1 //=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines a variety of memory management related checkers, such as 10 // leak, double free, and use-after-free. 11 // 12 // The following checkers are defined here: 13 // 14 // * MallocChecker 15 // Despite its name, it models all sorts of memory allocations and 16 // de- or reallocation, including but not limited to malloc, free, 17 // relloc, new, delete. It also reports on a variety of memory misuse 18 // errors. 19 // Many other checkers interact very closely with this checker, in fact, 20 // most are merely options to this one. Other checkers may register 21 // MallocChecker, but do not enable MallocChecker's reports (more details 22 // to follow around its field, ChecksEnabled). 23 // It also has a boolean "Optimistic" checker option, which if set to true 24 // will cause the checker to model user defined memory management related 25 // functions annotated via the attribute ownership_takes, ownership_holds 26 // and ownership_returns. 27 // 28 // * NewDeleteChecker 29 // Enables the modeling of new, new[], delete, delete[] in MallocChecker, 30 // and checks for related double-free and use-after-free errors. 31 // 32 // * NewDeleteLeaksChecker 33 // Checks for leaks related to new, new[], delete, delete[]. 34 // Depends on NewDeleteChecker. 35 // 36 // * MismatchedDeallocatorChecker 37 // Enables checking whether memory is deallocated with the correspending 38 // allocation function in MallocChecker, such as malloc() allocated 39 // regions are only freed by free(), new by delete, new[] by delete[]. 40 // 41 // InnerPointerChecker interacts very closely with MallocChecker, but unlike 42 // the above checkers, it has it's own file, hence the many InnerPointerChecker 43 // related headers and non-static functions. 44 // 45 //===----------------------------------------------------------------------===// 46 47 #include "AllocationState.h" 48 #include "InterCheckerAPI.h" 49 #include "clang/AST/Attr.h" 50 #include "clang/AST/Expr.h" 51 #include "clang/AST/ExprCXX.h" 52 #include "clang/AST/ParentMap.h" 53 #include "clang/Basic/LLVM.h" 54 #include "clang/Basic/SourceManager.h" 55 #include "clang/Basic/TargetInfo.h" 56 #include "clang/Lex/Lexer.h" 57 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" 58 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 59 #include "clang/StaticAnalyzer/Core/BugReporter/CommonBugCategories.h" 60 #include "clang/StaticAnalyzer/Core/Checker.h" 61 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 62 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 63 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 64 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h" 65 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicSize.h" 66 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 67 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 68 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h" 69 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" 70 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SmallString.h" 73 #include "llvm/ADT/StringExtras.h" 74 #include "llvm/Support/Compiler.h" 75 #include "llvm/Support/ErrorHandling.h" 76 #include <climits> 77 #include <functional> 78 #include <utility> 79 80 using namespace clang; 81 using namespace ento; 82 using namespace std::placeholders; 83 84 //===----------------------------------------------------------------------===// 85 // The types of allocation we're modeling. This is used to check whether a 86 // dynamically allocated object is deallocated with the correct function, like 87 // not using operator delete on an object created by malloc(), or alloca regions 88 // aren't ever deallocated manually. 89 //===----------------------------------------------------------------------===// 90 91 namespace { 92 93 // Used to check correspondence between allocators and deallocators. 94 enum AllocationFamily { 95 AF_None, 96 AF_Malloc, 97 AF_CXXNew, 98 AF_CXXNewArray, 99 AF_IfNameIndex, 100 AF_Alloca, 101 AF_InnerBuffer 102 }; 103 104 } // end of anonymous namespace 105 106 /// Print names of allocators and deallocators. 107 /// 108 /// \returns true on success. 109 static bool printMemFnName(raw_ostream &os, CheckerContext &C, const Expr *E); 110 111 /// Print expected name of an allocator based on the deallocator's family 112 /// derived from the DeallocExpr. 113 static void printExpectedAllocName(raw_ostream &os, AllocationFamily Family); 114 115 /// Print expected name of a deallocator based on the allocator's 116 /// family. 117 static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family); 118 119 //===----------------------------------------------------------------------===// 120 // The state of a symbol, in terms of memory management. 121 //===----------------------------------------------------------------------===// 122 123 namespace { 124 125 class RefState { 126 enum Kind { 127 // Reference to allocated memory. 128 Allocated, 129 // Reference to zero-allocated memory. 130 AllocatedOfSizeZero, 131 // Reference to released/freed memory. 132 Released, 133 // The responsibility for freeing resources has transferred from 134 // this reference. A relinquished symbol should not be freed. 135 Relinquished, 136 // We are no longer guaranteed to have observed all manipulations 137 // of this pointer/memory. For example, it could have been 138 // passed as a parameter to an opaque function. 139 Escaped 140 }; 141 142 const Stmt *S; 143 144 Kind K; 145 AllocationFamily Family; 146 147 RefState(Kind k, const Stmt *s, AllocationFamily family) 148 : S(s), K(k), Family(family) { 149 assert(family != AF_None); 150 } 151 152 public: 153 bool isAllocated() const { return K == Allocated; } 154 bool isAllocatedOfSizeZero() const { return K == AllocatedOfSizeZero; } 155 bool isReleased() const { return K == Released; } 156 bool isRelinquished() const { return K == Relinquished; } 157 bool isEscaped() const { return K == Escaped; } 158 AllocationFamily getAllocationFamily() const { return Family; } 159 const Stmt *getStmt() const { return S; } 160 161 bool operator==(const RefState &X) const { 162 return K == X.K && S == X.S && Family == X.Family; 163 } 164 165 static RefState getAllocated(AllocationFamily family, const Stmt *s) { 166 return RefState(Allocated, s, family); 167 } 168 static RefState getAllocatedOfSizeZero(const RefState *RS) { 169 return RefState(AllocatedOfSizeZero, RS->getStmt(), 170 RS->getAllocationFamily()); 171 } 172 static RefState getReleased(AllocationFamily family, const Stmt *s) { 173 return RefState(Released, s, family); 174 } 175 static RefState getRelinquished(AllocationFamily family, const Stmt *s) { 176 return RefState(Relinquished, s, family); 177 } 178 static RefState getEscaped(const RefState *RS) { 179 return RefState(Escaped, RS->getStmt(), RS->getAllocationFamily()); 180 } 181 182 void Profile(llvm::FoldingSetNodeID &ID) const { 183 ID.AddInteger(K); 184 ID.AddPointer(S); 185 ID.AddInteger(Family); 186 } 187 188 LLVM_DUMP_METHOD void dump(raw_ostream &OS) const { 189 switch (K) { 190 #define CASE(ID) case ID: OS << #ID; break; 191 CASE(Allocated) 192 CASE(AllocatedOfSizeZero) 193 CASE(Released) 194 CASE(Relinquished) 195 CASE(Escaped) 196 } 197 } 198 199 LLVM_DUMP_METHOD void dump() const { dump(llvm::errs()); } 200 }; 201 202 } // end of anonymous namespace 203 204 REGISTER_MAP_WITH_PROGRAMSTATE(RegionState, SymbolRef, RefState) 205 206 /// Check if the memory associated with this symbol was released. 207 static bool isReleased(SymbolRef Sym, CheckerContext &C); 208 209 /// Update the RefState to reflect the new memory allocation. 210 /// The optional \p RetVal parameter specifies the newly allocated pointer 211 /// value; if unspecified, the value of expression \p E is used. 212 static ProgramStateRef MallocUpdateRefState(CheckerContext &C, const Expr *E, 213 ProgramStateRef State, 214 AllocationFamily Family, 215 Optional<SVal> RetVal = None); 216 217 //===----------------------------------------------------------------------===// 218 // The modeling of memory reallocation. 219 // 220 // The terminology 'toPtr' and 'fromPtr' will be used: 221 // toPtr = realloc(fromPtr, 20); 222 //===----------------------------------------------------------------------===// 223 224 REGISTER_SET_WITH_PROGRAMSTATE(ReallocSizeZeroSymbols, SymbolRef) 225 226 namespace { 227 228 /// The state of 'fromPtr' after reallocation is known to have failed. 229 enum OwnershipAfterReallocKind { 230 // The symbol needs to be freed (e.g.: realloc) 231 OAR_ToBeFreedAfterFailure, 232 // The symbol has been freed (e.g.: reallocf) 233 OAR_FreeOnFailure, 234 // The symbol doesn't have to freed (e.g.: we aren't sure if, how and where 235 // 'fromPtr' was allocated: 236 // void Haha(int *ptr) { 237 // ptr = realloc(ptr, 67); 238 // // ... 239 // } 240 // ). 241 OAR_DoNotTrackAfterFailure 242 }; 243 244 /// Stores information about the 'fromPtr' symbol after reallocation. 245 /// 246 /// This is important because realloc may fail, and that needs special modeling. 247 /// Whether reallocation failed or not will not be known until later, so we'll 248 /// store whether upon failure 'fromPtr' will be freed, or needs to be freed 249 /// later, etc. 250 struct ReallocPair { 251 252 // The 'fromPtr'. 253 SymbolRef ReallocatedSym; 254 OwnershipAfterReallocKind Kind; 255 256 ReallocPair(SymbolRef S, OwnershipAfterReallocKind K) 257 : ReallocatedSym(S), Kind(K) {} 258 void Profile(llvm::FoldingSetNodeID &ID) const { 259 ID.AddInteger(Kind); 260 ID.AddPointer(ReallocatedSym); 261 } 262 bool operator==(const ReallocPair &X) const { 263 return ReallocatedSym == X.ReallocatedSym && 264 Kind == X.Kind; 265 } 266 }; 267 268 } // end of anonymous namespace 269 270 REGISTER_MAP_WITH_PROGRAMSTATE(ReallocPairs, SymbolRef, ReallocPair) 271 272 /// Tells if the callee is one of the builtin new/delete operators, including 273 /// placement operators and other standard overloads. 274 static bool isStandardNewDelete(const FunctionDecl *FD); 275 static bool isStandardNewDelete(const CallEvent &Call) { 276 if (!Call.getDecl() || !isa<FunctionDecl>(Call.getDecl())) 277 return false; 278 return isStandardNewDelete(cast<FunctionDecl>(Call.getDecl())); 279 } 280 281 //===----------------------------------------------------------------------===// 282 // Definition of the MallocChecker class. 283 //===----------------------------------------------------------------------===// 284 285 namespace { 286 287 class MallocChecker 288 : public Checker<check::DeadSymbols, check::PointerEscape, 289 check::ConstPointerEscape, check::PreStmt<ReturnStmt>, 290 check::EndFunction, check::PreCall, check::PostCall, 291 check::NewAllocator, check::PostStmt<BlockExpr>, 292 check::PostObjCMessage, check::Location, eval::Assume> { 293 public: 294 /// In pessimistic mode, the checker assumes that it does not know which 295 /// functions might free the memory. 296 /// In optimistic mode, the checker assumes that all user-defined functions 297 /// which might free a pointer are annotated. 298 DefaultBool ShouldIncludeOwnershipAnnotatedFunctions; 299 300 /// Many checkers are essentially built into this one, so enabling them will 301 /// make MallocChecker perform additional modeling and reporting. 302 enum CheckKind { 303 /// When a subchecker is enabled but MallocChecker isn't, model memory 304 /// management but do not emit warnings emitted with MallocChecker only 305 /// enabled. 306 CK_MallocChecker, 307 CK_NewDeleteChecker, 308 CK_NewDeleteLeaksChecker, 309 CK_MismatchedDeallocatorChecker, 310 CK_InnerPointerChecker, 311 CK_NumCheckKinds 312 }; 313 314 using LeakInfo = std::pair<const ExplodedNode *, const MemRegion *>; 315 316 DefaultBool ChecksEnabled[CK_NumCheckKinds]; 317 CheckerNameRef CheckNames[CK_NumCheckKinds]; 318 319 void checkPreCall(const CallEvent &Call, CheckerContext &C) const; 320 void checkPostCall(const CallEvent &Call, CheckerContext &C) const; 321 void checkNewAllocator(const CXXAllocatorCall &Call, CheckerContext &C) const; 322 void checkPostObjCMessage(const ObjCMethodCall &Call, CheckerContext &C) const; 323 void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const; 324 void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const; 325 void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const; 326 void checkEndFunction(const ReturnStmt *S, CheckerContext &C) const; 327 ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond, 328 bool Assumption) const; 329 void checkLocation(SVal l, bool isLoad, const Stmt *S, 330 CheckerContext &C) const; 331 332 ProgramStateRef checkPointerEscape(ProgramStateRef State, 333 const InvalidatedSymbols &Escaped, 334 const CallEvent *Call, 335 PointerEscapeKind Kind) const; 336 ProgramStateRef checkConstPointerEscape(ProgramStateRef State, 337 const InvalidatedSymbols &Escaped, 338 const CallEvent *Call, 339 PointerEscapeKind Kind) const; 340 341 void printState(raw_ostream &Out, ProgramStateRef State, 342 const char *NL, const char *Sep) const override; 343 344 private: 345 mutable std::unique_ptr<BugType> BT_DoubleFree[CK_NumCheckKinds]; 346 mutable std::unique_ptr<BugType> BT_DoubleDelete; 347 mutable std::unique_ptr<BugType> BT_Leak[CK_NumCheckKinds]; 348 mutable std::unique_ptr<BugType> BT_UseFree[CK_NumCheckKinds]; 349 mutable std::unique_ptr<BugType> BT_BadFree[CK_NumCheckKinds]; 350 mutable std::unique_ptr<BugType> BT_FreeAlloca[CK_NumCheckKinds]; 351 mutable std::unique_ptr<BugType> BT_MismatchedDealloc; 352 mutable std::unique_ptr<BugType> BT_OffsetFree[CK_NumCheckKinds]; 353 mutable std::unique_ptr<BugType> BT_UseZerroAllocated[CK_NumCheckKinds]; 354 355 #define CHECK_FN(NAME) \ 356 void NAME(const CallEvent &Call, CheckerContext &C) const; 357 358 CHECK_FN(checkFree) 359 CHECK_FN(checkIfNameIndex) 360 CHECK_FN(checkBasicAlloc) 361 CHECK_FN(checkKernelMalloc) 362 CHECK_FN(checkCalloc) 363 CHECK_FN(checkAlloca) 364 CHECK_FN(checkStrdup) 365 CHECK_FN(checkIfFreeNameIndex) 366 CHECK_FN(checkCXXNewOrCXXDelete) 367 CHECK_FN(checkGMalloc0) 368 CHECK_FN(checkGMemdup) 369 CHECK_FN(checkGMallocN) 370 CHECK_FN(checkGMallocN0) 371 CHECK_FN(checkReallocN) 372 CHECK_FN(checkOwnershipAttr) 373 374 void checkRealloc(const CallEvent &Call, CheckerContext &C, 375 bool ShouldFreeOnFail) const; 376 377 using CheckFn = std::function<void(const MallocChecker *, 378 const CallEvent &Call, CheckerContext &C)>; 379 380 const CallDescriptionMap<CheckFn> FreeingMemFnMap{ 381 {{"free", 1}, &MallocChecker::checkFree}, 382 {{"if_freenameindex", 1}, &MallocChecker::checkIfFreeNameIndex}, 383 {{"kfree", 1}, &MallocChecker::checkFree}, 384 {{"g_free", 1}, &MallocChecker::checkFree}, 385 }; 386 387 bool isFreeingCall(const CallEvent &Call) const; 388 389 CallDescriptionMap<CheckFn> AllocatingMemFnMap{ 390 {{"alloca", 1}, &MallocChecker::checkAlloca}, 391 {{"_alloca", 1}, &MallocChecker::checkAlloca}, 392 {{"malloc", 1}, &MallocChecker::checkBasicAlloc}, 393 {{"malloc", 3}, &MallocChecker::checkKernelMalloc}, 394 {{"calloc", 2}, &MallocChecker::checkCalloc}, 395 {{"valloc", 1}, &MallocChecker::checkBasicAlloc}, 396 {{CDF_MaybeBuiltin, "strndup", 2}, &MallocChecker::checkStrdup}, 397 {{CDF_MaybeBuiltin, "strdup", 1}, &MallocChecker::checkStrdup}, 398 {{"_strdup", 1}, &MallocChecker::checkStrdup}, 399 {{"kmalloc", 2}, &MallocChecker::checkKernelMalloc}, 400 {{"if_nameindex", 1}, &MallocChecker::checkIfNameIndex}, 401 {{CDF_MaybeBuiltin, "wcsdup", 1}, &MallocChecker::checkStrdup}, 402 {{CDF_MaybeBuiltin, "_wcsdup", 1}, &MallocChecker::checkStrdup}, 403 {{"g_malloc", 1}, &MallocChecker::checkBasicAlloc}, 404 {{"g_malloc0", 1}, &MallocChecker::checkGMalloc0}, 405 {{"g_try_malloc", 1}, &MallocChecker::checkBasicAlloc}, 406 {{"g_try_malloc0", 1}, &MallocChecker::checkGMalloc0}, 407 {{"g_memdup", 2}, &MallocChecker::checkGMemdup}, 408 {{"g_malloc_n", 2}, &MallocChecker::checkGMallocN}, 409 {{"g_malloc0_n", 2}, &MallocChecker::checkGMallocN0}, 410 {{"g_try_malloc_n", 2}, &MallocChecker::checkGMallocN}, 411 {{"g_try_malloc0_n", 2}, &MallocChecker::checkGMallocN0}, 412 }; 413 414 CallDescriptionMap<CheckFn> ReallocatingMemFnMap{ 415 {{"realloc", 2}, 416 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)}, 417 {{"reallocf", 2}, 418 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, true)}, 419 {{"g_realloc", 2}, 420 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)}, 421 {{"g_try_realloc", 2}, 422 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)}, 423 {{"g_realloc_n", 3}, &MallocChecker::checkReallocN}, 424 {{"g_try_realloc_n", 3}, &MallocChecker::checkReallocN}, 425 }; 426 427 bool isMemCall(const CallEvent &Call) const; 428 429 // TODO: Remove mutable by moving the initializtaion to the registry function. 