1 //=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines malloc/free checker, which checks for potential memory 10 // leaks, double free, and use-after-free problems. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" 15 #include "InterCheckerAPI.h" 16 #include "clang/AST/Attr.h" 17 #include "clang/AST/ParentMap.h" 18 #include "clang/Basic/SourceManager.h" 19 #include "clang/Basic/TargetInfo.h" 20 #include "clang/Lex/Lexer.h" 21 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 22 #include "clang/StaticAnalyzer/Core/BugReporter/CommonBugCategories.h" 23 #include "clang/StaticAnalyzer/Core/Checker.h" 24 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 25 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 26 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 27 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 28 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 29 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/StringExtras.h" 33 #include "AllocationState.h" 34 #include <climits> 35 #include <utility> 36 37 using namespace clang; 38 using namespace ento; 39 40 namespace { 41 42 // Used to check correspondence between allocators and deallocators. 43 enum AllocationFamily { 44 AF_None, 45 AF_Malloc, 46 AF_CXXNew, 47 AF_CXXNewArray, 48 AF_IfNameIndex, 49 AF_Alloca, 50 AF_InnerBuffer 51 }; 52 53 class RefState { 54 enum Kind { // Reference to allocated memory. 55 Allocated, 56 // Reference to zero-allocated memory. 57 AllocatedOfSizeZero, 58 // Reference to released/freed memory. 59 Released, 60 // The responsibility for freeing resources has transferred from 61 // this reference. A relinquished symbol should not be freed. 62 Relinquished, 63 // We are no longer guaranteed to have observed all manipulations 64 // of this pointer/memory. For example, it could have been 65 // passed as a parameter to an opaque function. 66 Escaped 67 }; 68 69 const Stmt *S; 70 unsigned K : 3; // Kind enum, but stored as a bitfield. 71 unsigned Family : 29; // Rest of 32-bit word, currently just an allocation 72 // family. 73 74 RefState(Kind k, const Stmt *s, unsigned family) 75 : S(s), K(k), Family(family) { 76 assert(family != AF_None); 77 } 78 public: 79 bool isAllocated() const { return K == Allocated; } 80 bool isAllocatedOfSizeZero() const { return K == AllocatedOfSizeZero; } 81 bool isReleased() const { return K == Released; } 82 bool isRelinquished() const { return K == Relinquished; } 83 bool isEscaped() const { return K == Escaped; } 84 AllocationFamily getAllocationFamily() const { 85 return (AllocationFamily)Family; 86 } 87 const Stmt *getStmt() const { return S; } 88 89 bool operator==(const RefState &X) const { 90 return K == X.K && S == X.S && Family == X.Family; 91 } 92 93 static RefState getAllocated(unsigned family, const Stmt *s) { 94 return RefState(Allocated, s, family); 95 } 96 static RefState getAllocatedOfSizeZero(const RefState *RS) { 97 return RefState(AllocatedOfSizeZero, RS->getStmt(), 98 RS->getAllocationFamily()); 99 } 100 static RefState getReleased(unsigned family, const Stmt *s) { 101 return RefState(Released, s, family); 102 } 103 static RefState getRelinquished(unsigned family, const Stmt *s) { 104 return RefState(Relinquished, s, family); 105 } 106 static RefState getEscaped(const RefState *RS) { 107 return RefState(Escaped, RS->getStmt(), RS->getAllocationFamily()); 108 } 109 110 void Profile(llvm::FoldingSetNodeID &ID) const { 111 ID.AddInteger(K); 112 ID.AddPointer(S); 113 ID.AddInteger(Family); 114 } 115 116 void dump(raw_ostream &OS) const { 117 switch (static_cast<Kind>(K)) { 118 #define CASE(ID) case ID: OS << #ID; break; 119 CASE(Allocated) 120 CASE(AllocatedOfSizeZero) 121 CASE(Released) 122 CASE(Relinquished) 123 CASE(Escaped) 124 } 125 } 126 127 LLVM_DUMP_METHOD void dump() const { dump(llvm::errs()); } 128 }; 129 130 enum ReallocPairKind { 131 RPToBeFreedAfterFailure, 132 // The symbol has been freed when reallocation failed. 133 RPIsFreeOnFailure, 134 // The symbol does not need to be freed after reallocation fails. 135 RPDoNotTrackAfterFailure 136 }; 137 138 /// \class ReallocPair 139 /// Stores information about the symbol being reallocated by a call to 140 /// 'realloc' to allow modeling failed reallocation later in the path. 141 struct ReallocPair { 142 // The symbol which realloc reallocated. 143 SymbolRef ReallocatedSym; 144 ReallocPairKind Kind; 145 146 ReallocPair(SymbolRef S, ReallocPairKind K) : 147 ReallocatedSym(S), Kind(K) {} 148 void Profile(llvm::FoldingSetNodeID &ID) const { 149 ID.AddInteger(Kind); 150 ID.AddPointer(ReallocatedSym); 151 } 152 bool operator==(const ReallocPair &X) const { 153 return ReallocatedSym == X.ReallocatedSym && 154 Kind == X.Kind; 155 } 156 }; 157 158 typedef std::pair<const ExplodedNode*, const MemRegion*> LeakInfo; 159 160 class MallocChecker : public Checker<check::DeadSymbols, 161 check::PointerEscape, 162 check::ConstPointerEscape, 163 check::PreStmt<ReturnStmt>, 164 check::EndFunction, 165 check::PreCall, 166 check::PostStmt<CallExpr>, 167 check::PostStmt<CXXNewExpr>, 168 check::NewAllocator, 169 check::PreStmt<CXXDeleteExpr>, 170 check::PostStmt<BlockExpr>, 171 check::PostObjCMessage, 172 check::Location, 173 eval::Assume> 174 { 175 public: 176 MallocChecker() 177 : II_alloca(nullptr), II_win_alloca(nullptr), II_malloc(nullptr), 178 II_free(nullptr), II_realloc(nullptr), II_calloc(nullptr), 179 II_valloc(nullptr), II_reallocf(nullptr), II_strndup(nullptr), 180 II_strdup(nullptr), II_win_strdup(nullptr), II_kmalloc(nullptr), 181 II_kfree(nullptr), II_if_nameindex(nullptr), 182 II_if_freenameindex(nullptr), II_wcsdup(nullptr), 183 II_win_wcsdup(nullptr), II_g_malloc(nullptr), II_g_malloc0(nullptr), 184 II_g_realloc(nullptr), II_g_try_malloc(nullptr), 185 II_g_try_malloc0(nullptr), II_g_try_realloc(nullptr), 186 II_g_free(nullptr), II_g_memdup(nullptr), II_g_malloc_n(nullptr), 187 II_g_malloc0_n(nullptr), II_g_realloc_n(nullptr), 188 II_g_try_malloc_n(nullptr), II_g_try_malloc0_n(nullptr), 189 II_g_try_realloc_n(nullptr) {} 190 191 /// In pessimistic mode, the checker assumes that it does not know which 192 /// functions might free the memory. 193 enum CheckKind { 194 CK_MallocChecker, 195 CK_NewDeleteChecker, 196 CK_NewDeleteLeaksChecker, 197 CK_MismatchedDeallocatorChecker, 198 CK_InnerPointerChecker, 199 CK_NumCheckKinds 200 }; 201 202 enum class MemoryOperationKind { 203 MOK_Allocate, 204 MOK_Free, 205 MOK_Any 206 }; 207 208 DefaultBool IsOptimistic; 209 210 DefaultBool ChecksEnabled[CK_NumCheckKinds]; 211 CheckName CheckNames[CK_NumCheckKinds]; 212 213 void checkPreCall(const CallEvent &Call, CheckerContext &C) const; 214 void checkPostStmt(const CallExpr *CE, CheckerContext &C) const; 215 void checkPostStmt(const CXXNewExpr *NE, CheckerContext &C) const; 216 void checkNewAllocator(const CXXNewExpr *NE, SVal Target, 217 CheckerContext &C) const; 218 void checkPreStmt(const CXXDeleteExpr *DE, CheckerContext &C) const; 219 void checkPostObjCMessage(const ObjCMethodCall &Call, CheckerContext &C) const; 220 void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const; 221 void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const; 222 void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const; 223 void checkEndFunction(const ReturnStmt *S, CheckerContext &C) const; 224 ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond, 225 bool Assumption) const; 226 void checkLocation(SVal l, bool isLoad, const Stmt *S, 227 CheckerContext &C) const; 228 229 ProgramStateRef checkPointerEscape(ProgramStateRef State, 230 const InvalidatedSymbols &Escaped, 231 const CallEvent *Call, 232 PointerEscapeKind Kind) const; 233 ProgramStateRef checkConstPointerEscape(ProgramStateRef State, 234 const InvalidatedSymbols &Escaped, 235 const CallEvent *Call, 236 PointerEscapeKind Kind) const; 237 238 void printState(raw_ostream &Out, ProgramStateRef State, 239 const char *NL, const char *Sep) const override; 240 241 private: 242 mutable std::unique_ptr<BugType> BT_DoubleFree[CK_NumCheckKinds]; 243 mutable std::unique_ptr<BugType> BT_DoubleDelete; 244 mutable std::unique_ptr<BugType> BT_Leak[CK_NumCheckKinds]; 245 mutable std::unique_ptr<BugType> BT_UseFree[CK_NumCheckKinds]; 246 mutable std::unique_ptr<BugType> BT_BadFree[CK_NumCheckKinds]; 247 mutable std::unique_ptr<BugType> BT_FreeAlloca[CK_NumCheckKinds]; 248 mutable std::unique_ptr<BugType> BT_MismatchedDealloc; 249 mutable std::unique_ptr<BugType> BT_OffsetFree[CK_NumCheckKinds]; 250 mutable std::unique_ptr<BugType> BT_UseZerroAllocated[CK_NumCheckKinds]; 251 mutable IdentifierInfo *II_alloca, *II_win_alloca, *II_malloc, *II_free, 252 *II_realloc, *II_calloc, *II_valloc, *II_reallocf, 253 *II_strndup, *II_strdup, *II_win_strdup, *II_kmalloc, 254 *II_kfree, *II_if_nameindex, *II_if_freenameindex, 255 *II_wcsdup, *II_win_wcsdup, *II_g_malloc, 256 *II_g_malloc0, *II_g_realloc, *II_g_try_malloc, 257 *II_g_try_malloc0, *II_g_try_realloc, *II_g_free, 258 *II_g_memdup, *II_g_malloc_n, *II_g_malloc0_n, 259 *II_g_realloc_n, *II_g_try_malloc_n, 260 *II_g_try_malloc0_n, *II_g_try_realloc_n; 261 mutable Optional<uint64_t> KernelZeroFlagVal; 262 263 void initIdentifierInfo(ASTContext &C) const; 264 265 /// Determine family of a deallocation expression. 266 AllocationFamily getAllocationFamily(CheckerContext &C, const Stmt *S) const; 267 268 /// Print names of allocators and deallocators. 269 /// 270 /// \returns true on success. 271 bool printAllocDeallocName(raw_ostream &os, CheckerContext &C, 272 const Expr *E) const; 273 274 /// Print expected name of an allocator based on the deallocator's 275 /// family derived from the DeallocExpr. 276 void printExpectedAllocName(raw_ostream &os, CheckerContext &C, 277 const Expr *DeallocExpr) const; 278 /// Print expected name of a deallocator based on the allocator's 279 /// family. 280 void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family) const; 281 282 ///@{ 283 /// Check if this is one of the functions which can allocate/reallocate memory 284 /// pointed to by one of its arguments. 285 bool isMemFunction(const FunctionDecl *FD, ASTContext &C) const; 286 bool isCMemFunction(const FunctionDecl *FD, 287 ASTContext &C, 288 AllocationFamily Family, 289 MemoryOperationKind MemKind) const; 290 bool isStandardNewDelete(const FunctionDecl *FD, ASTContext &C) const; 291 ///@} 292 293 /// Process C++ operator new()'s allocation, which is the part of C++ 294 /// new-expression that goes before the constructor. 295 void processNewAllocation(const CXXNewExpr *NE, CheckerContext &C, 296 SVal Target) const; 297 298 /// Perform a zero-allocation check. 299 /// The optional \p RetVal parameter specifies the newly allocated pointer 300 /// value; if unspecified, the value of expression \p E is used. 301 ProgramStateRef ProcessZeroAllocation(CheckerContext &C, const Expr *E, 302 const unsigned AllocationSizeArg, 303 ProgramStateRef State, 304 Optional<SVal> RetVal = None) const; 305 306 ProgramStateRef MallocMemReturnsAttr(CheckerContext &C, 307 const CallExpr *CE, 308 const OwnershipAttr* Att, 309 ProgramStateRef State) const; 310 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE, 311 const Expr *SizeEx, SVal Init, 312 ProgramStateRef State, 313 AllocationFamily Family = AF_Malloc); 314 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE, 315 SVal SizeEx, SVal Init, 316 ProgramStateRef State, 317 AllocationFamily Family = AF_Malloc); 318 319 static ProgramStateRef addExtentSize(CheckerContext &C, const CXXNewExpr *NE, 320 ProgramStateRef State, SVal Target); 321 322 // Check if this malloc() for special flags. At present that means M_ZERO or 323 // __GFP_ZERO (in which case, treat it like calloc). 324 llvm::Optional<ProgramStateRef> 325 performKernelMalloc(const CallExpr *CE, CheckerContext &C, 326 const ProgramStateRef &State) const; 327 328 /// Update the RefState to reflect the new memory allocation. 329 /// The optional \p RetVal parameter specifies the newly allocated pointer 330 /// value; if unspecified, the value of expression \p E is used. 331 static ProgramStateRef 332 MallocUpdateRefState(CheckerContext &C, const Expr *E, ProgramStateRef State, 333 AllocationFamily Family = AF_Malloc, 334 Optional<SVal> RetVal = None); 335 336 ProgramStateRef FreeMemAttr(CheckerContext &C, const CallExpr *CE, 337 const OwnershipAttr* Att, 338 ProgramStateRef State) const; 339 ProgramStateRef FreeMemAux(CheckerContext &C, const CallExpr *CE, 340 ProgramStateRef state, unsigned Num, 341 bool Hold, 342 bool &ReleasedAllocated, 343 bool ReturnsNullOnFailure = false) const; 344 ProgramStateRef FreeMemAux(CheckerContext &C, const Expr *Arg, 345 const Expr *ParentExpr, 346 ProgramStateRef State, 347 bool Hold, 348 bool &ReleasedAllocated, 349 bool ReturnsNullOnFailure = false) const; 350 351 ProgramStateRef ReallocMemAux(CheckerContext &C, const CallExpr *CE, 352 bool FreesMemOnFailure, 353 ProgramStateRef State, 354 bool SuffixWithN = false) const; 355 static SVal evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, 356 const Expr *BlockBytes); 357 static ProgramStateRef CallocMem(CheckerContext &C, const CallExpr *CE, 358 ProgramStateRef State); 359 360 /// Check if the memory associated with this symbol was released. 361 bool isReleased(SymbolRef Sym, CheckerContext &C) const; 362 363 /// See if deallocation happens in a suspicious context. If so, escape the 364 /// pointers that otherwise would have been deallocated and return true. 365 bool suppressDeallocationsInSuspiciousContexts(const CallExpr *CE, 366 CheckerContext &C) const; 367 368 bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S) const; 369 370 void checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 371 const Stmt *S) const; 372 373 bool checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const; 374 375 /// Check if the function is known free memory, or if it is 376 /// "interesting" and should be modeled explicitly. 