1 //=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines malloc/free checker, which checks for potential memory 11 // leaks, double free, and use-after-free problems. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ClangSACheckers.h" 16 #include "InterCheckerAPI.h" 17 #include "clang/AST/Attr.h" 18 #include "clang/AST/ParentMap.h" 19 #include "clang/Basic/SourceManager.h" 20 #include "clang/Basic/TargetInfo.h" 21 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 22 #include "clang/StaticAnalyzer/Core/Checker.h" 23 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 24 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 25 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 26 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 27 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 28 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" 29 #include "llvm/ADT/ImmutableMap.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/StringExtras.h" 33 #include <climits> 34 35 using namespace clang; 36 using namespace ento; 37 38 namespace { 39 40 // Used to check correspondence between allocators and deallocators. 41 enum AllocationFamily { 42 AF_None, 43 AF_Malloc, 44 AF_CXXNew, 45 AF_CXXNewArray 46 }; 47 48 class RefState { 49 enum Kind { // Reference to allocated memory. 50 Allocated, 51 // Reference to released/freed memory. 52 Released, 53 // The responsibility for freeing resources has transferred from 54 // this reference. A relinquished symbol should not be freed. 55 Relinquished, 56 // We are no longer guaranteed to have observed all manipulations 57 // of this pointer/memory. For example, it could have been 58 // passed as a parameter to an opaque function. 59 Escaped 60 }; 61 62 const Stmt *S; 63 unsigned K : 2; // Kind enum, but stored as a bitfield. 64 unsigned Family : 30; // Rest of 32-bit word, currently just an allocation 65 // family. 66 67 RefState(Kind k, const Stmt *s, unsigned family) 68 : S(s), K(k), Family(family) { 69 assert(family != AF_None); 70 } 71 public: 72 bool isAllocated() const { return K == Allocated; } 73 bool isReleased() const { return K == Released; } 74 bool isRelinquished() const { return K == Relinquished; } 75 bool isEscaped() const { return K == Escaped; } 76 AllocationFamily getAllocationFamily() const { 77 return (AllocationFamily)Family; 78 } 79 const Stmt *getStmt() const { return S; } 80 81 bool operator==(const RefState &X) const { 82 return K == X.K && S == X.S && Family == X.Family; 83 } 84 85 static RefState getAllocated(unsigned family, const Stmt *s) { 86 return RefState(Allocated, s, family); 87 } 88 static RefState getReleased(unsigned family, const Stmt *s) { 89 return RefState(Released, s, family); 90 } 91 static RefState getRelinquished(unsigned family, const Stmt *s) { 92 return RefState(Relinquished, s, family); 93 } 94 static RefState getEscaped(const RefState *RS) { 95 return RefState(Escaped, RS->getStmt(), RS->getAllocationFamily()); 96 } 97 98 void Profile(llvm::FoldingSetNodeID &ID) const { 99 ID.AddInteger(K); 100 ID.AddPointer(S); 101 ID.AddInteger(Family); 102 } 103 104 void dump(raw_ostream &OS) const { 105 switch (static_cast<Kind>(K)) { 106 #define CASE(ID) case ID: OS << #ID; break; 107 CASE(Allocated) 108 CASE(Released) 109 CASE(Relinquished) 110 CASE(Escaped) 111 } 112 } 113 114 LLVM_DUMP_METHOD void dump() const { dump(llvm::errs()); } 115 }; 116 117 enum ReallocPairKind { 118 RPToBeFreedAfterFailure, 119 // The symbol has been freed when reallocation failed. 120 RPIsFreeOnFailure, 121 // The symbol does not need to be freed after reallocation fails. 122 RPDoNotTrackAfterFailure 123 }; 124 125 /// \class ReallocPair 126 /// \brief Stores information about the symbol being reallocated by a call to 127 /// 'realloc' to allow modeling failed reallocation later in the path. 128 struct ReallocPair { 129 // \brief The symbol which realloc reallocated. 130 SymbolRef ReallocatedSym; 131 ReallocPairKind Kind; 132 133 ReallocPair(SymbolRef S, ReallocPairKind K) : 134 ReallocatedSym(S), Kind(K) {} 135 void Profile(llvm::FoldingSetNodeID &ID) const { 136 ID.AddInteger(Kind); 137 ID.AddPointer(ReallocatedSym); 138 } 139 bool operator==(const ReallocPair &X) const { 140 return ReallocatedSym == X.ReallocatedSym && 141 Kind == X.Kind; 142 } 143 }; 144 145 typedef std::pair<const ExplodedNode*, const MemRegion*> LeakInfo; 146 147 class MallocChecker : public Checker<check::DeadSymbols, 148 check::PointerEscape, 149 check::ConstPointerEscape, 150 check::PreStmt<ReturnStmt>, 151 check::PreCall, 152 check::PostStmt<CallExpr>, 153 check::PostStmt<CXXNewExpr>, 154 check::PreStmt<CXXDeleteExpr>, 155 check::PostStmt<BlockExpr>, 156 check::PostObjCMessage, 157 check::Location, 158 eval::Assume> 159 { 160 public: 161 MallocChecker() 162 : II_malloc(nullptr), II_free(nullptr), II_realloc(nullptr), 163 II_calloc(nullptr), II_valloc(nullptr), II_reallocf(nullptr), 164 II_strndup(nullptr), II_strdup(nullptr), II_kmalloc(nullptr) {} 165 166 /// In pessimistic mode, the checker assumes that it does not know which 167 /// functions might free the memory. 168 enum CheckKind { 169 CK_MallocPessimistic, 170 CK_MallocOptimistic, 171 CK_NewDeleteChecker, 172 CK_NewDeleteLeaksChecker, 173 CK_MismatchedDeallocatorChecker, 174 CK_NumCheckKinds 175 }; 176 177 DefaultBool ChecksEnabled[CK_NumCheckKinds]; 178 CheckName CheckNames[CK_NumCheckKinds]; 179 180 void checkPreCall(const CallEvent &Call, CheckerContext &C) const; 181 void checkPostStmt(const CallExpr *CE, CheckerContext &C) const; 182 void checkPostStmt(const CXXNewExpr *NE, CheckerContext &C) const; 183 void checkPreStmt(const CXXDeleteExpr *DE, CheckerContext &C) const; 184 void checkPostObjCMessage(const ObjCMethodCall &Call, CheckerContext &C) const; 185 void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const; 186 void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const; 187 void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const; 188 ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond, 189 bool Assumption) const; 190 void checkLocation(SVal l, bool isLoad, const Stmt *S, 191 CheckerContext &C) const; 192 193 ProgramStateRef checkPointerEscape(ProgramStateRef State, 194 const InvalidatedSymbols &Escaped, 195 const CallEvent *Call, 196 PointerEscapeKind Kind) const; 197 ProgramStateRef checkConstPointerEscape(ProgramStateRef State, 198 const InvalidatedSymbols &Escaped, 199 const CallEvent *Call, 200 PointerEscapeKind Kind) const; 201 202 void printState(raw_ostream &Out, ProgramStateRef State, 203 const char *NL, const char *Sep) const override; 204 205 private: 206 mutable std::unique_ptr<BugType> BT_DoubleFree[CK_NumCheckKinds]; 207 mutable std::unique_ptr<BugType> BT_DoubleDelete; 208 mutable std::unique_ptr<BugType> BT_Leak[CK_NumCheckKinds]; 209 mutable std::unique_ptr<BugType> BT_UseFree[CK_NumCheckKinds]; 210 mutable std::unique_ptr<BugType> BT_BadFree[CK_NumCheckKinds]; 211 mutable std::unique_ptr<BugType> BT_MismatchedDealloc; 212 mutable std::unique_ptr<BugType> BT_OffsetFree[CK_NumCheckKinds]; 213 mutable IdentifierInfo *II_malloc, *II_free, *II_realloc, *II_calloc, 214 *II_valloc, *II_reallocf, *II_strndup, *II_strdup, 215 *II_kmalloc; 216 mutable Optional<uint64_t> KernelZeroFlagVal; 217 218 void initIdentifierInfo(ASTContext &C) const; 219 220 /// \brief Determine family of a deallocation expression. 221 AllocationFamily getAllocationFamily(CheckerContext &C, const Stmt *S) const; 222 223 /// \brief Print names of allocators and deallocators. 224 /// 225 /// \returns true on success. 226 bool printAllocDeallocName(raw_ostream &os, CheckerContext &C, 227 const Expr *E) const; 228 229 /// \brief Print expected name of an allocator based on the deallocator's 230 /// family derived from the DeallocExpr. 231 void printExpectedAllocName(raw_ostream &os, CheckerContext &C, 232 const Expr *DeallocExpr) const; 233 /// \brief Print expected name of a deallocator based on the allocator's 234 /// family. 235 void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family) const; 236 237 ///@{ 238 /// Check if this is one of the functions which can allocate/reallocate memory 239 /// pointed to by one of its arguments. 240 bool isMemFunction(const FunctionDecl *FD, ASTContext &C) const; 241 bool isFreeFunction(const FunctionDecl *FD, ASTContext &C) const; 242 bool isAllocationFunction(const FunctionDecl *FD, ASTContext &C) const; 243 bool isStandardNewDelete(const FunctionDecl *FD, ASTContext &C) const; 244 ///@} 245 ProgramStateRef MallocMemReturnsAttr(CheckerContext &C, 246 const CallExpr *CE, 247 const OwnershipAttr* Att) const; 248 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE, 249 const Expr *SizeEx, SVal Init, 250 ProgramStateRef State, 251 AllocationFamily Family = AF_Malloc) { 252 return MallocMemAux(C, CE, 253 State->getSVal(SizeEx, C.getLocationContext()), 254 Init, State, Family); 255 } 256 257 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE, 258 SVal SizeEx, SVal Init, 259 ProgramStateRef State, 260 AllocationFamily Family = AF_Malloc); 261 262 // Check if this malloc() for special flags. At present that means M_ZERO or 263 // __GFP_ZERO (in which case, treat it like calloc). 264 llvm::Optional<ProgramStateRef> 265 performKernelMalloc(const CallExpr *CE, CheckerContext &C, 266 const ProgramStateRef &State) const; 267 268 /// Update the RefState to reflect the new memory allocation. 269 static ProgramStateRef 270 MallocUpdateRefState(CheckerContext &C, const Expr *E, ProgramStateRef State, 271 AllocationFamily Family = AF_Malloc); 272 273 ProgramStateRef FreeMemAttr(CheckerContext &C, const CallExpr *CE, 274 const OwnershipAttr* Att) const; 275 ProgramStateRef FreeMemAux(CheckerContext &C, const CallExpr *CE, 276 ProgramStateRef state, unsigned Num, 277 bool Hold, 278 bool &ReleasedAllocated, 279 bool ReturnsNullOnFailure = false) const; 280 ProgramStateRef FreeMemAux(CheckerContext &C, const Expr *Arg, 281 const Expr *ParentExpr, 282 ProgramStateRef State, 283 bool Hold, 284 bool &ReleasedAllocated, 285 bool ReturnsNullOnFailure = false) const; 286 287 ProgramStateRef ReallocMem(CheckerContext &C, const CallExpr *CE, 288 bool FreesMemOnFailure) const; 289 static ProgramStateRef CallocMem(CheckerContext &C, const CallExpr *CE); 290 291 ///\brief Check if the memory associated with this symbol was released. 292 bool isReleased(SymbolRef Sym, CheckerContext &C) const; 293 294 bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S) const; 295 296 bool checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const; 297 298 /// Check if the function is known free memory, or if it is 299 /// "interesting" and should be modeled explicitly. 