430 mutable Optional<uint64_t> KernelZeroFlagVal; 431 432 using KernelZeroSizePtrValueTy = Optional<int>; 433 /// Store the value of macro called `ZERO_SIZE_PTR`. 434 /// The value is initialized at first use, before first use the outer 435 /// Optional is empty, afterwards it contains another Optional that indicates 436 /// if the macro value could be determined, and if yes the value itself. 437 mutable Optional<KernelZeroSizePtrValueTy> KernelZeroSizePtrValue; 438 439 /// Process C++ operator new()'s allocation, which is the part of C++ 440 /// new-expression that goes before the constructor. 441 LLVM_NODISCARD 442 ProgramStateRef processNewAllocation(const CXXAllocatorCall &Call, 443 CheckerContext &C, 444 AllocationFamily Family) const; 445 446 /// Perform a zero-allocation check. 447 /// 448 /// \param [in] E The expression that allocates memory. 449 /// \param [in] IndexOfSizeArg Index of the argument that specifies the size 450 /// of the memory that needs to be allocated. E.g. for malloc, this would be 451 /// 0. 452 /// \param [in] RetVal Specifies the newly allocated pointer value; 453 /// if unspecified, the value of expression \p E is used. 454 LLVM_NODISCARD 455 static ProgramStateRef ProcessZeroAllocCheck(const CallEvent &Call, 456 const unsigned IndexOfSizeArg, 457 ProgramStateRef State, 458 Optional<SVal> RetVal = None); 459 460 /// Model functions with the ownership_returns attribute. 461 /// 462 /// User-defined function may have the ownership_returns attribute, which 463 /// annotates that the function returns with an object that was allocated on 464 /// the heap, and passes the ownertship to the callee. 465 /// 466 /// void __attribute((ownership_returns(malloc, 1))) *my_malloc(size_t); 467 /// 468 /// It has two parameters: 469 /// - first: name of the resource (e.g. 'malloc') 470 /// - (OPTIONAL) second: size of the allocated region 471 /// 472 /// \param [in] CE The expression that allocates memory. 473 /// \param [in] Att The ownership_returns attribute. 474 /// \param [in] State The \c ProgramState right before allocation. 475 /// \returns The ProgramState right after allocation. 476 LLVM_NODISCARD 477 ProgramStateRef MallocMemReturnsAttr(CheckerContext &C, const CallEvent &Call, 478 const OwnershipAttr *Att, 479 ProgramStateRef State) const; 480 481 /// Models memory allocation. 482 /// 483 /// \param [in] CE The expression that allocates memory. 484 /// \param [in] SizeEx Size of the memory that needs to be allocated. 485 /// \param [in] Init The value the allocated memory needs to be initialized. 486 /// with. For example, \c calloc initializes the allocated memory to 0, 487 /// malloc leaves it undefined. 488 /// \param [in] State The \c ProgramState right before allocation. 489 /// \returns The ProgramState right after allocation. 490 LLVM_NODISCARD 491 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallEvent &Call, 492 const Expr *SizeEx, SVal Init, 493 ProgramStateRef State, 494 AllocationFamily Family); 495 496 /// Models memory allocation. 497 /// 498 /// \param [in] CE The expression that allocates memory. 499 /// \param [in] Size Size of the memory that needs to be allocated. 500 /// \param [in] Init The value the allocated memory needs to be initialized. 501 /// with. For example, \c calloc initializes the allocated memory to 0, 502 /// malloc leaves it undefined. 503 /// \param [in] State The \c ProgramState right before allocation. 504 /// \returns The ProgramState right after allocation. 505 LLVM_NODISCARD 506 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallEvent &Call, 507 SVal Size, SVal Init, 508 ProgramStateRef State, 509 AllocationFamily Family); 510 511 LLVM_NODISCARD 512 static ProgramStateRef addExtentSize(CheckerContext &C, const CXXNewExpr *NE, 513 ProgramStateRef State, SVal Target); 514 515 // Check if this malloc() for special flags. At present that means M_ZERO or 516 // __GFP_ZERO (in which case, treat it like calloc). 517 LLVM_NODISCARD 518 llvm::Optional<ProgramStateRef> 519 performKernelMalloc(const CallEvent &Call, CheckerContext &C, 520 const ProgramStateRef &State) const; 521 522 /// Model functions with the ownership_takes and ownership_holds attributes. 523 /// 524 /// User-defined function may have the ownership_takes and/or ownership_holds 525 /// attributes, which annotates that the function frees the memory passed as a 526 /// parameter. 527 /// 528 /// void __attribute((ownership_takes(malloc, 1))) my_free(void *); 529 /// void __attribute((ownership_holds(malloc, 1))) my_hold(void *); 530 /// 531 /// They have two parameters: 532 /// - first: name of the resource (e.g. 'malloc') 533 /// - second: index of the parameter the attribute applies to 534 /// 535 /// \param [in] CE The expression that frees memory. 536 /// \param [in] Att The ownership_takes or ownership_holds attribute. 537 /// \param [in] State The \c ProgramState right before allocation. 538 /// \returns The ProgramState right after deallocation. 539 LLVM_NODISCARD 540 ProgramStateRef FreeMemAttr(CheckerContext &C, const CallEvent &Call, 541 const OwnershipAttr *Att, 542 ProgramStateRef State) const; 543 544 /// Models memory deallocation. 545 /// 546 /// \param [in] CE The expression that frees memory. 547 /// \param [in] State The \c ProgramState right before allocation. 548 /// \param [in] Num Index of the argument that needs to be freed. This is 549 /// normally 0, but for custom free functions it may be different. 550 /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds 551 /// attribute. 552 /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known 553 /// to have been allocated, or in other words, the symbol to be freed was 554 /// registered as allocated by this checker. In the following case, \c ptr 555 /// isn't known to be allocated. 556 /// void Haha(int *ptr) { 557 /// ptr = realloc(ptr, 67); 558 /// // ... 559 /// } 560 /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function 561 /// we're modeling returns with Null on failure. 562 /// \returns The ProgramState right after deallocation. 563 LLVM_NODISCARD 564 ProgramStateRef FreeMemAux(CheckerContext &C, const CallEvent &Call, 565 ProgramStateRef State, unsigned Num, bool Hold, 566 bool &IsKnownToBeAllocated, 567 AllocationFamily Family, 568 bool ReturnsNullOnFailure = false) const; 569 570 /// Models memory deallocation. 571 /// 572 /// \param [in] ArgExpr The variable who's pointee needs to be freed. 573 /// \param [in] ParentExpr The expression that frees the memory. 574 /// \param [in] State The \c ProgramState right before allocation. 575 /// normally 0, but for custom free functions it may be different. 576 /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds 577 /// attribute. 578 /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known 579 /// to have been allocated, or in other words, the symbol to be freed was 580 /// registered as allocated by this checker. In the following case, \c ptr 581 /// isn't known to be allocated. 582 /// void Haha(int *ptr) { 583 /// ptr = realloc(ptr, 67); 584 /// // ... 585 /// } 586 /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function 587 /// we're modeling returns with Null on failure. 588 /// \returns The ProgramState right after deallocation. 589 LLVM_NODISCARD 590 ProgramStateRef FreeMemAux(CheckerContext &C, const Expr *ArgExpr, 591 const CallEvent &Call, ProgramStateRef State, 592 bool Hold, bool &IsKnownToBeAllocated, 593 AllocationFamily Family, 594 bool ReturnsNullOnFailure = false) const; 595 596 // TODO: Needs some refactoring, as all other deallocation modeling 597 // functions are suffering from out parameters and messy code due to how 598 // realloc is handled. 599 // 600 /// Models memory reallocation. 601 /// 602 /// \param [in] CE The expression that reallocated memory 603 /// \param [in] ShouldFreeOnFail Whether if reallocation fails, the supplied 604 /// memory should be freed. 605 /// \param [in] State The \c ProgramState right before reallocation. 606 /// \param [in] SuffixWithN Whether the reallocation function we're modeling 607 /// has an '_n' suffix, such as g_realloc_n. 608 /// \returns The ProgramState right after reallocation. 609 LLVM_NODISCARD 610 ProgramStateRef ReallocMemAux(CheckerContext &C, const CallEvent &Call, 611 bool ShouldFreeOnFail, ProgramStateRef State, 612 AllocationFamily Family, 613 bool SuffixWithN = false) const; 614 615 /// Evaluates the buffer size that needs to be allocated. 616 /// 617 /// \param [in] Blocks The amount of blocks that needs to be allocated. 618 /// \param [in] BlockBytes The size of a block. 619 /// \returns The symbolic value of \p Blocks * \p BlockBytes. 620 LLVM_NODISCARD 621 static SVal evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, 622 const Expr *BlockBytes); 623 624 /// Models zero initialized array allocation. 625 /// 626 /// \param [in] CE The expression that reallocated memory 627 /// \param [in] State The \c ProgramState right before reallocation. 628 /// \returns The ProgramState right after allocation. 629 LLVM_NODISCARD 630 static ProgramStateRef CallocMem(CheckerContext &C, const CallEvent &Call, 631 ProgramStateRef State); 632 633 /// See if deallocation happens in a suspicious context. If so, escape the 634 /// pointers that otherwise would have been deallocated and return true. 635 bool suppressDeallocationsInSuspiciousContexts(const CallEvent &Call, 636 CheckerContext &C) const; 637 638 /// If in \p S \p Sym is used, check whether \p Sym was already freed. 639 bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S) const; 640 641 /// If in \p S \p Sym is used, check whether \p Sym was allocated as a zero 642 /// sized memory region. 643 void checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 644 const Stmt *S) const; 645 646 /// If in \p S \p Sym is being freed, check whether \p Sym was already freed. 647 bool checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const; 648 649 /// Check if the function is known to free memory, or if it is 650 /// "interesting" and should be modeled explicitly. 651 /// 652 /// \param [out] EscapingSymbol A function might not free memory in general, 653 /// but could be known to free a particular symbol. In this case, false is 654 /// returned and the single escaping symbol is returned through the out 655 /// parameter. 656 /// 657 /// We assume that pointers do not escape through calls to system functions 658 /// not handled by this checker. 659 bool mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent *Call, 660 ProgramStateRef State, 661 SymbolRef &EscapingSymbol) const; 662 663 /// Implementation of the checkPointerEscape callbacks. 664 LLVM_NODISCARD 665 ProgramStateRef checkPointerEscapeAux(ProgramStateRef State, 666 const InvalidatedSymbols &Escaped, 667 const CallEvent *Call, 668 PointerEscapeKind Kind, 669 bool IsConstPointerEscape) const; 670 671 // Implementation of the checkPreStmt and checkEndFunction callbacks. 672 void checkEscapeOnReturn(const ReturnStmt *S, CheckerContext &C) const; 673 674 ///@{ 675 /// Tells if a given family/call/symbol is tracked by the current checker. 676 /// Sets CheckKind to the kind of the checker responsible for this 677 /// family/call/symbol. 678 Optional<CheckKind> getCheckIfTracked(AllocationFamily Family, 679 bool IsALeakCheck = false) const; 680 681 Optional<CheckKind> getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 682 bool IsALeakCheck = false) const; 683 ///@} 684 static bool SummarizeValue(raw_ostream &os, SVal V); 685 static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR); 686 687 void ReportBadFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 688 const Expr *DeallocExpr, AllocationFamily Family) const; 689 690 void ReportFreeAlloca(CheckerContext &C, SVal ArgVal, 691 SourceRange Range) const; 692 693 void ReportMismatchedDealloc(CheckerContext &C, SourceRange Range, 694 const Expr *DeallocExpr, const RefState *RS, 695 SymbolRef Sym, bool OwnershipTransferred) const; 696 697 void ReportOffsetFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 698 const Expr *DeallocExpr, AllocationFamily Family, 699 const Expr *AllocExpr = nullptr) const; 700 701 void ReportUseAfterFree(CheckerContext &C, SourceRange Range, 702 SymbolRef Sym) const; 703 704 void ReportDoubleFree(CheckerContext &C, SourceRange Range, bool Released, 705 SymbolRef Sym, SymbolRef PrevSym) const; 706 707 void ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const; 708 709 void ReportUseZeroAllocated(CheckerContext &C, SourceRange Range, 710 SymbolRef Sym) const; 711 712 void ReportFunctionPointerFree(CheckerContext &C, SVal ArgVal, 713 SourceRange Range, const Expr *FreeExpr, 714 AllocationFamily Family) const; 715 716 /// Find the location of the allocation for Sym on the path leading to the 717 /// exploded node N. 718 static LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym, 719 CheckerContext &C); 720 721 void reportLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const; 722 723 /// Test if value in ArgVal equals to value in macro `ZERO_SIZE_PTR`. 724 bool isArgZERO_SIZE_PTR(ProgramStateRef State, CheckerContext &C, 725 SVal ArgVal) const; 726 }; 727 728 //===----------------------------------------------------------------------===// 729 // Definition of MallocBugVisitor. 730 //===----------------------------------------------------------------------===// 731 732 /// The bug visitor which allows us to print extra diagnostics along the 733 /// BugReport path. For example, showing the allocation site of the leaked 734 /// region. 735 class MallocBugVisitor final : public BugReporterVisitor { 736 protected: 737 enum NotificationMode { Normal, ReallocationFailed }; 738 739 // The allocated region symbol tracked by the main analysis. 740 SymbolRef Sym; 741 742 // The mode we are in, i.e. what kind of diagnostics will be emitted. 743 NotificationMode Mode; 744 745 // A symbol from when the primary region should have been reallocated. 746 SymbolRef FailedReallocSymbol; 747 748 // A C++ destructor stack frame in which memory was released. Used for 749 // miscellaneous false positive suppression. 