; 2943 2944 const Expr *E = S->getRetValue(); 2945 if (!E) 2946 return; 2947 2948 // Check if we are returning a symbol. 2949 ProgramStateRef State = C.getState(); 2950 SVal RetVal = C.getSVal(E); 2951 SymbolRef Sym = RetVal.getAsSymbol(); 2952 if (!Sym) 2953 // If we are returning a field of the allocated struct or an array element, 2954 // the callee could still free the memory. 2955 // TODO: This logic should be a part of generic symbol escape callback. 2956 if (const MemRegion *MR = RetVal.getAsRegion()) 2957 if (isa<FieldRegion, ElementRegion>(MR)) 2958 if (const SymbolicRegion *BMR = 2959 dyn_cast<SymbolicRegion>(MR->getBaseRegion())) 2960 Sym = BMR->getSymbol(); 2961 2962 // Check if we are returning freed memory. 2963 if (Sym) 2964 checkUseAfterFree(Sym, C, E); 2965 } 2966 2967 // TODO: Blocks should be either inlined or should call invalidate regions 2968 // upon invocation. After that's in place, special casing here will not be 2969 // needed. 2970 void MallocChecker::checkPostStmt(const BlockExpr *BE, 2971 CheckerContext &C) const { 2972 2973 // Scan the BlockDecRefExprs for any object the retain count checker 2974 // may be tracking. 2975 if (!BE->getBlockDecl()->hasCaptures()) 2976 return; 2977 2978 ProgramStateRef state = C.getState(); 2979 const BlockDataRegion *R = 2980 cast<BlockDataRegion>(C.getSVal(BE).getAsRegion()); 2981 2982 BlockDataRegion::referenced_vars_iterator I = R->referenced_vars_begin(), 2983 E = R->referenced_vars_end(); 2984 2985 if (I == E) 2986 return; 2987 2988 SmallVector<const MemRegion*, 10> Regions; 2989 const LocationContext *LC = C.getLocationContext(); 2990 MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager(); 2991 2992 for ( ; I != E; ++I) { 2993 const VarRegion *VR = I.getCapturedRegion(); 2994 if (VR->getSuperRegion() == R) { 2995 VR = MemMgr.getVarRegion(VR->getDecl(), LC); 2996 } 2997 Regions.push_back(VR); 2998 } 2999 3000 state = 3001 state->scanReachableSymbols<StopTrackingCallback>(Regions).getState(); 3002 C.addTransition(state); 3003 } 3004 3005 static bool isReleased(SymbolRef Sym, CheckerContext &C) { 3006 assert(Sym); 3007 const RefState *RS = C.getState()->get<RegionState>(Sym); 3008 return (RS && RS->isReleased()); 3009 } 3010 3011 bool MallocChecker::suppressDeallocationsInSuspiciousContexts( 3012 const CallEvent &Call, CheckerContext &C) const { 3013 if (Call.getNumArgs() == 0) 3014 return false; 3015 3016 StringRef FunctionStr = ""; 3017 if (const auto *FD = dyn_cast<FunctionDecl>(C.getStackFrame()->getDecl())) 3018 if (const Stmt *Body = FD->getBody()) 3019 if (Body->getBeginLoc().isValid()) 3020 FunctionStr = 3021 Lexer::getSourceText(CharSourceRange::getTokenRange( 3022 {FD->getBeginLoc(), Body->getBeginLoc()}), 3023 C.getSourceManager(), C.getLangOpts()); 3024 3025 // We do not model the Integer Set Library's retain-count based allocation. 3026 if (!FunctionStr.contains("__isl_")) 3027 return false; 3028 3029 ProgramStateRef State = C.getState(); 3030 3031 for (const Expr *Arg : cast<CallExpr>(Call.getOriginExpr())->arguments()) 3032 if (SymbolRef Sym = C.getSVal(Arg).getAsSymbol()) 3033 if (const RefState *RS = State->get<RegionState>(Sym)) 3034 State = State->set<RegionState>(Sym, RefState::getEscaped(RS)); 3035 3036 C.addTransition(State); 3037 return true; 3038 } 3039 3040 bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C, 3041 const Stmt *S) const { 3042 3043 if (isReleased(Sym, C)) { 3044 HandleUseAfterFree(C, S->getSourceRange(), Sym); 3045 return true; 3046 } 3047 3048 return false; 3049 } 3050 3051 void MallocChecker::checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 3052 const Stmt *S) const { 3053 assert(Sym); 3054 3055 if (const RefState *RS = C.getState()->get<RegionState>(Sym)) { 3056 if (RS->isAllocatedOfSizeZero()) 3057 HandleUseZeroAlloc(C, RS->getStmt()->getSourceRange(), Sym); 3058 } 3059 else if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) { 3060 HandleUseZeroAlloc(C, S->getSourceRange(), Sym); 3061 } 3062 } 3063 3064 bool MallocChecker::checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const { 3065 3066 if (isReleased(Sym, C)) { 3067 HandleDoubleDelete(C, Sym); 3068 return true; 3069 } 3070 return false; 3071 } 3072 3073 // Check if the location is a freed symbolic region. 