377 /// 378 /// \param [out] EscapingSymbol A function might not free memory in general, 379 /// but could be known to free a particular symbol. In this case, false is 380 /// returned and the single escaping symbol is returned through the out 381 /// parameter. 382 /// 383 /// We assume that pointers do not escape through calls to system functions 384 /// not handled by this checker. 385 bool mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent *Call, 386 ProgramStateRef State, 387 SymbolRef &EscapingSymbol) const; 388 389 // Implementation of the checkPointerEscape callbacks. 390 ProgramStateRef checkPointerEscapeAux(ProgramStateRef State, 391 const InvalidatedSymbols &Escaped, 392 const CallEvent *Call, 393 PointerEscapeKind Kind, 394 bool(*CheckRefState)(const RefState*)) const; 395 396 // Implementation of the checkPreStmt and checkEndFunction callbacks. 397 void checkEscapeOnReturn(const ReturnStmt *S, CheckerContext &C) const; 398 399 ///@{ 400 /// Tells if a given family/call/symbol is tracked by the current checker. 401 /// Sets CheckKind to the kind of the checker responsible for this 402 /// family/call/symbol. 403 Optional<CheckKind> getCheckIfTracked(AllocationFamily Family, 404 bool IsALeakCheck = false) const; 405 Optional<CheckKind> getCheckIfTracked(CheckerContext &C, 406 const Stmt *AllocDeallocStmt, 407 bool IsALeakCheck = false) const; 408 Optional<CheckKind> getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 409 bool IsALeakCheck = false) const; 410 ///@} 411 static bool SummarizeValue(raw_ostream &os, SVal V); 412 static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR); 413 void ReportBadFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 414 const Expr *DeallocExpr) const; 415 void ReportFreeAlloca(CheckerContext &C, SVal ArgVal, 416 SourceRange Range) const; 417 void ReportMismatchedDealloc(CheckerContext &C, SourceRange Range, 418 const Expr *DeallocExpr, const RefState *RS, 419 SymbolRef Sym, bool OwnershipTransferred) const; 420 void ReportOffsetFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 421 const Expr *DeallocExpr, 422 const Expr *AllocExpr = nullptr) const; 423 void ReportUseAfterFree(CheckerContext &C, SourceRange Range, 424 SymbolRef Sym) const; 425 void ReportDoubleFree(CheckerContext &C, SourceRange Range, bool Released, 426 SymbolRef Sym, SymbolRef PrevSym) const; 427 428 void ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const; 429 430 void ReportUseZeroAllocated(CheckerContext &C, SourceRange Range, 431 SymbolRef Sym) const; 432 433 void ReportFunctionPointerFree(CheckerContext &C, SVal ArgVal, 434 SourceRange Range, const Expr *FreeExpr) const; 435 436 /// Find the location of the allocation for Sym on the path leading to the 437 /// exploded node N. 438 LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym, 439 CheckerContext &C) const; 440 441 void reportLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const; 442 443 /// The bug visitor which allows us to print extra diagnostics along the 444 /// BugReport path. For example, showing the allocation site of the leaked 445 /// region. 446 class MallocBugVisitor final : public BugReporterVisitor { 447 protected: 448 enum NotificationMode { 449 Normal, 450 ReallocationFailed 451 }; 452 453 // The allocated region symbol tracked by the main analysis. 454 SymbolRef Sym; 455 456 // The mode we are in, i.e. what kind of diagnostics will be emitted. 457 NotificationMode Mode; 458 459 // A symbol from when the primary region should have been reallocated. 460 SymbolRef FailedReallocSymbol; 461 462 // A C++ destructor stack frame in which memory was released. Used for 463 // miscellaneous false positive suppression. 464 const StackFrameContext *ReleaseDestructorLC; 465 466 bool IsLeak; 467 468 public: 469 MallocBugVisitor(SymbolRef S, bool isLeak = false) 470 : Sym(S), Mode(Normal), FailedReallocSymbol(nullptr), 471 ReleaseDestructorLC(nullptr), IsLeak(isLeak) {} 472 473 static void *getTag() { 474 static int Tag = 0; 475 return &Tag; 476 } 477 478 void Profile(llvm::FoldingSetNodeID &ID) const override { 479 ID.AddPointer(getTag()); 480 ID.AddPointer(Sym); 481 } 482 483 inline bool isAllocated(const RefState *S, const RefState *SPrev, 484 const Stmt *Stmt) { 485 // Did not track -> allocated. Other state (released) -> allocated. 486 return (Stmt && (isa<CallExpr>(Stmt) || isa<CXXNewExpr>(Stmt)) && 487 (S && (S->isAllocated() || S->isAllocatedOfSizeZero())) && 488 (!SPrev || !(SPrev->isAllocated() || 489 SPrev->isAllocatedOfSizeZero()))); 490 } 491 492 inline bool isReleased(const RefState *S, const RefState *SPrev, 493 const Stmt *Stmt) { 494 // Did not track -> released. Other state (allocated) -> released. 495 // The statement associated with the release might be missing. 496 bool IsReleased = (S && S->isReleased()) && 497 (!SPrev || !SPrev->isReleased()); 498 assert(!IsReleased || 499 (Stmt && (isa<CallExpr>(Stmt) || isa<CXXDeleteExpr>(Stmt))) || 500 (!Stmt && S->getAllocationFamily() == AF_InnerBuffer)); 501 return IsReleased; 502 } 503 504 inline bool isRelinquished(const RefState *S, const RefState *SPrev, 505 const Stmt *Stmt) { 506 // Did not track -> relinquished. Other state (allocated) -> relinquished. 507 return (Stmt && (isa<CallExpr>(Stmt) || isa<ObjCMessageExpr>(Stmt) || 508 isa<ObjCPropertyRefExpr>(Stmt)) && 509 (S && S->isRelinquished()) && 510 (!SPrev || !SPrev->isRelinquished())); 511 } 512 513 inline bool isReallocFailedCheck(const RefState *S, const RefState *SPrev, 514 const Stmt *Stmt) { 515 // If the expression is not a call, and the state change is 516 // released -> allocated, it must be the realloc return value 517 // check. If we have to handle more cases here, it might be cleaner just 518 // to track this extra bit in the state itself. 519 return ( 520 (!Stmt || !isa<CallExpr>(Stmt)) && 521 (S && (S->isAllocated() || S->isAllocatedOfSizeZero())) && 522 (SPrev && !(SPrev->isAllocated() || SPrev->isAllocatedOfSizeZero()))); 523 } 524 525 PathDiagnosticPieceRef VisitNode(const ExplodedNode *N, 526 BugReporterContext &BRC, 527 PathSensitiveBugReport &BR) override; 528 529 PathDiagnosticPieceRef getEndPath(BugReporterContext &BRC, 530 const ExplodedNode *EndPathNode, 531 PathSensitiveBugReport &BR) override { 532 if (!IsLeak) 533 return nullptr; 534 535 PathDiagnosticLocation L = 536 PathDiagnosticLocation::createEndOfPath(EndPathNode); 537 // Do not add the statement itself as a range in case of leak. 538 return std::make_shared<PathDiagnosticEventPiece>(L, BR.getDescription(), 539 false); 540 } 541 542 private: 543 class StackHintGeneratorForReallocationFailed 544 : public StackHintGeneratorForSymbol { 545 public: 546 StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M) 547 : StackHintGeneratorForSymbol(S, M) {} 548 549 std::string getMessageForArg(const Expr *ArgE, 550 unsigned ArgIndex) override { 551 // Printed parameters start at 1, not 0. 552 ++ArgIndex; 553 554 SmallString<200> buf; 555 llvm::raw_svector_ostream os(buf); 556 557 os << "Reallocation of " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex) 558 << " parameter failed"; 559 560 return os.str(); 561 } 562 563 std::string getMessageForReturn(const CallExpr *CallExpr) override { 564 return "Reallocation of returned value failed"; 565 } 566 }; 567 }; 568 }; 569 } // end anonymous namespace 570 571 REGISTER_MAP_WITH_PROGRAMSTATE(RegionState, SymbolRef, RefState) 572 REGISTER_MAP_WITH_PROGRAMSTATE(ReallocPairs, SymbolRef, ReallocPair) 573 REGISTER_SET_WITH_PROGRAMSTATE(ReallocSizeZeroSymbols, SymbolRef) 574 575 // A map from the freed symbol to the symbol representing the return value of 576 // the free function. 577 REGISTER_MAP_WITH_PROGRAMSTATE(FreeReturnValue, SymbolRef, SymbolRef) 578 579 namespace { 580 class StopTrackingCallback final : public SymbolVisitor { 581 ProgramStateRef state; 582 public: 583 StopTrackingCallback(ProgramStateRef st) : state(std::move(st)) {} 584 ProgramStateRef getState() const { return state; } 585 586 bool VisitSymbol(SymbolRef sym) override { 587 state = state->remove<RegionState>(sym); 588 return true; 589 } 590 }; 591 } // end anonymous namespace 592 593 void MallocChecker::initIdentifierInfo(ASTContext &Ctx) const { 594 if (II_malloc) 595 return; 596 II_alloca = &Ctx.Idents.get("alloca"); 597 II_malloc = &Ctx.Idents.get("malloc"); 598 II_free = &Ctx.Idents.get("free"); 599 II_realloc = &Ctx.Idents.get("realloc"); 600 II_reallocf = &Ctx.Idents.get("reallocf"); 601 II_calloc = &Ctx.Idents.get("calloc"); 602 II_valloc = &Ctx.Idents.get("valloc"); 603 II_strdup = &Ctx.Idents.get("strdup"); 604 II_strndup = &Ctx.Idents.get("strndup"); 605 II_wcsdup = &Ctx.Idents.get("wcsdup"); 606 II_kmalloc = &Ctx.Idents.get("kmalloc"); 607 II_kfree = &Ctx.Idents.get("kfree"); 608 II_if_nameindex = &Ctx.Idents.get("if_nameindex"); 609 II_if_freenameindex = &Ctx.Idents.get("if_freenameindex"); 610 611 //MSVC uses `_`-prefixed instead, so we check for them too. 612 II_win_strdup = &Ctx.Idents.get("_strdup"); 613 II_win_wcsdup = &Ctx.Idents.get("_wcsdup"); 614 II_win_alloca = &Ctx.Idents.get("_alloca"); 615 616 // Glib 617 II_g_malloc = &Ctx.Idents.get("g_malloc"); 618 II_g_malloc0 = &Ctx.Idents.get("g_malloc0"); 619 II_g_realloc = &Ctx.Idents.get("g_realloc"); 620 II_g_try_malloc = &Ctx.Idents.get("g_try_malloc"); 621 II_g_try_malloc0 = &Ctx.Idents.get("g_try_malloc0"); 622 II_g_try_realloc = &Ctx.Idents.get("g_try_realloc"); 623 II_g_free = &Ctx.Idents.get("g_free"); 624 II_g_memdup = &Ctx.Idents.get("g_memdup"); 625 II_g_malloc_n = &Ctx.Idents.get("g_malloc_n"); 626 II_g_malloc0_n = &Ctx.Idents.get("g_malloc0_n"); 627 II_g_realloc_n = &Ctx.Idents.get("g_realloc_n"); 628 II_g_try_malloc_n = &Ctx.Idents.get("g_try_malloc_n"); 629 II_g_try_malloc0_n = &Ctx.Idents.get("g_try_malloc0_n"); 630 II_g_try_realloc_n = &Ctx.Idents.get("g_try_realloc_n"); 631 } 632 633 bool MallocChecker::isMemFunction(const FunctionDecl *FD, ASTContext &C) const { 634 if (isCMemFunction(FD, C, AF_Malloc, MemoryOperationKind::MOK_Any)) 635 return true; 636 637 if (isCMemFunction(FD, C, AF_IfNameIndex, MemoryOperationKind::MOK_Any)) 638 return true; 639 640 if (isCMemFunction(FD, C, AF_Alloca, MemoryOperationKind::MOK_Any)) 641 return true; 642 643 if (isStandardNewDelete(FD, C)) 644 return true; 645 646 return false; 647 } 648 649 bool MallocChecker::isCMemFunction(const FunctionDecl *FD, 650 ASTContext &C, 651 AllocationFamily Family, 652 MemoryOperationKind MemKind) const { 653 if (!FD) 654 return false; 655 656 bool CheckFree = (MemKind == MemoryOperationKind::MOK_Any || 657 MemKind == MemoryOperationKind::MOK_Free); 658 bool CheckAlloc = (MemKind == MemoryOperationKind::MOK_Any || 659 MemKind == MemoryOperationKind::MOK_Allocate); 660 661 if (FD->getKind() == Decl::Function) { 662 const IdentifierInfo *FunI = FD->getIdentifier(); 663 initIdentifierInfo(C); 664 665 if (Family == AF_Malloc && CheckFree) { 666 if (FunI == II_free || FunI == II_realloc || FunI == II_reallocf || 667 FunI == II_g_free || FunI == II_kfree) 668 return true; 669 } 670 671 if (Family == AF_Malloc && CheckAlloc) { 672 if (FunI == II_malloc || FunI == II_realloc || FunI == II_reallocf || 673 FunI == II_calloc || FunI == II_valloc || FunI == II_strdup || 674 FunI == II_win_strdup || FunI == II_strndup || FunI == II_wcsdup || 675 FunI == II_win_wcsdup || FunI == II_kmalloc || 676 FunI == II_g_malloc || FunI == II_g_malloc0 || 677 FunI == II_g_realloc || FunI == II_g_try_malloc || 678 FunI == II_g_try_malloc0 || FunI == II_g_try_realloc || 679 FunI == II_g_memdup || FunI == II_g_malloc_n || 680 FunI == II_g_malloc0_n || FunI == II_g_realloc_n || 681 FunI == II_g_try_malloc_n || FunI == II_g_try_malloc0_n || 682 FunI == II_g_try_realloc_n) 683 return true; 684 } 685 686 if (Family == AF_IfNameIndex && CheckFree) { 687 if (FunI == II_if_freenameindex) 688 return true; 689 } 690 691 if (Family == AF_IfNameIndex && CheckAlloc) { 692 if (FunI == II_if_nameindex) 693 return true; 694 } 695 696 if (Family == AF_Alloca && CheckAlloc) { 697 if (FunI == II_alloca || FunI == II_win_alloca) 698 return true; 699 } 700 } 701 702 if (Family != AF_Malloc) 703 return false; 704 705 if (IsOptimistic && FD->hasAttrs()) { 706 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { 707 OwnershipAttr::OwnershipKind OwnKind = I->getOwnKind(); 708 if(OwnKind == OwnershipAttr::Takes || OwnKind == OwnershipAttr::Holds) { 709 if (CheckFree) 710 return true; 711 } else if (OwnKind == OwnershipAttr::Returns) { 712 if (CheckAlloc) 713 return true; 714 } 715 } 716 } 717 718 return false; 719 } 720 721 // Tells if the callee is one of the builtin new/delete operators, including 722 // placement operators and other standard overloads. 723 bool MallocChecker::isStandardNewDelete(const FunctionDecl *FD, 724 ASTContext &C) const { 725 if (!FD) 726 return false; 727 728 OverloadedOperatorKind Kind = FD->getOverloadedOperator(); 729 if (Kind != OO_New && Kind != OO_Array_New && 730 Kind != OO_Delete && Kind != OO_Array_Delete) 731 return false; 732 733 // This is standard if and only if it's not defined in a user file. 734 SourceLocation L = FD->getLocation(); 735 // If the header for operator delete is not included, it's still defined 736 // in an invalid source location. Check to make sure we don't crash. 737 return !L.isValid() || C.getSourceManager().isInSystemHeader(L); 738 } 739 740 llvm::Optional<ProgramStateRef> MallocChecker::performKernelMalloc( 741 const CallExpr *CE, CheckerContext &C, const ProgramStateRef &State) const { 742 // 3-argument malloc(), as commonly used in {Free,Net,Open}BSD Kernels: 743 // 744 // void *malloc(unsigned long size, struct malloc_type *mtp, int flags); 745 // 746 // One of the possible flags is M_ZERO, which means 'give me back an 747 // allocation which is already zeroed', like calloc. 748 749 // 2-argument kmalloc(), as used in the Linux kernel: 750 // 751 // void *kmalloc(size_t size, gfp_t flags); 752 // 753 // Has the similar flag value __GFP_ZERO. 754 755 // This logic is largely cloned from O_CREAT in UnixAPIChecker, maybe some 756 // code could be shared. 