1 //=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines a variety of memory management related checkers, such as 10 // leak, double free, and use-after-free. 11 // 12 // The following checkers are defined here: 13 // 14 // * MallocChecker 15 // Despite its name, it models all sorts of memory allocations and 16 // de- or reallocation, including but not limited to malloc, free, 17 // relloc, new, delete. It also reports on a variety of memory misuse 18 // errors. 19 // Many other checkers interact very closely with this checker, in fact, 20 // most are merely options to this one. Other checkers may register 21 // MallocChecker, but do not enable MallocChecker's reports (more details 22 // to follow around its field, ChecksEnabled). 23 // It also has a boolean "Optimistic" checker option, which if set to true 24 // will cause the checker to model user defined memory management related 25 // functions annotated via the attribute ownership_takes, ownership_holds 26 // and ownership_returns. 27 // 28 // * NewDeleteChecker 29 // Enables the modeling of new, new[], delete, delete[] in MallocChecker, 30 // and checks for related double-free and use-after-free errors. 31 // 32 // * NewDeleteLeaksChecker 33 // Checks for leaks related to new, new[], delete, delete[]. 34 // Depends on NewDeleteChecker. 35 // 36 // * MismatchedDeallocatorChecker 37 // Enables checking whether memory is deallocated with the correspending 38 // allocation function in MallocChecker, such as malloc() allocated 39 // regions are only freed by free(), new by delete, new[] by delete[]. 40 // 41 // InnerPointerChecker interacts very closely with MallocChecker, but unlike 42 // the above checkers, it has it's own file, hence the many InnerPointerChecker 43 // related headers and non-static functions. 44 // 45 //===----------------------------------------------------------------------===// 46 47 #include "AllocationState.h" 48 #include "InterCheckerAPI.h" 49 #include "NoOwnershipChangeVisitor.h" 50 #include "clang/AST/Attr.h" 51 #include "clang/AST/DeclCXX.h" 52 #include "clang/AST/DeclTemplate.h" 53 #include "clang/AST/Expr.h" 54 #include "clang/AST/ExprCXX.h" 55 #include "clang/AST/ParentMap.h" 56 #include "clang/ASTMatchers/ASTMatchFinder.h" 57 #include "clang/ASTMatchers/ASTMatchers.h" 58 #include "clang/Analysis/ProgramPoint.h" 59 #include "clang/Basic/LLVM.h" 60 #include "clang/Basic/SourceManager.h" 61 #include "clang/Basic/TargetInfo.h" 62 #include "clang/Lex/Lexer.h" 63 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" 64 #include "clang/StaticAnalyzer/Checkers/Taint.h" 65 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 66 #include "clang/StaticAnalyzer/Core/BugReporter/CommonBugCategories.h" 67 #include "clang/StaticAnalyzer/Core/Checker.h" 68 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 69 #include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h" 70 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 71 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 72 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h" 73 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h" 74 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h" 75 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 76 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 77 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h" 78 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" 79 #include "clang/StaticAnalyzer/Core/PathSensitive/StoreRef.h" 80 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" 81 #include "llvm/ADT/STLExtras.h" 82 #include "llvm/ADT/SetOperations.h" 83 #include "llvm/ADT/StringExtras.h" 84 #include "llvm/Support/Casting.h" 85 #include "llvm/Support/Compiler.h" 86 #include "llvm/Support/ErrorHandling.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include <functional> 89 #include <optional> 90 #include <utility> 91 92 using namespace clang; 93 using namespace ento; 94 using namespace std::placeholders; 95 96 //===----------------------------------------------------------------------===// 97 // The types of allocation we're modeling. This is used to check whether a 98 // dynamically allocated object is deallocated with the correct function, like 99 // not using operator delete on an object created by malloc(), or alloca regions 100 // aren't ever deallocated manually. 101 //===----------------------------------------------------------------------===// 102 103 namespace { 104 105 // Used to check correspondence between allocators and deallocators. 106 enum AllocationFamilyKind { 107 AF_None, 108 AF_Malloc, 109 AF_CXXNew, 110 AF_CXXNewArray, 111 AF_IfNameIndex, 112 AF_Alloca, 113 AF_InnerBuffer, 114 AF_Custom, 115 }; 116 117 struct AllocationFamily { 118 AllocationFamilyKind Kind; 119 std::optional<StringRef> CustomName; 120 121 explicit AllocationFamily(AllocationFamilyKind AKind, 122 std::optional<StringRef> Name = std::nullopt) 123 : Kind(AKind), CustomName(Name) { 124 assert((Kind != AF_Custom || CustomName.has_value()) && 125 "Custom family must specify also the name"); 126 127 // Preseve previous behavior when "malloc" class means AF_Malloc 128 if (Kind == AF_Custom && CustomName.value() == "malloc") { 129 Kind = AF_Malloc; 130 CustomName = std::nullopt; 131 } 132 } 133 134 bool operator==(const AllocationFamily &Other) const { 135 return std::tie(Kind, CustomName) == std::tie(Other.Kind, Other.CustomName); 136 } 137 138 bool operator!=(const AllocationFamily &Other) const { 139 return !(*this == Other); 140 } 141 142 void Profile(llvm::FoldingSetNodeID &ID) const { 143 ID.AddInteger(Kind); 144 145 if (Kind == AF_Custom) 146 ID.AddString(CustomName.value()); 147 } 148 }; 149 150 } // end of anonymous namespace 151 152 /// Print names of allocators and deallocators. 153 /// 154 /// \returns true on success. 155 static bool printMemFnName(raw_ostream &os, CheckerContext &C, const Expr *E); 156 157 /// Print expected name of an allocator based on the deallocator's family 158 /// derived from the DeallocExpr. 159 static void printExpectedAllocName(raw_ostream &os, AllocationFamily Family); 160 161 /// Print expected name of a deallocator based on the allocator's 162 /// family. 163 static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family); 164 165 //===----------------------------------------------------------------------===// 166 // The state of a symbol, in terms of memory management. 167 //===----------------------------------------------------------------------===// 168 169 namespace { 170 171 class RefState { 172 enum Kind { 173 // Reference to allocated memory. 174 Allocated, 175 // Reference to zero-allocated memory. 176 AllocatedOfSizeZero, 177 // Reference to released/freed memory. 178 Released, 179 // The responsibility for freeing resources has transferred from 180 // this reference. A relinquished symbol should not be freed. 181 Relinquished, 182 // We are no longer guaranteed to have observed all manipulations 183 // of this pointer/memory. For example, it could have been 184 // passed as a parameter to an opaque function. 185 Escaped 186 }; 187 188 const Stmt *S; 189 190 Kind K; 191 AllocationFamily Family; 192 193 RefState(Kind k, const Stmt *s, AllocationFamily family) 194 : S(s), K(k), Family(family) { 195 assert(family.Kind != AF_None); 196 } 197 198 public: 199 bool isAllocated() const { return K == Allocated; } 200 bool isAllocatedOfSizeZero() const { return K == AllocatedOfSizeZero; } 201 bool isReleased() const { return K == Released; } 202 bool isRelinquished() const { return K == Relinquished; } 203 bool isEscaped() const { return K == Escaped; } 204 AllocationFamily getAllocationFamily() const { return Family; } 205 const Stmt *getStmt() const { return S; } 206 207 bool operator==(const RefState &X) const { 208 return K == X.K && S == X.S && Family == X.Family; 209 } 210 211 static RefState getAllocated(AllocationFamily family, const Stmt *s) { 212 return RefState(Allocated, s, family); 213 } 214 static RefState getAllocatedOfSizeZero(const RefState *RS) { 215 return RefState(AllocatedOfSizeZero, RS->getStmt(), 216 RS->getAllocationFamily()); 217 } 218 static RefState getReleased(AllocationFamily family, const Stmt *s) { 219 return RefState(Released, s, family); 220 } 221 static RefState getRelinquished(AllocationFamily family, const Stmt *s) { 222 return RefState(Relinquished, s, family); 223 } 224 static RefState getEscaped(const RefState *RS) { 225 return RefState(Escaped, RS->getStmt(), RS->getAllocationFamily()); 226 } 227 228 void Profile(llvm::FoldingSetNodeID &ID) const { 229 ID.AddInteger(K); 230 ID.AddPointer(S); 231 Family.Profile(ID); 232 } 233 234 LLVM_DUMP_METHOD void dump(raw_ostream &OS) const { 235 switch (K) { 236 #define CASE(ID) case ID: OS << #ID; break; 237 CASE(Allocated) 238 CASE(AllocatedOfSizeZero) 239 CASE(Released) 240 CASE(Relinquished) 241 CASE(Escaped) 242 } 243 } 244 245 LLVM_DUMP_METHOD void dump() const { dump(llvm::errs()); } 246 }; 247 248 } // end of anonymous namespace 249 250 REGISTER_MAP_WITH_PROGRAMSTATE(RegionState, SymbolRef, RefState) 251 252 /// Check if the memory associated with this symbol was released. 253 static bool isReleased(SymbolRef Sym, CheckerContext &C); 254 255 /// Update the RefState to reflect the new memory allocation. 256 /// The optional \p RetVal parameter specifies the newly allocated pointer 257 /// value; if unspecified, the value of expression \p E is used. 258 static ProgramStateRef 259 MallocUpdateRefState(CheckerContext &C, const Expr *E, ProgramStateRef State, 260 AllocationFamily Family, 261 std::optional<SVal> RetVal = std::nullopt); 262 263 //===----------------------------------------------------------------------===// 264 // The modeling of memory reallocation. 265 // 266 // The terminology 'toPtr' and 'fromPtr' will be used: 267 // toPtr = realloc(fromPtr, 20); 268 //===----------------------------------------------------------------------===// 269 270 REGISTER_SET_WITH_PROGRAMSTATE(ReallocSizeZeroSymbols, SymbolRef) 271 272 namespace { 273 274 /// The state of 'fromPtr' after reallocation is known to have failed. 275 enum OwnershipAfterReallocKind { 276 // The symbol needs to be freed (e.g.: realloc) 277 OAR_ToBeFreedAfterFailure, 278 // The symbol has been freed (e.g.: reallocf) 279 OAR_FreeOnFailure, 280 // The symbol doesn't have to freed (e.g.: we aren't sure if, how and where 281 // 'fromPtr' was allocated: 282 // void Haha(int *ptr) { 283 // ptr = realloc(ptr, 67); 284 // // ... 285 // } 286 // ). 287 OAR_DoNotTrackAfterFailure 288 }; 289 290 /// Stores information about the 'fromPtr' symbol after reallocation. 291 /// 292 /// This is important because realloc may fail, and that needs special modeling. 293 /// Whether reallocation failed or not will not be known until later, so we'll 294 /// store whether upon failure 'fromPtr' will be freed, or needs to be freed 295 /// later, etc. 296 struct ReallocPair { 297 298 // The 'fromPtr'. 299 SymbolRef ReallocatedSym; 300 OwnershipAfterReallocKind Kind; 301 302 ReallocPair(SymbolRef S, OwnershipAfterReallocKind K) 303 : ReallocatedSym(S), Kind(K) {} 304 void Profile(llvm::FoldingSetNodeID &ID) const { 305 ID.AddInteger(Kind); 306 ID.AddPointer(ReallocatedSym); 307 } 308 bool operator==(const ReallocPair &X) const { 309 return ReallocatedSym == X.ReallocatedSym && 310 Kind == X.Kind; 311 } 312 }; 313 314 } // end of anonymous namespace 315 316 REGISTER_MAP_WITH_PROGRAMSTATE(ReallocPairs, SymbolRef, ReallocPair) 317 318 static bool isStandardNew(const FunctionDecl *FD); 319 static bool isStandardNew(const CallEvent &Call) { 320 if (!Call.getDecl() || !isa<FunctionDecl>(Call.getDecl())) 321 return false; 322 return isStandardNew(cast<FunctionDecl>(Call.getDecl())); 323 } 324 325 static bool isStandardDelete(const FunctionDecl *FD); 326 static bool isStandardDelete(const CallEvent &Call) { 327 if (!Call.getDecl() || !isa<FunctionDecl>(Call.getDecl())) 328 return false; 329 return isStandardDelete(cast<FunctionDecl>(Call.getDecl())); 330 } 331 332 /// Tells if the callee is one of the builtin new/delete operators, including 333 /// placement operators and other standard overloads. 334 template <typename T> static bool isStandardNewDelete(const T &FD) { 335 return isStandardDelete(FD) || isStandardNew(FD); 336 } 337 338 //===----------------------------------------------------------------------===// 339 // Definition of the MallocChecker class. 340 //===----------------------------------------------------------------------===// 341 342 namespace { 343 344 class MallocChecker 345 : public Checker<check::DeadSymbols, check::PointerEscape, 346 check::ConstPointerEscape, check::PreStmt<ReturnStmt>, 347 check::EndFunction, check::PreCall, check::PostCall, 348 eval::Call, check::NewAllocator, 349 check::PostStmt<BlockExpr>, check::PostObjCMessage, 350 check::Location, eval::Assume> { 351 public: 352 /// In pessimistic mode, the checker assumes that it does not know which 353 /// functions might free the memory. 354 /// In optimistic mode, the checker assumes that all user-defined functions 355 /// which might free a pointer are annotated. 356 bool ShouldIncludeOwnershipAnnotatedFunctions = false; 357 358 bool ShouldRegisterNoOwnershipChangeVisitor = false; 359 360 /// Many checkers are essentially built into this one, so enabling them will 361 /// make MallocChecker perform additional modeling and reporting. 362 enum CheckKind { 363 /// When a subchecker is enabled but MallocChecker isn't, model memory 364 /// management but do not emit warnings emitted with MallocChecker only 365 /// enabled. 366 CK_MallocChecker, 367 CK_NewDeleteChecker, 368 CK_NewDeleteLeaksChecker, 369 CK_MismatchedDeallocatorChecker, 370 CK_InnerPointerChecker, 371 CK_TaintedAllocChecker, 372 CK_NumCheckKinds 373 }; 374 375 using LeakInfo = std::pair<const ExplodedNode *, const MemRegion *>; 376 377 bool ChecksEnabled[CK_NumCheckKinds] = {false}; 378 CheckerNameRef CheckNames[CK_NumCheckKinds]; 379 380 void checkPreCall(const CallEvent &Call, CheckerContext &C) const; 381 void checkPostCall(const CallEvent &Call, CheckerContext &C) const; 382 bool evalCall(const CallEvent &Call, CheckerContext &C) const; 383 void checkNewAllocator(const CXXAllocatorCall &Call, CheckerContext &C) const; 384 void checkPostObjCMessage(const ObjCMethodCall &Call, CheckerContext &C) const; 385 void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const; 386 void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const; 387 void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const; 388 void checkEndFunction(const ReturnStmt *S, CheckerContext &C) const; 389 ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond, 390 bool Assumption) const; 391 void checkLocation(SVal l, bool isLoad, const Stmt *S, 392 CheckerContext &C) const; 393 394 ProgramStateRef checkPointerEscape(ProgramStateRef State, 395 const InvalidatedSymbols &Escaped, 396 const CallEvent *Call, 397 PointerEscapeKind Kind) const; 398 ProgramStateRef checkConstPointerEscape(ProgramStateRef State, 399 const InvalidatedSymbols &Escaped, 400 const CallEvent *Call, 401 PointerEscapeKind Kind) const; 402 403 void printState(raw_ostream &Out, ProgramStateRef State, 404 const char *NL, const char *Sep) const override; 405 406 private: 407 mutable std::unique_ptr<BugType> BT_DoubleFree[CK_NumCheckKinds]; 408 mutable std::unique_ptr<BugType> BT_DoubleDelete; 409 mutable std::unique_ptr<BugType> BT_Leak[CK_NumCheckKinds]; 410 mutable std::unique_ptr<BugType> BT_UseFree[CK_NumCheckKinds]; 411 mutable std::unique_ptr<BugType> BT_BadFree[CK_NumCheckKinds]; 412 mutable std::unique_ptr<BugType> BT_FreeAlloca[CK_NumCheckKinds]; 413 mutable std::unique_ptr<BugType> BT_MismatchedDealloc; 414 mutable std::unique_ptr<BugType> BT_OffsetFree[CK_NumCheckKinds]; 415 mutable std::unique_ptr<BugType> BT_UseZerroAllocated[CK_NumCheckKinds]; 416 mutable std::unique_ptr<BugType> BT_TaintedAlloc; 417 418 #define CHECK_FN(NAME) \ 419 void NAME(ProgramStateRef State, const CallEvent &Call, CheckerContext &C) \ 420 const; 421 422 CHECK_FN(checkFree) 423 CHECK_FN(checkIfNameIndex) 424 CHECK_FN(checkBasicAlloc) 425 CHECK_FN(checkKernelMalloc) 426 CHECK_FN(checkCalloc) 427 CHECK_FN(checkAlloca) 428 CHECK_FN(checkStrdup) 429 CHECK_FN(checkIfFreeNameIndex) 430 CHECK_FN(checkCXXNewOrCXXDelete) 431 CHECK_FN(checkGMalloc0) 432 CHECK_FN(checkGMemdup) 433 CHECK_FN(checkGMallocN) 434 CHECK_FN(checkGMallocN0) 435 CHECK_FN(preGetdelim) 436 CHECK_FN(checkGetdelim) 437 CHECK_FN(checkReallocN) 438 CHECK_FN(checkOwnershipAttr) 439 440 void checkRealloc(ProgramStateRef State, const CallEvent &Call, 441 CheckerContext &C, bool ShouldFreeOnFail) const; 442 443 using CheckFn = 444 std::function<void(const MallocChecker *, ProgramStateRef State, 445 const CallEvent &Call, CheckerContext &C)>; 446 447 const CallDescriptionMap<CheckFn> PreFnMap{ 448 // NOTE: the following CallDescription also matches the C++ standard 449 // library function std::getline(); the callback will filter it out. 450 {{CDM::CLibrary, {"getline"}, 3}, &MallocChecker::preGetdelim}, 451 {{CDM::CLibrary, {"getdelim"}, 4}, &MallocChecker::preGetdelim}, 452 }; 453 454 const CallDescriptionMap<CheckFn> PostFnMap{ 455 // NOTE: the following CallDescription also matches the C++ standard 456 // library function std::getline(); the callback will filter it out. 457 {{CDM::CLibrary, {"getline"}, 3}, &MallocChecker::checkGetdelim}, 458 {{CDM::CLibrary, {"getdelim"}, 4}, &MallocChecker::checkGetdelim}, 459 }; 460 461 const CallDescriptionMap<CheckFn> FreeingMemFnMap{ 462 {{CDM::CLibrary, {"free"}, 1}, &MallocChecker::checkFree}, 463 {{CDM::CLibrary, {"if_freenameindex"}, 1}, 464 &MallocChecker::checkIfFreeNameIndex}, 465 {{CDM::CLibrary, {"kfree"}, 1}, &MallocChecker::checkFree}, 466 {{CDM::CLibrary, {"g_free"}, 1}, &MallocChecker::checkFree}, 467 }; 468 469 bool isFreeingCall(const CallEvent &Call) const; 470 static bool isFreeingOwnershipAttrCall(const FunctionDecl *Func); 