3074 void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S, 3075 CheckerContext &C) const { 3076 SymbolRef Sym = l.getLocSymbolInBase(); 3077 if (Sym) { 3078 checkUseAfterFree(Sym, C, S); 3079 checkUseZeroAllocated(Sym, C, S); 3080 } 3081 } 3082 3083 // If a symbolic region is assumed to NULL (or another constant), stop tracking 3084 // it - assuming that allocation failed on this path. 3085 ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state, 3086 SVal Cond, 3087 bool Assumption) const { 3088 RegionStateTy RS = state->get<RegionState>(); 3089 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 3090 // If the symbol is assumed to be NULL, remove it from consideration. 3091 ConstraintManager &CMgr = state->getConstraintManager(); 3092 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 3093 if (AllocFailed.isConstrainedTrue()) 3094 state = state->remove<RegionState>(I.getKey()); 3095 } 3096 3097 // Realloc returns 0 when reallocation fails, which means that we should 3098 // restore the state of the pointer being reallocated. 3099 ReallocPairsTy RP = state->get<ReallocPairs>(); 3100 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 3101 // If the symbol is assumed to be NULL, remove it from consideration. 3102 ConstraintManager &CMgr = state->getConstraintManager(); 3103 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 3104 if (!AllocFailed.isConstrainedTrue()) 3105 continue; 3106 3107 SymbolRef ReallocSym = I.getData().ReallocatedSym; 3108 if (const RefState *RS = state->get<RegionState>(ReallocSym)) { 3109 if (RS->isReleased()) { 3110 switch (I.getData().Kind) { 3111 case OAR_ToBeFreedAfterFailure: 3112 state = state->set<RegionState>(ReallocSym, 3113 RefState::getAllocated(RS->getAllocationFamily(), RS->getStmt())); 3114 break; 3115 case OAR_DoNotTrackAfterFailure: 3116 state = state->remove<RegionState>(ReallocSym); 3117 break; 3118 default: 3119 assert(I.getData().Kind == OAR_FreeOnFailure); 3120 } 3121 } 3122 } 3123 state = state->remove<ReallocPairs>(I.getKey()); 3124 } 3125 3126 return state; 3127 } 3128 3129 bool MallocChecker::mayFreeAnyEscapedMemoryOrIsModeledExplicitly( 3130 const CallEvent *Call, 3131 ProgramStateRef State, 3132 SymbolRef &EscapingSymbol) const { 3133 assert(Call); 3134 EscapingSymbol = nullptr; 3135 3136 // For now, assume that any C++ or block call can free memory. 3137 // TODO: If we want to be more optimistic here, we'll need to make sure that 3138 // regions escape to C++ containers. They seem to do that even now, but for 3139 // mysterious reasons. 3140 if (!isa<SimpleFunctionCall, ObjCMethodCall>(Call)) 3141 return true; 3142 3143 // Check Objective-C messages by selector name. 3144 if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) { 3145 // If it's not a framework call, or if it takes a callback, assume it 3146 // can free memory. 3147 if (!Call->isInSystemHeader() || Call->argumentsMayEscape()) 3148 return true; 3149 3150 // If it's a method we know about, handle it explicitly post-call. 3151 // This should happen before the "freeWhenDone" check below. 3152 if (isKnownDeallocObjCMethodName(*Msg)) 3153 return false; 3154 3155 // If there's a "freeWhenDone" parameter, but the method isn't one we know 3156 // about, we can't be sure that the object will use free() to deallocate the 3157 // memory, so we can't model it explicitly. The best we can do is use it to 3158 // decide whether the pointer escapes. 