750 const StackFrameContext *ReleaseDestructorLC; 751 752 bool IsLeak; 753 754 public: 755 MallocBugVisitor(SymbolRef S, bool isLeak = false) 756 : Sym(S), Mode(Normal), FailedReallocSymbol(nullptr), 757 ReleaseDestructorLC(nullptr), IsLeak(isLeak) {} 758 759 static void *getTag() { 760 static int Tag = 0; 761 return &Tag; 762 } 763 764 void Profile(llvm::FoldingSetNodeID &ID) const override { 765 ID.AddPointer(getTag()); 766 ID.AddPointer(Sym); 767 } 768 769 /// Did not track -> allocated. Other state (released) -> allocated. 770 static inline bool isAllocated(const RefState *RSCurr, const RefState *RSPrev, 771 const Stmt *Stmt) { 772 return (Stmt && (isa<CallExpr>(Stmt) || isa<CXXNewExpr>(Stmt)) && 773 (RSCurr && 774 (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) && 775 (!RSPrev || 776 !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero()))); 777 } 778 779 /// Did not track -> released. Other state (allocated) -> released. 780 /// The statement associated with the release might be missing. 781 static inline bool isReleased(const RefState *RSCurr, const RefState *RSPrev, 782 const Stmt *Stmt) { 783 bool IsReleased = 784 (RSCurr && RSCurr->isReleased()) && (!RSPrev || !RSPrev->isReleased()); 785 assert(!IsReleased || 786 (Stmt && (isa<CallExpr>(Stmt) || isa<CXXDeleteExpr>(Stmt))) || 787 (!Stmt && RSCurr->getAllocationFamily() == AF_InnerBuffer)); 788 return IsReleased; 789 } 790 791 /// Did not track -> relinquished. Other state (allocated) -> relinquished. 792 static inline bool isRelinquished(const RefState *RSCurr, 793 const RefState *RSPrev, const Stmt *Stmt) { 794 return (Stmt && 795 (isa<CallExpr>(Stmt) || isa<ObjCMessageExpr>(Stmt) || 796 isa<ObjCPropertyRefExpr>(Stmt)) && 797 (RSCurr && RSCurr->isRelinquished()) && 798 (!RSPrev || !RSPrev->isRelinquished())); 799 } 800 801 /// If the expression is not a call, and the state change is 802 /// released -> allocated, it must be the realloc return value 803 /// check. If we have to handle more cases here, it might be cleaner just 804 /// to track this extra bit in the state itself. 805 static inline bool hasReallocFailed(const RefState *RSCurr, 806 const RefState *RSPrev, 807 const Stmt *Stmt) { 808 return ((!Stmt || !isa<CallExpr>(Stmt)) && 809 (RSCurr && 810 (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) && 811 (RSPrev && 812 !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero()))); 813 } 814 815 PathDiagnosticPieceRef VisitNode(const ExplodedNode *N, 816 BugReporterContext &BRC, 817 PathSensitiveBugReport &BR) override; 818 819 PathDiagnosticPieceRef getEndPath(BugReporterContext &BRC, 820 const ExplodedNode *EndPathNode, 821 PathSensitiveBugReport &BR) override { 822 if (!IsLeak) 823 return nullptr; 824 825 PathDiagnosticLocation L = BR.getLocation(); 826 // Do not add the statement itself as a range in case of leak. 827 return std::make_shared<PathDiagnosticEventPiece>(L, BR.getDescription(), 828 false); 829 } 830 831 private: 832 class StackHintGeneratorForReallocationFailed 833 : public StackHintGeneratorForSymbol { 834 public: 835 StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M) 836 : StackHintGeneratorForSymbol(S, M) {} 837 838 std::string getMessageForArg(const Expr *ArgE, unsigned ArgIndex) override { 839 // Printed parameters start at 1, not 0. 840 ++ArgIndex; 841 842 SmallString<200> buf; 843 llvm::raw_svector_ostream os(buf); 844 845 os << "Reallocation of " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex) 846 << " parameter failed"; 847 848 return std::string(os.str()); 849 } 850 851 std::string getMessageForReturn(const CallExpr *CallExpr) override { 852 return "Reallocation of returned value failed"; 853 } 854 }; 855 }; 856 857 } // end anonymous namespace 858 859 // A map from the freed symbol to the symbol representing the return value of 860 // the free function. 861 REGISTER_MAP_WITH_PROGRAMSTATE(FreeReturnValue, SymbolRef, SymbolRef) 862 863 namespace { 864 class StopTrackingCallback final : public SymbolVisitor { 865 ProgramStateRef state; 866 867 public: 868 StopTrackingCallback(ProgramStateRef st) : state(std::move(st)) {} 869 ProgramStateRef getState() const { return state; } 870 871 bool VisitSymbol(SymbolRef sym) override { 872 state = state->remove<RegionState>(sym); 873 return true; 874 } 875 }; 876 } // end anonymous namespace 877 878 static bool isStandardNewDelete(const FunctionDecl *FD) { 879 if (!FD) 880 return false; 881 882 OverloadedOperatorKind Kind = FD->getOverloadedOperator(); 883 if (Kind != OO_New && Kind != OO_Array_New && Kind != OO_Delete && 884 Kind != OO_Array_Delete) 885 return false; 886 887 // This is standard if and only if it's not defined in a user file. 888 SourceLocation L = FD->getLocation(); 889 // If the header for operator delete is not included, it's still defined 890 // in an invalid source location. Check to make sure we don't crash. 891 return !L.isValid() || 892 FD->getASTContext().getSourceManager().isInSystemHeader(L); 893 } 894 895 //===----------------------------------------------------------------------===// 896 // Methods of MallocChecker and MallocBugVisitor. 897 //===----------------------------------------------------------------------===// 898 899 bool MallocChecker::isFreeingCall(const CallEvent &Call) const { 900 if (FreeingMemFnMap.lookup(Call) || ReallocatingMemFnMap.lookup(Call)) 901 return true; 902 903 const auto *Func = dyn_cast<FunctionDecl>(Call.getDecl()); 904 if (Func && Func->hasAttrs()) { 905 for (const auto *I : Func->specific_attrs<OwnershipAttr>()) { 906 OwnershipAttr::OwnershipKind OwnKind = I->getOwnKind(); 907 if (OwnKind == OwnershipAttr::Takes || OwnKind == OwnershipAttr::Holds) 908 return true; 909 } 910 } 911 return false; 912 } 913 914 bool MallocChecker::isMemCall(const CallEvent &Call) const { 915 if (FreeingMemFnMap.lookup(Call) || AllocatingMemFnMap.lookup(Call) || 916 ReallocatingMemFnMap.lookup(Call)) 917 return true; 918 919 if (!ShouldIncludeOwnershipAnnotatedFunctions) 920 return false; 921 922 const auto *Func = dyn_cast<FunctionDecl>(Call.getDecl()); 923 return Func && Func->hasAttr<OwnershipAttr>(); 924 } 925 926 llvm::Optional<ProgramStateRef> 927 MallocChecker::performKernelMalloc(const CallEvent &Call, CheckerContext &C, 928 const ProgramStateRef &State) const { 929 // 3-argument malloc(), as commonly used in {Free,Net,Open}BSD Kernels: 930 // 931 // void *malloc(unsigned long size, struct malloc_type *mtp, int flags); 932 // 933 // One of the possible flags is M_ZERO, which means 'give me back an 934 // allocation which is already zeroed', like calloc. 935 936 // 2-argument kmalloc(), as used in the Linux kernel: 937 // 938 // void *kmalloc(size_t size, gfp_t flags); 939 // 940 // Has the similar flag value __GFP_ZERO. 941 942 // This logic is largely cloned from O_CREAT in UnixAPIChecker, maybe some 943 // code could be shared. 944 945 ASTContext &Ctx = C.getASTContext(); 946 llvm::Triple::OSType OS = Ctx.getTargetInfo().getTriple().getOS(); 947 948 if (!KernelZeroFlagVal.hasValue()) { 949 if (OS == llvm::Triple::FreeBSD) 950 KernelZeroFlagVal = 0x0100; 951 else if (OS == llvm::Triple::NetBSD) 952 KernelZeroFlagVal = 0x0002; 953 else if (OS == llvm::Triple::OpenBSD) 954 KernelZeroFlagVal = 0x0008; 955 else if (OS == llvm::Triple::Linux) 956 // __GFP_ZERO 957 KernelZeroFlagVal = 0x8000; 958 else 959 // FIXME: We need a more general way of getting the M_ZERO value. 960 // See also: O_CREAT in UnixAPIChecker.cpp. 961 962 // Fall back to normal malloc behavior on platforms where we don't 963 // know M_ZERO. 964 return None; 965 } 966 967 // We treat the last argument as the flags argument, and callers fall-back to 968 // normal malloc on a None return. This works for the FreeBSD kernel malloc 969 // as well as Linux kmalloc. 970 if (Call.getNumArgs() < 2) 971 return None; 972 973 const Expr *FlagsEx = Call.getArgExpr(Call.getNumArgs() - 1); 974 const SVal V = C.getSVal(FlagsEx); 975 if (!V.getAs<NonLoc>()) { 976 // The case where 'V' can be a location can only be due to a bad header, 977 // so in this case bail out. 978 return None; 979 } 980 981 NonLoc Flags = V.castAs<NonLoc>(); 982 NonLoc ZeroFlag = C.getSValBuilder() 983 .makeIntVal(KernelZeroFlagVal.getValue(), FlagsEx->getType()) 984 .castAs<NonLoc>(); 985 SVal MaskedFlagsUC = C.getSValBuilder().evalBinOpNN(State, BO_And, 986 Flags, ZeroFlag, 987 FlagsEx->getType()); 988 if (MaskedFlagsUC.isUnknownOrUndef()) 989 return None; 990 DefinedSVal MaskedFlags = MaskedFlagsUC.castAs<DefinedSVal>(); 991 992 // Check if maskedFlags is non-zero. 993 ProgramStateRef TrueState, FalseState; 994 std::tie(TrueState, FalseState) = State->assume(MaskedFlags); 995 996 // If M_ZERO is set, treat this like calloc (initialized). 997 if (TrueState && !FalseState) { 998 SVal ZeroVal = C.getSValBuilder().makeZeroVal(Ctx.CharTy); 999 return MallocMemAux(C, Call, Call.getArgExpr(0), ZeroVal, TrueState, 1000 AF_Malloc); 1001 } 1002 1003 return None; 1004 } 1005 1006 SVal MallocChecker::evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, 1007 const Expr *BlockBytes) { 1008 SValBuilder &SB = C.getSValBuilder(); 1009 SVal BlocksVal = C.getSVal(Blocks); 1010 SVal BlockBytesVal = C.getSVal(BlockBytes); 1011 ProgramStateRef State = C.getState(); 1012 SVal TotalSize = SB.evalBinOp(State, BO_Mul, BlocksVal, BlockBytesVal, 1013 SB.getContext().getSizeType()); 1014 return TotalSize; 1015 } 1016 1017 void MallocChecker::checkBasicAlloc(const CallEvent &Call, 1018 CheckerContext &C) const { 1019 ProgramStateRef State = C.getState(); 1020 State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State, 1021 AF_Malloc); 1022 State = ProcessZeroAllocCheck(Call, 0, State); 1023 C.addTransition(State); 1024 } 1025 1026 void MallocChecker::checkKernelMalloc(const CallEvent &Call, 1027 CheckerContext &C) const { 1028 ProgramStateRef State = C.getState(); 1029 llvm::Optional<ProgramStateRef> MaybeState = 1030 performKernelMalloc(Call, C, State); 1031 if (MaybeState.hasValue()) 1032 State = MaybeState.getValue(); 1033 else 1034 State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State, 1035 AF_Malloc); 1036 C.addTransition(State); 1037 } 1038 1039 void MallocChecker::checkRealloc(const CallEvent &Call, 1040 CheckerContext &C, 1041 bool ShouldFreeOnFail) const { 1042 ProgramStateRef State = C.getState(); 1043 State = ReallocMemAux(C, Call, ShouldFreeOnFail, State, AF_Malloc); 1044 State = ProcessZeroAllocCheck(Call, 1, State); 1045 C.addTransition(State); 1046 } 1047 1048 void MallocChecker::checkCalloc(const CallEvent &Call, 1049 CheckerContext &C) const { 1050 ProgramStateRef State = C.getState(); 1051 State = CallocMem(C, Call, State); 1052 State = ProcessZeroAllocCheck(Call, 0, State); 1053 State = ProcessZeroAllocCheck(Call, 1, State); 1054 C.addTransition(State); 1055 } 1056 1057 void MallocChecker::checkFree(const CallEvent &Call, CheckerContext &C) const { 1058 ProgramStateRef State = C.getState(); 1059 bool IsKnownToBeAllocatedMemory = false; 1060 if (suppressDeallocationsInSuspiciousContexts(Call, C)) 1061 return; 1062 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1063 AF_Malloc); 1064 C.addTransition(State); 1065 } 1066 1067 void MallocChecker::checkAlloca(const CallEvent &Call, 1068 CheckerContext &C) const { 1069 ProgramStateRef State = C.getState(); 1070 State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State, 1071 AF_Alloca); 1072 State = ProcessZeroAllocCheck(Call, 0, State); 1073 C.addTransition(State); 1074 } 1075 1076 void MallocChecker::checkStrdup(const CallEvent &Call, 1077 CheckerContext &C) const { 1078 ProgramStateRef State = C.getState(); 1079 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1080 if (!CE) 1081 return; 1082 State = MallocUpdateRefState(C, CE, State, AF_Malloc); 1083 1084 C.addTransition(State); 1085 } 1086 1087 void MallocChecker::checkIfNameIndex(const CallEvent &Call, 1088 CheckerContext &C) const { 1089 ProgramStateRef State = C.getState(); 1090 // Should we model this differently? We can allocate a fixed number of 1091 // elements with zeros in the last one. 1092 State = 1093 MallocMemAux(C, Call, UnknownVal(), UnknownVal(), State, AF_IfNameIndex); 1094 1095 C.addTransition(State); 1096 } 1097 1098 void MallocChecker::checkIfFreeNameIndex(const CallEvent &Call, 1099 CheckerContext &C) const { 1100 ProgramStateRef State = C.getState(); 1101 bool IsKnownToBeAllocatedMemory = false; 1102 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1103 AF_IfNameIndex); 1104 C.addTransition(State); 1105 } 1106 1107 void MallocChecker::checkCXXNewOrCXXDelete(const CallEvent &Call, 1108 CheckerContext &C) const { 1109 ProgramStateRef State = C.getState(); 1110 bool IsKnownToBeAllocatedMemory = false; 1111 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1112 if (!CE) 1113 return; 1114 1115 assert(isStandardNewDelete(Call)); 1116 1117 // Process direct calls to operator new/new[]/delete/delete[] functions 1118 // as distinct from new/new[]/delete/delete[] expressions that are 1119 // processed by the checkPostStmt callbacks for CXXNewExpr and 1120 // CXXDeleteExpr. 1121 const FunctionDecl *FD = C.getCalleeDecl(CE); 1122 switch (FD->getOverloadedOperator()) { 1123 case OO_New: 1124 State = 1125 MallocMemAux(C, Call, CE->getArg(0), UndefinedVal(), State, AF_CXXNew); 1126 State = ProcessZeroAllocCheck(Call, 0, State); 1127 break; 1128 case OO_Array_New: 1129 State = MallocMemAux(C, Call, CE->getArg(0), UndefinedVal(), State, 1130 AF_CXXNewArray); 1131 State = ProcessZeroAllocCheck(Call, 0, State); 1132 break; 1133 case OO_Delete: 1134 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1135 AF_CXXNew); 1136 break; 1137 case OO_Array_Delete: 1138 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1139 AF_CXXNewArray); 1140 break; 1141 default: 1142 llvm_unreachable("not a new/delete operator"); 1143 } 1144 1145 C.addTransition(State); 1146 } 1147 1148 void MallocChecker::checkGMalloc0(const CallEvent &Call, 1149 CheckerContext &C) const { 1150 ProgramStateRef State = C.getState(); 1151 SValBuilder &svalBuilder = C.getSValBuilder(); 1152 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 1153 State = MallocMemAux(C, Call, Call.getArgExpr(0), zeroVal, State, AF_Malloc); 1154 State = ProcessZeroAllocCheck(Call, 0, State); 1155 C.addTransition(State); 1156 } 1157 1158 void MallocChecker::checkGMemdup(const CallEvent &Call, 1159 CheckerContext &C) const { 1160 ProgramStateRef State = C.getState(); 1161 State = MallocMemAux(C, Call, Call.getArgExpr(1), UndefinedVal(), State, 1162 AF_Malloc); 1163 State = ProcessZeroAllocCheck(Call, 1, State); 1164 C.addTransition(State); 1165 } 1166 1167 void MallocChecker::checkGMallocN(const CallEvent &Call, 1168 CheckerContext &C) const { 1169 ProgramStateRef State = C.getState(); 1170 SVal Init = UndefinedVal(); 1171 SVal TotalSize = evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1)); 1172 State = MallocMemAux(C, Call, TotalSize, Init, State, AF_Malloc); 1173 State = ProcessZeroAllocCheck(Call, 0, State); 1174 State = ProcessZeroAllocCheck(Call, 1, State); 1175 C.addTransition(State); 1176 } 1177 1178 void MallocChecker::checkGMallocN0(const CallEvent &Call, 1179 CheckerContext &C) const { 1180 ProgramStateRef State = C.getState(); 1181 SValBuilder &SB = C.getSValBuilder(); 1182 SVal Init = SB.makeZeroVal(SB.getContext().CharTy); 1183 SVal TotalSize = evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1)); 1184 State = MallocMemAux(C, Call, TotalSize, Init, State, AF_Malloc); 1185 State = ProcessZeroAllocCheck(Call, 0, State); 1186 State = ProcessZeroAllocCheck(Call, 1, State); 1187 C.addTransition(State); 1188 } 1189 1190 void MallocChecker::checkReallocN(const CallEvent &Call, 1191 CheckerContext &C) const { 1192 ProgramStateRef State = C.getState(); 1193 State = ReallocMemAux(C, Call, /*ShouldFreeOnFail=*/false, State, AF_Malloc, 1194 /*SuffixWithN=*/true); 1195 State = ProcessZeroAllocCheck(Call, 1, State); 1196 State = ProcessZeroAllocCheck(Call, 2, State); 1197 C.addTransition(State); 1198 } 1199 1200 void MallocChecker::checkOwnershipAttr(const CallEvent &Call, 1201 CheckerContext &C) const { 1202 ProgramStateRef State = C.getState(); 1203 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1204 if (!CE) 1205 return; 1206 const FunctionDecl *FD = C.getCalleeDecl(CE); 1207 if (ShouldIncludeOwnershipAnnotatedFunctions || 1208 ChecksEnabled[CK_MismatchedDeallocatorChecker]) { 1209 // Check all the attributes, if there are any. 1210 // There can be multiple of these attributes. 