471 static bool isFreeingOwnershipAttrCall(const CallEvent &Call); 472 static bool isAllocatingOwnershipAttrCall(const FunctionDecl *Func); 473 static bool isAllocatingOwnershipAttrCall(const CallEvent &Call); 474 475 friend class NoMemOwnershipChangeVisitor; 476 477 CallDescriptionMap<CheckFn> AllocaMemFnMap{ 478 {{CDM::CLibrary, {"alloca"}, 1}, &MallocChecker::checkAlloca}, 479 {{CDM::CLibrary, {"_alloca"}, 1}, &MallocChecker::checkAlloca}, 480 // The line for "alloca" also covers "__builtin_alloca", but the 481 // _with_align variant must be listed separately because it takes an 482 // extra argument: 483 {{CDM::CLibrary, {"__builtin_alloca_with_align"}, 2}, 484 &MallocChecker::checkAlloca}, 485 }; 486 487 CallDescriptionMap<CheckFn> AllocatingMemFnMap{ 488 {{CDM::CLibrary, {"malloc"}, 1}, &MallocChecker::checkBasicAlloc}, 489 {{CDM::CLibrary, {"malloc"}, 3}, &MallocChecker::checkKernelMalloc}, 490 {{CDM::CLibrary, {"calloc"}, 2}, &MallocChecker::checkCalloc}, 491 {{CDM::CLibrary, {"valloc"}, 1}, &MallocChecker::checkBasicAlloc}, 492 {{CDM::CLibrary, {"strndup"}, 2}, &MallocChecker::checkStrdup}, 493 {{CDM::CLibrary, {"strdup"}, 1}, &MallocChecker::checkStrdup}, 494 {{CDM::CLibrary, {"_strdup"}, 1}, &MallocChecker::checkStrdup}, 495 {{CDM::CLibrary, {"kmalloc"}, 2}, &MallocChecker::checkKernelMalloc}, 496 {{CDM::CLibrary, {"if_nameindex"}, 1}, &MallocChecker::checkIfNameIndex}, 497 {{CDM::CLibrary, {"wcsdup"}, 1}, &MallocChecker::checkStrdup}, 498 {{CDM::CLibrary, {"_wcsdup"}, 1}, &MallocChecker::checkStrdup}, 499 {{CDM::CLibrary, {"g_malloc"}, 1}, &MallocChecker::checkBasicAlloc}, 500 {{CDM::CLibrary, {"g_malloc0"}, 1}, &MallocChecker::checkGMalloc0}, 501 {{CDM::CLibrary, {"g_try_malloc"}, 1}, &MallocChecker::checkBasicAlloc}, 502 {{CDM::CLibrary, {"g_try_malloc0"}, 1}, &MallocChecker::checkGMalloc0}, 503 {{CDM::CLibrary, {"g_memdup"}, 2}, &MallocChecker::checkGMemdup}, 504 {{CDM::CLibrary, {"g_malloc_n"}, 2}, &MallocChecker::checkGMallocN}, 505 {{CDM::CLibrary, {"g_malloc0_n"}, 2}, &MallocChecker::checkGMallocN0}, 506 {{CDM::CLibrary, {"g_try_malloc_n"}, 2}, &MallocChecker::checkGMallocN}, 507 {{CDM::CLibrary, {"g_try_malloc0_n"}, 2}, &MallocChecker::checkGMallocN0}, 508 }; 509 510 CallDescriptionMap<CheckFn> ReallocatingMemFnMap{ 511 {{CDM::CLibrary, {"realloc"}, 2}, 512 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, _4, false)}, 513 {{CDM::CLibrary, {"reallocf"}, 2}, 514 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, _4, true)}, 515 {{CDM::CLibrary, {"g_realloc"}, 2}, 516 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, _4, false)}, 517 {{CDM::CLibrary, {"g_try_realloc"}, 2}, 518 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, _4, false)}, 519 {{CDM::CLibrary, {"g_realloc_n"}, 3}, &MallocChecker::checkReallocN}, 520 {{CDM::CLibrary, {"g_try_realloc_n"}, 3}, &MallocChecker::checkReallocN}, 521 }; 522 523 bool isMemCall(const CallEvent &Call) const; 524 bool hasOwnershipReturns(const CallEvent &Call) const; 525 bool hasOwnershipTakesHolds(const CallEvent &Call) const; 526 void reportTaintBug(StringRef Msg, ProgramStateRef State, CheckerContext &C, 527 llvm::ArrayRef<SymbolRef> TaintedSyms, 528 AllocationFamily Family) const; 529 530 void checkTaintedness(CheckerContext &C, const CallEvent &Call, 531 const SVal SizeSVal, ProgramStateRef State, 532 AllocationFamily Family) const; 533 534 // TODO: Remove mutable by moving the initializtaion to the registry function. 535 mutable std::optional<uint64_t> KernelZeroFlagVal; 536 537 using KernelZeroSizePtrValueTy = std::optional<int>; 538 /// Store the value of macro called `ZERO_SIZE_PTR`. 539 /// The value is initialized at first use, before first use the outer 540 /// Optional is empty, afterwards it contains another Optional that indicates 541 /// if the macro value could be determined, and if yes the value itself. 542 mutable std::optional<KernelZeroSizePtrValueTy> KernelZeroSizePtrValue; 543 544 /// Process C++ operator new()'s allocation, which is the part of C++ 545 /// new-expression that goes before the constructor. 546 [[nodiscard]] ProgramStateRef 547 processNewAllocation(const CXXAllocatorCall &Call, CheckerContext &C, 548 AllocationFamily Family) const; 549 550 /// Perform a zero-allocation check. 551 /// 552 /// \param [in] Call The expression that allocates memory. 553 /// \param [in] IndexOfSizeArg Index of the argument that specifies the size 554 /// of the memory that needs to be allocated. E.g. for malloc, this would be 555 /// 0. 556 /// \param [in] RetVal Specifies the newly allocated pointer value; 557 /// if unspecified, the value of expression \p E is used. 558 [[nodiscard]] static ProgramStateRef 559 ProcessZeroAllocCheck(CheckerContext &C, const CallEvent &Call, 560 const unsigned IndexOfSizeArg, ProgramStateRef State, 561 std::optional<SVal> RetVal = std::nullopt); 562 563 /// Model functions with the ownership_returns attribute. 564 /// 565 /// User-defined function may have the ownership_returns attribute, which 566 /// annotates that the function returns with an object that was allocated on 567 /// the heap, and passes the ownertship to the callee. 568 /// 569 /// void __attribute((ownership_returns(malloc, 1))) *my_malloc(size_t); 570 /// 571 /// It has two parameters: 572 /// - first: name of the resource (e.g. 'malloc') 573 /// - (OPTIONAL) second: size of the allocated region 574 /// 575 /// \param [in] Call The expression that allocates memory. 576 /// \param [in] Att The ownership_returns attribute. 577 /// \param [in] State The \c ProgramState right before allocation. 578 /// \returns The ProgramState right after allocation. 579 [[nodiscard]] ProgramStateRef 580 MallocMemReturnsAttr(CheckerContext &C, const CallEvent &Call, 581 const OwnershipAttr *Att, ProgramStateRef State) const; 582 /// Models memory allocation. 583 /// 584 /// \param [in] C Checker context. 585 /// \param [in] Call The expression that allocates memory. 586 /// \param [in] State The \c ProgramState right before allocation. 587 /// \param [in] isAlloca Is the allocation function alloca-like 588 /// \returns The ProgramState with returnValue bound 589 [[nodiscard]] ProgramStateRef MallocBindRetVal(CheckerContext &C, 590 const CallEvent &Call, 591 ProgramStateRef State, 592 bool isAlloca) const; 593 594 /// Models memory allocation. 595 /// 596 /// \param [in] Call The expression that allocates memory. 597 /// \param [in] SizeEx Size of the memory that needs to be allocated. 598 /// \param [in] Init The value the allocated memory needs to be initialized. 599 /// with. For example, \c calloc initializes the allocated memory to 0, 600 /// malloc leaves it undefined. 601 /// \param [in] State The \c ProgramState right before allocation. 602 /// \returns The ProgramState right after allocation. 603 [[nodiscard]] ProgramStateRef 604 MallocMemAux(CheckerContext &C, const CallEvent &Call, const Expr *SizeEx, 605 SVal Init, ProgramStateRef State, AllocationFamily Family) const; 606 607 /// Models memory allocation. 608 /// 609 /// \param [in] Call The expression that allocates memory. 610 /// \param [in] Size Size of the memory that needs to be allocated. 611 /// \param [in] Init The value the allocated memory needs to be initialized. 612 /// with. For example, \c calloc initializes the allocated memory to 0, 613 /// malloc leaves it undefined. 614 /// \param [in] State The \c ProgramState right before allocation. 615 /// \returns The ProgramState right after allocation. 616 [[nodiscard]] ProgramStateRef MallocMemAux(CheckerContext &C, 617 const CallEvent &Call, SVal Size, 618 SVal Init, ProgramStateRef State, 619 AllocationFamily Family) const; 620 621 // Check if this malloc() for special flags. At present that means M_ZERO or 622 // __GFP_ZERO (in which case, treat it like calloc). 623 [[nodiscard]] std::optional<ProgramStateRef> 624 performKernelMalloc(const CallEvent &Call, CheckerContext &C, 625 const ProgramStateRef &State) const; 626 627 /// Model functions with the ownership_takes and ownership_holds attributes. 628 /// 629 /// User-defined function may have the ownership_takes and/or ownership_holds 630 /// attributes, which annotates that the function frees the memory passed as a 631 /// parameter. 632 /// 633 /// void __attribute((ownership_takes(malloc, 1))) my_free(void *); 634 /// void __attribute((ownership_holds(malloc, 1))) my_hold(void *); 635 /// 636 /// They have two parameters: 637 /// - first: name of the resource (e.g. 'malloc') 638 /// - second: index of the parameter the attribute applies to 639 /// 640 /// \param [in] Call The expression that frees memory. 641 /// \param [in] Att The ownership_takes or ownership_holds attribute. 642 /// \param [in] State The \c ProgramState right before allocation. 643 /// \returns The ProgramState right after deallocation. 644 [[nodiscard]] ProgramStateRef FreeMemAttr(CheckerContext &C, 645 const CallEvent &Call, 646 const OwnershipAttr *Att, 647 ProgramStateRef State) const; 648 649 /// Models memory deallocation. 650 /// 651 /// \param [in] Call The expression that frees memory. 652 /// \param [in] State The \c ProgramState right before allocation. 653 /// \param [in] Num Index of the argument that needs to be freed. This is 654 /// normally 0, but for custom free functions it may be different. 655 /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds 656 /// attribute. 657 /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known 658 /// to have been allocated, or in other words, the symbol to be freed was 659 /// registered as allocated by this checker. In the following case, \c ptr 660 /// isn't known to be allocated. 661 /// void Haha(int *ptr) { 662 /// ptr = realloc(ptr, 67); 663 /// // ... 664 /// } 665 /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function 666 /// we're modeling returns with Null on failure. 667 /// \returns The ProgramState right after deallocation. 668 [[nodiscard]] ProgramStateRef 669 FreeMemAux(CheckerContext &C, const CallEvent &Call, ProgramStateRef State, 670 unsigned Num, bool Hold, bool &IsKnownToBeAllocated, 671 AllocationFamily Family, bool ReturnsNullOnFailure = false) const; 672 673 /// Models memory deallocation. 674 /// 675 /// \param [in] ArgExpr The variable who's pointee needs to be freed. 676 /// \param [in] Call The expression that frees the memory. 677 /// \param [in] State The \c ProgramState right before allocation. 678 /// normally 0, but for custom free functions it may be different. 679 /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds 680 /// attribute. 681 /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known 682 /// to have been allocated, or in other words, the symbol to be freed was 683 /// registered as allocated by this checker. In the following case, \c ptr 684 /// isn't known to be allocated. 685 /// void Haha(int *ptr) { 686 /// ptr = realloc(ptr, 67); 687 /// // ... 688 /// } 689 /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function 690 /// we're modeling returns with Null on failure. 691 /// \param [in] ArgValOpt Optional value to use for the argument instead of 692 /// the one obtained from ArgExpr. 693 /// \returns The ProgramState right after deallocation. 694 [[nodiscard]] ProgramStateRef 695 FreeMemAux(CheckerContext &C, const Expr *ArgExpr, const CallEvent &Call, 696 ProgramStateRef State, bool Hold, bool &IsKnownToBeAllocated, 697 AllocationFamily Family, bool ReturnsNullOnFailure = false, 698 std::optional<SVal> ArgValOpt = {}) const; 699 700 // TODO: Needs some refactoring, as all other deallocation modeling 701 // functions are suffering from out parameters and messy code due to how 702 // realloc is handled. 703 // 704 /// Models memory reallocation. 705 /// 706 /// \param [in] Call The expression that reallocated memory 707 /// \param [in] ShouldFreeOnFail Whether if reallocation fails, the supplied 708 /// memory should be freed. 709 /// \param [in] State The \c ProgramState right before reallocation. 710 /// \param [in] SuffixWithN Whether the reallocation function we're modeling 711 /// has an '_n' suffix, such as g_realloc_n. 712 /// \returns The ProgramState right after reallocation. 713 [[nodiscard]] ProgramStateRef 714 ReallocMemAux(CheckerContext &C, const CallEvent &Call, bool ShouldFreeOnFail, 715 ProgramStateRef State, AllocationFamily Family, 716 bool SuffixWithN = false) const; 717 718 /// Evaluates the buffer size that needs to be allocated. 719 /// 720 /// \param [in] Blocks The amount of blocks that needs to be allocated. 721 /// \param [in] BlockBytes The size of a block. 722 /// \returns The symbolic value of \p Blocks * \p BlockBytes. 723 [[nodiscard]] static SVal evalMulForBufferSize(CheckerContext &C, 724 const Expr *Blocks, 725 const Expr *BlockBytes); 726 727 /// Models zero initialized array allocation. 728 /// 729 /// \param [in] Call The expression that reallocated memory 730 /// \param [in] State The \c ProgramState right before reallocation. 731 /// \returns The ProgramState right after allocation. 732 [[nodiscard]] ProgramStateRef CallocMem(CheckerContext &C, 733 const CallEvent &Call, 734 ProgramStateRef State) const; 735 736 /// See if deallocation happens in a suspicious context. If so, escape the 737 /// pointers that otherwise would have been deallocated and return true. 738 bool suppressDeallocationsInSuspiciousContexts(const CallEvent &Call, 739 CheckerContext &C) const; 740 741 /// If in \p S \p Sym is used, check whether \p Sym was already freed. 742 bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S) const; 743 744 /// If in \p S \p Sym is used, check whether \p Sym was allocated as a zero 745 /// sized memory region. 746 void checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 747 const Stmt *S) const; 748 749 /// If in \p S \p Sym is being freed, check whether \p Sym was already freed. 750 bool checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const; 751 752 /// Check if the function is known to free memory, or if it is 753 /// "interesting" and should be modeled explicitly. 754 /// 755 /// \param [out] EscapingSymbol A function might not free memory in general, 756 /// but could be known to free a particular symbol. In this case, false is 757 /// returned and the single escaping symbol is returned through the out 758 /// parameter. 759 /// 760 /// We assume that pointers do not escape through calls to system functions 761 /// not handled by this checker. 762 bool mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent *Call, 763 ProgramStateRef State, 764 SymbolRef &EscapingSymbol) const; 765 766 /// Implementation of the checkPointerEscape callbacks. 767 [[nodiscard]] ProgramStateRef 768 checkPointerEscapeAux(ProgramStateRef State, 769 const InvalidatedSymbols &Escaped, 770 const CallEvent *Call, PointerEscapeKind Kind, 771 bool IsConstPointerEscape) const; 772 773 // Implementation of the checkPreStmt and checkEndFunction callbacks. 774 void checkEscapeOnReturn(const ReturnStmt *S, CheckerContext &C) const; 775 776 ///@{ 777 /// Tells if a given family/call/symbol is tracked by the current checker. 778 /// Sets CheckKind to the kind of the checker responsible for this 779 /// family/call/symbol. 780 std::optional<CheckKind> getCheckIfTracked(AllocationFamily Family, 781 bool IsALeakCheck = false) const; 782 783 std::optional<CheckKind> getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 784 bool IsALeakCheck = false) const; 785 ///@} 786 static bool SummarizeValue(raw_ostream &os, SVal V); 787 static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR); 788 789 void HandleNonHeapDealloc(CheckerContext &C, SVal ArgVal, SourceRange Range, 790 const Expr *DeallocExpr, 791 AllocationFamily Family) const; 792 793 void HandleFreeAlloca(CheckerContext &C, SVal ArgVal, 794 SourceRange Range) const; 795 796 void HandleMismatchedDealloc(CheckerContext &C, SourceRange Range, 797 const Expr *DeallocExpr, const RefState *RS, 798 SymbolRef Sym, bool OwnershipTransferred) const; 799 800 void HandleOffsetFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 801 const Expr *DeallocExpr, AllocationFamily Family, 802 const Expr *AllocExpr = nullptr) const; 803 804 void HandleUseAfterFree(CheckerContext &C, SourceRange Range, 805 SymbolRef Sym) const; 806 807 void HandleDoubleFree(CheckerContext &C, SourceRange Range, bool Released, 808 SymbolRef Sym, SymbolRef PrevSym) const; 809 810 void HandleDoubleDelete(CheckerContext &C, SymbolRef Sym) const; 811 812 void HandleUseZeroAlloc(CheckerContext &C, SourceRange Range, 813 SymbolRef Sym) const; 814 815 void HandleFunctionPtrFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 816 const Expr *FreeExpr, 817 AllocationFamily Family) const; 818 819 /// Find the location of the allocation for Sym on the path leading to the 820 /// exploded node N. 821 static LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym, 822 CheckerContext &C); 823 824 void HandleLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const; 825 826 /// Test if value in ArgVal equals to value in macro `ZERO_SIZE_PTR`. 827 bool isArgZERO_SIZE_PTR(ProgramStateRef State, CheckerContext &C, 828 SVal ArgVal) const; 829 }; 830 } // end anonymous namespace 831 832 //===----------------------------------------------------------------------===// 833 // Definition of NoOwnershipChangeVisitor. 834 //===----------------------------------------------------------------------===// 835 836 namespace { 837 class NoMemOwnershipChangeVisitor final : public NoOwnershipChangeVisitor { 838 protected: 839 /// Syntactically checks whether the callee is a deallocating function. Since 840 /// we have no path-sensitive information on this call (we would need a 841 /// CallEvent instead of a CallExpr for that), its possible that a 842 /// deallocation function was called indirectly through a function pointer, 843 /// but we are not able to tell, so this is a best effort analysis. 