300 /// 301 /// \param [out] EscapingSymbol A function might not free memory in general, 302 /// but could be known to free a particular symbol. In this case, false is 303 /// returned and the single escaping symbol is returned through the out 304 /// parameter. 305 /// 306 /// We assume that pointers do not escape through calls to system functions 307 /// not handled by this checker. 308 bool mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent *Call, 309 ProgramStateRef State, 310 SymbolRef &EscapingSymbol) const; 311 312 // Implementation of the checkPointerEscape callabcks. 313 ProgramStateRef checkPointerEscapeAux(ProgramStateRef State, 314 const InvalidatedSymbols &Escaped, 315 const CallEvent *Call, 316 PointerEscapeKind Kind, 317 bool(*CheckRefState)(const RefState*)) const; 318 319 ///@{ 320 /// Tells if a given family/call/symbol is tracked by the current checker. 321 /// Sets CheckKind to the kind of the checker responsible for this 322 /// family/call/symbol. 323 Optional<CheckKind> getCheckIfTracked(AllocationFamily Family) const; 324 Optional<CheckKind> getCheckIfTracked(CheckerContext &C, 325 const Stmt *AllocDeallocStmt) const; 326 Optional<CheckKind> getCheckIfTracked(CheckerContext &C, SymbolRef Sym) const; 327 ///@} 328 static bool SummarizeValue(raw_ostream &os, SVal V); 329 static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR); 330 void ReportBadFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 331 const Expr *DeallocExpr) const; 332 void ReportMismatchedDealloc(CheckerContext &C, SourceRange Range, 333 const Expr *DeallocExpr, const RefState *RS, 334 SymbolRef Sym, bool OwnershipTransferred) const; 335 void ReportOffsetFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 336 const Expr *DeallocExpr, 337 const Expr *AllocExpr = nullptr) const; 338 void ReportUseAfterFree(CheckerContext &C, SourceRange Range, 339 SymbolRef Sym) const; 340 void ReportDoubleFree(CheckerContext &C, SourceRange Range, bool Released, 341 SymbolRef Sym, SymbolRef PrevSym) const; 342 343 void ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const; 344 345 /// Find the location of the allocation for Sym on the path leading to the 346 /// exploded node N. 347 LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym, 348 CheckerContext &C) const; 349 350 void reportLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const; 351 352 /// The bug visitor which allows us to print extra diagnostics along the 353 /// BugReport path. For example, showing the allocation site of the leaked 354 /// region. 355 class MallocBugVisitor : public BugReporterVisitorImpl<MallocBugVisitor> { 356 protected: 357 enum NotificationMode { 358 Normal, 359 ReallocationFailed 360 }; 361 362 // The allocated region symbol tracked by the main analysis. 363 SymbolRef Sym; 364 365 // The mode we are in, i.e. what kind of diagnostics will be emitted. 366 NotificationMode Mode; 367 368 // A symbol from when the primary region should have been reallocated. 369 SymbolRef FailedReallocSymbol; 370 371 bool IsLeak; 372 373 public: 374 MallocBugVisitor(SymbolRef S, bool isLeak = false) 375 : Sym(S), Mode(Normal), FailedReallocSymbol(nullptr), IsLeak(isLeak) {} 376 377 virtual ~MallocBugVisitor() {} 378 379 void Profile(llvm::FoldingSetNodeID &ID) const override { 380 static int X = 0; 381 ID.AddPointer(&X); 382 ID.AddPointer(Sym); 383 } 384 385 inline bool isAllocated(const RefState *S, const RefState *SPrev, 386 const Stmt *Stmt) { 387 // Did not track -> allocated. Other state (released) -> allocated. 388 return (Stmt && (isa<CallExpr>(Stmt) || isa<CXXNewExpr>(Stmt)) && 389 (S && S->isAllocated()) && (!SPrev || !SPrev->isAllocated())); 390 } 391 392 inline bool isReleased(const RefState *S, const RefState *SPrev, 393 const Stmt *Stmt) { 394 // Did not track -> released. Other state (allocated) -> released. 395 return (Stmt && (isa<CallExpr>(Stmt) || isa<CXXDeleteExpr>(Stmt)) && 396 (S && S->isReleased()) && (!SPrev || !SPrev->isReleased())); 397 } 398 399 inline bool isRelinquished(const RefState *S, const RefState *SPrev, 400 const Stmt *Stmt) { 401 // Did not track -> relinquished. Other state (allocated) -> relinquished. 402 return (Stmt && (isa<CallExpr>(Stmt) || isa<ObjCMessageExpr>(Stmt) || 403 isa<ObjCPropertyRefExpr>(Stmt)) && 404 (S && S->isRelinquished()) && 405 (!SPrev || !SPrev->isRelinquished())); 406 } 407 408 inline bool isReallocFailedCheck(const RefState *S, const RefState *SPrev, 409 const Stmt *Stmt) { 410 // If the expression is not a call, and the state change is 411 // released -> allocated, it must be the realloc return value 412 // check. If we have to handle more cases here, it might be cleaner just 413 // to track this extra bit in the state itself. 414 return ((!Stmt || !isa<CallExpr>(Stmt)) && 415 (S && S->isAllocated()) && (SPrev && !SPrev->isAllocated())); 416 } 417 418 PathDiagnosticPiece *VisitNode(const ExplodedNode *N, 419 const ExplodedNode *PrevN, 420 BugReporterContext &BRC, 421 BugReport &BR) override; 422 423 PathDiagnosticPiece* getEndPath(BugReporterContext &BRC, 424 const ExplodedNode *EndPathNode, 425 BugReport &BR) override { 426 if (!IsLeak) 427 return nullptr; 428 429 PathDiagnosticLocation L = 430 PathDiagnosticLocation::createEndOfPath(EndPathNode, 431 BRC.getSourceManager()); 432 // Do not add the statement itself as a range in case of leak. 433 return new PathDiagnosticEventPiece(L, BR.getDescription(), false); 434 } 435 436 private: 437 class StackHintGeneratorForReallocationFailed 438 : public StackHintGeneratorForSymbol { 439 public: 440 StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M) 441 : StackHintGeneratorForSymbol(S, M) {} 442 443 std::string getMessageForArg(const Expr *ArgE, 444 unsigned ArgIndex) override { 445 // Printed parameters start at 1, not 0. 446 ++ArgIndex; 447 448 SmallString<200> buf; 449 llvm::raw_svector_ostream os(buf); 450 451 os << "Reallocation of " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex) 452 << " parameter failed"; 453 454 return os.str(); 455 } 456 457 std::string getMessageForReturn(const CallExpr *CallExpr) override { 458 return "Reallocation of returned value failed"; 459 } 460 }; 461 }; 462 }; 463 } // end anonymous namespace 464 465 REGISTER_MAP_WITH_PROGRAMSTATE(RegionState, SymbolRef, RefState) 466 REGISTER_MAP_WITH_PROGRAMSTATE(ReallocPairs, SymbolRef, ReallocPair) 467 468 // A map from the freed symbol to the symbol representing the return value of 469 // the free function. 470 REGISTER_MAP_WITH_PROGRAMSTATE(FreeReturnValue, SymbolRef, SymbolRef) 471 472 namespace { 473 class StopTrackingCallback : public SymbolVisitor { 474 ProgramStateRef state; 475 public: 476 StopTrackingCallback(ProgramStateRef st) : state(st) {} 477 ProgramStateRef getState() const { return state; } 478 479 bool VisitSymbol(SymbolRef sym) override { 480 state = state->remove<RegionState>(sym); 481 return true; 482 } 483 }; 484 } // end anonymous namespace 485 486 void MallocChecker::initIdentifierInfo(ASTContext &Ctx) const { 487 if (II_malloc) 488 return; 489 II_malloc = &Ctx.Idents.get("malloc"); 490 II_free = &Ctx.Idents.get("free"); 491 II_realloc = &Ctx.Idents.get("realloc"); 492 II_reallocf = &Ctx.Idents.get("reallocf"); 493 II_calloc = &Ctx.Idents.get("calloc"); 494 II_valloc = &Ctx.Idents.get("valloc"); 495 II_strdup = &Ctx.Idents.get("strdup"); 496 II_strndup = &Ctx.Idents.get("strndup"); 497 II_kmalloc = &Ctx.Idents.get("kmalloc"); 498 } 499 500 bool MallocChecker::isMemFunction(const FunctionDecl *FD, ASTContext &C) const { 501 if (isFreeFunction(FD, C)) 502 return true; 503 504 if (isAllocationFunction(FD, C)) 505 return true; 506 507 if (isStandardNewDelete(FD, C)) 508 return true; 509 510 return false; 511 } 512 513 bool MallocChecker::isAllocationFunction(const FunctionDecl *FD, 514 ASTContext &C) const { 515 if (!FD) 516 return false; 517 518 if (FD->getKind() == Decl::Function) { 519 IdentifierInfo *FunI = FD->getIdentifier(); 520 initIdentifierInfo(C); 521 522 if (FunI == II_malloc || FunI == II_realloc || 523 FunI == II_reallocf || FunI == II_calloc || FunI == II_valloc || 524 FunI == II_strdup || FunI == II_strndup || FunI == II_kmalloc) 525 return true; 526 } 527 528 if (ChecksEnabled[CK_MallocOptimistic] && FD->hasAttrs()) 529 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) 530 if (I->getOwnKind() == OwnershipAttr::Returns) 531 return true; 532 return false; 533 } 534 535 bool MallocChecker::isFreeFunction(const FunctionDecl *FD, ASTContext &C) const { 536 if (!FD) 537 return false; 538 539 if (FD->getKind() == Decl::Function) { 540 IdentifierInfo *FunI = FD->getIdentifier(); 541 initIdentifierInfo(C); 542 543 if (FunI == II_free || FunI == II_realloc || FunI == II_reallocf) 544 return true; 545 } 546 547 if (ChecksEnabled[CK_MallocOptimistic] && FD->hasAttrs()) 548 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) 549 if (I->getOwnKind() == OwnershipAttr::Takes || 550 I->getOwnKind() == OwnershipAttr::Holds) 551 return true; 552 return false; 553 } 554 555 // Tells if the callee is one of the following: 556 // 1) A global non-placement new/delete operator function. 557 // 2) A global placement operator function with the single placement argument 558 // of type std::nothrow_t. 559 bool MallocChecker::isStandardNewDelete(const FunctionDecl *FD, 560 ASTContext &C) const { 561 if (!FD) 562 return false; 563 564 OverloadedOperatorKind Kind = FD->getOverloadedOperator(); 565 if (Kind != OO_New && Kind != OO_Array_New && 566 Kind != OO_Delete && Kind != OO_Array_Delete) 567 return false; 568 569 // Skip all operator new/delete methods. 570 if (isa<CXXMethodDecl>(FD)) 571 return false; 572 573 // Return true if tested operator is a standard placement nothrow operator. 574 if (FD->getNumParams() == 2) { 575 QualType T = FD->getParamDecl(1)->getType(); 576 if (const IdentifierInfo *II = T.getBaseTypeIdentifier()) 577 return II->getName().equals("nothrow_t"); 578 } 579 580 // Skip placement operators. 581 if (FD->getNumParams() != 1 || FD->isVariadic()) 582 return false; 583 584 // One of the standard new/new[]/delete/delete[] non-placement operators. 585 return true; 586 } 587 588 llvm::Optional<ProgramStateRef> MallocChecker::performKernelMalloc( 589 const CallExpr *CE, CheckerContext &C, const ProgramStateRef &State) const { 590 // 3-argument malloc(), as commonly used in {Free,Net,Open}BSD Kernels: 591 // 592 // void *malloc(unsigned long size, struct malloc_type *mtp, int flags); 593 // 594 // One of the possible flags is M_ZERO, which means 'give me back an 595 // allocation which is already zeroed', like calloc. 