1211 if (FD->hasAttrs()) 1212 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { 1213 switch (I->getOwnKind()) { 1214 case OwnershipAttr::Returns: 1215 State = MallocMemReturnsAttr(C, Call, I, State); 1216 break; 1217 case OwnershipAttr::Takes: 1218 case OwnershipAttr::Holds: 1219 State = FreeMemAttr(C, Call, I, State); 1220 break; 1221 } 1222 } 1223 } 1224 C.addTransition(State); 1225 } 1226 1227 void MallocChecker::checkPostCall(const CallEvent &Call, 1228 CheckerContext &C) const { 1229 if (C.wasInlined) 1230 return; 1231 if (!Call.getOriginExpr()) 1232 return; 1233 1234 ProgramStateRef State = C.getState(); 1235 1236 if (const CheckFn *Callback = FreeingMemFnMap.lookup(Call)) { 1237 (*Callback)(this, Call, C); 1238 return; 1239 } 1240 1241 if (const CheckFn *Callback = AllocatingMemFnMap.lookup(Call)) { 1242 (*Callback)(this, Call, C); 1243 return; 1244 } 1245 1246 if (const CheckFn *Callback = ReallocatingMemFnMap.lookup(Call)) { 1247 (*Callback)(this, Call, C); 1248 return; 1249 } 1250 1251 if (isStandardNewDelete(Call)) { 1252 checkCXXNewOrCXXDelete(Call, C); 1253 return; 1254 } 1255 1256 checkOwnershipAttr(Call, C); 1257 } 1258 1259 // Performs a 0-sized allocations check. 1260 ProgramStateRef MallocChecker::ProcessZeroAllocCheck( 1261 const CallEvent &Call, const unsigned IndexOfSizeArg, ProgramStateRef State, 1262 Optional<SVal> RetVal) { 1263 if (!State) 1264 return nullptr; 1265 1266 if (!RetVal) 1267 RetVal = Call.getReturnValue(); 1268 1269 const Expr *Arg = nullptr; 1270 1271 if (const CallExpr *CE = dyn_cast<CallExpr>(Call.getOriginExpr())) { 1272 Arg = CE->getArg(IndexOfSizeArg); 1273 } else if (const CXXNewExpr *NE = 1274 dyn_cast<CXXNewExpr>(Call.getOriginExpr())) { 1275 if (NE->isArray()) { 1276 Arg = *NE->getArraySize(); 1277 } else { 1278 return State; 1279 } 1280 } else 1281 llvm_unreachable("not a CallExpr or CXXNewExpr"); 1282 1283 assert(Arg); 1284 1285 auto DefArgVal = 1286 State->getSVal(Arg, Call.getLocationContext()).getAs<DefinedSVal>(); 1287 1288 if (!DefArgVal) 1289 return State; 1290 1291 // Check if the allocation size is 0. 1292 ProgramStateRef TrueState, FalseState; 1293 SValBuilder &SvalBuilder = State->getStateManager().getSValBuilder(); 1294 DefinedSVal Zero = 1295 SvalBuilder.makeZeroVal(Arg->getType()).castAs<DefinedSVal>(); 1296 1297 std::tie(TrueState, FalseState) = 1298 State->assume(SvalBuilder.evalEQ(State, *DefArgVal, Zero)); 1299 1300 if (TrueState && !FalseState) { 1301 SymbolRef Sym = RetVal->getAsLocSymbol(); 1302 if (!Sym) 1303 return State; 1304 1305 const RefState *RS = State->get<RegionState>(Sym); 1306 if (RS) { 1307 if (RS->isAllocated()) 1308 return TrueState->set<RegionState>(Sym, 1309 RefState::getAllocatedOfSizeZero(RS)); 1310 else 1311 return State; 1312 } else { 1313 // Case of zero-size realloc. Historically 'realloc(ptr, 0)' is treated as 1314 // 'free(ptr)' and the returned value from 'realloc(ptr, 0)' is not 1315 // tracked. Add zero-reallocated Sym to the state to catch references 1316 // to zero-allocated memory. 1317 return TrueState->add<ReallocSizeZeroSymbols>(Sym); 1318 } 1319 } 1320 1321 // Assume the value is non-zero going forward. 1322 assert(FalseState); 1323 return FalseState; 1324 } 1325 1326 static QualType getDeepPointeeType(QualType T) { 1327 QualType Result = T, PointeeType = T->getPointeeType(); 1328 while (!PointeeType.isNull()) { 1329 Result = PointeeType; 1330 PointeeType = PointeeType->getPointeeType(); 1331 } 1332 return Result; 1333 } 1334 1335 /// \returns true if the constructor invoked by \p NE has an argument of a 1336 /// pointer/reference to a record type. 1337 static bool hasNonTrivialConstructorCall(const CXXNewExpr *NE) { 1338 1339 const CXXConstructExpr *ConstructE = NE->getConstructExpr(); 1340 if (!ConstructE) 1341 return false; 1342 1343 if (!NE->getAllocatedType()->getAsCXXRecordDecl()) 1344 return false; 1345 1346 const CXXConstructorDecl *CtorD = ConstructE->getConstructor(); 1347 1348 // Iterate over the constructor parameters. 1349 for (const auto *CtorParam : CtorD->parameters()) { 1350 1351 QualType CtorParamPointeeT = CtorParam->getType()->getPointeeType(); 1352 if (CtorParamPointeeT.isNull()) 1353 continue; 1354 1355 CtorParamPointeeT = getDeepPointeeType(CtorParamPointeeT); 1356 1357 if (CtorParamPointeeT->getAsCXXRecordDecl()) 1358 return true; 1359 } 1360 1361 return false; 1362 } 1363 1364 ProgramStateRef 1365 MallocChecker::processNewAllocation(const CXXAllocatorCall &Call, 1366 CheckerContext &C, 1367 AllocationFamily Family) const { 1368 if (!isStandardNewDelete(Call)) 1369 return nullptr; 1370 1371 const CXXNewExpr *NE = Call.getOriginExpr(); 1372 const ParentMap &PM = C.getLocationContext()->getParentMap(); 1373 ProgramStateRef State = C.getState(); 1374 1375 // Non-trivial constructors have a chance to escape 'this', but marking all 1376 // invocations of trivial constructors as escaped would cause too great of 1377 // reduction of true positives, so let's just do that for constructors that 1378 // have an argument of a pointer-to-record type. 1379 if (!PM.isConsumedExpr(NE) && hasNonTrivialConstructorCall(NE)) 1380 return State; 1381 1382 // The return value from operator new is bound to a specified initialization 1383 // value (if any) and we don't want to loose this value. So we call 1384 // MallocUpdateRefState() instead of MallocMemAux() which breaks the 1385 // existing binding. 1386 SVal Target = Call.getObjectUnderConstruction(); 1387 State = MallocUpdateRefState(C, NE, State, Family, Target); 1388 State = addExtentSize(C, NE, State, Target); 1389 State = ProcessZeroAllocCheck(Call, 0, State, Target); 1390 return State; 1391 } 1392 1393 void MallocChecker::checkNewAllocator(const CXXAllocatorCall &Call, 1394 CheckerContext &C) const { 1395 if (!C.wasInlined) { 1396 ProgramStateRef State = processNewAllocation( 1397 Call, C, 1398 (Call.getOriginExpr()->isArray() ? AF_CXXNewArray : AF_CXXNew)); 1399 C.addTransition(State); 1400 } 1401 } 1402 1403 // Sets the extent value of the MemRegion allocated by 1404 // new expression NE to its size in Bytes. 1405 // 1406 ProgramStateRef MallocChecker::addExtentSize(CheckerContext &C, 1407 const CXXNewExpr *NE, 1408 ProgramStateRef State, 1409 SVal Target) { 1410 if (!State) 1411 return nullptr; 1412 SValBuilder &svalBuilder = C.getSValBuilder(); 1413 SVal ElementCount; 1414 const SubRegion *Region; 1415 if (NE->isArray()) { 1416 const Expr *SizeExpr = *NE->getArraySize(); 1417 ElementCount = C.getSVal(SizeExpr); 1418 // Store the extent size for the (symbolic)region 1419 // containing the elements. 1420 Region = Target.getAsRegion() 1421 ->castAs<SubRegion>() 1422 ->StripCasts() 1423 ->castAs<SubRegion>(); 1424 } else { 1425 ElementCount = svalBuilder.makeIntVal(1, true); 1426 Region = Target.getAsRegion()->castAs<SubRegion>(); 1427 } 1428 1429 // Set the region's extent equal to the Size in Bytes. 1430 QualType ElementType = NE->getAllocatedType(); 1431 ASTContext &AstContext = C.getASTContext(); 1432 CharUnits TypeSize = AstContext.getTypeSizeInChars(ElementType); 1433 1434 if (ElementCount.getAs<NonLoc>()) { 1435 DefinedOrUnknownSVal DynSize = getDynamicSize(State, Region, svalBuilder); 1436 1437 // size in Bytes = ElementCount*TypeSize 1438 SVal SizeInBytes = svalBuilder.evalBinOpNN( 1439 State, BO_Mul, ElementCount.castAs<NonLoc>(), 1440 svalBuilder.makeArrayIndex(TypeSize.getQuantity()), 1441 svalBuilder.getArrayIndexType()); 1442 DefinedOrUnknownSVal DynSizeMatchesSize = svalBuilder.evalEQ( 1443 State, DynSize, SizeInBytes.castAs<DefinedOrUnknownSVal>()); 1444 State = State->assume(DynSizeMatchesSize, true); 1445 } 1446 return State; 1447 } 1448 1449 static bool isKnownDeallocObjCMethodName(const ObjCMethodCall &Call) { 1450 // If the first selector piece is one of the names below, assume that the 1451 // object takes ownership of the memory, promising to eventually deallocate it 1452 // with free(). 1453 // Ex: [NSData dataWithBytesNoCopy:bytes length:10]; 1454 // (...unless a 'freeWhenDone' parameter is false, but that's checked later.) 1455 StringRef FirstSlot = Call.getSelector().getNameForSlot(0); 1456 return FirstSlot == "dataWithBytesNoCopy" || 1457 FirstSlot == "initWithBytesNoCopy" || 1458 FirstSlot == "initWithCharactersNoCopy"; 1459 } 1460 1461 static Optional<bool> getFreeWhenDoneArg(const ObjCMethodCall &Call) { 1462 Selector S = Call.getSelector(); 1463 1464 // FIXME: We should not rely on fully-constrained symbols being folded. 1465 for (unsigned i = 1; i < S.getNumArgs(); ++i) 1466 if (S.getNameForSlot(i).equals("freeWhenDone")) 1467 return !Call.getArgSVal(i).isZeroConstant(); 1468 1469 return None; 1470 } 1471 1472 void MallocChecker::checkPostObjCMessage(const ObjCMethodCall &Call, 1473 CheckerContext &C) const { 1474 if (C.wasInlined) 1475 return; 1476 1477 if (!isKnownDeallocObjCMethodName(Call)) 1478 return; 1479 1480 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call)) 1481 if (!*FreeWhenDone) 1482 return; 1483 1484 if (Call.hasNonZeroCallbackArg()) 1485 return; 1486 1487 bool IsKnownToBeAllocatedMemory; 1488 ProgramStateRef State = 1489 FreeMemAux(C, Call.getArgExpr(0), Call, C.getState(), 1490 /*Hold=*/true, IsKnownToBeAllocatedMemory, AF_Malloc, 1491 /*RetNullOnFailure=*/true); 1492 1493 C.addTransition(State); 1494 } 1495 1496 ProgramStateRef 1497 MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallEvent &Call, 1498 const OwnershipAttr *Att, 1499 ProgramStateRef State) const { 1500 if (!State) 1501 return nullptr; 1502 1503 if (Att->getModule()->getName() != "malloc") 1504 return nullptr; 1505 1506 OwnershipAttr::args_iterator I = Att->args_begin(), E = Att->args_end(); 1507 if (I != E) { 1508 return MallocMemAux(C, Call, Call.getArgExpr(I->getASTIndex()), 1509 UndefinedVal(), State, AF_Malloc); 1510 } 1511 return MallocMemAux(C, Call, UnknownVal(), UndefinedVal(), State, AF_Malloc); 1512 } 1513 1514 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1515 const CallEvent &Call, 1516 const Expr *SizeEx, SVal Init, 1517 ProgramStateRef State, 1518 AllocationFamily Family) { 1519 if (!State) 1520 return nullptr; 1521 1522 assert(SizeEx); 1523 return MallocMemAux(C, Call, C.getSVal(SizeEx), Init, State, Family); 1524 } 1525 1526 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1527 const CallEvent &Call, SVal Size, 1528 SVal Init, ProgramStateRef State, 1529 AllocationFamily Family) { 1530 if (!State) 1531 return nullptr; 1532 1533 const Expr *CE = Call.getOriginExpr(); 1534 1535 // We expect the malloc functions to return a pointer. 1536 if (!Loc::isLocType(CE->getType())) 1537 return nullptr; 1538 1539 // Bind the return value to the symbolic value from the heap region. 1540 // TODO: We could rewrite post visit to eval call; 'malloc' does not have 1541 // side effects other than what we model here. 1542 unsigned Count = C.blockCount(); 1543 SValBuilder &svalBuilder = C.getSValBuilder(); 1544 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 1545 DefinedSVal RetVal = svalBuilder.getConjuredHeapSymbolVal(CE, LCtx, Count) 1546 .castAs<DefinedSVal>(); 1547 State = State->BindExpr(CE, C.getLocationContext(), RetVal); 1548 1549 // Fill the region with the initialization value. 1550 State = State->bindDefaultInitial(RetVal, Init, LCtx); 1551 1552 // Set the region's extent equal to the Size parameter. 1553 const SymbolicRegion *R = 1554 dyn_cast_or_null<SymbolicRegion>(RetVal.getAsRegion()); 1555 if (!R) 1556 return nullptr; 1557 if (Optional<DefinedOrUnknownSVal> DefinedSize = 1558 Size.getAs<DefinedOrUnknownSVal>()) { 1559 DefinedOrUnknownSVal DynSize = getDynamicSize(State, R, svalBuilder); 1560 1561 DefinedOrUnknownSVal DynSizeMatchesSize = 1562 svalBuilder.evalEQ(State, DynSize, *DefinedSize); 1563 1564 State = State->assume(DynSizeMatchesSize, true); 1565 assert(State); 1566 } 1567 1568 return MallocUpdateRefState(C, CE, State, Family); 1569 } 1570 1571 static ProgramStateRef MallocUpdateRefState(CheckerContext &C, const Expr *E, 1572 ProgramStateRef State, 1573 AllocationFamily Family, 1574 Optional<SVal> RetVal) { 1575 if (!State) 1576 return nullptr; 1577 1578 // Get the return value. 1579 if (!RetVal) 1580 RetVal = C.getSVal(E); 1581 1582 // We expect the malloc functions to return a pointer. 1583 if (!RetVal->getAs<Loc>()) 1584 return nullptr; 1585 1586 SymbolRef Sym = RetVal->getAsLocSymbol(); 1587 // This is a return value of a function that was not inlined, such as malloc() 1588 // or new(). We've checked that in the caller. Therefore, it must be a symbol. 1589 assert(Sym); 1590 1591 // Set the symbol's state to Allocated. 1592 return State->set<RegionState>(Sym, RefState::getAllocated(Family, E)); 1593 } 1594 1595 ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C, 1596 const CallEvent &Call, 1597 const OwnershipAttr *Att, 1598 ProgramStateRef State) const { 1599 if (!State) 1600 return nullptr; 1601 1602 if (Att->getModule()->getName() != "malloc") 1603 return nullptr; 1604 1605 bool IsKnownToBeAllocated = false; 1606 1607 for (const auto &Arg : Att->args()) { 1608 ProgramStateRef StateI = 1609 FreeMemAux(C, Call, State, Arg.getASTIndex(), 1610 Att->getOwnKind() == OwnershipAttr::Holds, 1611 IsKnownToBeAllocated, AF_Malloc); 1612 if (StateI) 1613 State = StateI; 1614 } 1615 return State; 1616 } 1617 1618 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, 1619 const CallEvent &Call, 1620 ProgramStateRef State, unsigned Num, 1621 bool Hold, bool &IsKnownToBeAllocated, 1622 AllocationFamily Family, 1623 bool ReturnsNullOnFailure) const { 1624 if (!State) 1625 return nullptr; 1626 1627 if (Call.getNumArgs() < (Num + 1)) 1628 return nullptr; 1629 1630 return FreeMemAux(C, Call.getArgExpr(Num), Call, State, Hold, 1631 IsKnownToBeAllocated, Family, ReturnsNullOnFailure); 1632 } 1633 1634 /// Checks if the previous call to free on the given symbol failed - if free 1635 /// failed, returns true. Also, returns the corresponding return value symbol. 1636 static bool didPreviousFreeFail(ProgramStateRef State, 1637 SymbolRef Sym, SymbolRef &RetStatusSymbol) { 1638 const SymbolRef *Ret = State->get<FreeReturnValue>(Sym); 1639 if (Ret) { 1640 assert(*Ret && "We should not store the null return symbol"); 1641 ConstraintManager &CMgr = State->getConstraintManager(); 1642 ConditionTruthVal FreeFailed = CMgr.isNull(State, *Ret); 1643 RetStatusSymbol = *Ret; 1644 return FreeFailed.isConstrainedTrue(); 1645 } 1646 return false; 1647 } 1648 1649 static bool printMemFnName(raw_ostream &os, CheckerContext &C, const Expr *E) { 1650 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 1651 // FIXME: This doesn't handle indirect calls. 