844 /// See namespace `memory_passed_to_fn_call_free_through_fn_ptr` in 845 /// clang/test/Analysis/NewDeleteLeaks.cpp. 846 bool isFreeingCallAsWritten(const CallExpr &Call) const { 847 const auto *MallocChk = static_cast<const MallocChecker *>(&Checker); 848 if (MallocChk->FreeingMemFnMap.lookupAsWritten(Call) || 849 MallocChk->ReallocatingMemFnMap.lookupAsWritten(Call)) 850 return true; 851 852 if (const auto *Func = 853 llvm::dyn_cast_or_null<FunctionDecl>(Call.getCalleeDecl())) 854 return MallocChecker::isFreeingOwnershipAttrCall(Func); 855 856 return false; 857 } 858 859 bool hasResourceStateChanged(ProgramStateRef CallEnterState, 860 ProgramStateRef CallExitEndState) final { 861 return CallEnterState->get<RegionState>(Sym) != 862 CallExitEndState->get<RegionState>(Sym); 863 } 864 865 /// Heuristically guess whether the callee intended to free memory. This is 866 /// done syntactically, because we are trying to argue about alternative 867 /// paths of execution, and as a consequence we don't have path-sensitive 868 /// information. 869 bool doesFnIntendToHandleOwnership(const Decl *Callee, 870 ASTContext &ACtx) final { 871 const FunctionDecl *FD = dyn_cast<FunctionDecl>(Callee); 872 873 // Given that the stack frame was entered, the body should always be 874 // theoretically obtainable. In case of body farms, the synthesized body 875 // is not attached to declaration, thus triggering the '!FD->hasBody()' 876 // branch. That said, would a synthesized body ever intend to handle 877 // ownership? As of today they don't. And if they did, how would we 878 // put notes inside it, given that it doesn't match any source locations? 879 if (!FD || !FD->hasBody()) 880 return false; 881 using namespace clang::ast_matchers; 882 883 auto Matches = match(findAll(stmt(anyOf(cxxDeleteExpr().bind("delete"), 884 callExpr().bind("call")))), 885 *FD->getBody(), ACtx); 886 for (BoundNodes Match : Matches) { 887 if (Match.getNodeAs<CXXDeleteExpr>("delete")) 888 return true; 889 890 if (const auto *Call = Match.getNodeAs<CallExpr>("call")) 891 if (isFreeingCallAsWritten(*Call)) 892 return true; 893 } 894 // TODO: Ownership might change with an attempt to store the allocated 895 // memory, not only through deallocation. Check for attempted stores as 896 // well. 897 return false; 898 } 899 900 PathDiagnosticPieceRef emitNote(const ExplodedNode *N) final { 901 PathDiagnosticLocation L = PathDiagnosticLocation::create( 902 N->getLocation(), 903 N->getState()->getStateManager().getContext().getSourceManager()); 904 return std::make_shared<PathDiagnosticEventPiece>( 905 L, "Returning without deallocating memory or storing the pointer for " 906 "later deallocation"); 907 } 908 909 public: 910 NoMemOwnershipChangeVisitor(SymbolRef Sym, const MallocChecker *Checker) 911 : NoOwnershipChangeVisitor(Sym, Checker) {} 912 913 void Profile(llvm::FoldingSetNodeID &ID) const override { 914 static int Tag = 0; 915 ID.AddPointer(&Tag); 916 ID.AddPointer(Sym); 917 } 918 }; 919 920 } // end anonymous namespace 921 922 //===----------------------------------------------------------------------===// 923 // Definition of MallocBugVisitor. 924 //===----------------------------------------------------------------------===// 925 926 namespace { 927 /// The bug visitor which allows us to print extra diagnostics along the 928 /// BugReport path. For example, showing the allocation site of the leaked 929 /// region. 930 class MallocBugVisitor final : public BugReporterVisitor { 931 protected: 932 enum NotificationMode { Normal, ReallocationFailed }; 933 934 // The allocated region symbol tracked by the main analysis. 935 SymbolRef Sym; 936 937 // The mode we are in, i.e. what kind of diagnostics will be emitted. 938 NotificationMode Mode; 939 940 // A symbol from when the primary region should have been reallocated. 941 SymbolRef FailedReallocSymbol; 942 943 // A release function stack frame in which memory was released. Used for 944 // miscellaneous false positive suppression. 945 const StackFrameContext *ReleaseFunctionLC; 946 947 bool IsLeak; 948 949 public: 950 MallocBugVisitor(SymbolRef S, bool isLeak = false) 951 : Sym(S), Mode(Normal), FailedReallocSymbol(nullptr), 952 ReleaseFunctionLC(nullptr), IsLeak(isLeak) {} 953 954 static void *getTag() { 955 static int Tag = 0; 956 return &Tag; 957 } 958 959 void Profile(llvm::FoldingSetNodeID &ID) const override { 960 ID.AddPointer(getTag()); 961 ID.AddPointer(Sym); 962 } 963 964 /// Did not track -> allocated. Other state (released) -> allocated. 965 static inline bool isAllocated(const RefState *RSCurr, const RefState *RSPrev, 966 const Stmt *Stmt) { 967 return (isa_and_nonnull<CallExpr, CXXNewExpr>(Stmt) && 968 (RSCurr && 969 (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) && 970 (!RSPrev || 971 !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero()))); 972 } 973 974 /// Did not track -> released. Other state (allocated) -> released. 975 /// The statement associated with the release might be missing. 976 static inline bool isReleased(const RefState *RSCurr, const RefState *RSPrev, 977 const Stmt *Stmt) { 978 bool IsReleased = 979 (RSCurr && RSCurr->isReleased()) && (!RSPrev || !RSPrev->isReleased()); 980 assert(!IsReleased || (isa_and_nonnull<CallExpr, CXXDeleteExpr>(Stmt)) || 981 (!Stmt && RSCurr->getAllocationFamily().Kind == AF_InnerBuffer)); 982 return IsReleased; 983 } 984 985 /// Did not track -> relinquished. Other state (allocated) -> relinquished. 986 static inline bool isRelinquished(const RefState *RSCurr, 987 const RefState *RSPrev, const Stmt *Stmt) { 988 return ( 989 isa_and_nonnull<CallExpr, ObjCMessageExpr, ObjCPropertyRefExpr>(Stmt) && 990 (RSCurr && RSCurr->isRelinquished()) && 991 (!RSPrev || !RSPrev->isRelinquished())); 992 } 993 994 /// If the expression is not a call, and the state change is 995 /// released -> allocated, it must be the realloc return value 996 /// check. If we have to handle more cases here, it might be cleaner just 997 /// to track this extra bit in the state itself. 998 static inline bool hasReallocFailed(const RefState *RSCurr, 999 const RefState *RSPrev, 1000 const Stmt *Stmt) { 1001 return ((!isa_and_nonnull<CallExpr>(Stmt)) && 1002 (RSCurr && 1003 (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) && 1004 (RSPrev && 1005 !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero()))); 1006 } 1007 1008 PathDiagnosticPieceRef VisitNode(const ExplodedNode *N, 1009 BugReporterContext &BRC, 1010 PathSensitiveBugReport &BR) override; 1011 1012 PathDiagnosticPieceRef getEndPath(BugReporterContext &BRC, 1013 const ExplodedNode *EndPathNode, 1014 PathSensitiveBugReport &BR) override { 1015 if (!IsLeak) 1016 return nullptr; 1017 1018 PathDiagnosticLocation L = BR.getLocation(); 1019 // Do not add the statement itself as a range in case of leak. 1020 return std::make_shared<PathDiagnosticEventPiece>(L, BR.getDescription(), 1021 false); 1022 } 1023 1024 private: 1025 class StackHintGeneratorForReallocationFailed 1026 : public StackHintGeneratorForSymbol { 1027 public: 1028 StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M) 1029 : StackHintGeneratorForSymbol(S, M) {} 1030 1031 std::string getMessageForArg(const Expr *ArgE, unsigned ArgIndex) override { 1032 // Printed parameters start at 1, not 0. 1033 ++ArgIndex; 1034 1035 SmallString<200> buf; 1036 llvm::raw_svector_ostream os(buf); 1037 1038 os << "Reallocation of " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex) 1039 << " parameter failed"; 1040 1041 return std::string(os.str()); 1042 } 1043 1044 std::string getMessageForReturn(const CallExpr *CallExpr) override { 1045 return "Reallocation of returned value failed"; 1046 } 1047 }; 1048 }; 1049 } // end anonymous namespace 1050 1051 // A map from the freed symbol to the symbol representing the return value of 1052 // the free function. 1053 REGISTER_MAP_WITH_PROGRAMSTATE(FreeReturnValue, SymbolRef, SymbolRef) 1054 1055 namespace { 1056 class StopTrackingCallback final : public SymbolVisitor { 1057 ProgramStateRef state; 1058 1059 public: 1060 StopTrackingCallback(ProgramStateRef st) : state(std::move(st)) {} 1061 ProgramStateRef getState() const { return state; } 1062 1063 bool VisitSymbol(SymbolRef sym) override { 1064 state = state->remove<RegionState>(sym); 1065 return true; 1066 } 1067 }; 1068 } // end anonymous namespace 1069 1070 static bool isStandardNew(const FunctionDecl *FD) { 1071 if (!FD) 1072 return false; 1073 1074 OverloadedOperatorKind Kind = FD->getOverloadedOperator(); 1075 if (Kind != OO_New && Kind != OO_Array_New) 1076 return false; 1077 1078 // This is standard if and only if it's not defined in a user file. 1079 SourceLocation L = FD->getLocation(); 1080 // If the header for operator delete is not included, it's still defined 1081 // in an invalid source location. Check to make sure we don't crash. 1082 return !L.isValid() || 1083 FD->getASTContext().getSourceManager().isInSystemHeader(L); 1084 } 1085 1086 static bool isStandardDelete(const FunctionDecl *FD) { 1087 if (!FD) 1088 return false; 1089 1090 OverloadedOperatorKind Kind = FD->getOverloadedOperator(); 1091 if (Kind != OO_Delete && Kind != OO_Array_Delete) 1092 return false; 1093 1094 // This is standard if and only if it's not defined in a user file. 1095 SourceLocation L = FD->getLocation(); 1096 // If the header for operator delete is not included, it's still defined 1097 // in an invalid source location. Check to make sure we don't crash. 1098 return !L.isValid() || 1099 FD->getASTContext().getSourceManager().isInSystemHeader(L); 1100 } 1101 1102 //===----------------------------------------------------------------------===// 1103 // Methods of MallocChecker and MallocBugVisitor. 1104 //===----------------------------------------------------------------------===// 1105 1106 bool MallocChecker::isFreeingOwnershipAttrCall(const CallEvent &Call) { 1107 const auto *Func = dyn_cast_or_null<FunctionDecl>(Call.getDecl()); 1108 1109 return Func && isFreeingOwnershipAttrCall(Func); 1110 } 1111 1112 bool MallocChecker::isFreeingOwnershipAttrCall(const FunctionDecl *Func) { 1113 if (Func->hasAttrs()) { 1114 for (const auto *I : Func->specific_attrs<OwnershipAttr>()) { 1115 OwnershipAttr::OwnershipKind OwnKind = I->getOwnKind(); 1116 if (OwnKind == OwnershipAttr::Takes || OwnKind == OwnershipAttr::Holds) 1117 return true; 1118 } 1119 } 1120 return false; 1121 } 1122 1123 bool MallocChecker::isFreeingCall(const CallEvent &Call) const { 1124 if (FreeingMemFnMap.lookup(Call) || ReallocatingMemFnMap.lookup(Call)) 1125 return true; 1126 1127 return isFreeingOwnershipAttrCall(Call); 1128 } 1129 1130 bool MallocChecker::isAllocatingOwnershipAttrCall(const CallEvent &Call) { 1131 const auto *Func = dyn_cast_or_null<FunctionDecl>(Call.getDecl()); 1132 1133 return Func && isAllocatingOwnershipAttrCall(Func); 1134 } 1135 1136 bool MallocChecker::isAllocatingOwnershipAttrCall(const FunctionDecl *Func) { 1137 for (const auto *I : Func->specific_attrs<OwnershipAttr>()) { 1138 if (I->getOwnKind() == OwnershipAttr::Returns) 1139 return true; 1140 } 1141 1142 return false; 1143 } 1144 1145 bool MallocChecker::isMemCall(const CallEvent &Call) const { 1146 if (FreeingMemFnMap.lookup(Call) || AllocatingMemFnMap.lookup(Call) || 1147 AllocaMemFnMap.lookup(Call) || ReallocatingMemFnMap.lookup(Call)) 1148 return true; 1149 1150 if (!ShouldIncludeOwnershipAnnotatedFunctions) 1151 return false; 1152 1153 const auto *Func = dyn_cast<FunctionDecl>(Call.getDecl()); 1154 return Func && Func->hasAttr<OwnershipAttr>(); 1155 } 1156 1157 std::optional<ProgramStateRef> 1158 MallocChecker::performKernelMalloc(const CallEvent &Call, CheckerContext &C, 1159 const ProgramStateRef &State) const { 1160 // 3-argument malloc(), as commonly used in {Free,Net,Open}BSD Kernels: 1161 // 1162 // void *malloc(unsigned long size, struct malloc_type *mtp, int flags); 1163 // 1164 // One of the possible flags is M_ZERO, which means 'give me back an 1165 // allocation which is already zeroed', like calloc. 1166 1167 // 2-argument kmalloc(), as used in the Linux kernel: 1168 // 1169 // void *kmalloc(size_t size, gfp_t flags); 1170 // 1171 // Has the similar flag value __GFP_ZERO. 1172 1173 // This logic is largely cloned from O_CREAT in UnixAPIChecker, maybe some 1174 // code could be shared. 1175 1176 ASTContext &Ctx = C.getASTContext(); 1177 llvm::Triple::OSType OS = Ctx.getTargetInfo().getTriple().getOS(); 1178 1179 if (!KernelZeroFlagVal) { 1180 switch (OS) { 1181 case llvm::Triple::FreeBSD: 1182 KernelZeroFlagVal = 0x0100; 1183 break; 1184 case llvm::Triple::NetBSD: 1185 KernelZeroFlagVal = 0x0002; 1186 break; 1187 case llvm::Triple::OpenBSD: 1188 KernelZeroFlagVal = 0x0008; 1189 break; 1190 case llvm::Triple::Linux: 1191 // __GFP_ZERO 1192 KernelZeroFlagVal = 0x8000; 1193 break; 1194 default: 1195 // FIXME: We need a more general way of getting the M_ZERO value. 1196 // See also: O_CREAT in UnixAPIChecker.cpp. 1197 1198 // Fall back to normal malloc behavior on platforms where we don't 1199 // know M_ZERO. 1200 return std::nullopt; 1201 } 1202 } 1203 1204 // We treat the last argument as the flags argument, and callers fall-back to 1205 // normal malloc on a None return. This works for the FreeBSD kernel malloc 1206 // as well as Linux kmalloc. 1207 if (Call.getNumArgs() < 2) 1208 return std::nullopt; 1209 1210 const Expr *FlagsEx = Call.getArgExpr(Call.getNumArgs() - 1); 1211 const SVal V = C.getSVal(FlagsEx); 1212 if (!isa<NonLoc>(V)) { 1213 // The case where 'V' can be a location can only be due to a bad header, 1214 // so in this case bail out. 1215 return std::nullopt; 1216 } 1217 1218 NonLoc Flags = V.castAs<NonLoc>(); 1219 NonLoc ZeroFlag = C.getSValBuilder() 1220 .makeIntVal(*KernelZeroFlagVal, FlagsEx->getType()) 1221 .castAs<NonLoc>(); 1222 SVal MaskedFlagsUC = C.getSValBuilder().evalBinOpNN(State, BO_And, 1223 Flags, ZeroFlag, 1224 FlagsEx->getType()); 1225 if (MaskedFlagsUC.isUnknownOrUndef()) 1226 return std::nullopt; 1227 DefinedSVal MaskedFlags = MaskedFlagsUC.castAs<DefinedSVal>(); 1228 1229 // Check if maskedFlags is non-zero. 1230 ProgramStateRef TrueState, FalseState; 1231 std::tie(TrueState, FalseState) = State->assume(MaskedFlags); 1232 1233 // If M_ZERO is set, treat this like calloc (initialized). 1234 if (TrueState && !FalseState) { 1235 SVal ZeroVal = C.getSValBuilder().makeZeroVal(Ctx.CharTy); 1236 return MallocMemAux(C, Call, Call.getArgExpr(0), ZeroVal, TrueState, 1237 AllocationFamily(AF_Malloc)); 1238 } 1239 1240 return std::nullopt; 1241 } 1242 1243 SVal MallocChecker::evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, 1244 const Expr *BlockBytes) { 1245 SValBuilder &SB = C.getSValBuilder(); 1246 SVal BlocksVal = C.getSVal(Blocks); 1247 SVal BlockBytesVal = C.getSVal(BlockBytes); 1248 ProgramStateRef State = C.getState(); 1249 SVal TotalSize = SB.evalBinOp(State, BO_Mul, BlocksVal, BlockBytesVal, 1250 SB.getContext().getSizeType()); 1251 return TotalSize; 1252 } 1253 1254 void MallocChecker::checkBasicAlloc(ProgramStateRef State, 1255 const CallEvent &Call, 1256 CheckerContext &C) const { 1257 State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State, 1258 AllocationFamily(AF_Malloc)); 1259 State = ProcessZeroAllocCheck(C, Call, 0, State); 1260 C.addTransition(State); 1261 } 1262 1263 void MallocChecker::checkKernelMalloc(ProgramStateRef State, 1264 const CallEvent &Call, 1265 CheckerContext &C) const { 1266 std::optional<ProgramStateRef> MaybeState = 1267 performKernelMalloc(Call, C, State); 1268 if (MaybeState) 1269 State = *MaybeState; 1270 else 1271 State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State, 1272 AllocationFamily(AF_Malloc)); 1273 C.addTransition(State); 1274 } 1275 1276 static bool isStandardRealloc(const CallEvent &Call) { 1277 const FunctionDecl *FD = dyn_cast<FunctionDecl>(Call.getDecl()); 1278 assert(FD); 1279 ASTContext &AC = FD->getASTContext(); 1280 1281 return FD->getDeclaredReturnType().getDesugaredType(AC) == AC.VoidPtrTy && 1282 FD->getParamDecl(0)->getType().getDesugaredType(AC) == AC.VoidPtrTy && 1283 FD->getParamDecl(1)->getType().getDesugaredType(AC) == 1284 AC.getSizeType(); 1285 } 1286 1287 static bool isGRealloc(const CallEvent &Call) { 1288 const FunctionDecl *FD = dyn_cast<FunctionDecl>(Call.getDecl()); 1289 assert(FD); 1290 ASTContext &AC = FD->getASTContext(); 1291 1292 return FD->getDeclaredReturnType().getDesugaredType(AC) == AC.VoidPtrTy && 1293 FD->getParamDecl(0)->getType().getDesugaredType(AC) == AC.VoidPtrTy && 1294 FD->getParamDecl(1)->getType().getDesugaredType(AC) == 1295 AC.UnsignedLongTy; 1296 } 1297 1298 void MallocChecker::checkRealloc(ProgramStateRef State, const CallEvent &Call, 1299 CheckerContext &C, 1300 bool ShouldFreeOnFail) const { 1301 // Ignore calls to functions whose type does not match the expected type of 1302 // either the standard realloc or g_realloc from GLib. 1303 // FIXME: Should we perform this kind of checking consistently for each 1304 // function? If yes, then perhaps extend the `CallDescription` interface to 1305 // handle this. 1306 if (!isStandardRealloc(Call) && !isGRealloc(Call)) 1307 return; 1308 1309 State = ReallocMemAux(C, Call, ShouldFreeOnFail, State, 1310 AllocationFamily(AF_Malloc)); 1311 State = ProcessZeroAllocCheck(C, Call, 1, State); 1312 C.addTransition(State); 1313 } 1314 1315 void MallocChecker::checkCalloc(ProgramStateRef State, const CallEvent &Call, 1316 CheckerContext &C) const { 1317 State = CallocMem(C, Call, State); 1318 State = ProcessZeroAllocCheck(C, Call, 0, State); 1319 State = ProcessZeroAllocCheck(C, Call, 1, State); 1320 C.addTransition(State); 1321 } 1322 1323 void MallocChecker::checkFree(ProgramStateRef State, const CallEvent &Call, 1324 CheckerContext &C) const { 1325 bool IsKnownToBeAllocatedMemory = false; 1326 if (suppressDeallocationsInSuspiciousContexts(Call, C)) 1327 return; 1328 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1329 AllocationFamily(AF_Malloc)); 1330 C.addTransition(State); 1331 } 1332 1333 void MallocChecker::checkAlloca(ProgramStateRef State, const CallEvent &Call, 1334 CheckerContext &C) const { 1335 State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State, 1336 AllocationFamily(AF_Alloca)); 1337 State = ProcessZeroAllocCheck(C, Call, 0, State); 1338 C.addTransition(State); 1339 } 1340 1341 void MallocChecker::checkStrdup(ProgramStateRef State, const CallEvent &Call, 1342 CheckerContext &C) const { 1343 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1344 if (!CE) 1345 return; 1346 State = MallocMemAux(C, Call, UnknownVal(), UnknownVal(), State, 1347 AllocationFamily(AF_Malloc)); 1348 1349 C.addTransition(State); 1350 } 1351 1352 void MallocChecker::checkIfNameIndex(ProgramStateRef State, 1353 const CallEvent &Call, 1354 CheckerContext &C) const { 1355 // Should we model this differently? We can allocate a fixed number of 1356 // elements with zeros in the last one. 1357 State = MallocMemAux(C, Call, UnknownVal(), UnknownVal(), State, 1358 AllocationFamily(AF_IfNameIndex)); 1359 1360 C.addTransition(State); 1361 } 1362 1363 void MallocChecker::checkIfFreeNameIndex(ProgramStateRef State, 1364 const CallEvent &Call, 1365 CheckerContext &C) const { 1366 bool IsKnownToBeAllocatedMemory = false; 1367 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1368 AllocationFamily(AF_IfNameIndex)); 1369 C.addTransition(State); 1370 } 1371 1372 void MallocChecker::checkCXXNewOrCXXDelete(ProgramStateRef State, 1373 const CallEvent &Call, 1374 CheckerContext &C) const { 1375 bool IsKnownToBeAllocatedMemory = false; 1376 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1377 if (!CE) 1378 return; 1379 1380 assert(isStandardNewDelete(Call)); 1381 1382 // Process direct calls to operator new/new[]/delete/delete[] functions 1383 // as distinct from new/new[]/delete/delete[] expressions that are 1384 // processed by the checkPostStmt callbacks for CXXNewExpr and 1385 // CXXDeleteExpr. 