596 597 // 2-argument kmalloc(), as used in the Linux kernel: 598 // 599 // void *kmalloc(size_t size, gfp_t flags); 600 // 601 // Has the similar flag value __GFP_ZERO. 602 603 // This logic is largely cloned from O_CREAT in UnixAPIChecker, maybe some 604 // code could be shared. 605 606 ASTContext &Ctx = C.getASTContext(); 607 llvm::Triple::OSType OS = Ctx.getTargetInfo().getTriple().getOS(); 608 609 if (!KernelZeroFlagVal.hasValue()) { 610 if (OS == llvm::Triple::FreeBSD) 611 KernelZeroFlagVal = 0x0100; 612 else if (OS == llvm::Triple::NetBSD) 613 KernelZeroFlagVal = 0x0002; 614 else if (OS == llvm::Triple::OpenBSD) 615 KernelZeroFlagVal = 0x0008; 616 else if (OS == llvm::Triple::Linux) 617 // __GFP_ZERO 618 KernelZeroFlagVal = 0x8000; 619 else 620 // FIXME: We need a more general way of getting the M_ZERO value. 621 // See also: O_CREAT in UnixAPIChecker.cpp. 622 623 // Fall back to normal malloc behavior on platforms where we don't 624 // know M_ZERO. 625 return None; 626 } 627 628 // We treat the last argument as the flags argument, and callers fall-back to 629 // normal malloc on a None return. This works for the FreeBSD kernel malloc 630 // as well as Linux kmalloc. 631 if (CE->getNumArgs() < 2) 632 return None; 633 634 const Expr *FlagsEx = CE->getArg(CE->getNumArgs() - 1); 635 const SVal V = State->getSVal(FlagsEx, C.getLocationContext()); 636 if (!V.getAs<NonLoc>()) { 637 // The case where 'V' can be a location can only be due to a bad header, 638 // so in this case bail out. 639 return None; 640 } 641 642 NonLoc Flags = V.castAs<NonLoc>(); 643 NonLoc ZeroFlag = C.getSValBuilder() 644 .makeIntVal(KernelZeroFlagVal.getValue(), FlagsEx->getType()) 645 .castAs<NonLoc>(); 646 SVal MaskedFlagsUC = C.getSValBuilder().evalBinOpNN(State, BO_And, 647 Flags, ZeroFlag, 648 FlagsEx->getType()); 649 if (MaskedFlagsUC.isUnknownOrUndef()) 650 return None; 651 DefinedSVal MaskedFlags = MaskedFlagsUC.castAs<DefinedSVal>(); 652 653 // Check if maskedFlags is non-zero. 654 ProgramStateRef TrueState, FalseState; 655 std::tie(TrueState, FalseState) = State->assume(MaskedFlags); 656 657 // If M_ZERO is set, treat this like calloc (initialized). 658 if (TrueState && !FalseState) { 659 SVal ZeroVal = C.getSValBuilder().makeZeroVal(Ctx.CharTy); 660 return MallocMemAux(C, CE, CE->getArg(0), ZeroVal, TrueState); 661 } 662 663 return None; 664 } 665 666 void MallocChecker::checkPostStmt(const CallExpr *CE, CheckerContext &C) const { 667 if (C.wasInlined) 668 return; 669 670 const FunctionDecl *FD = C.getCalleeDecl(CE); 671 if (!FD) 672 return; 673 674 ProgramStateRef State = C.getState(); 675 bool ReleasedAllocatedMemory = false; 676 677 if (FD->getKind() == Decl::Function) { 678 initIdentifierInfo(C.getASTContext()); 679 IdentifierInfo *FunI = FD->getIdentifier(); 680 681 if (FunI == II_malloc) { 682 if (CE->getNumArgs() < 1) 683 return; 684 if (CE->getNumArgs() < 3) { 685 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 686 } else if (CE->getNumArgs() == 3) { 687 llvm::Optional<ProgramStateRef> MaybeState = 688 performKernelMalloc(CE, C, State); 689 if (MaybeState.hasValue()) 690 State = MaybeState.getValue(); 691 else 692 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 693 } 694 } else if (FunI == II_kmalloc) { 695 llvm::Optional<ProgramStateRef> MaybeState = 696 performKernelMalloc(CE, C, State); 697 if (MaybeState.hasValue()) 698 State = MaybeState.getValue(); 699 else 700 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 701 } else if (FunI == II_valloc) { 702 if (CE->getNumArgs() < 1) 703 return; 704 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 705 } else if (FunI == II_realloc) { 706 State = ReallocMem(C, CE, false); 707 } else if (FunI == II_reallocf) { 708 State = ReallocMem(C, CE, true); 709 } else if (FunI == II_calloc) { 710 State = CallocMem(C, CE); 711 } else if (FunI == II_free) { 712 State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory); 713 } else if (FunI == II_strdup) { 714 State = MallocUpdateRefState(C, CE, State); 715 } else if (FunI == II_strndup) { 716 State = MallocUpdateRefState(C, CE, State); 717 } 718 else if (isStandardNewDelete(FD, C.getASTContext())) { 719 // Process direct calls to operator new/new[]/delete/delete[] functions 720 // as distinct from new/new[]/delete/delete[] expressions that are 721 // processed by the checkPostStmt callbacks for CXXNewExpr and 722 // CXXDeleteExpr. 723 OverloadedOperatorKind K = FD->getOverloadedOperator(); 724 if (K == OO_New) 725 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, 726 AF_CXXNew); 727 else if (K == OO_Array_New) 728 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, 729 AF_CXXNewArray); 730 else if (K == OO_Delete || K == OO_Array_Delete) 731 State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory); 732 else 733 llvm_unreachable("not a new/delete operator"); 734 } 735 } 736 737 if (ChecksEnabled[CK_MallocOptimistic] || 738 ChecksEnabled[CK_MismatchedDeallocatorChecker]) { 739 // Check all the attributes, if there are any. 740 // There can be multiple of these attributes. 741 if (FD->hasAttrs()) 742 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { 743 switch (I->getOwnKind()) { 744 case OwnershipAttr::Returns: 745 State = MallocMemReturnsAttr(C, CE, I); 746 break; 747 case OwnershipAttr::Takes: 748 case OwnershipAttr::Holds: 749 State = FreeMemAttr(C, CE, I); 750 break; 751 } 752 } 753 } 754 C.addTransition(State); 755 } 756 757 static QualType getDeepPointeeType(QualType T) { 758 QualType Result = T, PointeeType = T->getPointeeType(); 759 while (!PointeeType.isNull()) { 760 Result = PointeeType; 761 PointeeType = PointeeType->getPointeeType(); 762 } 763 return Result; 764 } 765 766 static bool treatUnusedNewEscaped(const CXXNewExpr *NE) { 767 768 const CXXConstructExpr *ConstructE = NE->getConstructExpr(); 769 if (!ConstructE) 770 return false; 771 772 if (!NE->getAllocatedType()->getAsCXXRecordDecl()) 773 return false; 774 775 const CXXConstructorDecl *CtorD = ConstructE->getConstructor(); 776 777 // Iterate over the constructor parameters. 778 for (const auto *CtorParam : CtorD->params()) { 779 780 QualType CtorParamPointeeT = CtorParam->getType()->getPointeeType(); 781 if (CtorParamPointeeT.isNull()) 782 continue; 783 784 CtorParamPointeeT = getDeepPointeeType(CtorParamPointeeT); 785 786 if (CtorParamPointeeT->getAsCXXRecordDecl()) 787 return true; 788 } 789 790 return false; 791 } 792 793 void MallocChecker::checkPostStmt(const CXXNewExpr *NE, 794 CheckerContext &C) const { 795 796 if (NE->getNumPlacementArgs()) 797 for (CXXNewExpr::const_arg_iterator I = NE->placement_arg_begin(), 798 E = NE->placement_arg_end(); I != E; ++I) 799 if (SymbolRef Sym = C.getSVal(*I).getAsSymbol()) 800 checkUseAfterFree(Sym, C, *I); 801 802 if (!isStandardNewDelete(NE->getOperatorNew(), C.getASTContext())) 803 return; 804 805 ParentMap &PM = C.getLocationContext()->getParentMap(); 806 if (!PM.isConsumedExpr(NE) && treatUnusedNewEscaped(NE)) 807 return; 808 809 ProgramStateRef State = C.getState(); 810 // The return value from operator new is bound to a specified initialization 811 // value (if any) and we don't want to loose this value. So we call 812 // MallocUpdateRefState() instead of MallocMemAux() which breakes the 813 // existing binding. 814 State = MallocUpdateRefState(C, NE, State, NE->isArray() ? AF_CXXNewArray 815 : AF_CXXNew); 816 C.addTransition(State); 817 } 818 819 void MallocChecker::checkPreStmt(const CXXDeleteExpr *DE, 820 CheckerContext &C) const { 821 822 if (!ChecksEnabled[CK_NewDeleteChecker]) 823 if (SymbolRef Sym = C.getSVal(DE->getArgument()).getAsSymbol()) 824 checkUseAfterFree(Sym, C, DE->getArgument()); 825 826 if (!isStandardNewDelete(DE->getOperatorDelete(), C.getASTContext())) 827 return; 828 829 ProgramStateRef State = C.getState(); 830 bool ReleasedAllocated; 831 State = FreeMemAux(C, DE->getArgument(), DE, State, 832 /*Hold*/false, ReleasedAllocated); 833 834 C.addTransition(State); 835 } 836 837 static bool isKnownDeallocObjCMethodName(const ObjCMethodCall &Call) { 838 // If the first selector piece is one of the names below, assume that the 839 // object takes ownership of the memory, promising to eventually deallocate it 840 // with free(). 841 // Ex: [NSData dataWithBytesNoCopy:bytes length:10]; 842 // (...unless a 'freeWhenDone' parameter is false, but that's checked later.) 843 StringRef FirstSlot = Call.getSelector().getNameForSlot(0); 844 if (FirstSlot == "dataWithBytesNoCopy" || 845 FirstSlot == "initWithBytesNoCopy" || 846 FirstSlot == "initWithCharactersNoCopy") 847 return true; 848 849 return false; 850 } 851 852 static Optional<bool> getFreeWhenDoneArg(const ObjCMethodCall &Call) { 853 Selector S = Call.getSelector(); 854 855 // FIXME: We should not rely on fully-constrained symbols being folded. 856 for (unsigned i = 1; i < S.getNumArgs(); ++i) 857 if (S.getNameForSlot(i).equals("freeWhenDone")) 858 return !Call.getArgSVal(i).isZeroConstant(); 859 860 return None; 861 } 862 863 void MallocChecker::checkPostObjCMessage(const ObjCMethodCall &Call, 864 CheckerContext &C) const { 865 if (C.wasInlined) 866 return; 867 868 if (!isKnownDeallocObjCMethodName(Call)) 869 return; 870 871 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call)) 872 if (!*FreeWhenDone) 873 return; 874 875 bool ReleasedAllocatedMemory; 876 ProgramStateRef State = FreeMemAux(C, Call.getArgExpr(0), 877 Call.getOriginExpr(), C.getState(), 878 /*Hold=*/true, ReleasedAllocatedMemory, 879 /*RetNullOnFailure=*/true); 880 881 C.addTransition(State); 882 } 883 884 ProgramStateRef 885 MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallExpr *CE, 886 const OwnershipAttr *Att) const { 887 if (Att->getModule() != II_malloc) 888 return nullptr; 889 890 OwnershipAttr::args_iterator I = Att->args_begin(), E = Att->args_end(); 891 if (I != E) { 892 return MallocMemAux(C, CE, CE->getArg(*I), UndefinedVal(), C.getState()); 893 } 894 return MallocMemAux(C, CE, UnknownVal(), UndefinedVal(), C.getState()); 895 } 896 897 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 898 const CallExpr *CE, 899 SVal Size, SVal Init, 900 ProgramStateRef State, 901 AllocationFamily Family) { 902 903 // Bind the return value to the symbolic value from the heap region. 904 // TODO: We could rewrite post visit to eval call; 'malloc' does not have 905 // side effects other than what we model here. 906 unsigned Count = C.blockCount(); 907 SValBuilder &svalBuilder = C.getSValBuilder(); 908 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 909 DefinedSVal RetVal = svalBuilder.getConjuredHeapSymbolVal(CE, LCtx, Count) 910 .castAs<DefinedSVal>(); 911 State = State->BindExpr(CE, C.getLocationContext(), RetVal); 912 913 // We expect the malloc functions to return a pointer. 