1652 const FunctionDecl *FD = CE->getDirectCallee(); 1653 if (!FD) 1654 return false; 1655 1656 os << *FD; 1657 if (!FD->isOverloadedOperator()) 1658 os << "()"; 1659 return true; 1660 } 1661 1662 if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E)) { 1663 if (Msg->isInstanceMessage()) 1664 os << "-"; 1665 else 1666 os << "+"; 1667 Msg->getSelector().print(os); 1668 return true; 1669 } 1670 1671 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { 1672 os << "'" 1673 << getOperatorSpelling(NE->getOperatorNew()->getOverloadedOperator()) 1674 << "'"; 1675 return true; 1676 } 1677 1678 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(E)) { 1679 os << "'" 1680 << getOperatorSpelling(DE->getOperatorDelete()->getOverloadedOperator()) 1681 << "'"; 1682 return true; 1683 } 1684 1685 return false; 1686 } 1687 1688 static void printExpectedAllocName(raw_ostream &os, AllocationFamily Family) { 1689 1690 switch(Family) { 1691 case AF_Malloc: os << "malloc()"; return; 1692 case AF_CXXNew: os << "'new'"; return; 1693 case AF_CXXNewArray: os << "'new[]'"; return; 1694 case AF_IfNameIndex: os << "'if_nameindex()'"; return; 1695 case AF_InnerBuffer: os << "container-specific allocator"; return; 1696 case AF_Alloca: 1697 case AF_None: llvm_unreachable("not a deallocation expression"); 1698 } 1699 } 1700 1701 static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family) { 1702 switch(Family) { 1703 case AF_Malloc: os << "free()"; return; 1704 case AF_CXXNew: os << "'delete'"; return; 1705 case AF_CXXNewArray: os << "'delete[]'"; return; 1706 case AF_IfNameIndex: os << "'if_freenameindex()'"; return; 1707 case AF_InnerBuffer: os << "container-specific deallocator"; return; 1708 case AF_Alloca: 1709 case AF_None: llvm_unreachable("suspicious argument"); 1710 } 1711 } 1712 1713 ProgramStateRef MallocChecker::FreeMemAux( 1714 CheckerContext &C, const Expr *ArgExpr, const CallEvent &Call, 1715 ProgramStateRef State, bool Hold, bool &IsKnownToBeAllocated, 1716 AllocationFamily Family, bool ReturnsNullOnFailure) const { 1717 1718 if (!State) 1719 return nullptr; 1720 1721 SVal ArgVal = C.getSVal(ArgExpr); 1722 if (!ArgVal.getAs<DefinedOrUnknownSVal>()) 1723 return nullptr; 1724 DefinedOrUnknownSVal location = ArgVal.castAs<DefinedOrUnknownSVal>(); 1725 1726 // Check for null dereferences. 1727 if (!location.getAs<Loc>()) 1728 return nullptr; 1729 1730 // The explicit NULL case, no operation is performed. 1731 ProgramStateRef notNullState, nullState; 1732 std::tie(notNullState, nullState) = State->assume(location); 1733 if (nullState && !notNullState) 1734 return nullptr; 1735 1736 // Unknown values could easily be okay 1737 // Undefined values are handled elsewhere 1738 if (ArgVal.isUnknownOrUndef()) 1739 return nullptr; 1740 1741 const MemRegion *R = ArgVal.getAsRegion(); 1742 const Expr *ParentExpr = Call.getOriginExpr(); 1743 1744 // Nonlocs can't be freed, of course. 1745 // Non-region locations (labels and fixed addresses) also shouldn't be freed. 1746 if (!R) { 1747 // Exception: 1748 // If the macro ZERO_SIZE_PTR is defined, this could be a kernel source 1749 // code. In that case, the ZERO_SIZE_PTR defines a special value used for a 1750 // zero-sized memory block which is allowed to be freed, despite not being a 1751 // null pointer. 1752 if (Family != AF_Malloc || !isArgZERO_SIZE_PTR(State, C, ArgVal)) 1753 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, Family); 1754 return nullptr; 1755 } 1756 1757 R = R->StripCasts(); 1758 1759 // Blocks might show up as heap data, but should not be free()d 1760 if (isa<BlockDataRegion>(R)) { 1761 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, Family); 1762 return nullptr; 1763 } 1764 1765 const MemSpaceRegion *MS = R->getMemorySpace(); 1766 1767 // Parameters, locals, statics, globals, and memory returned by 1768 // __builtin_alloca() shouldn't be freed. 1769 if (!(isa<UnknownSpaceRegion>(MS) || isa<HeapSpaceRegion>(MS))) { 1770 // FIXME: at the time this code was written, malloc() regions were 1771 // represented by conjured symbols, which are all in UnknownSpaceRegion. 1772 // This means that there isn't actually anything from HeapSpaceRegion 1773 // that should be freed, even though we allow it here. 1774 // Of course, free() can work on memory allocated outside the current 1775 // function, so UnknownSpaceRegion is always a possibility. 1776 // False negatives are better than false positives. 1777 1778 if (isa<AllocaRegion>(R)) 1779 ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1780 else 1781 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, Family); 1782 1783 return nullptr; 1784 } 1785 1786 const SymbolicRegion *SrBase = dyn_cast<SymbolicRegion>(R->getBaseRegion()); 1787 // Various cases could lead to non-symbol values here. 1788 // For now, ignore them. 1789 if (!SrBase) 1790 return nullptr; 1791 1792 SymbolRef SymBase = SrBase->getSymbol(); 1793 const RefState *RsBase = State->get<RegionState>(SymBase); 1794 SymbolRef PreviousRetStatusSymbol = nullptr; 1795 1796 IsKnownToBeAllocated = 1797 RsBase && (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero()); 1798 1799 if (RsBase) { 1800 1801 // Memory returned by alloca() shouldn't be freed. 1802 if (RsBase->getAllocationFamily() == AF_Alloca) { 1803 ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1804 return nullptr; 1805 } 1806 1807 // Check for double free first. 1808 if ((RsBase->isReleased() || RsBase->isRelinquished()) && 1809 !didPreviousFreeFail(State, SymBase, PreviousRetStatusSymbol)) { 1810 ReportDoubleFree(C, ParentExpr->getSourceRange(), RsBase->isReleased(), 1811 SymBase, PreviousRetStatusSymbol); 1812 return nullptr; 1813 1814 // If the pointer is allocated or escaped, but we are now trying to free it, 1815 // check that the call to free is proper. 1816 } else if (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero() || 1817 RsBase->isEscaped()) { 1818 1819 // Check if an expected deallocation function matches the real one. 1820 bool DeallocMatchesAlloc = RsBase->getAllocationFamily() == Family; 1821 if (!DeallocMatchesAlloc) { 1822 ReportMismatchedDealloc(C, ArgExpr->getSourceRange(), 1823 ParentExpr, RsBase, SymBase, Hold); 1824 return nullptr; 1825 } 1826 1827 // Check if the memory location being freed is the actual location 1828 // allocated, or an offset. 1829 RegionOffset Offset = R->getAsOffset(); 1830 if (Offset.isValid() && 1831 !Offset.hasSymbolicOffset() && 1832 Offset.getOffset() != 0) { 1833 const Expr *AllocExpr = cast<Expr>(RsBase->getStmt()); 1834 ReportOffsetFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1835 Family, AllocExpr); 1836 return nullptr; 1837 } 1838 } 1839 } 1840 1841 if (SymBase->getType()->isFunctionPointerType()) { 1842 ReportFunctionPointerFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1843 Family); 1844 return nullptr; 1845 } 1846 1847 // Clean out the info on previous call to free return info. 1848 State = State->remove<FreeReturnValue>(SymBase); 1849 1850 // Keep track of the return value. If it is NULL, we will know that free 1851 // failed. 1852 if (ReturnsNullOnFailure) { 1853 SVal RetVal = C.getSVal(ParentExpr); 1854 SymbolRef RetStatusSymbol = RetVal.getAsSymbol(); 1855 if (RetStatusSymbol) { 1856 C.getSymbolManager().addSymbolDependency(SymBase, RetStatusSymbol); 1857 State = State->set<FreeReturnValue>(SymBase, RetStatusSymbol); 1858 } 1859 } 1860 1861 // If we don't know anything about this symbol, a free on it may be totally 1862 // valid. If this is the case, lets assume that the allocation family of the 1863 // freeing function is the same as the symbols allocation family, and go with 1864 // that. 1865 assert(!RsBase || (RsBase && RsBase->getAllocationFamily() == Family)); 1866 1867 // Normal free. 1868 if (Hold) 1869 return State->set<RegionState>(SymBase, 1870 RefState::getRelinquished(Family, 1871 ParentExpr)); 1872 1873 return State->set<RegionState>(SymBase, 1874 RefState::getReleased(Family, ParentExpr)); 1875 } 1876 1877 Optional<MallocChecker::CheckKind> 1878 MallocChecker::getCheckIfTracked(AllocationFamily Family, 1879 bool IsALeakCheck) const { 1880 switch (Family) { 1881 case AF_Malloc: 1882 case AF_Alloca: 1883 case AF_IfNameIndex: { 1884 if (ChecksEnabled[CK_MallocChecker]) 1885 return CK_MallocChecker; 1886 return None; 1887 } 1888 case AF_CXXNew: 1889 case AF_CXXNewArray: { 1890 if (IsALeakCheck) { 1891 if (ChecksEnabled[CK_NewDeleteLeaksChecker]) 1892 return CK_NewDeleteLeaksChecker; 1893 } 1894 else { 1895 if (ChecksEnabled[CK_NewDeleteChecker]) 1896 return CK_NewDeleteChecker; 1897 } 1898 return None; 1899 } 1900 case AF_InnerBuffer: { 1901 if (ChecksEnabled[CK_InnerPointerChecker]) 1902 return CK_InnerPointerChecker; 1903 return None; 1904 } 1905 case AF_None: { 1906 llvm_unreachable("no family"); 1907 } 1908 } 1909 llvm_unreachable("unhandled family"); 1910 } 1911 1912 Optional<MallocChecker::CheckKind> 1913 MallocChecker::getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 1914 bool IsALeakCheck) const { 1915 if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) 1916 return CK_MallocChecker; 1917 1918 const RefState *RS = C.getState()->get<RegionState>(Sym); 1919 assert(RS); 1920 return getCheckIfTracked(RS->getAllocationFamily(), IsALeakCheck); 1921 } 1922 1923 bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) { 1924 if (Optional<nonloc::ConcreteInt> IntVal = V.getAs<nonloc::ConcreteInt>()) 1925 os << "an integer (" << IntVal->getValue() << ")"; 1926 else if (Optional<loc::ConcreteInt> ConstAddr = V.getAs<loc::ConcreteInt>()) 1927 os << "a constant address (" << ConstAddr->getValue() << ")"; 1928 else if (Optional<loc::GotoLabel> Label = V.getAs<loc::GotoLabel>()) 1929 os << "the address of the label '" << Label->getLabel()->getName() << "'"; 1930 else 1931 return false; 1932 1933 return true; 1934 } 1935 1936 bool MallocChecker::SummarizeRegion(raw_ostream &os, 1937 const MemRegion *MR) { 1938 switch (MR->getKind()) { 1939 case MemRegion::FunctionCodeRegionKind: { 1940 const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl(); 1941 if (FD) 1942 os << "the address of the function '" << *FD << '\''; 1943 else 1944 os << "the address of a function"; 1945 return true; 1946 } 1947 case MemRegion::BlockCodeRegionKind: 1948 os << "block text"; 1949 return true; 1950 case MemRegion::BlockDataRegionKind: 1951 // FIXME: where the block came from? 1952 os << "a block"; 1953 return true; 1954 default: { 1955 const MemSpaceRegion *MS = MR->getMemorySpace(); 1956 1957 if (isa<StackLocalsSpaceRegion>(MS)) { 1958 const VarRegion *VR = dyn_cast<VarRegion>(MR); 1959 const VarDecl *VD; 1960 if (VR) 1961 VD = VR->getDecl(); 1962 else 1963 VD = nullptr; 1964 1965 if (VD) 1966 os << "the address of the local variable '" << VD->getName() << "'"; 1967 else 1968 os << "the address of a local stack variable"; 1969 return true; 1970 } 1971 1972 if (isa<StackArgumentsSpaceRegion>(MS)) { 1973 const VarRegion *VR = dyn_cast<VarRegion>(MR); 1974 const VarDecl *VD; 1975 if (VR) 1976 VD = VR->getDecl(); 1977 else 1978 VD = nullptr; 1979 1980 if (VD) 1981 os << "the address of the parameter '" << VD->getName() << "'"; 1982 else 1983 os << "the address of a parameter"; 1984 return true; 1985 } 1986 1987 if (isa<GlobalsSpaceRegion>(MS)) { 1988 const VarRegion *VR = dyn_cast<VarRegion>(MR); 1989 const VarDecl *VD; 1990 if (VR) 1991 VD = VR->getDecl(); 1992 else 1993 VD = nullptr; 1994 1995 if (VD) { 1996 if (VD->isStaticLocal()) 1997 os << "the address of the static variable '" << VD->getName() << "'"; 1998 else 1999 os << "the address of the global variable '" << VD->getName() << "'"; 2000 } else 2001 os << "the address of a global variable"; 2002 return true; 2003 } 2004 2005 return false; 2006 } 2007 } 2008 } 2009 2010 void MallocChecker::ReportBadFree(CheckerContext &C, SVal ArgVal, 2011 SourceRange Range, const Expr *DeallocExpr, 2012 AllocationFamily Family) const { 2013 2014 if (!ChecksEnabled[CK_MallocChecker] && 2015 !ChecksEnabled[CK_NewDeleteChecker]) 2016 return; 2017 2018 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2019 if (!CheckKind.hasValue()) 2020 return; 2021 2022 if (ExplodedNode *N = C.generateErrorNode()) { 2023 if (!BT_BadFree[*CheckKind]) 2024 BT_BadFree[*CheckKind].reset(new BugType( 2025 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 2026 2027 SmallString<100> buf; 2028 llvm::raw_svector_ostream os(buf); 2029 2030 const MemRegion *MR = ArgVal.getAsRegion(); 2031 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 2032 MR = ER->getSuperRegion(); 2033 2034 os << "Argument to "; 2035 if (!printMemFnName(os, C, DeallocExpr)) 2036 os << "deallocator"; 2037 2038 os << " is "; 2039 bool Summarized = MR ? SummarizeRegion(os, MR) 2040 : SummarizeValue(os, ArgVal); 2041 if (Summarized) 2042 os << ", which is not memory allocated by "; 2043 else 2044 os << "not memory allocated by "; 2045 2046 printExpectedAllocName(os, Family); 2047 2048 auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind], 2049 os.str(), N); 2050 R->markInteresting(MR); 2051 R->addRange(Range); 2052 C.emitReport(std::move(R)); 2053 } 2054 } 2055 2056 void MallocChecker::ReportFreeAlloca(CheckerContext &C, SVal ArgVal, 2057 SourceRange Range) const { 2058 2059 Optional<MallocChecker::CheckKind> CheckKind; 2060 2061 if (ChecksEnabled[CK_MallocChecker]) 2062 CheckKind = CK_MallocChecker; 2063 else if (ChecksEnabled[CK_MismatchedDeallocatorChecker]) 2064 CheckKind = CK_MismatchedDeallocatorChecker; 2065 else 2066 return; 2067 2068 if (ExplodedNode *N = C.generateErrorNode()) { 2069 if (!BT_FreeAlloca[*CheckKind]) 2070 BT_FreeAlloca[*CheckKind].reset(new BugType( 2071 CheckNames[*CheckKind], "Free alloca()", categories::MemoryError)); 2072 2073 auto R = std::make_unique<PathSensitiveBugReport>( 2074 *BT_FreeAlloca[*CheckKind], 2075 "Memory allocated by alloca() should not be deallocated", N); 2076 R->markInteresting(ArgVal.getAsRegion()); 2077 R->addRange(Range); 2078 C.emitReport(std::move(R)); 2079 } 2080 } 2081 2082 void MallocChecker::ReportMismatchedDealloc(CheckerContext &C, 2083 SourceRange Range, 2084 const Expr *DeallocExpr, 2085 const RefState *RS, 2086 SymbolRef Sym, 2087 bool OwnershipTransferred) const { 2088 2089 if (!ChecksEnabled[CK_MismatchedDeallocatorChecker]) 2090 return; 2091 2092 if (ExplodedNode *N = C.generateErrorNode()) { 2093 if (!BT_MismatchedDealloc) 2094 BT_MismatchedDealloc.reset( 2095 new BugType(CheckNames[CK_MismatchedDeallocatorChecker], 2096 "Bad deallocator", categories::MemoryError)); 2097 2098 SmallString<100> buf; 2099 llvm::raw_svector_ostream os(buf); 2100 2101 const Expr *AllocExpr = cast<Expr>(RS->getStmt()); 2102 SmallString<20> AllocBuf; 2103 llvm::raw_svector_ostream AllocOs(AllocBuf); 2104 SmallString<20> DeallocBuf; 2105 llvm::raw_svector_ostream DeallocOs(DeallocBuf); 2106 2107 if (OwnershipTransferred) { 2108 if (printMemFnName(DeallocOs, C, DeallocExpr)) 2109 os << DeallocOs.str() << " cannot"; 2110 else 2111 os << "Cannot"; 2112 2113 os << " take ownership of memory"; 2114 2115 if (printMemFnName(AllocOs, C, AllocExpr)) 2116 os << " allocated by " << AllocOs.str(); 2117 } else { 2118 os << "Memory"; 2119 if (printMemFnName(AllocOs, C, AllocExpr)) 2120 os << " allocated by " << AllocOs.str(); 2121 2122 os << " should be deallocated by "; 2123 printExpectedDeallocName(os, RS->getAllocationFamily()); 2124 2125 if (printMemFnName(DeallocOs, C, DeallocExpr)) 2126 os << ", not " << DeallocOs.str(); 2127 } 2128 2129 auto R = std::make_unique<PathSensitiveBugReport>(*BT_MismatchedDealloc, 2130 os.str(), N); 2131 R->markInteresting(Sym); 2132 R->addRange(Range); 2133 R->addVisitor(std::make_unique<MallocBugVisitor>(Sym)); 2134 C.emitReport(std::move(R)); 2135 } 2136 } 2137 2138 void MallocChecker::ReportOffsetFree(CheckerContext &C, SVal ArgVal, 2139 SourceRange Range, const Expr *DeallocExpr, 2140 AllocationFamily Family, 2141 const Expr *AllocExpr) const { 2142 2143 if (!ChecksEnabled[CK_MallocChecker] && 2144 !ChecksEnabled[CK_NewDeleteChecker]) 2145 return; 2146 2147 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2148 if (!CheckKind.hasValue()) 2149 return; 2150 2151 ExplodedNode *N = C.generateErrorNode(); 2152 if (!N) 2153 return; 2154 2155 if (!BT_OffsetFree[*CheckKind]) 2156 BT_OffsetFree[*CheckKind].reset(new BugType( 2157 CheckNames[*CheckKind], "Offset free", categories::MemoryError)); 2158 2159 SmallString<100> buf; 2160 llvm::raw_svector_ostream os(buf); 2161 SmallString<20> AllocNameBuf; 2162 llvm::raw_svector_ostream AllocNameOs(AllocNameBuf); 2163 2164 const MemRegion *MR = ArgVal.getAsRegion(); 2165 assert(MR && "Only MemRegion based symbols can have offset free errors"); 2166 2167 RegionOffset Offset = MR->getAsOffset(); 2168 assert((Offset.isValid() && 2169 !Offset.hasSymbolicOffset() && 2170 Offset.getOffset() != 0) && 2171 "Only symbols with a valid offset can have offset free errors"); 2172 2173 int offsetBytes = Offset.getOffset() / C.getASTContext().getCharWidth(); 2174 2175 os << "Argument to "; 2176 if (!printMemFnName(os, C, DeallocExpr)) 2177 os << "deallocator"; 2178 os << " is offset by " 2179 << offsetBytes 2180 << " " 2181 << ((abs(offsetBytes) > 1) ? "bytes" : "byte") 2182 << " from the start of "; 2183 if (AllocExpr && printMemFnName(AllocNameOs, C, AllocExpr)) 2184 os << "memory allocated by " << AllocNameOs.str(); 2185 else 2186 os << "allocated memory"; 2187 2188 auto R = std::make_unique<PathSensitiveBugReport>(*BT_OffsetFree[*CheckKind], 2189 os.str(), N); 2190 R->markInteresting(MR->getBaseRegion()); 2191 R->addRange(Range); 2192 C.emitReport(std::move(R)); 2193 } 2194 2195 void MallocChecker::ReportUseAfterFree(CheckerContext &C, SourceRange Range, 2196 SymbolRef Sym) const { 2197 2198 if (!ChecksEnabled[CK_MallocChecker] && 2199 !ChecksEnabled[CK_NewDeleteChecker] && 2200 !ChecksEnabled[CK_InnerPointerChecker]) 2201 return; 2202 2203 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2204 if (!CheckKind.hasValue()) 2205 return; 2206 2207 if (ExplodedNode *N = C.generateErrorNode()) { 2208 if (!BT_UseFree[*CheckKind]) 2209 BT_UseFree[*CheckKind].reset(new BugType( 2210 CheckNames[*CheckKind], "Use-after-free", categories::MemoryError)); 2211 2212 AllocationFamily AF = 2213 C.getState()->get<RegionState>(Sym)->getAllocationFamily(); 2214 2215 auto R = std::make_unique<PathSensitiveBugReport>( 2216 *BT_UseFree[*CheckKind], 2217 AF == AF_InnerBuffer 2218 ? "Inner pointer of container used after re/deallocation" 2219 : "Use of memory after it is freed", 2220 N); 2221 2222 R->markInteresting(Sym); 2223 R->addRange(Range); 2224 R->addVisitor(std::make_unique<MallocBugVisitor>(Sym)); 2225 2226 if (AF == AF_InnerBuffer) 2227 R->addVisitor(allocation_state::getInnerPointerBRVisitor(Sym)); 2228 2229 C.emitReport(std::move(R)); 2230 } 2231 } 2232 2233 void MallocChecker::ReportDoubleFree(CheckerContext &C, SourceRange Range, 2234 bool Released, SymbolRef Sym, 2235 SymbolRef PrevSym) const { 2236 2237 if (!ChecksEnabled[CK_MallocChecker] && 2238 !ChecksEnabled[CK_NewDeleteChecker]) 2239 return; 2240 2241 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2242 if (!CheckKind.hasValue()) 2243 return; 2244 2245 if (ExplodedNode *N = C.generateErrorNode()) { 2246 if (!BT_DoubleFree[*CheckKind]) 2247 BT_DoubleFree[*CheckKind].reset(new BugType( 2248 CheckNames[*CheckKind], "Double free", categories::MemoryError)); 2249 2250 auto R = std::make_unique<PathSensitiveBugReport>( 2251 *BT_DoubleFree[*CheckKind], 2252 (Released ? "Attempt to free released memory" 2253 : "Attempt to free non-owned memory"), 2254 N); 2255 R->addRange(Range); 2256 R->markInteresting(Sym); 2257 if (PrevSym) 2258 R->markInteresting(PrevSym); 2259 R->addVisitor(std::make_unique<MallocBugVisitor>(Sym)); 2260 C.emitReport(std::move(R)); 2261 } 2262 } 2263 2264 void MallocChecker::ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const { 2265 2266 if (!ChecksEnabled[CK_NewDeleteChecker]) 2267 return; 2268 2269 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2270 if (!CheckKind.hasValue()) 2271 return; 2272 2273 if (ExplodedNode *N = C.generateErrorNode()) { 2274 if (!BT_DoubleDelete) 2275 BT_DoubleDelete.reset(new BugType(CheckNames[CK_NewDeleteChecker], 2276 "Double delete", 2277 categories::MemoryError)); 2278 2279 auto R = std::make_unique<PathSensitiveBugReport>( 2280 *BT_DoubleDelete, "Attempt to delete released memory", N); 2281 2282 R->markInteresting(Sym); 2283 R->addVisitor(std::make_unique<MallocBugVisitor>(Sym)); 2284 C.emitReport(std::move(R)); 2285 } 2286 } 2287 2288 void MallocChecker::ReportUseZeroAllocated(CheckerContext &C, 2289 SourceRange Range, 2290 SymbolRef Sym) const { 2291 2292 if (!ChecksEnabled[CK_MallocChecker] && 2293 !ChecksEnabled[CK_NewDeleteChecker]) 2294 return; 2295 2296 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2297 2298 if (!CheckKind.hasValue()) 2299 return; 2300 2301 if (ExplodedNode *N = C.generateErrorNode()) { 2302 if (!BT_UseZerroAllocated[*CheckKind]) 2303 BT_UseZerroAllocated[*CheckKind].reset( 2304 new BugType(CheckNames[*CheckKind], "Use of zero allocated", 2305 categories::MemoryError)); 2306 2307 auto R = std::make_unique<PathSensitiveBugReport>( 2308 *BT_UseZerroAllocated[*CheckKind], "Use of zero-allocated memory", N); 2309 2310 R->addRange(Range); 2311 if (Sym) { 2312 R->markInteresting(Sym); 2313 R->addVisitor(std::make_unique<MallocBugVisitor>(Sym)); 2314 } 2315 C.emitReport(std::move(R)); 2316 } 2317 } 2318 2319 void MallocChecker::ReportFunctionPointerFree(CheckerContext &C, SVal ArgVal, 2320 SourceRange Range, 2321 const Expr *FreeExpr, 2322 AllocationFamily Family) const { 2323 if (!ChecksEnabled[CK_MallocChecker]) 2324 return; 2325 2326 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2327 if (!CheckKind.hasValue()) 2328 return; 2329 2330 if (ExplodedNode *N = C.generateErrorNode()) { 2331 if (!BT_BadFree[*CheckKind]) 2332 BT_BadFree[*CheckKind].reset(new BugType( 2333 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 2334 2335 SmallString<100> Buf; 2336 llvm::raw_svector_ostream Os(Buf); 2337 2338 const MemRegion *MR = ArgVal.getAsRegion(); 2339 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 2340 MR = ER->getSuperRegion(); 2341 2342 Os << "Argument to "; 2343 if (!printMemFnName(Os, C, FreeExpr)) 2344 Os << "deallocator"; 2345 2346 Os << " is a function pointer"; 2347 2348 auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind], 2349 Os.str(), N); 2350 R->markInteresting(MR); 2351 R->addRange(Range); 2352 C.emitReport(std::move(R)); 2353 } 2354 } 2355 2356 ProgramStateRef 2357 MallocChecker::ReallocMemAux(CheckerContext &C, const CallEvent &Call, 2358 bool ShouldFreeOnFail, ProgramStateRef State, 2359 AllocationFamily Family, bool SuffixWithN) const { 2360 if (!State) 2361 return nullptr; 2362 2363 const CallExpr *CE = cast<CallExpr>(Call.getOriginExpr()); 2364 2365 if (SuffixWithN && CE->getNumArgs() < 3) 2366 return nullptr; 2367 else if (CE->getNumArgs() < 2) 2368 return nullptr; 2369 2370 const Expr *arg0Expr = CE->getArg(0); 2371 SVal Arg0Val = C.getSVal(arg0Expr); 2372 if (!Arg0Val.getAs<DefinedOrUnknownSVal>()) 2373 return nullptr; 2374 DefinedOrUnknownSVal arg0Val = Arg0Val.castAs<DefinedOrUnknownSVal>(); 2375 2376 SValBuilder &svalBuilder = C.getSValBuilder(); 2377 2378 DefinedOrUnknownSVal PtrEQ = 2379 svalBuilder.evalEQ(State, arg0Val, svalBuilder.makeNull()); 2380 2381 // Get the size argument. 2382 const Expr *Arg1 = CE->getArg(1); 2383 2384 // Get the value of the size argument. 2385 SVal TotalSize = C.getSVal(Arg1); 2386 if (SuffixWithN) 2387 TotalSize = evalMulForBufferSize(C, Arg1, CE->getArg(2)); 2388 if (!TotalSize.getAs<DefinedOrUnknownSVal>()) 2389 return nullptr; 2390 2391 // Compare the size argument to 0. 2392 DefinedOrUnknownSVal SizeZero = 2393 svalBuilder.evalEQ(State, TotalSize.castAs<DefinedOrUnknownSVal>(), 2394 svalBuilder.makeIntValWithPtrWidth(0, false)); 2395 2396 ProgramStateRef StatePtrIsNull, StatePtrNotNull; 2397 std::tie(StatePtrIsNull, StatePtrNotNull) = State->assume(PtrEQ); 2398 ProgramStateRef StateSizeIsZero, StateSizeNotZero; 2399 std::tie(StateSizeIsZero, StateSizeNotZero) = State->assume(SizeZero); 2400 // We only assume exceptional states if they are definitely true; if the 2401 // state is under-constrained, assume regular realloc behavior. 2402 bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull; 2403 bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero; 2404 2405 // If the ptr is NULL and the size is not 0, the call is equivalent to 2406 // malloc(size). 2407 if (PrtIsNull && !SizeIsZero) { 2408 ProgramStateRef stateMalloc = MallocMemAux( 2409 C, Call, TotalSize, UndefinedVal(), StatePtrIsNull, Family); 2410 return stateMalloc; 2411 } 2412 2413 if (PrtIsNull && SizeIsZero) 2414 return State; 2415 2416 assert(!PrtIsNull); 2417 2418 bool IsKnownToBeAllocated = false; 2419 2420 // If the size is 0, free the memory. 2421 if (SizeIsZero) 2422 // The semantics of the return value are: 2423 // If size was equal to 0, either NULL or a pointer suitable to be passed 2424 // to free() is returned. We just free the input pointer and do not add 2425 // any constrains on the output pointer. 2426 if (ProgramStateRef stateFree = FreeMemAux( 2427 C, Call, StateSizeIsZero, 0, false, IsKnownToBeAllocated, Family)) 2428 return stateFree; 2429 2430 // Default behavior. 2431 if (ProgramStateRef stateFree = 2432 FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocated, Family)) { 2433 2434 ProgramStateRef stateRealloc = 2435 MallocMemAux(C, Call, TotalSize, UnknownVal(), stateFree, Family); 2436 if (!stateRealloc) 2437 return nullptr; 2438 2439 OwnershipAfterReallocKind Kind = OAR_ToBeFreedAfterFailure; 2440 if (ShouldFreeOnFail) 2441 Kind = OAR_FreeOnFailure; 2442 else if (!IsKnownToBeAllocated) 2443 Kind = OAR_DoNotTrackAfterFailure; 2444 2445 // Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size). 2446 SymbolRef FromPtr = arg0Val.getAsSymbol(); 2447 SVal RetVal = C.getSVal(CE); 2448 SymbolRef ToPtr = RetVal.getAsSymbol(); 2449 assert(FromPtr && ToPtr && 2450 "By this point, FreeMemAux and MallocMemAux should have checked " 2451 "whether the argument or the return value is symbolic!"); 2452 2453 // Record the info about the reallocated symbol so that we could properly 2454 // process failed reallocation. 2455 stateRealloc = stateRealloc->set<ReallocPairs>(ToPtr, 2456 ReallocPair(FromPtr, Kind)); 2457 // The reallocated symbol should stay alive for as long as the new symbol. 2458 C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr); 2459 return stateRealloc; 2460 } 2461 return nullptr; 2462 } 2463 2464 ProgramStateRef MallocChecker::CallocMem(CheckerContext &C, 2465 const CallEvent &Call, 2466 ProgramStateRef State) { 2467 if (!State) 2468 return nullptr; 2469 2470 if (Call.getNumArgs() < 2) 2471 return nullptr; 2472 2473 SValBuilder &svalBuilder = C.getSValBuilder(); 2474 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 2475 SVal TotalSize = 2476 evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1)); 2477 2478 return MallocMemAux(C, Call, TotalSize, zeroVal, State, AF_Malloc); 2479 } 2480 2481 MallocChecker::LeakInfo MallocChecker::getAllocationSite(const ExplodedNode *N, 2482 SymbolRef Sym, 2483 CheckerContext &C) { 2484 const LocationContext *LeakContext = N->getLocationContext(); 2485 // Walk the ExplodedGraph backwards and find the first node that referred to 2486 // the tracked symbol. 2487 const ExplodedNode *AllocNode = N; 2488 const MemRegion *ReferenceRegion = nullptr; 2489 2490 while (N) { 2491 ProgramStateRef State = N->getState(); 2492 if (!State->get<RegionState>(Sym)) 2493 break; 2494 2495 // Find the most recent expression bound to the symbol in the current 2496 // context. 2497 if (!ReferenceRegion) { 2498 if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) { 2499 SVal Val = State->getSVal(MR); 2500 if (Val.getAsLocSymbol() == Sym) { 2501 const VarRegion *VR = MR->getBaseRegion()->getAs<VarRegion>(); 2502 // Do not show local variables belonging to a function other than 2503 // where the error is reported. 2504 if (!VR || (VR->getStackFrame() == LeakContext->getStackFrame())) 2505 ReferenceRegion = MR; 2506 } 2507 } 2508 } 2509 2510 // Allocation node, is the last node in the current or parent context in 2511 // which the symbol was tracked. 2512 const LocationContext *NContext = N->getLocationContext(); 2513 if (NContext == LeakContext || 2514 NContext->isParentOf(LeakContext)) 2515 AllocNode = N; 2516 N = N->pred_empty() ? nullptr : *(N->pred_begin()); 2517 } 2518 2519 return LeakInfo(AllocNode, ReferenceRegion); 2520 } 2521 2522 void MallocChecker::reportLeak(SymbolRef Sym, ExplodedNode *N, 2523 CheckerContext &C) const { 2524 2525 if (!ChecksEnabled[CK_MallocChecker] && 2526 !ChecksEnabled[CK_NewDeleteLeaksChecker]) 2527 return; 2528 2529 const RefState *RS = C.getState()->get<RegionState>(Sym); 2530 assert(RS && "cannot leak an untracked symbol"); 2531 AllocationFamily Family = RS->getAllocationFamily(); 2532 2533 if (Family == AF_Alloca) 2534 return; 2535 2536 Optional<MallocChecker::CheckKind> 2537 CheckKind = getCheckIfTracked(Family, true); 2538 2539 if (!CheckKind.hasValue()) 2540 return; 2541 2542 assert(N); 2543 if (!BT_Leak[*CheckKind]) { 2544 // Leaks should not be reported if they are post-dominated by a sink: 2545 // (1) Sinks are higher importance bugs. 2546 // (2) NoReturnFunctionChecker uses sink nodes to represent paths ending 2547 // with __noreturn functions such as assert() or exit(). We choose not 2548 // to report leaks on such paths. 2549 BT_Leak[*CheckKind].reset(new BugType(CheckNames[*CheckKind], "Memory leak", 2550 categories::MemoryError, 2551 /*SuppressOnSink=*/true)); 2552 } 2553 2554 // Most bug reports are cached at the location where they occurred. 