3159 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(*Msg)) 3160 return *FreeWhenDone; 3161 3162 // If the first selector piece ends with "NoCopy", and there is no 3163 // "freeWhenDone" parameter set to zero, we know ownership is being 3164 // transferred. Again, though, we can't be sure that the object will use 3165 // free() to deallocate the memory, so we can't model it explicitly. 3166 StringRef FirstSlot = Msg->getSelector().getNameForSlot(0); 3167 if (FirstSlot.endswith("NoCopy")) 3168 return true; 3169 3170 // If the first selector starts with addPointer, insertPointer, 3171 // or replacePointer, assume we are dealing with NSPointerArray or similar. 3172 // This is similar to C++ containers (vector); we still might want to check 3173 // that the pointers get freed by following the container itself. 3174 if (FirstSlot.startswith("addPointer") || 3175 FirstSlot.startswith("insertPointer") || 3176 FirstSlot.startswith("replacePointer") || 3177 FirstSlot.equals("valueWithPointer")) { 3178 return true; 3179 } 3180 3181 // We should escape receiver on call to 'init'. This is especially relevant 3182 // to the receiver, as the corresponding symbol is usually not referenced 3183 // after the call. 3184 if (Msg->getMethodFamily() == OMF_init) { 3185 EscapingSymbol = Msg->getReceiverSVal().getAsSymbol(); 3186 return true; 3187 } 3188 3189 // Otherwise, assume that the method does not free memory. 3190 // Most framework methods do not free memory. 3191 return false; 3192 } 3193 3194 // At this point the only thing left to handle is straight function calls. 3195 const FunctionDecl *FD = cast<SimpleFunctionCall>(Call)->getDecl(); 3196 if (!FD) 3197 return true; 3198 3199 // If it's one of the allocation functions we can reason about, we model 3200 // its behavior explicitly. 3201 if (isMemCall(*Call)) 3202 return false; 3203 3204 // If it's not a system call, assume it frees memory. 3205 if (!Call->isInSystemHeader()) 3206 return true; 3207 3208 // White list the system functions whose arguments escape. 3209 const IdentifierInfo *II = FD->getIdentifier(); 3210 if (!II) 3211 return true; 3212 StringRef FName = II->getName(); 3213 3214 // White list the 'XXXNoCopy' CoreFoundation functions. 3215 // We specifically check these before 3216 if (FName.endswith("NoCopy")) { 3217 // Look for the deallocator argument. We know that the memory ownership 3218 // is not transferred only if the deallocator argument is 3219 // 'kCFAllocatorNull'. 3220 for (unsigned i = 1; i < Call->getNumArgs(); ++i) { 3221 const Expr *ArgE = Call->getArgExpr(i)->IgnoreParenCasts(); 3222 if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(ArgE)) { 3223 StringRef DeallocatorName = DE->getFoundDecl()->getName(); 3224 if (DeallocatorName == "kCFAllocatorNull") 3225 return false; 3226 } 3227 } 3228 return true; 3229 } 3230 3231 // Associating streams with malloced buffers. The pointer can escape if 3232 // 'closefn' is specified (and if that function does free memory), 3233 // but it will not if closefn is not specified. 3234 // Currently, we do not inspect the 'closefn' function (PR12101). 3235 if (FName == "funopen") 3236 if (Call->getNumArgs() >= 4 && Call->getArgSVal(4).isConstant(0)) 3237 return false; 3238 3239 // Do not warn on pointers passed to 'setbuf' when used with std streams, 3240 // these leaks might be intentional when setting the buffer for stdio. 