914 if (!RetVal.getAs<Loc>()) 915 return nullptr; 916 917 // Fill the region with the initialization value. 918 State = State->bindDefault(RetVal, Init); 919 920 // Set the region's extent equal to the Size parameter. 921 const SymbolicRegion *R = 922 dyn_cast_or_null<SymbolicRegion>(RetVal.getAsRegion()); 923 if (!R) 924 return nullptr; 925 if (Optional<DefinedOrUnknownSVal> DefinedSize = 926 Size.getAs<DefinedOrUnknownSVal>()) { 927 SValBuilder &svalBuilder = C.getSValBuilder(); 928 DefinedOrUnknownSVal Extent = R->getExtent(svalBuilder); 929 DefinedOrUnknownSVal extentMatchesSize = 930 svalBuilder.evalEQ(State, Extent, *DefinedSize); 931 932 State = State->assume(extentMatchesSize, true); 933 assert(State); 934 } 935 936 return MallocUpdateRefState(C, CE, State, Family); 937 } 938 939 ProgramStateRef MallocChecker::MallocUpdateRefState(CheckerContext &C, 940 const Expr *E, 941 ProgramStateRef State, 942 AllocationFamily Family) { 943 // Get the return value. 944 SVal retVal = State->getSVal(E, C.getLocationContext()); 945 946 // We expect the malloc functions to return a pointer. 947 if (!retVal.getAs<Loc>()) 948 return nullptr; 949 950 SymbolRef Sym = retVal.getAsLocSymbol(); 951 assert(Sym); 952 953 // Set the symbol's state to Allocated. 954 return State->set<RegionState>(Sym, RefState::getAllocated(Family, E)); 955 } 956 957 ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C, 958 const CallExpr *CE, 959 const OwnershipAttr *Att) const { 960 if (Att->getModule() != II_malloc) 961 return nullptr; 962 963 ProgramStateRef State = C.getState(); 964 bool ReleasedAllocated = false; 965 966 for (const auto &Arg : Att->args()) { 967 ProgramStateRef StateI = FreeMemAux(C, CE, State, Arg, 968 Att->getOwnKind() == OwnershipAttr::Holds, 969 ReleasedAllocated); 970 if (StateI) 971 State = StateI; 972 } 973 return State; 974 } 975 976 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, 977 const CallExpr *CE, 978 ProgramStateRef state, 979 unsigned Num, 980 bool Hold, 981 bool &ReleasedAllocated, 982 bool ReturnsNullOnFailure) const { 983 if (CE->getNumArgs() < (Num + 1)) 984 return nullptr; 985 986 return FreeMemAux(C, CE->getArg(Num), CE, state, Hold, 987 ReleasedAllocated, ReturnsNullOnFailure); 988 } 989 990 /// Checks if the previous call to free on the given symbol failed - if free 991 /// failed, returns true. Also, returns the corresponding return value symbol. 992 static bool didPreviousFreeFail(ProgramStateRef State, 993 SymbolRef Sym, SymbolRef &RetStatusSymbol) { 994 const SymbolRef *Ret = State->get<FreeReturnValue>(Sym); 995 if (Ret) { 996 assert(*Ret && "We should not store the null return symbol"); 997 ConstraintManager &CMgr = State->getConstraintManager(); 998 ConditionTruthVal FreeFailed = CMgr.isNull(State, *Ret); 999 RetStatusSymbol = *Ret; 1000 return FreeFailed.isConstrainedTrue(); 1001 } 1002 return false; 1003 } 1004 1005 AllocationFamily MallocChecker::getAllocationFamily(CheckerContext &C, 1006 const Stmt *S) const { 1007 if (!S) 1008 return AF_None; 1009 1010 if (const CallExpr *CE = dyn_cast<CallExpr>(S)) { 1011 const FunctionDecl *FD = C.getCalleeDecl(CE); 1012 1013 if (!FD) 1014 FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); 1015 1016 ASTContext &Ctx = C.getASTContext(); 1017 1018 if (isAllocationFunction(FD, Ctx) || isFreeFunction(FD, Ctx)) 1019 return AF_Malloc; 1020 1021 if (isStandardNewDelete(FD, Ctx)) { 1022 OverloadedOperatorKind Kind = FD->getOverloadedOperator(); 1023 if (Kind == OO_New || Kind == OO_Delete) 1024 return AF_CXXNew; 1025 else if (Kind == OO_Array_New || Kind == OO_Array_Delete) 1026 return AF_CXXNewArray; 1027 } 1028 1029 return AF_None; 1030 } 1031 1032 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(S)) 1033 return NE->isArray() ? AF_CXXNewArray : AF_CXXNew; 1034 1035 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(S)) 1036 return DE->isArrayForm() ? AF_CXXNewArray : AF_CXXNew; 1037 1038 if (isa<ObjCMessageExpr>(S)) 1039 return AF_Malloc; 1040 1041 return AF_None; 1042 } 1043 1044 bool MallocChecker::printAllocDeallocName(raw_ostream &os, CheckerContext &C, 1045 const Expr *E) const { 1046 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 1047 // FIXME: This doesn't handle indirect calls. 1048 const FunctionDecl *FD = CE->getDirectCallee(); 1049 if (!FD) 1050 return false; 1051 1052 os << *FD; 1053 if (!FD->isOverloadedOperator()) 1054 os << "()"; 1055 return true; 1056 } 1057 1058 if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E)) { 1059 if (Msg->isInstanceMessage()) 1060 os << "-"; 1061 else 1062 os << "+"; 1063 Msg->getSelector().print(os); 1064 return true; 1065 } 1066 1067 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { 1068 os << "'" 1069 << getOperatorSpelling(NE->getOperatorNew()->getOverloadedOperator()) 1070 << "'"; 1071 return true; 1072 } 1073 1074 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(E)) { 1075 os << "'" 1076 << getOperatorSpelling(DE->getOperatorDelete()->getOverloadedOperator()) 1077 << "'"; 1078 return true; 1079 } 1080 1081 return false; 1082 } 1083 1084 void MallocChecker::printExpectedAllocName(raw_ostream &os, CheckerContext &C, 1085 const Expr *E) const { 1086 AllocationFamily Family = getAllocationFamily(C, E); 1087 1088 switch(Family) { 1089 case AF_Malloc: os << "malloc()"; return; 1090 case AF_CXXNew: os << "'new'"; return; 1091 case AF_CXXNewArray: os << "'new[]'"; return; 1092 case AF_None: llvm_unreachable("not a deallocation expression"); 1093 } 1094 } 1095 1096 void MallocChecker::printExpectedDeallocName(raw_ostream &os, 1097 AllocationFamily Family) const { 1098 switch(Family) { 1099 case AF_Malloc: os << "free()"; return; 1100 case AF_CXXNew: os << "'delete'"; return; 1101 case AF_CXXNewArray: os << "'delete[]'"; return; 1102 case AF_None: llvm_unreachable("suspicious AF_None argument"); 1103 } 1104 } 1105 1106 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, 1107 const Expr *ArgExpr, 1108 const Expr *ParentExpr, 1109 ProgramStateRef State, 1110 bool Hold, 1111 bool &ReleasedAllocated, 1112 bool ReturnsNullOnFailure) const { 1113 1114 SVal ArgVal = State->getSVal(ArgExpr, C.getLocationContext()); 1115 if (!ArgVal.getAs<DefinedOrUnknownSVal>()) 1116 return nullptr; 1117 DefinedOrUnknownSVal location = ArgVal.castAs<DefinedOrUnknownSVal>(); 1118 1119 // Check for null dereferences. 1120 if (!location.getAs<Loc>()) 1121 return nullptr; 1122 1123 // The explicit NULL case, no operation is performed. 1124 ProgramStateRef notNullState, nullState; 1125 std::tie(notNullState, nullState) = State->assume(location); 1126 if (nullState && !notNullState) 1127 return nullptr; 1128 1129 // Unknown values could easily be okay 1130 // Undefined values are handled elsewhere 1131 if (ArgVal.isUnknownOrUndef()) 1132 return nullptr; 1133 1134 const MemRegion *R = ArgVal.getAsRegion(); 1135 1136 // Nonlocs can't be freed, of course. 1137 // Non-region locations (labels and fixed addresses) also shouldn't be freed. 1138 if (!R) { 1139 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1140 return nullptr; 1141 } 1142 1143 R = R->StripCasts(); 1144 1145 // Blocks might show up as heap data, but should not be free()d 1146 if (isa<BlockDataRegion>(R)) { 1147 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1148 return nullptr; 1149 } 1150 1151 const MemSpaceRegion *MS = R->getMemorySpace(); 1152 1153 // Parameters, locals, statics, globals, and memory returned by alloca() 1154 // shouldn't be freed. 1155 if (!(isa<UnknownSpaceRegion>(MS) || isa<HeapSpaceRegion>(MS))) { 1156 // FIXME: at the time this code was written, malloc() regions were 1157 // represented by conjured symbols, which are all in UnknownSpaceRegion. 1158 // This means that there isn't actually anything from HeapSpaceRegion 1159 // that should be freed, even though we allow it here. 1160 // Of course, free() can work on memory allocated outside the current 1161 // function, so UnknownSpaceRegion is always a possibility. 1162 // False negatives are better than false positives. 1163 1164 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1165 return nullptr; 1166 } 1167 1168 const SymbolicRegion *SrBase = dyn_cast<SymbolicRegion>(R->getBaseRegion()); 1169 // Various cases could lead to non-symbol values here. 1170 // For now, ignore them. 1171 if (!SrBase) 1172 return nullptr; 1173 1174 SymbolRef SymBase = SrBase->getSymbol(); 1175 const RefState *RsBase = State->get<RegionState>(SymBase); 1176 SymbolRef PreviousRetStatusSymbol = nullptr; 1177 1178 if (RsBase) { 1179 1180 // Check for double free first. 1181 if ((RsBase->isReleased() || RsBase->isRelinquished()) && 1182 !didPreviousFreeFail(State, SymBase, PreviousRetStatusSymbol)) { 1183 ReportDoubleFree(C, ParentExpr->getSourceRange(), RsBase->isReleased(), 1184 SymBase, PreviousRetStatusSymbol); 1185 return nullptr; 1186 1187 // If the pointer is allocated or escaped, but we are now trying to free it, 1188 // check that the call to free is proper. 1189 } else if (RsBase->isAllocated() || RsBase->isEscaped()) { 1190 1191 // Check if an expected deallocation function matches the real one. 1192 bool DeallocMatchesAlloc = 1193 RsBase->getAllocationFamily() == getAllocationFamily(C, ParentExpr); 1194 if (!DeallocMatchesAlloc) { 1195 ReportMismatchedDealloc(C, ArgExpr->getSourceRange(), 1196 ParentExpr, RsBase, SymBase, Hold); 1197 return nullptr; 1198 } 1199 1200 // Check if the memory location being freed is the actual location 1201 // allocated, or an offset. 1202 RegionOffset Offset = R->getAsOffset(); 1203 if (Offset.isValid() && 1204 !Offset.hasSymbolicOffset() && 1205 Offset.getOffset() != 0) { 1206 const Expr *AllocExpr = cast<Expr>(RsBase->getStmt()); 1207 ReportOffsetFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1208 AllocExpr); 1209 return nullptr; 1210 } 1211 } 1212 } 1213 1214 ReleasedAllocated = (RsBase != nullptr) && RsBase->isAllocated(); 1215 1216 // Clean out the info on previous call to free return info. 1217 State = State->remove<FreeReturnValue>(SymBase); 1218 1219 // Keep track of the return value. If it is NULL, we will know that free 1220 // failed. 