2555 // With leaks, we want to unique them by the location where they were 2556 // allocated, and only report a single path. 2557 PathDiagnosticLocation LocUsedForUniqueing; 2558 const ExplodedNode *AllocNode = nullptr; 2559 const MemRegion *Region = nullptr; 2560 std::tie(AllocNode, Region) = getAllocationSite(N, Sym, C); 2561 2562 const Stmt *AllocationStmt = AllocNode->getStmtForDiagnostics(); 2563 if (AllocationStmt) 2564 LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocationStmt, 2565 C.getSourceManager(), 2566 AllocNode->getLocationContext()); 2567 2568 SmallString<200> buf; 2569 llvm::raw_svector_ostream os(buf); 2570 if (Region && Region->canPrintPretty()) { 2571 os << "Potential leak of memory pointed to by "; 2572 Region->printPretty(os); 2573 } else { 2574 os << "Potential memory leak"; 2575 } 2576 2577 auto R = std::make_unique<PathSensitiveBugReport>( 2578 *BT_Leak[*CheckKind], os.str(), N, LocUsedForUniqueing, 2579 AllocNode->getLocationContext()->getDecl()); 2580 R->markInteresting(Sym); 2581 R->addVisitor(std::make_unique<MallocBugVisitor>(Sym, true)); 2582 C.emitReport(std::move(R)); 2583 } 2584 2585 void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper, 2586 CheckerContext &C) const 2587 { 2588 ProgramStateRef state = C.getState(); 2589 RegionStateTy OldRS = state->get<RegionState>(); 2590 RegionStateTy::Factory &F = state->get_context<RegionState>(); 2591 2592 RegionStateTy RS = OldRS; 2593 SmallVector<SymbolRef, 2> Errors; 2594 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2595 if (SymReaper.isDead(I->first)) { 2596 if (I->second.isAllocated() || I->second.isAllocatedOfSizeZero()) 2597 Errors.push_back(I->first); 2598 // Remove the dead symbol from the map. 2599 RS = F.remove(RS, I->first); 2600 } 2601 } 2602 2603 if (RS == OldRS) { 2604 // We shouldn't have touched other maps yet. 2605 assert(state->get<ReallocPairs>() == 2606 C.getState()->get<ReallocPairs>()); 2607 assert(state->get<FreeReturnValue>() == 2608 C.getState()->get<FreeReturnValue>()); 2609 return; 2610 } 2611 2612 // Cleanup the Realloc Pairs Map. 2613 ReallocPairsTy RP = state->get<ReallocPairs>(); 2614 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 2615 if (SymReaper.isDead(I->first) || 2616 SymReaper.isDead(I->second.ReallocatedSym)) { 2617 state = state->remove<ReallocPairs>(I->first); 2618 } 2619 } 2620 2621 // Cleanup the FreeReturnValue Map. 2622 FreeReturnValueTy FR = state->get<FreeReturnValue>(); 2623 for (FreeReturnValueTy::iterator I = FR.begin(), E = FR.end(); I != E; ++I) { 2624 if (SymReaper.isDead(I->first) || 2625 SymReaper.isDead(I->second)) { 2626 state = state->remove<FreeReturnValue>(I->first); 2627 } 2628 } 2629 2630 // Generate leak node. 2631 ExplodedNode *N = C.getPredecessor(); 2632 if (!Errors.empty()) { 2633 static CheckerProgramPointTag Tag("MallocChecker", "DeadSymbolsLeak"); 2634 N = C.generateNonFatalErrorNode(C.getState(), &Tag); 2635 if (N) { 2636 for (SmallVectorImpl<SymbolRef>::iterator 2637 I = Errors.begin(), E = Errors.end(); I != E; ++I) { 2638 reportLeak(*I, N, C); 2639 } 2640 } 2641 } 2642 2643 C.addTransition(state->set<RegionState>(RS), N); 2644 } 2645 2646 void MallocChecker::checkPreCall(const CallEvent &Call, 2647 CheckerContext &C) const { 2648 2649 if (const auto *DC = dyn_cast<CXXDeallocatorCall>(&Call)) { 2650 const CXXDeleteExpr *DE = DC->getOriginExpr(); 2651 2652 if (!ChecksEnabled[CK_NewDeleteChecker]) 2653 if (SymbolRef Sym = C.getSVal(DE->getArgument()).getAsSymbol()) 2654 checkUseAfterFree(Sym, C, DE->getArgument()); 2655 2656 if (!isStandardNewDelete(DC->getDecl())) 2657 return; 2658 2659 ProgramStateRef State = C.getState(); 2660 bool IsKnownToBeAllocated; 2661 State = FreeMemAux(C, DE->getArgument(), Call, State, 2662 /*Hold*/ false, IsKnownToBeAllocated, 2663 (DE->isArrayForm() ? AF_CXXNewArray : AF_CXXNew)); 2664 2665 C.addTransition(State); 2666 return; 2667 } 2668 2669 if (const auto *DC = dyn_cast<CXXDestructorCall>(&Call)) { 2670 SymbolRef Sym = DC->getCXXThisVal().getAsSymbol(); 2671 if (!Sym || checkDoubleDelete(Sym, C)) 2672 return; 2673 } 2674 2675 // We will check for double free in the post visit. 2676 if (const AnyFunctionCall *FC = dyn_cast<AnyFunctionCall>(&Call)) { 2677 const FunctionDecl *FD = FC->getDecl(); 2678 if (!FD) 2679 return; 2680 2681 if (ChecksEnabled[CK_MallocChecker] && isFreeingCall(Call)) 2682 return; 2683 } 2684 2685 // Check if the callee of a method is deleted. 2686 if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(&Call)) { 2687 SymbolRef Sym = CC->getCXXThisVal().getAsSymbol(); 2688 if (!Sym || checkUseAfterFree(Sym, C, CC->getCXXThisExpr())) 2689 return; 2690 } 2691 2692 // Check arguments for being used after free. 2693 for (unsigned I = 0, E = Call.getNumArgs(); I != E; ++I) { 2694 SVal ArgSVal = Call.getArgSVal(I); 2695 if (ArgSVal.getAs<Loc>()) { 2696 SymbolRef Sym = ArgSVal.getAsSymbol(); 2697 if (!Sym) 2698 continue; 2699 if (checkUseAfterFree(Sym, C, Call.getArgExpr(I))) 2700 return; 2701 } 2702 } 2703 } 2704 2705 void MallocChecker::checkPreStmt(const ReturnStmt *S, 2706 CheckerContext &C) const { 2707 checkEscapeOnReturn(S, C); 2708 } 2709 2710 // In the CFG, automatic destructors come after the return statement. 2711 // This callback checks for returning memory that is freed by automatic 2712 // destructors, as those cannot be reached in checkPreStmt(). 2713 void MallocChecker::checkEndFunction(const ReturnStmt *S, 2714 CheckerContext &C) const { 2715 checkEscapeOnReturn(S, C); 2716 } 2717 2718 void MallocChecker::checkEscapeOnReturn(const ReturnStmt *S, 2719 CheckerContext &C) const { 2720 if (!S) 2721 return; 2722 2723 const Expr *E = S->getRetValue(); 2724 if (!E) 2725 return; 2726 2727 // Check if we are returning a symbol. 2728 ProgramStateRef State = C.getState(); 2729 SVal RetVal = C.getSVal(E); 2730 SymbolRef Sym = RetVal.getAsSymbol(); 2731 if (!Sym) 2732 // If we are returning a field of the allocated struct or an array element, 2733 // the callee could still free the memory. 2734 // TODO: This logic should be a part of generic symbol escape callback. 2735 if (const MemRegion *MR = RetVal.getAsRegion()) 2736 if (isa<FieldRegion>(MR) || isa<ElementRegion>(MR)) 2737 if (const SymbolicRegion *BMR = 2738 dyn_cast<SymbolicRegion>(MR->getBaseRegion())) 2739 Sym = BMR->getSymbol(); 2740 2741 // Check if we are returning freed memory. 2742 if (Sym) 2743 checkUseAfterFree(Sym, C, E); 2744 } 2745 2746 // TODO: Blocks should be either inlined or should call invalidate regions 2747 // upon invocation. After that's in place, special casing here will not be 2748 // needed. 2749 void MallocChecker::checkPostStmt(const BlockExpr *BE, 2750 CheckerContext &C) const { 2751 2752 // Scan the BlockDecRefExprs for any object the retain count checker 2753 // may be tracking. 2754 if (!BE->getBlockDecl()->hasCaptures()) 2755 return; 2756 2757 ProgramStateRef state = C.getState(); 2758 const BlockDataRegion *R = 2759 cast<BlockDataRegion>(C.getSVal(BE).getAsRegion()); 2760 2761 BlockDataRegion::referenced_vars_iterator I = R->referenced_vars_begin(), 2762 E = R->referenced_vars_end(); 2763 2764 if (I == E) 2765 return; 2766 2767 SmallVector<const MemRegion*, 10> Regions; 2768 const LocationContext *LC = C.getLocationContext(); 2769 MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager(); 2770 2771 for ( ; I != E; ++I) { 2772 const VarRegion *VR = I.getCapturedRegion(); 2773 if (VR->getSuperRegion() == R) { 2774 VR = MemMgr.getVarRegion(VR->getDecl(), LC); 2775 } 2776 Regions.push_back(VR); 2777 } 2778 2779 state = 2780 state->scanReachableSymbols<StopTrackingCallback>(Regions).getState(); 2781 C.addTransition(state); 2782 } 2783 2784 static bool isReleased(SymbolRef Sym, CheckerContext &C) { 2785 assert(Sym); 2786 const RefState *RS = C.getState()->get<RegionState>(Sym); 2787 return (RS && RS->isReleased()); 2788 } 2789 2790 bool MallocChecker::suppressDeallocationsInSuspiciousContexts( 2791 const CallEvent &Call, CheckerContext &C) const { 2792 if (Call.getNumArgs() == 0) 2793 return false; 2794 2795 StringRef FunctionStr = ""; 2796 if (const auto *FD = dyn_cast<FunctionDecl>(C.getStackFrame()->getDecl())) 2797 if (const Stmt *Body = FD->getBody()) 2798 if (Body->getBeginLoc().isValid()) 2799 FunctionStr = 2800 Lexer::getSourceText(CharSourceRange::getTokenRange( 2801 {FD->getBeginLoc(), Body->getBeginLoc()}), 2802 C.getSourceManager(), C.getLangOpts()); 2803 2804 // We do not model the Integer Set Library's retain-count based allocation. 2805 if (!FunctionStr.contains("__isl_")) 2806 return false; 2807 2808 ProgramStateRef State = C.getState(); 2809 2810 for (const Expr *Arg : cast<CallExpr>(Call.getOriginExpr())->arguments()) 2811 if (SymbolRef Sym = C.getSVal(Arg).getAsSymbol()) 2812 if (const RefState *RS = State->get<RegionState>(Sym)) 2813 State = State->set<RegionState>(Sym, RefState::getEscaped(RS)); 2814 2815 C.addTransition(State); 2816 return true; 2817 } 2818 2819 bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C, 2820 const Stmt *S) const { 2821 2822 if (isReleased(Sym, C)) { 2823 ReportUseAfterFree(C, S->getSourceRange(), Sym); 2824 return true; 2825 } 2826 2827 return false; 2828 } 2829 2830 void MallocChecker::checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 2831 const Stmt *S) const { 2832 assert(Sym); 2833 2834 if (const RefState *RS = C.getState()->get<RegionState>(Sym)) { 2835 if (RS->isAllocatedOfSizeZero()) 2836 ReportUseZeroAllocated(C, RS->getStmt()->getSourceRange(), Sym); 2837 } 2838 else if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) { 2839 ReportUseZeroAllocated(C, S->getSourceRange(), Sym); 2840 } 2841 } 2842 2843 bool MallocChecker::checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const { 2844 2845 if (isReleased(Sym, C)) { 2846 ReportDoubleDelete(C, Sym); 2847 return true; 2848 } 2849 return false; 2850 } 2851 2852 // Check if the location is a freed symbolic region. 2853 void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S, 2854 CheckerContext &C) const { 2855 SymbolRef Sym = l.getLocSymbolInBase(); 2856 if (Sym) { 2857 checkUseAfterFree(Sym, C, S); 2858 checkUseZeroAllocated(Sym, C, S); 2859 } 2860 } 2861 2862 // If a symbolic region is assumed to NULL (or another constant), stop tracking 2863 // it - assuming that allocation failed on this path. 2864 ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state, 2865 SVal Cond, 2866 bool Assumption) const { 2867 RegionStateTy RS = state->get<RegionState>(); 2868 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2869 // If the symbol is assumed to be NULL, remove it from consideration. 2870 ConstraintManager &CMgr = state->getConstraintManager(); 2871 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 2872 if (AllocFailed.isConstrainedTrue()) 2873 state = state->remove<RegionState>(I.getKey()); 2874 } 2875 2876 // Realloc returns 0 when reallocation fails, which means that we should 2877 // restore the state of the pointer being reallocated. 2878 ReallocPairsTy RP = state->get<ReallocPairs>(); 2879 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 2880 // If the symbol is assumed to be NULL, remove it from consideration. 2881 ConstraintManager &CMgr = state->getConstraintManager(); 2882 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 2883 if (!AllocFailed.isConstrainedTrue()) 2884 continue; 2885 2886 SymbolRef ReallocSym = I.getData().ReallocatedSym; 2887 if (const RefState *RS = state->get<RegionState>(ReallocSym)) { 2888 if (RS->isReleased()) { 2889 switch (I.getData().Kind) { 2890 case OAR_ToBeFreedAfterFailure: 2891 state = state->set<RegionState>(ReallocSym, 2892 RefState::getAllocated(RS->getAllocationFamily(), RS->getStmt())); 2893 break; 2894 case OAR_DoNotTrackAfterFailure: 2895 state = state->remove<RegionState>(ReallocSym); 2896 break; 2897 default: 2898 assert(I.getData().Kind == OAR_FreeOnFailure); 2899 } 2900 } 2901 } 2902 state = state->remove<ReallocPairs>(I.getKey()); 2903 } 2904 2905 return state; 2906 } 2907 2908 bool MallocChecker::mayFreeAnyEscapedMemoryOrIsModeledExplicitly( 2909 const CallEvent *Call, 2910 ProgramStateRef State, 2911 SymbolRef &EscapingSymbol) const { 2912 assert(Call); 2913 EscapingSymbol = nullptr; 2914 2915 // For now, assume that any C++ or block call can free memory. 2916 // TODO: If we want to be more optimistic here, we'll need to make sure that 2917 // regions escape to C++ containers. They seem to do that even now, but for 2918 // mysterious reasons. 2919 if (!(isa<SimpleFunctionCall>(Call) || isa<ObjCMethodCall>(Call))) 2920 return true; 2921 2922 // Check Objective-C messages by selector name. 2923 if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) { 2924 // If it's not a framework call, or if it takes a callback, assume it 2925 // can free memory. 2926 if (!Call->isInSystemHeader() || Call->argumentsMayEscape()) 2927 return true; 2928 2929 // If it's a method we know about, handle it explicitly post-call. 2930 // This should happen before the "freeWhenDone" check below. 2931 if (isKnownDeallocObjCMethodName(*Msg)) 2932 return false; 2933 2934 // If there's a "freeWhenDone" parameter, but the method isn't one we know 2935 // about, we can't be sure that the object will use free() to deallocate the 2936 // memory, so we can't model it explicitly. The best we can do is use it to 2937 // decide whether the pointer escapes. 2938 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(*Msg)) 2939 return *FreeWhenDone; 2940 2941 // If the first selector piece ends with "NoCopy", and there is no 2942 // "freeWhenDone" parameter set to zero, we know ownership is being 2943 // transferred. Again, though, we can't be sure that the object will use 2944 // free() to deallocate the memory, so we can't model it explicitly. 2945 StringRef FirstSlot = Msg->getSelector().getNameForSlot(0); 2946 if (FirstSlot.endswith("NoCopy")) 2947 return true; 2948 2949 // If the first selector starts with addPointer, insertPointer, 2950 // or replacePointer, assume we are dealing with NSPointerArray or similar. 2951 // This is similar to C++ containers (vector); we still might want to check 2952 // that the pointers get freed by following the container itself. 2953 if (FirstSlot.startswith("addPointer") || 2954 FirstSlot.startswith("insertPointer") || 2955 FirstSlot.startswith("replacePointer") || 2956 FirstSlot.equals("valueWithPointer")) { 2957 return true; 2958 } 2959 2960 // We should escape receiver on call to 'init'. This is especially relevant 2961 // to the receiver, as the corresponding symbol is usually not referenced 2962 // after the call. 2963 if (Msg->getMethodFamily() == OMF_init) { 2964 EscapingSymbol = Msg->getReceiverSVal().getAsSymbol(); 2965 return true; 2966 } 2967 2968 // Otherwise, assume that the method does not free memory. 2969 // Most framework methods do not free memory. 2970 return false; 2971 } 2972 2973 // At this point the only thing left to handle is straight function calls. 2974 const FunctionDecl *FD = cast<SimpleFunctionCall>(Call)->getDecl(); 2975 if (!FD) 2976 return true; 2977 2978 // If it's one of the allocation functions we can reason about, we model 2979 // its behavior explicitly. 2980 if (isMemCall(*Call)) 2981 return false; 2982 2983 // If it's not a system call, assume it frees memory. 2984 if (!Call->isInSystemHeader()) 2985 return true; 2986 2987 // White list the system functions whose arguments escape. 2988 const IdentifierInfo *II = FD->getIdentifier(); 2989 if (!II) 2990 return true; 2991 StringRef FName = II->getName(); 2992 2993 // White list the 'XXXNoCopy' CoreFoundation functions. 2994 // We specifically check these before 2995 if (FName.endswith("NoCopy")) { 2996 // Look for the deallocator argument. We know that the memory ownership 2997 // is not transferred only if the deallocator argument is 2998 // 'kCFAllocatorNull'. 2999 for (unsigned i = 1; i < Call->getNumArgs(); ++i) { 3000 const Expr *ArgE = Call->getArgExpr(i)->IgnoreParenCasts(); 3001 if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(ArgE)) { 3002 StringRef DeallocatorName = DE->getFoundDecl()->getName(); 3003 if (DeallocatorName == "kCFAllocatorNull") 3004 return false; 3005 } 3006 } 3007 return true; 3008 } 3009 3010 // Associating streams with malloced buffers. The pointer can escape if 3011 // 'closefn' is specified (and if that function does free memory), 3012 // but it will not if closefn is not specified. 3013 // Currently, we do not inspect the 'closefn' function (PR12101). 3014 if (FName == "funopen") 3015 if (Call->getNumArgs() >= 4 && Call->getArgSVal(4).isConstant(0)) 3016 return false; 3017 3018 // Do not warn on pointers passed to 'setbuf' when used with std streams, 3019 // these leaks might be intentional when setting the buffer for stdio. 