1386 const FunctionDecl *FD = C.getCalleeDecl(CE); 1387 switch (FD->getOverloadedOperator()) { 1388 case OO_New: 1389 State = MallocMemAux(C, Call, CE->getArg(0), UndefinedVal(), State, 1390 AllocationFamily(AF_CXXNew)); 1391 State = ProcessZeroAllocCheck(C, Call, 0, State); 1392 break; 1393 case OO_Array_New: 1394 State = MallocMemAux(C, Call, CE->getArg(0), UndefinedVal(), State, 1395 AllocationFamily(AF_CXXNewArray)); 1396 State = ProcessZeroAllocCheck(C, Call, 0, State); 1397 break; 1398 case OO_Delete: 1399 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1400 AllocationFamily(AF_CXXNew)); 1401 break; 1402 case OO_Array_Delete: 1403 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1404 AllocationFamily(AF_CXXNewArray)); 1405 break; 1406 default: 1407 assert(false && "not a new/delete operator"); 1408 return; 1409 } 1410 1411 C.addTransition(State); 1412 } 1413 1414 void MallocChecker::checkGMalloc0(ProgramStateRef State, const CallEvent &Call, 1415 CheckerContext &C) const { 1416 SValBuilder &svalBuilder = C.getSValBuilder(); 1417 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 1418 State = MallocMemAux(C, Call, Call.getArgExpr(0), zeroVal, State, 1419 AllocationFamily(AF_Malloc)); 1420 State = ProcessZeroAllocCheck(C, Call, 0, State); 1421 C.addTransition(State); 1422 } 1423 1424 void MallocChecker::checkGMemdup(ProgramStateRef State, const CallEvent &Call, 1425 CheckerContext &C) const { 1426 State = MallocMemAux(C, Call, Call.getArgExpr(1), UnknownVal(), State, 1427 AllocationFamily(AF_Malloc)); 1428 State = ProcessZeroAllocCheck(C, Call, 1, State); 1429 C.addTransition(State); 1430 } 1431 1432 void MallocChecker::checkGMallocN(ProgramStateRef State, const CallEvent &Call, 1433 CheckerContext &C) const { 1434 SVal Init = UndefinedVal(); 1435 SVal TotalSize = evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1)); 1436 State = MallocMemAux(C, Call, TotalSize, Init, State, 1437 AllocationFamily(AF_Malloc)); 1438 State = ProcessZeroAllocCheck(C, Call, 0, State); 1439 State = ProcessZeroAllocCheck(C, Call, 1, State); 1440 C.addTransition(State); 1441 } 1442 1443 void MallocChecker::checkGMallocN0(ProgramStateRef State, const CallEvent &Call, 1444 CheckerContext &C) const { 1445 SValBuilder &SB = C.getSValBuilder(); 1446 SVal Init = SB.makeZeroVal(SB.getContext().CharTy); 1447 SVal TotalSize = evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1)); 1448 State = MallocMemAux(C, Call, TotalSize, Init, State, 1449 AllocationFamily(AF_Malloc)); 1450 State = ProcessZeroAllocCheck(C, Call, 0, State); 1451 State = ProcessZeroAllocCheck(C, Call, 1, State); 1452 C.addTransition(State); 1453 } 1454 1455 static bool isFromStdNamespace(const CallEvent &Call) { 1456 const Decl *FD = Call.getDecl(); 1457 assert(FD && "a CallDescription cannot match a call without a Decl"); 1458 return FD->isInStdNamespace(); 1459 } 1460 1461 void MallocChecker::preGetdelim(ProgramStateRef State, const CallEvent &Call, 1462 CheckerContext &C) const { 1463 // Discard calls to the C++ standard library function std::getline(), which 1464 // is completely unrelated to the POSIX getline() that we're checking. 1465 if (isFromStdNamespace(Call)) 1466 return; 1467 1468 const auto LinePtr = getPointeeVal(Call.getArgSVal(0), State); 1469 if (!LinePtr) 1470 return; 1471 1472 // FreeMemAux takes IsKnownToBeAllocated as an output parameter, and it will 1473 // be true after the call if the symbol was registered by this checker. 1474 // We do not need this value here, as FreeMemAux will take care 1475 // of reporting any violation of the preconditions. 1476 bool IsKnownToBeAllocated = false; 1477 State = FreeMemAux(C, Call.getArgExpr(0), Call, State, false, 1478 IsKnownToBeAllocated, AllocationFamily(AF_Malloc), false, 1479 LinePtr); 1480 if (State) 1481 C.addTransition(State); 1482 } 1483 1484 void MallocChecker::checkGetdelim(ProgramStateRef State, const CallEvent &Call, 1485 CheckerContext &C) const { 1486 // Discard calls to the C++ standard library function std::getline(), which 1487 // is completely unrelated to the POSIX getline() that we're checking. 1488 if (isFromStdNamespace(Call)) 1489 return; 1490 1491 // Handle the post-conditions of getline and getdelim: 1492 // Register the new conjured value as an allocated buffer. 1493 const CallExpr *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1494 if (!CE) 1495 return; 1496 1497 const auto LinePtr = 1498 getPointeeVal(Call.getArgSVal(0), State)->getAs<DefinedSVal>(); 1499 const auto Size = 1500 getPointeeVal(Call.getArgSVal(1), State)->getAs<DefinedSVal>(); 1501 if (!LinePtr || !Size || !LinePtr->getAsRegion()) 1502 return; 1503 1504 State = setDynamicExtent(State, LinePtr->getAsRegion(), *Size); 1505 C.addTransition(MallocUpdateRefState(C, CE, State, 1506 AllocationFamily(AF_Malloc), *LinePtr)); 1507 } 1508 1509 void MallocChecker::checkReallocN(ProgramStateRef State, const CallEvent &Call, 1510 CheckerContext &C) const { 1511 State = ReallocMemAux(C, Call, /*ShouldFreeOnFail=*/false, State, 1512 AllocationFamily(AF_Malloc), 1513 /*SuffixWithN=*/true); 1514 State = ProcessZeroAllocCheck(C, Call, 1, State); 1515 State = ProcessZeroAllocCheck(C, Call, 2, State); 1516 C.addTransition(State); 1517 } 1518 1519 void MallocChecker::checkOwnershipAttr(ProgramStateRef State, 1520 const CallEvent &Call, 1521 CheckerContext &C) const { 1522 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1523 if (!CE) 1524 return; 1525 const FunctionDecl *FD = C.getCalleeDecl(CE); 1526 if (!FD) 1527 return; 1528 if (ShouldIncludeOwnershipAnnotatedFunctions || 1529 ChecksEnabled[CK_MismatchedDeallocatorChecker]) { 1530 // Check all the attributes, if there are any. 1531 // There can be multiple of these attributes. 1532 if (FD->hasAttrs()) 1533 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { 1534 switch (I->getOwnKind()) { 1535 case OwnershipAttr::Returns: 1536 State = MallocMemReturnsAttr(C, Call, I, State); 1537 break; 1538 case OwnershipAttr::Takes: 1539 case OwnershipAttr::Holds: 1540 State = FreeMemAttr(C, Call, I, State); 1541 break; 1542 } 1543 } 1544 } 1545 C.addTransition(State); 1546 } 1547 1548 bool MallocChecker::evalCall(const CallEvent &Call, CheckerContext &C) const { 1549 if (!Call.getOriginExpr()) 1550 return false; 1551 1552 ProgramStateRef State = C.getState(); 1553 1554 if (const CheckFn *Callback = FreeingMemFnMap.lookup(Call)) { 1555 (*Callback)(this, State, Call, C); 1556 return true; 1557 } 1558 1559 if (const CheckFn *Callback = AllocatingMemFnMap.lookup(Call)) { 1560 State = MallocBindRetVal(C, Call, State, false); 1561 (*Callback)(this, State, Call, C); 1562 return true; 1563 } 1564 1565 if (const CheckFn *Callback = ReallocatingMemFnMap.lookup(Call)) { 1566 State = MallocBindRetVal(C, Call, State, false); 1567 (*Callback)(this, State, Call, C); 1568 return true; 1569 } 1570 1571 if (isStandardNew(Call)) { 1572 State = MallocBindRetVal(C, Call, State, false); 1573 checkCXXNewOrCXXDelete(State, Call, C); 1574 return true; 1575 } 1576 1577 if (isStandardDelete(Call)) { 1578 checkCXXNewOrCXXDelete(State, Call, C); 1579 return true; 1580 } 1581 1582 if (const CheckFn *Callback = AllocaMemFnMap.lookup(Call)) { 1583 State = MallocBindRetVal(C, Call, State, true); 1584 (*Callback)(this, State, Call, C); 1585 return true; 1586 } 1587 1588 if (isFreeingOwnershipAttrCall(Call)) { 1589 checkOwnershipAttr(State, Call, C); 1590 return true; 1591 } 1592 1593 if (isAllocatingOwnershipAttrCall(Call)) { 1594 State = MallocBindRetVal(C, Call, State, false); 1595 checkOwnershipAttr(State, Call, C); 1596 return true; 1597 } 1598 1599 return false; 1600 } 1601 1602 // Performs a 0-sized allocations check. 1603 ProgramStateRef MallocChecker::ProcessZeroAllocCheck( 1604 CheckerContext &C, const CallEvent &Call, const unsigned IndexOfSizeArg, 1605 ProgramStateRef State, std::optional<SVal> RetVal) { 1606 if (!State) 1607 return nullptr; 1608 1609 const Expr *Arg = nullptr; 1610 1611 if (const CallExpr *CE = dyn_cast<CallExpr>(Call.getOriginExpr())) { 1612 Arg = CE->getArg(IndexOfSizeArg); 1613 } else if (const CXXNewExpr *NE = 1614 dyn_cast<CXXNewExpr>(Call.getOriginExpr())) { 1615 if (NE->isArray()) { 1616 Arg = *NE->getArraySize(); 1617 } else { 1618 return State; 1619 } 1620 } else { 1621 assert(false && "not a CallExpr or CXXNewExpr"); 1622 return nullptr; 1623 } 1624 1625 if (!RetVal) 1626 RetVal = State->getSVal(Call.getOriginExpr(), C.getLocationContext()); 1627 1628 assert(Arg); 1629 1630 auto DefArgVal = 1631 State->getSVal(Arg, Call.getLocationContext()).getAs<DefinedSVal>(); 1632 1633 if (!DefArgVal) 1634 return State; 1635 1636 // Check if the allocation size is 0. 1637 ProgramStateRef TrueState, FalseState; 1638 SValBuilder &SvalBuilder = State->getStateManager().getSValBuilder(); 1639 DefinedSVal Zero = 1640 SvalBuilder.makeZeroVal(Arg->getType()).castAs<DefinedSVal>(); 1641 1642 std::tie(TrueState, FalseState) = 1643 State->assume(SvalBuilder.evalEQ(State, *DefArgVal, Zero)); 1644 1645 if (TrueState && !FalseState) { 1646 SymbolRef Sym = RetVal->getAsLocSymbol(); 1647 if (!Sym) 1648 return State; 1649 1650 const RefState *RS = State->get<RegionState>(Sym); 1651 if (RS) { 1652 if (RS->isAllocated()) 1653 return TrueState->set<RegionState>(Sym, 1654 RefState::getAllocatedOfSizeZero(RS)); 1655 else 1656 return State; 1657 } else { 1658 // Case of zero-size realloc. Historically 'realloc(ptr, 0)' is treated as 1659 // 'free(ptr)' and the returned value from 'realloc(ptr, 0)' is not 1660 // tracked. Add zero-reallocated Sym to the state to catch references 1661 // to zero-allocated memory. 1662 return TrueState->add<ReallocSizeZeroSymbols>(Sym); 1663 } 1664 } 1665 1666 // Assume the value is non-zero going forward. 1667 assert(FalseState); 1668 return FalseState; 1669 } 1670 1671 static QualType getDeepPointeeType(QualType T) { 1672 QualType Result = T, PointeeType = T->getPointeeType(); 1673 while (!PointeeType.isNull()) { 1674 Result = PointeeType; 1675 PointeeType = PointeeType->getPointeeType(); 1676 } 1677 return Result; 1678 } 1679 1680 /// \returns true if the constructor invoked by \p NE has an argument of a 1681 /// pointer/reference to a record type. 1682 static bool hasNonTrivialConstructorCall(const CXXNewExpr *NE) { 1683 1684 const CXXConstructExpr *ConstructE = NE->getConstructExpr(); 1685 if (!ConstructE) 1686 return false; 1687 1688 if (!NE->getAllocatedType()->getAsCXXRecordDecl()) 1689 return false; 1690 1691 const CXXConstructorDecl *CtorD = ConstructE->getConstructor(); 1692 1693 // Iterate over the constructor parameters. 1694 for (const auto *CtorParam : CtorD->parameters()) { 1695 1696 QualType CtorParamPointeeT = CtorParam->getType()->getPointeeType(); 1697 if (CtorParamPointeeT.isNull()) 1698 continue; 1699 1700 CtorParamPointeeT = getDeepPointeeType(CtorParamPointeeT); 1701 1702 if (CtorParamPointeeT->getAsCXXRecordDecl()) 1703 return true; 1704 } 1705 1706 return false; 1707 } 1708 1709 ProgramStateRef 1710 MallocChecker::processNewAllocation(const CXXAllocatorCall &Call, 1711 CheckerContext &C, 1712 AllocationFamily Family) const { 1713 if (!isStandardNewDelete(Call)) 1714 return nullptr; 1715 1716 const CXXNewExpr *NE = Call.getOriginExpr(); 1717 const ParentMap &PM = C.getLocationContext()->getParentMap(); 1718 ProgramStateRef State = C.getState(); 1719 1720 // Non-trivial constructors have a chance to escape 'this', but marking all 1721 // invocations of trivial constructors as escaped would cause too great of 1722 // reduction of true positives, so let's just do that for constructors that 1723 // have an argument of a pointer-to-record type. 1724 if (!PM.isConsumedExpr(NE) && hasNonTrivialConstructorCall(NE)) 1725 return State; 1726 1727 // The return value from operator new is bound to a specified initialization 1728 // value (if any) and we don't want to loose this value. So we call 1729 // MallocUpdateRefState() instead of MallocMemAux() which breaks the 1730 // existing binding. 1731 SVal Target = Call.getObjectUnderConstruction(); 1732 if (Call.getOriginExpr()->isArray()) { 1733 if (auto SizeEx = NE->getArraySize()) 1734 checkTaintedness(C, Call, C.getSVal(*SizeEx), State, 1735 AllocationFamily(AF_CXXNewArray)); 1736 } 1737 1738 State = MallocUpdateRefState(C, NE, State, Family, Target); 1739 State = ProcessZeroAllocCheck(C, Call, 0, State, Target); 1740 return State; 1741 } 1742 1743 void MallocChecker::checkNewAllocator(const CXXAllocatorCall &Call, 1744 CheckerContext &C) const { 1745 if (!C.wasInlined) { 1746 ProgramStateRef State = processNewAllocation( 1747 Call, C, 1748 AllocationFamily(Call.getOriginExpr()->isArray() ? AF_CXXNewArray 1749 : AF_CXXNew)); 1750 C.addTransition(State); 1751 } 1752 } 1753 1754 static bool isKnownDeallocObjCMethodName(const ObjCMethodCall &Call) { 1755 // If the first selector piece is one of the names below, assume that the 1756 // object takes ownership of the memory, promising to eventually deallocate it 1757 // with free(). 1758 // Ex: [NSData dataWithBytesNoCopy:bytes length:10]; 1759 // (...unless a 'freeWhenDone' parameter is false, but that's checked later.) 1760 StringRef FirstSlot = Call.getSelector().getNameForSlot(0); 1761 return FirstSlot == "dataWithBytesNoCopy" || 1762 FirstSlot == "initWithBytesNoCopy" || 1763 FirstSlot == "initWithCharactersNoCopy"; 1764 } 1765 1766 static std::optional<bool> getFreeWhenDoneArg(const ObjCMethodCall &Call) { 1767 Selector S = Call.getSelector(); 1768 1769 // FIXME: We should not rely on fully-constrained symbols being folded. 1770 for (unsigned i = 1; i < S.getNumArgs(); ++i) 1771 if (S.getNameForSlot(i) == "freeWhenDone") 1772 return !Call.getArgSVal(i).isZeroConstant(); 1773 1774 return std::nullopt; 1775 } 1776 1777 void MallocChecker::checkPostObjCMessage(const ObjCMethodCall &Call, 1778 CheckerContext &C) const { 1779 if (C.wasInlined) 1780 return; 1781 1782 if (!isKnownDeallocObjCMethodName(Call)) 1783 return; 1784 1785 if (std::optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call)) 1786 if (!*FreeWhenDone) 1787 return; 1788 1789 if (Call.hasNonZeroCallbackArg()) 1790 return; 1791 1792 bool IsKnownToBeAllocatedMemory; 1793 ProgramStateRef State = FreeMemAux(C, Call.getArgExpr(0), Call, C.getState(), 1794 /*Hold=*/true, IsKnownToBeAllocatedMemory, 1795 AllocationFamily(AF_Malloc), 1796 /*ReturnsNullOnFailure=*/true); 1797 1798 C.addTransition(State); 1799 } 1800 1801 ProgramStateRef 1802 MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallEvent &Call, 1803 const OwnershipAttr *Att, 1804 ProgramStateRef State) const { 1805 if (!State) 1806 return nullptr; 1807 1808 auto attrClassName = Att->getModule()->getName(); 1809 auto Family = AllocationFamily(AF_Custom, attrClassName); 1810 1811 if (!Att->args().empty()) { 1812 return MallocMemAux(C, Call, 1813 Call.getArgExpr(Att->args_begin()->getASTIndex()), 1814 UndefinedVal(), State, Family); 1815 } 1816 return MallocMemAux(C, Call, UnknownVal(), UndefinedVal(), State, Family); 1817 } 1818 1819 ProgramStateRef MallocChecker::MallocBindRetVal(CheckerContext &C, 1820 const CallEvent &Call, 1821 ProgramStateRef State, 1822 bool isAlloca) const { 1823 const Expr *CE = Call.getOriginExpr(); 1824 1825 // We expect the allocation functions to return a pointer. 