1221 if (ReturnsNullOnFailure) { 1222 SVal RetVal = C.getSVal(ParentExpr); 1223 SymbolRef RetStatusSymbol = RetVal.getAsSymbol(); 1224 if (RetStatusSymbol) { 1225 C.getSymbolManager().addSymbolDependency(SymBase, RetStatusSymbol); 1226 State = State->set<FreeReturnValue>(SymBase, RetStatusSymbol); 1227 } 1228 } 1229 1230 AllocationFamily Family = RsBase ? RsBase->getAllocationFamily() 1231 : getAllocationFamily(C, ParentExpr); 1232 // Normal free. 1233 if (Hold) 1234 return State->set<RegionState>(SymBase, 1235 RefState::getRelinquished(Family, 1236 ParentExpr)); 1237 1238 return State->set<RegionState>(SymBase, 1239 RefState::getReleased(Family, ParentExpr)); 1240 } 1241 1242 Optional<MallocChecker::CheckKind> 1243 MallocChecker::getCheckIfTracked(AllocationFamily Family) const { 1244 switch (Family) { 1245 case AF_Malloc: { 1246 if (ChecksEnabled[CK_MallocOptimistic]) { 1247 return CK_MallocOptimistic; 1248 } else if (ChecksEnabled[CK_MallocPessimistic]) { 1249 return CK_MallocPessimistic; 1250 } 1251 return Optional<MallocChecker::CheckKind>(); 1252 } 1253 case AF_CXXNew: 1254 case AF_CXXNewArray: { 1255 if (ChecksEnabled[CK_NewDeleteChecker]) { 1256 return CK_NewDeleteChecker; 1257 } 1258 return Optional<MallocChecker::CheckKind>(); 1259 } 1260 case AF_None: { 1261 llvm_unreachable("no family"); 1262 } 1263 } 1264 llvm_unreachable("unhandled family"); 1265 } 1266 1267 Optional<MallocChecker::CheckKind> 1268 MallocChecker::getCheckIfTracked(CheckerContext &C, 1269 const Stmt *AllocDeallocStmt) const { 1270 return getCheckIfTracked(getAllocationFamily(C, AllocDeallocStmt)); 1271 } 1272 1273 Optional<MallocChecker::CheckKind> 1274 MallocChecker::getCheckIfTracked(CheckerContext &C, SymbolRef Sym) const { 1275 1276 const RefState *RS = C.getState()->get<RegionState>(Sym); 1277 assert(RS); 1278 return getCheckIfTracked(RS->getAllocationFamily()); 1279 } 1280 1281 bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) { 1282 if (Optional<nonloc::ConcreteInt> IntVal = V.getAs<nonloc::ConcreteInt>()) 1283 os << "an integer (" << IntVal->getValue() << ")"; 1284 else if (Optional<loc::ConcreteInt> ConstAddr = V.getAs<loc::ConcreteInt>()) 1285 os << "a constant address (" << ConstAddr->getValue() << ")"; 1286 else if (Optional<loc::GotoLabel> Label = V.getAs<loc::GotoLabel>()) 1287 os << "the address of the label '" << Label->getLabel()->getName() << "'"; 1288 else 1289 return false; 1290 1291 return true; 1292 } 1293 1294 bool MallocChecker::SummarizeRegion(raw_ostream &os, 1295 const MemRegion *MR) { 1296 switch (MR->getKind()) { 1297 case MemRegion::FunctionTextRegionKind: { 1298 const NamedDecl *FD = cast<FunctionTextRegion>(MR)->getDecl(); 1299 if (FD) 1300 os << "the address of the function '" << *FD << '\''; 1301 else 1302 os << "the address of a function"; 1303 return true; 1304 } 1305 case MemRegion::BlockTextRegionKind: 1306 os << "block text"; 1307 return true; 1308 case MemRegion::BlockDataRegionKind: 1309 // FIXME: where the block came from? 1310 os << "a block"; 1311 return true; 1312 default: { 1313 const MemSpaceRegion *MS = MR->getMemorySpace(); 1314 1315 if (isa<StackLocalsSpaceRegion>(MS)) { 1316 const VarRegion *VR = dyn_cast<VarRegion>(MR); 1317 const VarDecl *VD; 1318 if (VR) 1319 VD = VR->getDecl(); 1320 else 1321 VD = nullptr; 1322 1323 if (VD) 1324 os << "the address of the local variable '" << VD->getName() << "'"; 1325 else 1326 os << "the address of a local stack variable"; 1327 return true; 1328 } 1329 1330 if (isa<StackArgumentsSpaceRegion>(MS)) { 1331 const VarRegion *VR = dyn_cast<VarRegion>(MR); 1332 const VarDecl *VD; 1333 if (VR) 1334 VD = VR->getDecl(); 1335 else 1336 VD = nullptr; 1337 1338 if (VD) 1339 os << "the address of the parameter '" << VD->getName() << "'"; 1340 else 1341 os << "the address of a parameter"; 1342 return true; 1343 } 1344 1345 if (isa<GlobalsSpaceRegion>(MS)) { 1346 const VarRegion *VR = dyn_cast<VarRegion>(MR); 1347 const VarDecl *VD; 1348 if (VR) 1349 VD = VR->getDecl(); 1350 else 1351 VD = nullptr; 1352 1353 if (VD) { 1354 if (VD->isStaticLocal()) 1355 os << "the address of the static variable '" << VD->getName() << "'"; 1356 else 1357 os << "the address of the global variable '" << VD->getName() << "'"; 1358 } else 1359 os << "the address of a global variable"; 1360 return true; 1361 } 1362 1363 return false; 1364 } 1365 } 1366 } 1367 1368 void MallocChecker::ReportBadFree(CheckerContext &C, SVal ArgVal, 1369 SourceRange Range, 1370 const Expr *DeallocExpr) const { 1371 1372 if (!ChecksEnabled[CK_MallocOptimistic] && 1373 !ChecksEnabled[CK_MallocPessimistic] && 1374 !ChecksEnabled[CK_NewDeleteChecker]) 1375 return; 1376 1377 Optional<MallocChecker::CheckKind> CheckKind = 1378 getCheckIfTracked(C, DeallocExpr); 1379 if (!CheckKind.hasValue()) 1380 return; 1381 1382 if (ExplodedNode *N = C.generateSink()) { 1383 if (!BT_BadFree[*CheckKind]) 1384 BT_BadFree[*CheckKind].reset( 1385 new BugType(CheckNames[*CheckKind], "Bad free", "Memory Error")); 1386 1387 SmallString<100> buf; 1388 llvm::raw_svector_ostream os(buf); 1389 1390 const MemRegion *MR = ArgVal.getAsRegion(); 1391 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 1392 MR = ER->getSuperRegion(); 1393 1394 if (MR && isa<AllocaRegion>(MR)) 1395 os << "Memory allocated by alloca() should not be deallocated"; 1396 else { 1397 os << "Argument to "; 1398 if (!printAllocDeallocName(os, C, DeallocExpr)) 1399 os << "deallocator"; 1400 1401 os << " is "; 1402 bool Summarized = MR ? SummarizeRegion(os, MR) 1403 : SummarizeValue(os, ArgVal); 1404 if (Summarized) 1405 os << ", which is not memory allocated by "; 1406 else 1407 os << "not memory allocated by "; 1408 1409 printExpectedAllocName(os, C, DeallocExpr); 1410 } 1411 1412 BugReport *R = new BugReport(*BT_BadFree[*CheckKind], os.str(), N); 1413 R->markInteresting(MR); 1414 R->addRange(Range); 1415 C.emitReport(R); 1416 } 1417 } 1418 1419 void MallocChecker::ReportMismatchedDealloc(CheckerContext &C, 1420 SourceRange Range, 1421 const Expr *DeallocExpr, 1422 const RefState *RS, 1423 SymbolRef Sym, 1424 bool OwnershipTransferred) const { 1425 1426 if (!ChecksEnabled[CK_MismatchedDeallocatorChecker]) 1427 return; 1428 1429 if (ExplodedNode *N = C.generateSink()) { 1430 if (!BT_MismatchedDealloc) 1431 BT_MismatchedDealloc.reset( 1432 new BugType(CheckNames[CK_MismatchedDeallocatorChecker], 1433 "Bad deallocator", "Memory Error")); 1434 1435 SmallString<100> buf; 1436 llvm::raw_svector_ostream os(buf); 1437 1438 const Expr *AllocExpr = cast<Expr>(RS->getStmt()); 1439 SmallString<20> AllocBuf; 1440 llvm::raw_svector_ostream AllocOs(AllocBuf); 1441 SmallString<20> DeallocBuf; 1442 llvm::raw_svector_ostream DeallocOs(DeallocBuf); 1443 1444 if (OwnershipTransferred) { 1445 if (printAllocDeallocName(DeallocOs, C, DeallocExpr)) 1446 os << DeallocOs.str() << " cannot"; 1447 else 1448 os << "Cannot"; 1449 1450 os << " take ownership of memory"; 1451 1452 if (printAllocDeallocName(AllocOs, C, AllocExpr)) 1453 os << " allocated by " << AllocOs.str(); 1454 } else { 1455 os << "Memory"; 1456 if (printAllocDeallocName(AllocOs, C, AllocExpr)) 1457 os << " allocated by " << AllocOs.str(); 1458 1459 os << " should be deallocated by "; 1460 printExpectedDeallocName(os, RS->getAllocationFamily()); 1461 1462 if (printAllocDeallocName(DeallocOs, C, DeallocExpr)) 1463 os << ", not " << DeallocOs.str(); 1464 } 1465 1466 BugReport *R = new BugReport(*BT_MismatchedDealloc, os.str(), N); 1467 R->markInteresting(Sym); 1468 R->addRange(Range); 1469 R->addVisitor(new MallocBugVisitor(Sym)); 1470 C.emitReport(R); 1471 } 1472 } 1473 1474 void MallocChecker::ReportOffsetFree(CheckerContext &C, SVal ArgVal, 1475 SourceRange Range, const Expr *DeallocExpr, 1476 const Expr *AllocExpr) const { 1477 1478 if (!ChecksEnabled[CK_MallocOptimistic] && 1479 !ChecksEnabled[CK_MallocPessimistic] && 1480 !ChecksEnabled[CK_NewDeleteChecker]) 1481 return; 1482 1483 Optional<MallocChecker::CheckKind> CheckKind = 1484 getCheckIfTracked(C, AllocExpr); 1485 if (!CheckKind.hasValue()) 1486 return; 1487 1488 ExplodedNode *N = C.generateSink(); 1489 if (!N) 1490 return; 1491 1492 if (!BT_OffsetFree[*CheckKind]) 1493 BT_OffsetFree[*CheckKind].reset( 1494 new BugType(CheckNames[*CheckKind], "Offset free", "Memory Error")); 1495 1496 SmallString<100> buf; 1497 llvm::raw_svector_ostream os(buf); 1498 SmallString<20> AllocNameBuf; 1499 llvm::raw_svector_ostream AllocNameOs(AllocNameBuf); 1500 1501 const MemRegion *MR = ArgVal.getAsRegion(); 1502 assert(MR && "Only MemRegion based symbols can have offset free errors"); 1503 1504 RegionOffset Offset = MR->getAsOffset(); 1505 assert((Offset.isValid() && 1506 !Offset.hasSymbolicOffset() && 1507 Offset.getOffset() != 0) && 1508 "Only symbols with a valid offset can have offset free errors"); 1509 1510 int offsetBytes = Offset.getOffset() / C.getASTContext().getCharWidth(); 1511 1512 os << "Argument to "; 1513 if (!printAllocDeallocName(os, C, DeallocExpr)) 1514 os << "deallocator"; 1515 os << " is offset by " 1516 << offsetBytes 1517 << " " 1518 << ((abs(offsetBytes) > 1) ? "bytes" : "byte") 1519 << " from the start of "; 1520 if (AllocExpr && printAllocDeallocName(AllocNameOs, C, AllocExpr)) 1521 os << "memory allocated by " << AllocNameOs.str(); 1522 else 1523 os << "allocated memory"; 1524 1525 BugReport *R = new BugReport(*BT_OffsetFree[*CheckKind], os.str(), N); 1526 R->markInteresting(MR->getBaseRegion()); 1527 R->addRange(Range); 1528 C.emitReport(R); 1529 } 1530 1531 void MallocChecker::ReportUseAfterFree(CheckerContext &C, SourceRange Range, 1532 SymbolRef Sym) const { 1533 1534 if (!ChecksEnabled[CK_MallocOptimistic] && 1535 !ChecksEnabled[CK_MallocPessimistic] && 1536 !ChecksEnabled[CK_NewDeleteChecker]) 1537 return; 1538 1539 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 1540 if (!CheckKind.hasValue()) 1541 return; 1542 1543 if (ExplodedNode *N = C.generateSink()) { 1544 if (!BT_UseFree[*CheckKind]) 1545 BT_UseFree[*CheckKind].reset(new BugType( 1546 CheckNames[*CheckKind], "Use-after-free", "Memory Error")); 1547 1548 BugReport *R = new BugReport(*BT_UseFree[*CheckKind], 1549 "Use of memory after it is freed", N); 1550 1551 R->markInteresting(Sym); 1552 R->addRange(Range); 1553 R->addVisitor(new MallocBugVisitor(Sym)); 1554 C.emitReport(R); 1555 } 1556 } 1557 1558 void MallocChecker::ReportDoubleFree(CheckerContext &C, SourceRange Range, 1559 bool Released, SymbolRef Sym, 1560 SymbolRef PrevSym) const { 1561 1562 if (!ChecksEnabled[CK_MallocOptimistic] && 1563 !ChecksEnabled[CK_MallocPessimistic] && 1564 !ChecksEnabled[CK_NewDeleteChecker]) 1565 return; 1566 1567 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 1568 if (!CheckKind.hasValue()) 1569 return; 1570 1571 if (ExplodedNode *N = C.generateSink()) { 1572 if (!BT_DoubleFree[*CheckKind]) 1573 BT_DoubleFree[*CheckKind].reset( 1574 new