757 758 ASTContext &Ctx = C.getASTContext(); 759 llvm::Triple::OSType OS = Ctx.getTargetInfo().getTriple().getOS(); 760 761 if (!KernelZeroFlagVal.hasValue()) { 762 if (OS == llvm::Triple::FreeBSD) 763 KernelZeroFlagVal = 0x0100; 764 else if (OS == llvm::Triple::NetBSD) 765 KernelZeroFlagVal = 0x0002; 766 else if (OS == llvm::Triple::OpenBSD) 767 KernelZeroFlagVal = 0x0008; 768 else if (OS == llvm::Triple::Linux) 769 // __GFP_ZERO 770 KernelZeroFlagVal = 0x8000; 771 else 772 // FIXME: We need a more general way of getting the M_ZERO value. 773 // See also: O_CREAT in UnixAPIChecker.cpp. 774 775 // Fall back to normal malloc behavior on platforms where we don't 776 // know M_ZERO. 777 return None; 778 } 779 780 // We treat the last argument as the flags argument, and callers fall-back to 781 // normal malloc on a None return. This works for the FreeBSD kernel malloc 782 // as well as Linux kmalloc. 783 if (CE->getNumArgs() < 2) 784 return None; 785 786 const Expr *FlagsEx = CE->getArg(CE->getNumArgs() - 1); 787 const SVal V = C.getSVal(FlagsEx); 788 if (!V.getAs<NonLoc>()) { 789 // The case where 'V' can be a location can only be due to a bad header, 790 // so in this case bail out. 791 return None; 792 } 793 794 NonLoc Flags = V.castAs<NonLoc>(); 795 NonLoc ZeroFlag = C.getSValBuilder() 796 .makeIntVal(KernelZeroFlagVal.getValue(), FlagsEx->getType()) 797 .castAs<NonLoc>(); 798 SVal MaskedFlagsUC = C.getSValBuilder().evalBinOpNN(State, BO_And, 799 Flags, ZeroFlag, 800 FlagsEx->getType()); 801 if (MaskedFlagsUC.isUnknownOrUndef()) 802 return None; 803 DefinedSVal MaskedFlags = MaskedFlagsUC.castAs<DefinedSVal>(); 804 805 // Check if maskedFlags is non-zero. 806 ProgramStateRef TrueState, FalseState; 807 std::tie(TrueState, FalseState) = State->assume(MaskedFlags); 808 809 // If M_ZERO is set, treat this like calloc (initialized). 810 if (TrueState && !FalseState) { 811 SVal ZeroVal = C.getSValBuilder().makeZeroVal(Ctx.CharTy); 812 return MallocMemAux(C, CE, CE->getArg(0), ZeroVal, TrueState); 813 } 814 815 return None; 816 } 817 818 SVal MallocChecker::evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, 819 const Expr *BlockBytes) { 820 SValBuilder &SB = C.getSValBuilder(); 821 SVal BlocksVal = C.getSVal(Blocks); 822 SVal BlockBytesVal = C.getSVal(BlockBytes); 823 ProgramStateRef State = C.getState(); 824 SVal TotalSize = SB.evalBinOp(State, BO_Mul, BlocksVal, BlockBytesVal, 825 SB.getContext().getSizeType()); 826 return TotalSize; 827 } 828 829 void MallocChecker::checkPostStmt(const CallExpr *CE, CheckerContext &C) const { 830 if (C.wasInlined) 831 return; 832 833 const FunctionDecl *FD = C.getCalleeDecl(CE); 834 if (!FD) 835 return; 836 837 ProgramStateRef State = C.getState(); 838 bool ReleasedAllocatedMemory = false; 839 840 if (FD->getKind() == Decl::Function) { 841 initIdentifierInfo(C.getASTContext()); 842 IdentifierInfo *FunI = FD->getIdentifier(); 843 844 if (FunI == II_malloc || FunI == II_g_malloc || FunI == II_g_try_malloc) { 845 if (CE->getNumArgs() < 1) 846 return; 847 if (CE->getNumArgs() < 3) { 848 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 849 if (CE->getNumArgs() == 1) 850 State = ProcessZeroAllocation(C, CE, 0, State); 851 } else if (CE->getNumArgs() == 3) { 852 llvm::Optional<ProgramStateRef> MaybeState = 853 performKernelMalloc(CE, C, State); 854 if (MaybeState.hasValue()) 855 State = MaybeState.getValue(); 856 else 857 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 858 } 859 } else if (FunI == II_kmalloc) { 860 if (CE->getNumArgs() < 1) 861 return; 862 llvm::Optional<ProgramStateRef> MaybeState = 863 performKernelMalloc(CE, C, State); 864 if (MaybeState.hasValue()) 865 State = MaybeState.getValue(); 866 else 867 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 868 } else if (FunI == II_valloc) { 869 if (CE->getNumArgs() < 1) 870 return; 871 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 872 State = ProcessZeroAllocation(C, CE, 0, State); 873 } else if (FunI == II_realloc || FunI == II_g_realloc || 874 FunI == II_g_try_realloc) { 875 State = ReallocMemAux(C, CE, false, State); 876 State = ProcessZeroAllocation(C, CE, 1, State); 877 } else if (FunI == II_reallocf) { 878 State = ReallocMemAux(C, CE, true, State); 879 State = ProcessZeroAllocation(C, CE, 1, State); 880 } else if (FunI == II_calloc) { 881 State = CallocMem(C, CE, State); 882 State = ProcessZeroAllocation(C, CE, 0, State); 883 State = ProcessZeroAllocation(C, CE, 1, State); 884 } else if (FunI == II_free || FunI == II_g_free || FunI == II_kfree) { 885 if (suppressDeallocationsInSuspiciousContexts(CE, C)) 886 return; 887 888 State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory); 889 } else if (FunI == II_strdup || FunI == II_win_strdup || 890 FunI == II_wcsdup || FunI == II_win_wcsdup) { 891 State = MallocUpdateRefState(C, CE, State); 892 } else if (FunI == II_strndup) { 893 State = MallocUpdateRefState(C, CE, State); 894 } else if (FunI == II_alloca || FunI == II_win_alloca) { 895 if (CE->getNumArgs() < 1) 896 return; 897 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, 898 AF_Alloca); 899 State = ProcessZeroAllocation(C, CE, 0, State); 900 } else if (isStandardNewDelete(FD, C.getASTContext())) { 901 // Process direct calls to operator new/new[]/delete/delete[] functions 902 // as distinct from new/new[]/delete/delete[] expressions that are 903 // processed by the checkPostStmt callbacks for CXXNewExpr and 904 // CXXDeleteExpr. 905 OverloadedOperatorKind K = FD->getOverloadedOperator(); 906 if (K == OO_New) { 907 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, 908 AF_CXXNew); 909 State = ProcessZeroAllocation(C, CE, 0, State); 910 } 911 else if (K == OO_Array_New) { 912 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, 913 AF_CXXNewArray); 914 State = ProcessZeroAllocation(C, CE, 0, State); 915 } 916 else if (K == OO_Delete || K == OO_Array_Delete) 917 State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory); 918 else 919 llvm_unreachable("not a new/delete operator"); 920 } else if (FunI == II_if_nameindex) { 921 // Should we model this differently? We can allocate a fixed number of 922 // elements with zeros in the last one. 923 State = MallocMemAux(C, CE, UnknownVal(), UnknownVal(), State, 924 AF_IfNameIndex); 925 } else if (FunI == II_if_freenameindex) { 926 State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory); 927 } else if (FunI == II_g_malloc0 || FunI == II_g_try_malloc0) { 928 if (CE->getNumArgs() < 1) 929 return; 930 SValBuilder &svalBuilder = C.getSValBuilder(); 931 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 932 State = MallocMemAux(C, CE, CE->getArg(0), zeroVal, State); 933 State = ProcessZeroAllocation(C, CE, 0, State); 934 } else if (FunI == II_g_memdup) { 935 if (CE->getNumArgs() < 2) 936 return; 937 State = MallocMemAux(C, CE, CE->getArg(1), UndefinedVal(), State); 938 State = ProcessZeroAllocation(C, CE, 1, State); 939 } else if (FunI == II_g_malloc_n || FunI == II_g_try_malloc_n || 940 FunI == II_g_malloc0_n || FunI == II_g_try_malloc0_n) { 941 if (CE->getNumArgs() < 2) 942 return; 943 SVal Init = UndefinedVal(); 944 if (FunI == II_g_malloc0_n || FunI == II_g_try_malloc0_n) { 945 SValBuilder &SB = C.getSValBuilder(); 946 Init = SB.makeZeroVal(SB.getContext().CharTy); 947 } 948 SVal TotalSize = evalMulForBufferSize(C, CE->getArg(0), CE->getArg(1)); 949 State = MallocMemAux(C, CE, TotalSize, Init, State); 950 State = ProcessZeroAllocation(C, CE, 0, State); 951 State = ProcessZeroAllocation(C, CE, 1, State); 952 } else if (FunI == II_g_realloc_n || FunI == II_g_try_realloc_n) { 953 if (CE->getNumArgs() < 3) 954 return; 955 State = ReallocMemAux(C, CE, false, State, true); 956 State = ProcessZeroAllocation(C, CE, 1, State); 957 State = ProcessZeroAllocation(C, CE, 2, State); 958 } 959 } 960 961 if (IsOptimistic || ChecksEnabled[CK_MismatchedDeallocatorChecker]) { 962 // Check all the attributes, if there are any. 963 // There can be multiple of these attributes. 964 if (FD->hasAttrs()) 965 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { 966 switch (I->getOwnKind()) { 967 case OwnershipAttr::Returns: 968 State = MallocMemReturnsAttr(C, CE, I, State); 969 break; 970 case OwnershipAttr::Takes: 971 case OwnershipAttr::Holds: 972 State = FreeMemAttr(C, CE, I, State); 973 break; 974 } 975 } 976 } 977 C.addTransition(State); 978 } 979 980 // Performs a 0-sized allocations check. 981 ProgramStateRef MallocChecker::ProcessZeroAllocation( 982 CheckerContext &C, const Expr *E, const unsigned AllocationSizeArg, 983 ProgramStateRef State, Optional<SVal> RetVal) const { 984 if (!State) 985 return nullptr; 986 987 if (!RetVal) 988 RetVal = C.getSVal(E); 989 990 const Expr *Arg = nullptr; 991 992 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 993 Arg = CE->getArg(AllocationSizeArg); 994 } 995 else if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { 996 if (NE->isArray()) 997 Arg = *NE->getArraySize(); 998 else 999 return State; 1000 } 1001 else 1002 llvm_unreachable("not a CallExpr or CXXNewExpr"); 1003 1004 assert(Arg); 1005 1006 Optional<DefinedSVal> DefArgVal = C.getSVal(Arg).getAs<DefinedSVal>(); 1007 1008 if (!DefArgVal) 1009 return State; 1010 1011 // Check if the allocation size is 0. 1012 ProgramStateRef TrueState, FalseState; 1013 SValBuilder &SvalBuilder = C.getSValBuilder(); 1014 DefinedSVal Zero = 1015 SvalBuilder.makeZeroVal(Arg->getType()).castAs<DefinedSVal>(); 1016 1017 std::tie(TrueState, FalseState) = 1018 State->assume(SvalBuilder.evalEQ(State, *DefArgVal, Zero)); 1019 1020 if (TrueState && !FalseState) { 1021 SymbolRef Sym = RetVal->getAsLocSymbol(); 1022 if (!Sym) 1023 return State; 1024 1025 const RefState *RS = State->get<RegionState>(Sym); 1026 if (RS) { 1027 if (RS->isAllocated()) 1028 return TrueState->set<RegionState>(Sym, 1029 RefState::getAllocatedOfSizeZero(RS)); 1030 else 1031 return State; 1032 } else { 1033 // Case of zero-size realloc. Historically 'realloc(ptr, 0)' is treated as 1034 // 'free(ptr)' and the returned value from 'realloc(ptr, 0)' is not 1035 // tracked. Add zero-reallocated Sym to the state to catch references 1036 // to zero-allocated memory. 1037 return TrueState->add<ReallocSizeZeroSymbols>(Sym); 1038 } 1039 } 1040 1041 // Assume the value is non-zero going forward. 1042 assert(FalseState); 1043 return FalseState; 1044 } 1045 1046 static QualType getDeepPointeeType(QualType T) { 1047 QualType Result = T, PointeeType = T->getPointeeType(); 1048 while (!PointeeType.isNull()) { 1049 Result = PointeeType; 1050 PointeeType = PointeeType->getPointeeType(); 1051 } 1052 return Result; 1053 } 1054 1055 static bool treatUnusedNewEscaped(const CXXNewExpr *NE) { 1056 1057 const CXXConstructExpr *ConstructE = NE->getConstructExpr(); 1058 if (!ConstructE) 1059 return false; 1060 1061 if (!NE->getAllocatedType()->getAsCXXRecordDecl()) 1062 return false; 1063 1064 const CXXConstructorDecl *CtorD = ConstructE->getConstructor(); 1065 1066 // Iterate over the constructor parameters. 1067 for (const auto *CtorParam : CtorD->parameters()) { 1068 1069 QualType CtorParamPointeeT = CtorParam->getType()->getPointeeType(); 1070 if (CtorParamPointeeT.isNull()) 1071 continue; 1072 1073 CtorParamPointeeT = getDeepPointeeType(CtorParamPointeeT); 1074 1075 if (CtorParamPointeeT->getAsCXXRecordDecl()) 1076 return true; 1077 } 1078 1079 return false; 1080 } 1081 1082 void MallocChecker::processNewAllocation(const CXXNewExpr *NE, 1083 CheckerContext &C, 1084 SVal Target) const { 1085 if (!isStandardNewDelete(NE->getOperatorNew(), C.getASTContext())) 1086 return; 1087 1088 const ParentMap &PM = C.getLocationContext()->getParentMap(); 1089 if (!PM.isConsumedExpr(NE) && treatUnusedNewEscaped(NE)) 1090 return; 1091 1092 ProgramStateRef State = C.getState(); 1093 // The return value from operator new is bound to a specified initialization 1094 // value (if any) and we don't want to loose this value. So we call 1095 // MallocUpdateRefState() instead of MallocMemAux() which breaks the 1096 // existing binding. 1097 State = MallocUpdateRefState(C, NE, State, NE->isArray() ? AF_CXXNewArray 1098 : AF_CXXNew, Target); 1099 State = addExtentSize(C, NE, State, Target); 1100 State = ProcessZeroAllocation(C, NE, 0, State, Target); 1101 C.addTransition(State); 1102 } 1103 1104 void MallocChecker::checkPostStmt(const CXXNewExpr *NE, 1105 CheckerContext &C) const { 1106 if (!C.getAnalysisManager().getAnalyzerOptions().MayInlineCXXAllocator) 1107 processNewAllocation(NE, C, C.getSVal(NE)); 1108 } 1109 1110 void MallocChecker::checkNewAllocator(const CXXNewExpr *NE, SVal Target, 1111 CheckerContext &C) const { 1112 if (!C.wasInlined) 1113 processNewAllocation(NE, C, Target); 1114 } 1115 1116 // Sets the extent value of the MemRegion allocated by 1117 // new expression NE to its size in Bytes. 1118 // 1119 ProgramStateRef MallocChecker::addExtentSize(CheckerContext &C, 1120 const CXXNewExpr *NE, 1121 ProgramStateRef State, 1122 SVal Target) { 1123 if (!State) 1124 return nullptr; 1125 SValBuilder &svalBuilder = C.getSValBuilder(); 1126 SVal ElementCount; 1127 const SubRegion *Region; 1128 if (NE->isArray()) { 1129 const Expr *SizeExpr = *NE->getArraySize(); 1130 ElementCount = C.getSVal(SizeExpr); 1131 // Store the extent size for the (symbolic)region 1132 // containing the elements. 1133 Region = Target.getAsRegion() 1134 ->castAs<SubRegion>() 1135 ->StripCasts() 1136 ->castAs<SubRegion>(); 1137 } else { 1138 ElementCount = svalBuilder.makeIntVal(1, true); 1139 Region = Target.getAsRegion()->castAs<SubRegion>(); 1140 } 1141 1142 // Set the region's extent equal to the Size in Bytes. 