1826 if (!Loc::isLocType(CE->getType())) 1827 return nullptr; 1828 1829 unsigned Count = C.blockCount(); 1830 SValBuilder &SVB = C.getSValBuilder(); 1831 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 1832 DefinedSVal RetVal = isAlloca ? SVB.getAllocaRegionVal(CE, LCtx, Count) 1833 : SVB.getConjuredHeapSymbolVal(CE, LCtx, Count); 1834 return State->BindExpr(CE, C.getLocationContext(), RetVal); 1835 } 1836 1837 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1838 const CallEvent &Call, 1839 const Expr *SizeEx, SVal Init, 1840 ProgramStateRef State, 1841 AllocationFamily Family) const { 1842 if (!State) 1843 return nullptr; 1844 1845 assert(SizeEx); 1846 return MallocMemAux(C, Call, C.getSVal(SizeEx), Init, State, Family); 1847 } 1848 1849 void MallocChecker::reportTaintBug(StringRef Msg, ProgramStateRef State, 1850 CheckerContext &C, 1851 llvm::ArrayRef<SymbolRef> TaintedSyms, 1852 AllocationFamily Family) const { 1853 if (ExplodedNode *N = C.generateNonFatalErrorNode(State, this)) { 1854 if (!BT_TaintedAlloc) 1855 BT_TaintedAlloc.reset(new BugType(CheckNames[CK_TaintedAllocChecker], 1856 "Tainted Memory Allocation", 1857 categories::TaintedData)); 1858 auto R = std::make_unique<PathSensitiveBugReport>(*BT_TaintedAlloc, Msg, N); 1859 for (auto TaintedSym : TaintedSyms) { 1860 R->markInteresting(TaintedSym); 1861 } 1862 C.emitReport(std::move(R)); 1863 } 1864 } 1865 1866 void MallocChecker::checkTaintedness(CheckerContext &C, const CallEvent &Call, 1867 const SVal SizeSVal, ProgramStateRef State, 1868 AllocationFamily Family) const { 1869 if (!ChecksEnabled[CK_TaintedAllocChecker]) 1870 return; 1871 std::vector<SymbolRef> TaintedSyms = 1872 taint::getTaintedSymbols(State, SizeSVal); 1873 if (TaintedSyms.empty()) 1874 return; 1875 1876 SValBuilder &SVB = C.getSValBuilder(); 1877 QualType SizeTy = SVB.getContext().getSizeType(); 1878 QualType CmpTy = SVB.getConditionType(); 1879 // In case the symbol is tainted, we give a warning if the 1880 // size is larger than SIZE_MAX/4 1881 BasicValueFactory &BVF = SVB.getBasicValueFactory(); 1882 const llvm::APSInt MaxValInt = BVF.getMaxValue(SizeTy); 1883 NonLoc MaxLength = 1884 SVB.makeIntVal(MaxValInt / APSIntType(MaxValInt).getValue(4)); 1885 std::optional<NonLoc> SizeNL = SizeSVal.getAs<NonLoc>(); 1886 auto Cmp = SVB.evalBinOpNN(State, BO_GE, *SizeNL, MaxLength, CmpTy) 1887 .getAs<DefinedOrUnknownSVal>(); 1888 if (!Cmp) 1889 return; 1890 auto [StateTooLarge, StateNotTooLarge] = State->assume(*Cmp); 1891 if (!StateTooLarge && StateNotTooLarge) { 1892 // We can prove that size is not too large so there is no issue. 1893 return; 1894 } 1895 1896 std::string Callee = "Memory allocation function"; 1897 if (Call.getCalleeIdentifier()) 1898 Callee = Call.getCalleeIdentifier()->getName().str(); 1899 reportTaintBug( 1900 Callee + " is called with a tainted (potentially attacker controlled) " 1901 "value. Make sure the value is bound checked.", 1902 State, C, TaintedSyms, Family); 1903 } 1904 1905 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1906 const CallEvent &Call, SVal Size, 1907 SVal Init, ProgramStateRef State, 1908 AllocationFamily Family) const { 1909 if (!State) 1910 return nullptr; 1911 1912 const Expr *CE = Call.getOriginExpr(); 1913 1914 // We expect the malloc functions to return a pointer. 1915 // Should have been already checked. 1916 assert(Loc::isLocType(CE->getType()) && 1917 "Allocation functions must return a pointer"); 1918 1919 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 1920 SVal RetVal = State->getSVal(CE, C.getLocationContext()); 1921 1922 // Fill the region with the initialization value. 1923 State = State->bindDefaultInitial(RetVal, Init, LCtx); 1924 1925 // If Size is somehow undefined at this point, this line prevents a crash. 1926 if (Size.isUndef()) 1927 Size = UnknownVal(); 1928 1929 checkTaintedness(C, Call, Size, State, AllocationFamily(AF_Malloc)); 1930 1931 // Set the region's extent. 1932 State = setDynamicExtent(State, RetVal.getAsRegion(), 1933 Size.castAs<DefinedOrUnknownSVal>()); 1934 1935 return MallocUpdateRefState(C, CE, State, Family); 1936 } 1937 1938 static ProgramStateRef MallocUpdateRefState(CheckerContext &C, const Expr *E, 1939 ProgramStateRef State, 1940 AllocationFamily Family, 1941 std::optional<SVal> RetVal) { 1942 if (!State) 1943 return nullptr; 1944 1945 // Get the return value. 1946 if (!RetVal) 1947 RetVal = State->getSVal(E, C.getLocationContext()); 1948 1949 // We expect the malloc functions to return a pointer. 1950 if (!RetVal->getAs<Loc>()) 1951 return nullptr; 1952 1953 SymbolRef Sym = RetVal->getAsLocSymbol(); 1954 1955 // NOTE: If this was an `alloca()` call, then `RetVal` holds an 1956 // `AllocaRegion`, so `Sym` will be a nullpointer because `AllocaRegion`s do 1957 // not have an associated symbol. However, this distinct region type means 1958 // that we don't need to store anything about them in `RegionState`. 1959 1960 if (Sym) 1961 return State->set<RegionState>(Sym, RefState::getAllocated(Family, E)); 1962 1963 return State; 1964 } 1965 1966 ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C, 1967 const CallEvent &Call, 1968 const OwnershipAttr *Att, 1969 ProgramStateRef State) const { 1970 if (!State) 1971 return nullptr; 1972 1973 auto attrClassName = Att->getModule()->getName(); 1974 auto Family = AllocationFamily(AF_Custom, attrClassName); 1975 1976 bool IsKnownToBeAllocated = false; 1977 1978 for (const auto &Arg : Att->args()) { 1979 ProgramStateRef StateI = 1980 FreeMemAux(C, Call, State, Arg.getASTIndex(), 1981 Att->getOwnKind() == OwnershipAttr::Holds, 1982 IsKnownToBeAllocated, Family); 1983 if (StateI) 1984 State = StateI; 1985 } 1986 return State; 1987 } 1988 1989 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, 1990 const CallEvent &Call, 1991 ProgramStateRef State, unsigned Num, 1992 bool Hold, bool &IsKnownToBeAllocated, 1993 AllocationFamily Family, 1994 bool ReturnsNullOnFailure) const { 1995 if (!State) 1996 return nullptr; 1997 1998 if (Call.getNumArgs() < (Num + 1)) 1999 return nullptr; 2000 2001 return FreeMemAux(C, Call.getArgExpr(Num), Call, State, Hold, 2002 IsKnownToBeAllocated, Family, ReturnsNullOnFailure); 2003 } 2004 2005 /// Checks if the previous call to free on the given symbol failed - if free 2006 /// failed, returns true. Also, returns the corresponding return value symbol. 2007 static bool didPreviousFreeFail(ProgramStateRef State, 2008 SymbolRef Sym, SymbolRef &RetStatusSymbol) { 2009 const SymbolRef *Ret = State->get<FreeReturnValue>(Sym); 2010 if (Ret) { 2011 assert(*Ret && "We should not store the null return symbol"); 2012 ConstraintManager &CMgr = State->getConstraintManager(); 2013 ConditionTruthVal FreeFailed = CMgr.isNull(State, *Ret); 2014 RetStatusSymbol = *Ret; 2015 return FreeFailed.isConstrainedTrue(); 2016 } 2017 return false; 2018 } 2019 2020 static void printOwnershipTakesList(raw_ostream &os, CheckerContext &C, 2021 const Expr *E) { 2022 const CallExpr *CE = dyn_cast<CallExpr>(E); 2023 2024 if (!CE) 2025 return; 2026 2027 const FunctionDecl *FD = CE->getDirectCallee(); 2028 if (!FD) 2029 return; 2030 2031 // Only one ownership_takes attribute is allowed. 2032 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { 2033 if (I->getOwnKind() != OwnershipAttr::Takes) 2034 continue; 2035 2036 os << ", which takes ownership of '" << I->getModule()->getName() << '\''; 2037 break; 2038 } 2039 } 2040 2041 static bool printMemFnName(raw_ostream &os, CheckerContext &C, const Expr *E) { 2042 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 2043 // FIXME: This doesn't handle indirect calls. 2044 const FunctionDecl *FD = CE->getDirectCallee(); 2045 if (!FD) 2046 return false; 2047 2048 os << '\'' << *FD; 2049 2050 if (!FD->isOverloadedOperator()) 2051 os << "()"; 2052 2053 os << '\''; 2054 return true; 2055 } 2056 2057 if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E)) { 2058 if (Msg->isInstanceMessage()) 2059 os << "-"; 2060 else 2061 os << "+"; 2062 Msg->getSelector().print(os); 2063 return true; 2064 } 2065 2066 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { 2067 os << "'" 2068 << getOperatorSpelling(NE->getOperatorNew()->getOverloadedOperator()) 2069 << "'"; 2070 return true; 2071 } 2072 2073 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(E)) { 2074 os << "'" 2075 << getOperatorSpelling(DE->getOperatorDelete()->getOverloadedOperator()) 2076 << "'"; 2077 return true; 2078 } 2079 2080 return false; 2081 } 2082 2083 static void printExpectedAllocName(raw_ostream &os, AllocationFamily Family) { 2084 2085 switch (Family.Kind) { 2086 case AF_Malloc: 2087 os << "'malloc()'"; 2088 return; 2089 case AF_CXXNew: 2090 os << "'new'"; 2091 return; 2092 case AF_CXXNewArray: 2093 os << "'new[]'"; 2094 return; 2095 case AF_IfNameIndex: 2096 os << "'if_nameindex()'"; 2097 return; 2098 case AF_InnerBuffer: 2099 os << "container-specific allocator"; 2100 return; 2101 case AF_Custom: 2102 os << Family.CustomName.value(); 2103 return; 2104 case AF_Alloca: 2105 case AF_None: 2106 assert(false && "not a deallocation expression"); 2107 } 2108 } 2109 2110 static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family) { 2111 switch (Family.Kind) { 2112 case AF_Malloc: 2113 os << "'free()'"; 2114 return; 2115 case AF_CXXNew: 2116 os << "'delete'"; 2117 return; 2118 case AF_CXXNewArray: 2119 os << "'delete[]'"; 2120 return; 2121 case AF_IfNameIndex: 2122 os << "'if_freenameindex()'"; 2123 return; 2124 case AF_InnerBuffer: 2125 os << "container-specific deallocator"; 2126 return; 2127 case AF_Custom: 2128 os << "function that takes ownership of '" << Family.CustomName.value() 2129 << "\'"; 2130 return; 2131 case AF_Alloca: 2132 case AF_None: 2133 assert(false && "not a deallocation expression"); 2134 } 2135 } 2136 2137 ProgramStateRef 2138 MallocChecker::FreeMemAux(CheckerContext &C, const Expr *ArgExpr, 2139 const CallEvent &Call, ProgramStateRef State, 2140 bool Hold, bool &IsKnownToBeAllocated, 2141 AllocationFamily Family, bool ReturnsNullOnFailure, 2142 std::optional<SVal> ArgValOpt) const { 2143 2144 if (!State) 2145 return nullptr; 2146 2147 SVal ArgVal = ArgValOpt.value_or(C.getSVal(ArgExpr)); 2148 if (!isa<DefinedOrUnknownSVal>(ArgVal)) 2149 return nullptr; 2150 DefinedOrUnknownSVal location = ArgVal.castAs<DefinedOrUnknownSVal>(); 2151 2152 // Check for null dereferences. 2153 if (!isa<Loc>(location)) 2154 return nullptr; 2155 2156 // The explicit NULL case, no operation is performed. 2157 ProgramStateRef notNullState, nullState; 2158 std::tie(notNullState, nullState) = State->assume(location); 2159 if (nullState && !notNullState) 2160 return nullptr; 2161 2162 // Unknown values could easily be okay 2163 // Undefined values are handled elsewhere 2164 if (ArgVal.isUnknownOrUndef()) 2165 return nullptr; 2166 2167 const MemRegion *R = ArgVal.getAsRegion(); 2168 const Expr *ParentExpr = Call.getOriginExpr(); 2169 2170 // NOTE: We detected a bug, but the checker under whose name we would emit the 2171 // error could be disabled. Generally speaking, the MallocChecker family is an 2172 // integral part of the Static Analyzer, and disabling any part of it should 2173 // only be done under exceptional circumstances, such as frequent false 2174 // positives. If this is the case, we can reasonably believe that there are 2175 // serious faults in our understanding of the source code, and even if we 2176 // don't emit an warning, we should terminate further analysis with a sink 2177 // node. 2178 2179 // Nonlocs can't be freed, of course. 2180 // Non-region locations (labels and fixed addresses) also shouldn't be freed. 2181 if (!R) { 2182 // Exception: 2183 // If the macro ZERO_SIZE_PTR is defined, this could be a kernel source 2184 // code. In that case, the ZERO_SIZE_PTR defines a special value used for a 2185 // zero-sized memory block which is allowed to be freed, despite not being a 2186 // null pointer. 2187 if (Family.Kind != AF_Malloc || !isArgZERO_SIZE_PTR(State, C, ArgVal)) 2188 HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 2189 Family); 2190 return nullptr; 2191 } 2192 2193 R = R->StripCasts(); 2194 2195 // Blocks might show up as heap data, but should not be free()d 2196 if (isa<BlockDataRegion>(R)) { 2197 HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 2198 Family); 2199 return nullptr; 2200 } 2201 2202 const MemSpaceRegion *MS = R->getMemorySpace(); 2203 2204 // Parameters, locals, statics, globals, and memory returned by 2205 // __builtin_alloca() shouldn't be freed. 2206 if (!isa<UnknownSpaceRegion, HeapSpaceRegion>(MS)) { 2207 // Regions returned by malloc() are represented by SymbolicRegion objects 2208 // within HeapSpaceRegion. Of course, free() can work on memory allocated 2209 // outside the current function, so UnknownSpaceRegion is also a 2210 // possibility here. 2211 2212 if (isa<AllocaRegion>(R)) 2213 HandleFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 2214 else 2215 HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 2216 Family); 2217 2218 return nullptr; 2219 } 2220 2221 const SymbolicRegion *SrBase = dyn_cast<SymbolicRegion>(R->getBaseRegion()); 2222 // Various cases could lead to non-symbol values here. 2223 // For now, ignore them. 2224 if (!SrBase) 2225 return nullptr; 2226 2227 SymbolRef SymBase = SrBase->getSymbol(); 2228 const RefState *RsBase = State->get<RegionState>(SymBase); 2229 SymbolRef PreviousRetStatusSymbol = nullptr; 2230 2231 IsKnownToBeAllocated = 2232 RsBase && (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero()); 2233 2234 if (RsBase) { 2235 2236 // Memory returned by alloca() shouldn't be freed. 2237 if (RsBase->getAllocationFamily().Kind == AF_Alloca) { 2238 HandleFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 2239 return nullptr; 2240 } 2241 2242 // Check for double free first. 2243 if ((RsBase->isReleased() || RsBase->isRelinquished()) && 2244 !didPreviousFreeFail(State, SymBase, PreviousRetStatusSymbol)) { 2245 HandleDoubleFree(C, ParentExpr->getSourceRange(), RsBase->isReleased(), 2246 SymBase, PreviousRetStatusSymbol); 2247 return nullptr; 2248 2249 // If the pointer is allocated or escaped, but we are now trying to free it, 2250 // check that the call to free is proper. 2251 } else if (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero() || 2252 RsBase->isEscaped()) { 2253 2254 // Check if an expected deallocation function matches the real one. 2255 bool DeallocMatchesAlloc = RsBase->getAllocationFamily() == Family; 2256 if (!DeallocMatchesAlloc) { 2257 HandleMismatchedDealloc(C, ArgExpr->getSourceRange(), ParentExpr, 2258 RsBase, SymBase, Hold); 2259 return nullptr; 2260 } 2261 2262 // Check if the memory location being freed is the actual location 2263 // allocated, or an offset. 2264 RegionOffset Offset = R->getAsOffset(); 2265 if (Offset.isValid() && 2266 !Offset.hasSymbolicOffset() && 2267 Offset.getOffset() != 0) { 2268 const Expr *AllocExpr = cast<Expr>(RsBase->getStmt()); 2269 HandleOffsetFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 2270 Family, AllocExpr); 2271 return nullptr; 2272 } 2273 } 2274 } 2275 2276 if (SymBase->getType()->isFunctionPointerType()) { 2277 HandleFunctionPtrFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 2278 Family); 2279 return nullptr; 2280 } 2281 2282 // Clean out the info on previous call to free return info. 2283 State = State->remove<FreeReturnValue>(SymBase); 2284 2285 // Keep track of the return value. If it is NULL, we will know that free 2286 // failed. 2287 if (ReturnsNullOnFailure) { 2288 SVal RetVal = C.getSVal(ParentExpr); 2289 SymbolRef RetStatusSymbol = RetVal.getAsSymbol(); 2290 if (RetStatusSymbol) { 2291 C.getSymbolManager().addSymbolDependency(SymBase, RetStatusSymbol); 2292 State = State->set<FreeReturnValue>(SymBase, RetStatusSymbol); 2293 } 2294 } 2295 2296 // If we don't know anything about this symbol, a free on it may be totally 2297 // valid. If this is the case, lets assume that the allocation family of the 2298 // freeing function is the same as the symbols allocation family, and go with 2299 // that. 2300 assert(!RsBase || (RsBase && RsBase->getAllocationFamily() == Family)); 2301 2302 // Assume that after memory is freed, it contains unknown values. This 2303 // conforts languages standards, since reading from freed memory is considered 2304 // UB and may result in arbitrary value. 