BugType(CheckNames[*CheckKind], "Double free", "Memory Error")); 1575 1576 BugReport *R = 1577 new BugReport(*BT_DoubleFree[*CheckKind], 1578 (Released ? "Attempt to free released memory" 1579 : "Attempt to free non-owned memory"), 1580 N); 1581 R->addRange(Range); 1582 R->markInteresting(Sym); 1583 if (PrevSym) 1584 R->markInteresting(PrevSym); 1585 R->addVisitor(new MallocBugVisitor(Sym)); 1586 C.emitReport(R); 1587 } 1588 } 1589 1590 void MallocChecker::ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const { 1591 1592 if (!ChecksEnabled[CK_NewDeleteChecker]) 1593 return; 1594 1595 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 1596 if (!CheckKind.hasValue()) 1597 return; 1598 assert(*CheckKind == CK_NewDeleteChecker && "invalid check kind"); 1599 1600 if (ExplodedNode *N = C.generateSink()) { 1601 if (!BT_DoubleDelete) 1602 BT_DoubleDelete.reset(new BugType(CheckNames[CK_NewDeleteChecker], 1603 "Double delete", "Memory Error")); 1604 1605 BugReport *R = new BugReport(*BT_DoubleDelete, 1606 "Attempt to delete released memory", N); 1607 1608 R->markInteresting(Sym); 1609 R->addVisitor(new MallocBugVisitor(Sym)); 1610 C.emitReport(R); 1611 } 1612 } 1613 1614 ProgramStateRef MallocChecker::ReallocMem(CheckerContext &C, 1615 const CallExpr *CE, 1616 bool FreesOnFail) const { 1617 if (CE->getNumArgs() < 2) 1618 return nullptr; 1619 1620 ProgramStateRef state = C.getState(); 1621 const Expr *arg0Expr = CE->getArg(0); 1622 const LocationContext *LCtx = C.getLocationContext(); 1623 SVal Arg0Val = state->getSVal(arg0Expr, LCtx); 1624 if (!Arg0Val.getAs<DefinedOrUnknownSVal>()) 1625 return nullptr; 1626 DefinedOrUnknownSVal arg0Val = Arg0Val.castAs<DefinedOrUnknownSVal>(); 1627 1628 SValBuilder &svalBuilder = C.getSValBuilder(); 1629 1630 DefinedOrUnknownSVal PtrEQ = 1631 svalBuilder.evalEQ(state, arg0Val, svalBuilder.makeNull()); 1632 1633 // Get the size argument. If there is no size arg then give up. 1634 const Expr *Arg1 = CE->getArg(1); 1635 if (!Arg1) 1636 return nullptr; 1637 1638 // Get the value of the size argument. 1639 SVal Arg1ValG = state->getSVal(Arg1, LCtx); 1640 if (!Arg1ValG.getAs<DefinedOrUnknownSVal>()) 1641 return nullptr; 1642 DefinedOrUnknownSVal Arg1Val = Arg1ValG.castAs<DefinedOrUnknownSVal>(); 1643 1644 // Compare the size argument to 0. 1645 DefinedOrUnknownSVal SizeZero = 1646 svalBuilder.evalEQ(state, Arg1Val, 1647 svalBuilder.makeIntValWithPtrWidth(0, false)); 1648 1649 ProgramStateRef StatePtrIsNull, StatePtrNotNull; 1650 std::tie(StatePtrIsNull, StatePtrNotNull) = state->assume(PtrEQ); 1651 ProgramStateRef StateSizeIsZero, StateSizeNotZero; 1652 std::tie(StateSizeIsZero, StateSizeNotZero) = state->assume(SizeZero); 1653 // We only assume exceptional states if they are definitely true; if the 1654 // state is under-constrained, assume regular realloc behavior. 1655 bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull; 1656 bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero; 1657 1658 // If the ptr is NULL and the size is not 0, the call is equivalent to 1659 // malloc(size). 1660 if ( PrtIsNull && !SizeIsZero) { 1661 ProgramStateRef stateMalloc = MallocMemAux(C, CE, CE->getArg(1), 1662 UndefinedVal(), StatePtrIsNull); 1663 return stateMalloc; 1664 } 1665 1666 if (PrtIsNull && SizeIsZero) 1667 return nullptr; 1668 1669 // Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size). 1670 assert(!PrtIsNull); 1671 SymbolRef FromPtr = arg0Val.getAsSymbol(); 1672 SVal RetVal = state->getSVal(CE, LCtx); 1673 SymbolRef ToPtr = RetVal.getAsSymbol(); 1674 if (!FromPtr || !ToPtr) 1675 return nullptr; 1676 1677 bool ReleasedAllocated = false; 1678 1679 // If the size is 0, free the memory. 1680 if (SizeIsZero) 1681 if (ProgramStateRef stateFree = FreeMemAux(C, CE, StateSizeIsZero, 0, 1682 false, ReleasedAllocated)){ 1683 // The semantics of the return value are: 1684 // If size was equal to 0, either NULL or a pointer suitable to be passed 1685 // to free() is returned. We just free the input pointer and do not add 1686 // any constrains on the output pointer. 1687 return stateFree; 1688 } 1689 1690 // Default behavior. 1691 if (ProgramStateRef stateFree = 1692 FreeMemAux(C, CE, state, 0, false, ReleasedAllocated)) { 1693 1694 ProgramStateRef stateRealloc = MallocMemAux(C, CE, CE->getArg(1), 1695 UnknownVal(), stateFree); 1696 if (!stateRealloc) 1697 return nullptr; 1698 1699 ReallocPairKind Kind = RPToBeFreedAfterFailure; 1700 if (FreesOnFail) 1701 Kind = RPIsFreeOnFailure; 1702 else if (!ReleasedAllocated) 1703 Kind = RPDoNotTrackAfterFailure; 1704 1705 // Record the info about the reallocated symbol so that we could properly 1706 // process failed reallocation. 1707 stateRealloc = stateRealloc->set<ReallocPairs>(ToPtr, 1708 ReallocPair(FromPtr, Kind)); 1709 // The reallocated symbol should stay alive for as long as the new symbol. 1710 C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr); 1711 return stateRealloc; 1712 } 1713 return nullptr; 1714 } 1715 1716 ProgramStateRef MallocChecker::CallocMem(CheckerContext &C, const CallExpr *CE){ 1717 if (CE->getNumArgs() < 2) 1718 return nullptr; 1719 1720 ProgramStateRef state = C.getState(); 1721 SValBuilder &svalBuilder = C.getSValBuilder(); 1722 const LocationContext *LCtx = C.getLocationContext(); 1723 SVal count = state->getSVal(CE->getArg(0), LCtx); 1724 SVal elementSize = state->getSVal(CE->getArg(1), LCtx); 1725 SVal TotalSize = svalBuilder.evalBinOp(state, BO_Mul, count, elementSize, 1726 svalBuilder.getContext().getSizeType()); 1727 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 1728 1729 return MallocMemAux(C, CE, TotalSize, zeroVal, state); 1730 } 1731 1732 LeakInfo 1733 MallocChecker::getAllocationSite(const ExplodedNode *N, SymbolRef Sym, 1734 CheckerContext &C) const { 1735 const LocationContext *LeakContext = N->getLocationContext(); 1736 // Walk the ExplodedGraph backwards and find the first node that referred to 1737 // the tracked symbol. 1738 const ExplodedNode *AllocNode = N; 1739 const MemRegion *ReferenceRegion = nullptr; 1740 1741 while (N) { 1742 ProgramStateRef State = N->getState(); 1743 if (!State->get<RegionState>(Sym)) 1744 break; 1745 1746 // Find the most recent expression bound to the symbol in the current 1747 // context. 1748 if (!ReferenceRegion) { 1749 if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) { 1750 SVal Val = State->getSVal(MR); 1751 if (Val.getAsLocSymbol() == Sym) { 1752 const VarRegion* VR = MR->getBaseRegion()->getAs<VarRegion>(); 1753 // Do not show local variables belonging to a function other than 1754 // where the error is reported. 1755 if (!VR || 1756 (VR->getStackFrame() == LeakContext->getCurrentStackFrame())) 1757 ReferenceRegion = MR; 1758 } 1759 } 1760 } 1761 1762 // Allocation node, is the last node in the current context in which the 1763 // symbol was tracked. 1764 if (N->getLocationContext() == LeakContext) 1765 AllocNode = N; 1766 N = N->pred_empty() ? nullptr : *(N->pred_begin()); 1767 } 1768 1769 return LeakInfo(AllocNode, ReferenceRegion); 1770 } 1771 1772 void MallocChecker::reportLeak(SymbolRef Sym, ExplodedNode *N, 1773 CheckerContext &C) const { 1774 1775 if (!ChecksEnabled[CK_MallocOptimistic] && 1776 !ChecksEnabled[CK_MallocPessimistic] && 1777 !ChecksEnabled[CK_NewDeleteLeaksChecker]) 1778 return; 1779 1780 const RefState *RS = C.getState()->get<RegionState>(Sym); 1781 assert(RS && "cannot leak an untracked symbol"); 1782 AllocationFamily Family = RS->getAllocationFamily(); 1783 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 1784 if (!CheckKind.hasValue()) 1785 return; 1786 1787 // Special case for new and new[]; these are controlled by a separate checker 1788 // flag so that they can be selectively disabled. 1789 if (Family == AF_CXXNew || Family == AF_CXXNewArray) 1790 if (!ChecksEnabled[CK_NewDeleteLeaksChecker]) 1791 return; 1792 1793 assert(N); 1794 if (!BT_Leak[*CheckKind]) { 1795 BT_Leak[*CheckKind].reset( 1796 new BugType(CheckNames[*CheckKind], "Memory leak", "Memory Error")); 1797 // Leaks should not be reported if they are post-dominated by a sink: 1798 // (1) Sinks are higher importance bugs. 1799 // (2) NoReturnFunctionChecker uses sink nodes to represent paths ending 1800 // with __noreturn functions such as assert() or exit(). We choose not 1801 // to report leaks on such paths. 1802 BT_Leak[*CheckKind]->setSuppressOnSink(true); 1803 } 1804 1805 // Most bug reports are cached at the location where they occurred. 1806 // With leaks, we want to unique them by the location where they were 1807 // allocated, and only report a single path. 1808 PathDiagnosticLocation LocUsedForUniqueing; 1809 const ExplodedNode *AllocNode = nullptr; 1810 const MemRegion *Region = nullptr; 1811 std::tie(AllocNode, Region) = getAllocationSite(N, Sym, C); 1812 1813 ProgramPoint P = AllocNode->getLocation(); 1814 const Stmt *AllocationStmt = nullptr; 1815 if (Optional<CallExitEnd> Exit = P.getAs<CallExitEnd>()) 1816 AllocationStmt = Exit->getCalleeContext()->getCallSite(); 1817 else if (Optional<StmtPoint> SP = P.getAs<StmtPoint>()) 1818 AllocationStmt = SP->getStmt(); 1819 if (AllocationStmt) 1820 LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocationStmt, 1821 C.getSourceManager(), 1822 AllocNode->getLocationContext()); 1823 1824 SmallString<200> buf; 1825 llvm::raw_svector_ostream os(buf); 1826 if (Region && Region->canPrintPretty()) { 1827 os << "Potential leak of memory pointed to by "; 1828 Region->printPretty(os); 1829 } else { 1830 os << "Potential memory leak"; 1831 } 1832 1833 BugReport *R = 1834 new BugReport(*BT_Leak[*CheckKind], os.str(), N, LocUsedForUniqueing, 1835 AllocNode->getLocationContext()->getDecl()); 1836 R->markInteresting(Sym); 1837 R->addVisitor(new MallocBugVisitor(Sym, true)); 1838 C.emitReport(R); 1839 } 1840 1841 void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper, 1842 CheckerContext &C) const 1843 { 1844 if (!SymReaper.hasDeadSymbols()) 1845 return; 1846 1847 ProgramStateRef state = C.getState(); 1848 RegionStateTy RS = state->get<RegionState>(); 1849 RegionStateTy::Factory &F = state->get_context<RegionState>(); 1850 1851 SmallVector<SymbolRef, 2> Errors; 1852 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 1853 if (SymReaper.isDead(I->first)) { 1854 if (I->second.isAllocated()) 1855 Errors.push_back(I->first); 1856 // Remove the dead symbol from the map. 1857 RS = F.remove(RS, I->first); 1858 1859 } 1860 } 1861 1862 // Cleanup the Realloc Pairs Map. 1863 ReallocPairsTy RP = state->get<ReallocPairs>(); 1864 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 1865 if (SymReaper.isDead(I->first) || 1866 SymReaper.isDead(I->second.ReallocatedSym)) { 1867 state = state->remove<ReallocPairs>(I->first); 1868 } 1869 } 1870 1871 // Cleanup the FreeReturnValue Map. 1872 FreeReturnValueTy FR = state->get<FreeReturnValue>(); 1873 for (FreeReturnValueTy::iterator I = FR.begin(), E = FR.end(); I != E; ++I) { 1874 if (SymReaper.isDead(I->first) || 1875 SymReaper.isDead(I->second)) { 1876 state = state->remove<FreeReturnValue>(I->first); 1877 } 1878 } 1879 1880 // Generate leak node. 1881 ExplodedNode *N = C.getPredecessor(); 1882 if (!Errors.empty()) { 1883 static CheckerProgramPointTag Tag("MallocChecker", "DeadSymbolsLeak"); 1884 N = C.addTransition(C.getState(), C.getPredecessor(), &Tag); 1885 for (SmallVectorImpl<SymbolRef>::iterator 1886 I = Errors.begin(), E = Errors.end(); I != E; ++I) { 1887 reportLeak(*I, N, C); 1888 } 1889 } 1890 1891 C.addTransition(state->set<RegionState>(RS), N); 1892 } 1893 1894 void MallocChecker::checkPreCall(const CallEvent &Call, 1895 CheckerContext &C) const { 1896 1897 if (const CXXDestructorCall *DC = dyn_cast<CXXDestructorCall>(&Call)) { 1898 SymbolRef Sym = DC->getCXXThisVal().getAsSymbol(); 1899 if (!Sym || checkDoubleDelete(Sym, C)) 1900 return; 1901 } 1902 1903 // We will check for double free in the post visit. 