3020 // http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer 3021 if (FName == "setbuf" || FName =="setbuffer" || 3022 FName == "setlinebuf" || FName == "setvbuf") { 3023 if (Call->getNumArgs() >= 1) { 3024 const Expr *ArgE = Call->getArgExpr(0)->IgnoreParenCasts(); 3025 if (const DeclRefExpr *ArgDRE = dyn_cast<DeclRefExpr>(ArgE)) 3026 if (const VarDecl *D = dyn_cast<VarDecl>(ArgDRE->getDecl())) 3027 if (D->getCanonicalDecl()->getName().find("std") != StringRef::npos) 3028 return true; 3029 } 3030 } 3031 3032 // A bunch of other functions which either take ownership of a pointer or 3033 // wrap the result up in a struct or object, meaning it can be freed later. 3034 // (See RetainCountChecker.) Not all the parameters here are invalidated, 3035 // but the Malloc checker cannot differentiate between them. The right way 3036 // of doing this would be to implement a pointer escapes callback. 3037 if (FName == "CGBitmapContextCreate" || 3038 FName == "CGBitmapContextCreateWithData" || 3039 FName == "CVPixelBufferCreateWithBytes" || 3040 FName == "CVPixelBufferCreateWithPlanarBytes" || 3041 FName == "OSAtomicEnqueue") { 3042 return true; 3043 } 3044 3045 if (FName == "postEvent" && 3046 FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") { 3047 return true; 3048 } 3049 3050 if (FName == "postEvent" && 3051 FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") { 3052 return true; 3053 } 3054 3055 if (FName == "connectImpl" && 3056 FD->getQualifiedNameAsString() == "QObject::connectImpl") { 3057 return true; 3058 } 3059 3060 // Handle cases where we know a buffer's /address/ can escape. 3061 // Note that the above checks handle some special cases where we know that 3062 // even though the address escapes, it's still our responsibility to free the 3063 // buffer. 3064 if (Call->argumentsMayEscape()) 3065 return true; 3066 3067 // Otherwise, assume that the function does not free memory. 3068 // Most system calls do not free the memory. 3069 return false; 3070 } 3071 3072 ProgramStateRef MallocChecker::checkPointerEscape(ProgramStateRef State, 3073 const InvalidatedSymbols &Escaped, 3074 const CallEvent *Call, 3075 PointerEscapeKind Kind) const { 3076 return checkPointerEscapeAux(State, Escaped, Call, Kind, 3077 /*IsConstPointerEscape*/ false); 3078 } 3079 3080 ProgramStateRef MallocChecker::checkConstPointerEscape(ProgramStateRef State, 3081 const InvalidatedSymbols &Escaped, 3082 const CallEvent *Call, 3083 PointerEscapeKind Kind) const { 3084 // If a const pointer escapes, it may not be freed(), but it could be deleted. 3085 return checkPointerEscapeAux(State, Escaped, Call, Kind, 3086 /*IsConstPointerEscape*/ true); 3087 } 3088 3089 static bool checkIfNewOrNewArrayFamily(const RefState *RS) { 3090 return (RS->getAllocationFamily() == AF_CXXNewArray || 3091 RS->getAllocationFamily() == AF_CXXNew); 3092 } 3093 3094 ProgramStateRef MallocChecker::checkPointerEscapeAux( 3095 ProgramStateRef State, const InvalidatedSymbols &Escaped, 3096 const CallEvent *Call, PointerEscapeKind Kind, 3097 bool IsConstPointerEscape) const { 3098 // If we know that the call does not free memory, or we want to process the 3099 // call later, keep tracking the top level arguments. 3100 SymbolRef EscapingSymbol = nullptr; 3101 if (Kind == PSK_DirectEscapeOnCall && 3102 !mayFreeAnyEscapedMemoryOrIsModeledExplicitly(Call, State, 3103 EscapingSymbol) && 3104 !EscapingSymbol) { 3105 return State; 3106 } 3107 3108 for (InvalidatedSymbols::const_iterator I = Escaped.begin(), 3109 E = Escaped.end(); 3110 I != E; ++I) { 3111 SymbolRef sym = *I; 3112 3113 if (EscapingSymbol && EscapingSymbol != sym) 3114 continue; 3115 3116 if (const RefState *RS = State->get<RegionState>(sym)) 3117 if (RS->isAllocated() || RS->isAllocatedOfSizeZero()) 3118 if (!IsConstPointerEscape || checkIfNewOrNewArrayFamily(RS)) 3119 State = State->set<RegionState>(sym, RefState::getEscaped(RS)); 3120 } 3121 return State; 3122 } 3123 3124 bool MallocChecker::isArgZERO_SIZE_PTR(ProgramStateRef State, CheckerContext &C, 3125 SVal ArgVal) const { 3126 if (!KernelZeroSizePtrValue) 3127 KernelZeroSizePtrValue = 3128 tryExpandAsInteger("ZERO_SIZE_PTR", C.getPreprocessor()); 3129 3130 const llvm::APSInt *ArgValKnown = 3131 C.getSValBuilder().getKnownValue(State, ArgVal); 3132 return ArgValKnown && *KernelZeroSizePtrValue && 3133 ArgValKnown->getSExtValue() == **KernelZeroSizePtrValue; 3134 } 3135 3136 static SymbolRef findFailedReallocSymbol(ProgramStateRef currState, 3137 ProgramStateRef prevState) { 3138 ReallocPairsTy currMap = currState->get<ReallocPairs>(); 3139 ReallocPairsTy prevMap = prevState->get<ReallocPairs>(); 3140 3141 for (const ReallocPairsTy::value_type &Pair : prevMap) { 3142 SymbolRef sym = Pair.first; 3143 if (!currMap.lookup(sym)) 3144 return sym; 3145 } 3146 3147 return nullptr; 3148 } 3149 3150 static bool isReferenceCountingPointerDestructor(const CXXDestructorDecl *DD) { 3151 if (const IdentifierInfo *II = DD->getParent()->getIdentifier()) { 3152 StringRef N = II->getName(); 3153 if (N.contains_lower("ptr") || N.contains_lower("pointer")) { 3154 if (N.contains_lower("ref") || N.contains_lower("cnt") || 3155 N.contains_lower("intrusive") || N.contains_lower("shared")) { 3156 return true; 3157 } 3158 } 3159 } 3160 return false; 3161 } 3162 3163 PathDiagnosticPieceRef MallocBugVisitor::VisitNode(const ExplodedNode *N, 3164 BugReporterContext &BRC, 3165 PathSensitiveBugReport &BR) { 3166 ProgramStateRef state = N->getState(); 3167 ProgramStateRef statePrev = N->getFirstPred()->getState(); 3168 3169 const RefState *RSCurr = state->get<RegionState>(Sym); 3170 const RefState *RSPrev = statePrev->get<RegionState>(Sym); 3171 3172 const Stmt *S = N->getStmtForDiagnostics(); 3173 // When dealing with containers, we sometimes want to give a note 3174 // even if the statement is missing. 3175 if (!S && (!RSCurr || RSCurr->getAllocationFamily() != AF_InnerBuffer)) 3176 return nullptr; 3177 3178 const LocationContext *CurrentLC = N->getLocationContext(); 3179 3180 // If we find an atomic fetch_add or fetch_sub within the destructor in which 3181 // the pointer was released (before the release), this is likely a destructor 3182 // of a shared pointer. 3183 // Because we don't model atomics, and also because we don't know that the 3184 // original reference count is positive, we should not report use-after-frees 3185 // on objects deleted in such destructors. This can probably be improved 3186 // through better shared pointer modeling. 3187 if (ReleaseDestructorLC) { 3188 if (const auto *AE = dyn_cast<AtomicExpr>(S)) { 3189 AtomicExpr::AtomicOp Op = AE->getOp(); 3190 if (Op == AtomicExpr::AO__c11_atomic_fetch_add || 3191 Op == AtomicExpr::AO__c11_atomic_fetch_sub) { 3192 if (ReleaseDestructorLC == CurrentLC || 3193 ReleaseDestructorLC->isParentOf(CurrentLC)) { 3194 BR.markInvalid(getTag(), S); 3195 } 3196 } 3197 } 3198 } 3199 3200 // FIXME: We will eventually need to handle non-statement-based events 3201 // (__attribute__((cleanup))). 3202 3203 // Find out if this is an interesting point and what is the kind. 3204 StringRef Msg; 3205 std::unique_ptr<StackHintGeneratorForSymbol> StackHint = nullptr; 3206 SmallString<256> Buf; 3207 llvm::raw_svector_ostream OS(Buf); 3208 3209 if (Mode == Normal) { 3210 if (isAllocated(RSCurr, RSPrev, S)) { 3211 Msg = "Memory is allocated"; 3212 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3213 Sym, "Returned allocated memory"); 3214 } else if (isReleased(RSCurr, RSPrev, S)) { 3215 const auto Family = RSCurr->getAllocationFamily(); 3216 switch (Family) { 3217 case AF_Alloca: 3218 case AF_Malloc: 3219 case AF_CXXNew: 3220 case AF_CXXNewArray: 3221 case AF_IfNameIndex: 3222 Msg = "Memory is released"; 3223 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3224 Sym, "Returning; memory was released"); 3225 break; 3226 case AF_InnerBuffer: { 3227 const MemRegion *ObjRegion = 3228 allocation_state::getContainerObjRegion(statePrev, Sym); 3229 const auto *TypedRegion = cast<TypedValueRegion>(ObjRegion); 3230 QualType ObjTy = TypedRegion->getValueType(); 3231 OS << "Inner buffer of '" << ObjTy.getAsString() << "' "; 3232 3233 if (N->getLocation().getKind() == ProgramPoint::PostImplicitCallKind) { 3234 OS << "deallocated by call to destructor"; 3235 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3236 Sym, "Returning; inner buffer was deallocated"); 3237 } else { 3238 OS << "reallocated by call to '"; 3239 const Stmt *S = RSCurr->getStmt(); 3240 if (const auto *MemCallE = dyn_cast<CXXMemberCallExpr>(S)) { 3241 OS << MemCallE->getMethodDecl()->getNameAsString(); 3242 } else if (const auto *OpCallE = dyn_cast<CXXOperatorCallExpr>(S)) { 3243 OS << OpCallE->getDirectCallee()->getNameAsString(); 3244 } else if (const auto *CallE = dyn_cast<CallExpr>(S)) { 3245 auto &CEMgr = BRC.getStateManager().getCallEventManager(); 3246 CallEventRef<> Call = CEMgr.getSimpleCall(CallE, state, CurrentLC); 3247 const auto *D = dyn_cast_or_null<NamedDecl>(Call->getDecl()); 3248 OS << (D ? D->getNameAsString() : "unknown"); 3249 } 3250 OS << "'"; 3251 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3252 Sym, "Returning; inner buffer was reallocated"); 3253 } 3254 Msg = OS.str(); 3255 break; 3256 } 3257 case AF_None: 3258 llvm_unreachable("Unhandled allocation family!"); 3259 } 3260 3261 // See if we're releasing memory while inlining a destructor 3262 // (or one of its callees). This turns on various common 3263 // false positive suppressions. 3264 bool FoundAnyDestructor = false; 3265 for (const LocationContext *LC = CurrentLC; LC; LC = LC->getParent()) { 3266 if (const auto *DD = dyn_cast<CXXDestructorDecl>(LC->getDecl())) { 3267 if (isReferenceCountingPointerDestructor(DD)) { 3268 // This immediately looks like a reference-counting destructor. 3269 // We're bad at guessing the original reference count of the object, 3270 // so suppress the report for now. 3271 BR.markInvalid(getTag(), DD); 3272 } else if (!FoundAnyDestructor) { 3273 assert(!ReleaseDestructorLC && 3274 "There can be only one release point!"); 3275 // Suspect that it's a reference counting pointer destructor. 3276 // On one of the next nodes might find out that it has atomic 3277 // reference counting operations within it (see the code above), 3278 // and if so, we'd conclude that it likely is a reference counting 3279 // pointer destructor. 3280 ReleaseDestructorLC = LC->getStackFrame(); 3281 // It is unlikely that releasing memory is delegated to a destructor 3282 // inside a destructor of a shared pointer, because it's fairly hard 3283 // to pass the information that the pointer indeed needs to be 3284 // released into it. So we're only interested in the innermost 3285 // destructor. 3286 FoundAnyDestructor = true; 3287 } 3288 } 3289 } 3290 } else if (isRelinquished(RSCurr, RSPrev, S)) { 3291 Msg = "Memory ownership is transferred"; 3292 StackHint = std::make_unique<StackHintGeneratorForSymbol>(Sym, ""); 3293 } else if (hasReallocFailed(RSCurr, RSPrev, S)) { 3294 Mode = ReallocationFailed; 3295 Msg = "Reallocation failed"; 3296 StackHint = std::make_unique<StackHintGeneratorForReallocationFailed>( 3297 Sym, "Reallocation failed"); 3298 3299 if (SymbolRef sym = findFailedReallocSymbol(state, statePrev)) { 3300 // Is it possible to fail two reallocs WITHOUT testing in between? 3301 assert((!FailedReallocSymbol || FailedReallocSymbol == sym) && 3302 "We only support one failed realloc at a time."); 3303 BR.markInteresting(sym); 3304 FailedReallocSymbol = sym; 3305 } 3306 } 3307 3308 // We are in a special mode if a reallocation failed later in the path. 3309 } else if (Mode == ReallocationFailed) { 3310 assert(FailedReallocSymbol && "No symbol to look for."); 3311 3312 // Is this is the first appearance of the reallocated symbol? 3313 if (!statePrev->get<RegionState>(FailedReallocSymbol)) { 3314 // We're at the reallocation point. 3315 Msg = "Attempt to reallocate memory"; 3316 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3317 Sym, "Returned reallocated memory"); 3318 FailedReallocSymbol = nullptr; 3319 Mode = Normal; 3320 } 3321 } 3322 3323 if (Msg.empty()) { 3324 assert(!StackHint); 3325 return nullptr; 3326 } 3327 3328 assert(StackHint); 3329 3330 // Generate the extra diagnostic. 3331 PathDiagnosticLocation Pos; 3332 if (!S) { 3333 assert(RSCurr->getAllocationFamily() == AF_InnerBuffer); 3334 auto PostImplCall = N->getLocation().getAs<PostImplicitCall>(); 3335 if (!PostImplCall) 3336 return nullptr; 3337 Pos = PathDiagnosticLocation(PostImplCall->getLocation(), 3338 BRC.getSourceManager()); 3339 } else { 3340 Pos = PathDiagnosticLocation(S, BRC.getSourceManager(), 3341 N->getLocationContext()); 3342 } 3343 3344 auto P = std::make_shared<PathDiagnosticEventPiece>(Pos, Msg, true); 3345 BR.addCallStackHint(P, std::move(StackHint)); 3346 return P; 3347 } 3348 3349 void MallocChecker::printState(raw_ostream &Out, ProgramStateRef State, 3350 const char *NL, const char *Sep) const { 3351 3352 RegionStateTy RS = State->get<RegionState>(); 3353 3354 if (!RS.isEmpty()) { 3355 Out << Sep << "MallocChecker :" << NL; 3356 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 3357 const RefState *RefS = State->get<RegionState>(I.getKey()); 3358 AllocationFamily Family = RefS->getAllocationFamily(); 3359 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 3360 if (!CheckKind.hasValue()) 3361 CheckKind = getCheckIfTracked(Family, true); 3362 3363 I.getKey()->dumpToStream(Out); 3364 Out << " : "; 3365 I.getData().dump(Out); 3366 if (CheckKind.hasValue()) 3367 Out << " (" << CheckNames[*CheckKind].getName() << ")"; 3368 Out << NL; 3369 } 3370 } 3371 } 3372 3373 namespace clang { 3374 namespace ento { 3375 namespace allocation_state { 3376 3377 ProgramStateRef 3378 markReleased(ProgramStateRef State, SymbolRef Sym, const Expr *Origin) { 3379 AllocationFamily Family = AF_InnerBuffer; 3380 return State->set<RegionState>(Sym, RefState::getReleased(Family, Origin)); 3381 } 3382 3383 } // end namespace allocation_state 3384 } // end namespace ento 3385 } // end namespace clang 3386 3387 // Intended to be used in InnerPointerChecker to register the part of 3388 // MallocChecker connected to it. 3389 void ento::registerInnerPointerCheckerAux(CheckerManager &mgr) { 3390 MallocChecker *checker = mgr.getChecker<MallocChecker>(); 3391 checker->ChecksEnabled[MallocChecker::CK_InnerPointerChecker] = true; 3392 checker->CheckNames[MallocChecker::CK_InnerPointerChecker] = 3393 mgr.getCurrentCheckerName(); 3394 } 3395 3396 void ento::registerDynamicMemoryModeling(CheckerManager &mgr) { 3397 auto *checker = mgr.registerChecker<MallocChecker>(); 3398 checker->ShouldIncludeOwnershipAnnotatedFunctions = 3399 mgr.getAnalyzerOptions().getCheckerBooleanOption(checker, "Optimistic"); 3400 } 3401 3402 bool ento::shouldRegisterDynamicMemoryModeling(const CheckerManager &mgr) { 3403 return true; 3404 } 3405 3406 #define REGISTER_CHECKER(name) \ 3407 void ento::register##name(CheckerManager &mgr) { \ 3408 MallocChecker *checker = mgr.getChecker<MallocChecker>(); \ 3409 checker->ChecksEnabled[MallocChecker::CK_##name] = true; \ 3410 checker->CheckNames[MallocChecker::CK_##name] = \ 3411 mgr.getCurrentCheckerName(); \ 3412 } \ 3413 \ 3414 bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; } 3415 3416 REGISTER_CHECKER(MallocChecker) 3417 REGISTER_CHECKER(NewDeleteChecker) 3418 REGISTER_CHECKER(NewDeleteLeaksChecker) 3419 REGISTER_CHECKER(MismatchedDeallocatorChecker) 3420