2305 State = State->invalidateRegions({location}, Call.getOriginExpr(), 2306 C.blockCount(), C.getLocationContext(), 2307 /*CausesPointerEscape=*/false, 2308 /*InvalidatedSymbols=*/nullptr); 2309 2310 // Normal free. 2311 if (Hold) 2312 return State->set<RegionState>(SymBase, 2313 RefState::getRelinquished(Family, 2314 ParentExpr)); 2315 2316 return State->set<RegionState>(SymBase, 2317 RefState::getReleased(Family, ParentExpr)); 2318 } 2319 2320 std::optional<MallocChecker::CheckKind> 2321 MallocChecker::getCheckIfTracked(AllocationFamily Family, 2322 bool IsALeakCheck) const { 2323 switch (Family.Kind) { 2324 case AF_Malloc: 2325 case AF_Alloca: 2326 case AF_Custom: 2327 case AF_IfNameIndex: { 2328 if (ChecksEnabled[CK_MallocChecker]) 2329 return CK_MallocChecker; 2330 return std::nullopt; 2331 } 2332 case AF_CXXNew: 2333 case AF_CXXNewArray: { 2334 if (IsALeakCheck) { 2335 if (ChecksEnabled[CK_NewDeleteLeaksChecker]) 2336 return CK_NewDeleteLeaksChecker; 2337 } 2338 else { 2339 if (ChecksEnabled[CK_NewDeleteChecker]) 2340 return CK_NewDeleteChecker; 2341 } 2342 return std::nullopt; 2343 } 2344 case AF_InnerBuffer: { 2345 if (ChecksEnabled[CK_InnerPointerChecker]) 2346 return CK_InnerPointerChecker; 2347 return std::nullopt; 2348 } 2349 case AF_None: { 2350 assert(false && "no family"); 2351 return std::nullopt; 2352 } 2353 } 2354 assert(false && "unhandled family"); 2355 return std::nullopt; 2356 } 2357 2358 std::optional<MallocChecker::CheckKind> 2359 MallocChecker::getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 2360 bool IsALeakCheck) const { 2361 if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) 2362 return CK_MallocChecker; 2363 2364 const RefState *RS = C.getState()->get<RegionState>(Sym); 2365 assert(RS); 2366 return getCheckIfTracked(RS->getAllocationFamily(), IsALeakCheck); 2367 } 2368 2369 bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) { 2370 if (std::optional<nonloc::ConcreteInt> IntVal = 2371 V.getAs<nonloc::ConcreteInt>()) 2372 os << "an integer (" << IntVal->getValue() << ")"; 2373 else if (std::optional<loc::ConcreteInt> ConstAddr = 2374 V.getAs<loc::ConcreteInt>()) 2375 os << "a constant address (" << ConstAddr->getValue() << ")"; 2376 else if (std::optional<loc::GotoLabel> Label = V.getAs<loc::GotoLabel>()) 2377 os << "the address of the label '" << Label->getLabel()->getName() << "'"; 2378 else 2379 return false; 2380 2381 return true; 2382 } 2383 2384 bool MallocChecker::SummarizeRegion(raw_ostream &os, 2385 const MemRegion *MR) { 2386 switch (MR->getKind()) { 2387 case MemRegion::FunctionCodeRegionKind: { 2388 const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl(); 2389 if (FD) 2390 os << "the address of the function '" << *FD << '\''; 2391 else 2392 os << "the address of a function"; 2393 return true; 2394 } 2395 case MemRegion::BlockCodeRegionKind: 2396 os << "block text"; 2397 return true; 2398 case MemRegion::BlockDataRegionKind: 2399 // FIXME: where the block came from? 2400 os << "a block"; 2401 return true; 2402 default: { 2403 const MemSpaceRegion *MS = MR->getMemorySpace(); 2404 2405 if (isa<StackLocalsSpaceRegion>(MS)) { 2406 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2407 const VarDecl *VD; 2408 if (VR) 2409 VD = VR->getDecl(); 2410 else 2411 VD = nullptr; 2412 2413 if (VD) 2414 os << "the address of the local variable '" << VD->getName() << "'"; 2415 else 2416 os << "the address of a local stack variable"; 2417 return true; 2418 } 2419 2420 if (isa<StackArgumentsSpaceRegion>(MS)) { 2421 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2422 const VarDecl *VD; 2423 if (VR) 2424 VD = VR->getDecl(); 2425 else 2426 VD = nullptr; 2427 2428 if (VD) 2429 os << "the address of the parameter '" << VD->getName() << "'"; 2430 else 2431 os << "the address of a parameter"; 2432 return true; 2433 } 2434 2435 if (isa<GlobalsSpaceRegion>(MS)) { 2436 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2437 const VarDecl *VD; 2438 if (VR) 2439 VD = VR->getDecl(); 2440 else 2441 VD = nullptr; 2442 2443 if (VD) { 2444 if (VD->isStaticLocal()) 2445 os << "the address of the static variable '" << VD->getName() << "'"; 2446 else 2447 os << "the address of the global variable '" << VD->getName() << "'"; 2448 } else 2449 os << "the address of a global variable"; 2450 return true; 2451 } 2452 2453 return false; 2454 } 2455 } 2456 } 2457 2458 void MallocChecker::HandleNonHeapDealloc(CheckerContext &C, SVal ArgVal, 2459 SourceRange Range, 2460 const Expr *DeallocExpr, 2461 AllocationFamily Family) const { 2462 2463 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2464 C.addSink(); 2465 return; 2466 } 2467 2468 std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2469 if (!CheckKind) 2470 return; 2471 2472 if (ExplodedNode *N = C.generateErrorNode()) { 2473 if (!BT_BadFree[*CheckKind]) 2474 BT_BadFree[*CheckKind].reset(new BugType( 2475 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 2476 2477 SmallString<100> buf; 2478 llvm::raw_svector_ostream os(buf); 2479 2480 const MemRegion *MR = ArgVal.getAsRegion(); 2481 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 2482 MR = ER->getSuperRegion(); 2483 2484 os << "Argument to "; 2485 if (!printMemFnName(os, C, DeallocExpr)) 2486 os << "deallocator"; 2487 2488 os << " is "; 2489 bool Summarized = MR ? SummarizeRegion(os, MR) 2490 : SummarizeValue(os, ArgVal); 2491 if (Summarized) 2492 os << ", which is not memory allocated by "; 2493 else 2494 os << "not memory allocated by "; 2495 2496 printExpectedAllocName(os, Family); 2497 2498 auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind], 2499 os.str(), N); 2500 R->markInteresting(MR); 2501 R->addRange(Range); 2502 C.emitReport(std::move(R)); 2503 } 2504 } 2505 2506 void MallocChecker::HandleFreeAlloca(CheckerContext &C, SVal ArgVal, 2507 SourceRange Range) const { 2508 2509 std::optional<MallocChecker::CheckKind> CheckKind; 2510 2511 if (ChecksEnabled[CK_MallocChecker]) 2512 CheckKind = CK_MallocChecker; 2513 else if (ChecksEnabled[CK_MismatchedDeallocatorChecker]) 2514 CheckKind = CK_MismatchedDeallocatorChecker; 2515 else { 2516 C.addSink(); 2517 return; 2518 } 2519 2520 if (ExplodedNode *N = C.generateErrorNode()) { 2521 if (!BT_FreeAlloca[*CheckKind]) 2522 BT_FreeAlloca[*CheckKind].reset(new BugType( 2523 CheckNames[*CheckKind], "Free 'alloca()'", categories::MemoryError)); 2524 2525 auto R = std::make_unique<PathSensitiveBugReport>( 2526 *BT_FreeAlloca[*CheckKind], 2527 "Memory allocated by 'alloca()' should not be deallocated", N); 2528 R->markInteresting(ArgVal.getAsRegion()); 2529 R->addRange(Range); 2530 C.emitReport(std::move(R)); 2531 } 2532 } 2533 2534 void MallocChecker::HandleMismatchedDealloc(CheckerContext &C, 2535 SourceRange Range, 2536 const Expr *DeallocExpr, 2537 const RefState *RS, SymbolRef Sym, 2538 bool OwnershipTransferred) const { 2539 2540 if (!ChecksEnabled[CK_MismatchedDeallocatorChecker]) { 2541 C.addSink(); 2542 return; 2543 } 2544 2545 if (ExplodedNode *N = C.generateErrorNode()) { 2546 if (!BT_MismatchedDealloc) 2547 BT_MismatchedDealloc.reset( 2548 new BugType(CheckNames[CK_MismatchedDeallocatorChecker], 2549 "Bad deallocator", categories::MemoryError)); 2550 2551 SmallString<100> buf; 2552 llvm::raw_svector_ostream os(buf); 2553 2554 const Expr *AllocExpr = cast<Expr>(RS->getStmt()); 2555 SmallString<20> AllocBuf; 2556 llvm::raw_svector_ostream AllocOs(AllocBuf); 2557 SmallString<20> DeallocBuf; 2558 llvm::raw_svector_ostream DeallocOs(DeallocBuf); 2559 2560 if (OwnershipTransferred) { 2561 if (printMemFnName(DeallocOs, C, DeallocExpr)) 2562 os << DeallocOs.str() << " cannot"; 2563 else 2564 os << "Cannot"; 2565 2566 os << " take ownership of memory"; 2567 2568 if (printMemFnName(AllocOs, C, AllocExpr)) 2569 os << " allocated by " << AllocOs.str(); 2570 } else { 2571 os << "Memory"; 2572 if (printMemFnName(AllocOs, C, AllocExpr)) 2573 os << " allocated by " << AllocOs.str(); 2574 2575 os << " should be deallocated by "; 2576 printExpectedDeallocName(os, RS->getAllocationFamily()); 2577 2578 if (printMemFnName(DeallocOs, C, DeallocExpr)) 2579 os << ", not " << DeallocOs.str(); 2580 2581 printOwnershipTakesList(os, C, DeallocExpr); 2582 } 2583 2584 auto R = std::make_unique<PathSensitiveBugReport>(*BT_MismatchedDealloc, 2585 os.str(), N); 2586 R->markInteresting(Sym); 2587 R->addRange(Range); 2588 R->addVisitor<MallocBugVisitor>(Sym); 2589 C.emitReport(std::move(R)); 2590 } 2591 } 2592 2593 void MallocChecker::HandleOffsetFree(CheckerContext &C, SVal ArgVal, 2594 SourceRange Range, const Expr *DeallocExpr, 2595 AllocationFamily Family, 2596 const Expr *AllocExpr) const { 2597 2598 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2599 C.addSink(); 2600 return; 2601 } 2602 2603 std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2604 if (!CheckKind) 2605 return; 2606 2607 ExplodedNode *N = C.generateErrorNode(); 2608 if (!N) 2609 return; 2610 2611 if (!BT_OffsetFree[*CheckKind]) 2612 BT_OffsetFree[*CheckKind].reset(new BugType( 2613 CheckNames[*CheckKind], "Offset free", categories::MemoryError)); 2614 2615 SmallString<100> buf; 2616 llvm::raw_svector_ostream os(buf); 2617 SmallString<20> AllocNameBuf; 2618 llvm::raw_svector_ostream AllocNameOs(AllocNameBuf); 2619 2620 const MemRegion *MR = ArgVal.getAsRegion(); 2621 assert(MR && "Only MemRegion based symbols can have offset free errors"); 2622 2623 RegionOffset Offset = MR->getAsOffset(); 2624 assert((Offset.isValid() && 2625 !Offset.hasSymbolicOffset() && 2626 Offset.getOffset() != 0) && 2627 "Only symbols with a valid offset can have offset free errors"); 2628 2629 int offsetBytes = Offset.getOffset() / C.getASTContext().getCharWidth(); 2630 2631 os << "Argument to "; 2632 if (!printMemFnName(os, C, DeallocExpr)) 2633 os << "deallocator"; 2634 os << " is offset by " 2635 << offsetBytes 2636 << " " 2637 << ((abs(offsetBytes) > 1) ? "bytes" : "byte") 2638 << " from the start of "; 2639 if (AllocExpr && printMemFnName(AllocNameOs, C, AllocExpr)) 2640 os << "memory allocated by " << AllocNameOs.str(); 2641 else 2642 os << "allocated memory"; 2643 2644 auto R = std::make_unique<PathSensitiveBugReport>(*BT_OffsetFree[*CheckKind], 2645 os.str(), N); 2646 R->markInteresting(MR->getBaseRegion()); 2647 R->addRange(Range); 2648 C.emitReport(std::move(R)); 2649 } 2650 2651 void MallocChecker::HandleUseAfterFree(CheckerContext &C, SourceRange Range, 2652 SymbolRef Sym) const { 2653 2654 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker] && 2655 !ChecksEnabled[CK_InnerPointerChecker]) { 2656 C.addSink(); 2657 return; 2658 } 2659 2660 std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2661 if (!CheckKind) 2662 return; 2663 2664 if (ExplodedNode *N = C.generateErrorNode()) { 2665 if (!BT_UseFree[*CheckKind]) 2666 BT_UseFree[*CheckKind].reset(new BugType( 2667 CheckNames[*CheckKind], "Use-after-free", categories::MemoryError)); 2668 2669 AllocationFamily AF = 2670 C.getState()->get<RegionState>(Sym)->getAllocationFamily(); 2671 2672 auto R = std::make_unique<PathSensitiveBugReport>( 2673 *BT_UseFree[*CheckKind], 2674 AF.Kind == AF_InnerBuffer 2675 ? "Inner pointer of container used after re/deallocation" 2676 : "Use of memory after it is freed", 2677 N); 2678 2679 R->markInteresting(Sym); 2680 R->addRange(Range); 2681 R->addVisitor<MallocBugVisitor>(Sym); 2682 2683 if (AF.Kind == AF_InnerBuffer) 2684 R->addVisitor(allocation_state::getInnerPointerBRVisitor(Sym)); 2685 2686 C.emitReport(std::move(R)); 2687 } 2688 } 2689 2690 void MallocChecker::HandleDoubleFree(CheckerContext &C, SourceRange Range, 2691 bool Released, SymbolRef Sym, 2692 SymbolRef PrevSym) const { 2693 2694 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2695 C.addSink(); 2696 return; 2697 } 2698 2699 std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2700 if (!CheckKind) 2701 return; 2702 2703 if (ExplodedNode *N = C.generateErrorNode()) { 2704 if (!BT_DoubleFree[*CheckKind]) 2705 BT_DoubleFree[*CheckKind].reset(new BugType( 2706 CheckNames[*CheckKind], "Double free", categories::MemoryError)); 2707 2708 auto R = std::make_unique<PathSensitiveBugReport>( 2709 *BT_DoubleFree[*CheckKind], 2710 (Released ? "Attempt to free released memory" 2711 : "Attempt to free non-owned memory"), 2712 N); 2713 R->addRange(Range); 2714 R->markInteresting(Sym); 2715 if (PrevSym) 2716 R->markInteresting(PrevSym); 2717 R->addVisitor<MallocBugVisitor>(Sym); 2718 C.emitReport(std::move(R)); 2719 } 2720 } 2721 2722 void MallocChecker::HandleDoubleDelete(CheckerContext &C, SymbolRef Sym) const { 2723 2724 if (!ChecksEnabled[CK_NewDeleteChecker]) { 2725 C.addSink(); 2726 return; 2727 } 2728 2729 std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2730 if (!CheckKind) 2731 return; 2732 2733 if (ExplodedNode *N = C.generateErrorNode()) { 2734 if (!BT_DoubleDelete) 2735 BT_DoubleDelete.reset(new BugType(CheckNames[CK_NewDeleteChecker], 2736 "Double delete", 2737 categories::MemoryError)); 2738 2739 auto R = std::make_unique<PathSensitiveBugReport>( 2740 *BT_DoubleDelete, "Attempt to delete released memory", N); 2741 2742 R->markInteresting(Sym); 2743 R->addVisitor<MallocBugVisitor>(Sym); 2744 C.emitReport(std::move(R)); 2745 } 2746 } 2747 2748 void MallocChecker::HandleUseZeroAlloc(CheckerContext &C, SourceRange Range, 2749 SymbolRef Sym) const { 2750 2751 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2752 C.addSink(); 2753 return; 2754 } 2755 2756 std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2757 2758 if (!CheckKind) 2759 return; 2760 2761 if (ExplodedNode *N = C.generateErrorNode()) { 2762 if (!BT_UseZerroAllocated[*CheckKind]) 2763 BT_UseZerroAllocated[*CheckKind].reset( 2764 new BugType(CheckNames[*CheckKind], "Use of zero allocated", 2765 categories::MemoryError)); 2766 2767 auto R = std::make_unique<PathSensitiveBugReport>( 2768 *BT_UseZerroAllocated[*CheckKind], 2769 "Use of memory allocated with size zero", N); 2770 2771 R->addRange(Range); 2772 if (Sym) { 2773 R->markInteresting(Sym); 2774 R->addVisitor<MallocBugVisitor>(Sym); 2775 } 2776 C.emitReport(std::move(R)); 2777 } 2778 } 2779 2780 void MallocChecker::HandleFunctionPtrFree(CheckerContext &C, SVal ArgVal, 2781 SourceRange Range, 2782 const Expr *FreeExpr, 2783 AllocationFamily Family) const { 2784 if (!ChecksEnabled[CK_MallocChecker]) { 2785 C.addSink(); 2786 return; 2787 } 2788 2789 std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2790 if (!CheckKind) 2791 return; 2792 2793 if (ExplodedNode *N = C.generateErrorNode()) { 2794 if (!BT_BadFree[*CheckKind]) 2795 BT_BadFree[*CheckKind].reset(new BugType( 2796 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 2797 2798 SmallString<100> Buf; 2799 llvm::raw_svector_ostream Os(Buf); 2800 2801 const MemRegion *MR = ArgVal.getAsRegion(); 2802 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 2803 MR = ER->getSuperRegion(); 2804 2805 Os << "Argument to "; 2806 if (!printMemFnName(Os, C, FreeExpr)) 2807 Os << "deallocator"; 2808 2809 Os << " is a function pointer"; 2810 2811 auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind], 2812 Os.str(), N); 2813 R->markInteresting(MR); 2814 R->addRange(Range); 2815 C.emitReport(std::move(R)); 2816 } 2817 } 2818 2819 ProgramStateRef 2820 MallocChecker::ReallocMemAux(CheckerContext &C, const CallEvent &Call, 2821 bool ShouldFreeOnFail, ProgramStateRef State, 2822 AllocationFamily Family, bool SuffixWithN) const { 2823 if (!State) 2824 return nullptr; 2825 2826 const CallExpr *CE = cast<CallExpr>(Call.getOriginExpr()); 2827 2828 if (SuffixWithN && CE->getNumArgs() < 3) 2829 return nullptr; 2830 else if (CE->getNumArgs() < 2) 2831 return nullptr; 2832 2833 const Expr *arg0Expr = CE->getArg(0); 2834 SVal Arg0Val = C.getSVal(arg0Expr); 2835 if (!isa<DefinedOrUnknownSVal>(Arg0Val)) 2836 return nullptr; 2837 DefinedOrUnknownSVal arg0Val = Arg0Val.castAs<DefinedOrUnknownSVal>(); 2838 2839 SValBuilder &svalBuilder = C.getSValBuilder(); 2840 2841 DefinedOrUnknownSVal PtrEQ = svalBuilder.evalEQ( 2842 State, arg0Val, svalBuilder.makeNullWithType(arg0Expr->getType())); 2843 2844 // Get the size argument. 2845 const Expr *Arg1 = CE->getArg(1); 2846 2847 // Get the value of the size argument. 2848 SVal TotalSize = C.getSVal(Arg1); 2849 if (SuffixWithN) 2850 TotalSize = evalMulForBufferSize(C, Arg1, CE->getArg(2)); 2851 if (!isa<DefinedOrUnknownSVal>(TotalSize)) 2852 return nullptr; 2853 2854 // Compare the size argument to 0. 2855 DefinedOrUnknownSVal SizeZero = 2856 svalBuilder.evalEQ(State, TotalSize.castAs<DefinedOrUnknownSVal>(), 2857 svalBuilder.makeIntValWithWidth( 2858 svalBuilder.getContext().getSizeType(), 0)); 2859 2860 ProgramStateRef StatePtrIsNull, StatePtrNotNull; 2861 std::tie(StatePtrIsNull, StatePtrNotNull) = State->assume(PtrEQ); 2862 ProgramStateRef StateSizeIsZero, StateSizeNotZero; 2863 std::tie(StateSizeIsZero, StateSizeNotZero) = State->assume(SizeZero); 2864 // We only assume exceptional states if they are definitely true; if the 2865 // state is under-constrained, assume regular realloc behavior. 2866 bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull; 2867 bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero; 2868 2869 // If the ptr is NULL and the size is not 0, the call is equivalent to 2870 // malloc(size). 2871 if (PrtIsNull && !SizeIsZero) { 2872 ProgramStateRef stateMalloc = MallocMemAux( 2873 C, Call, TotalSize, UndefinedVal(), StatePtrIsNull, Family); 2874 return stateMalloc; 2875 } 2876 2877 // Proccess as allocation of 0 bytes. 2878 if (PrtIsNull && SizeIsZero) 2879 return State; 2880 2881 assert(!PrtIsNull); 2882 2883 bool IsKnownToBeAllocated = false; 2884 2885 // If the size is 0, free the memory. 2886 if (SizeIsZero) 2887 // The semantics of the return value are: 2888 // If size was equal to 0, either NULL or a pointer suitable to be passed 2889 // to free() is returned. We just free the input pointer and do not add 2890 // any constrains on the output pointer. 2891 if (ProgramStateRef stateFree = FreeMemAux( 2892 C, Call, StateSizeIsZero, 0, false, IsKnownToBeAllocated, Family)) 2893 return stateFree; 2894 2895 // Default behavior. 2896 if (ProgramStateRef stateFree = 2897 FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocated, Family)) { 2898 2899 ProgramStateRef stateRealloc = 2900 MallocMemAux(C, Call, TotalSize, UnknownVal(), stateFree, Family); 2901 if (!stateRealloc) 2902 return nullptr; 2903 2904 OwnershipAfterReallocKind Kind = OAR_ToBeFreedAfterFailure; 2905 if (ShouldFreeOnFail) 2906 Kind = OAR_FreeOnFailure; 2907 else if (!IsKnownToBeAllocated) 2908 Kind = OAR_DoNotTrackAfterFailure; 2909 2910 // Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size). 2911 SymbolRef FromPtr = arg0Val.getLocSymbolInBase(); 2912 SVal RetVal = stateRealloc->getSVal(CE, C.getLocationContext()); 2913 SymbolRef ToPtr = RetVal.getAsSymbol(); 2914 assert(FromPtr && ToPtr && 2915 "By this point, FreeMemAux and MallocMemAux should have checked " 2916 "whether the argument or the return value is symbolic!"); 2917 2918 // Record the info about the reallocated symbol so that we could properly 2919 // process failed reallocation. 2920 stateRealloc = stateRealloc->set<ReallocPairs>(ToPtr, 2921 ReallocPair(FromPtr, Kind)); 2922 // The reallocated symbol should stay alive for as long as the new symbol. 2923 C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr); 2924 return stateRealloc; 2925 } 2926 return nullptr; 2927 } 2928 2929 ProgramStateRef MallocChecker::CallocMem(CheckerContext &C, 2930 const CallEvent &Call, 2931 ProgramStateRef State) const { 2932 if (!State) 2933 return nullptr; 2934 2935 if (Call.getNumArgs() < 2) 2936 return nullptr; 2937 2938 SValBuilder &svalBuilder = C.getSValBuilder(); 2939 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 2940 SVal TotalSize = 2941 evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1)); 2942 2943 return MallocMemAux(C, Call, TotalSize, zeroVal, State, 2944 AllocationFamily(AF_Malloc)); 2945 } 2946 2947 MallocChecker::LeakInfo MallocChecker::getAllocationSite(const ExplodedNode *N, 2948 SymbolRef Sym, 2949 CheckerContext &C) { 2950 const LocationContext *LeakContext = N->getLocationContext(); 2951 // Walk the ExplodedGraph backwards and find the first node that referred to 2952 // the tracked symbol. 2953 const ExplodedNode *AllocNode = N; 2954 const MemRegion *ReferenceRegion = nullptr; 2955 2956 while (N) { 2957 ProgramStateRef State = N->getState(); 2958 if (!State->get<RegionState>(Sym)) 2959 break; 2960 2961 // Find the most recent expression bound to the symbol in the current 2962 // context. 