1904 if (const AnyFunctionCall *FC = dyn_cast<AnyFunctionCall>(&Call)) { 1905 const FunctionDecl *FD = FC->getDecl(); 1906 if (!FD) 1907 return; 1908 1909 if ((ChecksEnabled[CK_MallocOptimistic] || 1910 ChecksEnabled[CK_MallocPessimistic]) && 1911 isFreeFunction(FD, C.getASTContext())) 1912 return; 1913 1914 if (ChecksEnabled[CK_NewDeleteChecker] && 1915 isStandardNewDelete(FD, C.getASTContext())) 1916 return; 1917 } 1918 1919 // Check if the callee of a method is deleted. 1920 if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(&Call)) { 1921 SymbolRef Sym = CC->getCXXThisVal().getAsSymbol(); 1922 if (!Sym || checkUseAfterFree(Sym, C, CC->getCXXThisExpr())) 1923 return; 1924 } 1925 1926 // Check arguments for being used after free. 1927 for (unsigned I = 0, E = Call.getNumArgs(); I != E; ++I) { 1928 SVal ArgSVal = Call.getArgSVal(I); 1929 if (ArgSVal.getAs<Loc>()) { 1930 SymbolRef Sym = ArgSVal.getAsSymbol(); 1931 if (!Sym) 1932 continue; 1933 if (checkUseAfterFree(Sym, C, Call.getArgExpr(I))) 1934 return; 1935 } 1936 } 1937 } 1938 1939 void MallocChecker::checkPreStmt(const ReturnStmt *S, CheckerContext &C) const { 1940 const Expr *E = S->getRetValue(); 1941 if (!E) 1942 return; 1943 1944 // Check if we are returning a symbol. 1945 ProgramStateRef State = C.getState(); 1946 SVal RetVal = State->getSVal(E, C.getLocationContext()); 1947 SymbolRef Sym = RetVal.getAsSymbol(); 1948 if (!Sym) 1949 // If we are returning a field of the allocated struct or an array element, 1950 // the callee could still free the memory. 1951 // TODO: This logic should be a part of generic symbol escape callback. 1952 if (const MemRegion *MR = RetVal.getAsRegion()) 1953 if (isa<FieldRegion>(MR) || isa<ElementRegion>(MR)) 1954 if (const SymbolicRegion *BMR = 1955 dyn_cast<SymbolicRegion>(MR->getBaseRegion())) 1956 Sym = BMR->getSymbol(); 1957 1958 // Check if we are returning freed memory. 1959 if (Sym) 1960 checkUseAfterFree(Sym, C, E); 1961 } 1962 1963 // TODO: Blocks should be either inlined or should call invalidate regions 1964 // upon invocation. After that's in place, special casing here will not be 1965 // needed. 1966 void MallocChecker::checkPostStmt(const BlockExpr *BE, 1967 CheckerContext &C) const { 1968 1969 // Scan the BlockDecRefExprs for any object the retain count checker 1970 // may be tracking. 1971 if (!BE->getBlockDecl()->hasCaptures()) 1972 return; 1973 1974 ProgramStateRef state = C.getState(); 1975 const BlockDataRegion *R = 1976 cast<BlockDataRegion>(state->getSVal(BE, 1977 C.getLocationContext()).getAsRegion()); 1978 1979 BlockDataRegion::referenced_vars_iterator I = R->referenced_vars_begin(), 1980 E = R->referenced_vars_end(); 1981 1982 if (I == E) 1983 return; 1984 1985 SmallVector<const MemRegion*, 10> Regions; 1986 const LocationContext *LC = C.getLocationContext(); 1987 MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager(); 1988 1989 for ( ; I != E; ++I) { 1990 const VarRegion *VR = I.getCapturedRegion(); 1991 if (VR->getSuperRegion() == R) { 1992 VR = MemMgr.getVarRegion(VR->getDecl(), LC); 1993 } 1994 Regions.push_back(VR); 1995 } 1996 1997 state = 1998 state->scanReachableSymbols<StopTrackingCallback>(Regions.data(), 1999 Regions.data() + Regions.size()).getState(); 2000 C.addTransition(state); 2001 } 2002 2003 bool MallocChecker::isReleased(SymbolRef Sym, CheckerContext &C) const { 2004 assert(Sym); 2005 const RefState *RS = C.getState()->get<RegionState>(Sym); 2006 return (RS && RS->isReleased()); 2007 } 2008 2009 bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C, 2010 const Stmt *S) const { 2011 2012 if (isReleased(Sym, C)) { 2013 ReportUseAfterFree(C, S->getSourceRange(), Sym); 2014 return true; 2015 } 2016 2017 return false; 2018 } 2019 2020 bool MallocChecker::checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const { 2021 2022 if (isReleased(Sym, C)) { 2023 ReportDoubleDelete(C, Sym); 2024 return true; 2025 } 2026 return false; 2027 } 2028 2029 // Check if the location is a freed symbolic region. 2030 void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S, 2031 CheckerContext &C) const { 2032 SymbolRef Sym = l.getLocSymbolInBase(); 2033 if (Sym) 2034 checkUseAfterFree(Sym, C, S); 2035 } 2036 2037 // If a symbolic region is assumed to NULL (or another constant), stop tracking 2038 // it - assuming that allocation failed on this path. 2039 ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state, 2040 SVal Cond, 2041 bool Assumption) const { 2042 RegionStateTy RS = state->get<RegionState>(); 2043 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2044 // If the symbol is assumed to be NULL, remove it from consideration. 2045 ConstraintManager &CMgr = state->getConstraintManager(); 2046 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 2047 if (AllocFailed.isConstrainedTrue()) 2048 state = state->remove<RegionState>(I.getKey()); 2049 } 2050 2051 // Realloc returns 0 when reallocation fails, which means that we should 2052 // restore the state of the pointer being reallocated. 2053 ReallocPairsTy RP = state->get<ReallocPairs>(); 2054 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 2055 // If the symbol is assumed to be NULL, remove it from consideration. 2056 ConstraintManager &CMgr = state->getConstraintManager(); 2057 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 2058 if (!AllocFailed.isConstrainedTrue()) 2059 continue; 2060 2061 SymbolRef ReallocSym = I.getData().ReallocatedSym; 2062 if (const RefState *RS = state->get<RegionState>(ReallocSym)) { 2063 if (RS->isReleased()) { 2064 if (I.getData().Kind == RPToBeFreedAfterFailure) 2065 state = state->set<RegionState>(ReallocSym, 2066 RefState::getAllocated(RS->getAllocationFamily(), RS->getStmt())); 2067 else if (I.getData().Kind == RPDoNotTrackAfterFailure) 2068 state = state->remove<RegionState>(ReallocSym); 2069 else 2070 assert(I.getData().Kind == RPIsFreeOnFailure); 2071 } 2072 } 2073 state = state->remove<ReallocPairs>(I.getKey()); 2074 } 2075 2076 return state; 2077 } 2078 2079 bool MallocChecker::mayFreeAnyEscapedMemoryOrIsModeledExplicitly( 2080 const CallEvent *Call, 2081 ProgramStateRef State, 2082 SymbolRef &EscapingSymbol) const { 2083 assert(Call); 2084 EscapingSymbol = nullptr; 2085 2086 // For now, assume that any C++ or block call can free memory. 2087 // TODO: If we want to be more optimistic here, we'll need to make sure that 2088 // regions escape to C++ containers. They seem to do that even now, but for 2089 // mysterious reasons. 2090 if (!(isa<SimpleFunctionCall>(Call) || isa<ObjCMethodCall>(Call))) 2091 return true; 2092 2093 // Check Objective-C messages by selector name. 2094 if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) { 2095 // If it's not a framework call, or if it takes a callback, assume it 2096 // can free memory. 2097 if (!Call->isInSystemHeader() || Call->hasNonZeroCallbackArg()) 2098 return true; 2099 2100 // If it's a method we know about, handle it explicitly post-call. 2101 // This should happen before the "freeWhenDone" check below. 2102 if (isKnownDeallocObjCMethodName(*Msg)) 2103 return false; 2104 2105 // If there's a "freeWhenDone" parameter, but the method isn't one we know 2106 // about, we can't be sure that the object will use free() to deallocate the 2107 // memory, so we can't model it explicitly. The best we can do is use it to 2108 // decide whether the pointer escapes. 2109 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(*Msg)) 2110 return *FreeWhenDone; 2111 2112 // If the first selector piece ends with "NoCopy", and there is no 2113 // "freeWhenDone" parameter set to zero, we know ownership is being 2114 // transferred. Again, though, we can't be sure that the object will use 2115 // free() to deallocate the memory, so we can't model it explicitly. 2116 StringRef FirstSlot = Msg->getSelector().getNameForSlot(0); 2117 if (FirstSlot.endswith("NoCopy")) 2118 return true; 2119 2120 // If the first selector starts with addPointer, insertPointer, 2121 // or replacePointer, assume we are dealing with NSPointerArray or similar. 2122 // This is similar to C++ containers (vector); we still might want to check 2123 // that the pointers get freed by following the container itself. 2124 if (FirstSlot.startswith("addPointer") || 2125 FirstSlot.startswith("insertPointer") || 2126 FirstSlot.startswith("replacePointer") || 2127 FirstSlot.equals("valueWithPointer")) { 2128 return true; 2129 } 2130 2131 // We should escape receiver on call to 'init'. This is especially relevant 2132 // to the receiver, as the corresponding symbol is usually not referenced 2133 // after the call. 2134 if (Msg->getMethodFamily() == OMF_init) { 2135 EscapingSymbol = Msg->getReceiverSVal().getAsSymbol(); 2136 return true; 2137 } 2138 2139 // Otherwise, assume that the method does not free memory. 2140 // Most framework methods do not free memory. 2141 return false; 2142 } 2143 2144 // At this point the only thing left to handle is straight function calls. 2145 const FunctionDecl *FD = cast<SimpleFunctionCall>(Call)->getDecl(); 2146 if (!FD) 2147 return true; 2148 2149 ASTContext &ASTC = State->getStateManager().getContext(); 2150 2151 // If it's one of the allocation functions we can reason about, we model 2152 // its behavior explicitly. 2153 if (isMemFunction(FD, ASTC)) 2154 return false; 2155 2156 // If it's not a system call, assume it frees memory. 