3241 // http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer 3242 if (FName == "setbuf" || FName =="setbuffer" || 3243 FName == "setlinebuf" || FName == "setvbuf") { 3244 if (Call->getNumArgs() >= 1) { 3245 const Expr *ArgE = Call->getArgExpr(0)->IgnoreParenCasts(); 3246 if (const DeclRefExpr *ArgDRE = dyn_cast<DeclRefExpr>(ArgE)) 3247 if (const VarDecl *D = dyn_cast<VarDecl>(ArgDRE->getDecl())) 3248 if (D->getCanonicalDecl()->getName().contains("std")) 3249 return true; 3250 } 3251 } 3252 3253 // A bunch of other functions which either take ownership of a pointer or 3254 // wrap the result up in a struct or object, meaning it can be freed later. 3255 // (See RetainCountChecker.) Not all the parameters here are invalidated, 3256 // but the Malloc checker cannot differentiate between them. The right way 3257 // of doing this would be to implement a pointer escapes callback. 3258 if (FName == "CGBitmapContextCreate" || 3259 FName == "CGBitmapContextCreateWithData" || 3260 FName == "CVPixelBufferCreateWithBytes" || 3261 FName == "CVPixelBufferCreateWithPlanarBytes" || 3262 FName == "OSAtomicEnqueue") { 3263 return true; 3264 } 3265 3266 if (FName == "postEvent" && 3267 FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") { 3268 return true; 3269 } 3270 3271 if (FName == "connectImpl" && 3272 FD->getQualifiedNameAsString() == "QObject::connectImpl") { 3273 return true; 3274 } 3275 3276 // Handle cases where we know a buffer's /address/ can escape. 3277 // Note that the above checks handle some special cases where we know that 3278 // even though the address escapes, it's still our responsibility to free the 3279 // buffer. 3280 if (Call->argumentsMayEscape()) 3281 return true; 3282 3283 // Otherwise, assume that the function does not free memory. 3284 // Most system calls do not free the memory. 3285 return false; 3286 } 3287 3288 ProgramStateRef MallocChecker::checkPointerEscape(ProgramStateRef State, 3289 const InvalidatedSymbols &Escaped, 3290 const CallEvent *Call, 3291 PointerEscapeKind Kind) const { 3292 return checkPointerEscapeAux(State, Escaped, Call, Kind, 3293 /*IsConstPointerEscape*/ false); 3294 } 3295 3296 ProgramStateRef MallocChecker::checkConstPointerEscape(ProgramStateRef State, 3297 const InvalidatedSymbols &Escaped, 3298 const CallEvent *Call, 3299 PointerEscapeKind Kind) const { 3300 // If a const pointer escapes, it may not be freed(), but it could be deleted. 3301 return checkPointerEscapeAux(State, Escaped, Call, Kind, 3302 /*IsConstPointerEscape*/ true); 3303 } 3304 3305 static bool checkIfNewOrNewArrayFamily(const RefState *RS) { 3306 return (RS->getAllocationFamily() == AF_CXXNewArray || 3307 RS->getAllocationFamily() == AF_CXXNew); 3308 } 3309 3310 ProgramStateRef MallocChecker::checkPointerEscapeAux( 3311 ProgramStateRef State, const InvalidatedSymbols &Escaped, 3312 const CallEvent *Call, PointerEscapeKind Kind, 3313 bool IsConstPointerEscape) const { 3314 // If we know that the call does not free memory, or we want to process the 3315 // call later, keep tracking the top level arguments. 3316 SymbolRef EscapingSymbol = nullptr; 3317 if (Kind == PSK_DirectEscapeOnCall && 3318 !mayFreeAnyEscapedMemoryOrIsModeledExplicitly(Call, State, 3319 EscapingSymbol) && 3320 !EscapingSymbol) { 3321 return State; 3322 } 3323 3324 for (InvalidatedSymbols::const_iterator I = Escaped.begin(), 3325 E = Escaped.end(); 3326 I != E; ++I) { 3327 SymbolRef sym = *I; 3328 3329 if (EscapingSymbol && EscapingSymbol != sym) 3330 continue; 3331 3332 if (const RefState *RS = State->get<RegionState>(sym)) 3333 if (RS->isAllocated() || RS->isAllocatedOfSizeZero()) 3334 if (!IsConstPointerEscape || checkIfNewOrNewArrayFamily(RS)) 3335 State = State->set<RegionState>(sym, RefState::getEscaped(RS)); 3336 } 3337 return State; 3338 } 3339 3340 bool MallocChecker::isArgZERO_SIZE_PTR(ProgramStateRef State, CheckerContext &C, 3341 SVal ArgVal) const { 3342 if (!KernelZeroSizePtrValue) 3343 KernelZeroSizePtrValue = 3344 tryExpandAsInteger("ZERO_SIZE_PTR", C.getPreprocessor()); 3345 3346 const llvm::APSInt *ArgValKnown = 3347 