2963 if (!ReferenceRegion) { 2964 if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) { 2965 SVal Val = State->getSVal(MR); 2966 if (Val.getAsLocSymbol() == Sym) { 2967 const VarRegion *VR = MR->getBaseRegion()->getAs<VarRegion>(); 2968 // Do not show local variables belonging to a function other than 2969 // where the error is reported. 2970 if (!VR || (VR->getStackFrame() == LeakContext->getStackFrame())) 2971 ReferenceRegion = MR; 2972 } 2973 } 2974 } 2975 2976 // Allocation node, is the last node in the current or parent context in 2977 // which the symbol was tracked. 2978 const LocationContext *NContext = N->getLocationContext(); 2979 if (NContext == LeakContext || 2980 NContext->isParentOf(LeakContext)) 2981 AllocNode = N; 2982 N = N->pred_empty() ? nullptr : *(N->pred_begin()); 2983 } 2984 2985 return LeakInfo(AllocNode, ReferenceRegion); 2986 } 2987 2988 void MallocChecker::HandleLeak(SymbolRef Sym, ExplodedNode *N, 2989 CheckerContext &C) const { 2990 2991 if (!ChecksEnabled[CK_MallocChecker] && 2992 !ChecksEnabled[CK_NewDeleteLeaksChecker]) 2993 return; 2994 2995 const RefState *RS = C.getState()->get<RegionState>(Sym); 2996 assert(RS && "cannot leak an untracked symbol"); 2997 AllocationFamily Family = RS->getAllocationFamily(); 2998 2999 if (Family.Kind == AF_Alloca) 3000 return; 3001 3002 std::optional<MallocChecker::CheckKind> CheckKind = 3003 getCheckIfTracked(Family, true); 3004 3005 if (!CheckKind) 3006 return; 3007 3008 assert(N); 3009 if (!BT_Leak[*CheckKind]) { 3010 // Leaks should not be reported if they are post-dominated by a sink: 3011 // (1) Sinks are higher importance bugs. 3012 // (2) NoReturnFunctionChecker uses sink nodes to represent paths ending 3013 // with __noreturn functions such as assert() or exit(). We choose not 3014 // to report leaks on such paths. 3015 BT_Leak[*CheckKind].reset(new BugType(CheckNames[*CheckKind], "Memory leak", 3016 categories::MemoryError, 3017 /*SuppressOnSink=*/true)); 3018 } 3019 3020 // Most bug reports are cached at the location where they occurred. 3021 // With leaks, we want to unique them by the location where they were 3022 // allocated, and only report a single path. 3023 PathDiagnosticLocation LocUsedForUniqueing; 3024 const ExplodedNode *AllocNode = nullptr; 3025 const MemRegion *Region = nullptr; 3026 std::tie(AllocNode, Region) = getAllocationSite(N, Sym, C); 3027 3028 const Stmt *AllocationStmt = AllocNode->getStmtForDiagnostics(); 3029 if (AllocationStmt) 3030 LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocationStmt, 3031 C.getSourceManager(), 3032 AllocNode->getLocationContext()); 3033 3034 SmallString<200> buf; 3035 llvm::raw_svector_ostream os(buf); 3036 if (Region && Region->canPrintPretty()) { 3037 os << "Potential leak of memory pointed to by "; 3038 Region->printPretty(os); 3039 } else { 3040 os << "Potential memory leak"; 3041 } 3042 3043 auto R = std::make_unique<PathSensitiveBugReport>( 3044 *BT_Leak[*CheckKind], os.str(), N, LocUsedForUniqueing, 3045 AllocNode->getLocationContext()->getDecl()); 3046 R->markInteresting(Sym); 3047 R->addVisitor<MallocBugVisitor>(Sym, true); 3048 if (ShouldRegisterNoOwnershipChangeVisitor) 3049 R->addVisitor<NoMemOwnershipChangeVisitor>(Sym, this); 3050 C.emitReport(std::move(R)); 3051 } 3052 3053 void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper, 3054 CheckerContext &C) const 3055 { 3056 ProgramStateRef state = C.getState(); 3057 RegionStateTy OldRS = state->get<RegionState>(); 3058 RegionStateTy::Factory &F = state->get_context<RegionState>(); 3059 3060 RegionStateTy RS = OldRS; 3061 SmallVector<SymbolRef, 2> Errors; 3062 for (auto [Sym, State] : RS) { 3063 if (SymReaper.isDead(Sym)) { 3064 if (State.isAllocated() || State.isAllocatedOfSizeZero()) 3065 Errors.push_back(Sym); 3066 // Remove the dead symbol from the map. 3067 RS = F.remove(RS, Sym); 3068 } 3069 } 3070 3071 if (RS == OldRS) { 3072 // We shouldn't have touched other maps yet. 3073 assert(state->get<ReallocPairs>() == 3074 C.getState()->get<ReallocPairs>()); 3075 assert(state->get<FreeReturnValue>() == 3076 C.getState()->get<FreeReturnValue>()); 3077 return; 3078 } 3079 3080 // Cleanup the Realloc Pairs Map. 3081 ReallocPairsTy RP = state->get<ReallocPairs>(); 3082 for (auto [Sym, ReallocPair] : RP) { 3083 if (SymReaper.isDead(Sym) || SymReaper.isDead(ReallocPair.ReallocatedSym)) { 3084 state = state->remove<ReallocPairs>(Sym); 3085 } 3086 } 3087 3088 // Cleanup the FreeReturnValue Map. 3089 FreeReturnValueTy FR = state->get<FreeReturnValue>(); 3090 for (auto [Sym, RetSym] : FR) { 3091 if (SymReaper.isDead(Sym) || SymReaper.isDead(RetSym)) { 3092 state = state->remove<FreeReturnValue>(Sym); 3093 } 3094 } 3095 3096 // Generate leak node. 3097 ExplodedNode *N = C.getPredecessor(); 3098 if (!Errors.empty()) { 3099 static CheckerProgramPointTag Tag("MallocChecker", "DeadSymbolsLeak"); 3100 N = C.generateNonFatalErrorNode(C.getState(), &Tag); 3101 if (N) { 3102 for (SymbolRef Sym : Errors) { 3103 HandleLeak(Sym, N, C); 3104 } 3105 } 3106 } 3107 3108 C.addTransition(state->set<RegionState>(RS), N); 3109 } 3110 3111 void MallocChecker::checkPostCall(const CallEvent &Call, 3112 CheckerContext &C) const { 3113 if (const auto *PostFN = PostFnMap.lookup(Call)) { 3114 (*PostFN)(this, C.getState(), Call, C); 3115 return; 3116 } 3117 } 3118 3119 void MallocChecker::checkPreCall(const CallEvent &Call, 3120 CheckerContext &C) const { 3121 3122 if (const auto *DC = dyn_cast<CXXDeallocatorCall>(&Call)) { 3123 const CXXDeleteExpr *DE = DC->getOriginExpr(); 3124 3125 if (!ChecksEnabled[CK_NewDeleteChecker]) 3126 if (SymbolRef Sym = C.getSVal(DE->getArgument()).getAsSymbol()) 3127 checkUseAfterFree(Sym, C, DE->getArgument()); 3128 3129 if (!isStandardNewDelete(DC->getDecl())) 3130 return; 3131 3132 ProgramStateRef State = C.getState(); 3133 bool IsKnownToBeAllocated; 3134 State = FreeMemAux( 3135 C, DE->getArgument(), Call, State, 3136 /*Hold*/ false, IsKnownToBeAllocated, 3137 AllocationFamily(DE->isArrayForm() ? AF_CXXNewArray : AF_CXXNew)); 3138 3139 C.addTransition(State); 3140 return; 3141 } 3142 3143 if (const auto *DC = dyn_cast<CXXDestructorCall>(&Call)) { 3144 SymbolRef Sym = DC->getCXXThisVal().getAsSymbol(); 3145 if (!Sym || checkDoubleDelete(Sym, C)) 3146 return; 3147 } 3148 3149 // We need to handle getline pre-conditions here before the pointed region 3150 // gets invalidated by StreamChecker 3151 if (const auto *PreFN = PreFnMap.lookup(Call)) { 3152 (*PreFN)(this, C.getState(), Call, C); 3153 return; 3154 } 3155 3156 // We will check for double free in the post visit. 3157 if (const AnyFunctionCall *FC = dyn_cast<AnyFunctionCall>(&Call)) { 3158 const FunctionDecl *FD = FC->getDecl(); 3159 if (!FD) 3160 return; 3161 3162 if (ChecksEnabled[CK_MallocChecker] && isFreeingCall(Call)) 3163 return; 3164 } 3165 3166 // Check if the callee of a method is deleted. 3167 if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(&Call)) { 3168 SymbolRef Sym = CC->getCXXThisVal().getAsSymbol(); 3169 if (!Sym || checkUseAfterFree(Sym, C, CC->getCXXThisExpr())) 3170 return; 3171 } 3172 3173 // Check arguments for being used after free. 3174 for (unsigned I = 0, E = Call.getNumArgs(); I != E; ++I) { 3175 SVal ArgSVal = Call.getArgSVal(I); 3176 if (isa<Loc>(ArgSVal)) { 3177 SymbolRef Sym = ArgSVal.getAsSymbol(); 3178 if (!Sym) 3179 continue; 3180 if (checkUseAfterFree(Sym, C, Call.getArgExpr(I))) 3181 return; 3182 } 3183 } 3184 } 3185 3186 void MallocChecker::checkPreStmt(const ReturnStmt *S, 3187 CheckerContext &C) const { 3188 checkEscapeOnReturn(S, C); 3189 } 3190 3191 // In the CFG, automatic destructors come after the return statement. 3192 // This callback checks for returning memory that is freed by automatic 3193 // destructors, as those cannot be reached in checkPreStmt(). 3194 void MallocChecker::checkEndFunction(const ReturnStmt *S, 3195 CheckerContext &C) const { 3196 checkEscapeOnReturn(S, C); 3197 } 3198 3199 void MallocChecker::checkEscapeOnReturn(const ReturnStmt *S, 3200 CheckerContext &C) const { 3201 if (!S) 3202 return; 3203 3204 const Expr *E = S->getRetValue(); 3205 if (!E) 3206 return; 3207 3208 // Check if we are returning a symbol. 3209 ProgramStateRef State = C.getState(); 3210 SVal RetVal = C.getSVal(E); 3211 SymbolRef Sym = RetVal.getAsSymbol(); 3212 if (!Sym) 3213 // If we are returning a field of the allocated struct or an array element, 3214 // the callee could still free the memory. 3215 // TODO: This logic should be a part of generic symbol escape callback. 3216 if (const MemRegion *MR = RetVal.getAsRegion()) 3217 if (isa<FieldRegion, ElementRegion>(MR)) 3218 if (const SymbolicRegion *BMR = 3219 dyn_cast<SymbolicRegion>(MR->getBaseRegion())) 3220 Sym = BMR->getSymbol(); 3221 3222 // Check if we are returning freed memory. 3223 if (Sym) 3224 checkUseAfterFree(Sym, C, E); 3225 } 3226 3227 // TODO: Blocks should be either inlined or should call invalidate regions 3228 // upon invocation. After that's in place, special casing here will not be 3229 // needed. 3230 void MallocChecker::checkPostStmt(const BlockExpr *BE, 3231 CheckerContext &C) const { 3232 3233 // Scan the BlockDecRefExprs for any object the retain count checker 3234 // may be tracking. 3235 if (!BE->getBlockDecl()->hasCaptures()) 3236 return; 3237 3238 ProgramStateRef state = C.getState(); 3239 const BlockDataRegion *R = 3240 cast<BlockDataRegion>(C.getSVal(BE).getAsRegion()); 3241 3242 auto ReferencedVars = R->referenced_vars(); 3243 if (ReferencedVars.empty()) 3244 return; 3245 3246 SmallVector<const MemRegion*, 10> Regions; 3247 const LocationContext *LC = C.getLocationContext(); 3248 MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager(); 3249 3250 for (const auto &Var : ReferencedVars) { 3251 const VarRegion *VR = Var.getCapturedRegion(); 3252 if (VR->getSuperRegion() == R) { 3253 VR = MemMgr.getVarRegion(VR->getDecl(), LC); 3254 } 3255 Regions.push_back(VR); 3256 } 3257 3258 state = 3259 state->scanReachableSymbols<StopTrackingCallback>(Regions).getState(); 3260 C.addTransition(state); 3261 } 3262 3263 static bool isReleased(SymbolRef Sym, CheckerContext &C) { 3264 assert(Sym); 3265 const RefState *RS = C.getState()->get<RegionState>(Sym); 3266 return (RS && RS->isReleased()); 3267 } 3268 3269 bool MallocChecker::suppressDeallocationsInSuspiciousContexts( 3270 const CallEvent &Call, CheckerContext &C) const { 3271 if (Call.getNumArgs() == 0) 3272 return false; 3273 3274 StringRef FunctionStr = ""; 3275 if (const auto *FD = dyn_cast<FunctionDecl>(C.getStackFrame()->getDecl())) 3276 if (const Stmt *Body = FD->getBody()) 3277 if (Body->getBeginLoc().isValid()) 3278 FunctionStr = 3279 Lexer::getSourceText(CharSourceRange::getTokenRange( 3280 {FD->getBeginLoc(), Body->getBeginLoc()}), 3281 C.getSourceManager(), C.getLangOpts()); 3282 3283 // We do not model the Integer Set Library's retain-count based allocation. 3284 if (!FunctionStr.contains("__isl_")) 3285 return false; 3286 3287 ProgramStateRef State = C.getState(); 3288 3289 for (const Expr *Arg : cast<CallExpr>(Call.getOriginExpr())->arguments()) 3290 if (SymbolRef Sym = C.getSVal(Arg).getAsSymbol()) 3291 if (const RefState *RS = State->get<RegionState>(Sym)) 3292 State = State->set<RegionState>(Sym, RefState::getEscaped(RS)); 3293 3294 C.addTransition(State); 3295 return true; 3296 } 3297 3298 bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C, 3299 const Stmt *S) const { 3300 3301 if (isReleased(Sym, C)) { 3302 HandleUseAfterFree(C, S->getSourceRange(), Sym); 3303 return true; 3304 } 3305 3306 return false; 3307 } 3308 3309 void MallocChecker::checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 3310 const Stmt *S) const { 3311 assert(Sym); 3312 3313 if (const RefState *RS = C.getState()->get<RegionState>(Sym)) { 3314 if (RS->isAllocatedOfSizeZero()) 3315 HandleUseZeroAlloc(C, RS->getStmt()->getSourceRange(), Sym); 3316 } 3317 else if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) { 3318 HandleUseZeroAlloc(C, S->getSourceRange(), Sym); 3319 } 3320 } 3321 3322 bool MallocChecker::checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const { 3323 3324 if (isReleased(Sym, C)) { 3325 HandleDoubleDelete(C, Sym); 3326 return true; 3327 } 3328 return false; 3329 } 3330 3331 // Check if the location is a freed symbolic region. 3332 void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S, 3333 CheckerContext &C) const { 3334 SymbolRef Sym = l.getLocSymbolInBase(); 3335 if (Sym) { 3336 checkUseAfterFree(Sym, C, S); 3337 checkUseZeroAllocated(Sym, C, S); 3338 } 3339 } 3340 3341 // If a symbolic region is assumed to NULL (or another constant), stop tracking 3342 // it - assuming that allocation failed on this path. 3343 ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state, 3344 SVal Cond, 3345 bool Assumption) const { 3346 RegionStateTy RS = state->get<RegionState>(); 3347 for (SymbolRef Sym : llvm::make_first_range(RS)) { 3348 // If the symbol is assumed to be NULL, remove it from consideration. 3349 ConstraintManager &CMgr = state->getConstraintManager(); 3350 ConditionTruthVal AllocFailed = CMgr.isNull(state, Sym); 3351 if (AllocFailed.isConstrainedTrue()) 3352 state = state->remove<RegionState>(Sym); 3353 } 3354 3355 // Realloc returns 0 when reallocation fails, which means that we should 3356 // restore the state of the pointer being reallocated. 3357 ReallocPairsTy RP = state->get<ReallocPairs>(); 3358 for (auto [Sym, ReallocPair] : RP) { 3359 // If the symbol is assumed to be NULL, remove it from consideration. 3360 ConstraintManager &CMgr = state->getConstraintManager(); 3361 ConditionTruthVal AllocFailed = CMgr.isNull(state, Sym); 3362 if (!AllocFailed.isConstrainedTrue()) 3363 continue; 3364 3365 SymbolRef ReallocSym = ReallocPair.ReallocatedSym; 3366 if (const RefState *RS = state->get<RegionState>(ReallocSym)) { 3367 if (RS->isReleased()) { 3368 switch (ReallocPair.Kind) { 3369 case OAR_ToBeFreedAfterFailure: 3370 state = state->set<RegionState>(ReallocSym, 3371 RefState::getAllocated(RS->getAllocationFamily(), RS->getStmt())); 3372 break; 3373 case OAR_DoNotTrackAfterFailure: 3374 state = state->remove<RegionState>(ReallocSym); 3375 break; 3376 default: 3377 assert(ReallocPair.Kind == OAR_FreeOnFailure); 3378 } 3379 } 3380 } 3381 state = state->remove<ReallocPairs>(Sym); 3382 } 3383 3384 return state; 3385 } 3386 3387 bool MallocChecker::mayFreeAnyEscapedMemoryOrIsModeledExplicitly( 3388 const CallEvent *Call, 3389 ProgramStateRef State, 3390 SymbolRef &EscapingSymbol) const { 3391 assert(Call); 3392 EscapingSymbol = nullptr; 3393 3394 // For now, assume that any C++ or block call can free memory. 3395 // TODO: If we want to be more optimistic here, we'll need to make sure that 3396 // regions escape to C++ containers. They seem to do that even now, but for 3397 // mysterious reasons. 3398 if (!isa<SimpleFunctionCall, ObjCMethodCall>(Call)) 3399 return true; 3400 3401 // Check Objective-C messages by selector name. 3402 if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) { 3403 // If it's not a framework call, or if it takes a callback, assume it 3404 // can free memory. 3405 if (!Call->isInSystemHeader() || Call->argumentsMayEscape()) 3406 return true; 3407 3408 // If it's a method we know about, handle it explicitly post-call. 3409 // This should happen before the "freeWhenDone" check below. 3410 if (isKnownDeallocObjCMethodName(*Msg)) 3411 return false; 3412 3413 // If there's a "freeWhenDone" parameter, but the method isn't one we know 3414 // about, we can't be sure that the object will use free() to deallocate the 3415 // memory, so we can't model it explicitly. The best we can do is use it to 3416 // decide whether the pointer escapes. 3417 if (std::optional<bool> FreeWhenDone = getFreeWhenDoneArg(*Msg)) 3418 return *FreeWhenDone; 3419 3420 // If the first selector piece ends with "NoCopy", and there is no 3421 // "freeWhenDone" parameter set to zero, we know ownership is being 3422 // transferred. Again, though, we can't be sure that the object will use 3423 // free() to deallocate the memory, so we can't model it explicitly. 3424 StringRef FirstSlot = Msg->getSelector().getNameForSlot(0); 3425 if (FirstSlot.ends_with("NoCopy")) 3426 return true; 3427 3428 // If the first selector starts with addPointer, insertPointer, 3429 // or replacePointer, assume we are dealing with NSPointerArray or similar. 3430 // This is similar to C++ containers (vector); we still might want to check 3431 // that the pointers get freed by following the container itself. 3432 if (FirstSlot.starts_with("addPointer") || 3433 FirstSlot.starts_with("insertPointer") || 3434 FirstSlot.starts_with("replacePointer") || 3435 FirstSlot == "valueWithPointer") { 3436 return true; 3437 } 3438 3439 // We should escape receiver on call to 'init'. This is especially relevant 3440 // to the receiver, as the corresponding symbol is usually not referenced 3441 // after the call. 3442 if (Msg->getMethodFamily() == OMF_init) { 3443 EscapingSymbol = Msg->getReceiverSVal().getAsSymbol(); 3444 return true; 3445 } 3446 3447 // Otherwise, assume that the method does not free memory. 3448 // Most framework methods do not free memory. 3449 return false; 3450 } 3451 3452 // At this point the only thing left to handle is straight function calls. 3453 const FunctionDecl *FD = cast<SimpleFunctionCall>(Call)->getDecl(); 3454 if (!FD) 3455 return true; 3456 3457 // If it's one of the allocation functions we can reason about, we model 3458 // its behavior explicitly. 3459 if (isMemCall(*Call)) 3460 return false; 3461 3462 // If it's not a system call, assume it frees memory. 3463 if (!Call->isInSystemHeader()) 3464 return true; 3465 3466 // White list the system functions whose arguments escape. 3467 const IdentifierInfo *II = FD->getIdentifier(); 3468 if (!II) 3469 return true; 3470 StringRef FName = II->getName(); 3471 3472 // White list the 'XXXNoCopy' CoreFoundation functions. 