1143 QualType ElementType = NE->getAllocatedType(); 1144 ASTContext &AstContext = C.getASTContext(); 1145 CharUnits TypeSize = AstContext.getTypeSizeInChars(ElementType); 1146 1147 if (ElementCount.getAs<NonLoc>()) { 1148 DefinedOrUnknownSVal Extent = Region->getExtent(svalBuilder); 1149 // size in Bytes = ElementCount*TypeSize 1150 SVal SizeInBytes = svalBuilder.evalBinOpNN( 1151 State, BO_Mul, ElementCount.castAs<NonLoc>(), 1152 svalBuilder.makeArrayIndex(TypeSize.getQuantity()), 1153 svalBuilder.getArrayIndexType()); 1154 DefinedOrUnknownSVal extentMatchesSize = svalBuilder.evalEQ( 1155 State, Extent, SizeInBytes.castAs<DefinedOrUnknownSVal>()); 1156 State = State->assume(extentMatchesSize, true); 1157 } 1158 return State; 1159 } 1160 1161 void MallocChecker::checkPreStmt(const CXXDeleteExpr *DE, 1162 CheckerContext &C) const { 1163 1164 if (!ChecksEnabled[CK_NewDeleteChecker]) 1165 if (SymbolRef Sym = C.getSVal(DE->getArgument()).getAsSymbol()) 1166 checkUseAfterFree(Sym, C, DE->getArgument()); 1167 1168 if (!isStandardNewDelete(DE->getOperatorDelete(), C.getASTContext())) 1169 return; 1170 1171 ProgramStateRef State = C.getState(); 1172 bool ReleasedAllocated; 1173 State = FreeMemAux(C, DE->getArgument(), DE, State, 1174 /*Hold*/false, ReleasedAllocated); 1175 1176 C.addTransition(State); 1177 } 1178 1179 static bool isKnownDeallocObjCMethodName(const ObjCMethodCall &Call) { 1180 // If the first selector piece is one of the names below, assume that the 1181 // object takes ownership of the memory, promising to eventually deallocate it 1182 // with free(). 1183 // Ex: [NSData dataWithBytesNoCopy:bytes length:10]; 1184 // (...unless a 'freeWhenDone' parameter is false, but that's checked later.) 1185 StringRef FirstSlot = Call.getSelector().getNameForSlot(0); 1186 return FirstSlot == "dataWithBytesNoCopy" || 1187 FirstSlot == "initWithBytesNoCopy" || 1188 FirstSlot == "initWithCharactersNoCopy"; 1189 } 1190 1191 static Optional<bool> getFreeWhenDoneArg(const ObjCMethodCall &Call) { 1192 Selector S = Call.getSelector(); 1193 1194 // FIXME: We should not rely on fully-constrained symbols being folded. 1195 for (unsigned i = 1; i < S.getNumArgs(); ++i) 1196 if (S.getNameForSlot(i).equals("freeWhenDone")) 1197 return !Call.getArgSVal(i).isZeroConstant(); 1198 1199 return None; 1200 } 1201 1202 void MallocChecker::checkPostObjCMessage(const ObjCMethodCall &Call, 1203 CheckerContext &C) const { 1204 if (C.wasInlined) 1205 return; 1206 1207 if (!isKnownDeallocObjCMethodName(Call)) 1208 return; 1209 1210 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call)) 1211 if (!*FreeWhenDone) 1212 return; 1213 1214 bool ReleasedAllocatedMemory; 1215 ProgramStateRef State = FreeMemAux(C, Call.getArgExpr(0), 1216 Call.getOriginExpr(), C.getState(), 1217 /*Hold=*/true, ReleasedAllocatedMemory, 1218 /*ReturnsNullOnFailure=*/true); 1219 1220 C.addTransition(State); 1221 } 1222 1223 ProgramStateRef 1224 MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallExpr *CE, 1225 const OwnershipAttr *Att, 1226 ProgramStateRef State) const { 1227 if (!State) 1228 return nullptr; 1229 1230 if (Att->getModule() != II_malloc) 1231 return nullptr; 1232 1233 OwnershipAttr::args_iterator I = Att->args_begin(), E = Att->args_end(); 1234 if (I != E) { 1235 return MallocMemAux(C, CE, CE->getArg(I->getASTIndex()), UndefinedVal(), 1236 State); 1237 } 1238 return MallocMemAux(C, CE, UnknownVal(), UndefinedVal(), State); 1239 } 1240 1241 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1242 const CallExpr *CE, 1243 const Expr *SizeEx, SVal Init, 1244 ProgramStateRef State, 1245 AllocationFamily Family) { 1246 if (!State) 1247 return nullptr; 1248 1249 return MallocMemAux(C, CE, C.getSVal(SizeEx), Init, State, Family); 1250 } 1251 1252 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1253 const CallExpr *CE, 1254 SVal Size, SVal Init, 1255 ProgramStateRef State, 1256 AllocationFamily Family) { 1257 if (!State) 1258 return nullptr; 1259 1260 // We expect the malloc functions to return a pointer. 1261 if (!Loc::isLocType(CE->getType())) 1262 return nullptr; 1263 1264 // Bind the return value to the symbolic value from the heap region. 1265 // TODO: We could rewrite post visit to eval call; 'malloc' does not have 1266 // side effects other than what we model here. 1267 unsigned Count = C.blockCount(); 1268 SValBuilder &svalBuilder = C.getSValBuilder(); 1269 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 1270 DefinedSVal RetVal = svalBuilder.getConjuredHeapSymbolVal(CE, LCtx, Count) 1271 .castAs<DefinedSVal>(); 1272 State = State->BindExpr(CE, C.getLocationContext(), RetVal); 1273 1274 // Fill the region with the initialization value. 1275 State = State->bindDefaultInitial(RetVal, Init, LCtx); 1276 1277 // Set the region's extent equal to the Size parameter. 1278 const SymbolicRegion *R = 1279 dyn_cast_or_null<SymbolicRegion>(RetVal.getAsRegion()); 1280 if (!R) 1281 return nullptr; 1282 if (Optional<DefinedOrUnknownSVal> DefinedSize = 1283 Size.getAs<DefinedOrUnknownSVal>()) { 1284 SValBuilder &svalBuilder = C.getSValBuilder(); 1285 DefinedOrUnknownSVal Extent = R->getExtent(svalBuilder); 1286 DefinedOrUnknownSVal extentMatchesSize = 1287 svalBuilder.evalEQ(State, Extent, *DefinedSize); 1288 1289 State = State->assume(extentMatchesSize, true); 1290 assert(State); 1291 } 1292 1293 return MallocUpdateRefState(C, CE, State, Family); 1294 } 1295 1296 ProgramStateRef MallocChecker::MallocUpdateRefState(CheckerContext &C, 1297 const Expr *E, 1298 ProgramStateRef State, 1299 AllocationFamily Family, 1300 Optional<SVal> RetVal) { 1301 if (!State) 1302 return nullptr; 1303 1304 // Get the return value. 1305 if (!RetVal) 1306 RetVal = C.getSVal(E); 1307 1308 // We expect the malloc functions to return a pointer. 1309 if (!RetVal->getAs<Loc>()) 1310 return nullptr; 1311 1312 SymbolRef Sym = RetVal->getAsLocSymbol(); 1313 // This is a return value of a function that was not inlined, such as malloc() 1314 // or new(). We've checked that in the caller. Therefore, it must be a symbol. 1315 assert(Sym); 1316 1317 // Set the symbol's state to Allocated. 1318 return State->set<RegionState>(Sym, RefState::getAllocated(Family, E)); 1319 } 1320 1321 ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C, 1322 const CallExpr *CE, 1323 const OwnershipAttr *Att, 1324 ProgramStateRef State) const { 1325 if (!State) 1326 return nullptr; 1327 1328 if (Att->getModule() != II_malloc) 1329 return nullptr; 1330 1331 bool ReleasedAllocated = false; 1332 1333 for (const auto &Arg : Att->args()) { 1334 ProgramStateRef StateI = FreeMemAux( 1335 C, CE, State, Arg.getASTIndex(), 1336 Att->getOwnKind() == OwnershipAttr::Holds, ReleasedAllocated); 1337 if (StateI) 1338 State = StateI; 1339 } 1340 return State; 1341 } 1342 1343 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, 1344 const CallExpr *CE, 1345 ProgramStateRef State, 1346 unsigned Num, 1347 bool Hold, 1348 bool &ReleasedAllocated, 1349 bool ReturnsNullOnFailure) const { 1350 if (!State) 1351 return nullptr; 1352 1353 if (CE->getNumArgs() < (Num + 1)) 1354 return nullptr; 1355 1356 return FreeMemAux(C, CE->getArg(Num), CE, State, Hold, 1357 ReleasedAllocated, ReturnsNullOnFailure); 1358 } 1359 1360 /// Checks if the previous call to free on the given symbol failed - if free 1361 /// failed, returns true. Also, returns the corresponding return value symbol. 1362 static bool didPreviousFreeFail(ProgramStateRef State, 1363 SymbolRef Sym, SymbolRef &RetStatusSymbol) { 1364 const SymbolRef *Ret = State->get<FreeReturnValue>(Sym); 1365 if (Ret) { 1366 assert(*Ret && "We should not store the null return symbol"); 1367 ConstraintManager &CMgr = State->getConstraintManager(); 1368 ConditionTruthVal FreeFailed = CMgr.isNull(State, *Ret); 1369 RetStatusSymbol = *Ret; 1370 return FreeFailed.isConstrainedTrue(); 1371 } 1372 return false; 1373 } 1374 1375 AllocationFamily MallocChecker::getAllocationFamily(CheckerContext &C, 1376 const Stmt *S) const { 1377 if (!S) 1378 return AF_None; 1379 1380 if (const CallExpr *CE = dyn_cast<CallExpr>(S)) { 1381 const FunctionDecl *FD = C.getCalleeDecl(CE); 1382 1383 if (!FD) 1384 FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); 1385 1386 ASTContext &Ctx = C.getASTContext(); 1387 1388 if (isCMemFunction(FD, Ctx, AF_Malloc, MemoryOperationKind::MOK_Any)) 1389 return AF_Malloc; 1390 1391 if (isStandardNewDelete(FD, Ctx)) { 1392 OverloadedOperatorKind Kind = FD->getOverloadedOperator(); 1393 if (Kind == OO_New || Kind == OO_Delete) 1394 return AF_CXXNew; 1395 else if (Kind == OO_Array_New || Kind == OO_Array_Delete) 1396 return AF_CXXNewArray; 1397 } 1398 1399 if (isCMemFunction(FD, Ctx, AF_IfNameIndex, MemoryOperationKind::MOK_Any)) 1400 return AF_IfNameIndex; 1401 1402 if (isCMemFunction(FD, Ctx, AF_Alloca, MemoryOperationKind::MOK_Any)) 1403 return AF_Alloca; 1404 1405 return AF_None; 1406 } 1407 1408 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(S)) 1409 return NE->isArray() ? AF_CXXNewArray : AF_CXXNew; 1410 1411 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(S)) 1412 return DE->isArrayForm() ? AF_CXXNewArray : AF_CXXNew; 1413 1414 if (isa<ObjCMessageExpr>(S)) 1415 return AF_Malloc; 1416 1417 return AF_None; 1418 } 1419 1420 bool MallocChecker::printAllocDeallocName(raw_ostream &os, CheckerContext &C, 1421 const Expr *E) const { 1422 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 1423 // FIXME: This doesn't handle indirect calls. 1424 const FunctionDecl *FD = CE->getDirectCallee(); 1425 if (!FD) 1426 return false; 1427 1428 os << *FD; 1429 if (!FD->isOverloadedOperator()) 1430 os << "()"; 1431 return true; 1432 } 1433 1434 if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E)) { 1435 if (Msg->isInstanceMessage()) 1436 os << "-"; 1437 else 1438 os << "+"; 1439 Msg->getSelector().print(os); 1440 return true; 1441 } 1442 1443 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { 1444 os << "'" 1445 << getOperatorSpelling(NE->getOperatorNew()->getOverloadedOperator()) 1446 << "'"; 1447 return true; 1448 } 1449 1450 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(E)) { 1451 os << "'" 1452 << getOperatorSpelling(DE->getOperatorDelete()->getOverloadedOperator()) 1453 << "'"; 1454 return true; 1455 } 1456 1457 return false; 1458 } 1459 1460 void MallocChecker::printExpectedAllocName(raw_ostream &os, CheckerContext &C, 1461 const Expr *E) const { 1462 AllocationFamily Family = getAllocationFamily(C, E); 1463 1464 switch(Family) { 1465 case AF_Malloc: os << "malloc()"; return; 1466 case AF_CXXNew: os << "'new'"; return; 1467 case AF_CXXNewArray: os << "'new[]'"; return; 1468 case AF_IfNameIndex: os << "'if_nameindex()'"; return; 1469 case AF_InnerBuffer: os << "container-specific allocator"; return; 1470 case AF_Alloca: 1471 case AF_None: llvm_unreachable("not a deallocation expression"); 1472 } 1473 } 1474 1475 void MallocChecker::printExpectedDeallocName(raw_ostream &os, 1476 AllocationFamily Family) const { 1477 switch(Family) { 1478 case AF_Malloc: os << "free()"; return; 1479 case AF_CXXNew: os << "'delete'"; return; 1480 case AF_CXXNewArray: os << "'delete[]'"; return; 1481 case AF_IfNameIndex: os << "'if_freenameindex()'"; return; 1482 case AF_InnerBuffer: os << "container-specific deallocator"; return; 1483 case AF_Alloca: 1484 case AF_None: llvm_unreachable("suspicious argument"); 1485 } 1486 } 1487 1488 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, 1489 const Expr *ArgExpr, 1490 const Expr *ParentExpr, 1491 ProgramStateRef State, 1492 bool Hold, 1493 bool &ReleasedAllocated, 1494 bool ReturnsNullOnFailure) const { 1495 1496 if (!State) 1497 return nullptr; 1498 1499 SVal ArgVal = C.getSVal(ArgExpr); 1500 if (!ArgVal.getAs<DefinedOrUnknownSVal>()) 1501 return nullptr; 1502 DefinedOrUnknownSVal location = ArgVal.castAs<DefinedOrUnknownSVal>(); 1503 1504 // Check for null dereferences. 1505 if (!location.getAs<Loc>()) 1506 return nullptr; 1507 1508 // The explicit NULL case, no operation is performed. 1509 ProgramStateRef notNullState, nullState; 1510 std::tie(notNullState, nullState) = State->assume(location); 1511 if (nullState && !notNullState) 1512 return nullptr; 1513 1514 // Unknown values could easily be okay 1515 // Undefined values are handled elsewhere 1516 if (ArgVal.isUnknownOrUndef()) 1517 return nullptr; 1518 1519 const MemRegion *R = ArgVal.getAsRegion(); 1520 1521 // Nonlocs can't be freed, of course. 1522 // Non-region locations (labels and fixed addresses) also shouldn't be freed. 1523 if (!R) { 1524 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1525 return nullptr; 1526 } 1527 1528 R = R->StripCasts(); 1529 1530 // Blocks might show up as heap data, but should not be free()d 1531 if (isa<BlockDataRegion>(R)) { 1532 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1533 return nullptr; 1534 } 1535 1536 const MemSpaceRegion *MS = R->getMemorySpace(); 1537 1538 // Parameters, locals, statics, globals, and memory returned by 1539 // __builtin_alloca() shouldn't be freed. 1540 if (!(isa<UnknownSpaceRegion>(MS) || isa<HeapSpaceRegion>(MS))) { 1541 // FIXME: at the time this code was written, malloc() regions were 1542 // represented by conjured symbols, which are all in UnknownSpaceRegion. 1543 // This means that there isn't actually anything from HeapSpaceRegion 1544 // that should be freed, even though we allow it here. 1545 // Of course, free() can work on memory allocated outside the current 1546 // function, so UnknownSpaceRegion is always a possibility. 1547 // False negatives are better than false positives. 1548 1549 if (isa<AllocaRegion>(R)) 1550 ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1551 else 1552 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1553 1554 return nullptr; 1555 } 1556 1557 const SymbolicRegion *SrBase = dyn_cast<SymbolicRegion>(R->getBaseRegion()); 1558 // Various cases could lead to non-symbol values here. 1559 // For now, ignore them. 1560 if (!SrBase) 1561 return nullptr; 1562 1563 SymbolRef SymBase = SrBase->getSymbol(); 1564 const RefState *RsBase = State->get<RegionState>(SymBase); 1565 SymbolRef PreviousRetStatusSymbol = nullptr; 1566 1567 if (RsBase) { 1568 1569 // Memory returned by alloca() shouldn't be freed. 