C.getSValBuilder().getKnownValue(State, ArgVal); 3348 return ArgValKnown && *KernelZeroSizePtrValue && 3349 ArgValKnown->getSExtValue() == **KernelZeroSizePtrValue; 3350 } 3351 3352 static SymbolRef findFailedReallocSymbol(ProgramStateRef currState, 3353 ProgramStateRef prevState) { 3354 ReallocPairsTy currMap = currState->get<ReallocPairs>(); 3355 ReallocPairsTy prevMap = prevState->get<ReallocPairs>(); 3356 3357 for (const ReallocPairsTy::value_type &Pair : prevMap) { 3358 SymbolRef sym = Pair.first; 3359 if (!currMap.lookup(sym)) 3360 return sym; 3361 } 3362 3363 return nullptr; 3364 } 3365 3366 static bool isReferenceCountingPointerDestructor(const CXXDestructorDecl *DD) { 3367 if (const IdentifierInfo *II = DD->getParent()->getIdentifier()) { 3368 StringRef N = II->getName(); 3369 if (N.contains_insensitive("ptr") || N.contains_insensitive("pointer")) { 3370 if (N.contains_insensitive("ref") || N.contains_insensitive("cnt") || 3371 N.contains_insensitive("intrusive") || 3372 N.contains_insensitive("shared")) { 3373 return true; 3374 } 3375 } 3376 } 3377 return false; 3378 } 3379 3380 PathDiagnosticPieceRef MallocBugVisitor::VisitNode(const ExplodedNode *N, 3381 BugReporterContext &BRC, 3382 PathSensitiveBugReport &BR) { 3383 ProgramStateRef state = N->getState(); 3384 ProgramStateRef statePrev = N->getFirstPred()->getState(); 3385 3386 const RefState *RSCurr = state->get<RegionState>(Sym); 3387 const RefState *RSPrev = statePrev->get<RegionState>(Sym); 3388 3389 const Stmt *S = N->getStmtForDiagnostics(); 3390 // When dealing with containers, we sometimes want to give a note 3391 // even if the statement is missing. 3392 if (!S && (!RSCurr || RSCurr->getAllocationFamily() != AF_InnerBuffer)) 3393 return nullptr; 3394 3395 const LocationContext *CurrentLC = N->getLocationContext(); 3396 3397 // If we find an atomic fetch_add or fetch_sub within the destructor in which 3398 // the pointer was released (before the release), this is likely a destructor 3399 // of a shared pointer. 3400 // Because we don't model atomics, and also because we don't know that the 3401 // original reference count is positive, we should not report use-after-frees 3402 // on objects deleted in such destructors. This can probably be improved 3403 // through better shared pointer modeling. 3404 if (ReleaseDestructorLC) { 3405 if (const auto *AE = dyn_cast<AtomicExpr>(S)) { 3406 AtomicExpr::AtomicOp Op = AE->getOp(); 3407 if (Op == AtomicExpr::AO__c11_atomic_fetch_add || 3408 Op == AtomicExpr::AO__c11_atomic_fetch_sub) { 3409 if (ReleaseDestructorLC == CurrentLC || 3410 ReleaseDestructorLC->isParentOf(CurrentLC)) { 3411 BR.markInvalid(getTag(), S); 3412 } 3413 } 3414 } 3415 } 3416 3417 // FIXME: We will eventually need to handle non-statement-based events 3418 // (__attribute__((cleanup))). 3419 3420 // Find out if this is an interesting point and what is the kind. 3421 StringRef Msg; 3422 std::unique_ptr<StackHintGeneratorForSymbol> StackHint = nullptr; 3423 SmallString<256> Buf; 3424 llvm::raw_svector_ostream OS(Buf); 3425 3426 if (Mode == Normal) { 3427 if (isAllocated(RSCurr, RSPrev, S)) { 3428 Msg = "Memory is allocated"; 3429 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3430 Sym, "Returned allocated memory"); 3431 } else if (isReleased(RSCurr, RSPrev, S)) { 3432 const auto Family = RSCurr->getAllocationFamily(); 3433 switch (Family) { 3434 case AF_Alloca: 3435 case AF_Malloc: 3436 case AF_CXXNew: 3437 case AF_CXXNewArray: 3438 case AF_IfNameIndex: 3439 Msg = "Memory is released"; 3440 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3441 Sym, "Returning; memory was released"); 3442 break; 3443 case AF_InnerBuffer: { 3444 const MemRegion *ObjRegion = 3445 allocation_state::getContainerObjRegion(statePrev, Sym); 3446 const auto *TypedRegion = cast<TypedValueRegion>(ObjRegion); 3447 QualType ObjTy = TypedRegion->getValueType(); 3448 OS << "Inner buffer of '" << ObjTy << "' "; 3449 3450 if (N->getLocation().getKind() == ProgramPoint::PostImplicitCallKind) { 3451 OS << "deallocated by call to destructor"; 3452 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3453 Sym, "Returning; inner buffer was deallocated"); 3454 } else { 3455 OS << "reallocated by call to '"; 3456 const Stmt *S = RSCurr->getStmt(); 3457 if (const auto *MemCallE = dyn_cast<CXXMemberCallExpr>(S)) { 3458 OS << MemCallE->getMethodDecl()->getDeclName(); 3459 } else if (const auto *OpCallE = dyn_cast<CXXOperatorCallExpr>(S)) { 3460 OS << OpCallE->getDirectCallee()->getDeclName(); 3461 } else if (const auto *CallE = dyn_cast<CallExpr>(S)) { 3462 auto &CEMgr = BRC.getStateManager().getCallEventManager(); 3463 CallEventRef<> Call = CEMgr.getSimpleCall(CallE, state, CurrentLC); 3464 if (const auto *D = dyn_cast_or_null<NamedDecl>(Call->getDecl())) 3465 OS << D->getDeclName(); 3466 else 3467 OS << "unknown"; 3468 } 3469 OS << "'"; 3470 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3471 Sym, "Returning; inner buffer was reallocated"); 3472 } 3473 Msg = OS.str(); 3474 break; 3475 } 3476 case AF_None: 3477 llvm_unreachable("Unhandled allocation family!"); 3478 } 3479 3480 // See if we're releasing memory while inlining a destructor 3481 // (or one of its callees). This turns on various common 3482 // false positive suppressions. 3483 bool FoundAnyDestructor = false; 3484 for (const LocationContext *LC = CurrentLC; LC; LC = LC->getParent()) { 3485 if (const auto *DD = dyn_cast<CXXDestructorDecl>(LC->getDecl())) { 3486 if (isReferenceCountingPointerDestructor(DD)) { 3487 // This immediately looks like a reference-counting destructor. 3488 // We're bad at guessing the original reference count of the object, 3489 // so suppress the report for now. 3490 BR.markInvalid(getTag(), DD); 3491 } else if (!FoundAnyDestructor) { 3492 assert(!ReleaseDestructorLC && 3493 "There can be only one release point!"); 3494 // Suspect that it's a reference counting pointer destructor. 3495 // On one of the next nodes might find out that it has atomic 3496 // reference counting operations within it (see the code above), 3497 // and if so, we'd conclude that it likely is a reference counting 3498 // pointer destructor. 3499 ReleaseDestructorLC = LC->getStackFrame(); 3500 // It is unlikely that releasing memory is delegated to a destructor 3501 // inside a destructor of a shared pointer, because it's fairly hard 3502 // to pass the information that the pointer indeed needs to be 3503 // released into it. So we're only interested in the innermost 3504 // destructor. 3505 FoundAnyDestructor = true; 3506 } 3507 } 3508 } 3509 } else if (isRelinquished(RSCurr, RSPrev, S)) { 3510 Msg = "Memory ownership is transferred"; 3511 StackHint = std::make_unique<StackHintGeneratorForSymbol>(Sym, ""); 3512 } else if (hasReallocFailed(RSCurr, RSPrev, S)) { 3513 Mode = ReallocationFailed; 3514 Msg = "Reallocation failed"; 3515 StackHint = std::make_unique<StackHintGeneratorForReallocationFailed>( 3516 Sym, "Reallocation failed"); 3517 3518 if (SymbolRef sym = findFailedReallocSymbol(state, statePrev)) { 3519 // Is it possible to fail two reallocs WITHOUT testing in between? 3520 assert((!FailedReallocSymbol || FailedReallocSymbol == sym) && 3521 "We only support one failed realloc at a time."); 3522 BR.markInteresting(sym); 3523 FailedReallocSymbol = sym; 3524 } 3525 } 3526 3527 // We are in a special mode if a reallocation failed later in the path. 3528 } else if (Mode == ReallocationFailed) { 3529 assert(FailedReallocSymbol && "No symbol to look for."); 3530 3531 // Is this is the first appearance of the reallocated symbol? 