3473 // We specifically check these before 3474 if (FName.ends_with("NoCopy")) { 3475 // Look for the deallocator argument. We know that the memory ownership 3476 // is not transferred only if the deallocator argument is 3477 // 'kCFAllocatorNull'. 3478 for (unsigned i = 1; i < Call->getNumArgs(); ++i) { 3479 const Expr *ArgE = Call->getArgExpr(i)->IgnoreParenCasts(); 3480 if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(ArgE)) { 3481 StringRef DeallocatorName = DE->getFoundDecl()->getName(); 3482 if (DeallocatorName == "kCFAllocatorNull") 3483 return false; 3484 } 3485 } 3486 return true; 3487 } 3488 3489 // Associating streams with malloced buffers. The pointer can escape if 3490 // 'closefn' is specified (and if that function does free memory), 3491 // but it will not if closefn is not specified. 3492 // Currently, we do not inspect the 'closefn' function (PR12101). 3493 if (FName == "funopen") 3494 if (Call->getNumArgs() >= 4 && Call->getArgSVal(4).isConstant(0)) 3495 return false; 3496 3497 // Do not warn on pointers passed to 'setbuf' when used with std streams, 3498 // these leaks might be intentional when setting the buffer for stdio. 3499 // http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer 3500 if (FName == "setbuf" || FName =="setbuffer" || 3501 FName == "setlinebuf" || FName == "setvbuf") { 3502 if (Call->getNumArgs() >= 1) { 3503 const Expr *ArgE = Call->getArgExpr(0)->IgnoreParenCasts(); 3504 if (const DeclRefExpr *ArgDRE = dyn_cast<DeclRefExpr>(ArgE)) 3505 if (const VarDecl *D = dyn_cast<VarDecl>(ArgDRE->getDecl())) 3506 if (D->getCanonicalDecl()->getName().contains("std")) 3507 return true; 3508 } 3509 } 3510 3511 // A bunch of other functions which either take ownership of a pointer or 3512 // wrap the result up in a struct or object, meaning it can be freed later. 3513 // (See RetainCountChecker.) Not all the parameters here are invalidated, 3514 // but the Malloc checker cannot differentiate between them. The right way 3515 // of doing this would be to implement a pointer escapes callback. 3516 if (FName == "CGBitmapContextCreate" || 3517 FName == "CGBitmapContextCreateWithData" || 3518 FName == "CVPixelBufferCreateWithBytes" || 3519 FName == "CVPixelBufferCreateWithPlanarBytes" || 3520 FName == "OSAtomicEnqueue") { 3521 return true; 3522 } 3523 3524 if (FName == "postEvent" && 3525 FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") { 3526 return true; 3527 } 3528 3529 if (FName == "connectImpl" && 3530 FD->getQualifiedNameAsString() == "QObject::connectImpl") { 3531 return true; 3532 } 3533 3534 if (FName == "singleShotImpl" && 3535 FD->getQualifiedNameAsString() == "QTimer::singleShotImpl") { 3536 return true; 3537 } 3538 3539 // Handle cases where we know a buffer's /address/ can escape. 3540 // Note that the above checks handle some special cases where we know that 3541 // even though the address escapes, it's still our responsibility to free the 3542 // buffer. 3543 if (Call->argumentsMayEscape()) 3544 return true; 3545 3546 // Otherwise, assume that the function does not free memory. 3547 // Most system calls do not free the memory. 3548 return false; 3549 } 3550 3551 ProgramStateRef MallocChecker::checkPointerEscape(ProgramStateRef State, 3552 const InvalidatedSymbols &Escaped, 3553 const CallEvent *Call, 3554 PointerEscapeKind Kind) const { 3555 return checkPointerEscapeAux(State, Escaped, Call, Kind, 3556 /*IsConstPointerEscape*/ false); 3557 } 3558 3559 ProgramStateRef MallocChecker::checkConstPointerEscape(ProgramStateRef State, 3560 const InvalidatedSymbols &Escaped, 3561 const CallEvent *Call, 3562 PointerEscapeKind Kind) const { 3563 // If a const pointer escapes, it may not be freed(), but it could be deleted. 3564 return checkPointerEscapeAux(State, Escaped, Call, Kind, 3565 /*IsConstPointerEscape*/ true); 3566 } 3567 3568 static bool checkIfNewOrNewArrayFamily(const RefState *RS) { 3569 return (RS->getAllocationFamily().Kind == AF_CXXNewArray || 3570 RS->getAllocationFamily().Kind == AF_CXXNew); 3571 } 3572 3573 ProgramStateRef MallocChecker::checkPointerEscapeAux( 3574 ProgramStateRef State, const InvalidatedSymbols &Escaped, 3575 const CallEvent *Call, PointerEscapeKind Kind, 3576 bool IsConstPointerEscape) const { 3577 // If we know that the call does not free memory, or we want to process the 3578 // call later, keep tracking the top level arguments. 3579 SymbolRef EscapingSymbol = nullptr; 3580 if (Kind == PSK_DirectEscapeOnCall && 3581 !mayFreeAnyEscapedMemoryOrIsModeledExplicitly(Call, State, 3582 EscapingSymbol) && 3583 !EscapingSymbol) { 3584 return State; 3585 } 3586 3587 for (SymbolRef sym : Escaped) { 3588 if (EscapingSymbol && EscapingSymbol != sym) 3589 continue; 3590 3591 if (const RefState *RS = State->get<RegionState>(sym)) 3592 if (RS->isAllocated() || RS->isAllocatedOfSizeZero()) 3593 if (!IsConstPointerEscape || checkIfNewOrNewArrayFamily(RS)) 3594 State = State->set<RegionState>(sym, RefState::getEscaped(RS)); 3595 } 3596 return State; 3597 } 3598 3599 bool MallocChecker::isArgZERO_SIZE_PTR(ProgramStateRef State, CheckerContext &C, 3600 SVal ArgVal) const { 3601 if (!KernelZeroSizePtrValue) 3602 KernelZeroSizePtrValue = 3603 tryExpandAsInteger("ZERO_SIZE_PTR", C.getPreprocessor()); 3604 3605 const llvm::APSInt *ArgValKnown = 3606 C.getSValBuilder().getKnownValue(State, ArgVal); 3607 return ArgValKnown && *KernelZeroSizePtrValue && 3608 ArgValKnown->getSExtValue() == **KernelZeroSizePtrValue; 3609 } 3610 3611 static SymbolRef findFailedReallocSymbol(ProgramStateRef currState, 3612 ProgramStateRef prevState) { 3613 ReallocPairsTy currMap = currState->get<ReallocPairs>(); 3614 ReallocPairsTy prevMap = prevState->get<ReallocPairs>(); 3615 3616 for (const ReallocPairsTy::value_type &Pair : prevMap) { 3617 SymbolRef sym = Pair.first; 3618 if (!currMap.lookup(sym)) 3619 return sym; 3620 } 3621 3622 return nullptr; 3623 } 3624 3625 static bool isReferenceCountingPointerDestructor(const CXXDestructorDecl *DD) { 3626 if (const IdentifierInfo *II = DD->getParent()->getIdentifier()) { 3627 StringRef N = II->getName(); 3628 if (N.contains_insensitive("ptr") || N.contains_insensitive("pointer")) { 3629 if (N.contains_insensitive("ref") || N.contains_insensitive("cnt") || 3630 N.contains_insensitive("intrusive") || 3631 N.contains_insensitive("shared") || N.ends_with_insensitive("rc")) { 3632 return true; 3633 } 3634 } 3635 } 3636 return false; 3637 } 3638 3639 PathDiagnosticPieceRef MallocBugVisitor::VisitNode(const ExplodedNode *N, 3640 BugReporterContext &BRC, 3641 PathSensitiveBugReport &BR) { 3642 ProgramStateRef state = N->getState(); 3643 ProgramStateRef statePrev = N->getFirstPred()->getState(); 3644 3645 const RefState *RSCurr = state->get<RegionState>(Sym); 3646 const RefState *RSPrev = statePrev->get<RegionState>(Sym); 3647 3648 const Stmt *S = N->getStmtForDiagnostics(); 3649 // When dealing with containers, we sometimes want to give a note 3650 // even if the statement is missing. 3651 if (!S && (!RSCurr || RSCurr->getAllocationFamily().Kind != AF_InnerBuffer)) 3652 return nullptr; 3653 3654 const LocationContext *CurrentLC = N->getLocationContext(); 3655 3656 // If we find an atomic fetch_add or fetch_sub within the function in which 3657 // the pointer was released (before the release), this is likely a release 3658 // point of reference-counted object (like shared pointer). 3659 // 3660 // Because we don't model atomics, and also because we don't know that the 3661 // original reference count is positive, we should not report use-after-frees 3662 // on objects deleted in such functions. This can probably be improved 3663 // through better shared pointer modeling. 3664 if (ReleaseFunctionLC && (ReleaseFunctionLC == CurrentLC || 3665 ReleaseFunctionLC->isParentOf(CurrentLC))) { 3666 if (const auto *AE = dyn_cast<AtomicExpr>(S)) { 3667 // Check for manual use of atomic builtins. 3668 AtomicExpr::AtomicOp Op = AE->getOp(); 3669 if (Op == AtomicExpr::AO__c11_atomic_fetch_add || 3670 Op == AtomicExpr::AO__c11_atomic_fetch_sub) { 3671 BR.markInvalid(getTag(), S); 3672 // After report is considered invalid there is no need to proceed 3673 // futher. 3674 return nullptr; 3675 } 3676 } else if (const auto *CE = dyn_cast<CallExpr>(S)) { 3677 // Check for `std::atomic` and such. This covers both regular method calls 3678 // and operator calls. 3679 if (const auto *MD = 3680 dyn_cast_or_null<CXXMethodDecl>(CE->getDirectCallee())) { 3681 const CXXRecordDecl *RD = MD->getParent(); 3682 // A bit wobbly with ".contains()" because it may be like 3683 // "__atomic_base" or something. 3684 if (StringRef(RD->getNameAsString()).contains("atomic")) { 3685 BR.markInvalid(getTag(), S); 3686 // After report is considered invalid there is no need to proceed 3687 // futher. 3688 return nullptr; 3689 } 3690 } 3691 } 3692 } 3693 3694 // FIXME: We will eventually need to handle non-statement-based events 3695 // (__attribute__((cleanup))). 3696 3697 // Find out if this is an interesting point and what is the kind. 3698 StringRef Msg; 3699 std::unique_ptr<StackHintGeneratorForSymbol> StackHint = nullptr; 3700 SmallString<256> Buf; 3701 llvm::raw_svector_ostream OS(Buf); 3702 3703 if (Mode == Normal) { 3704 if (isAllocated(RSCurr, RSPrev, S)) { 3705 Msg = "Memory is allocated"; 3706 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3707 Sym, "Returned allocated memory"); 3708 } else if (isReleased(RSCurr, RSPrev, S)) { 3709 const auto Family = RSCurr->getAllocationFamily(); 3710 switch (Family.Kind) { 3711 case AF_Alloca: 3712 case AF_Malloc: 3713 case AF_Custom: 3714 case AF_CXXNew: 3715 case AF_CXXNewArray: 3716 case AF_IfNameIndex: 3717 Msg = "Memory is released"; 3718 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3719 Sym, "Returning; memory was released"); 3720 break; 3721 case AF_InnerBuffer: { 3722 const MemRegion *ObjRegion = 3723 allocation_state::getContainerObjRegion(statePrev, Sym); 3724 const auto *TypedRegion = cast<TypedValueRegion>(ObjRegion); 3725 QualType ObjTy = TypedRegion->getValueType(); 3726 OS << "Inner buffer of '" << ObjTy << "' "; 3727 3728 if (N->getLocation().getKind() == ProgramPoint::PostImplicitCallKind) { 3729 OS << "deallocated by call to destructor"; 3730 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3731 Sym, "Returning; inner buffer was deallocated"); 3732 } else { 3733 OS << "reallocated by call to '"; 3734 const Stmt *S = RSCurr->getStmt(); 3735 if (const auto *MemCallE = dyn_cast<CXXMemberCallExpr>(S)) { 3736 OS << MemCallE->getMethodDecl()->getDeclName(); 3737 } else if (const auto *OpCallE = dyn_cast<CXXOperatorCallExpr>(S)) { 3738 OS << OpCallE->getDirectCallee()->getDeclName(); 3739 } else if (const auto *CallE = dyn_cast<CallExpr>(S)) { 3740 auto &CEMgr = BRC.getStateManager().getCallEventManager(); 3741 CallEventRef<> Call = 3742 CEMgr.getSimpleCall(CallE, state, CurrentLC, {nullptr, 0}); 3743 if (const auto *D = dyn_cast_or_null<NamedDecl>(Call->getDecl())) 3744 OS << D->getDeclName(); 3745 else 3746 OS << "unknown"; 3747 } 3748 OS << "'"; 3749 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3750 Sym, "Returning; inner buffer was reallocated"); 3751 } 3752 Msg = OS.str(); 3753 break; 3754 } 3755 case AF_None: 3756 assert(false && "Unhandled allocation family!"); 3757 return nullptr; 3758 } 3759 3760 // Save the first destructor/function as release point. 3761 assert(!ReleaseFunctionLC && "There should be only one release point"); 3762 ReleaseFunctionLC = CurrentLC->getStackFrame(); 3763 3764 // See if we're releasing memory while inlining a destructor that 3765 // decrement reference counters (or one of its callees). 3766 // This turns on various common false positive suppressions. 3767 for (const LocationContext *LC = CurrentLC; LC; LC = LC->getParent()) { 3768 if (const auto *DD = dyn_cast<CXXDestructorDecl>(LC->getDecl())) { 3769 if (isReferenceCountingPointerDestructor(DD)) { 3770 // This immediately looks like a reference-counting destructor. 3771 // We're bad at guessing the original reference count of the 3772 // object, so suppress the report for now. 3773 BR.markInvalid(getTag(), DD); 3774 3775 // After report is considered invalid there is no need to proceed 3776 // futher. 3777 return nullptr; 3778 } 3779 3780 // Switch suspection to outer destructor to catch patterns like: 3781 // (note that class name is distorted to bypass 3782 // isReferenceCountingPointerDestructor() logic) 3783 // 3784 // SmartPointr::~SmartPointr() { 3785 // if (refcount.fetch_sub(1) == 1) 3786 // release_resources(); 3787 // } 3788 // void SmartPointr::release_resources() { 3789 // free(buffer); 3790 // } 3791 // 3792 // This way ReleaseFunctionLC will point to outermost destructor and 3793 // it would be possible to catch wider range of FP. 3794 // 3795 // NOTE: it would be great to support smth like that in C, since 3796 // currently patterns like following won't be supressed: 3797 // 3798 // void doFree(struct Data *data) { free(data); } 3799 // void putData(struct Data *data) 3800 // { 3801 // if (refPut(data)) 3802 // doFree(data); 3803 // } 3804 ReleaseFunctionLC = LC->getStackFrame(); 3805 } 3806 } 3807 3808 } else if (isRelinquished(RSCurr, RSPrev, S)) { 3809 Msg = "Memory ownership is transferred"; 3810 StackHint = std::make_unique<StackHintGeneratorForSymbol>(Sym, ""); 3811 } else if (hasReallocFailed(RSCurr, RSPrev, S)) { 3812 Mode = ReallocationFailed; 3813 Msg = "Reallocation failed"; 3814 StackHint = std::make_unique<StackHintGeneratorForReallocationFailed>( 3815 Sym, "Reallocation failed"); 3816 3817 if (SymbolRef sym = findFailedReallocSymbol(state, statePrev)) { 3818 // Is it possible to fail two reallocs WITHOUT testing in between? 3819 assert((!FailedReallocSymbol || FailedReallocSymbol == sym) && 3820 "We only support one failed realloc at a time."); 3821 BR.markInteresting(sym); 3822 FailedReallocSymbol = sym; 3823 } 3824 } 3825 3826 // We are in a special mode if a reallocation failed later in the path. 3827 } else if (Mode == ReallocationFailed) { 3828 assert(FailedReallocSymbol && "No symbol to look for."); 3829 3830 // Is this is the first appearance of the reallocated symbol? 3831 if (!statePrev->get<RegionState>(FailedReallocSymbol)) { 3832 // We're at the reallocation point. 3833 Msg = "Attempt to reallocate memory"; 3834 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3835 Sym, "Returned reallocated memory"); 3836 FailedReallocSymbol = nullptr; 3837 Mode = Normal; 3838 } 3839 } 3840 3841 if (Msg.empty()) { 3842 assert(!StackHint); 3843 return nullptr; 3844 } 3845 3846 assert(StackHint); 3847 3848 // Generate the extra diagnostic. 3849 PathDiagnosticLocation Pos; 3850 if (!S) { 3851 assert(RSCurr->getAllocationFamily().Kind == AF_InnerBuffer); 3852 auto PostImplCall = N->getLocation().getAs<PostImplicitCall>(); 3853 if (!PostImplCall) 3854 return nullptr; 3855 Pos = PathDiagnosticLocation(PostImplCall->getLocation(), 3856 BRC.getSourceManager()); 3857 } else { 3858 Pos = PathDiagnosticLocation(S, BRC.getSourceManager(), 3859 N->getLocationContext()); 3860 } 3861 3862 auto P = std::make_shared<PathDiagnosticEventPiece>(Pos, Msg, true); 3863 BR.addCallStackHint(P, std::move(StackHint)); 3864 return P; 3865 } 3866 3867 void MallocChecker::printState(raw_ostream &Out, ProgramStateRef State, 3868 const char *NL, const char *Sep) const { 3869 3870 RegionStateTy RS = State->get<RegionState>(); 3871 3872 if (!RS.isEmpty()) { 3873 Out << Sep << "MallocChecker :" << NL; 3874 for (auto [Sym, Data] : RS) { 3875 const RefState *RefS = State->get<RegionState>(Sym); 3876 AllocationFamily Family = RefS->getAllocationFamily(); 3877 std::optional<MallocChecker::CheckKind> CheckKind = 3878 getCheckIfTracked(Family); 3879 if (!CheckKind) 3880 CheckKind = getCheckIfTracked(Family, true); 3881 3882 Sym->dumpToStream(Out); 3883 Out << " : "; 3884 Data.dump(Out); 3885 if (CheckKind) 3886 Out << " (" << CheckNames[*CheckKind].getName() << ")"; 3887 Out << NL; 3888 } 3889 } 3890 } 3891 3892 namespace clang { 3893 namespace ento { 3894 namespace allocation_state { 3895 3896 ProgramStateRef 3897 markReleased(ProgramStateRef State, SymbolRef Sym, const Expr *Origin) { 3898 AllocationFamily Family(AF_InnerBuffer); 3899 return State->set<RegionState>(Sym, RefState::getReleased(Family, Origin)); 3900 } 3901 3902 } // end namespace allocation_state 3903 } // end namespace ento 3904 } // end namespace clang 3905 3906 // Intended to be used in InnerPointerChecker to register the part of 3907 // MallocChecker connected to it. 3908 void ento::registerInnerPointerCheckerAux(CheckerManager &mgr) { 3909 MallocChecker *checker = mgr.getChecker<MallocChecker>(); 3910 checker->ChecksEnabled[MallocChecker::CK_InnerPointerChecker] = true; 3911 checker->CheckNames[MallocChecker::CK_InnerPointerChecker] = 3912 mgr.getCurrentCheckerName(); 3913 } 3914 3915 void ento::registerDynamicMemoryModeling(CheckerManager &mgr) { 3916 auto *checker = mgr.registerChecker<MallocChecker>(); 3917 checker->ShouldIncludeOwnershipAnnotatedFunctions = 3918 mgr.getAnalyzerOptions().getCheckerBooleanOption(checker, "Optimistic"); 3919 checker->ShouldRegisterNoOwnershipChangeVisitor = 3920 mgr.getAnalyzerOptions().getCheckerBooleanOption( 3921 checker, "AddNoOwnershipChangeNotes"); 3922 } 3923 3924 bool ento::shouldRegisterDynamicMemoryModeling(const CheckerManager &mgr) { 3925 return true; 3926 } 3927 3928 #define REGISTER_CHECKER(name) \ 3929 void ento::register##name(CheckerManager &mgr) { \ 3930 MallocChecker *checker = mgr.getChecker<MallocChecker>(); \ 3931 checker->ChecksEnabled[MallocChecker::CK_##name] = true; \ 3932 checker->CheckNames[MallocChecker::CK_##name] = \ 3933 mgr.getCurrentCheckerName(); \ 3934 } \ 3935 \ 3936 bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; } 3937 3938 REGISTER_CHECKER(MallocChecker) 3939 REGISTER_CHECKER(NewDeleteChecker) 3940 REGISTER_CHECKER(NewDeleteLeaksChecker) 3941 REGISTER_CHECKER(MismatchedDeallocatorChecker) 3942 REGISTER_CHECKER(TaintedAllocChecker) 3943