1570 if (RsBase->getAllocationFamily() == AF_Alloca) { 1571 ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1572 return nullptr; 1573 } 1574 1575 // Check for double free first. 1576 if ((RsBase->isReleased() || RsBase->isRelinquished()) && 1577 !didPreviousFreeFail(State, SymBase, PreviousRetStatusSymbol)) { 1578 ReportDoubleFree(C, ParentExpr->getSourceRange(), RsBase->isReleased(), 1579 SymBase, PreviousRetStatusSymbol); 1580 return nullptr; 1581 1582 // If the pointer is allocated or escaped, but we are now trying to free it, 1583 // check that the call to free is proper. 1584 } else if (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero() || 1585 RsBase->isEscaped()) { 1586 1587 // Check if an expected deallocation function matches the real one. 1588 bool DeallocMatchesAlloc = 1589 RsBase->getAllocationFamily() == getAllocationFamily(C, ParentExpr); 1590 if (!DeallocMatchesAlloc) { 1591 ReportMismatchedDealloc(C, ArgExpr->getSourceRange(), 1592 ParentExpr, RsBase, SymBase, Hold); 1593 return nullptr; 1594 } 1595 1596 // Check if the memory location being freed is the actual location 1597 // allocated, or an offset. 1598 RegionOffset Offset = R->getAsOffset(); 1599 if (Offset.isValid() && 1600 !Offset.hasSymbolicOffset() && 1601 Offset.getOffset() != 0) { 1602 const Expr *AllocExpr = cast<Expr>(RsBase->getStmt()); 1603 ReportOffsetFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1604 AllocExpr); 1605 return nullptr; 1606 } 1607 } 1608 } 1609 1610 if (SymBase->getType()->isFunctionPointerType()) { 1611 ReportFunctionPointerFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1612 return nullptr; 1613 } 1614 1615 ReleasedAllocated = (RsBase != nullptr) && (RsBase->isAllocated() || 1616 RsBase->isAllocatedOfSizeZero()); 1617 1618 // Clean out the info on previous call to free return info. 1619 State = State->remove<FreeReturnValue>(SymBase); 1620 1621 // Keep track of the return value. If it is NULL, we will know that free 1622 // failed. 1623 if (ReturnsNullOnFailure) { 1624 SVal RetVal = C.getSVal(ParentExpr); 1625 SymbolRef RetStatusSymbol = RetVal.getAsSymbol(); 1626 if (RetStatusSymbol) { 1627 C.getSymbolManager().addSymbolDependency(SymBase, RetStatusSymbol); 1628 State = State->set<FreeReturnValue>(SymBase, RetStatusSymbol); 1629 } 1630 } 1631 1632 AllocationFamily Family = RsBase ? RsBase->getAllocationFamily() 1633 : getAllocationFamily(C, ParentExpr); 1634 // Normal free. 1635 if (Hold) 1636 return State->set<RegionState>(SymBase, 1637 RefState::getRelinquished(Family, 1638 ParentExpr)); 1639 1640 return State->set<RegionState>(SymBase, 1641 RefState::getReleased(Family, ParentExpr)); 1642 } 1643 1644 Optional<MallocChecker::CheckKind> 1645 MallocChecker::getCheckIfTracked(AllocationFamily Family, 1646 bool IsALeakCheck) const { 1647 switch (Family) { 1648 case AF_Malloc: 1649 case AF_Alloca: 1650 case AF_IfNameIndex: { 1651 if (ChecksEnabled[CK_MallocChecker]) 1652 return CK_MallocChecker; 1653 return None; 1654 } 1655 case AF_CXXNew: 1656 case AF_CXXNewArray: { 1657 if (IsALeakCheck) { 1658 if (ChecksEnabled[CK_NewDeleteLeaksChecker]) 1659 return CK_NewDeleteLeaksChecker; 1660 } 1661 else { 1662 if (ChecksEnabled[CK_NewDeleteChecker]) 1663 return CK_NewDeleteChecker; 1664 } 1665 return None; 1666 } 1667 case AF_InnerBuffer: { 1668 if (ChecksEnabled[CK_InnerPointerChecker]) 1669 return CK_InnerPointerChecker; 1670 return None; 1671 } 1672 case AF_None: { 1673 llvm_unreachable("no family"); 1674 } 1675 } 1676 llvm_unreachable("unhandled family"); 1677 } 1678 1679 Optional<MallocChecker::CheckKind> 1680 MallocChecker::getCheckIfTracked(CheckerContext &C, 1681 const Stmt *AllocDeallocStmt, 1682 bool IsALeakCheck) const { 1683 return getCheckIfTracked(getAllocationFamily(C, AllocDeallocStmt), 1684 IsALeakCheck); 1685 } 1686 1687 Optional<MallocChecker::CheckKind> 1688 MallocChecker::getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 1689 bool IsALeakCheck) const { 1690 if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) 1691 return CK_MallocChecker; 1692 1693 const RefState *RS = C.getState()->get<RegionState>(Sym); 1694 assert(RS); 1695 return getCheckIfTracked(RS->getAllocationFamily(), IsALeakCheck); 1696 } 1697 1698 bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) { 1699 if (Optional<nonloc::ConcreteInt> IntVal = V.getAs<nonloc::ConcreteInt>()) 1700 os << "an integer (" << IntVal->getValue() << ")"; 1701 else if (Optional<loc::ConcreteInt> ConstAddr = V.getAs<loc::ConcreteInt>()) 1702 os << "a constant address (" << ConstAddr->getValue() << ")"; 1703 else if (Optional<loc::GotoLabel> Label = V.getAs<loc::GotoLabel>()) 1704 os << "the address of the label '" << Label->getLabel()->getName() << "'"; 1705 else 1706 return false; 1707 1708 return true; 1709 } 1710 1711 bool MallocChecker::SummarizeRegion(raw_ostream &os, 1712 const MemRegion *MR) { 1713 switch (MR->getKind()) { 1714 case MemRegion::FunctionCodeRegionKind: { 1715 const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl(); 1716 if (FD) 1717 os << "the address of the function '" << *FD << '\''; 1718 else 1719 os << "the address of a function"; 1720 return true; 1721 } 1722 case MemRegion::BlockCodeRegionKind: 1723 os << "block text"; 1724 return true; 1725 case MemRegion::BlockDataRegionKind: 1726 // FIXME: where the block came from? 1727 os << "a block"; 1728 return true; 1729 default: { 1730 const MemSpaceRegion *MS = MR->getMemorySpace(); 1731 1732 if (isa<StackLocalsSpaceRegion>(MS)) { 1733 const VarRegion *VR = dyn_cast<VarRegion>(MR); 1734 const VarDecl *VD; 1735 if (VR) 1736 VD = VR->getDecl(); 1737 else 1738 VD = nullptr; 1739 1740 if (VD) 1741 os << "the address of the local variable '" << VD->getName() << "'"; 1742 else 1743 os << "the address of a local stack variable"; 1744 return true; 1745 } 1746 1747 if (isa<StackArgumentsSpaceRegion>(MS)) { 1748 const VarRegion *VR = dyn_cast<VarRegion>(MR); 1749 const VarDecl *VD; 1750 if (VR) 1751 VD = VR->getDecl(); 1752 else 1753 VD = nullptr; 1754 1755 if (VD) 1756 os << "the address of the parameter '" << VD->getName() << "'"; 1757 else 1758 os << "the address of a parameter"; 1759 return true; 1760 } 1761 1762 if (isa<GlobalsSpaceRegion>(MS)) { 1763 const VarRegion *VR = dyn_cast<VarRegion>(MR); 1764 const VarDecl *VD; 1765 if (VR) 1766 VD = VR->getDecl(); 1767 else 1768 VD = nullptr; 1769 1770 if (VD) { 1771 if (VD->isStaticLocal()) 1772 os << "the address of the static variable '" << VD->getName() << "'"; 1773 else 1774 os << "the address of the global variable '" << VD->getName() << "'"; 1775 } else 1776 os << "the address of a global variable"; 1777 return true; 1778 } 1779 1780 return false; 1781 } 1782 } 1783 } 1784 1785 void MallocChecker::ReportBadFree(CheckerContext &C, SVal ArgVal, 1786 SourceRange Range, 1787 const Expr *DeallocExpr) const { 1788 1789 if (!ChecksEnabled[CK_MallocChecker] && 1790 !ChecksEnabled[CK_NewDeleteChecker]) 1791 return; 1792 1793 Optional<MallocChecker::CheckKind> CheckKind = 1794 getCheckIfTracked(C, DeallocExpr); 1795 if (!CheckKind.hasValue()) 1796 return; 1797 1798 if (ExplodedNode *N = C.generateErrorNode()) { 1799 if (!BT_BadFree[*CheckKind]) 1800 BT_BadFree[*CheckKind].reset(new BugType( 1801 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 1802 1803 SmallString<100> buf; 1804 llvm::raw_svector_ostream os(buf); 1805 1806 const MemRegion *MR = ArgVal.getAsRegion(); 1807 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 1808 MR = ER->getSuperRegion(); 1809 1810 os << "Argument to "; 1811 if (!printAllocDeallocName(os, C, DeallocExpr)) 1812 os << "deallocator"; 1813 1814 os << " is "; 1815 bool Summarized = MR ? SummarizeRegion(os, MR) 1816 : SummarizeValue(os, ArgVal); 1817 if (Summarized) 1818 os << ", which is not memory allocated by "; 1819 else 1820 os << "not memory allocated by "; 1821 1822 printExpectedAllocName(os, C, DeallocExpr); 1823 1824 auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind], 1825 os.str(), N); 1826 R->markInteresting(MR); 1827 R->addRange(Range); 1828 C.emitReport(std::move(R)); 1829 } 1830 } 1831 1832 void MallocChecker::ReportFreeAlloca(CheckerContext &C, SVal ArgVal, 1833 SourceRange Range) const { 1834 1835 Optional<MallocChecker::CheckKind> CheckKind; 1836 1837 if (ChecksEnabled[CK_MallocChecker]) 1838 CheckKind = CK_MallocChecker; 1839 else if (ChecksEnabled[CK_MismatchedDeallocatorChecker]) 1840 CheckKind = CK_MismatchedDeallocatorChecker; 1841 else 1842 return; 1843 1844 if (ExplodedNode *N = C.generateErrorNode()) { 1845 if (!BT_FreeAlloca[*CheckKind]) 1846 BT_FreeAlloca[*CheckKind].reset(new BugType( 1847 CheckNames[*CheckKind], "Free alloca()", categories::MemoryError)); 1848 1849 auto R = std::make_unique<PathSensitiveBugReport>( 1850 *BT_FreeAlloca[*CheckKind], 1851 "Memory allocated by alloca() should not be deallocated", N); 1852 R->markInteresting(ArgVal.getAsRegion()); 1853 R->addRange(Range); 1854 C.emitReport(std::move(R)); 1855 } 1856 } 1857 1858 void MallocChecker::ReportMismatchedDealloc(CheckerContext &C, 1859 SourceRange Range, 1860 const Expr *DeallocExpr, 1861 const RefState *RS, 1862 SymbolRef Sym, 1863 bool OwnershipTransferred) const { 1864 1865 if (!ChecksEnabled[CK_MismatchedDeallocatorChecker]) 1866 return; 1867 1868 if (ExplodedNode *N = C.generateErrorNode()) { 1869 if (!BT_MismatchedDealloc) 1870 BT_MismatchedDealloc.reset( 1871 new BugType(CheckNames[CK_MismatchedDeallocatorChecker], 1872 "Bad deallocator", categories::MemoryError)); 1873 1874 SmallString<100> buf; 1875 llvm::raw_svector_ostream os(buf); 1876 1877 const Expr *AllocExpr = cast<Expr>(RS->getStmt()); 1878 SmallString<20> AllocBuf; 1879 llvm::raw_svector_ostream AllocOs(AllocBuf); 1880 SmallString<20> DeallocBuf; 1881 llvm::raw_svector_ostream DeallocOs(DeallocBuf); 1882 1883 if (OwnershipTransferred) { 1884 if (printAllocDeallocName(DeallocOs, C, DeallocExpr)) 1885 os << DeallocOs.str() << " cannot"; 1886 else 1887 os << "Cannot"; 1888 1889 os << " take ownership of memory"; 1890 1891 if (printAllocDeallocName(AllocOs, C, AllocExpr)) 1892 os << " allocated by " << AllocOs.str(); 1893 } else { 1894 os << "Memory"; 1895 if (printAllocDeallocName(AllocOs, C, AllocExpr)) 1896 os << " allocated by " << AllocOs.str(); 1897 1898 os << " should be deallocated by "; 1899 printExpectedDeallocName(os, RS->getAllocationFamily()); 1900 1901 if (printAllocDeallocName(DeallocOs, C, DeallocExpr)) 1902 os << ", not " << DeallocOs.str(); 1903 } 1904 1905 auto R = std::make_unique<PathSensitiveBugReport>(*BT_MismatchedDealloc, 1906 os.str(), N); 1907 R->markInteresting(Sym); 1908 R->addRange(Range); 1909 R->addVisitor(std::make_unique<MallocBugVisitor>(Sym)); 1910 C.emitReport(std::move(R)); 1911 } 1912 } 1913 1914 void MallocChecker::ReportOffsetFree(CheckerContext &C, SVal ArgVal, 1915 SourceRange Range, const Expr *DeallocExpr, 1916 const Expr *AllocExpr) const { 1917 1918 1919 if (!ChecksEnabled[CK_MallocChecker] && 1920 !ChecksEnabled[CK_NewDeleteChecker]) 1921 return; 1922 1923 Optional<MallocChecker::CheckKind> CheckKind = 1924 getCheckIfTracked(C, AllocExpr); 1925 if (!CheckKind.hasValue()) 1926 return; 1927 1928 ExplodedNode *N = C.generateErrorNode(); 1929 if (!N) 1930 return; 1931 1932 if (!BT_OffsetFree[*CheckKind]) 1933 BT_OffsetFree[*CheckKind].reset(new BugType( 1934 CheckNames[*CheckKind], "Offset free", categories::MemoryError)); 1935 1936 SmallString<100> buf; 1937 llvm::raw_svector_ostream os(buf); 1938 SmallString<20> AllocNameBuf; 1939 llvm::raw_svector_ostream AllocNameOs(AllocNameBuf); 1940 1941 const MemRegion *MR = ArgVal.getAsRegion(); 1942 assert(MR && "Only MemRegion based symbols can have offset free errors"); 1943 1944 RegionOffset Offset = MR->getAsOffset(); 1945 assert((Offset.isValid() && 1946 !Offset.hasSymbolicOffset() && 1947 Offset.getOffset() != 0) && 1948 "Only symbols with a valid offset can have offset free errors"); 1949 1950 int offsetBytes = Offset.getOffset() / C.getASTContext().getCharWidth(); 1951 1952 os << "Argument to "; 1953 if (!printAllocDeallocName(os, C, DeallocExpr)) 1954 os << "deallocator"; 1955 os << " is offset by " 1956 << offsetBytes 1957 << " " 1958 << ((abs(offsetBytes) > 1) ? "bytes" : "byte") 1959 << " from the start of "; 1960 if (AllocExpr && printAllocDeallocName(AllocNameOs, C, AllocExpr)) 1961 os << "memory allocated by " << AllocNameOs.str(); 1962 else 1963 os << "allocated memory"; 1964 1965 auto R = std::make_unique<PathSensitiveBugReport>(*BT_OffsetFree[*CheckKind], 1966 os.str(), N); 1967 R->markInteresting(MR->getBaseRegion()); 1968 R->addRange(Range); 1969 C.emitReport(std::move(R)); 1970 } 1971 1972 void MallocChecker::ReportUseAfterFree(CheckerContext &C, SourceRange Range, 1973 SymbolRef Sym) const { 1974 1975 if (!ChecksEnabled[CK_MallocChecker] && 1976 !ChecksEnabled[CK_NewDeleteChecker] && 1977 !ChecksEnabled[CK_InnerPointerChecker]) 1978 return; 1979 1980 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 1981 if (!CheckKind.hasValue()) 1982 return; 1983 1984 if (ExplodedNode *N = C.generateErrorNode()) { 1985 if (!BT_UseFree[*CheckKind]) 1986 BT_UseFree[*CheckKind].reset(new BugType( 1987 CheckNames[*CheckKind], "Use-after-free", categories::MemoryError)); 1988 1989 AllocationFamily AF = 1990 C.getState()->get<RegionState>(Sym)->getAllocationFamily(); 1991 1992 auto R = std::make_unique<PathSensitiveBugReport>( 1993 *BT_UseFree[*CheckKind], 1994 AF == AF_InnerBuffer 1995 ? "Inner pointer of container used after re/deallocation" 1996 : "Use of memory after it is freed", 1997 N); 1998 1999 R->markInteresting(Sym); 2000 R->addRange(Range); 2001 R->addVisitor(std::make_unique<MallocBugVisitor>(Sym)); 2002 2003 if (AF == AF_InnerBuffer) 2004 R->addVisitor(allocation_state::getInnerPointerBRVisitor(Sym)); 2005 2006 C.emitReport(std::move(R)); 2007 } 2008 } 2009 2010 void MallocChecker::ReportDoubleFree(CheckerContext &C, SourceRange Range, 2011 bool Released, SymbolRef Sym, 2012 SymbolRef PrevSym) const { 2013 2014 if (!ChecksEnabled[CK_MallocChecker] && 2015 !ChecksEnabled[CK_NewDeleteChecker]) 2016 return; 2017 2018 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2019 if (!CheckKind.hasValue()) 2020 return; 2021 2022 if (ExplodedNode *N = C.generateErrorNode()) { 2023 if (!BT_DoubleFree[*CheckKind]) 2024 BT_DoubleFree[*CheckKind].reset(new BugType( 2025 CheckNames[*CheckKind], "Double free", categories::MemoryError)); 2026 2027 auto R = std::make_unique<PathSensitiveBugReport>( 2028 *BT_DoubleFree[*CheckKind], 2029 (Released ? "Attempt to free released memory" 2030 : "Attempt to free non-owned memory"), 2031 N); 2032 R->addRange(Range); 2033 R->markInteresting(Sym); 2034 if (PrevSym) 2035 R->markInteresting(PrevSym); 2036 R->addVisitor(std::make_unique<MallocBugVisitor>(Sym)); 2037 C.emitReport(std::move(R)); 2038 } 2039 } 2040 2041 void MallocChecker::ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const { 2042 2043 if (!ChecksEnabled[CK_NewDeleteChecker]) 2044 return; 2045 2046 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2047 if (!CheckKind.hasValue()) 2048 return; 2049 2050 if (ExplodedNode *N = C.generateErrorNode()) { 2051 if (!BT_DoubleDelete) 2052 BT_DoubleDelete.reset(new BugType(CheckNames[CK_NewDeleteChecker], 2053 "Double delete", 2054 categories::MemoryError)); 2055 2056 auto R = std::make_unique<PathSensitiveBugReport>( 2057 *BT_DoubleDelete, "Attempt to delete released memory", N); 2058 2059 R->markInteresting(Sym); 2060 R->addVisitor(std::make_unique<MallocBugVisitor>(Sym)); 2061 C.emitReport(std::move(R)); 2062 } 2063 } 2064 2065 void MallocChecker::ReportUseZeroAllocated(CheckerContext &C, 2066 SourceRange Range, 2067 SymbolRef Sym) const { 2068 2069 if (!ChecksEnabled[CK_MallocChecker] && 2070 !ChecksEnabled[CK_NewDeleteChecker]) 2071 return; 2072 2073 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2074 2075 if (!CheckKind.hasValue()) 2076 return; 2077 2078 if (ExplodedNode *N = C.generateErrorNode()) { 2079 if (!BT_UseZerroAllocated[*CheckKind]) 2080 BT_UseZerroAllocated[*CheckKind].reset( 2081 new BugType(CheckNames[*CheckKind], "Use of zero allocated", 2082 categories::MemoryError)); 2083 2084 auto R = std::make_unique<PathSensitiveBugReport>( 2085 *BT_UseZerroAllocated[*CheckKind], "Use of zero-allocated memory", N); 2086 2087 R->addRange(Range); 2088 if (Sym) { 2089 R->markInteresting(Sym); 2090 R->addVisitor(std::make_unique<MallocBugVisitor>(Sym)); 2091 } 2092 C.emitReport(std::move(R)); 2093 } 2094 } 2095 2096 void MallocChecker::ReportFunctionPointerFree(CheckerContext &C, SVal ArgVal, 2097 SourceRange Range, 2098 const Expr *FreeExpr) const { 2099 if (!ChecksEnabled[CK_MallocChecker]) 2100 return; 2101 2102 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, FreeExpr); 2103 if (!CheckKind.hasValue()) 2104 return; 2105 2106 if (ExplodedNode *N = C.generateErrorNode()) { 2107 if (!BT_BadFree[*CheckKind]) 2108 BT_BadFree[*CheckKind].reset(new BugType( 2109 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 2110 2111 SmallString<100> Buf; 2112 llvm::raw_svector_ostream Os(Buf); 2113 2114 const MemRegion *MR = ArgVal.getAsRegion(); 2115 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 2116 MR = ER->getSuperRegion(); 2117 2118 Os << "Argument to "; 2119 if (!printAllocDeallocName(Os, C, FreeExpr)) 2120 Os << "deallocator"; 2121 2122 Os << " is a function pointer"; 2123 2124 auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind], 2125 Os.str(), N); 2126 R->markInteresting(MR); 2127 R->addRange(Range); 2128 C.emitReport(std::move(R)); 2129 } 2130 } 2131 2132 ProgramStateRef MallocChecker::ReallocMemAux(CheckerContext &C, 2133 const CallExpr *CE, 2134 bool FreesOnFail, 2135 ProgramStateRef State, 2136 bool SuffixWithN) const { 2137 if (!State) 2138 return nullptr; 2139 2140 if (SuffixWithN && CE->getNumArgs() < 3) 2141 return nullptr; 2142 else if (CE->getNumArgs() < 2) 2143 return nullptr; 2144 2145 const Expr *arg0Expr = CE->getArg(0); 2146 SVal Arg0Val = C.getSVal(arg0Expr); 2147 if (!Arg0Val.getAs<DefinedOrUnknownSVal>()) 2148 return nullptr; 2149 DefinedOrUnknownSVal arg0Val = Arg0Val.castAs<DefinedOrUnknownSVal>(); 2150 2151 SValBuilder &svalBuilder = C.getSValBuilder(); 2152 2153 DefinedOrUnknownSVal PtrEQ = 2154 svalBuilder.evalEQ(State, arg0Val, svalBuilder.makeNull()); 2155 2156 // Get the size argument. 2157 const Expr *Arg1 = CE->getArg(1); 2158 2159 // Get the value of the size argument. 2160 SVal TotalSize = C.getSVal(Arg1); 2161 if (SuffixWithN) 2162 TotalSize = evalMulForBufferSize(C, Arg1, CE->getArg(2)); 2163 if (!TotalSize.getAs<DefinedOrUnknownSVal>()) 2164 return nullptr; 2165 2166 // Compare the size argument to 0. 2167 DefinedOrUnknownSVal SizeZero = 2168 svalBuilder.evalEQ(State, TotalSize.castAs<DefinedOrUnknownSVal>(), 2169 svalBuilder.makeIntValWithPtrWidth(0, false)); 2170 2171 ProgramStateRef StatePtrIsNull, StatePtrNotNull; 2172 std::tie(StatePtrIsNull, StatePtrNotNull) = State->assume(PtrEQ); 2173 ProgramStateRef StateSizeIsZero, StateSizeNotZero; 2174 std::tie(StateSizeIsZero, StateSizeNotZero) = State->assume(SizeZero); 2175 // We only assume exceptional states if they are definitely true; if the 2176 // state is under-constrained, assume regular realloc behavior. 2177 bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull; 2178 bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero; 2179 2180 // If the ptr is NULL and the size is not 0, the call is equivalent to 2181 // malloc(size). 2182 if (PrtIsNull && !SizeIsZero) { 2183 ProgramStateRef stateMalloc = MallocMemAux(C, CE, TotalSize, 2184 UndefinedVal(), StatePtrIsNull); 2185 return stateMalloc; 2186 } 2187 2188 if (PrtIsNull && SizeIsZero) 2189 return State; 2190 2191 // Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size). 2192 assert(!PrtIsNull); 2193 SymbolRef FromPtr = arg0Val.getAsSymbol(); 2194 SVal RetVal = C.getSVal(CE); 2195 SymbolRef ToPtr = RetVal.getAsSymbol(); 2196 if (!FromPtr || !ToPtr) 2197 return nullptr; 2198 2199 bool ReleasedAllocated = false; 2200 2201 // If the size is 0, free the memory. 2202 if (SizeIsZero) 2203 if (ProgramStateRef stateFree = FreeMemAux(C, CE, StateSizeIsZero, 0, 2204 false, ReleasedAllocated)){ 2205 // The semantics of the return value are: 2206 // If size was equal to 0, either NULL or a pointer suitable to be passed 2207 // to free() is returned. We just free the input pointer and do not add 2208 // any constrains on the output pointer. 2209 return stateFree; 2210 } 2211 2212 // Default behavior. 2213 if (ProgramStateRef stateFree = 2214 FreeMemAux(C, CE, State, 0, false, ReleasedAllocated)) { 2215 2216 ProgramStateRef stateRealloc = MallocMemAux(C, CE, TotalSize, 2217 UnknownVal(), stateFree); 2218 if (!stateRealloc) 2219 return nullptr; 2220 2221 ReallocPairKind Kind = RPToBeFreedAfterFailure; 2222 if (FreesOnFail) 2223 Kind = RPIsFreeOnFailure; 2224 else if (!ReleasedAllocated) 2225 Kind = RPDoNotTrackAfterFailure; 2226 2227 // Record the info about the reallocated symbol so that we could properly 2228 // process failed reallocation. 2229 stateRealloc = stateRealloc->set<ReallocPairs>(ToPtr, 2230 ReallocPair(FromPtr, Kind)); 2231 // The reallocated symbol should stay alive for as long as the new symbol. 2232 C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr); 2233 return stateRealloc; 2234 } 2235 return nullptr; 2236 } 2237 2238 ProgramStateRef MallocChecker::CallocMem(CheckerContext &C, const CallExpr *CE, 2239 ProgramStateRef State) { 2240 if (!State) 2241 return nullptr; 2242 2243 if (CE->getNumArgs() < 2) 2244 return nullptr; 2245 2246 SValBuilder &svalBuilder = C.getSValBuilder(); 2247 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 2248 SVal TotalSize = evalMulForBufferSize(C, CE->getArg(0), CE->getArg(1)); 2249 2250 return MallocMemAux(C, CE, TotalSize, zeroVal, State); 2251 } 2252 2253 LeakInfo 2254 MallocChecker::getAllocationSite(const ExplodedNode *N, SymbolRef Sym, 2255 CheckerContext &C) const { 2256 const LocationContext *LeakContext = N->getLocationContext(); 2257 // Walk the ExplodedGraph backwards and find the first node that referred to 2258 // the tracked symbol. 2259 const ExplodedNode *AllocNode = N; 2260 const MemRegion *ReferenceRegion = nullptr; 2261 2262 while (N) { 2263 ProgramStateRef State = N->getState(); 2264 if (!State->get<RegionState>(Sym)) 2265 break; 2266 2267 // Find the most recent expression bound to the symbol in the current 2268 // context. 2269 if (!ReferenceRegion) { 2270 if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) { 2271 SVal Val = State->getSVal(MR); 2272 if (Val.getAsLocSymbol() == Sym) { 2273 const VarRegion* VR = MR->getBaseRegion()->getAs<VarRegion>(); 2274 // Do not show local variables belonging to a function other than 2275 // where the error is reported. 2276 if (!VR || 2277 (VR->getStackFrame() == LeakContext->getStackFrame())) 2278 ReferenceRegion = MR; 2279 } 2280 } 2281 } 2282 2283 // Allocation node, is the last node in the current or parent context in 2284 // which the symbol was tracked. 2285 const LocationContext *NContext = N->getLocationContext(); 2286 if (NContext == LeakContext || 2287 NContext->isParentOf(LeakContext)) 2288 AllocNode = N; 2289 N = N->pred_empty() ? nullptr : *(N->pred_begin()); 2290 } 2291 2292 return LeakInfo(AllocNode, ReferenceRegion); 2293 } 2294 2295 void MallocChecker::reportLeak(SymbolRef Sym, ExplodedNode *N, 2296 CheckerContext &C) const { 2297 2298 if (!ChecksEnabled[CK_MallocChecker] && 2299 !ChecksEnabled[CK_NewDeleteLeaksChecker]) 2300 return; 2301 2302 const RefState *RS = C.getState()->get<RegionState>(Sym); 2303 assert(RS && "cannot leak an untracked symbol"); 2304 AllocationFamily Family = RS->getAllocationFamily(); 2305 2306 if (Family == AF_Alloca) 2307 return; 2308 2309 Optional<MallocChecker::CheckKind> 2310 CheckKind = getCheckIfTracked(Family, true); 2311 2312 if (!CheckKind.hasValue()) 2313 return; 2314 2315 assert(N); 2316 if (!BT_Leak[*CheckKind]) { 2317 // Leaks should not be reported if they are post-dominated by a sink: 2318 // (1) Sinks are higher importance bugs. 2319 // (2) NoReturnFunctionChecker uses sink nodes to represent paths ending 2320 // with __noreturn functions such as assert() or exit(). We choose not 2321 // to report leaks on such paths. 2322 BT_Leak[*CheckKind].reset(new BugType(CheckNames[*CheckKind], "Memory leak", 2323 categories::MemoryError, 2324 /*SuppressOnSink=*/true)); 2325 } 2326 2327 // Most bug reports are cached at the location where they occurred. 2328 // With leaks, we want to unique them by the location where they were 2329 // allocated, and only report a single path. 2330 PathDiagnosticLocation LocUsedForUniqueing; 2331 const ExplodedNode *AllocNode = nullptr; 2332 const MemRegion *Region = nullptr; 2333 std::tie(AllocNode, Region) = getAllocationSite(N, Sym, C); 2334 2335 const Stmt *AllocationStmt = PathDiagnosticLocation::getStmt(AllocNode); 2336 if (AllocationStmt) 2337 LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocationStmt, 2338 C.getSourceManager(), 2339 AllocNode->getLocationContext()); 2340 2341 SmallString<200> buf; 2342 llvm::raw_svector_ostream os(buf); 2343 if (Region && Region->canPrintPretty()) { 2344 os << "Potential leak of memory pointed to by "; 2345 Region->printPretty(os); 2346 } else { 2347 os << "Potential memory leak"; 2348 } 2349 2350 auto R = std::make_unique<PathSensitiveBugReport>( 2351 *BT_Leak[*CheckKind], os.str(), N, LocUsedForUniqueing, 2352 AllocNode->getLocationContext()->getDecl()); 2353 R->markInteresting(Sym); 2354 R->addVisitor(std::make_unique<MallocBugVisitor>(Sym, true)); 2355 C.emitReport(std::move(R)); 2356 } 2357 2358 void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper, 2359 CheckerContext &C) const 2360 { 2361 ProgramStateRef state = C.getState(); 2362 RegionStateTy OldRS = state->get<RegionState>(); 2363 RegionStateTy::Factory &F = state->get_context<RegionState>(); 2364 2365 RegionStateTy RS = OldRS; 2366 SmallVector<SymbolRef, 2> Errors; 2367 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2368 if (SymReaper.isDead(I->first)) { 2369 if (I->second.isAllocated() || I->second.isAllocatedOfSizeZero()) 2370 Errors.push_back(I->first); 2371 // Remove the dead symbol from the map. 2372 RS = F.remove(RS, I->first); 2373 } 2374 } 2375 2376 if (RS == OldRS) { 2377 // We shouldn't have touched other maps yet. 2378 assert(state->get<ReallocPairs>() == 2379 C.getState()->get<ReallocPairs>()); 2380 assert(state->get<FreeReturnValue>() == 2381 C.getState()->get<FreeReturnValue>()); 2382 return; 2383 } 2384 2385 // Cleanup the Realloc Pairs Map. 2386 ReallocPairsTy RP = state->get<ReallocPairs>(); 2387 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 2388 if (SymReaper.isDead(I->first) || 2389 SymReaper.isDead(I->second.ReallocatedSym)) { 2390 state = state->remove<ReallocPairs>(I->first); 2391 } 2392 } 2393 2394 // Cleanup the FreeReturnValue Map. 2395 FreeReturnValueTy FR = state->get<FreeReturnValue>(); 2396 for (FreeReturnValueTy::iterator I = FR.begin(), E = FR.end(); I != E; ++I) { 2397 if (SymReaper.isDead(I->first) || 2398 SymReaper.isDead(I->second)) { 2399 state = state->remove<FreeReturnValue>(I->first); 2400 } 2401 } 2402 2403 // Generate leak node. 2404 ExplodedNode *N = C.getPredecessor(); 2405 if (!Errors.empty()) { 2406 static CheckerProgramPointTag Tag("MallocChecker", "DeadSymbolsLeak"); 2407 N = C.generateNonFatalErrorNode(C.getState(), &Tag); 2408 if (N) { 2409 for (SmallVectorImpl<SymbolRef>::iterator 2410 I = Errors.begin(), E = Errors.end(); I != E; ++I) { 2411 reportLeak(*I, N, C); 2412 } 2413 } 2414 } 2415 2416 C.addTransition(state->set<RegionState>(RS), N); 2417 } 2418 2419 void MallocChecker::checkPreCall(const CallEvent &Call, 2420 CheckerContext &C) const { 2421 2422 if (const CXXDestructorCall *DC = dyn_cast<CXXDestructorCall>(&Call)) { 2423 SymbolRef Sym = DC->getCXXThisVal().getAsSymbol(); 2424 if (!Sym || checkDoubleDelete(Sym, C)) 2425 return; 2426 } 2427 2428 // We will check for double free in the post visit. 