3532 if (!statePrev->get<RegionState>(FailedReallocSymbol)) { 3533 // We're at the reallocation point. 3534 Msg = "Attempt to reallocate memory"; 3535 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3536 Sym, "Returned reallocated memory"); 3537 FailedReallocSymbol = nullptr; 3538 Mode = Normal; 3539 } 3540 } 3541 3542 if (Msg.empty()) { 3543 assert(!StackHint); 3544 return nullptr; 3545 } 3546 3547 assert(StackHint); 3548 3549 // Generate the extra diagnostic. 3550 PathDiagnosticLocation Pos; 3551 if (!S) { 3552 assert(RSCurr->getAllocationFamily() == AF_InnerBuffer); 3553 auto PostImplCall = N->getLocation().getAs<PostImplicitCall>(); 3554 if (!PostImplCall) 3555 return nullptr; 3556 Pos = PathDiagnosticLocation(PostImplCall->getLocation(), 3557 BRC.getSourceManager()); 3558 } else { 3559 Pos = PathDiagnosticLocation(S, BRC.getSourceManager(), 3560 N->getLocationContext()); 3561 } 3562 3563 auto P = std::make_shared<PathDiagnosticEventPiece>(Pos, Msg, true); 3564 BR.addCallStackHint(P, std::move(StackHint)); 3565 return P; 3566 } 3567 3568 void MallocChecker::printState(raw_ostream &Out, ProgramStateRef State, 3569 const char *NL, const char *Sep) const { 3570 3571 RegionStateTy RS = State->get<RegionState>(); 3572 3573 if (!RS.isEmpty()) { 3574 Out << Sep << "MallocChecker :" << NL; 3575 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 3576 const RefState *RefS = State->get<RegionState>(I.getKey()); 3577 AllocationFamily Family = RefS->getAllocationFamily(); 3578 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 3579 if (!CheckKind.hasValue()) 3580 CheckKind = getCheckIfTracked(Family, true); 3581 3582 I.getKey()->dumpToStream(Out); 3583 Out << " : "; 3584 I.getData().dump(Out); 3585 if (CheckKind.hasValue()) 3586 Out << " (" << CheckNames[*CheckKind].getName() << ")"; 3587 Out << NL; 3588 } 3589 } 3590 } 3591 3592 namespace clang { 3593 namespace ento { 3594 namespace allocation_state { 3595 3596 ProgramStateRef 3597 markReleased(ProgramStateRef State, SymbolRef Sym, const Expr *Origin) { 3598 AllocationFamily Family = AF_InnerBuffer; 3599 return State->set<RegionState>(Sym, RefState::getReleased(Family, Origin)); 3600 } 3601 3602 } // end namespace allocation_state 3603 } // end namespace ento 3604 } // end namespace clang 3605 3606 // Intended to be used in InnerPointerChecker to register the part of 3607 // MallocChecker connected to it. 3608 void ento::registerInnerPointerCheckerAux(CheckerManager &mgr) { 3609 MallocChecker *checker = mgr.getChecker<MallocChecker>(); 3610 checker->ChecksEnabled[MallocChecker::CK_InnerPointerChecker] = true; 3611 checker->CheckNames[MallocChecker::CK_InnerPointerChecker] = 3612 mgr.getCurrentCheckerName(); 3613 } 3614 3615 void ento::registerDynamicMemoryModeling(CheckerManager &mgr) { 3616 auto *checker = mgr.registerChecker<MallocChecker>(); 3617 checker->ShouldIncludeOwnershipAnnotatedFunctions = 3618 mgr.getAnalyzerOptions().getCheckerBooleanOption(checker, "Optimistic"); 3619 checker->ShouldRegisterNoOwnershipChangeVisitor = 3620 mgr.getAnalyzerOptions().getCheckerBooleanOption( 3621 checker, "AddNoOwnershipChangeNotes"); 3622 } 3623 3624 bool ento::shouldRegisterDynamicMemoryModeling(const CheckerManager &mgr) { 3625 return true; 3626 } 3627 3628 #define REGISTER_CHECKER(name) \ 3629 void ento::register##name(CheckerManager &mgr) { \ 3630 MallocChecker *checker = mgr.getChecker<MallocChecker>(); \ 3631 checker->ChecksEnabled[MallocChecker::CK_##name] = true; \ 3632 checker->CheckNames[MallocChecker::CK_##name] = \ 3633 mgr.getCurrentCheckerName(); \ 3634 } \ 3635 \ 3636 bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; } 3637 3638 REGISTER_CHECKER(MallocChecker) 3639 REGISTER_CHECKER(NewDeleteChecker) 3640 REGISTER_CHECKER(NewDeleteLeaksChecker) 3641 REGISTER_CHECKER(MismatchedDeallocatorChecker) 3642