2157 if (!Call->isInSystemHeader()) 2158 return true; 2159 2160 // White list the system functions whose arguments escape. 2161 const IdentifierInfo *II = FD->getIdentifier(); 2162 if (!II) 2163 return true; 2164 StringRef FName = II->getName(); 2165 2166 // White list the 'XXXNoCopy' CoreFoundation functions. 2167 // We specifically check these before 2168 if (FName.endswith("NoCopy")) { 2169 // Look for the deallocator argument. We know that the memory ownership 2170 // is not transferred only if the deallocator argument is 2171 // 'kCFAllocatorNull'. 2172 for (unsigned i = 1; i < Call->getNumArgs(); ++i) { 2173 const Expr *ArgE = Call->getArgExpr(i)->IgnoreParenCasts(); 2174 if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(ArgE)) { 2175 StringRef DeallocatorName = DE->getFoundDecl()->getName(); 2176 if (DeallocatorName == "kCFAllocatorNull") 2177 return false; 2178 } 2179 } 2180 return true; 2181 } 2182 2183 // Associating streams with malloced buffers. The pointer can escape if 2184 // 'closefn' is specified (and if that function does free memory), 2185 // but it will not if closefn is not specified. 2186 // Currently, we do not inspect the 'closefn' function (PR12101). 2187 if (FName == "funopen") 2188 if (Call->getNumArgs() >= 4 && Call->getArgSVal(4).isConstant(0)) 2189 return false; 2190 2191 // Do not warn on pointers passed to 'setbuf' when used with std streams, 2192 // these leaks might be intentional when setting the buffer for stdio. 2193 // http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer 2194 if (FName == "setbuf" || FName =="setbuffer" || 2195 FName == "setlinebuf" || FName == "setvbuf") { 2196 if (Call->getNumArgs() >= 1) { 2197 const Expr *ArgE = Call->getArgExpr(0)->IgnoreParenCasts(); 2198 if (const DeclRefExpr *ArgDRE = dyn_cast<DeclRefExpr>(ArgE)) 2199 if (const VarDecl *D = dyn_cast<VarDecl>(ArgDRE->getDecl())) 2200 if (D->getCanonicalDecl()->getName().find("std") != StringRef::npos) 2201 return true; 2202 } 2203 } 2204 2205 // A bunch of other functions which either take ownership of a pointer or 2206 // wrap the result up in a struct or object, meaning it can be freed later. 2207 // (See RetainCountChecker.) Not all the parameters here are invalidated, 2208 // but the Malloc checker cannot differentiate between them. The right way 2209 // of doing this would be to implement a pointer escapes callback. 2210 if (FName == "CGBitmapContextCreate" || 2211 FName == "CGBitmapContextCreateWithData" || 2212 FName == "CVPixelBufferCreateWithBytes" || 2213 FName == "CVPixelBufferCreateWithPlanarBytes" || 2214 FName == "OSAtomicEnqueue") { 2215 return true; 2216 } 2217 2218 // Handle cases where we know a buffer's /address/ can escape. 2219 // Note that the above checks handle some special cases where we know that 2220 // even though the address escapes, it's still our responsibility to free the 2221 // buffer. 2222 if (Call->argumentsMayEscape()) 2223 return true; 2224 2225 // Otherwise, assume that the function does not free memory. 2226 // Most system calls do not free the memory. 2227 return false; 2228 } 2229 2230 static bool retTrue(const RefState *RS) { 2231 return true; 2232 } 2233 2234 static bool checkIfNewOrNewArrayFamily(const RefState *RS) { 2235 return (RS->getAllocationFamily() == AF_CXXNewArray || 2236 RS->getAllocationFamily() == AF_CXXNew); 2237 } 2238 2239 ProgramStateRef MallocChecker::checkPointerEscape(ProgramStateRef State, 2240 const InvalidatedSymbols &Escaped, 2241 const CallEvent *Call, 2242 PointerEscapeKind Kind) const { 2243 return checkPointerEscapeAux(State, Escaped, Call, Kind, &retTrue); 2244 } 2245 2246 ProgramStateRef MallocChecker::checkConstPointerEscape(ProgramStateRef State, 2247 const InvalidatedSymbols &Escaped, 2248 const CallEvent *Call, 2249 PointerEscapeKind Kind) const { 2250 return checkPointerEscapeAux(State, Escaped, Call, Kind, 2251 &checkIfNewOrNewArrayFamily); 2252 } 2253 2254 ProgramStateRef MallocChecker::checkPointerEscapeAux(ProgramStateRef State, 2255 const InvalidatedSymbols &Escaped, 2256 const CallEvent *Call, 2257 PointerEscapeKind Kind, 2258 bool(*CheckRefState)(const RefState*)) const { 2259 // If we know that the call does not free memory, or we want to process the 2260 // call later, keep tracking the top level arguments. 2261 SymbolRef EscapingSymbol = nullptr; 2262 if (Kind == PSK_DirectEscapeOnCall && 2263 !mayFreeAnyEscapedMemoryOrIsModeledExplicitly(Call, State, 2264 EscapingSymbol) && 2265 !EscapingSymbol) { 2266 return State; 2267 } 2268 2269 for (InvalidatedSymbols::const_iterator I = Escaped.begin(), 2270 E = Escaped.end(); 2271 I != E; ++I) { 2272 SymbolRef sym = *I; 2273 2274 if (EscapingSymbol && EscapingSymbol != sym) 2275 continue; 2276 2277 if (const RefState *RS = State->get<RegionState>(sym)) { 2278 if (RS->isAllocated() && CheckRefState(RS)) { 2279 State = State->remove<RegionState>(sym); 2280 State = State->set<RegionState>(sym, RefState::getEscaped(RS)); 2281 } 2282 } 2283 } 2284 return State; 2285 } 2286 2287 static SymbolRef findFailedReallocSymbol(ProgramStateRef currState, 2288 ProgramStateRef prevState) { 2289 ReallocPairsTy currMap = currState->get<ReallocPairs>(); 2290 ReallocPairsTy prevMap = prevState->get<ReallocPairs>(); 2291 2292 for (ReallocPairsTy::iterator I = prevMap.begin(), E = prevMap.end(); 2293 I != E; ++I) { 2294 SymbolRef sym = I.getKey(); 2295 if (!currMap.lookup(sym)) 2296 return sym; 2297 } 2298 2299 return nullptr; 2300 } 2301 2302 PathDiagnosticPiece * 2303 MallocChecker::MallocBugVisitor::VisitNode(const ExplodedNode *N, 2304 const ExplodedNode *PrevN, 2305 BugReporterContext &BRC, 2306 BugReport &BR) { 2307 ProgramStateRef state = N->getState(); 2308 ProgramStateRef statePrev = PrevN->getState(); 2309 2310 const RefState *RS = state->get<RegionState>(Sym); 2311 const RefState *RSPrev = statePrev->get<RegionState>(Sym); 2312 if (!RS) 2313 return nullptr; 2314 2315 const Stmt *S = nullptr; 2316 const char *Msg = nullptr; 2317 StackHintGeneratorForSymbol *StackHint = nullptr; 2318 2319 // Retrieve the associated statement. 2320 ProgramPoint ProgLoc = N->getLocation(); 2321 if (Optional<StmtPoint> SP = ProgLoc.getAs<StmtPoint>()) { 2322 S = SP->getStmt(); 2323 } else if (Optional<CallExitEnd> Exit = ProgLoc.getAs<CallExitEnd>()) { 2324 S = Exit->getCalleeContext()->getCallSite(); 2325 } else if (Optional<BlockEdge> Edge = ProgLoc.getAs<BlockEdge>()) { 2326 // If an assumption was made on a branch, it should be caught 2327 // here by looking at the state transition. 2328 S = Edge->getSrc()->getTerminator(); 2329 } 2330 2331 if (!S) 2332 return nullptr; 2333 2334 // FIXME: We will eventually need to handle non-statement-based events 2335 // (__attribute__((cleanup))). 2336 2337 // Find out if this is an interesting point and what is the kind. 2338 if (Mode == Normal) { 2339 if (isAllocated(RS, RSPrev, S)) { 2340 Msg = "Memory is allocated"; 2341 StackHint = new StackHintGeneratorForSymbol(Sym, 2342 "Returned allocated memory"); 2343 } else if (isReleased(RS, RSPrev, S)) { 2344 Msg = "Memory is released"; 2345 StackHint = new StackHintGeneratorForSymbol(Sym, 2346 "Returning; memory was released"); 2347 } else if (isRelinquished(RS, RSPrev, S)) { 2348 Msg = "Memory ownership is transferred"; 2349 StackHint = new StackHintGeneratorForSymbol(Sym, ""); 2350 } else if (isReallocFailedCheck(RS, RSPrev, S)) { 2351 Mode = ReallocationFailed; 2352 Msg = "Reallocation failed"; 2353 StackHint = new StackHintGeneratorForReallocationFailed(Sym, 2354 "Reallocation failed"); 2355 2356 if (SymbolRef sym = findFailedReallocSymbol(state, statePrev)) { 2357 // Is it possible to fail two reallocs WITHOUT testing in between? 2358 assert((!FailedReallocSymbol || FailedReallocSymbol == sym) && 2359 "We only support one failed realloc at a time."); 2360 BR.markInteresting(sym); 2361 FailedReallocSymbol = sym; 2362 } 2363 } 2364 2365 // We are in a special mode if a reallocation failed later in the path. 2366 } else if (Mode == ReallocationFailed) { 2367 assert(FailedReallocSymbol && "No symbol to look for."); 2368 2369 // Is this is the first appearance of the reallocated symbol? 2370 if (!statePrev->get<RegionState>(FailedReallocSymbol)) { 2371 // We're at the reallocation point. 2372 Msg = "Attempt to reallocate memory"; 2373 StackHint = new StackHintGeneratorForSymbol(Sym, 2374 "Returned reallocated memory"); 2375 FailedReallocSymbol = nullptr; 2376 Mode = Normal; 2377 } 2378 } 2379 2380 if (!Msg) 2381 return nullptr; 2382 assert(StackHint); 2383 2384 // Generate the extra diagnostic. 2385 PathDiagnosticLocation Pos(S, BRC.getSourceManager(), 2386 N->getLocationContext()); 2387 return new PathDiagnosticEventPiece(Pos, Msg, true, StackHint); 2388 } 2389 2390 void MallocChecker::printState(raw_ostream &Out, ProgramStateRef State, 2391 const char *NL, const char *Sep) const { 2392 2393 RegionStateTy RS = State->get<RegionState>(); 2394 2395 if (!RS.isEmpty()) { 2396 Out << Sep << "MallocChecker :" << NL; 2397 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2398 const RefState *RefS = State->get<RegionState>(I.getKey()); 2399 AllocationFamily Family = RefS->getAllocationFamily(); 2400 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2401 2402 I.getKey()->dumpToStream(Out); 2403 Out << " : "; 2404 I.getData().dump(Out); 2405 if (CheckKind.hasValue()) 2406 Out << " (" << CheckNames[*CheckKind].getName() << ")"; 2407 Out << NL; 2408 } 2409 } 2410 } 2411 2412 void ento::registerNewDeleteLeaksChecker(CheckerManager &mgr) { 2413 registerCStringCheckerBasic(mgr); 2414 MallocChecker *checker = mgr.registerChecker<MallocChecker>(); 2415 checker->ChecksEnabled[MallocChecker::CK_NewDeleteLeaksChecker] = true; 2416 checker->CheckNames[MallocChecker::CK_NewDeleteLeaksChecker] = 2417 mgr.getCurrentCheckName(); 2418 // We currently treat NewDeleteLeaks checker as a subchecker of NewDelete 2419 // checker. 2420 if (!checker->ChecksEnabled[MallocChecker::CK_NewDeleteChecker]) 2421 checker->ChecksEnabled[MallocChecker::CK_NewDeleteChecker] = true; 2422 } 2423 2424 #define REGISTER_CHECKER(name) \ 2425 void ento::register##name(CheckerManager &mgr) { \ 2426 registerCStringCheckerBasic(mgr); \ 2427 MallocChecker *checker = mgr.registerChecker<MallocChecker>(); \ 2428 checker->ChecksEnabled[MallocChecker::CK_##name] = true; \ 2429 checker->CheckNames[MallocChecker::CK_##name] = mgr.getCurrentCheckName(); \ 2430 } 2431 2432 REGISTER_CHECKER(MallocPessimistic) 2433 REGISTER_CHECKER(MallocOptimistic) 2434 REGISTER_CHECKER(NewDeleteChecker) 2435 REGISTER_CHECKER(MismatchedDeallocatorChecker) 2436