2429 if (const AnyFunctionCall *FC = dyn_cast<AnyFunctionCall>(&Call)) { 2430 const FunctionDecl *FD = FC->getDecl(); 2431 if (!FD) 2432 return; 2433 2434 ASTContext &Ctx = C.getASTContext(); 2435 if (ChecksEnabled[CK_MallocChecker] && 2436 (isCMemFunction(FD, Ctx, AF_Malloc, MemoryOperationKind::MOK_Free) || 2437 isCMemFunction(FD, Ctx, AF_IfNameIndex, 2438 MemoryOperationKind::MOK_Free))) 2439 return; 2440 } 2441 2442 // Check if the callee of a method is deleted. 2443 if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(&Call)) { 2444 SymbolRef Sym = CC->getCXXThisVal().getAsSymbol(); 2445 if (!Sym || checkUseAfterFree(Sym, C, CC->getCXXThisExpr())) 2446 return; 2447 } 2448 2449 // Check arguments for being used after free. 2450 for (unsigned I = 0, E = Call.getNumArgs(); I != E; ++I) { 2451 SVal ArgSVal = Call.getArgSVal(I); 2452 if (ArgSVal.getAs<Loc>()) { 2453 SymbolRef Sym = ArgSVal.getAsSymbol(); 2454 if (!Sym) 2455 continue; 2456 if (checkUseAfterFree(Sym, C, Call.getArgExpr(I))) 2457 return; 2458 } 2459 } 2460 } 2461 2462 void MallocChecker::checkPreStmt(const ReturnStmt *S, 2463 CheckerContext &C) const { 2464 checkEscapeOnReturn(S, C); 2465 } 2466 2467 // In the CFG, automatic destructors come after the return statement. 2468 // This callback checks for returning memory that is freed by automatic 2469 // destructors, as those cannot be reached in checkPreStmt(). 2470 void MallocChecker::checkEndFunction(const ReturnStmt *S, 2471 CheckerContext &C) const { 2472 checkEscapeOnReturn(S, C); 2473 } 2474 2475 void MallocChecker::checkEscapeOnReturn(const ReturnStmt *S, 2476 CheckerContext &C) const { 2477 if (!S) 2478 return; 2479 2480 const Expr *E = S->getRetValue(); 2481 if (!E) 2482 return; 2483 2484 // Check if we are returning a symbol. 2485 ProgramStateRef State = C.getState(); 2486 SVal RetVal = C.getSVal(E); 2487 SymbolRef Sym = RetVal.getAsSymbol(); 2488 if (!Sym) 2489 // If we are returning a field of the allocated struct or an array element, 2490 // the callee could still free the memory. 2491 // TODO: This logic should be a part of generic symbol escape callback. 2492 if (const MemRegion *MR = RetVal.getAsRegion()) 2493 if (isa<FieldRegion>(MR) || isa<ElementRegion>(MR)) 2494 if (const SymbolicRegion *BMR = 2495 dyn_cast<SymbolicRegion>(MR->getBaseRegion())) 2496 Sym = BMR->getSymbol(); 2497 2498 // Check if we are returning freed memory. 2499 if (Sym) 2500 checkUseAfterFree(Sym, C, E); 2501 } 2502 2503 // TODO: Blocks should be either inlined or should call invalidate regions 2504 // upon invocation. After that's in place, special casing here will not be 2505 // needed. 2506 void MallocChecker::checkPostStmt(const BlockExpr *BE, 2507 CheckerContext &C) const { 2508 2509 // Scan the BlockDecRefExprs for any object the retain count checker 2510 // may be tracking. 2511 if (!BE->getBlockDecl()->hasCaptures()) 2512 return; 2513 2514 ProgramStateRef state = C.getState(); 2515 const BlockDataRegion *R = 2516 cast<BlockDataRegion>(C.getSVal(BE).getAsRegion()); 2517 2518 BlockDataRegion::referenced_vars_iterator I = R->referenced_vars_begin(), 2519 E = R->referenced_vars_end(); 2520 2521 if (I == E) 2522 return; 2523 2524 SmallVector<const MemRegion*, 10> Regions; 2525 const LocationContext *LC = C.getLocationContext(); 2526 MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager(); 2527 2528 for ( ; I != E; ++I) { 2529 const VarRegion *VR = I.getCapturedRegion(); 2530 if (VR->getSuperRegion() == R) { 2531 VR = MemMgr.getVarRegion(VR->getDecl(), LC); 2532 } 2533 Regions.push_back(VR); 2534 } 2535 2536 state = 2537 state->scanReachableSymbols<StopTrackingCallback>(Regions).getState(); 2538 C.addTransition(state); 2539 } 2540 2541 bool MallocChecker::isReleased(SymbolRef Sym, CheckerContext &C) const { 2542 assert(Sym); 2543 const RefState *RS = C.getState()->get<RegionState>(Sym); 2544 return (RS && RS->isReleased()); 2545 } 2546 2547 bool MallocChecker::suppressDeallocationsInSuspiciousContexts( 2548 const CallExpr *CE, CheckerContext &C) const { 2549 if (CE->getNumArgs() == 0) 2550 return false; 2551 2552 StringRef FunctionStr = ""; 2553 if (const auto *FD = dyn_cast<FunctionDecl>(C.getStackFrame()->getDecl())) 2554 if (const Stmt *Body = FD->getBody()) 2555 if (Body->getBeginLoc().isValid()) 2556 FunctionStr = 2557 Lexer::getSourceText(CharSourceRange::getTokenRange( 2558 {FD->getBeginLoc(), Body->getBeginLoc()}), 2559 C.getSourceManager(), C.getLangOpts()); 2560 2561 // We do not model the Integer Set Library's retain-count based allocation. 2562 if (!FunctionStr.contains("__isl_")) 2563 return false; 2564 2565 ProgramStateRef State = C.getState(); 2566 2567 for (const Expr *Arg : CE->arguments()) 2568 if (SymbolRef Sym = C.getSVal(Arg).getAsSymbol()) 2569 if (const RefState *RS = State->get<RegionState>(Sym)) 2570 State = State->set<RegionState>(Sym, RefState::getEscaped(RS)); 2571 2572 C.addTransition(State); 2573 return true; 2574 } 2575 2576 bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C, 2577 const Stmt *S) const { 2578 2579 if (isReleased(Sym, C)) { 2580 ReportUseAfterFree(C, S->getSourceRange(), Sym); 2581 return true; 2582 } 2583 2584 return false; 2585 } 2586 2587 void MallocChecker::checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 2588 const Stmt *S) const { 2589 assert(Sym); 2590 2591 if (const RefState *RS = C.getState()->get<RegionState>(Sym)) { 2592 if (RS->isAllocatedOfSizeZero()) 2593 ReportUseZeroAllocated(C, RS->getStmt()->getSourceRange(), Sym); 2594 } 2595 else if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) { 2596 ReportUseZeroAllocated(C, S->getSourceRange(), Sym); 2597 } 2598 } 2599 2600 bool MallocChecker::checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const { 2601 2602 if (isReleased(Sym, C)) { 2603 ReportDoubleDelete(C, Sym); 2604 return true; 2605 } 2606 return false; 2607 } 2608 2609 // Check if the location is a freed symbolic region. 2610 void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S, 2611 CheckerContext &C) const { 2612 SymbolRef Sym = l.getLocSymbolInBase(); 2613 if (Sym) { 2614 checkUseAfterFree(Sym, C, S); 2615 checkUseZeroAllocated(Sym, C, S); 2616 } 2617 } 2618 2619 // If a symbolic region is assumed to NULL (or another constant), stop tracking 2620 // it - assuming that allocation failed on this path. 2621 ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state, 2622 SVal Cond, 2623 bool Assumption) const { 2624 RegionStateTy RS = state->get<RegionState>(); 2625 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2626 // If the symbol is assumed to be NULL, remove it from consideration. 2627 ConstraintManager &CMgr = state->getConstraintManager(); 2628 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 2629 if (AllocFailed.isConstrainedTrue()) 2630 state = state->remove<RegionState>(I.getKey()); 2631 } 2632 2633 // Realloc returns 0 when reallocation fails, which means that we should 2634 // restore the state of the pointer being reallocated. 2635 ReallocPairsTy RP = state->get<ReallocPairs>(); 2636 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 2637 // If the symbol is assumed to be NULL, remove it from consideration. 2638 ConstraintManager &CMgr = state->getConstraintManager(); 2639 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 2640 if (!AllocFailed.isConstrainedTrue()) 2641 continue; 2642 2643 SymbolRef ReallocSym = I.getData().ReallocatedSym; 2644 if (const RefState *RS = state->get<RegionState>(ReallocSym)) { 2645 if (RS->isReleased()) { 2646 if (I.getData().Kind == RPToBeFreedAfterFailure) 2647 state = state->set<RegionState>(ReallocSym, 2648 RefState::getAllocated(RS->getAllocationFamily(), RS->getStmt())); 2649 else if (I.getData().Kind == RPDoNotTrackAfterFailure) 2650 state = state->remove<RegionState>(ReallocSym); 2651 else 2652 assert(I.getData().Kind == RPIsFreeOnFailure); 2653 } 2654 } 2655 state = state->remove<ReallocPairs>(I.getKey()); 2656 } 2657 2658 return state; 2659 } 2660 2661 bool MallocChecker::mayFreeAnyEscapedMemoryOrIsModeledExplicitly( 2662 const CallEvent *Call, 2663 ProgramStateRef State, 2664 SymbolRef &EscapingSymbol) const { 2665 assert(Call); 2666 EscapingSymbol = nullptr; 2667 2668 // For now, assume that any C++ or block call can free memory. 2669 // TODO: If we want to be more optimistic here, we'll need to make sure that 2670 // regions escape to C++ containers. They seem to do that even now, but for 2671 // mysterious reasons. 2672 if (!(isa<SimpleFunctionCall>(Call) || isa<ObjCMethodCall>(Call))) 2673 return true; 2674 2675 // Check Objective-C messages by selector name. 2676 if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) { 2677 // If it's not a framework call, or if it takes a callback, assume it 2678 // can free memory. 2679 if (!Call->isInSystemHeader() || Call->argumentsMayEscape()) 2680 return true; 2681 2682 // If it's a method we know about, handle it explicitly post-call. 2683 // This should happen before the "freeWhenDone" check below. 2684 if (isKnownDeallocObjCMethodName(*Msg)) 2685 return false; 2686 2687 // If there's a "freeWhenDone" parameter, but the method isn't one we know 2688 // about, we can't be sure that the object will use free() to deallocate the 2689 // memory, so we can't model it explicitly. The best we can do is use it to 2690 // decide whether the pointer escapes. 2691 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(*Msg)) 2692 return *FreeWhenDone; 2693 2694 // If the first selector piece ends with "NoCopy", and there is no 2695 // "freeWhenDone" parameter set to zero, we know ownership is being 2696 // transferred. Again, though, we can't be sure that the object will use 2697 // free() to deallocate the memory, so we can't model it explicitly. 2698 StringRef FirstSlot = Msg->getSelector().getNameForSlot(0); 2699 if (FirstSlot.endswith("NoCopy")) 2700 return true; 2701 2702 // If the first selector starts with addPointer, insertPointer, 2703 // or replacePointer, assume we are dealing with NSPointerArray or similar. 2704 // This is similar to C++ containers (vector); we still might want to check 2705 // that the pointers get freed by following the container itself. 2706 if (FirstSlot.startswith("addPointer") || 2707 FirstSlot.startswith("insertPointer") || 2708 FirstSlot.startswith("replacePointer") || 2709 FirstSlot.equals("valueWithPointer")) { 2710 return true; 2711 } 2712 2713 // We should escape receiver on call to 'init'. This is especially relevant 2714 // to the receiver, as the corresponding symbol is usually not referenced 2715 // after the call. 2716 if (Msg->getMethodFamily() == OMF_init) { 2717 EscapingSymbol = Msg->getReceiverSVal().getAsSymbol(); 2718 return true; 2719 } 2720 2721 // Otherwise, assume that the method does not free memory. 2722 // Most framework methods do not free memory. 2723 return false; 2724 } 2725 2726 // At this point the only thing left to handle is straight function calls. 2727 const FunctionDecl *FD = cast<SimpleFunctionCall>(Call)->getDecl(); 2728 if (!FD) 2729 return true; 2730 2731 ASTContext &ASTC = State->getStateManager().getContext(); 2732 2733 // If it's one of the allocation functions we can reason about, we model 2734 // its behavior explicitly. 2735 if (isMemFunction(FD, ASTC)) 2736 return false; 2737 2738 // If it's not a system call, assume it frees memory. 2739 if (!Call->isInSystemHeader()) 2740 return true; 2741 2742 // White list the system functions whose arguments escape. 2743 const IdentifierInfo *II = FD->getIdentifier(); 2744 if (!II) 2745 return true; 2746 StringRef FName = II->getName(); 2747 2748 // White list the 'XXXNoCopy' CoreFoundation functions. 2749 // We specifically check these before 2750 if (FName.endswith("NoCopy")) { 2751 // Look for the deallocator argument. We know that the memory ownership 2752 // is not transferred only if the deallocator argument is 2753 // 'kCFAllocatorNull'. 2754 for (unsigned i = 1; i < Call->getNumArgs(); ++i) { 2755 const Expr *ArgE = Call->getArgExpr(i)->IgnoreParenCasts(); 2756 if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(ArgE)) { 2757 StringRef DeallocatorName = DE->getFoundDecl()->getName(); 2758 if (DeallocatorName == "kCFAllocatorNull") 2759 return false; 2760 } 2761 } 2762 return true; 2763 } 2764 2765 // Associating streams with malloced buffers. The pointer can escape if 2766 // 'closefn' is specified (and if that function does free memory), 2767 // but it will not if closefn is not specified. 2768 // Currently, we do not inspect the 'closefn' function (PR12101). 2769 if (FName == "funopen") 2770 if (Call->getNumArgs() >= 4 && Call->getArgSVal(4).isConstant(0)) 2771 return false; 2772 2773 // Do not warn on pointers passed to 'setbuf' when used with std streams, 2774 // these leaks might be intentional when setting the buffer for stdio. 2775 // http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer 2776 if (FName == "setbuf" || FName =="setbuffer" || 2777 FName == "setlinebuf" || FName == "setvbuf") { 2778 if (Call->getNumArgs() >= 1) { 2779 const Expr *ArgE = Call->getArgExpr(0)->IgnoreParenCasts(); 2780 if (const DeclRefExpr *ArgDRE = dyn_cast<DeclRefExpr>(ArgE)) 2781 if (const VarDecl *D = dyn_cast<VarDecl>(ArgDRE->getDecl())) 2782 if (D->getCanonicalDecl()->getName().find("std") != StringRef::npos) 2783 return true; 2784 } 2785 } 2786 2787 // A bunch of other functions which either take ownership of a pointer or 2788 // wrap the result up in a struct or object, meaning it can be freed later. 2789 // (See RetainCountChecker.) Not all the parameters here are invalidated, 2790 // but the Malloc checker cannot differentiate between them. The right way 2791 // of doing this would be to implement a pointer escapes callback. 2792 if (FName == "CGBitmapContextCreate" || 2793 FName == "CGBitmapContextCreateWithData" || 2794 FName == "CVPixelBufferCreateWithBytes" || 2795 FName == "CVPixelBufferCreateWithPlanarBytes" || 2796 FName == "OSAtomicEnqueue") { 2797 return true; 2798 } 2799 2800 if (FName == "postEvent" && 2801 FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") { 2802 return true; 2803 } 2804 2805 if (FName == "postEvent" && 2806 FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") { 2807 return true; 2808 } 2809 2810 if (FName == "connectImpl" && 2811 FD->getQualifiedNameAsString() == "QObject::connectImpl") { 2812 return true; 2813 } 2814 2815 // Handle cases where we know a buffer's /address/ can escape. 2816 // Note that the above checks handle some special cases where we know that 2817 // even though the address escapes, it's still our responsibility to free the 2818 // buffer. 2819 if (Call->argumentsMayEscape()) 2820 return true; 2821 2822 // Otherwise, assume that the function does not free memory. 2823 // Most system calls do not free the memory. 2824 return false; 2825 } 2826 2827 static bool retTrue(const RefState *RS) { 2828 return true; 2829 } 2830 2831 static bool checkIfNewOrNewArrayFamily(const RefState *RS) { 2832 return (RS->getAllocationFamily() == AF_CXXNewArray || 2833 RS->getAllocationFamily() == AF_CXXNew); 2834 } 2835 2836 ProgramStateRef MallocChecker::checkPointerEscape(ProgramStateRef State, 2837 const InvalidatedSymbols &Escaped, 2838 const CallEvent *Call, 2839 PointerEscapeKind Kind) const { 2840 return checkPointerEscapeAux(State, Escaped, Call, Kind, &retTrue); 2841 } 2842 2843 ProgramStateRef MallocChecker::checkConstPointerEscape(ProgramStateRef State, 2844 const InvalidatedSymbols &Escaped, 2845 const CallEvent *Call, 2846 PointerEscapeKind Kind) const { 2847 return checkPointerEscapeAux(State, Escaped, Call, Kind, 2848 &checkIfNewOrNewArrayFamily); 2849 } 2850 2851 ProgramStateRef MallocChecker::checkPointerEscapeAux(ProgramStateRef State, 2852 const InvalidatedSymbols &Escaped, 2853 const CallEvent *Call, 2854 PointerEscapeKind Kind, 2855 bool(*CheckRefState)(const RefState*)) const { 2856 // If we know that the call does not free memory, or we want to process the 2857 // call later, keep tracking the top level arguments. 2858 SymbolRef EscapingSymbol = nullptr; 2859 if (Kind == PSK_DirectEscapeOnCall && 2860 !mayFreeAnyEscapedMemoryOrIsModeledExplicitly(Call, State, 2861 EscapingSymbol) && 2862 !EscapingSymbol) { 2863 return State; 2864 } 2865 2866 for (InvalidatedSymbols::const_iterator I = Escaped.begin(), 2867 E = Escaped.end(); 2868 I != E; ++I) { 2869 SymbolRef sym = *I; 2870 2871 if (EscapingSymbol && EscapingSymbol != sym) 2872 continue; 2873 2874 if (const RefState *RS = State->get<RegionState>(sym)) { 2875 if ((RS->isAllocated() || RS->isAllocatedOfSizeZero()) && 2876 CheckRefState(RS)) { 2877 State = State->set<RegionState>(sym, RefState::getEscaped(RS)); 2878 } 2879 } 2880 } 2881 return State; 2882 } 2883 2884 static SymbolRef findFailedReallocSymbol(ProgramStateRef currState, 2885 ProgramStateRef prevState) { 2886 ReallocPairsTy currMap = currState->get<ReallocPairs>(); 2887 ReallocPairsTy prevMap = prevState->get<ReallocPairs>(); 2888 2889 for (ReallocPairsTy::iterator I = prevMap.begin(), E = prevMap.end(); 2890 I != E; ++I) { 2891 SymbolRef sym = I.getKey(); 2892 if (!currMap.lookup(sym)) 2893 return sym; 2894 } 2895 2896 return nullptr; 2897 } 2898 2899 static bool isReferenceCountingPointerDestructor(const CXXDestructorDecl *DD) { 2900 if (const IdentifierInfo *II = DD->getParent()->getIdentifier()) { 2901 StringRef N = II->getName(); 2902 if (N.contains_lower("ptr") || N.contains_lower("pointer")) { 2903 if (N.contains_lower("ref") || N.contains_lower("cnt") || 2904 N.contains_lower("intrusive") || N.contains_lower("shared")) { 2905 return true; 2906 } 2907 } 2908 } 2909 return false; 2910 } 2911 2912 PathDiagnosticPieceRef 2913 MallocChecker::MallocBugVisitor::VisitNode(const ExplodedNode *N, 2914 BugReporterContext &BRC, 2915 PathSensitiveBugReport &BR) { 2916 2917 ProgramStateRef state = N->getState(); 2918 ProgramStateRef statePrev = N->getFirstPred()->getState(); 2919 2920 const RefState *RS = state->get<RegionState>(Sym); 2921 const RefState *RSPrev = statePrev->get<RegionState>(Sym); 2922 2923 const Stmt *S = PathDiagnosticLocation::getStmt(N); 2924 // When dealing with containers, we sometimes want to give a note 2925 // even if the statement is missing. 2926 if (!S && (!RS || RS->getAllocationFamily() != AF_InnerBuffer)) 2927 return nullptr; 2928 2929 const LocationContext *CurrentLC = N->getLocationContext(); 2930 2931 // If we find an atomic fetch_add or fetch_sub within the destructor in which 2932 // the pointer was released (before the release), this is likely a destructor 2933 // of a shared pointer. 2934 // Because we don't model atomics, and also because we don't know that the 2935 // original reference count is positive, we should not report use-after-frees 2936 // on objects deleted in such destructors. This can probably be improved 2937 // through better shared pointer modeling. 2938 if (ReleaseDestructorLC) { 2939 if (const auto *AE = dyn_cast<AtomicExpr>(S)) { 2940 AtomicExpr::AtomicOp Op = AE->getOp(); 2941 if (Op == AtomicExpr::AO__c11_atomic_fetch_add || 2942 Op == AtomicExpr::AO__c11_atomic_fetch_sub) { 2943 if (ReleaseDestructorLC == CurrentLC || 2944 ReleaseDestructorLC->isParentOf(CurrentLC)) { 2945 BR.markInvalid(getTag(), S); 2946 } 2947 } 2948 } 2949 } 2950 2951 // FIXME: We will eventually need to handle non-statement-based events 2952 // (__attribute__((cleanup))). 2953 2954 // Find out if this is an interesting point and what is the kind. 2955 StringRef Msg; 2956 StackHintGeneratorForSymbol *StackHint = nullptr; 2957 SmallString<256> Buf; 2958 llvm::raw_svector_ostream OS(Buf); 2959 2960 if (Mode == Normal) { 2961 if (isAllocated(RS, RSPrev, S)) { 2962 Msg = "Memory is allocated"; 2963 StackHint = new StackHintGeneratorForSymbol(Sym, 2964 "Returned allocated memory"); 2965 } else if (isReleased(RS, RSPrev, S)) { 2966 const auto Family = RS->getAllocationFamily(); 2967 switch (Family) { 2968 case AF_Alloca: 2969 case AF_Malloc: 2970 case AF_CXXNew: 2971 case AF_CXXNewArray: 2972 case AF_IfNameIndex: 2973 Msg = "Memory is released"; 2974 StackHint = new StackHintGeneratorForSymbol(Sym, 2975 "Returning; memory was released"); 2976 break; 2977 case AF_InnerBuffer: { 2978 const MemRegion *ObjRegion = 2979 allocation_state::getContainerObjRegion(statePrev, Sym); 2980 const auto *TypedRegion = cast<TypedValueRegion>(ObjRegion); 2981 QualType ObjTy = TypedRegion->getValueType(); 2982 OS << "Inner buffer of '" << ObjTy.getAsString() << "' "; 2983 2984 if (N->getLocation().getKind() == ProgramPoint::PostImplicitCallKind) { 2985 OS << "deallocated by call to destructor"; 2986 StackHint = new StackHintGeneratorForSymbol(Sym, 2987 "Returning; inner buffer was deallocated"); 2988 } else { 2989 OS << "reallocated by call to '"; 2990 const Stmt *S = RS->getStmt(); 2991 if (const auto *MemCallE = dyn_cast<CXXMemberCallExpr>(S)) { 2992 OS << MemCallE->getMethodDecl()->getNameAsString(); 2993 } else if (const auto *OpCallE = dyn_cast<CXXOperatorCallExpr>(S)) { 2994 OS << OpCallE->getDirectCallee()->getNameAsString(); 2995 } else if (const auto *CallE = dyn_cast<CallExpr>(S)) { 2996 auto &CEMgr = BRC.getStateManager().getCallEventManager(); 2997 CallEventRef<> Call = CEMgr.getSimpleCall(CallE, state, CurrentLC); 2998 const auto *D = dyn_cast_or_null<NamedDecl>(Call->getDecl()); 2999 OS << (D ? D->getNameAsString() : "unknown"); 3000 } 3001 OS << "'"; 3002 StackHint = new StackHintGeneratorForSymbol(Sym, 3003 "Returning; inner buffer was reallocated"); 3004 } 3005 Msg = OS.str(); 3006 break; 3007 } 3008 case AF_None: 3009 llvm_unreachable("Unhandled allocation family!"); 3010 } 3011 3012 // See if we're releasing memory while inlining a destructor 3013 // (or one of its callees). This turns on various common 3014 // false positive suppressions. 3015 bool FoundAnyDestructor = false; 3016 for (const LocationContext *LC = CurrentLC; LC; LC = LC->getParent()) { 3017 if (const auto *DD = dyn_cast<CXXDestructorDecl>(LC->getDecl())) { 3018 if (isReferenceCountingPointerDestructor(DD)) { 3019 // This immediately looks like a reference-counting destructor. 3020 // We're bad at guessing the original reference count of the object, 3021 // so suppress the report for now. 3022 BR.markInvalid(getTag(), DD); 3023 } else if (!FoundAnyDestructor) { 3024 assert(!ReleaseDestructorLC && 3025 "There can be only one release point!"); 3026 // Suspect that it's a reference counting pointer destructor. 3027 // On one of the next nodes might find out that it has atomic 3028 // reference counting operations within it (see the code above), 3029 // and if so, we'd conclude that it likely is a reference counting 3030 // pointer destructor. 3031 ReleaseDestructorLC = LC->getStackFrame(); 3032 // It is unlikely that releasing memory is delegated to a destructor 3033 // inside a destructor of a shared pointer, because it's fairly hard 3034 // to pass the information that the pointer indeed needs to be 3035 // released into it. So we're only interested in the innermost 3036 // destructor. 3037 FoundAnyDestructor = true; 3038 } 3039 } 3040 } 3041 } else if (isRelinquished(RS, RSPrev, S)) { 3042 Msg = "Memory ownership is transferred"; 3043 StackHint = new StackHintGeneratorForSymbol(Sym, ""); 3044 } else if (isReallocFailedCheck(RS, RSPrev, S)) { 3045 Mode = ReallocationFailed; 3046 Msg = "Reallocation failed"; 3047 StackHint = new StackHintGeneratorForReallocationFailed(Sym, 3048 "Reallocation failed"); 3049 3050 if (SymbolRef sym = findFailedReallocSymbol(state, statePrev)) { 3051 // Is it possible to fail two reallocs WITHOUT testing in between? 3052 assert((!FailedReallocSymbol || FailedReallocSymbol == sym) && 3053 "We only support one failed realloc at a time."); 3054 BR.markInteresting(sym); 3055 FailedReallocSymbol = sym; 3056 } 3057 } 3058 3059 // We are in a special mode if a reallocation failed later in the path. 3060 } else if (Mode == ReallocationFailed) { 3061 assert(FailedReallocSymbol && "No symbol to look for."); 3062 3063 // Is this is the first appearance of the reallocated symbol? 3064 if (!statePrev->get<RegionState>(FailedReallocSymbol)) { 3065 // We're at the reallocation point. 3066 Msg = "Attempt to reallocate memory"; 3067 StackHint = new StackHintGeneratorForSymbol(Sym, 3068 "Returned reallocated memory"); 3069 FailedReallocSymbol = nullptr; 3070 Mode = Normal; 3071 } 3072 } 3073 3074 if (Msg.empty()) { 3075 // Silence a memory leak warning by MallocChecker in MallocChecker.cpp :) 3076 assert(!StackHint && "Memory leak!"); 3077 return nullptr; 3078 } 3079 3080 assert(StackHint); 3081 3082 // Generate the extra diagnostic. 3083 PathDiagnosticLocation Pos; 3084 if (!S) { 3085 assert(RS->getAllocationFamily() == AF_InnerBuffer); 3086 auto PostImplCall = N->getLocation().getAs<PostImplicitCall>(); 3087 if (!PostImplCall) 3088 return nullptr; 3089 Pos = PathDiagnosticLocation(PostImplCall->getLocation(), 3090 BRC.getSourceManager()); 3091 } else { 3092 Pos = PathDiagnosticLocation(S, BRC.getSourceManager(), 3093 N->getLocationContext()); 3094 } 3095 3096 return std::make_shared<PathDiagnosticEventPiece>(Pos, Msg, true, StackHint); 3097 } 3098 3099 void MallocChecker::printState(raw_ostream &Out, ProgramStateRef State, 3100 const char *NL, const char *Sep) const { 3101 3102 RegionStateTy RS = State->get<RegionState>(); 3103 3104 if (!RS.isEmpty()) { 3105 Out << Sep << "MallocChecker :" << NL; 3106 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 3107 const RefState *RefS = State->get<RegionState>(I.getKey()); 3108 AllocationFamily Family = RefS->getAllocationFamily(); 3109 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 3110 if (!CheckKind.hasValue()) 3111 CheckKind = getCheckIfTracked(Family, true); 3112 3113 I.getKey()->dumpToStream(Out); 3114 Out << " : "; 3115 I.getData().dump(Out); 3116 if (CheckKind.hasValue()) 3117 Out << " (" << CheckNames[*CheckKind].getName() << ")"; 3118 Out << NL; 3119 } 3120 } 3121 } 3122 3123 namespace clang { 3124 namespace ento { 3125 namespace allocation_state { 3126 3127 ProgramStateRef 3128 markReleased(ProgramStateRef State, SymbolRef Sym, const Expr *Origin) { 3129 AllocationFamily Family = AF_InnerBuffer; 3130 return State->set<RegionState>(Sym, RefState::getReleased(Family, Origin)); 3131 } 3132 3133 } // end namespace allocation_state 3134 } // end namespace ento 3135 } // end namespace clang 3136 3137 // Intended to be used in InnerPointerChecker to register the part of 3138 // MallocChecker connected to it. 3139 void ento::registerInnerPointerCheckerAux(CheckerManager &mgr) { 3140 MallocChecker *checker = mgr.getChecker<MallocChecker>(); 3141 checker->ChecksEnabled[MallocChecker::CK_InnerPointerChecker] = true; 3142 checker->CheckNames[MallocChecker::CK_InnerPointerChecker] = 3143 mgr.getCurrentCheckName(); 3144 } 3145 3146 void ento::registerDynamicMemoryModeling(CheckerManager &mgr) { 3147 auto *checker = mgr.registerChecker<MallocChecker>(); 3148 checker->IsOptimistic = mgr.getAnalyzerOptions().getCheckerBooleanOption( 3149 checker, "Optimistic"); 3150 } 3151 3152 bool ento::shouldRegisterDynamicMemoryModeling(const LangOptions &LO) { 3153 return true; 3154 } 3155 3156 #define REGISTER_CHECKER(name) \ 3157 void ento::register##name(CheckerManager &mgr) { \ 3158 MallocChecker *checker = mgr.getChecker<MallocChecker>(); \ 3159 checker->ChecksEnabled[MallocChecker::CK_##name] = true; \ 3160 checker->CheckNames[MallocChecker::CK_##name] = mgr.getCurrentCheckName(); \ 3161 } \ 3162 \ 3163 bool ento::shouldRegister##name(const LangOptions &LO) { \ 3164 return true; \ 3165 } 3166 3167 REGISTER_CHECKER(MallocChecker) 3168 REGISTER_CHECKER(NewDeleteChecker) 3169 REGISTER_CHECKER(NewDeleteLeaksChecker) 3170 REGISTER_CHECKER(MismatchedDeallocatorChecker) 3171